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Abstract 

Shallow cumulus and cumulus congestus clouds play an important role in the large-scale 

tropical circulation by mixing heat and moisture vertically and preconditioning the environment 

for deeper convection. Different representations of these shallow clouds also account for much of 

the spread in General Circulation Models (GCMs) climate sensitivity. In particular, GCMs 

typically struggle representing low-cloud cover and the diurnal cycle in cloud properties. One of 

the reasons for these shortcomings may be how entrainment is represented in GCM 

parameterizations. Entrainment is a first-order mechanism that governs the depth to which 

shallow cumulus and congestus penetrate. This study uses observations from the Department of 

Energy's Atmospheric Radiation Measurement (ARM) mobile facility deployed at Manacapuru, 

Brazil during the Green Ocean Amazon (GOAmazon) 2014/2015 Campaign. Environmental 

thermodynamic profiles and observations of cloud-top height are used to constrain an entraining 

plume model to estimate bulk entrainment rates. A new and improved best-estimate of cloud-top 

height is obtained from a combination of vertically-pointing W-band ARM cloud radar (WACR) 

and 1290-MHz Radar Wind Profiler (RWP) observations. A combination of radiosonde, 

microwave radiometer profiler (MWRP) and microwave radiometer (MWR) observations 

provide a new and improved best-estimate of the environmental thermodynamic state. We 

quantify uncertainty in entrainment rates considering uncertainties in estimated cloud top height, 

environmental thermodynamic properties, and assumed initial parcel characteristics.   

We evaluate several entrainment closures that are in current use in atmospheric models or 

have been proposed based on theory or large-eddy simulation results. Entrainment rates for 

cumulus congestus clouds are weakly correlated with low-level buoyancy, cloud depth, and 

cloud size. For shallow cumulus, we find a modest correlation between entrainment rate and low-
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level relative humidity. Additional relationships between entrainment rate, vertical velocity, and 

environmental thermodynamic variables are also presented.  
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1  Introduction 

 Convective clouds are formed from rising parcels, to first order driven by buoyancy and 

modulated by environmental stability and mixing with environmental air. These clouds play an 

important role in the global energy budget by transporting heat, moisture, and momentum in the 

vertical and through their influence on both the shortwave and longwave radiation budget. The 

impact of clouds on the radiative budget depends on the cloud macrophysical (fractional 

coverage, thickness, and height/temperature) and microphysical (water content, particle size 

distribution and phase) properties. Three modes of convective clouds exist in the tropics:  

shallow cumulus, cumulus congestus, and deep cumulonimbus (Johnson et al. 1999).  

 Shallow cumulus are the most prevalent cloud type in the tropics and have cloud tops 

within the boundary layer (Johnson et al. 1999, McFarlane et al. 2013). They scatter the majority 

of incident shortwave solar radiation and thus have a net cooling effect on the surface 

(Bretherton et al. 2004). Surface fluxes of heat and moisture drive the destabilization the 

provides buoyancy for the clouds. Evaporation at cloud top moistens and cools the stable 

inversion layer, which balances the warming and drying from large scale subsidence. Turbulent 

fluxes associated with shallow cumulus therefore determine the equilibrium boundary-layer 

depth and thermodynamic properties (Riehl et al. 1951, Stevens 2007, Rauber et al. 2007).  

 Cumulus congestus clouds, defined as having cloud top heights (CTH) near the 0°C level 

(~5 km in the tropics), have moderate shortwave albedos (Johnson et al. 1999). Congestus are 

also prevalent in the subtropics and tropics, representing ~57% of precipitating convective 

clouds, by number, in the Coupled Ocean-Atmosphere Response Experiment (COARE) and 

Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE) 

campaigns (Johnson et al. 1999). They account for 28% of the total tropical rainfall during 
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COARE (Johnson et al. 1999), 30% of the precipitation from GATE (Cheng and Houze 1979), 

and 27.3% of the rainfall over the Atmospheric Radiation Measurement (ARM) Tropical 

Western Pacific (TWP) Manus site (Stephens and Wood 2007). Cloud-resolving model 

simulations have demonstrated a wide range of congestus precipitation contribution, from 15.3-

17.9% in the radiative-convective equilibrium simulations of van den Heever et al. (2011), to 

34% over a 10-day onset period of the western Pacific intraseasonal oscillation (Mechem and 

Oberthaler 2013). From CloudSat observations, Wall et al. (2013) showed that 4% of all 

continental clouds are congestus and 8.5% of Amazon clouds are congestus. Further, congestus 

clouds are present 6% of the time in the Amazon, and they, along with deep convection, 

dominate the shortwave cloud radiative effect (Giangrande et al. 2017).  

 Both shallow cumulus and congestus cloud types play an important role in tropical 

climate dynamics by distributing heat and moisture vertically (Riehl et al. 1951). They also can 

act as a precursor for deeper convection (Neggers et al. 2007). Warm, moist air is advected by 

the trade winds to the intertropical convergence zone (ITCZ), which allows for increased 

moisture convergence and the development of deep convection (Riehl et al. 1951, Neggers et al. 

2007). Despite their importance, some aspects of shallow cumulus and cumulus congestus are 

not fully understood and their contribution to tropical dynamics is not correctly represented in 

global climate models (GCMs) (Williams and Tselioudis 2007, Nam et al. 2012). GCMs 

underestimate the sensitivity of convection to the tropospheric humidity (Derbyshire et al. 2004), 

including over the Amazon region (Lintner et al. 2017). As a result, shallow cumulus and 

congestus cloud fractions tend to be underestimated (Williams and Tselioudis 2007, Nam et al. 

2012). GCMs also do not represent diurnal cycle correctly, specifically initializing and 

deepening convection too quickly (Stirling and Stratton 2012).  
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 One reason for these shortcomings may be how entrainment is represented in GCM 

parameterizations of convection (Del Genio 2012). Entrainment is the rate at which 

environmental air is mixed into a cloudy updraft and is a first-order mechanism that governs the 

depth to which shallow cumulus and congestus penetrate (Bretherton et al. 2004). Entrainment 

affects the vertical transport of heat, humidity, and momentum (Brast et al. 2016). Paluch (1979) 

used mixing diagrams of conservative thermodynamic variables to identify the source and 

mechanisms of the entrained air. Although early studies forwarded competing physical 

mechanisms to explain entrainment, Paluch supported Squires’ (1958) conclusion that 

environmental air is entrained vertically at cloud top and then mixed into the cloud through 

penetrative downdrafts, which are created by evaporative cooling from the entrained 

environmental air. However, recent studies using large eddy simulations (LES) (Heus et al. 

2008) and observations (Lin and Arakawa 1997) cast doubt on this cloud top entrainment theory 

and supported the idea of lateral entrainment. Here, environmental air is continuously entrained 

at lateral cloud edges into a cloudy parcel as it rises, reducing its buoyancy. Dilution is not the 

only consequence of entrainment. Cooper et al. (2013) found entrainment broadens the drop size 

distribution and enhances precipitation production.   

 The entrainment rate can be resolved and calculated in LES models using the bulk 

method (Siebesma and Cuijpers 1995, Siebesma et al. 2003) or the direct method (Romps 2010, 

Dawe and Austin 2012). The bulk approach uses tracers of conserved variables (such as total 

water) to determine the amount of mixing necessary to explain the evolution of a conserved 

tracer vertically transported in the cloud. The direct approach uses the velocity difference 

between the air and cloud surface and the movement of cloud edges to calculate entrainment 

directly. Romps (2010) found that the bulk method underestimates the entrainment rate 
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compared to the direct method. The difference between the two entrainment rates could be 

explained by the bulk method calculating an “effective” entrainment rate.  

 Because entrainment is not resolved in GCMs, assumptions must be made about its 

behavior. Most current parameterizations of convection are based on an entraining-plume 

framework, with an entrainment rate formulated as a function of various environmental or cloud 

properties. Some of these dependencies include inverse relationships between entrainment rates 

and updraft velocity (Neggers et al. 2002), cloud size (Bechtold et al. 2001), cloud thickness 

(Siebesma et al. 2003, Bretherton et al. 2004), relative humidity (RH, Bechtold et al. 2008, de 

Rooy et al. 2013), and buoyancy (Lin 1999), all supported by findings from LES. These results 

suggest that vertical velocity, for example, has impacts on entrainment through the amount of 

time available for the parcel to interact with environmental air. A slower moving parcel has more 

time to entrain (Neggers et al. 2002), resulting in a larger entrainment rate. Entrainment is also 

related to cloud depth, since, all else being equal, shallower clouds imply stronger entrainment 

(Bretherton et al. 2004). Moreover, a wider cloud should be able to shield its updraft core from 

entraining environmental air, so the buoyant core is not subjected to as much dilution by 

environmental air and therefore retains a stronger vertical velocity, relative to a narrower cloud 

(Kain and Fritsch 1990, Bechtold et al. 2001). The negative relationship with RH has no physical 

basis but yields improvements in reproducing atmospheric variability in the middle latitudes and 

Tropics (Bechtold et al. 2008). Finally, an inverse relationship with buoyancy can be explained 

by parcels with larger buoyancy will have a larger vertical velocity, and therefore less time to 

entrain, resulting in a smaller entrainment rate. Although these mechanistic explanations of the 

entrainment relationships attempt to be physically consistent, they are rather speculative and 

remain underexplored.  
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 Techniques exist to estimate entrainment rate from observations. Though entrainment has 

been extensively studied in LES, observational estimates of entrainment are not as numerous 

(e.g., Jensen and Del Genio 2006, Wagner et al. 2013, Masunaga and Luo 2016, Takahashi et al. 

