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Abstract 

 

Playa-lunette systems (PLSs) are common landscape features in the Great Plains that have been 

investigated from various perspectives including ecologic, geographic, hydrologic, and geologic. 

One of the region’s most important water sources is the High Plains Aquifer (HPA), an 

expansive groundwater reservoir located beneath the PLSs, which has been susceptible to 

groundwater shortages, water table declines, and pollution throughout much of the High Plains 

due primarily to anthropogenic influences. This investigation takes on a new perspective, that of 

the geomorphology of playa basins and associated lunettes using LiDAR in a GIS environment. 

Playa-lunette systems were mapped using an objective method, or the largest closed contour 

(LCC) method, and a subjective method, also known as the subjectively chosen contour method 

(SC), with contours derived from a high-resolution LiDAR DEM. Basic 2-D attributes, e.g., area, 

perimeter, and orientation, were computed for the PLSs. The basin and lunette locations are 

consistent (perpendicular and parallel long axes, respectively) with late Pleistocene-early 

Holocene northwesterly paleo-winds of the last glacial period, with lunettes commonly being 

located south to south-easterly of the basins. This dataset fills the need for the mapping of the 

basins and compares two mapping methods with contours generated from high-resolution data. 

The assumption is that the SC method produces a visually ideal dataset, but the cons are that it is 

subjective and it requires more knowledge of PLSs. The LCC method is objective and has a set 

criteria to follow, producing more consistent results. A subset of 40 ideal playa-lunette systems 

(out of the 104 study sites from Bowen et al., 2018) were selected for a directional trends 

analysis and other 2-D metrics. Overall, the LCC method was comparable to the SC method, 

though the LCC method had a slight overestimation of the features comprising the PLSs. The 

LCC method and SC method mapped playas more consistently with the same contour than 
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lunettes. A relatively high correlation was found with regression plots of long axial orientation 

values between pairs of the datasets, as well as t-test results showing that these results are 

statistically similar.  
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1 Introduction  

1.1 Groundwater Issues in the High Plains Aquifer 

Groundwater shortages, water table declines, and pollution exist throughout much of the 

High Plains due primarily to anthropogenic influences. One of the region’s most important water 

sources is the High Plains Aquifer (HPA), an expansive groundwater reservoir located beneath 

parts of Nebraska, Kansas, Oklahoma, Texas, and other neighboring states (Gurdak and Roe, 

2009). Monitoring the status of water levels, water quality, and sources and rates of groundwater 

recharge will help to ensure water availability for future use. 

Water shortages are common throughout the region due to an increase in irrigation for 

agriculture and a decrease in precipitation (Gurdak and Roe, 2009), with a result of an increasing 

depth to groundwater (McGuire 2014). Groundwater recharge, a process by which water 

infiltrates the soil and percolates to the water table, is not currently sufficient to compensate for 

the amounts of water being extracted. About 97% of the groundwater pumped from the HPA is 

used for irrigation as of the year 2000 (Maupin and Barber, 2005) to support a growing national 

population. A substantial decrease in groundwater levels has occurred in southwestern Kansas 

and northern Texas (Gurdak and Roe, 2009) in response to crop irrigation through the expansion 

of center-pivot technology, which allows for increased production of water-demanding crops, 

such as corn and alfalfa, in a semi-arid region that formerly produced predominantly dryland 

wheat. There are more efficient irrigated farming techniques that could potentially reduce the 

demand on water from the HPA, such as sub-surface drip irrigation and limited irrigation 

strategies, but those methods are not yet fully utilized.  

Water in the HPA is not only declining, but it is also affected by anthropogenic pollution. 

The products and byproducts of oil and natural gas extraction have contaminated groundwater 
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and can further damage the environment. Oil wells are becoming increasingly common above the 

HPA in northern Texas, southwestern Kansas, and central Kansas due to the adoption of 

hydraulic fracturing and other new extraction technologies. Chemical pollution from agricultural 

runoff and infiltration from center-pivot delivery systems, including pesticides, herbicides, and 

fertilizers, negatively impact groundwater quality (Gurdak and Roe, 2009; Gurdak et al., 2009), 

especially given that these chemicals are used year after year. Groundwater recharge occurs at 

different rates based on diffuse and direct percolation flow patterns (McMahon et al., 2006), 

environmental and anthropogenic factors (Gurdak et al., 2007), and location of infiltration 

(Scanlon and Goldsmith, 1997). Contaminants from slow paths could potentially contaminate 

groundwater in the future (Gurdak and Roe, 2009), so water quality is a long-term concern.  

1.2 Playas and Lunettes 

The majority of playas in the High Plains lie above the HPA, so quantifying their role in 

groundwater recharge is of high importance. Playas are endorheic basins with no groundwater 

influence, so the water inputs are limited to direct precipitation and watershed surface runoff 

(Haukos and Smith, 1994; Tiner, 2003) and water losses of evaporation and infiltration (Rosen, 

1994). As a result, playas periodically function as wetlands due to the accumulation of water 

(which can vary from year to year) and the resulting anaerobic soil conditions. Soils within the 

playa depression typically consist of smectitic clays, which shrink and swell, and can be hydric 

depending on the temporal presence of water. When dry, the smectitic clays in the playa develop 

cracks which increase infiltration, whereas when wet the clays swell shut and the playa becomes 

an evaporative basin conducive for supporting wetland flora and fauna (Scanlon and Goldsmith, 

1997). 
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Playas are widespread ephemeral wetlands and shallow lakes located throughout the 

central and southern Great Plains and have been defined as elliptical depressions typically less 

than a few acres in size (Sabin and Holliday, 1995; Bowen et al., 2010). They consist of a basin 

(depression), an annulus (sloped edge of the basin), and an interplaya region, which is the upland 

area between playas and includes the playa catchment (Bowen and Johnson, 2012). Less 

commonly, playas have an associated lunette, a raised arcuate-shaped aeolian landform typically 

consisting of wind-blown fine sand and silt (Arbogast, 1996; Holliday, 1997; Bowen et al., 

2018). Of the more than 80,000 playas identified on the High Plains in the Playa Lakes Joint 

Venture (PLJV) database (pljv.org), typically only the largest and deepest playas have associated 

lunettes (Sabin and Holliday, 1995; Arbogast, 1996; Bowen and Johnson, 2012). Collectively, a 

playa and lunette are considered a playa-lunette system (PLS) (Bowen and Johnson, 2012).  

PLSs tend to develop in carbonate-rich environments where evaporite bed materials 

slowly dissolve over time, becoming weaker and more porous, thus leading to sub-surficial 

collapse (Wood and Osterkamp, 1987) and are then affected, when dry, by aeolian processes-- 

deflational activity which can shift the sediment during climatic dry periods to form the lunettes 

(Bowen and Johnson, 2012). Sediment was likely available for transport during much of the 

Holocene due to dry climatic conditions (Bowen and Johnson, 2015), which encouraged the 

formation of lunettes as a result of aeolian activity. Northwesterly glacial-age winds in the 

central High Plains (Ahlbrandt and Fryberger, 1980; Arbogast and Muhs, 2000; Bettis et al., 

2003; Mason et al., 2011) resulted in the transport and accumulation of silty loess from the 

interplaya and playa basin to accumulate, forming lunettes (Bowen and Johnson, 2012). 
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1.3 Importance of Playa-Lunette System Study 

Since European settlement, anthropogenic activities have resulted in degradation and 

sedimentation of PLSs, which have been altered with agricultural fields, roads, or terracing. 

Sedimentation occurs when a playa basin fills in with eroded or windblown soil material and 

sediment, typically a result of poor landscape management practices (LaGrange et al., 2011), 

especially in cropland without grass buffers (Bowen and Johnson, 2017; Bowen and Johnson, 

2019). If of sufficient depth, sediment accumulation can nullify the effects of hydric soil shrink-

swell, impacting levels and speed of infiltration within the playa (LaGrange et al., 2011). As a 

result, not all playas exhibit evidence of hydric soils at the surface and some no longer function 

as wetlands.  

