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Abstract 
The goal of this research is to review the current state of long-term, multi-decadal lake 

dynamic monitoring and develop novel techniques for scalable analysis at local, regional, and 

global levels.  This dissertation is comprised of three chapters formatted as journal manuscripts 

with each chapter progressively addressing some key limitation in current lake dynamic 

monitoring methodologies. 

Chapter 1 tracks lake dynamics (surface elevation, surface area, volume, and volume 

change) for a single water body, Lake McConaughy, which is the largest lake and reservoir in 

the state of Nebraska, using the cloud-based geospatial analysis platform Google Earth Engine.  

Lake dynamics were estimated using bathymetric survey data, the Shuttle Radar Topography 

Mission 30-meter digital elevation model, and Landsat 5 image composites for 100 time periods 

between 1984 and 2009. Water surface elevation was estimated and assessed for 5,994 different 

combinations of water indices, segmentation thresholds, water boundaries, and statistics and 

produced elevations as accurate as 0.768 m CI95% [0.657, 0.885] root-mean-square-error.  The 

method also detected seasonal and long-term trends which would have major implications for 

regional agriculture, recreation, and water quality.  Chapter 1 was published as an article in the 

peer-reviewed journal Water Resources Research in October 2019. 

Chapter 2 expands and improves upon the techniques explored in Chapter 1 in multiple 

ways.  First, the techniques were improved to remove image contamination sources such as 

snow, ice, cloud cover, shadow, and sensor error for individual images using the Pixel Quality 

Assurance (QA) band available as a part of the Landsat 4, 5, 7, and 8 Top-of-Atmosphere Tier-1 

Collection-1 archives.  Using the Pixel QA band information, image contamination was removed 

from each image between August 1982 and December 2017 and water surface elevation was 

estimated with the remaining visible water boundary extents overlaying merged National 
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Elevation Dataset digital elevation model and bathymetric survey data resampled to 30-meters 

which resulted in enhanced temporal resolution compared to the techniques used in Chapter 1.  

Second, the analysis was expanded from a single water body to fifty-two lakes/reservoirs to 

provide a better understanding of how the techniques generalize to imagery and water bodies 

encompassing a wide range of ecotypes, geologies, climates, and management strategies.  A 

variety of common water indices, such as the Modified Normalized Difference Water Index, 

naïve and dynamic water indices, water boundary types, and filtering strategies were tested and 

individual lake accuracies are as low as 0.191m RMSE CI95%[0.129, 0.243], and 45 of the 52 

lakes produced sub-meter root-mean-squared-error accuracies.  Furthermore, accuracy of surface 

elevation estimates is highly correlated with the mean slope of surrounding terrain with low-

slope shorelines having greater accuracy than high-slope shorelines such as those in canyon-

filled reservoirs or in mountainous regions.  Overall, the improved techniques extend our ability 

to track long-term lake dynamics to lakes with bathymetric datasets while lacking in-situ 

hydrological stations, provide a framework for scale-able analysis in Google Earth Engine, and 

balance a need between high-accuracy estimates and maximum temporal resolution. 

Bathymetric survey data, such as that used in Chapters 1 and 2 is, unfortunately, not 

available for most water bodies at regional and global scales.  Chapter 3 introduces a method of 

tracking long-term lake dynamics without bathymetry data and only using available digital 

elevation models such as Shuttle Radar Topography Mission, the National Elevation Dataset, 

and Advanced Land Observing Satellite.  In digital elevation models, the water surface is often, 

but not always, hydroflattened producing a flat surface approximating the surface of the water at 

the time of the data capture which precludes using water boundaries like those in Chapter 1 and 

Chapter 2 to estimate water level when it is lower than the hydroflattened surface in the digital 

elevation model.  However, using hypsometric relationships developed from the digital elevation 
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models, subsurface water dynamics can still be estimated by extrapolating the low water levels 

using regression, albeit with increased uncertainty compared to levels above the hydroflattened 

surface.  Using multiple digital elevation models, the lowest hydroflattened surface can be 

identified for each water body which reduces uncertainty for low water levels by reducing the 

extrapolation distance to those values while simultaneously increasing the number of above 

hydroflattened surface estimates.  In addition to low-level uncertainty, hypsometric techniques 

are highly impacted by image contamination such as cloud, cloud shadow, snow, ice, and sensor 

error which reduces the observable water surface area resulting in erroneous surface elevation, 

volume, and volume change estimates.  To help alleviate this issue, a technique of using 

proportional hypsometry was developed to remove contamination effects.  Together, using the 

lowest hydroflattened surface and proportional hypsometry, this research produced 12,680 

additional water surface elevation estimates for 46 lakes in comparison to traditional 

hypsometric techniques, reduced the number of sub-hydroflattened water surface estimates by 

549 or more compared to individually using any of the three digital elevation models assessed, 

and lays the groundwork for regional and global scale surface water dynamic research without 

bathymetric survey data.  
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1 Introduction 

To the limits of our current knowledge, liquid water is universally recognized as one of the key 

ingredients for life.  In astrobiology, scientists theorize life could exist in the liquid water beneath the icy 

crust of moons like Europa and Enceladus or in liquid water stored beneath the surface of Mars (McKay, 

2014).  Such a discovery, life from another world, would fundamentally change our perception and place 

in the universe, yet, despite its known importance to the only type of life we know and the planet that 

harbors it, Earth, our knowledge of our planet’s surface water is limited.  Approximately 97.2% of Earth’s 

surface water is contained within the oceans with just the remaining 2.8% being considered freshwater.  

Of that 2.8%, 2.1% is stored as glacial ice, 0.6% is stored as groundwater and soil moisture, and the 

remaining 0.1% is split amongst the atmosphere, lakes, and rivers (California, 2017; USGS, 2018a).  In 

fact, just 0.01% of the global water supply is available as liquid freshwater and yet that water directly 

supports 100,000 species including humans and human related activities (Dudgeon et al., 2005).  We 

understand that freshwater is critically important, in fact, freshwater resources impact geology, 

climatology, ecology, and numerous other fields yet we know little of how these resources vary in time 

and space (J F Crétaux et al., 2016). 