2017, Drueke et al. 2019). Observations are more difficult to obtain due to a lack of instruments 

to fully sample environmental thermodynamics, cloud dynamics, and microphysics with high 

spatial and temporal resolution. Also, the possibility that the clouds being sampled are transient, 

meaning that some congestus observed could be at an intermediate point of their lifecycle and 

later go on to become deep cumulonimbus (Luo et al. 2009, Mechem and Oberthaler 2013).  This 

study focuses on estimating entrainment rates and their observational uncertainties in shallow 

cumulus and cumulus congestus clouds during the Green Ocean Amazon 2014-2015 field 

campaign, using a best-estimate combination of surface-based remote-sensing instruments. 

These entrainment rates will be used to evaluate common entrainment closures used in GCM 

convective parameterizations and identify any relationships with environmental variables.  

 The instruments used in the study are described in section 2. In section 3, the methods for 

measuring observational entrainment rates and its uncertainty and assessing how it interacts with 

the environment are discussed. The results of the study are presented in section 4.  
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2 Data 

 Data for this project are from the Green Ocean Amazon (GoAmazon2014/5) field 

campaign, which took place in Manacapuru, Manaus, Brazil from January 2014 through 

December 2015 (Martin et al. 2016, Martin et al. 2017, Giangrande et al. 2017). One component 

of this field campaign was the deployment of the Department of Energy’s Atmospheric 

Radiation Measurement (ARM) Mobile Facility (AMF, Miller et al. 2016), which includes the 

W-band ARM cloud radar (WACR), radar wind profiler (RWP), radiosondes, microwave 

radiometer profiler (MWRP), and microwave radiometer (MWR). Figure 1 shows the location of 

the AMF (site “T3”), which is 70 km downwind (west) of the center of Manaus (Martin et al. 

2016). 

 The vertically pointing WACR operates at 95 GHz and has vertical gate spacing of 42.86 

m and an effective temporal spacing of 2.048 s (Luke and Kollias 2013). The WACR is highly 

sensitive to small cloud droplets, but also severely attenuates in the presence of precipitation. 

The Active Remote Sensing of CLouds (ARSCL) product (Clothiaux et al. 2000, Kollias et al. 

2005) combines WACR reflectivities, ceilometer, and micropulse lidar data to provide estimates 

of cloud properties, including cloud-base height (CBH), cloud-top height (CTH), and cloud 

thickness. The CBH estimate is generally from the laser-based ceilometer.  

 The 1290-MHz ultra-high frequency (UHF) radar wind profiler (RWP) measures 

backscattered radiation to determine echo boundaries and wind profiles. We use the RWP dataset 

processed by the methods described in Giangrande et al. (2013, 2016). The RWP has a beam 

width of 6°, vertical resolution of 200 m, and temporal resolution of 5 s. Since the RWP operates 

at a lower frequency than the WACR, it is less sensitive to small cloud droplets but also 

attenuates less, yielding more accurate echo boundary estimations in the presence of 



7 
 

precipitation. In the absence of large scatterers, the RWP may detect Bragg scattering resulting 

from sharp density gradients, such as those associated with inversions. Clear-air echoes are often 

observed in the data, illustrating the boundary layer structure. The echo classification product 

uses reflectivity, vertical velocity, and spectrum widths to distinguish between Bragg and non-

meteorological scattering, convective cores, stratiform regions, and several other echo categories 

(Giangrande et al. 2013, Steiner et al. 1995).   

 For the duration of the campaign, radiosondes were launched four to five times daily at 

the ARM site, to quantify the vertical structure of the atmosphere (temperature, humidity, and 

winds as a function of pressure). The soundings are used to calculate the environmental lapse 

rate (ELR), vertical shear of the horizontal wind, convective available potential energy (CAPE), 

convective inhibition (CIN), lifting condensation level (LCL), and level of neutral buoyancy 

(LNB).  

 We employed two passive microwave instruments. The Microwave Radiometer Profile 

(MWRP) sampled the vertical characteristics of the atmosphere at about one-minute intervals, 

from the surface up to 10 km, using microwave radiances from 12 frequencies in the range 22-30 

GHz and 51-59 GHz. It has higher temporal resolution than the soundings, but a lower vertical 

resolution of 100 m in the lowest 1 km and 250 m from 1 to 10 km (Liljegren et al. 2001). The 

instrument has a positive temperature bias and a negative moisture bias at the surface, and a 

positive moisture bias in the upper levels (M. Jensen, personal communication). MWRP 

thermodynamic profile retrievals are only accurate in the absence of precipitation. The 

instrument only became available for this field campaign beginning in November 2014.  

 The Microwave Radiometer (MWR), which observes microwave brightness temperatures 

at 23.8 and 31.4 GHz. Retrievals from these MWR observations (specifically the MWR retrieval 
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(MWRRET) product) provide vertically integrated estimates of precipitable water vapor (PWV) 

and liquid water path (LWP) (and uncertainties) at one-minute intervals (Turner et al. 2007).  

 The final dataset used in this study is the Variational Analysis (VARANAL) which 

contains the large-scale forcing at the site, derived from the European Center for Medium-Range 

Weather Forecasting (ECMWF) analysis constrained with GoAmazon2014/15 observations, 

local radar and satellite measurements (Tang et al. 2016). It uses the variational analysis method 

of Zhang and Lin (1997). The product has a vertical grid of 25 hPa and a horizontal extent of a 

~110 km radius surrounding the field site. Data is produced at 3-hour intervals, resulting in 8 

outputs per day. We use the large-scale pressure vertical velocity and moisture convergence from 

this product.  

 

 
Figure 1: The location of the GoAmazon2014/5 field campaign. The AMF is located at the red dot, site T3, 70 km 

west of the center of Manaus (Figure 1 from Giangrande et al. 2017). 
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3 Methods 

 Observational estimates of entrainment rate 

 The entrainment rate (ER) is estimated with an idealized “entraining plume” model, 

which uses newly developed best estimates of maximum CTH and the thermodynamic 

environment to infer entrainment rates for each cumulus and congestus cloud sampled in the 

field campaign. The parcel is assumed to undergo linear mixing of environmental air as it 

ascends according to 

𝜃   (𝑧 + ∆𝑧) =
( ) ∆

∆
,           (1) 

where θep is the equivalent potential temperature of the parcel, θe is the equivalent potential 

temperature of the environment, and ε is the entrainment rate (Jensen and Del Genio 2006, 

hereafter JD06). This method assumes θe is conserved in adiabatic motions and environmental air 

is mixed into the parcel linearly at a constant rate of ε. Entrainment rate is found iteratively, 

starting with an initial value of ε = 0.01 km-1, and then increasing ε in increments of 0.001 km-1 

until the [entraining] level of neutral buoyancy (ELNB) coincides with the CTH. The ELNB is 

the last height at which the θep is greater than θe. The θe  profile is smoothed in the vertical using 

a moving average with a window width of 150 vertical grid points (~1.5 km) to minimize fine-

scale variations. The initial entrainment rate is very small (practically zero, a nearly undilute 

parcel), so the ELNB should be higher than the observed CTH. As the entrainment is increased, 

the ELNB will decrease (Figure 2) (JD06). 

 Caveats of this method include the theoretical assumptions underlying the approach, 

specifically that convection can be represented by an idealized plume undergoing continuous, 

lateral entrainment with height. Although historically the plume approach has been used in 

models, convection may be better represented by a series of transient thermals. If this were the 
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case, each thermal would grow in a subsequently moister environment, entrain higher θe air, and 

grow taller than the previous thermal. Entrainment estimates assuming the plume model would 

be lower than those found using the thermal approach, since the plume entrains lower θe air, 

requiring less mixing to sufficiently dilute the parcel. The method also requires an accurate 

measurement of the CTH, a representative thermodynamic environment, and an assumption 

about initial parcel thermodynamic properties. This entraining-plume method can only provide 

entrainment rate estimates for clouds passing directly over the radar and therefore constitutes a 

sample of the total cloud population. This method also assumes the maximum cloud height for 

any given cloud sampled by the radar is associated with the strongest updraft and therefore 

smallest value of entrainment. In reality, we are not always sampling the strongest updraft or 

center of every cloud that passes over the radar. Assuming we are sampling along a random 

chord of a circular cloud, we could be underestimating the cloud size by 22% (Jorgensen et al. 

1985). If the cloud shape is ellipsoidal rather than circular, the bias in cloud size could be as high 

as 32% (Borque et al. 2014). How this chording bias relates to any potential bias in CTH is not 

obvious but is beyond the abilities of our observations to address. 

 This method fails when the parcel θe (θep) is very similar to the environmental θe. The 

parcel entrains this high θe air, so no matter how much environmental air is entrained, the ELNB 

will not decrease enough to equal the CTH, and an entrainment rate cannot be estimated (Figure 

3). The reason for this problem is not obvious but could have multiple causes associated with the 

CTH, environmental profile, or assumed initial parcel properties somehow being 

unrepresentative of the cloud being observed. This problem occurs in a small number (10%) of 

the cases, so the sample size of clouds used in this study is smaller than the total number of 

clouds observed in the campaign.  
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Figure 2: The "entraining plume" model used to find the entrainment rate. The blue line represents the 
environmental θe. The black line is the undiluted parcel θe, and the red lines are the parcel θe experiencing different 
amounts of entrainment. Here, the entrainment rate is 0.15 km-1 since that is the rate at which the CTH equals the 

ELNB. 
 

 

Figure 3: The virtual temperature profiles of the environment and parcel. The parcel virtual temperature will never 
be less than the environment below CTH and thus an entrainment rate for this case cannot be calculated. 



12 
 

 Best estimate of CTH 

Contiguous (neighboring) profiles where ARSCL reflectivity and mean Doppler velocity 

(MDV) are both defined are identified as cloud. To be included in the analysis, the cloud must 

have a maximum height between 1 and 9 km and be sampled for more than 60 s.   