2 Objectives and the Study Area  

Western Kansas’s original land cover was primarily short grass prairie (Kuchler 1974), 

but now consists mainly of rangeland and cultivated farmland. The climate is semi-arid (Veregin, 

2005), and soils of the uplands tend to be formed in fine, calcareous loess, except where sand 

dunes have formed (Halfen et al., 2012). Soils in the playa basins are hydric and typically 

include the Randall, Church, Pleasant, Lofton, and Ness series (Web Soil Survey). PLSs in 

Kansas are limited to the western half of the state due to differences in hydrology, landscape, and 

climate, and commonly occur on loess-mantled uplands absent of major fluvial activity. 

Spatially, the PLSs are distributed into three north-south oriented groups separated by valleys of 

major eastward-flowing rivers, the floodplains of which often consist of coarse-grained alluvium, 

not suitable for playa development. The largest playa depressions can be detected as deep as the 

Ogallala Formation and date back to the late Pleistocene; the topography translocated upward to 

the PLSs on the surface (Bowen and Johnson, 2012). 
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2.1 Previous Studies and Ancillary Datasets 

The first attempt at mapping Kansas playa wetlands was that of the Johnson and 

Campbell (2004) database, which used SSURGO hydric soil data to map playas. To minimize 

mapped non-playa features (i.e., to remove the hydric soil footprints that likely did not represent 

playas), a filter was included to keep the features mapped in upland locations. A drawback of the 

filter was the existence of hydric soils in river valleys and draws, which appear as small linear 

features in the dataset. Also due to sedimentation, hydric soils are not always visible at the 

surface. A total of 9,700 to 10,000 playas were identified in this study. 

The Johnson and Bowen playa database (2009) (available from the Kansas Data and 

Access Center website) consists of over 22,000 Kansas probable playa wetlands mapped by 

Bowen et al., (2010) (Figure 1). A manual digitization process was utilized for playa wetland 

delineation, using four consecutive years of aerial imagery from the National Agriculture 

Imagery Program (NAIP).  More recently, 2-m high-resolution LiDAR data have become 

available for western Kansas and have been evaluated for playa basin and catchment mapping 

(Kastens et al., 2016).  

In Kansas, lunettes were delineated at a total of 104 locations; there are currently 129 

known lunettes (some sites had multiple lunettes), about 50 of which have been confirmed on-

site (Bowen et al., 2018). Digital raster graphics (DRGs, resolution ranging from 1.5 m to 6 m) 

and a high resolution LiDAR digital elevation model (DEM) were used to ‘heads-up’ digitize the 

lunettes, utilizing the Bowen and Johnson (2009) playa wetland database to help determine 

possible lunette locations. Proximity to a large playa wetland, contour shape (i.e., elongate and 

crescentic), and closed contours helped determine whether a lunette was present. Emphasis was 

placed on choosing the largest closed contour that encompassed the lunette. Spatial 2-D 
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attributes were calculated in ArcMap using Calculate Geometry (perimeter, area) and Minimum 

Bounding Geometry (long axis length, short axis length, and orientation angle).  

2.2 Objectives 

The main thrust of this research was to map (using non-automated methods) the 

population of PLSs from Bowen et al., (2018) using contours derived from a high resolution 

LiDAR DEM. In this study, a smaller subset of the Bowen et al., (2018) data was ultimately 

chosen for further analysis and was mapped using an objective, largest closed contour method 

(an adaptation from the original study) and a subjective method of hand-selecting the desired 

contours. Playas were mapped as basins (rather than as wetlands), with a goal of mapping the 

entirety of the depression that corresponds with the lunette, as presented in Bowen et al., (2018). 

Statistics were then run to get the 2-D attributes of the features, and further analyses of long axial 

orientation (directional trends) were completed using two programs (ArcMap 10.x and Matlab). 

The objectives of this research include: 

1. Compare the efficacy of the objective method versus the subjective method. 

2. Evaluate the effect of smoothing the contours on the attribute values (e.g., perimeter). 

3. Determine the sufficiency of elliptical curve fitting for calculating orientation values 

compared to the Minimum Bounding Geometry tool (used in Bowen et al., 2018).  

4. Describe interesting cases of PLSs seen while mapping using LiDAR. 

 

It is important to explore new and different ways to map PLSs, especially given more 

readily available high-resolution data, such as LiDAR. This research focuses on non-automated 

methods of LiDAR mapping suitable for smaller populations. There are a number of different 

non-automated mapping techniques, each with different levels of prior knowledge required to 

execute them.  
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3 Methods 

3.1 Mapping 

PLSs were mapped using a high-resolution LiDAR DEM (1 m horizontal resolution with 

a 95% confidence interval of ±9.5 cm on the vertical), supplemented with a hillshade DEM (2 m 

horizontal) and 0.25 m contour lines generated in ArcMap 10.x from the DEM, with the starting 

contour at 0 m. The 0.25 m interval was chosen because it allows for a highly refined contour set 

while also comfortably exceeding the 95% vertical confidence interval. A model created in 

ArcMap 10.x Model Builder was used to iterate through the dataset to clip the DEM and create 

localized areas of contours around the 104 PLS sites from Bowen et al., (2018) (as they are 

known locations of PLSs). 

After the PLSs were mapped (Figure 2), a subset of 40 (a statistically useful sample size 

that allows for attention to individual cases) of the most ideal (elliptic and crescentic shapes for 

playas and lunettes, respectively) PLSs were selected (Figure 3). An ideal playa includes 

minimal fluvial scarring (i.e., inflow channel, delta, or alluvial fan formation) along the boundary 

and an elliptical shape. Lunettes were preferred if they had crescentic boundaries with minimal 

road disruptions and clearly rose up from the surrounding landscape. The playas and lunettes 

were examined individually with a binary standard and were given a score of ‘0’ for not ideal (do 

not include, examples in Figures 4 and 5) and ‘1’ for ideal (include). Each PLS had two values of 

either zero or one for each playa and lunette to determine which PLSs would be included in the 

subset. The resulting PLSs with values of ‘1’ in both categories were included in the subset. As 

the analyses for this study were to focus on directional trends, emphasis was placed on finding 

PLSs that had an ideal shape and would perform well when being fit to ellipses for the 

directional trends analysis. 
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The subset was mapped using two methods: the subjectively chosen contours (SC) 

method and the largest closed contours (LCC) method. The SC method represents the ideal way 

to map PLSs by going through the dataset on a case-by-case basis and choosing the contours best 

suited for each feature. Prior knowledge of typical PLS geomorphology was utilized in contour 

selection, e.g., aeolian dune geometry. Focus was that of finding a contour that represented the 

shape of the original feature, e.g., not including extra boundary alterations such as road cuts. The 

LCC method is a way to remove the subjectivity and to create a set of rules to achieve consistent, 

objective results and specifies that the largest closed contour around the feature is selected to 

represent that feature (similar to Bowen et al., 2018). Additional rules were applied as follows to 

identify a contour that better suited the feature in cases where the largest closed contour grossly 

overestimated the feature: 1) if a saddle point was included within the largest closed contour, the 

largest contour inside without the saddle point was chosen (Figure 6); and 2) if the contour was 

up against a road, then the largest contour inside the road was selected (Figure 7). In cases of 

saddle points where there were two topographic lows or highs, the most appropriate largest 

closed contour surrounding the largest (main) depression or topographic high would be chosen 

(Figure 8). Fluvial channels that affected PLS shape were not a determining factor when 

contours were selected.  