Historically, our primary source of knowledge concerning surface water dynamics has been in-

situ hydrological stations installed on-site for lakes, reservoirs, and streams.  Unfortunately, the spatial 

distribution of these stations is severely limited which restricts their applicability when it comes to large-

scale studies.  Even in the United States, which has a dense water monitoring network, hydrological 

stations are only available for a small subset of the total number of water bodies.  The station availability 

issue multiplies when working internationally as entire regions may have just a handful of stations and 

bureaucratic policies may restrict access to the data (Alsdorf, Rodríguez, & Lettenmaier, 2007).  This data 

limitation has severe implications when it comes to understanding surface water dynamics over large 

scales.  Remote sensing has emerged as a viable alternative means of monitoring surface water dynamics 

with techniques being developed using optical sensors like Landsat and MODIS, synthetic aperture 
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radars, and satellite altimetry.  More information and in-depth review of these topics will be covered in 

Chapters 2, 3, and 4.   

The research presented in this dissertation advances our understanding of surface water dynamics 

– how water surface elevation, surface area, volume, and volume change vary spatiotemporally – through 

the development of new techniques for monitoring these resources using widely available optical image 

archives, digital elevation models, and bathymetric datasets.  These techniques were developed primarily 

within Google Earth Engine (GEE) (Gorelick et al., 2016) to be readily scalable from local, to regional, to 

global scales but can also be implemented in a variety of GIS programs.   

This dissertation is organized into three journal article style chapters with a common purpose; 

estimating long-term lake/reservoir dynamics using available datasets.  Chapter 2, Tracking Multi-

Decadal Lake Water Dynamics with Landsat Imagery and Topography/Bathymetry was published in 

Water Resources Research in 2019 (Weekley & Li, 2019).  This chapter develops a technique for 

estimating water dynamics using Landsat 5 image composites, water boundary extents, and merged 

Shuttle Radar Topography Mission (SRTM)/bathymetry data for Lake McConaughy in Nebraska, USA 

from 1985 to 2009.   Chapter 3, Maximizing Multi-Decadal Water Surface Elevation Estimates with 

Landsat Imagery and Elevation/Bathymetry Datasets, builds upon and improves upon the technique used 

in Chapter 2 by leveraging the Pixel Quality Assurance band packaged with the Landsat 4, 5, 7, and 8 

Tier-1 Collection-1 Top-of-Atmosphere image archives to identify and remove the effects of image 

contamination such as snow, ice, cloud, cloud shadow, and sensor error.  Removing the effects of image 

contamination enables individual images to be used, rather than composites such as those used in Chapter 

2, which greatly increases the temporal resolution of the analysis.  Furthermore, the analysis in Chapter 3 

is performed on 52 lakes with varying geologies, climates, ecotypes, and management practices to better 

understand how the method generalizes to unseen images and water bodies.  Chapter 4, Proportional 

Hypsometric Relationships for Maximizing Lake Dynamic Tracking Temporal Resolution and Reducing 

Low-Level Uncertainty with Landsat Imagery and Digital Elevation Models, takes a different approach to 
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the long-term water dynamic monitoring issue by using hypsometric relationships derived from digital 

elevation models only, no bathymetry, to estimate water surface elevation from water surface area 

estimates.  While bathymetry may be available at regional levels, such as some states in the USA which 

have large bathymetric survey efforts and data catalogs (deNoyelles & Kastens, 2016), bathymetry is 

relatively sparse at the global scale.  This chapter explores methods of using available digital elevation 

models to estimate water surface elevation, and therefore water surface dynamics, using multiple digital 

elevation models to minimize sub-hydroflattened surface estimates while using a novel proportional 

hypsometry technique generated using the Pixel Quality Assurance band to remove image contamination.     

Overall, these three chapters represent a unified theme of method development and refinement for 

tracking long-term lake dynamics using optical imagery and available elevation data products, are 

scalable for analysis at local, regional, and global scales, and provide insight into trends and patterns at 

seasonal, annual, and decadal timeframes.   
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2 Tracking Multi-Decadal Lake Water Dynamics with 
Landsat Imagery and Topography/Bathymetry 

2.1 Abstract 

Water resource management is of critical importance due to its close relationship with nearly 

every industry, field, and lifeform on this planet.  The success of future water management will rely upon 

having detailed data of current and historic water dynamics.  This research leverages Google Earth 

Engine and uses Landsat 5 imagery in conjunction with bathymetry and Shuttle Radar Topography 

Mission digital elevation model data to analyze long-term lake dynamics (water surface elevation, surface 

area, volume, volume change, and frequency) for Lake McConaughy in Nebraska, USA.  Water surface 

elevation was estimated by extracting elevation values from underlying bathymetry and digital elevations 

models using 5,994 different combinations of water indices, water boundaries, and statistics for 100 time 

periods spanning 1985-2009.  Surface elevation calculations were as accurate as 0.768 meters RMSE 

CI95% [0.657, 0.885].  Water volume change calculations found a maximum change of 1.568 km3 and a 

minimum total volume of only 23.97% of the maximum reservoir volume.  Seasonal and long-term trends 

were identified which have major affects regarding regional agriculture, local recreation, and lake water 

quality.  This research fills an existing gap in optical remote sensing-based monitoring of lakes and 

reservoirs, is more robust and outperforms other commonly used monitoring techniques, increases the 

number of water bodies available for long-term studies, introduces a scalable framework deployable 

within Google Earth Engine, and will enable data collection of both gauged and un-gauged water bodies 

which will substantially increase our knowledge and understanding of these critical ecosystems.   

2.2 Introduction 

Water is one of the most abundant resources upon Earth and is also one of the most critical to life.   