As mentioned previously, the WACR strongly attenuates in the presence of precipitation 

(Haynes et al. 2009), resulting in an underestimate of CTH which will lead to an overestimate of 

the entrainment rate. The lower-frequency RWP attenuates less, yielding a more accurate 

estimate of CTH when clouds are precipitating or otherwise have large droplets. For this reason, 

we use the RWP in combination with the WACR to form a best estimate of CTH for all cloud 

cases. The RWP echo classification product (Feng and Giangrande 2018) is used to distinguish 

between Bragg and Rayleigh scattering. The RWP CTH is taken to be the maximum height of 

the echo classified as either “convection,” “weak convection,” or just “cloud.” The multi-

instrument best estimate of the CTH is the maximum value of the ARSCL and RWP CTH values 

(Figure 4).  

 Figure 5 shows the importance of using the RWP to improve our estimates of CTHs. 

Most RWP CTHs are much larger than the ARSCL CTHs because of beam attenuation of the 

WACR. The CTH estimates from the RWP are, on average, 1.3 km greater than the ARSCL 

CTHs. For some clouds, RWP estimates of CTH lie above 9 km (deep convection), whereas the 

ARSCL (WACR) product would classify the same cloud as congestus, since the radar beam is 

extinguished well below reaching cloud top. The cases where the ARSCL CTH is larger than the 

RWP occur because the RWP is not sensitive enough to observe the total cloud. The majority of 

the shallow clouds are missing from this plot because they do not have large enough 

hydrometeors to be detected by the RWP, and the cloud is classified in the ‘Bragg and Insects’ 
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category. Therefore, an RWP CTH is not measured. In this case, the ARSCL CTH is assumed to 

represent the best estimate of CTH.   

  

 

Figure 4: The WACR reflectivity and RWP echo classification for a congestus cloud on April 4th, 2014. The 
WACR is clearly attenuating due to the precipitation and does not sample the entire cloud. Therefore, we use the 

RWP-sampled CTH. 

 

Figure 5: The RWP CTH vs ARSCL CTH color-coded by the CTH difference. The red points indicate that the RWP 
is larger and the blue points indicate that the ARSCL CTH is larger. The horizontal black line represents the upper-

limit of congestus clouds (9km) and the diagonal black line is the 1:1 line. 
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Each cloud is separated into shallow cumulus and cumulus congestus based on the CTH 

best estimate. Shallow cumulus are defined as those having a CTH greater than 1 km and less 

than 3 km and a CBH less than 1 km. We further require the shallow cumulus to be active to 

avoid having convection forced by mechanisms other than buoyancy. Active clouds are defined 

as having a layer of positive buoyancy (Stull 1985) and thickness greater than 300 m (Zhang and 

Klein 2013). In any case, forced clouds are automatically filtered out since an entrainment 

calculation for them would fail because they lack positive buoyancy.  

Congestus are defined as having CTH between 3 and 9 km and CBH less than 1 km. The 

depths for the classifications vary across different studies and are somewhat arbitrary. The lower 

bound (3km) of congestus is consistent with the approximate upper bound of shallow cumulus 

(Mechem and Oberthaler 2013). The upper bound (9 km) of congestus is chosen to include 

congestus clouds that penetrate above the 0°C level and to be consistent with previous work on 

the topic (Johnson et al. 1999, Jensen and Del Genio 2006). A total of 207 active shallow 

cumulus and 686 congestus were identified during the GoAmazon2014/5 deployment. However, 

these numbers are reduced when only considering the clouds that occur during the time that the 

MWRP was operating. Further, the limited number of clouds that have a successful entrainment 

estimation are 67 shallow and 415 congestus. Figure 6 shows a histogram of all shallow and 

congestus CTHs used in this study. 

 We recognize that the peak occurrences in CTH (Figure 6) do not exhibit the ideal 

bimodal distributions of shallow cumulus and congestus clouds. However, the CTH definition 

for shallow cumulus of 1-3 km is still a good choice for the Amazon region. Figure 9g of 

Giangrande et al. (2020) shows a peak in cloud fraction at a height of 2 km, falling to a minimum 

in frequency around 3 km, indicating that the majority of the shallow clouds in the campaign fall 
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into this definition. Though shallow cumulus are the most prevalent cloud type observed during 

the campaign (Giangrande et al. 2017), our methods filter out a significant portion of the dataset, 

for various reasons, including a lack of positive low-level buoyancy and clouds with small 

thicknesses. We only use the shallow clouds that result in a sensible entrainment rate calculation. 

 

 

Figure 6: A histogram of cloud top heights of all the clouds used in this study. Shallow have CTH < 3 km and 
congestus have CTH between 3 and 9 km. 

 

 Best estimate thermodynamic profile 

 Because radiosondes are only launched every six hours, the sounding used in the 

entrainment rate calculation may be up to six hours prior to the start of the cloud (soundings used 

from periods after the cloud may be influenced by convective mixing events), in which case the 

sounding may not be representative of the thermodynamic environment in which the cloud grew. 

Temperature and moisture profiles from the MWRP are employed to produce more 

representative thermodynamic profiles than the soundings alone. The MWRP has improved 

temporal resolution relative to the 6-hourly soundings, but the absolute values of temperature and 
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moisture are biased (M. Jensen, personal communication), so the MWRP profiles cannot be used 

directly. In addition, the vertical resolution of the MWRP is coarser than the soundings, and the 

retrieved profiles smooth out important details needed for the entrainment calculation. To 

overcome these shortcomings, we use the relative differences of the MWRP temperature and 

moisture profiles between the time of the cloud and time of the most recent sounding as a 

correction to the radiosonde temperature and moisture profiles. The best-estimate procedure is 

shown in Figure 7. The largest changes between the sounding and the cloud occur in the 

boundary layer (lowest 3 km), with only small corrections above 3 km. For the majority of cases, 

the largest temperature correction is at the surface, which is consistent with strong solar heating 

and a boundary layer being heated from the surface. For some cases, the MWRP temperature 

correction (difference) is not at the surface but rather just above. This would suggest a 

stabilization of the boundary layer under strong surface heating, which we viewed as unphysical. 

In these cases, we instead extend that maximum correction down to the surface.  

  We further constrain the moisture profile using the MWR precipitable water vapor 

(PWV) retrieval (Turner et al. 1998). The moisture profile is adjusted until its PWV equals the 

MWR PWV (Figure 7b). Above 10 km altitude when no MWRP profiles are available, the most 

recent sounding is assumed to be representative. In 40% of the data (191 cases), this process 

results in layers of supersaturation of about 104% RH on average. Therefore, we decrease the 

mixing ratio iteratively in these layers until the RH equals 100%. The MWRP and MWR 

retrievals fail when the instrument window is wet from precipitation (as indicated by error flags), 

in which case they cannot retrieve good quality data due to moisture on the instrument. Another 

error flag occurs if the retrievals of mixing ratio and temperature result in supersaturation. If 

either of these situations occur, the data are searched up to one hour prior to the start of the cloud 
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for good data. If no MWRP or MWR retrievals are available within an hour of the start of the 

cloud, the radiosonde observations alone are used for the entrainment calculation. If no good  

 MWRP retrievals are available, we also do not use the MWR since it does not make sense to 

correct the moisture, but not the temperature. Table 1 shows the amount of cases which have 

Figure 7: Vertical profiles of the radiosonde, MWRP at the time of the sounding and cloud and their difference, and 
corrected profile temperature (a) and mixing ratio (b). 
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good quality MWRP and MWR retrievals available and therefore use the best estimates of 

temperature and moisture profile.  

Most of the thermodynamic profile corrections applied to the soundings resulted in an 

increase of temperature and moisture in the boundary layer. Over half of the clouds occur 

between the 1100 UTC (0700 LT) and 1700 UTC (1300 LT) soundings during the part of the day 

when the temperature is increasing the most due to radiational heating. However, about 20% of 

the clouds occur between 0500 UTC (0100 LT) and 1100 UTC (0700 LT) when the temperature 

is decreasing, and therefore have a best-estimate of temperature which is lower than the nearest 

prior sounding temperature.  

CAPE is a measure of the stored potential energy in the atmosphere and increases as 

boundary layer temperature and moisture increases. Figure 8a shows the CAPE calculated from 

the best estimate thermodynamic profiles versus the CAPE calculated from the radiosonde 

profiles themselves. Since the majority of the corrections add temperature and moisture, the 

CAPE in the lowest 5 km is larger in the majority of the MWRP corrected parcels, though there 

are some cases where the CAPE from the radiosonde alone is larger, corresponding to the 20% 

of cases where the temperature and moisture decreased. Figure 8b shows the CIN decreases 

when the correction is applied, making the environment more conducive for convection. 

However, the correction does not alter the mid-level environmental lapse rates (ELR) much 

(Figure 8c). The largest CAPE corrections are due to surface and boundary layer changes as the 

day progresses.  
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Table 1: The number of congestus and shallow cumulus cases which use the best estimate of CTH, best estimate of 
temperature and those that use the best estimate of temperature and moisture.   

 

 

 

 

 

 Best estimate entrainment rates 

The best estimate cloud top heights are either larger than or equal to the ARSCL CTHs, 

with most of them being larger. In our method, higher CTHs require less dilution due to 

environmental mixing and therefore, smaller ERs. The increases and improvements in CTH 

result in decreases in the ER compared to those that only use the ARSCL CTHs (Figure 9a). The 

ERs decrease on average 0.078 km-1 (13.6% change).  

Most of the best-estimate profiles are warmer and moister compared to the sounding they 

are based on, which results in a larger entrainment rate compared to that calculated based on the 

sounding alone. The larger entrainment rate is required to sufficiently dilute the buoyancy of a 

parcel having warmer and moister initial properties such that the ELNB lies at the radar-

 
 

Total (Best 
estimate CTH) 

Good   
MWRP 

Good         
MWRP & MWR 

# of congestus 
cases 

415 275 183 

# of shallow 
cases 

67 33 25 

Figure 8: A comparison of the MWRP thermodynamic best estimate to the sounding using stability variables: low- 
level CAPE (a), CIN (b), and mid-level ELR (c). 
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estimated CTH. Likewise, when decreasing the temperature and moisture of the initial parcel it is 

expected that the entrainment rate will also decrease. Therefore, the entrainment rates may either 

increase or decrease when the corrections are applied to the thermodynamic profiles (Figure 9b). 