ArcMap 10.x tools were used to clean up the datasets. Major boundary disturbances (e.g., 

due to fluvial activity and roads) were removed in both subsets to reduce noise in the ellipse-

fitting (playas only) and directional trends (both playas and lunettes) results (Figure 9). The 

contours were originally classified as polylines, so the tool ‘Feature to Polygon’ was used to 

convert the polylines to polygons. Due to the complexity and sinuosity of the contours from 

which the polygons were generated, tiny polygon artifacts were created at some locations and 
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needed to be deleted (Figure 10). Playas with two main polygons (e.g., split due to roads, there 

were several cases in this dataset) were merged to be considered the same feature in the attribute 

table, but the boundaries were not physically combined (as it would not affect the orientation 

analyses) (Figure 11); the elevation value was consistent among the two polygons in each case. 

The ‘Repair Geometry’ tool was run (both before and after smoothing) to clean up any geometry 

errors caused by converting the polylines to polygons. Boundaries were then smoothed using the 

‘Smooth Line’ tool, employing the PAEK algorithm with a tolerance of 20 m (ESRI – Smooth 

Line) to clean up the small scale variability of the lines. Smoothing the polygons too much could 

remove important shape detail, so a minimally sufficient value was sought. Values of 10, 20, and 

50 m were tested to find no noticeable difference in the resulting perimeter values and, based on 

visual preference, 20 m was ultimately chosen. Due to rough boundaries, topology errors were 

flagged when running the smoothing tool due to tiny polygons on or just within the edge of the 

main polygon; these errors were fixed in the smoothed datasets (only a few features were flagged 

with topology errors) (Figure 12). Playa ID (PID) and LID (Lunette ID) fields were added to the 

databases to match the site numbers in Bowen et al., (2018). Using the ‘Calculate Geometry’ 

tool, the Area (m2 and hectares) and Perimeter (m) were derived. The ‘Minimum Bounding 

Geometry’ (MBG) tool generated variables of width, length, and orientation, among others.  

3.2 Directional Trends Analysis 

Directional trends were analyzed for both playas and lunettes. For playas, the long axial 

orientation angle was calculated two ways: 1) MATLAB code utilizing the ‘fit_ellipse’ function 

(Gal, 2003), and 2) the MBG tool in ArcMap 10.x as in Bowen et al., (2018). The long axial 

orientation of the lunettes was calculated only using ArcMap 10.x tools, as the crescentic shape 
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data would be noisier when fit to ellipses. The resulting attributes of the same 40 lunettes in the 

subset mapped in this research and in Bowen et al., (2018) were compared.  

For the first method, the MATLAB code fit_ellipse (Gal, 2003) was used to identify the 

best-fit ellipse, which utilizes the least squares method to find the ellipse with the lowest root 

mean square error, or RMSE when compared to a representative set of sample points from the 

playa boundary (Figure 13). Resulting attributes were long axis length, short axis length, and 

orientation. In preparation for the MATLAB code, the nodes were densified to 20 m in ArcMap 

10.x to provide a dense, fairly uniform sample representation of the playa perimeter, as the edited 

areas with removed artifacts (e.g., a fluvial inlet branching into a playa) contained node gaps that 

affected the optimization. There were initially issues with the multi-polygons (due to roads 

splitting the features) when generating the outcome images after running fit_ellipse, as the 

vertices were read in as one long list; this was remedied by merging the polygons in the attribute 

table. The tool ‘Feature Vertices to Points’ with the ‘All Points’ option was used to convert the 

vertices to nodes, which were then inserted into the Matlab code.  

For the second method, to calculate the directional orientation using ArcMap 10.x tools, 

‘Calculate Geometry’ was used to calculate Perimeter and Area, and the MBG tool was used to 

calculate long axis length, short axis length, and orientation (as it was in Bowen et al., 2018).  

The ‘convex_hull’ polygon output option was chosen for the MBG tool given that it was able to 

most closely match the features’ shapes (Figure 14). The fit_ellipse orientation scale was used as 

a default and the MBG orientations were converted to match using the equation: 90 – x (Figure 

15). 
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3.3 Statistics 

Plots and histograms were created in Matlab. Playa (MBG and fit_ellipse) and lunette 

(Bowen et al., (2018) and this research) long axial orientation were plotted via histogram. Linear 

regression plots were created for lunette and playa area and their respective long axial 

orientations, playa vs. lunette long axial orientation, and the corresponding playa (fit_ellipse and 

MBG) and lunette (Bowen et al., (2018) and this research) long axial orientations.     

Circular variance (a method to indicate clustering in circular populations, e.g., 

directionality of the long axis of an ellipse) was calculated using the following equations (Allen 

and Johnson, 1991), 

Var(θ) = 1 −
R

n
                R2 = (∑ cos θi)

n

i=1

2

+ (∑ sin θi)

n

i=1

2

 

where n is the number of values being considered, theta (θ) is the long axial orientation angle, 

resulting values closer to 0 indicate highly similar angles (minimum variability), and resulting 

values closer to 1 indicate uniformly distributed clusters of angles across the full circular range 

(maximum variability); note: this distribution spans over half the circular range, from 90° to -90° 

(Figure 16).   

T-tests were calculated on the major axial orientation values in Microsoft Excel using the 

‘ttest’ function. The assumptions were two-tailed and homoscedastic (same variance between 

two different datasets) and the null hypothesis was that there was no significant difference 

between the datasets; the alpha value was set to 0.05, as that is a standard value.  

4 Results 

This research considered 13 datasets, including 8 playa and 5 lunette (see list below). 
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Playa 

 Playa OS (MBG) 

 Playa OSs (MBG)  

 Playa SS (MBG)  

 Playa SSs (MBG)  

 Playa OS (fit_ellipse) 

 Playa OSs (fit_ellipse)  

 Playa SS (fit_ellipse)  

 Playa SSs (fit_ellipse)  

Lunette 

 Lunette OS (MBG)  

 Lunette OSs (MBG)  

 Lunette SS (MBG)  

 Lunette SSs (MBG)  

 Lunettes – Bowen et al., (2018) (MBG) 

 

 The differences between the datasets are the method for calculating orientation (in 

parentheses), whether the dataset was smoothed (lowercase ‘s’), and whether the polygon 

delineations comprising the dataset were objectively selected or subjectively selected (OS vs 

SS).  

4.1 Qualitative Results 

For the binary classification of the PLSs, the playa and lunette pairs were each given a 

score based on whether the playa and lunette were considered ‘ideal’ to include in the dataset 

(zero indicating not ideal and one indicating ideal). Eight PLSs received a score of zero, 56 PLSs 

received a score of one, and 40 PLSs received a score of two (Table 1). Some PLSs were 

interchangeable - there were playas that were close to being included or could have been 

included; favor was given to those that best represented ideal examples of PLSs, focusing on 

shape and orientation (as the general orientation is known based on previous studies). Of the 

eight PLSs that had a score of zero, two were in Cheyenne County, one was in Wallace County, 
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two were in Scott County, one was in Lane County, one was along the Scott/Finney border, and 

one was in Morton County. Considering the playas and lunettes individually, 71 out of 104 

(~68%) playas were given a value of ‘1’and 65 out of 104 (~62.5%) lunettes were given a value 

of ‘1’.  

A total of 40 PLSs received a score of two and were included in the subset. Of the chosen 

subset, the majority of PLSs were in Scott, Lane, Finney, and Gray counties, similar to the 

distribution of the original Bowen et al., (2018) dataset, with exception to only one sample from 

the northwestern counties and lower inclusion of playas in Scott County and Finney County 

(Table 1). A number of the playas in Scott County and Finney County were close together and 

were not as distinct when compared to the surrounding landscape. Many ideal PLSs were in Lane 

County, which corresponds with the highest population of PLSs. As a whole, modified PLSs (by 

either anthropogenic means or by natural processes) were noted, but likely were not used in the 

subsets, e.g., for playas this includes boundaries altered by fluvial channels and playas that have 

been altered anthropogenically, e.g., with retention ponds and cultivation. The ideal shape and 

orientation of these playas can be surmised, but it is not always obvious and adds subjectivity. 

Modification for lunettes included road influences. The 40 chosen PLSs were mapped twice, 

using the LCC method and SC method, creating the OS and SS datasets, respectively.  