While water is massively abundant when considering the Earth’s surface as a whole, its distribution is 

uneven across both time and space (J F Crétaux et al., 2016) leading to extensive impacts and 
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implications for biology, ecology, economy, and human welfare.  Ocean waters aside, global surface 

freshwater dynamics are especially vital considering freshwater constitutes just 0.01% of the global water 

supply and yet it supports at least 100,000 different species including humans (Dudgeon et al., 2005).  

Yet, despite its universal importance, our understanding of continental surface water dynamics is limited.     

At the most basic level, water dynamics describe where, when, and how much water is present on 

the landscape.  For lakes and reservoirs, water dynamics are observed through water surface elevation, 

surface area, volume, and volume change measurements.  Historically, most water dynamic information 

has been derived from in-situ gauge networks which measure water surface elevation (height or stage) 

that can be combined with bathymetric survey data (pre- or post-impoundment for reservoirs) to create 

storage curves relating elevation to surface area and/or volume. Unfortunately, most water bodies lack in-

situ monitoring and the data for many others are unavailable due to legal or institutional restrictions 

(Alsdorf et al., 2007).  This problem exists even in developed nations with dense gauge networks.  For 

example, in the State of Kansas, 60% of the population relies upon 80 reservoirs for their primary or 

back-up drinking water supply (Rahmani et al., 2018), most of which are unmonitored or do not have 

publically available datasets.     

To alleviate the issues with in-situ monitoring, several remote sensing techniques have been 

developed to estimate water dynamics.  As mentioned earlier, water dynamics are typically monitored 

through changes in water surface elevation, surface area, volume, and volume change.  Water surface area 

is often the simplest metric to estimate as it can often be directly measured using optical sensors, such as 

the multi-spectral sensors onboard MODIS  (Moderate Resolution Imaging Spectroradiometer) and 

Landsat, or using SAR (synthetic aperture radar) systems.  Water surface elevation can also be directly 

measured, if not available via in-situ gauges, through the use of satellite altimeters such as the dual- or 

single-frequency altimeters onboard NASA/CNES’s Topex/Poseidon satellite (“TOPEX/Poseidon Fact 

Sheet,” n.d.) or GLAS (Geoscience Laser Altimetry System) onboard NASA’s IceSat (Zwally, n.d.).  

Unlike water surface elevation and surface area, volume and volume change cannot be directly measured.  
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Total volume estimates require knowledge of underlying bathymetry while volume change, at the bare 

minimum, requires both water surface elevation and surface area measurements on two separate dates to 

estimate volume change via pyramidal or conical frustum equations (Alsdorf et al., 2007; J F Crétaux et 

al., 2016; Gao, 2015).    

The aformentioned techniques have been used in numerous studies to analyze water dynamic 

changes for several water bodies around the globe including, but not limited to, the following examples.  

Gao et al. (2012) used MODIS (Moderate Resolution Imaging Spectroradiometer) and satellite altimetry 

to study storage variations for 34 global reservoirs via elevation/surface area/volume relationships. 

Crétaux et al. (2015) used Landsat imagery, satellite altimetry, and the pyramidal frustum formula to 

investigate regional water dynamics in the Sydarya River region of Central Asia.  Moradi et al. (2014) 

used DEMs and sub-pixel reprocessed MODIS imagery to estimate total water volume and mean lake 

level for the Caspian Sea.  Zhang et al. (2016) used TanDEM-X DEMs to explore bathymetry and storage 

of unmonitored reservoirs in Brazil.  Tseng et al. (2016) used Landsat imagery and DEMs to track water 

level changes in Lake Mead by estimating subsurface bathymetry from surrounding topography.  Cai et 

al. (2016) used MODIS and area-based water storage estimation models to analyze 15 years of 

spatiotemporal water storage dynamics for large lakes and reservoirs in the Yangtze River Basin.  

Additional works in this area include, but are not limited to, studies by Yuan et al. (2017), Wang et al. 

(2013), Duan and Bastiaanssen (2013), Liang et al. (2017), El-Shazli and Hoermann (2016), Avisse et al. 

(2017), and Jiang et al. (2017).    

While the methods used in each of the examples above have added substantially to the existing 

body of knowledge and undoubtedly will continue to do so, each also possesses a distinct set of 

limitations.  Gao et al. (2015) found seasonal effects in MODIS surface area estimates due to subgrid 

spatial heterogeneity related to mixed pixels along the water shoreline because of the coarse spatial 

resolution (250 m to 500 m) of MODIS.  Moradi et al. used sub-pixel reprocessing to minimize mixed 

pixels resulting from the coarse resolution of MODIS imagery.  Unfortunately, sub-pixel reprocessing 
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requires increased computation time and accuracy of water placement within the overall pixel is 

algorithm dependent (Moradi et al., 2014; Xiong et al., 2018).   Both the works of Avisse et al. (2017) and 

Zhang et al. (2016) are reliant upon water levels being low enough at the time of observation to capture a 

complete or near-complete bathymetric profile. Unfortunately, most lakes and reservoirs pre-date modern 

remote sensing and/or lack the natural variability that would make this technique widely applicable.  