Figure 9b also shows that as the time between the nearest prior sounding and the cloud increases, 

the correction also increases, as expected. Relative to the estimate of entrainment rates using 

solely the most recent soundings, the thermodynamic best estimate yields a mean entrainment 

rate change of 0.0995 km-1 (25% change). Our best approach using more representative estimates 

of cloud top and thermodynamic profiles should yield improvements in calculated entrainment 

rates. 

For about a third of the cases (157), the MWRP was not available so the profiles from the 

most recent sounding were used. The reason for this was typically a failure of the MWRP 

retrieval because of a “wet window” or other bad data quality flag. 

 

Figure 9: The ER calculated using ARSCL CTHs and best estimate thermodynamic profile versus the ER calculated 
from the best estimate CTH and thermodynamic profile, color-coded by the difference between the best estimate 

CTH and ARSCL CTH (a). The ER calculated using the sounding thermodynamic profiles and best estimate CTH 
versus the ER calculated from the best estimate CTH and thermodynamic profile, color-coded by the time difference 

between the cloud and sounding (b). The black line is the 1:1 line. 
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 Evaluating environmental controls on entrainment rates 

 Environmental controls on entrainment rate will be explored to evaluate common 

entrainment closures, understand the physical mechanisms of entrainment, and identify other 

variables not commonly used in closures but potentially impact entrainment rates. A linear 

regression is performed of the entrainment rate and each environmental variable, including 

surface-based CAPE, CAPE in the lowest 5km, RH in various layers, horizontal wind shear, 

environmental lapse rate (ELR , over 1-3km and 3-6km layers), maximum buoyancy in the 

lowest 5 km, vertical velocity at 700 mb, and the vertical integral of moisture convergence. We 

focus on the ER relationship with CAPE and buoyancy in the lowest 5 km to be more 

representative of shallow and congestus cloud growth environments.  

 Correlations between entrainment and cloud properties, including cloud depth and cloud 

size are also found. The cloud depth is the best estimate CTH minus the ARSCL CBH. The 

cloud size is calculated using the length of time of the cloud and the average wind speed (from 

the radiosonde) in the cloud layer. Recognizing that the entrainment is likely better correlated 

with the updraft width, we attempt to identify updrafts by first subtracting out the hydrometeor 

fall speeds from the RWP mean Doppler velocity (MDV). This can be done using a simple 

parameterization of the hydrometeor fall speed as a function of RWP reflectivities (Z) 

(Giangrande et al. 2016). The fall speeds are also adjusted by the height (H [m]) to account for 

the change of air density with height, since drops will fall faster in less dense air: 

𝑉  = 2.65 ∗ 𝑍 . ∗ 𝑒 /      (2) 

The vertical motion of the air in the cloud is then:  

𝑉  = 𝑀𝐷𝑉 −  𝑉                        (3) 
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The width of the updraft is found by visually identifying the updraft core (Vair > 0) and then 

transforming it to a physical width by multiplying the updraft time by the average wind speed in 

the cloud layer, just as for the cloud itself. We are only able to visually identify vertically 

coherent updrafts in 37 of the clouds, presumably because the full updraft cores in the other 

clouds do not pass over the WACR/RWP location.  

 We calculate the coefficient of determination (R2) among different variables, but because 

the variables are not independent, we do not expect the sum of the R2 to be 1. The data are 

separated according to shallow and congestus clouds and by wet, dry, and transition seasons to 

explore whether entrainment varies according to cloud regime or season. The wet season is 

identified as December, January, February, March, and April (Giangrande et al. 2017). The dry 

season is June, July, August, and September, and the transition season is May, October, and 

November. The dry and wet seasons have pronounced differences in mid-level RH. The 

afternoon dry season average RH is 31%, whereas the wet season average is 68%. The wet 

season also has values of CAPE and CIN which are slightly more conducive to convection than 

in the dry season (Giangrande et al. 2017). We expect our entrainment rate estimates to vary 

slightly throughout the year due to the changes in RH. The results are further separated by 

“good” and “better” cases, where “good” includes all of the clouds where the entrainment 

estimation method behaves properly and an entrainment rate is able to be calculated, and “better” 

excludes those where the radar CTH – ELNB is greater than 400 m to ensure that the 

entrainment and cloud top proxy (ELNB) are representative of the actual observed cloud. We 

find 415 “good” congestus, 67 “good” shallow, 210 “better” congestus, and 20 “better” shallow. 

 Although simple linear regression provides a basic idea of how individual variables 

influence entrainment rate, the relationships among the different variables are likely highly 
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covarying, and the influence of the variables on the entrainment rate is nonlinear. For this reason, 

a broader array of statistical methods is needed to identify and explore possible relationships 

between variables. We use regression trees and random forests to evaluate the environmental 

controls on entrainment rate.  

 Regression tree methods are used to predict a dependent variable using continuous, 

nonlinear predictor variables (Breiman 2001). Several input (predictor) variables are used to 

predict the dependent variable using recursive binary splitting to group similar data. The model 

iterates through all variables and multiple thresholds of each variable to find an optimal 

bifurcation. The optimal split is one that minimizes the sum of the squares between the 

observations and mean of each group. Further splits, or branches are created off of existing 

branches, until no more splits can be made, and each node is as homogeneous as possible. We 

use the ‘Rpart’ R package based off the methods in Breiman et al. (1984) to create the trees. The 

depth of the tree and other model tuning parameters can be controlled with cross validation 

techniques to avoid overfitting the data (Kuhn and Johnson 2013) in which case the model would 

not be a good predictor of other data introduced. Cross validation uses a subset of the full dataset 

to train the model, and then the model is tested on the remaining subset of data. In this case, the 

training data is a random 80% sample of the data and the other 20% is the test data. 10-fold cross 

validation with 1000 repeats is used. The model with the smallest root mean square error 

(RMSE) between the trained model and test model is chosen as the final model. Repeating this 

process several times allows us to identify the values of the tuning parameters, particularly the 

maximum depth of the tree. We find that adding a 6th level to the tree does not decrease the 

complexity parameter or error rate by much. Therefore, we choose the maximum depth of our 

tree to be 5. Please see Breiman et al. (1984) for more detail on the regression tree method.  
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 Regression trees tend to be highly sensitive to thresholds that determine the branching 

bifurcations, whereby errors in predictor variables can produce large errors in the dependent 

variable. Further, a single regression tree is more likely to overfit the data. However, using an 

ensemble of regression trees, a random forest, helps to reduce these problems. A random forest 

randomizes the order the variables are split and allows only a certain subset of predictive 

variables to be considered at each split. Therefore, an ensemble of random, diverse trees is more 

likely to have offsetting biases. Please see Breiman (2001) for more details on random forests. 

All the environmental variables are input into a random forest to identify the variables with the 

largest effect on entrainment rate. The data is subset into random training and test samples, and 

10-fold cross validation is used to validate the model, as in the regression tree. The best model 

with the smallest error between the predicted and observed data is then found. The regression 

trees and random forests are done separately for both shallow and congestus clouds and the 

results are compared to see whether entrainment interacts differently with the environment in 

two different cloud regimes. Differences in interaction variables are also compared between the 

wet, dry, and transition seasons. 

 Quantifying measurement uncertainty  

  Uncertainty in entrainment rates arise from different sources, broadly speaking 1. 

instrumental and retrieval uncertainties; 2. sampling issues; and 3. appropriateness of the bulk-

plume method. Our uncertainty estimates are based on instrumental and retrieval uncertainties 

that are well characterized. We acknowledge the presence of sampling challenges and limits of 

the bulk-plume method but quantifying those uncertainty estimates is beyond our ability. 

 We quantify uncertainty using standard error propagation techniques (Taylor 1982). 

Measurement uncertainty is partially due to the limited precision of instrument sampling, 
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resulting in random errors, and instrument or calibration biases, resulting in systematic errors. 

We are interested in quantifying the uncertainty in our entrainment rate estimations due to the 

random instrumental uncertainty. Unless informed otherwise, we assume the instruments are 

properly calibrated.  

 Uncertainty in the measured CTHs is attributable to the minimum detectable signal of the 

RWP. The RWP range gate spacing (200 m, Giangrande et al. 2016) is used as the uncertainty in 

the CTH. This error is then propagated through to the entrainment rates by increasing and 

decreasing all of the CTHs by 200 m, computing the entrainment rates, and comparing those 

entrainment rates to the original rates. Although the WACR range gate spacing is smaller (42.86 

m), to be conservative and avoid confusion we use 200 m as an uncertainty for all CTH 

measurements.  

 Assessing the uncertainty in the thermodynamic profile is less straightforward, since we 

use a combination of several instruments and retrievals with different uncertainty characteristics. 

The uncertainty in the sounding temperature profile is ±0.5 K (2σ from the mean) throughout the 

profile (Holdridge et al. 2011). The uncertainty in the MWRP temperature retrieval is ±1-2 K in 

the lowest 2 km and ±3-4 K from 2-10 km (2σ from the mean, Cadeddu and Liljegren 2018). 

Therefore, we use ±1.5 K in the lowest 2 km and ±3.5 K above for the MWRP temperature 

uncertainty. Above 10 km we assume the uncertainty estimate associated with the radiosonde 

observations. The temperature uncertainty is the sum of squares of the MWRP and sounding 

uncertainty in each of the layers. The profile is then smoothed to remove sudden changes in the 

vertical temperature (Figure 10a).  

 The sounding relative humidity measurement uncertainty is ±5% (Holdridge et al. 2011). 