4.2 Quantitative Results 

4.2.1 Mapping 

Playas were more commonly mapped with the same contour in the OS and SS datasets 

versus lunettes, and the OS dataset tended to have larger (in area) contours than the SS dataset 

for both playas and lunettes. Between the OS and SS datasets, 28 playas and seven lunettes had 

the same contour chosen for both datasets out of 40 total sample sites (Table 2). Of the 12 playas 
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where a different contour was chosen, all 12 had a larger contour chosen in the OS, which is the 

generally expected outcome whenever there is a difference. Nine of the 12 had a difference of 

one meter or less (four or fewer contours) and three playas had larger differences of seven, nine, 

and 15 contours. Contour shapes in these cases were similar, indicating that a smaller contour 

was not chosen to get a more precise shape in these cases; rather, a smaller contour was likely 

chosen while taking the landscape as a whole into context (i.e., a smaller contour was chosen 

because a deeper part of the depression was deemed to better suit the playa). Of the 33 lunettes 

where a different contour was chosen, 32 had a larger contour chosen, and one had a smaller 

contour chosen in the OS. In the instance of the larger lunette in the SS, the contour chosen for 

the SS was 0.25 m larger than the contour chosen for the OS. A smaller contour was chosen for 

the OS due to a road bordering the edge of the lunette (Figure 17).  

The LCC method tended to produce larger (more expansive) boundary estimates versus 

the SC method. On average, the contours chosen for delineating the OS playas were about 0.3 m 

higher than the SS playas (the contours for this research were generated 0.25 m apart, so that 

would equal just over one contour) (Table 3). When considering the contours where the OS and 

SS datasets were in disagreement, the number increased to about 1 m (four contours). For 

lunettes, the average elevation difference was 0.75 m lower (three contours) between the OS and 

SS datasets, and about 0.9 m lower (between three and four contours) difference when only 

factoring in cases with differing contours. Regarding the OS – SS calculated difference values, 

the playa values were positive while the lunette values were negative; a smaller contour for 

lunettes has a higher elevation, whereas a smaller contour for a playa would have a lower 

elevation, resulting in positive values for playas and negative values for lunettes when 

subtracting the SS from the OS.  
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4.2.2 Metrics 

Area, perimeter, short axis length, long axis length, and long axial orientation were 

calculated for the PLSs, similar to that of Bowen et al., (2018) with the lunettes. Among the four 

fit_ellipse playa datasets (OS, OSs, SS, SSs), the minimum long axis angle ranged from -0.8° 

(SSs) to -4.2° (OS) (Table 4). Maximum long axis angle in the four datasets was pretty 

consistent, between 34.3° and 35.3°. The mean long axis angle for the fit_ellipse playas was 

15.3° for OS and OSs and 14.8/14.9° for SS and SSs. Standard deviation of the OS long axial 

orientation was 10.7° (OSs) and 11.0° (OS), whereas the standard deviation of the SS long axial 

orientation was 9.9° (SS) and 9.7° (SSs). Minimum long axis length for the four fit_ellipse playa 

datasets (OS, OSs, SS, SSs) were the same for both the OS and SS datasets at 567.4 m and the 

OSs and SSs datasets at 587.6 m (the same contour was chosen in both the OS and SS; likewise 

for the OSs and SSs). Similar results were seen with the maximum long axis length with playa 36 

with values of 3556.2 m for OS and SS and 3576.7 m for OSs and SSs, though this playa seems 

to be an outlier. The next longest major axis was on playa 73, at about 2433 m, over 1,100 m 

shorter.  

For the MBG playa results, the minimum long axial orientation was -11.3/-11.4° for the 

OS and OSs and -10.0/-9.9° for the SS and SSs (Table 5). The maximum MBG long axial 

orientation was around 55.5/55.7° for the OS and OSs and was 42.3° for the SS and SSs datasets. 

The mean MBG long axial orientation was 14.3/14.4° for OS and OSs and 12.6/12.7° for SS and 

SSs. The average for the fit_ellipse playa long axial orientation was 15.3° (Table 4) for the OS 

and OSs and 14.3/14.4° for the OS and OSs MBG playa long axial orientation. 

Among the four MBG lunette datasets (OS, OSs, SS, SSs), the minimum long axis angle 

ranged from -1.0° (OS) to 5.0° (SS) (Table 6). The maximum long axis angle ranged from 63.3 
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and 63.5 in the SS and SSs to 89.4 in the OS and OSs. It does not appear that smoothing affected 

the maximum long axis angle in the OS dataset, but the minimum values in the OS and the 

maximum value in the SS were affected by smoothing by a factor of 0.2-0.3°. There was a six 

degree difference between the OS and SS lunette minimum orientation value and a 26 degree 

difference between the maximum long axial orientation values. The mean long axis angle for the 

MBG lunettes was 33.7 for OS and OSs and 30.9/31.4 for SS and SSs, which are comparable 

values. The standard deviation of the OS long axial orientation was 19.2 (OS) and 19.3 (OSs), 

whereas the standard deviation of the SS long axial orientation was 14.0 (SS) and 13.7 (SSs). 

The minimum long axis lengths for the four MBG lunette datasets (OS, OSs, SS, SSs) were the 

same for both the OS and SS datasets at 278.5 and the OSs and SSs datasets at 274.5. 

Differences were seen with the maximum long axis length with values of 2216.1 for OS, 2012.9 

for SS, 2012.2 for OSs, and 2010.3 for SSs.  

4.2.3 Smoothed vs. Non-smoothed 

The contours were smoothed prior to analyses to examine whether smoothing was 

effective for cleaning up the inflated perimeter values due to sinuous boundaries, as large values 

were seen in the OS and SS datasets, or if it was better suited for visual/aesthetic purposes. The 

goal was to maintain the detail in the datasets, but also to not have larger than realistic perimeter 

values. Based on the resulting attributes, the perimeter values decreased significantly due to 

smoothing the contours. The SS values tended to overestimate perimeter statistics when 

compared to Bowen et al., (2018), while the SSs values tended to underestimate (Table 9). 

Smoothing did not appear to substantially affect the other metrics. The standard deviation was 

lower in the smoothed datasets. The maximum and minimum values better matched those in 
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Bowen et al., (2018) for the SSs lunettes, though the SS values were better matched for the 

median and mean.  

4.2.4 Circular Variance 

 Circular variance values ranged between 0.02 and 0.05 (Table 10). Overall, results 

showed intense clustering and a tight range of orientation values. In terms of smoothing’s effect 

on orientation angle distribution, the largest difference in circular variance values between the 

smoothed and unsmoothed datasets was seen in SS lunettes with a difference of 0.001, indicating 

that the SSs lunette dataset had more clustering and tighter orientation range than the SS lunette 

database. Otherwise, smoothing had minimal effect on circular variance values. OS playas and 

SS playas had a difference of 0.01. SS playas had a slightly tighter orientation range and the 

values were more clustered. This could be in part caused by the SS playas tending to have 

smaller contours, which may have less large-scale variation than larger contours. The OS lunette 

circular variance value was 0.025 higher than the SS lunette circular variance value, indicating 

that the SS lunettes had a closer range of orientation values and clustering. Of the 40 sites, 32 

sites had larger contours in the OS lunette dataset. Similar to the playa databases, the smaller 

contours may better capture the orientation angle and be less subject to natural or anthropogenic 

boundary alterations.  

4.2.5 Directional Trends Analysis 

The playa SS MBG long axial orientation and the playa fit_ellipse long axial orientations 

were both most commonly between 0° and 45° (Figures 18 and 19). No playas in the subset had 

long axial orientations past -45°. The MBG results had values closer to 0°, while the fit_ellipse 

results had values skewed more to the right (or closer to 45°). Correlation between the fit_ellipse 

and MBG data was fairly strong correlation at 0.7 (Figure 20). Plotting OS playa and SS playa 
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long axis orientations had pretty clean results, with only four outliers (Figure 21). The lunette 

results were messier, which was partly attributable to the fact that a larger number of playas were 

mapped with the same contours in both the OS and the SS (Figure 22). 