Tseng et al. (2016), on the other hand, attempt to alleviate the issue by extending the slope of surrounding 

terrain to estimate bathymetry.  While the method performed reasonably well for Lake Mead, DEM 

resolution dependencies and increasing uncertainty at low-water levels must be considered before 

applying the technique elsewhere.  Techniques such as those employed by Cai et al. (2016) use empirical 

models which estimate storage capacities based on regional measurements.  Other studies, such as those 

by Messager et al. (2016) and Heathcote et al. (2015), which also estimated storage and bathymetric 

features using regional data, found that the techniques worked well at the regional level but cautioned that 

the results of individual lakes could contain significant error.  Satellite altimetry based studies, on the 

other hand, which estimate water surface elevation by measuring the return time of signals reflected off 

the surface are limited due to sensor constraints (Solander, Reager, & Famiglietti, 2016).  Most altimetry 

missions were designed for ocean or cryosphere monitoring and lack the resolution needed to discern 

smaller bodies of water without substantial land contamination.  Futhermore, the application of altimetry 

to inland water monitoring is also limited due to orbital characteristics such as large ground-track 

spacings which prevent observation of many water bodies (Solander et al., 2016).  While altimeter-based 

calculations are capable of sub-decimeter accuracy, those types of results are generally limited to large 

lakes with favorable shape and conditions (Asadzadeh Jarihani, Callow, Johansen, & Gouweleeuw, 

2013a; J F Crétaux et al., 2016).  Even studies which use elevation/area/volume relationships derived 

from bathymetric surveys can have issues in cases where surface area is used to estimate water surface 

elevation or volume.  In this case, surface area is represented by a single value and any errors or 

deviations in that number, such as those caused by local erosional and depositional processes captured in 

the imagery but not in the bathymetry, directly effect the resulting elevation or volume calculation. 
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In 2021, the SWOT (Surface Waters and Ocean Topography) mission is set to launch and will 

feature increased spatial and temporal resolution over its SAR and altimeter predecessors while also 

offering approximately 90% coverage of the Earth’s surface (Biancamaria, Lettenmaier, & Pavelsky, 

2016).  The SWOT mission is expected to offer water surface elevations within 10 – 25 cm of actual 

height (depending upon water body size) and surface area measurements within 15% of the actual area 

over the course of its 3-year mission life (Solander et al., 2016).  While the SWOT mission will provide 

the most detailed and accurate assessment of the world’s surface waters to date, its short mission life will, 

unfortunately, prevent it from providing climate-scale observations.  This shortcoming creates a need for 

better strategies in assessing currently available datasets to analyze beyond the 3-year SWOT window as 

well as to truly assess the long-term dynamics of these critical water systems.  

This chapter builds upon previous work by leveraging the Landsat 5 image archive in 

combination with bathymetric and digitial elevation model data within Google Earth Engine (GEE), a 

cloud-based geospatial processing platform (Gorelick et al., 2016), to assess summer water surface 

elevation, surface area, and water volume from 1985 to 2009 for Lake McConaughy in Nebraska.  Unlike 

many previous studies which assessed water indices and segmentation thresholds based upon their ability 

to correctly identify water from non-water, we use the water/land interface to estimate water surface 

elevation.  While mixed water/land pixels are of concern in those studies, they are critical to identifying 

the water-land edge/boundary in our approach. Several common water indices (NDWI, MNDWI, AWEI) 

as well as some index combinations (NDWI + MNDWI) were analyzed and evaluated for their ability to 

predict water surface elevation from composite Landsat imagery using elevation statistics from lake water 

boundaries across a range of segmentation thresholds.  The most accurate combination of variables and 

their thresholds, determined in comparison to daily gauged water surface elevation measurements, were 

then used to calculate surface elevation, surface area, volume, volume change, and lake cover frequency 

for four summer time periods (June to September) each year from 1985 to 2009.  Additionally, linear 

regression was used to assess whether any long-term trends were present for the lake.  Finally, this 
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chapter compares the results of the proposed technique to those using established techniques.  To do so, 

water surface elevation was estimated using surface area via elevation/surface area relationships 

developed from the underlying bathymetry and compared to the proposed technique.  All in all, this 

chapter comprehensively tests a wide range of water dynamic monitoring parameters, provides 

recommendations for application to other study areas,  and compares the results to established techniques.   

2.3 Study Area and Data 

 Lake McConaughy, the largest lake and reservoir in the state of Nebraska, is highly variable in 

both lake extent and volume over time (CNPPID, n.d.; Joeckel & Diffendal, 2004).  The lake, located in 

western Nebraska (Figure 2-1), was formed following the completion of Kingsley Dam in 1941 as a 

means of storing irrigation water for what would eventually become the Central Nebraska Public Power 

and Irrigation District (CNPPID).  Kingsley Dam is currently the second largest hydraulic-fill dam in the 

world and, in addition to providing irrigation water to the Tri-County region, contributes electricity via a 

hydroplant completed in 1984 (“Lake History,” 2016). 

 Beyond the hydroelectric and irrigation benefits provided by the reservoir, Lake McConaughy, or 

‘Big Mac’ as it is otherwise known, is also a highly popular recreation destination.  Depending upon the 

water level, the reservoir features white-sand beaches and numerous swimming, water sports, boating, 

fishing, hunting, and camping opportunities.  As mentioned previously, the water-level of the reservoir 

can vary significantly from season to season or even month to month.  This is due to variable inflows 

from the North Platte River as well as seasonal water requirements, chiefly for irrigation during the 

summer growing season.  Despite being the largest water body in the state of Nebraska, Lake 

McConaughy is a poor candidate for monitoring via satellite altimetry as it has received limited 

crossovers from altimeter instruments (Figure 2-1).  Of the available sensors, only RA-2 (Radar Altimeter 

2) onboard Envisat in its 2010 to 2012 (end of mission life) orbit routinely crosses the main body of the 

reservoir (“Pass locator: Aviso+,” n.d.). However, altimeters are non-imaging, profiling instruments 
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which collect information from all the objects within their footprint simultaneously (Sulistioadi et al., 

2015).  As a result, all altimeter measurements for Lake McConaughey, including Envisat’s RA-2 which 

has a 20 km IFOV (instantaneous field of view), would likely contain significant non-water 

contamination (“RA-2 - Earth Online - ESA,” n.d.). 