The MWRP vapor density measurement uncertainty is 20% of the total vapor density profile 
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(Cadeddu and Liljegren 2018), which corresponds to vapor density values of approximately     

±1 gm-3 in the lowest 3 kilometers and ±0.1 gm-3 from 3 to 10 km. The MWR PWV 

measurement uncertainty reported in Cadeddu et al. (2013) is ±0.05 cm. The standard deviation 

surrounding the measurement of PWV at the time of the cloud is ±0.1 cm (1σ, Gaustad and 

Turner 2007). We choose to use the larger of the two values (0.1 cm), even though the value 

includes PWV variability as well as measurement uncertainty. 

 The moisture profile is broken down into 4 levels: 0-3 km, 3-6 km, 6-10 km, and 10+ km, 

and the uncertainty is calculated in each of the layers. All of the instrumental uncertainty 

measurements are converted to mixing ratio units, g kg-1, using a representative temperature and 

pressure in the layer. The total uncertainty profile is found using the sum of squares of all three 

instrumental uncertainties. The values are then converted to relative humidity for the ER 

calculation, with the uncertainty profile shown in Figure 10b.  

The majority (96%, 2σ) of temperature and moisture retrievals lie within the uncertainty 

profiles in Figure 10. However, we propagate the uncertainty in temperature and moisture using 

the 1σ values. Therefore, the entrainment rate uncertainty is reported as 1 standard deviation 

away from the mean. An idealized cloud, with a CTH of 6000 m and an ER or 0.298 km-1 is used 

as the control in finding the thermodynamic uncertainties. The temperature and moisture 

uncertainty (±1σ) profiles are added to and subtracted from the ideal case temperature and 

moisture profiles, in all possible combinations. These new uncertainty profiles are substituted 

into the entrainment calculation to find the changes in ER from the idealized case. Some of these 

choices seem somewhat arbitrary but are necessary given the overwhelming number of degrees 

of freedom especially in the height-dependent uncertainties of the retrieved thermodynamic 

profiles. 
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Figure 10: Idealized temperature and relative humidity profiles adapted from June 28, 2015 at 17:44Z (black) with 
the addition and subtraction of the instrumental uncertainty profiles and the magnitudes of the uncertainty in each 

level for temperature (a, red) and relative humidity (b, green). 
 

 Sensitivity tests 

 Some uncertainties in the analysis arise from the choices made in the entrainment rate 

calculation. These choices include how the initial parcel properties are formulated, the impact of 

additional MWRP/MWR retrievals on the environmental thermodynamic profiles, the specific 

definition of shallow and congestus clouds, and the choice of pseudoadiabatic vs reversible 

ascent.  

 Parcels that ultimately form cumulus clouds generally originate at the surface (Lin 1999) 

but using surface properties for the initial parcel may yield a parcel that is too buoyant. The 

actual parcel thermodynamics may be better represented by mixed-layer properties. The 
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entrainment sensitivity to different assumptions about the initial parcel, including using surface-

based and parcels originating from the lowest 100 m, 500 m, and 1 km mixed-layer, will be 

quantified.  

 Since the sounding could have measured the thermodynamic profile up to 6 hours prior to 

the time of the cloud, the measurements may not be representative of the environment in which 

the cloud grew. The MWRP corrections help to quantify the environmental state at the time of 

the cloud observation, but it has biases and low vertical resolution. We compare the correlations 

between entrainment rate and different explanatory variables when using our best estimate 

thermodynamic and CTH to those found when using the sounding for cases where the sounding 

profile is within 3 hours and 1 hour from the cloud occurrence.  

 Johnson et al. (1999) identifies shallow clouds as having CTH less than 3 km, but this 

specific number is somewhat arbitrary, so we test the sensitivity of our definition of shallow 

cumulus and congestus clouds. We explore this sensitivity of shallow clouds by defining them as 

having a CTH below 4 km, to better match the bimodal distribution of CTH in Figure 6. The 

resulting congestus clouds then have CTH between 4 and 9 km.  

 Pseudoadiabatic ascent assumes all of the water that is condensed is immediately rained 

out, whereas moist adiabatic ascent preserves the total water in the parcel, leaving it available for 

evaporation if the parcel descends (whereas the pseudoadiabatic parcel will follow the dry 

adiabat upon descent). In reality, neither of these extremes occur and the actual parcel ascent is 

somewhere in between. The assumption of pseudoadiabatic ascent overestimates the entrainment 

rate because it does not take into account hydrometeor loading so the parcel will be more 

buoyant relative to moist adiabatic parcel ascent. The entrainment sensitivity to the ascent 

condition is quantified.   
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4 Results 

 Entrainment rates 

 Our best-estimate entrainment rates in congestus range from 0.19 to 0.94 km-1, with an 

average of 0.57 km-1 and standard deviation of 0.31 km-1.The shallow cumulus entrainment rates 

range from 0.63 to 1.7 km-1 and have an average entrainment rate of 1.2 km-1 and standard 

deviation of 0.46 km-1. JD06 found similar entrainment rates ranging from 0.1 to 0.68 km-1 in 67 

congestus clouds from Nauru Island in the Tropical Western Pacific. Lu et al. (2018) found 

entrainment rates measured from a bulk-plume model ranging from 1-3 km-1 in continental 

shallow cumulus, and Siebesma et al. (2003) found fractional entrainment rates of 2.0 km-1 at the 

bases of marine trade cumulus. Our rates are similar to those found observationally by Lu et al. 

(2018) but about half the magnitude of those in the LES simulations of Siebesma et al. (2003). 

Because of the greatly different approaches to calculating entrainment between the bulk 

observational method of JD06 and the bulk tracer LES approach in Siebesma et al. (2003), we 

should not necessarily expect perfect agreement. The two calculations essentially represent 

different definitions of entrainment.  

 Observational evaluation of entrainment closures in atmospheric models 

4.2.1 Linear regression 

The results of the linear regression analysis between the entrainment rates and 

environmental and cloud variables for shallow cumulus and congestus are shown in Table 2. The 

ER and explanatory variable correlations of the “better” category are slightly improved from the 

“good” category. However, the R2 values change significantly between the two categories for the 

shallow clouds, probably due to the small sample size. 
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LES studies have found relationships between entrainment and cloud thickness 

(Siebesma et al. 2003, Bretherton et al. 2004), cloud lateral size (Kain and Fritsch 1990, 

Bechtold et al. 2001), vertical velocity of the updraft (Neggers et al. 2002), RH (de Rooy et al. 

2013), and buoyancy of the updraft (Lin 1999). We evaluate these relationships to try to provide 

some observational constraint to the LES findings.  

Entrainment rates in GoAmazon congestus clouds have the strongest relationship with the 

maximum buoyancy in the lowest 5 km (R2 = 0.16). This agrees with the results of JD06 who 

found a correlation with R2 = 0.19 over a smaller number of cases (67) of maritime congestus 

clouds. However, not all studies agree on the relationship between entrainment and buoyancy. 

Lin (1999) uses a cloud resolving model (CRM) and finds an inverse relationship between 

cumulus entrainment and buoyancy. Our results show a negative relationship between ER and 

buoyancy (Figure 11a), consistent with Lin (1999) and the idea that a cloud with larger buoyancy 

will have a larger vertical velocity, less time to entrain, and smaller ER (Neggers et al. 2002).  

Entrainment is also moderately correlated with cloud thickness, which explains about 

13% of the variance in ER. This relationship is negative (Figure 11b), in agreement with the 

model parameterizations which prescribe entrainment as inversely proportional to the depth, 

i.e.,~1/H (Siebesma et al. 2003). The interpretation for this relationship is straightforward. For 

parcels with similar values of initial buoyancy, those experiencing less entrainment (smaller 

entrainment rates) will be taller.  

Early fluid tank experiments found an inverse relationship between entrainment and 

plume radius (Morton et al. 1956, Turner 1969) leading to parameterizations of entrainment with 

the same relationship (Kain and Fritsch 1990, Bechtold et al. 2001). Due to chording, we do not 

sample every cloud’s updraft, nor the center of the updrafts we do sample. We use the total 
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lateral cloud size, which includes the updraft plume, to analyze this relationship. Cloud size 

explains about 11% of the variance in entrainment and is a negative relationship (Figure 11c), in 

agreement with LES. We are able to observe vertically coherent updrafts in 37 congestus clouds. 

In these clouds, entrainment is relatively moderately correlated with the updraft lateral size 

(R2=0.12, Figure 12a), with a negative relationship in agreement with LES. However, in clouds 

where a coherent updraft could be identified, the median of the updraft velocity is not correlated 

with entrainment (Figure 12b), despite the LES findings of Neggers et al. (2002), who find an 

inverse relationship between entrainment and the vertical velocity of the updraft. Grant and 

Brown (1999) conversely, find a positive relationship between entrainment and updraft velocity 

in LES and suggest that larger vertical velocities drive a larger amount of turbulent kinetic 

energy (TKE) production, resulting in a larger entrainment rate.  

The final entrainment closure to evaluate is a negative relationship with environmental 

RH. However, like buoyancy and updraft velocity, the relationship is not agreed upon between 

different LES studies and observations. Some LES studies have found a negative relationship (de 

Rooy et al. 2013, Bechtold et al. 2008) and others found a positive relationship (Stirling and 

Stratton 2012). Observational studies also support a positive relationship. JD06 found a relatively 

strong positive relationship between congestus ERs and low-level (2-4 km) RH (R2 = 0.2) and 

mid-level (5-7 km) RH (R2 = 0.18), and Lu et al. (2018) found a strong positive relationship with 

RH in 8 shallow clouds (R = 0.8). We do not find a strong correlation with RH in the cloud layer 

(4-7 km for congestus, R2 = 0.003) or with low-level (2-4 km) RH (R2 = 0.036). However, our 

results support the qualitative (visual) results of the other observational studies of a positive 

correlation between ER and RH (Figure 11d). The reason for this relationship is not clear. Lu et 

al. (2018) hypothesize three different mechanisms explaining the positive relationship, including 
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a relationship with entrainment through the dependence of buoyancy and updraft velocity on RH. 

However, no obvious physical explanation is available for the negative relationship found in 

some LES and used in parameterizations.  