To quantify and compare ellipse eccentricity for the MBG and fit_ellipse methods, the 

minor axis length was divided by the major axis length for the SS MBG dataset (Figure 23) and 

the SS playa fit_ellipse dataset (Figure 24). Both samples appeared to be approximately normally 

distributed, but the MBG data had a more bell-shaped appearance. Both datasets had a similar 

mean. The average value of the minor axis length divided by the major axis length was between 

0.55 and 0.6, indicating that most of the minor axes were just over half of the length of the major 

axes; ellipses with a minor/major value near zero would be very elongated, whereas those with a 

value of 1 would be a circle (same length). The fit_ellipse data were denser around 0.7 and 0.8, 

indicating that the ellipses fit toward some of the features were more circular. Also the bulk of 

the data was slightly skewed around 0.5 in the fit_ellipse with fewer data points in the 0.6 bin. 

There was a more even range in ellipse shape in the MBG dataset versus in the fit_ellipse 

dataset. 

Both lunette area and perimeter had a weak negative correlation with long axial 

orientation (Figures 25 and 26), indicating that lunettes of a certain size are not more likely to 

have a particular orientation. Both playa area and playa perimeter are not correlated with playa 

orientation (ArcMap SS playa results) (Figures 27 and 28). The correlation is even less than for 

the lunettes, likely because lunettes have a more distinct, oblong and crescentic shape, while 

playas tend to be more circular, making it more difficult to get high-confidence orientation 

results. When examining the long axial orientation of the SS playas versus the SS lunettes, there 

was a weak correlation of 0.31 (Figure 29).   



19 

 

The LCC method results and SC method results appear to be statistically similar. T-tests 

were used for statistical analyses because histograms of the data revealed approximately normal-

looking distributions. The results of the four t-tests show that the differences between the pairs of 

datasets (OS Playa (MBG) and SS Playa (MBG), OS Lunette (MBG) and SS Lunette (MBG), 

SSs Playa (MBG) and fit_ellipse, and SSs Lunette (MBG) and Bowen et al., (2018) (MBG)) 

compared are statistically insignificant (Table 11), indicating that the respective results could 

have come from either of the two populations compared in each scenario; i.e., the datasets are 

very similar. The p-values ranged from 0.42 to 0.60. Assumptions were that the test was two-

tailed, homoscedastic (same variance between two different datasets), a null hypothesis of ‘No 

significant difference between datasets’, and an alpha of 0.05.   

4.2.6 Comparison to Bowen et al., (2018) data 

The dataset in Bowen et al., (2018) included 129 lunettes, but for comparison to this 

research, the corresponding 40 chosen for the subset were analyzed. Minimum area was 2.44 ha 

and the maximum area was 80.43 ha (Table 7). Long axis length ranged from 311 m to 2565 m 

and the long axial orientation ranged from 9.7° to 71.5°. Maximum OS lunette perimeter was 

5522 m larger than Bowen’s largest perimeter (Table 8). Smoothing the dataset brought that 

value down by about 4500 m. Maximum long axial orientation in the OS lunette subset was 

17.9° greater than Bowen’s maximum long axial orientation. Maximum SS lunette long axial 

length was 554.7 m longer than Bowen’s maximum. SS lunette maximum perimeter was 1521.2 

larger than Bowen’s, but smoothing lowered that value to 987.8 larger than Bowen’s.  

When compared to the Bowen et al., (2018) lunettes, the MBG SS lunette perimeter 

values were higher, with a minimum perimeter value of 42% higher and a maximum perimeter 

value of 25% higher (Table 8). The median of the SS dataset and the Bowen et al., (2018) dataset 
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were nearly the same. The mean perimeter value was 9% higher in the SS dataset. Smoothing the 

MBG SS lunette database decreased the perimeter values by 29% for the minimum value and by 

33% for the maximum value. When smoothed, the median perimeter was decreased by 25% and 

the mean perimeter was decreased by 27%. The MBG SSs lunette database had overall smaller 

perimeters than Bowen et al., (2018), with a minimum value 1% higher and a maximum 

perimeter value 17% lower. The median and mean were 25% and 21% smaller, respectively.  

When comparing the long axial orientation for the lunette MBG SS (Figure 30) and the 

long axial orientation for the same 40 lunettes in the Bowen et al., (2018) subset (Figure 31), the 

highest frequency of orientations are between zero and 50°. The peak was around 30° for the SS 

data and 40° for the Bowen data. Bowen’s lunettes were skewed to the left and clustered around 

20, 30, and 40° whereas the SS data had more of a normal distribution with a peak at 30. The 

correlation was fairly strong at 0.8 (Figure 32). 

5 Discussion 

5.1 Mapping 

At the beginning of the mapping process, subjectivities included the decision as to which 

contour best fit the feature, e.g., the largest closed contour, the contour at the outer edge of the 

playa annulus (wall), or the contour on the inner edge of the playa annulus (Figure 33). 

Digitizing the features ‘heads-up’ using the LiDAR DEM was attempted but was rather open-

ended given the high resolution of the data, so a more objective method for determining 

boundaries was sought. This subjectivity demonstrates the need to find an objective method that 

is repeatable and reliable. Generating 0.25 m contours from the LiDAR data helped to decrease 

the subjectivity in the boundary delineation process by providing a boundary candidate library to 

choose from. From this, the features were subjectively mapped by a professional choosing the 
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so-called “best” contour according to their judgement (subjective contour, or SC), as well as 

objectively mapped using the largest closed contour (LCC; similar idea as used in Bowen et al., 

2018), but with a few additional rules added.  

As anticipated, using the DEM was effective for mapping the playa basins, since the 

features were not subject to noise from the variable land cover in the aerial photography. 

However, there were some aspects of the DEM that made mapping unclear. A con of the LCC 

method is when the playa boundaries as a whole are altered. There were cases where drainage 

channels going into the depression were included in the boundary, and where anthropogenically 

altered boundaries were mapped as the playa, e.g., in the case of agricultural retention ponds. 

The SC method could help in these cases if there were smaller contours that better represented 

the feature, but if all contours are affected then contour-based boundaries that represent the 

original feature shape might be difficult to obtain.  

The crescentic shape was not utilized in this research as it was in Bowen et al., (2018). 

For this study, boundaries were not changed based on the crescentic-shaped criteria used in that 

paper; in some cases it may have helped clean up the boundaries that were too large, but then 

would run into the subjective question of 'which contour should be chosen?' as many of the 

contours are crescent-shaped and the best-suited one may not be the largest crescent. Also some 

of the dunes are rounded and are not appropriately described as crescentic. The data used in 

Bowen et al., (2018) were limited in some cases to the 1.5 m - 6 m resolution DRGs, given that 

LiDAR coverage in Kansas was not widely available at the time. Closely spaced contours 

generated from the LiDAR DEM helped the crescentic patterns in the landscape become more 

visible. Given the high-resolution and detail of the LiDAR DEM, possible unmapped lunettes 
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were located by their geographic location, close contour spacing, and crescentic shape (Figure 

34).  

The elevation differences between the playa and lunette were not considered as the 

landscape is not a flat plane, though that does raise the question to which boundaries best 

delineate the playas and lunettes (another factor that demonstrated a need for an objective 

mapping method). Some of the currently mapped lunettes had multiple high points, leading to a 

subjective decision of which and how many of those rises to map. Initially while mapping, it was 

questioned whether it would be best to try to match the contour from Bowen et al., (2018) or to 

map features exclusive of saddle points (i.e., the highest peak); ultimately the latter was chosen, 

leading to one of the additional rules of the LCC method.  