 The primary source of data for this project was Google Earth Engine (GEE) which maintains the 

entire USGS Landsat 5 TM Collection 1 Tier 1 Raw Scenes image archive (1984-2013) with a moderate 

spatial resolution of 30 meter as well as the 30-m Shuttle Radar Topography Mission (SRTM) DEM 

which provides integerized elevation data for 80% of Earth’s landmass (Farr et al., 2007).  The study 

area, while smaller than an individual Landsat scene, is split between two scene paths (WRS 31/31 and 

31/32) and requires imagery from both to cover the entire reservoir. Daily lake elevation gauge 

measurements were retrieved from the Central Nebraska Public Power and Irrigation District in tabular 

form (H. Rahmann, personal communication, January 9, 2017) and Lake McConaughy bathymetric 

contours, which were collected as part of a study performed in 2003, were downloaded from the United 

States Geological Survey (USGS) (Kress, Sebree, Littin, Drain, & Kling, 2005).   

Relatively low water levels at the time of the bathymetry survey necessitated extending the 

topographic model of Lake McConaughy via merging bathymetry with a supplemental DEM.  Our tests 

indicated slightly better agreement along the land/water interface between the bathymetry and SRTM 

DEM than the more detailed National Elevation Dataset (NED).  To merge the bathymetry with the 

SRTM DEM, Lake McConaughy bathymetric contours were downloaded, processed, and resampled into 

a 30 meter raster to match the spatial resolution of the SRTM DEM. The overlap area in the SRTM DEM 

was replaced by the USGS bathymetry data (Figure 2-2).   

Ideally, data for both bathymetry and the surrounding terrain elevation should be collected 

simultaneously to ensure continuous coverage from under-water to above water.  In reality, the time 

difference between the SRTM mission (February 2000) and the bathymetric survey (Spring 2003) 

resulted in lake elevation dropping from a February 2000 average of 992.73 meters to a Spring 2003 
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average of 983.52 meters.  Due to the higher water level in the SRTM DEM than the bathymetryic 

survey, some stretches of land that were exposed in 2003 but submerged in 2000 were left unsampled and 

required filling via inverse distance weighting (IDW).     

2.4 Methods 

Images intersecting the study area (Figure 2-1) were first retrieved from the USGS Landsat 5 TM 

Collection 1 Tier 1 Raw Scenes image archive within Google Earth Engine.  Images were then filtered 

based upon their cloud score (USGS, 2018b), sorted into time periods, and processed from digital 

numbers (DN) into top-of-atmosphere (TOA) composites with per-pixel cloud filtering for each time 

period.  Once the composite images were generated, lake water was identified based on water index 

images which were then segmented to create binary images with values of 1 representing water and 

values of 0 representing land areas.  Since the focus of this research is upon one singular body of water, 

disconnected water bodies were eliminated from the analysis. 

 Following the removal of disconnected water bodies, a one pixel radius square kernel was applied 

over the binary image to extract lake water boundary, which is a ring of pixels around the edge of the lake 

water body representing the interface between land and water.  Water surface elevation was then 

calculated with statistics (mean, median, or mode) from the bathymetry/elevation values of the pixels 

within the water boundary. 

 Once the water surface elevation was determined, surface area, volume, and volume change were 

then calculated.  Surface area calculation was completed with the binary water image by first counting the 

number of water pixels and then multiplying the count by the area of a pixel. Similarly, volume 

calculation was done by masking out the non-water areas from the merged DEM leaving just the pixels 

covered by water.  The elevation of each pixel was then subtracted from the previously calculated water 

surface elevation to determine the water depth at each pixel.  The depth at each pixel was then multiplied 

by its surface area to determine the water volume of each pixel before being summed to determine total 
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water volume. Finally, water volume change was calculated by subtracting the total water volume of each 

time period from the successive time period.  

While the general processing workflow is outlined above, several key details deserve further 

explanation including: constructing a time series from Landsat 5 images, lake water identification, and 

water surface elevation estimation.  

2.4.1 Constructing a Time Series from Landsat 5 Images 

This research spanned twenty-five years from 1985 – 2009 and utilized most of the available 

images in the Landsat 5 archive.  Due to the climate of the study area, the analysis was limited to warm 

weather months between May 1st and October 31st in order to avoid complications from ice and snow 

which would hinder water detection efforts in many early spring, late fall, and winter images.  A 3-month 

temporal window was also used to create four analysis time periods each year: June (May 1st – July 31st), 

July (June 1st – August 31st), August (July 1st – September 30th), and September (August 1st – October 

31st). While using a time window means that some images might be used in multiple time periods in a 

year, it was expected that the compositing process would have enough images spread across the entire 

three-month window to capture a median value reflective of the central month for that time period (more 

on the GEE compositing process in subsequent paragraphs).  The results of the analysis confirmed this 

expectation as the values calculated for each time period are quite distinct.    

Beyond that concern, the benefit of the temporal window was two fold.  First, a larger date range 

was necessary to ensure that enough images were available for analysis within each time period once 

images were filtered for cloud cover (discussed in the following section).  This is especially important not 

only due to Landsat’s 16 day revisit period but also because the study area crosses more than one Landsat 

scene.  In an early test using single months (June, July, August, and September) as time periods, half of 

the reservoir was completely devoid of imagery in several months once scenes were filtered by their 

cloud scores. Secondly, by overlapping the temporal windows of the time periods, a greater number of 
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analysis periods are available each year which allows for a more complete picture of water dynamics 

within the reservoir. 

 Clouds represent a potentially large source of noise in most remote sensing applications using 

Landsat images.  To address this concern, two cloud removal steps were implemented during the image 

composition process.  First, images with an image cloud score greater than 50% were automatically 

excluded from the analysis.  The image cloud score is a value assigned to each Landsat image that 

indicates the percentage of a scene which is covered by cloud.  While this metric is useful in identifying 

cloudy scenes, it does not assess the location or distribution of cloud cover within an image meaning that 

in some images the object of interest could still be observed and should be included in the analysis even 

though other areas of the image are obscured by cloud.  For this research, tests indicated slightly better 

results when scenes with image cloud scores greater than or equal to 50% were excluded from the 

analysis as images with larger values were much more likely to obscure large portions of the reservoir.  