We also evaluate relationships with environmental variables explored by JD06 that have 

not been tested with LES nor are typically used in GCM parameterizations, specifically the 

relationships between entrainment and CAPE, shear, and CIN. Given geographic differences 

between the maritime tropical congestus observed by JD06 and the continental tropical clouds of 

the Amazon, we do not necessarily expect perfect agreement. Any difference in results from each 

study could suggest a difference in the environmental drivers of entrainment rate and convective 

forcing mechanisms between two different locations due to oceanic convection observed in 

Nauru compared to continental convection in Brazil. In addition, the GoAmazon dataset contains 

nearly five times the amount of congestus clouds as the JD06 study. 

We do not observe a relationship between entrainment and the must unstable (MU) and 

lowest 100 mb mixed layer (ML) CAPE in the lowest 5 km. Entrainment is slightly more 

correlated with ML-CAPE (R2 = 0.031, Figure 11e) than MU-CAPE (R2 = 0.016). This does not 

agree with the results of JD06 who found a larger correlation with low-level CAPE (R2 = 0.12). 

The difference could be due to differing climates (continental vs. oceanic) that the congestus 

formed in.  

In agreement with JD06, we find negligible relationships (R2 < 0.1) with the average 

shear from the surface to 700 mb and CIN. We also observe no relationships with ELR in the 

cloud layer (3-6 km for congestus), vertical integral of moisture convergence, and large-scale 

vertical velocity at 700 mb. A few (6) congestus clouds have an entrainment rate larger than 3 

standard deviations away from the mean. When these data points are removed from the analysis, 
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the correlations between entrainment and cloud thickness, cloud size, and buoyancy slightly 

improve. The relationships with the rest of the variables either weaken or remain relatively the 

same.  

 

 

Figure 11: Entrainment versus several environmental and cloud variables in congestus clouds. The error bars 
represent the standard deviation of entrainment in appropriately sized bins. 

 

 

Figure 12: ER vs updraft horizontal size (a) and median strength (b) in the 37 congestus cases with a visually 
identifiable, vertically coherent updraft. 
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Because the sample size for the shallow clouds is small, it is difficult to make any robust 

conclusions about the behavior of entrainment in these clouds. Shallow cloud ERs have the 

strongest relationship with RH in the lowest 2 km (R2 = 0.42). This relationship is positive 

(Figure 13d), like the congestus and other observational studies of entrainment in shallow clouds 

(Lu et al. 2018, Kirshbaum and Lamer 2020), but opposite the results of LES (de Rooy et al. 

2013). The moderate correlations with cloud size (R2 = 0.12) and low-level ML-CAPE (R2 = 

0.12) may be due to the lack of data points, since the plots show considerable scatter (Figure 13c, 

f). ELR in the cloud layer (1-3 km for shallow), vertical velocity, and moisture convergence have 

R2 < 0.1. The strong positive correlation with shear (R2 = 0.261) seems spurious, although 

entrainment could be related to shear-generated turbulence in weakly forced convective clouds 

(shallow clouds). Despite the strong relationships with cloud thickness and maximum buoyancy 

in the lowest 5 km in congestus clouds, ER for out limited number of shallow clouds do not 

exhibit any obvious dependence on these variables. 

 

 

Figure 13: Same as Figure 11, but for shallow clouds. 
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Table 2: Linear correlation coefficient of entrainment rate and environmental and cloud variables for both shallow 
and congestus. The results of the "good" cases as well as the "better" cases (parenthesis) are presented and compared 
to JD06 

 

The results were further broken down between the wet and dry season to see if different 

variables have important impacts in different seasons. Congestus and shallow cumulus clouds are 

present 8.9% and 27.9% of the time in the wet season, respectively, which is much higher than 

the dry season (2.8% and 16.8% of the time, respectively) (Giangrande et al. 2017). Our 

GoAmazon dataset contains 164 wet season, 127 dry season, and 123 transition season 

congestus, and 34 wet season, 19 dry season, and 14 transition season shallow clouds.  

ER vs... 
Shallow R2 Congestus R2 JD06 R2 

N=67 (n=20) n=415 (n=210) n=67 

RH in the cloud layer 0.208 (0.002) 0.016 (0.003) 0.18 

RH (2-4 km)  0.539 (0.056) 0.057 (0.042) 0.20 

MU-CAPE in the lowest 5 km 0.078 (0.006) 0.0003 (0.016) 0.12 

ML-CAPE in the lowest 5 km 0.124 (0.0003) 0.008 (0.041)  

Shear 0.0006 (0.261) 0.002 (0.007) 0.002 

Max buoyancy 0.059 (0.015) 0.137 (0.153) 0.19 

CIN 0.014 (0.004) 0.0003 (0.011) 0.03 

ELR 0.037 (0.015) 0.0001 (0.012)  

Vertical Velocity at 700mb 0.010 (0.040) 0.015 (0.035)  

Moisture Convergence 0.011 (0.047) 0.001 (0.025)  

Cloud size 0.124 (0.070) 0.086 (0.115)  

Cloud thickness 0.003 (0.106) 0.122 (0.127)  

Average ER 0.914 (1.20) 0.478 (0.584)  

 
Updraft Size 
Updraft Speed 

 
n=37 
0.12 
0.006  
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As mentioned earlier, 6 congestus clouds have entrainment rates larger than 2 km-1, 

which is more than 3 times the standard deviation (σ) away from the mean. Each of these outlier 

clouds occurs in the wet season so in order to accurately compare ER values and relationships 

between the wet, dry, and transition seasons, these unphysical outliers were removed from the 

statistical analysis. These points do not appear to add any information to our dataset and are 

likely due to uncertainties in the method (e.g. unrepresentative initial parcel, large variations in 

the vertical thermodynamic profile, thermodynamic profile contamination from prior 

convection).  

The average congestus entrainment rates are nearly the same in the dry (0.54 km-1), wet 

(0.53 km-1), and transition seasons (0.46 km-1) (Table 3). The shallower CTHs and smaller mid-

level RHs in the dry season have offsetting effects on the ER and therefore, the ER does not 

change much between the seasons. Shallow clouds have a slightly larger entrainment in the dry 

season (1.38 km-1) than in the wet season (1.1 km-1), although the number of low clouds in each 

category is insufficient to establish much in the way of a robust relationship. The variables with 

the largest seasonal cycle are shown in Table 3. Low mid-level RH, enhanced buoyancy and 

shear, and fewer, less organized cases characterize the dry season. For most of the variables, the 

entrainment correlations are the same and small in each season. Cloud size and maximum low-

level buoyancy are more strongly correlated with entrainment in the dry season (Figure 14a,b). 

Cloud thickness is slightly more correlated with entrainment in the wet season (Figure 14c). 

Low-level CAPE and moisture convergence also have slightly larger R2 in the wet season (not 

shown). The stronger correlations in the dry season may be explained by a better estimation of 

entrainment in the dry season. The dry season has a lower cloud frequency and therefore the 
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thermodynamic profile has less contamination due to other cloud or deep convective events, 

making the bulk-plume method a more accurate approach.  

 For shallow clouds, we observe so few cases in each season that it is uncertain if the 

observed relationships are meaningful. We find that low-level CAPE, ELR, shear, size, and 

vertical velocity are much more correlated with entrainment in the dry season. RH (0-2 km) and 

buoyancy are slightly more correlated with entrainment in the wet season (not shown). More 

observations of shallow clouds are needed to confirm these relationships.  

 

Figure 14: Entrainment vs cloud size (a), maximum buoyancy in the lowest 5 km (b), and cloud thickness (c) during 
the wet (green), dry (orange), and transition (blue) seasons. 
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Table 3: Mean values of several variables in each the dry, wet, and transition season. These are the variables with 
the largest seasonal differences. 

 

4.2.2 Regression Trees and Random Forests 

As described previously, entrainment rate is likely not a simple linear function of a 

number of independent variables, so it is natural to explore more advanced statistical approaches 

to supplement the linear regression analysis. Regression trees for shallow and congestus clouds 

predict the variables with the largest effect on entrainment rates by grouping data with similar 

values of explanatory variables. Each group/node of the trees contains observations which are as 

homogenous as possible.     

The optimal regression tree for the “better” congestus clouds is shown in Figure 15. The 

first tree split is made by separating the observations based on cloud thickness. There are slightly 

more cases with thickness greater than ~3000 m (54%) than less than ~3000 m (46%). The cases 

with the smaller thickness have a larger average entrainment rate (0.45 km-1, Figure 15 Box #3) 

than those with large thickness (0.27 km-1, Figure 15 Box #2). This negative relationship is 

consistent with the linear model results and LES scaling (Siebesma et al. 2003). The observations 

with large thickness (> ~ 3 km) are then split by their RH and those with smaller thickness (< ~ 3 

km) are split by their large-scale vertical velocity. The group which contains observations with 

small thickness and large vertical velocity yield the largest average ER (0.65 km-1, Figure 15 

 Dry (n=63) Wet (n=74) Transition (n=64) 

ER 0.526 0.538 0.459 

RH (4-7 km) (%) 50.8 76.6 66.5 

CIN (J kg-1) -76.8 -50.8 -68.9 

Shear (cm s-1) 0.35 0.19 0.23 

Low-level CAPE (J kg-1) 216 201 228 

Low-level buoyancy (N kg-1) 0.097 0.074 0.081 

Cloud size (km) 11.4 9.2 8.9 
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Box #7), but few cases fall into this category. However, the group which contains observations 

with small thickness and small vertical velocity represents a more substantial portion of the data 

and also has above average ER (0.41 km-1, Figure 15 Box #6). The observations with large 

thickness and RH less than 80% produce the smallest ERs (0.23 km-1, Figure 15 Box #4). Almost 

half of the observations fall into this category. The positive relationship between ER and RH is 

again shown in the regression tree results, but the relationship is stronger in the regression tree 

analysis than the linear regression analysis, since RH is one of the top three explanatory variables 

but had a small R2 value. The regression tree analysis also suggests a positive relationship with 

the large-scale vertical velocity, which is not apparent from the linear regression analysis. The 

reason for the lack of correlation between entrainment and vertical velocity and RH may be 

because these variables are not independent. For example, the relationship between entrainment 

and vertical velocity is strongest in clouds with small thickness, indicating that the relationship 

may be dependent on both cloud thickness and vertical velocity. The root mean square error 

(RMSE) between the model predicted and observed data is 0.35 km-1, giving it some statistical 

predictive power. This model shows that the variables which account for the entrainment 

variability are thickness, RH, and large-scale vertical velocity. 