The two additional rules of the LCC method (choosing the contour smaller in area than a 

road-affected contour and choosing the contour adjacent to the saddle point) did not always help 

narrow down the contours to that of the original landform. In particular, this applied to 

‘stretched’ lunettes, whose boundaries seem large and exaggerated down the leeward 

(downwind) slope (Figure 35). Roads were not affecting the shape of the feature and there was 

no saddle point to give any indication as to where to cut the feature off. For the stretched 

lunettes, the features seemed over-mapped in area and the contours chosen in the SC method 

would have better suited the original feature. 

5.2 OS vs SS 

Generally, the objective method mapped the PLSs larger in area than the subjective 

method. At times, the objective method seemed to over-estimate the area of the PLSs (e.g., 

stretched lunettes or including extra lobes in the playa boundaries). Many times the playa or 

lunette were a part of a larger depression or ridge, causing the largest closed contour to 
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overestimate the feature’s area. A modification to the largest closed contour method was the use 

of the saddle point to help determine the contour chosen, generally allowing the individual 

features to be better estimated. Also, the additional rule of choosing the largest closed contour 

inside of a road-affected boundary was implemented to help offset the overestimated boundaries 

that were caused by roads. 

The OS and SS methods both seemed to be more consistent in mapping the playas versus 

the lunettes. It was much more common for the same contour to have been selected in both the 

SS playa database and the OS playa database versus those in the respective SS and OS lunette 

databases. This could indicate that it is easier to determine the boundary of a depression with 

contours versus the boundary of a protrusion (specifically, a dune). A case where the OS method 

did not work ideally for mapping lunettes includes stretched lunettes. 

Results of the objective method are largely unbiased and repeatable, while the results of 

the subjective method are based on expertise and knowledge of PLSs, for which many 

professionals have a different definition (i.e., the question “what defines a playa?” is open to 

interpretation). This manual selection process can introduce subjectivity as to where to delineate 

the depression’s boundaries. Knowledge of PLS geomorphology, local soil series, local 

topography, and fluvial processes will be necessary for mapping PLSs. Contours used in this 

research are 0.25 m apart and at times there may not be much variation between choosing 

surrounding contours. Other subjectivities include whether the contours are mapped around the 

inner or outer annulus and whether the boundary abnormalities (due to natural or anthropogenic 

influences) are sought to be included as a part of the feature.  

Depending on the purpose of the study, either method could be justified. If generous 

(larger in area) boundaries would be preferred (e.g., to maximize the feature footprint for 
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conservation purposes), then the objective method could be used. Also, if the questions at hand 

are best addressed using a methodology that is consistent and repeatable (e.g., mapping the 

features throughout the entire Great Plains or multiple people with varying knowledge bases 

mapping the features), then the objective method would be preferred. To assess the shape and 

best estimate the geomorphic extent of the original feature, the subjective method might be 

utilized. Also, if the results are to precisely analyze the playas and lunettes (e.g., geometrically, 

morphometrically), the subjective method provides tighter contours that more closely match the 

topographical shape of the feature and seem to be less frequently affected by natural or 

anthropogenic boundary disturbances.  

5.3 Matlab vs MBG 

Given the analyses of both the LCC and SC methods, further analyses were desired to 

quantify 2-D metric results of both datasets. Elliptical fitting and a long-axial directional trends 

analysis were focused on in greater detail, including the two different methods of calculating this 

metric (fit_ellipse and MBG). One main difference between the fit_ellipse and the MBG 

methods are the way the features were fit to ellipses; the fit_ellipse function uses the least 

squares method to find the lowest RMSE while orienting the ellipse, while the MBG method 

creates an envelope around the feature, finds the longest distance between two points, and draws 

a line between them for the long axis (Figure 36).  

The differences in long axial orientation results could be due to the fitting of the 

envelopes around the features in the MBG method. Extra fluvial channels, for example, would 

affect the shape of the playa and therefore the envelope. Convex shapes appear to fit best with 

the envelopes versus concave shapes; when the shape is concave, the envelope surrounds the 

entire feature, even if there is dead space in-between the boundary and the feature. 
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5.4 Metrics 

The plot for OS vs SS MBG playa orientation included four outliers (Figure 20). The 

outliers were mapped with different contours for the OS and SS datasets (Figure 37). In two of 

the cases, extra lobes on the playas affected the overall shape of the envelope. In the other two 

cases, small fluvial channels affected the shape of the envelopes. These examples show a 

weakness of the MBG envelope-fitting method and could be a case for using the fit_ellipse least 

squares fitting method. Another example of an outlier was a lunette with a large area, perimeter, 

and 5° orientation located in Gray County. The corresponding playa is unique in that it is 

especially elongate. This case would be an anomaly with both the fit_ellipse and MBG methods. 

For circular variance, the lunette and playa values were comparable, but the lunette 

values were slightly larger than the playa values. This could be due to the shape of the features. 

Playas tend to be more elliptical, whereas the lunettes tend to be more crescentic. The polygon 

drawn around the playas by the MBG tool would likely better match the playas with less empty 

space, giving a more accurate representation of that feature’s long axis. The lunettes were not fit 

to ellipses using fit_ellipse for this reason. 

5.5 Future Studies 

The lunette database could be expanded given the full-state LiDAR coverage completed 

in the last few years. Future studies could try out a larger sample (perhaps all 104 sites in Bowen 

et al., 2018) with more complex cases to examine the effectiveness of the objective and 

subjective methods with a larger sample size. Cases in which the boundaries were heavily 

modified were not included in the dataset for this research.  

Another interesting variable to evaluate would be the angle between the centroids of each 

playa and its lunette. The angles could be measured against the long axis of the playa, and the 
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angle at which the sediment was blown from the playa to the lunette could be estimated. This 

could be compared with previous studies of paleo-wind direction and used to provide more detail 

for western Kansas.  

Future studies could look more into combining the repeatability of the LCC method and 

the ideal results due to the deliberately chosen contours of the SC method. Additional rules may 

need to be added to better narrow down the LCC method contours, e.g., choosing a contour 

within tightly clustered contour groups (quick elevation change over a small area) to help 

determine the contour closest to the edge of the feature. 

6 Conclusions 

A non-automated method to map PLSs objectively and to conduct geomorphic statistical 

analyses was sought. Utilizing the high resolution DEM contours removed the subjectivity of 

heads-up digitizing. Two valid methods were examined in this study to map PLSs. The LCC 

method has a repeatable, consistent methodology, which therefore removes much of the 

subjectivity. Overall, it seemed that the LCC method was comparable to the SC method. The 

objective method provides a slight overestimation of the PLSs, but provides a defined 

methodology that does not require as much background knowledge. Playas were more 

consistently mapped with the same contour in both methods versus the lunettes. Regression plots 

and t-tests on the long axial orientation values between pairs of the datasets showed that the 

results are statistically similar. In terms of applications of this research, the resulting playa 

datasets could be of use to conservationists, particularly those interested in wildlife ecology and 

habitat classification, and individuals in groundwater resource management, especially for 

studies in groundwater recharge during playa hydroperiods. The lunette databases could 
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potentially be of use to cultural resource experts to aid in the location of archaeological study 

sites.  
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Tables 

Table 1. Binary chart for selection of PLSs for subset* 

County Playa - 0 Playa - 1 Lunette - 0 Lunette - 1 Included in subset** 

Cheyenne 5 1 3 3 0 

Clark 1 3 1 3 2 

Edwards 1 0 0 1 0 

Finney 3 17 12 8 6 

Ford 0 2 0 2 2 

Grant 0 3 2 1 1 

Gray 1 7 1 7 6 

Greeley 0 1 1 0 0 

Haskell 1 0 0 1 0 

Lane 4 13 1 16 13 

Logan 0 1 1 0 0 

Meade 2 1 0 3 1 

Morton 1 1 1 1 1 

Ness 0 1 1 0 0 

Rawlins 0 1 1 0 0 

Scott 6 8 4 10 6 

Sherman 2 2 1 3 1 

Stanton 2 3 2 3 1 

Thomas 2 3 3 2 0 

Wallace 2 3 4 1 0 

 