 As mentioned, the image cloud score alone is a poor measure of the cloud distribution within a 

Landsat scene.  While removing images with cloud scores greater than or equal 50% eliminated a large 

amount of cloudy images, the remaining images could still contain extensive amounts of cloud cover 

capable of negatively impacting the analysis.  To further address this, a per-pixel cloud score generated in 

GEE during the image composite process was utilitized to assess the relative likelihood of a pixel 

representing cloud cover using a combination of brightness, temperature, and the Normalized Difference 

Snow Index (NDSI) (Google Earth Engine, n.d.; Gorelick et al., 2016).  While this method is not a robust 

cloud detection algorithm, it does serve as a simple method for assessing the likelihood that an individual 

pixel is cloudy. In this research, pixels with relative cloud scores greater than 10 were eliminated leaving 

the remaining pixels available for image composition. Per-band percentile values at each pixel were then 

computed from all the remaining pixels to form the final composite image.  For this research, all 

composite images for the time periods were assigned to the the 50th percentile value to represent the 

median central tendency for each time period. 



14 
 

 
 

 Ideally, per-pixel cloud scores would eliminate the need to filter individual scenes by their image 

cloud scores.  However, early tests which used per-pixel cloud score exclusively to address cloud cover 

were less accurate overall than using a combination of the two methods where the cloudiest scenes were 

completely eliminated from consideration (more in Discussion section).   

2.4.2 Lake Water Identification 

 In comparison to water identification techniques requiring extensive field observations, training, 

and validation (such as supervised image classification), segmentation based techniques, such as the 

water indices used in this analysis, are very computationally efficient which is especially useful for 

analyzing multiple images spanning long time periods.  Several water indices were analyzed in this 

research including Normalized Difference Water Index (NDWI) (McFeeters, 1996), Modified 

Normalized Difference Water Index (MNDWI) (Xu, 2006), Automated Water Extraction Index (AWEIsh 

and AWEInsh) (Feyisa, Meilby, Fensholt, & Proud, 2014) and two combined indices formed from NDWI 

+ MNDWI (B1 & B4) and NDWI + MNDWI (B2 & B5).  These water indices rely upon the spectral 

properties of water, most notably its strong absorption in near-infrared and shortwave-infrared 

wavelengths.  Table 2-1 provides the band designations for Landsat 5 Thematic Mapper while Table 2-2 

provides the formulas for each of the water indices.    

In spite of computational efficiency, selecting an optimum segmentation threshold for a given 

analysis can be a difficult process.  Atmospheric conditions, water/land composition such as water depth, 

turbidity and emergent/submerged vegetation even temporal changes such as seasons or even time of day 

can all influence the optimum segmentation threshold for any single image.  This problem compounds 

itself in cases where multiple images in a long time period are used such as in this study.  In addition to 

this, the different water indices used in this analysis also vary in their requirements for selecting an 

optimum segmentation threshold.  For example, AWEI attempts to produce a stable segmentation 

threshold (at or near zero when additional atmospheric corrections are undertaken) (Feyisa et al., 2014) 

while NDWI and MNDWI do not. 
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While a number of factors affect optimum segmentation threshold selection, we assume that 

segmentation thresholds could be identified which minimize measurement error over the entire analysis 

period rather than attempting to minimize error for a singular time period.  In other words, our goal was 

to identify a threshold or thresholds to accurately estimate water dynamics for the entire image collection 

in the study period using minimal computational effort rather than find the optimum segmentation 

threshold for each individual image composite.  In order to accomplish this, while searching for the 

optimum thresholds, the analysis was completed with an increment of .01 ranging from -0.35 to +0.75 for 

each analysis parameter setting.   

Once the water index images were segmented using the selected thresholds, disconnected water 

bodies were eliminated from binary images using a vector intersect approach which was performed by 

seeding a small polygon (a point or line could also be used) within the main body of the reservoir in an 

area known to contain water throughout the entire study period.  Water areas in the binary water images 

were vectorized and intersected with the seeded-polygon to select the water body of interest which was 

then re-rasterized to create a new binary water image (Figure 2-3). 

2.4.3 Lake Water Surface Elevation Estimation 

We used kernel-based morphological operations to delineate the lake water edge with the goal of 

using the water/land boundary to determine water surface elevation.  Three potential types of boundaries 

were identified; interior boundary, exterior boundary, and combination boundary (Figure 2-4).  Three 

boundary types were analyzed because approximating the actual land/water interface on a raster grid is 

difficult.  On a binary water image, when ignoring the effect of mixed pixels, interior boundaries 

represent the first ring of water pixels while exterior boundaries represent the first ring of land pixels.  

The combination boundary, on the other hand, uses both land and water pixels to better approximate the 

land/water interface.  With that said, a variety of factors such as local slope, mixed pixels, and water 

detection accuracy could all impact the ideal water boundary type making a full testing of the available 

types necessary.  Interior boundaries were created by eroding the water pixels on the binary land/water 
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image by one pixel while exterior boundaries were created by dilating the water pixels by one pixel. 

Combination boundaries were extracted using both methods.  While the exact steps varied to some degree 

depending upon the boundary types used, the boundaries were used to retrieve the elevation from the 

merged bathymetry/DEM terrain model to capture water surface elevation within one pixel of the water’s 

edge.   

The standard statistics of mean, median, and mode were used to calculate a single water surface 

elevation from the elevations retrieved from the land/water boundary.  Shoreline topography can be very 

diverse.  In some cases the interface between land and water is a very gentle slope, such as in many beach 

areas, while other areas can have significant changes over short distances.  In areas with low-slopes, the 

depth of water is very shallow making the water surface elevation and the ground elevation essentially the 

same.  Conversely, elevation can differ substantially in areas of steep slope.  As such, by using all of the 

values along the shoreline, a single representative value for the water surface elevation can be estimated. 