The shallow cloud regression tree results are shown in Figure 16. The observations are 

split only by the low-level RH. The majority of cases (58%) have low-level RH less than 84% 

and small ER (0.53 km-1). The remaining cases with larger RH (>84%) have a much higher 

average entrainment rate (1.5 km-1). A strong positive relationship with RH was also shown in 

the linear regression analysis and in several other observational studies (e.g. Lu et al. 2018). The 

model predicted and observed data has an RMSE of 0.43 km-1, and therefore, the model cannot 



40 
 

alone predict entrainment rates. More data is needed to verify and make conclusions about the 

meaning of the relationships in the shallow clouds.  

Random forests, an ensemble of regression trees, add more randomization and diversity to 

single regression trees, and therefore, are more robust against overfitting, reduce biases, and tend 

to be more accurate (Breiman 2001). The predictor variables are analyzed by their “importance” 

to the dependent variable (entrainment rate in this case), which is the reduction of the sum of 

squared error when that variable is used in a split, averaged over all trees in the forest. The 

results of the random forest model show that the cloud size, thickness, maximum low-level 

buoyancy, and vertical velocity have the most importance in determining entrainment in both 

shallow and congestus (Figure 17). Shear, RH, moisture convergence, ELR, and CAPE have a 

 

Figure 15: Regression tree indicating the variable splits for congestus entrainment rates. The top number is the 
average entrainment in the group and the bottom number is the percent of total observations that are in that group. 
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Figure 16: Same as Figure 15 but for shallow entrainment rates. 
 

very small impact on ER. The relationship between cloud thickness is again apparent in this 

analysis. The most important variable is cloud size, which had a moderate linear R2 value. 

Vertical velocity did not have a high linear R2, but the regression tree and random forest analyses 

suggest a possible relationship with ER. Maximum low-level buoyancy had a relatively high 

linear R2 value and is the second most important variable in the random forest model. The 

random forest model explains 45% of the variance in both congestus and shallow entrainment 

rates. The RMSE between the observed (testing data) and model predicted entrainment rates is 

0.43 km-1 for congestus and 0.34 km-1 for shallow clouds. Though this does give evidence for 

some predictability, other factors are contributing to variability in entrainment rates besides those 

used in this study (discussion on potential sources of variability in section 5). 

We also use a random forest to evaluate the seasonal differences of the entrainment 

relationships in congestus. The shallow cumulus have too few observations in each season to 

perform a random-forest analysis for each. The relative importance of each variable in each 

season is shown in Figure 18. In agreement with the linear analysis, cloud thickness is more 

important in the wet season. CAPE is also slightly more important in the wet season. Cloud size 
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is somewhat more important in the dry season, in agreement with the linear analysis, but not as 

apparent. The linear analysis also found a stronger relationship between entrainment and 

buoyancy in the dry season, and the random forest confirms this, showing a much stronger 

relationship in the dry season than the wet. The linear analysis did not suggest a seasonal 

difference in the relationship with vertical velocity, but the random forest shows vertical velocity 

with larger importance during the dry season than the wet. RH has consistent importance in the 

wet and dry season but is much more important in the transition season. These results, along with 

the linear regression results, suggest that entrainment could have different dependencies in 

different seasons, but the reasons for the different dependencies are unknown. We speculate that 

these differences could be due to more organized convection in the wet season than the dry or 

differences in the convective forcing mechanisms (i.e. mesoscale variability).  

 

Figure 17: The importance of each cloud and environmental variable to entrainment as found by the random forest 
model. Congestus results are shown in blue and shallow results are in green. 
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Figure 18: The random forest results of the relative importance of each explanatory entrainment variable in each 

season for congestus clouds. 
 

 Uncertainty in entrainment rate calculations 

Uncertainty estimates in entrainment rate calculations are calculated by applying the 

standard error propagation techniques (Taylor 1982) to the instrument and retrieval uncertainties. 

Uncertainty in CTH can arise from a lack of WACR or RWP sensitivity, yielding an 

underestimate of CTH. This lack of sensitivity is a particular problem for the RWP, since the 

instrument is rather insensitive to cloud-size drops. We assume the minimum uncertainty in CTH 

is likely the size of a range gate, 200 m and 42 m for the RWP and WACR, respectively. We add 

and subtract 200 m to each cloud in the campaign and calculate the resulting entrainment rate for 

each cloud. Underestimating CTH by 200 m overestimates the average ER of the campaign by 

0.05 km-1, an 8.1% change. Qualitatively this makes sense since a higher CTH requires a smaller 

entrainment value. Similarly, overestimating CTH by 200 m underestimates the average ER by 

0.07 km-1, a 14.5% change. The changes in ER are not symmetric when the uncertainty is added 

and subtracted so we use the average magnitude change of all ER changes as the uncertainty in 
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entrainment due to CTH uncertainty, 0.06 km-1 (11.3%). When only the “better” cases are 

considered, the average ER uncertainty for both adding and subtracting the CTH uncertainty is 

0.08 km-1 (15%).  

The entrainment uncertainty due to cloud top uncertainty and due to thermodynamic 

retrieval uncertainty are about the same magnitude. Table 1 of the appendix shows the ER using 

all possible combinations of adding and subtracting the temperature and moisture uncertainty 

profiles for a single, ideal case. The ER uncertainty due to sounding, MWRP, and MWR 

measurement uncertainties is found by averaging the magnitudes of the four uncertainties, 

resulting from the four possible combinations of adding and subtracting the temperature and 

moisture uncertainty profiles, 0.065 km-1. The largest uncertainty comes from the addition of 

both the temperature and moisture uncertainties. The ER increases by 0.075 km-1, which is 

qualitatively expected from a parcel with greater buoyancy. The ER changes more when the 

moisture uncertainty is applied than the temperature. This is likely not due to the buoyancy 

differences in the parcel controlling the entrainment rate, but due to the difference in the 

environmental air entrained into the parcel.  

We combine the ER uncertainties due to CTH and thermodynamic profile uncertainties 

using the sum of squares to find the final entrainment rate uncertainty. This value is 0.088 km-1 

for the “good” cases and 0.102 km-1 for the “better” cases.    

 Sensitivity tests 

We test the sensitivity of our entrainment rates to the assumptions we use in the bulk-

plume model and how we determine the environmental correlations. We have assumed that 

parcels originated at the surface and ascended pseudoadiabatically, and that the environmental 

profiles were representative of the environments that the clouds grew in. The entrainment 
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correlations were done separately for shallow cumulus and congestus clouds, assuming that 

shallow cumulus had CTH between 1 and 3 km and congestus had CTH between 3 and 9 km.  

Instead of using a surface-based parcel, we assume the parcel initial conditions are 

representative of a mixed-layer of varying depths. Figure 19 shows the differences of 

entrainment rates between a surface-based parcel and a mixed-layer average over the lowest 

1000, 500, and 100 m. Surface-based ERs are larger than the 1000 m and 500 m ML ERs for the 

majority of cases (68%, 60%, respectively). Surface-based parcels are more buoyant and are 

expected to have larger ER, but surprisingly the difference is relatively small. The largest 

changes are from the 1000 m and 500 m ML parcels, which have an average difference of 0.048   

(10 %) and 0.050 km-1 (10.5%), respectively. The 100 m ML difference is much smaller (5.1%). 

Our choice of initial parcel properties yeilds a magnitude of uncertainty similar to the CTH and  

thermodynamic profile uncertainties. However, regardless of the choice of initial parcel origin, 

the variables with the largest correlations with entrainment do not change for both shallow 

cumulus and congestus (not shown). 

 

Figure 19: Mixed layer parcel entrainment rates versus the surface-based parcel entrainment rates for a 1000 m 
mixed layer (a), 500 m mixed layer (b), and 100 m mixed layer (c). 

  

We also compare our best estimate ER and environmental variable correlations to the ER 

correlations using only the sounding, but only the cases that have the nearest prior sounding 
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within 3 hours and 1 hour. If the corrections are accurate and improve the thermodynamic 

profile, they should produce similar correlations to the cases where the sounding is within an 

hour of the cloud observation and is therefore an accurate representation of the thermodynamic 

environment. Table 4 shows the results for congestus and Table 5 shows them for shallow. The 

correlations between entrainment and each environmental variable are similar for the corrected 

cases and the cases with a sounding within 1 and 3 hours for congestus. Shallow cumulus 

entrainment rates are more correlated with buoyancy and cloud thickness in the cases that use 

soundings than those that use the MWRP correction. This shows that we are not missing a strong 

correlation between the ER and environmental variables because of the low temporal resolution 

of the soundings, assuming we apply the MWRP correction.  

 
Table 4: R2 values of entrainment with the environmental variables for the "better" congestus using the MWRP 
correction compared to cases using sounding values within 3 hours and 1 hour. 

ER vs… 
MWRP Corrected R2 

(n = 210) 

Sounding within             
3 hours 

(n = 348) 

Sounding 
within 1 hour 

(n = 158) 

RH in the cloud layer 0.003 0.015 0.020 

ML-CAPE in the lowest 5 km 0.016 0.005 0.018 

Shear 0.007 0.0002 ~ 0 

Max low-level buoyancy 0.157 0.176 0.182 

ELR 0.012 0.0004 ~ 0 

Thickness 0.133 0.146 0.149 
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Table 5: Same as Table 4 but for shallow entrainment correlations. 