Total 33 71 39 65 40 

 

*There were some PLSs with values of ‘1’ could have been assigned values of ‘2’ and been 

interchanged and included 

**PLSs included in subset had both the playa and lunette given a value of ‘1’ 
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Table 2. Contours chosen in OS vs SS 

Subset Same in OS and SS Larger OS Larger SS 

Playa 

Lunette 

28 

7 

12 

32 

 

0 

1 
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Table 3. Elevation differences between OS and SS datasets 

Subset Average Elevation Difference 

OS – SS (all values) 

Average Elevation Difference 

OS - SS (non-zero values) 

 

Playa 

Lunette 

0.31 

-0.75 

1.04 

-0.91 
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Table 4. Data results from OS, SS, OSs, and SSs Fit Ellipse – Playas 

OS Playas 

 Long axis angle Long axis length Short axis length 

min -4.22 567.42 341.73 

max 34.30 3556.20 1341.26 

median 13.41 1320.79 655.33 

mean 15.31 1402.31 732.28 

stdev 10.99 572.99 247.74 

 

OS smoothed Playas 

 Long axis angle Long axis length Short axis length 

min -1.02 587.57 347.68 

max 35.24 3576.67 1338.90 

median 13.99 1325.95 670.41 

mean 15.32 1412.39 740.19 

stdev 10.74 579.08 250.47 

 

SS Playas 

 Long axis angle Long axis length Short axis length 

min -1.08 567.42 341.73 

max 34.30 3556.20 1341.26 

median 12.45 1294.13 636.37 

mean 14.78 1369.75 705.92 

stdev 9.88 587.18 246.35 

 

SS smoothed Playas 

 Long axis angle Long axis length Short axis length 

min -0.84 587.57 347.68 

max 35.24 3576.67 1338.90 

median 13.42 1294.63 638.41 

mean 14.89 1378.84 713.71 

stdev 9.67 593.78 249.21 

 

Note: Long axis angle is in degrees, long axis length is in m, and short axis length is in m 
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Table 5. Data results from OS, SS, OSs, and SSs ArcMap – Playas 

OS Playas 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 145714.23 14.57 2785.64 343.42 576.40 -11.4 

max 2596419.96 259.64 17996.07 1295.77 3391.04 55.5 

median 613001.94 61.30 5451.50 698.57 1263.74 11.1 

mean 790166.05 79.02 6563.83 766.16 1406.75 14.3 

stdev 540046.01 54.00 3552.47 255.21 552.40 15.0 

 

OS smoothed Playas 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 145609.89 14.56 2084.67 340.58 574.28 -11.3 

max 2596397.81 259.64 11313.31 1292.71 3388.28 55.7 

median 612986.64 61.30 3614.44 694.04 1260.57 11.0 

mean 790159.28 79.02 4310.16 763.01 1403.10 14.4 

stdev 540043.37 54.00 2083.12 255.21 552.18 15.0 

 

SS Playas 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 145714.23 14.57 2531.27 343.42 576.40 -10.0 

max 2596419.96 259.64 17996.07 1295.77 3391.04 42.3 

median 565089.98 56.51 4906.40 654.93 1253.58 9.0 

mean 752849.79 75.28 6340.94 737.24 1368.39 12.6 

stdev 544856.48 54.49 3672.56 252.66 569.84 12.6 

 

SS smoothed Playas 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 145609.89 14.56 2057.93 340.58 574.28 -9.9 

max 2596397.81 259.64 11313.31 1292.71 3388.28 42.3 

median 565079.28 56.51 3389.60 651.40 1251.28 9.1 

mean 752841.20 75.28 4171.69 734.03 1364.76 12.7 

stdev 544854.08 54.49 2145.27 252.63 569.49 12.6 

 

Note: MBG_Orient column corrected by equation 90 – x to normalize to fit_ellipse results 
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Table 6. Data results from OS, SS, OSs, and SSs ArcMap – Lunettes 

OS Lunettes 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 29423.22 2.94 1087.13 137.87 278.51 -1.0 

max 1077230.92 107.72 11503.44 967.67 2216.08 89.4 

median 138018.65 13.80 2782.09 306.48 650.79 31.0 

mean 199276.02 19.93 3097.12 352.41 768.86 33.7 

stdev 190365.51 19.04 1870.53 166.18 389.27 19.2 

 

OS smoothed Lunettes 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 29431.09 2.94 710.86 134.63 274.51 -1.3 

max 1077322.11 107.73 7028.15 965.26 2212.20 89.4 

median 138035.55 13.80 1809.20 303.86 647.54 31.4 

mean 199268.62 19.93 2056.27 349.66 765.61 33.7 

stdev 190365.40 19.04 1137.07 166.05 389.37 19.3 

 

SS Lunettes 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 29423.22 2.94 997.31 132.14 278.51 5.0 

max 666919.35 66.69 7502.61 583.11 2012.85 63.5 

median 82351.20 8.24 1805.31 223.53 533.56 28.4 

mean 120283.21 12.03 2145.95 251.80 634.24 30.9 

stdev 113390.46 11.34 1213.72 94.44 338.88 14.0 

 

SS smoothed Lunettes 

 Area_m2 Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 29431.09 2.94 710.86 130.33 274.51 4.8 

max 666884.59 66.69 4993.60 579.72 2010.32 63.3 

median 82324.35 8.23 1355.07 221.50 531.21 28.75 

mean 120272.77 12.03 1565.72 249.07 631.63 31.44 

stdev 113380.54 11.34 813.62 94.39 338.97 13.66 

 

Note: MBG_Orient column corrected by equation 90 – x to normalize to fit_ellipse results 
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Table 7. Bowen et al., (2018) lunette database results for subset 

Lunettes 

 Area Perimeter MBG_Width MBG_Length MBG_Orient 

min 2.44 703.66 99.72 311.00 9.70 

max 80.43 5981.38 878.02 2565.06 71.50 

median 14.49 1803.41 259.51 757.62 29.60 

mean 18.05 1975.28 288.92 843.89 29.92 

stdev 15.90 1065.78 142.04 453.49 12.20 

 

Note: MBG_Orient column corrected by equation 90 – x to normalize to fit_ellipse results 
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Table 8. Differences in data values between OS, SS, OSs, and SSs ArcMap Lunettes compared 

to Bowen et al., (2018) lunettes 

OS Lunettes     
  Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 0.50 383.47 38.15 -32.49 -10.70 

max 27.29 5522.06 89.65 -348.98 17.90 

median -0.69 978.68 46.97 -106.83 1.40 

mean 1.88 1121.84 63.49 -75.03 3.78 

stdev 3.14 804.75 24.14 -64.22 7.00 
 

     
OS smoothed Lunettes    
  Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 0.50 7.20 34.91 -36.49 -11.00 

max 27.30 1046.77 87.24 -352.86 17.90 

median -0.69 5.79 44.35 -110.08 1.80 

mean 1.88 80.99 60.74 -78.28 3.78 

stdev 3.14 71.29 24.01 -64.12 7.10 
 

     
SS Lunettes     
  Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 0.50 293.65 32.42 -32.49 -4.70 

max -13.74 1521.23 -294.91 -552.21 -8.00 

median -6.25 1.90 -35.98 -224.06 -1.20 

mean -6.02 170.67 -37.12 -209.65 0.98 

stdev -4.56 147.94 -47.60 -114.61 1.80 
 

     
SS smoothed Lunettes    
  Area_ha Perim_m MBG_Width MBG_Length MBG_Orient 

min 0.5 7.2 30.61 -36.49 -4.9 

max -13.74 -987.78 -298.3 -554.74 -8.2 

median -6.26 -448.34 -38.01 -226.41 -0.85 

mean -6.02 -409.56 -39.85 -212.26 1.52 

stdev -4.56 -252.16 -47.65 -114.52 1.46 

 

Note: MBG_Orient column corrected by equation 90 – x to normalize to fit_ellipse results 
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Table 9. Perimeter values and differences between SS Lunette, SSs Lunette, and Bowen et al., 