2.4.4 Validation 

Analysis results were assessed by root-mean-squared-error (RMSE) (Table 2-3) to determine the 

best performing parameter combination’s ability to estimate surface water elevation for the entire analysis 

time period.  For consistency, and to compare a similar number of data points, the true surface elevations 

for each time period were calculated using only the dates common to both the daily gauged surface 

elevations and the Landsat 5 image archive (there are 90+ gauged measurements for each time period 

versus 12 or fewer Landsat images) .  The median daily elevation of those common dates was then used 

as the true surface elevation for each particular time period.  This approach eliminated the influence from 

events not captured in the Landsat archive which could have unfairly weighted the gauged surface 

elevations due to their greater observation density (which increases their chances of capturing events, 

such as floods, which may or may not be visible within the Landsat image archive due to the 16-day 

revisit period).  RMSE was then calculated using the water surface elevation estimated from image 

analysis and the true water surface elevation. Additionally, linear regression was used to assess whether 
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any long-term trends were present for Lake McConaughy over the analysis period.  Additional error 

statistics such as mean absolute error (MAE), mean bias error (MBE), and mean absolute percentage error 

(MAPE) were calculated for the best performing parameter combination (Table 2-3).  Bootstrap 

resampling (1,000 repetitions) was used to calculate each statistic and generate 95% confidence intervals.    

Water volume change was evaluated in a similar manner by comparing it to ground-truth using 

error statistics.  Additionally, water volume change was also validated against the water volume change 

calculated using the following pyramidal frustum equation which is a common technique used in 

altimeter based studies (J F Crétaux et al., 2016): 

ΔV = ((H1 – H0) x (A1 + A0 + √(A1 x A0))/3 (1) 

where ΔV is the change in volume between two dates, H1 and H0 are the water surface elevations for the 

two dates, and A1 and A0 are the corresponding surface areas for those same dates.  

 Finally, water surface elevation accuracy was compared to elevation estimates derived from 

surface area to elevation relationships to establish the performance of this method relative to that of an 

established alternative.  First-order (linear), 2nd-order polynomial, and 3rd-order polynomial equations 

(Duan & Bastiaanssen, 2013) were developed from the USGS provided elevation/surface area/volume 

table.  Water surface areas for each composite image was then used to estimate elevation using the 

surface area to elevation relationship.  

2.5 Results 

All in all, we tested over 5,994 different parameter combinations (water index, segmentation 

threshold, boundary type, statistical type) to determine the best parameter combination for predicting the 

water surface elevation, surface area, and volume of Lake McConaughy (Table 2-4).  Each set of 

parameters was mapped over 100 composite images that were generated from 597 unique Landsat scenes 

(after cloud score filtering) from a total of 651 scenes available in the study area during the study period. 
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Images were counted a single time even though many were used more than once due to the overlapping 

time windows.     

RMSE was calculated for each parameter combination to allow for accuracy assessment and 

comparison.  Overall, the best performing parameter combination for predicting water surface elevation 

was NDWI + MNDWI (B1 & B4) with a segmentation threshold of 0.06 using a combination boundary 

and the mean statistic which produced a RMSE of 0.768 meters CI95% [.657, .885].  Table 2-5 shows the 

number of combinations by water index with RMSEs better (lower) than some selected values.  This table 

indicates that of the 5,994 total combinations tested, 803 of them produced RMSEs less than 1.0 meter 

(about 13.4%).  While this is a low percentage overall, a closer look indicates that the majority of these 

low RMSEs were concentrated in the NDWI + MNDWI (B1 & B4) and NDWI + MNDWI (B2 & B5) 

indices which together account for 519 (64.6%) of the 803 total parameter combinations which have a 

RMSE below 1 meter.  NDWI + MNDWI (B1 & B4) proved to be the most accurate index overall with 

10 parameter combinations having RMSEs better than 0.80 meters.     

In addition to the table, the RMSEs for all parameter combinations were compiled into a series of 

graphs to further highlight and illustrate the impact each parameter has on overall water surface elevation 

accuracy and allow the comparison between the different water indices, segmentation thresholds, and 

boundary types (Figure 2-5).  The graphs span the entire range of segmentation thresholds tested (-0.35 to 

+0.75) but were capped at a RMSE of 2.0 meters in order to focus upon the most accurate combinations.  

The graphs reveal some key patterns and relationships that will be useful in future research.  One such 

pattern is the relationship between boundary types and their lowest RMSE values (or the curve in 

general). Interior boundaries have their lowest RMSEs at lower segmentation thresholds than exterior 

boundaries while combination boundaries fall in the middle.  For example, the bottom of the mean and 

median NDWI curves are centered around a segmentation threshold of -0.05 while the exterior boundary 

is centered around 0.10 with the combination boundary falling in between around 0.0.  The graphs also 

highlight a maximum threshold limit of +0.19 for AWEIsh (Figure 2-5d) regardless of the boundary or 
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statistic type used as well as the relatively poor performance of AWEInsh in water surface elevation 

estimation. 

Another key observation stems from the type of statistics used in the analysis.  Each graph 

reveals roughly the same pattern where mean has the narrowest RMSE curve, followed by median, and 

then mode with the widest RMSE curve.  Table 2-6, which shows the number of segmentation thresholds 

broken down by water index and boundary/statistic type with RMSEs less than 1.0 meters, further 

confirms this observation.  Mode, while generally being more stable across a range of thresholds, often 

performs at a lower accuracy than mean or median.  To further illustrate, there are 3 median 

combinations, 14 mean combinations, and zero mode combinations with a RMSE better than 0.80 meters. 

Additionally, Table 2-6 indicates better accuracy with interior (372 sub-meter combinations) and 

combination (336 sub-meter combinations) boundary types compared to exterior boundaries (155 sub-

meter combinations) across the range of tested parameter combinations.   

Once the best performing parameter combination (NDWI + MNDWI (B1 & B4), combination 

boundary, mean statistic, 0.06 segmentation threshold) for predicting water surface elevation was 

determined additional water estimates for the reservoir were also calculated using those parameters.  