ER vs... 
MWRP Corrected R2 

(n = 67) 

Sounding within             
3 hours 
(n = 48) 

Sounding 
within 1 hour 

(n = 14) 

RH in the cloud layer 0.208 0.056 0.003 

ML-CAPE in the lowest 5 km 0.124 0.084 0.094 

Shear 0.0006 0.017 0.015 

Max low-level buoyancy 0.059 0.178 0.559 

ELR 0.037 0.004 0.069 

Thickness 0.003 0.023 0.180 

 
 

 We also test the sensitivity of our results to our definition of shallow and congestus. 

Table 6 shows the ER environmental correlations for shallow CTHs less than 4 km and 

congestus CTHs between 4 and 9 km. The shallow ER correlations weaken considerably, likely 

because the sample size was drastically increased. Most of the congestus correlations also 

weaken. The largest change is the correlation with RH in the cloud layer and shear, which both 

increase when congestus are defined as CTH 4-9 km. This comes at the expense of the shallow 

RH and shear correlations, which decrease as the definition changes. The other variables, 

however, do not have much sensitivity to the CTH definitions of shallow and congestus. 
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Table 6: Entrainment correlations with environmental variables for different congestus and shallow CTH definitions. 
“Good” shallow clouds and “better” congestus clouds are used. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ER vs... 
Shallow 
(1-3km) 
(n = 67) 

Shallow 
(1-4km) 
(n = 220) 

Congestus 
(3-9km) 
(n = 210) 

Congestus 
(4-9km) 
(n = 142) 

RH in the cloud layer 0.208 0.07 0.003 0.029 

CAPE in the lowest 5 km 0.124 0.09 0.016 0.015 

Shear 0.0006 0.006 0.007 0.031 

Max buoyancy 0.059 0.057 0.157 0.142 

Size 0.037 0.059 0.127 0.041 

Thickness 0.003 0.011 0.133 0.047 



49 
 

5 Conclusions and Discussion 

 Shallow cumulus and cumulus congestus clouds are not simulated well in GCMs, despite 

their importance to tropical dynamics (Williams and Tselioudis 2007, Nam et al. 2012). 

Convective parameterizations, including how entrainment is represented, are a large source of 

uncertainty in GCMs. Entrainment-rate closures have largely been formulated from LES, and 

few observational entrainment studies exist. The purpose of this study was to estimate 

observational entrainment rates in shallow cumulus and cumulus congestus during the 

GoAmazon 2014/5 field campaign. We expand on the methods of JD06 to calculate entrainment 

rate by including additional sensors to determine the best-estimate of CTH and representative 

thermodynamic profile. This study contrasts with JD06 through the addition of multiple sensors, 

a greater number of congestus cases in our analysis, a different meteorological environment 

(tropical continental), and a particular focus on uncertainty propagation. We evaluate common 

entrainment closures supported by LES using standard linear correlation analysis but also 

machine-learning models that embrace the nonlinearity and covariability inherent in the 

relationships among the different variables.  

 A multi-sensor approach is employed to give the best estimates of CTH and 

thermodynamic state. We use a combination of the WACR and RWP reflectivities to find a best 

estimate of CTH. The WACR attenuates in the presence of precipitation, which gives an 

underestimate of CTH that would result in a subsequent overestimate of ER if used in out 

algorithm. The RWP is less sensitive to cloud droplets but is sensitive to the precipitation 

droplets and does not attenuate as much. In some cases, the WACR CTH is more than 5 km 

lower than the RWP CTH. Use of the improved CTH estimates results in a decrease in the 

retrieved ERs by an average of 0.078 km-1 (13.6%). These results strongly suggest that future 
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field campaigns use the RWP in conjunction with cloud radars to obtain accurate macrophysical 

cloud properties, especially when sampling clouds with larger hydrometeors.  

 Our best estimate of the thermodynamic profile uses the MWRP and MWR retrievals to 

improve the temporal resolution of the sounding profiles and provide a profile more 

representative of the environment in which the cloud grew. The nearest prior sounding generally 

underestimates the temperature and moisture, since the majority of the clouds occur in the 

afternoon. The more representative thermodynamic profile changes the entrainment rates by 

0.0995 km-1 (25%). The ER estimation is highly sensitive to changes in the boundary layer 

thermodynamics, and therefore representative thermodynamics at the time of the cloud are 

imperative to estimating ERs. Supplementing relatively infrequent soundings with high-

temporal-resolution remote-sensing retrievals to improve observational estimates of the 

thermodynamic profiles is highly desirable.  

 The main findings of our entrainment rate correlation analysis are summarized below: 

 We find entrainment rates ranging from 0.19 to 0.94 km-1 with an average of 0.57 ± 0.088 

km-1 in 415 congestus clouds, which are moderately correlated with the maximum 

buoyancy in the lowest 5 km, cloud thickness, and cloud size. These correlations are 

quantified by the linear regression, regression tree, and random forest analysis. The 

machine-learning models also suggest a nonlinear relationship with the large-scale 

vertical velocity at 700 mb. 

 We find entrainment rates ranging from 0.63 to 1.7 km-1 with an average of 1.2 ± 0.088 

km-1 in 67 shallow cumulus clouds, which have a strong relationship with the low-level 

(0-2 km) RH, and moderate relationships with low-level CAPE and cloud size, although 

we are cautious about these results given the small number of shallow cumulus observed. 
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 Our linear analysis and random forest results show a difference in entrainment rate 

relationships between the wet, dry, and transition seasons. Both analyses showed that 

entrainment depends on cloud size, buoyancy, and vertical velocity more in the dry 

season than in the wet. Entrainment tends to be best associated with cloud thickness and 

low-level CAPE in the wet season, whereas RH is a more important factor during the 

transition season. We speculate that these differences could be due to more organized 

convection in the wet season than the dry or mesoscale variability, but more analysis 

needs to be done to understand the differing seasonal dependencies.   

 Our congestus correlations differ from those of JD06, who found that entrainment most 

depended on low-level CAPE and RH in maritime congestus, whereas we find these variables 

explain only a small portion of the variance in entrainment. The difference in results between 

these studies suggests a difference in the environmental drivers of entrainment rate across 

different regimes. Continental convection forcings may influence the entrainment rates and 

partially explain the difference in ER sensitivities between oceanic and continental climates. 

These forcings, unique to continental locations, including sea or river breezes, urban heat island 

effects, and aerosols, may also contribute to the lack of sensitivity of entrainment to the 

explanatory variables.  

 The shallow cumulus entrainment rates and correlations agree with other recent 

observational studies of entrainment in continental shallow cumulus, showing a strong 

dependence on RH (Lu et al. 2018, Kirshbaum and Lamer 2020). However, LES suggests a 

negative relationship. More research needs to be done to assess the reason for the sign 

differences in the relationship between entrainment rates estimated from observations and LES, 
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which we speculate may at least in part arise from the differences in how the entrainment rate is 

defined and calculated. 

 Our analysis gives some observational support for several of the entrainment closures 

supported by LES, but the correlations between entrainment and the environmental and cloud 

variables are fairly weak and do not fully explain the variability in entrainment rate. The 

remaining variance could be explained by the small spatial and temporal scales used to represent 

the thermodynamic profile, observation uncertainties, and limitations of the bulk-plume method. 

Though we have improved the thermodynamic profile and CTH estimates, observational 

limitations and uncertainties from the retrievals remain, which we have worked to quantify. For 

example, the MWRP and MWR retrievals improved the temporal resolution of our 

thermodynamic profiles but have coarse vertical resolution. The Amazon region has considerable 

mesoscale variability, including the continental effects mentioned above as well as cold pools or 

dry/moist layers resulting from prior convection, which may all impact the entrainment rates. 

We also only sample the clouds directly above the radar. Therefore, the radar observations and 

their entrainment values may not be representative of the total cloud population over a larger 

area. Further, in the majority of the cases, we rarely observe the center of the updraft, and 

therefore suffer from chording biases. We likely underestimate the true maximum CTH 

associated with the largest updraft, and consequently overestimate the entrainment rate. The 

magnitude of these biases is unknown and left for a future study. Limitations of the theoretical 

assumptions of the bulk-plume method include representing convection by an idealized plume 

undergoing continuous, linear entrainment with height. Convection that is more transient than 

steady may be better represented by a bubble entraining at cloud top (Yano 2014). Furthermore, 

entrainment may not be constant with height. Several studies have estimated the vertical 
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dependence of entrainment and found that entrainment is maximum at cloud base and decreasing 

above (Lin 1999, Lu et al. 2012, de Rooy et al. 2013). However, JD06 tested the sensitivity of 

their results to height-varying entrainment rates and found little change in their results.  

 Future work should further explore the seasonal entrainment dependencies and the nature 

of the dependencies but would require additional field deployments or long-term LES of the 

Amazon environment. In addition, it would be beneficial to compare the observations with LES 

simulations of GoAmazon clouds and entrainment rates, and further explore the role of nonlinear 

relationships and interactions between variables in predicting entrainment rates and the 

mechanisms behind the relationships.  
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Appendix 

Thermodynamic uncertainty estimates 

Table 1: The ER results from adding and subtracting the temperature and moisture uncertainties to an ideal 
thermodynamic profile in all possible combinations. The resulting ERs are compared to the ideal ER, and the 
changes are determined to be the uncertainty in ER.  

Arbitrary CTH (km)  6   
ER (km-1) 0.283   
Profile change ER (km-1) ER change (km-1) % ER change 
Add T, Add q 0.358 0.075 26.5 
Add T, Sub q 0.215 -0.068 -24.0 
Sub T, Add q 0.347 0.064 22.6 
Sub T, Sub q 0.231 -0.052 -18.4 

Average   0.065 22.9 
Add T 0.280 -0.003 -1.1 
Sub T   0.286 0.003 1.1 
Add q 0.353 0.07 24.7 
Sub q 0.224 -0.059 -20.8 
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