(2018) [referenced as ‘Bowen’] 

 

Perimeter of Lunettes 

 

SS 

Lunette 

(MBG) 

A 

SSs 

Lunette 

(MBG) 

B 

 

Percent 

decreased when 

smoothed 

(B-A)/A 

Bowen 

C 

Difference 

Unsmoothed 

(MBG vs 

Bowen) 

(A-C)/C 

Difference 

Smoothed 

(MBG vs 

Bowen) 

(B-C)/C 

min 997.31   710.86 -29% 703.66 42% 1% 

max 7502.61  4993.60 -33% 5981.38 25% -17% 

median 1805.31 1355.07 -25% 1803.41 0% -25% 

mean 2145.95 1565.72 -27% 1975.28 9% -21% 

stdev 1213.72 813.62 -33% 1065.78 14% -24% 
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Table 10. Circular Variance of ArcMap MBG long axis orientation; tight clustering is associated 

with small values (results can range from 0 to 1) 

Dataset Circular Variance 

OS Playa 

OSs Playa 

 

SS Playa 

SSs Playa 

  

OS Lunette 

OSs Lunette 

 

SS Lunette 

SSs Lunette 

0.0327 

0.0328 

 

0.0232 

0.0233 

 

0.0533 

0.0534 

 

0.0286 

0.0273 
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Table 11. T-Tests on major axial orientation values; the p-values are higher than the alpha value, 

so the H0 would fail to be rejected (indicating that there is likely no significant difference 

between the means of the datasets) 

 

Assumptions 

-Two-tailed 

-Homoscedasticity (same variance between two different datasets) 

-H0 = No significant difference between the means of the datasets 

-alpha = 0.05 [90% confidence interval, as it is a two-tailed test and alpha is divided by 2] 

 

Datasets p-value 

OS Playa (MBG), SS Playa (MBG) 

OS Lunette (MBG), SS Lunette (MBG) 

SSs Playa (MBG), fit_ellipse 

SSs Lunette (MBG), Bowen et al., (2018) (MBG) 

0.5924 

0.4554 

0.4156 

0.6004 
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Figures 

  
 

Figure 1. PLSs (playas – blue; lunettes – green) mapped during this research (left) and the PLJV 

wetlands mapped in the Bowen et al., (2011) research (yellow). Location: Central Lane County, 

Kansas 
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Figure 2. Contouring of two PLS examples. 0.25 m contours (black) and a mapped PLS (red, 

right images) 
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Figure 3. Distribution of lunettes in western Kansas from Bowen et al., (2018) (black and red 

dots) and the selected subset of PLSs (red dots). 
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Figure 4. Examples of non-ideal playas a. Playa boundary (in blue) delineated was not deemed 

to suit the feature, so it was not included in the subset; b. Playa boundary was disturbed by 

anthropogenic influences and was no longer an ideal shape, so it was not selected for the subset; 

c. Playa boundary was noticeably affected by fluvial drainage channels, so it was not chosen for 

the subset. 

  

a 
b c 
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Figure 5. Examples of non-ideal lunettes a. Lunette was mapped as multiple high points (in 

green) and as a result was not chosen for the subset; b. Stretched lunette that was not included in 

the subset; c. Lunette was not well-defined from the surrounding landscape and was not ideal in 

shape or relative position to playa, so it was not included in the subset; d. Playa and lunette were 

not ideally shaped and lunette had boundary disturbances on the southern side, so it did not get 

added to the subset; e. Lunette was not easily detectable in the DEM, so this PLS did not end up 

being a part of the subset; f. PLS was a reasonable choice to include in the subset, but ultimately 

was not selected for the subset due to the two lunettes mapped and the off-center playa. 

 

 

 

  

a b 

c d e 

f 
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Figure 6. Examples of saddle points in playas 
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Figure 7. A road disturbance on the edge of the lunette boundary  
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Figure 8. The largest closed contour (light blue) included an adjacent topographic high, so the 

saddle point (in red) was used to choose a smaller boundary  

a 
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Figure 9. Fluvial channels (dark blue) were removed from the playa boundary (red) to create less 

noise in ellipse fitting results 
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Figure 10. Converting polylines to polygons in ArcMap 10.x unintentionally created small 

artifacts that needed to be removed 
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Figure 11. Examples of playas with multiple polygons (blue) fit to ellipses (red) using Matlab 

code fit_ellipse 
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Figure 12. Playa basin fit to an ellipse using fit_ellipse code. Image generated in MATLAB 
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Figure 13. Topology errors that needed to be corrected when the smoothing tool was run in 

ArcMap 10.x 
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Figure 14. Polygon output options from ArcMap 10.x Minimum Bounding Geometry tool 

polygon output options (ESRI - MBG) 
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Figure 15. Charts of the angles used to describe ellipse angles. The fit_ellipse orientation scale was 

used as a default and the MBG orientations were converted to match using the equation: 90 – x 
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Figure 16. Playa major axial angles from a reference point, 0° (horizontal)  
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Figure 17. Example where a larger contour was chosen for SS (pink); OS in purple, contours in 

black 
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Figure 18. Playa MBG SS long axis orientation (in degrees) 
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Figure 19. Playa SS fit_ellipse long axis orientation (in degrees) 
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Correlation: 0.7210905 

 

Figure 20. Playa long axis orientation – fit_ellipse SS vs MBG SS 

Note: A best fit line was used in this plot 
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Correlation: 0.7802999 

 

Figure 21. Playa OS vs SS MBG – long axis orientation 

Note: A one-to-one line was used in this plot 
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Correlation: 0.6778627 

 

Figure 22. Lunette OS MBG long axis orientation vs lunette SS MBG long axis orientation 

Note: A one-to-one line was used in this plot 
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Figure 23. Playa MBG SS minor axis length divided by major axis length 
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Figure 24. Playa fit_ellipse SS minor axis length divided by major axis length  
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Correlation: -0.1723591 

 

Figure 25. Lunette MBG SS – area vs long axis orientation 

Note: A best fit line was used in this plot 
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Correlation: -0.1382203 

 

Figure 26. Lunette MBG SS – perimeter vs long axis orientation 

Note: A best fit line was used in this plot 
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Correlation: 0.0290722 

 

Figure 27. Playa MBG SS –area vs long axis orientation 

Note: A best fit line was used in this plot 
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Correlation: 0.1207883 

 

Figure 28. Playa MBG SS – perimeter vs long axis orientation  

Note: A best fit line was used in this plot 
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Correlation: 0.3130903 

 

Figure 29. Lunette SS MBG long axis orientation vs playa SS MBG long axis orientation 

Note: A best fit line was used in this plot 
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Figure 30. Lunette MBG SS long axis orientation (in degrees) 

-90° 90° 45° -45° 
0° 
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Figure 31. Bowen et al., (2018) MBG long axis orientation for subset of 40 
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Correlation: 0.7527673 

 

Figure 32. Subset of Bowen et al., (2018) vs MBG SS lunette long axis orientation 

Note: A best fit line was used in this plot  
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Figure 33. Subjectivities encountered at the beginning of the research included minimizing the 

bias as to how to define the feature’s boundaries; two examples of potential boundaries indicated 

by black arrows 
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Figure 34. Using high-resolution LiDAR has the potential to yield unmapped lunettes a. An 

unmapped lunette near playa with PID 8, below left of Bowen et al., (2018) lunette outlined in 

black; b. Lane County, Kansas – 38.427° N, 100.475° W. This appears to be a PLS due to the 

shape of the depression/rise 

 

  

a 
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Figure 35. Three examples of stretched lunettes 
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Figure 36. Examples of fit_ellipse ellipses (left) versus MBG convex hull around playas (right) 
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Figure 37. Outliers for OS vs SS MBG playa orientation  

Playas 26, 50, 55, and 56; left: features mapped, right: MBG envelopes 

 