Figure 2-6 plots the water surface elevation, surface area, and volume of the reservoir for each month 

during the study period.  Water surface elevation was plotted against the gauged-measurements provided 

by the CNPPID while surface area and volume were plotted against surface area and volumes provided or  

interpolated, where necessary, in a Lake McConaughy look-up table from the United States Geological 

Survey developed from the same bathymetry data used in this study (USGS) (Kress et al., 2005).  Each 

figure was also fit with a trend-line which indicates a moderate negative trend in each of the 

measurements over the course of the study period.  It also be noted that each year has its own localized 

trend with the peak elevation, surface area, and volume occuring early summer and then decreasing 

steadily until the fall.   
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In spite of the differences, Figure 2-6 indicates a good relationship between the predicted values 

and the actual gauge-based values (median values calculated from the daily gauge values and the look-up 

table). Table 2-7 provides accuracy assessment statistics for the each of the three estimates. 

The estimated water surface elevation, surface area, and volume during the study period peaked 

in June, 1986 at a water surface elevation of 994.54 meters. However, the actual peak water surface 

elevation, surface area, and volume occurred in June, 1997 at a water surface elevation of 995.02 meters.  

This error occurs around the SRTM/bathymetry interface and is likely a result of undersampling in those 

areas as well as estimation bias (see discussion).  At the other end of the spectrum, September, 2006 had 

the lowest lake levels for both the estimated (975.91 m) and actual (975.21 m) measurements.  Figure 2-7 

provides a longitudinal view of the reservoir to further illustrate the water desparity between the 

maximum and minimum surface elevations.    From Lake McConaughy’s peak surface elevation 

calculated in June, 1986 to its minimum in September, 2006 the western portion of the reservoir retreated 

nearly 14.5 kilometers (visible in Figure 2-7b). 

In terms of surface cover frequency, 44.04% (~52.25 km2) of the max reservoir extents was 

covered by water during all 100 time periods (blue color in Figure 2-8).  Conversely, 0.76 km2 (0.64%) 

was covered by detected water just a single time.     

 Finally, water volume change was calculated.  Table 2-7 shows error statistics for our method, as 

well as for water volume changes calculated using the pyramidal frustum method (Eq. 1) using our 

estimated surface area and surface elevation.  Overall, we calculated a total volume change between the 

maximum and minimum lake levels of 1.568 km3 compared to an actual change of 1.659 km3. At its 

minimum surface level, the reservoir contained just 23.97% of its maximum volume.  

 For one final comparison, water surface elevation for each time period using surface area to 

elevation relationships built from the underlying bathymetry.  Using this method, a maximum accuracy of 
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0.824m RMSE CI95% [0.706, 0.934] was achieved using linear regression (1st-order), a 0.10 segmentation 

threshold, and the NDWI + MNDWI (B1 & B4) water index combination. 

2.6 Discussions 

2.6.1 Composite Images and Cloud Cover 

During the data exploration stage of this project, we noticed reduced accuracy when using all of 

the available imagery during the study period.  We originally thought per-pixel cloud scores would 

eliminate the need to filter individual images by their overall image cloud scores, but eliminating cloudier 

images actually improved the results.  This is due, in part, to the relationship between the composite 

images and the ground-truth data.  The ground-truth for each time period is the median gauged surface 

elevation for each image date.  When cloudier images are included in the analysis, the lake is more likely 

to be obscured resulting in fewer pixels from that date being included in the analysis which weights the 

analysis in favor of less cloudy images.  The ground-truth on the other hand is not subject to cloud-cover.  

In other words, cloudier images result in more data points being used to generate the ground-truth value 

than are being used in the estimation process. 

2.6.2 Segmentation Thresholds, Boundaries, and Statistics 

As mentioned previously, the RMSEs graphs (Figure 2-5) reveal several interesting relationships 

between peak accuracy, segmentation threshold, and boundary types.  There appears to be a slight shift in 

the segmentation thresholds which produce accurate results among the three different boundary types 

with interior boundaries typically peaking at a slightly lower threshold than combination or exterior 

boundaries.  Figure 2-4 illustrates the cause of this difference.  Assuming the same index, segmentation 

threshold, and statistic are applied, an exterior boundary will be displaced one pixel outward from an 

interior boundary.  In this case, a displacement of one pixel outward for the exterior boundary will likely 

extract pixels of a higher elevation than would be extracted for the interior boundary.  For an exterior 

boundary and an interior boundary to accurately calculate water surface height, an exterior boundary 
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requires a smaller water surface area to extract the same set of pixels as the interior boundary.  Therefore, 

the peak performance of an exterior boundary would be shifted to slightly higher segmentation threshold 

than an interior boundary.  The segmentation threshold with the best accuracy for combination boundaries 

typically falls between the best segmentation thresholds for interior and exterior boundaries.  As 

mentioned, one implication of this relationship is that when both boundary types are at the same surface 

elevation, the interior boundary will therefore provide a larger surface area and a larger lake volume than 

the exterior boundary, while again, the combination boundary type results would fall in the middle. 

Figure 2-5 also reveals an interesting relationship between segmentation threshold and statistic 

types.  Of the three central tendency statistics, mean is the most susceptible to outlier influence followed 

by median. Due to varying topography around the reservoir, elevation values captured by the water 

boundary are sure to include values signficantly above or below the actual water surface.  Mode, on the 

other hand, assesses central tendency by determining the most frequently occuring value within the 

boundary.  In this study, while not necessarily accurate overall, mode statistics often produce a 

signifcantly wider RMSE curve than mean or median.  Mode is able to better leverage the common pixels 

within the water boundary at each segmentation threshold increment (.01) to a much greater degree than 

mean or median resulting in a greater range of acceptable segmentation thresholds that can be used to 

estimate water surface elevation.  However, one caveat of this comes into play when attempting to 

calculate surface area and volume.  For example, using mode, the estimated surface elevation may be 

very similar using a segmentation threshold of 0.05 or 0.15. However, the 0.05 segmentation threshold 

still means a greater number of pixels were identified as water when compared to the 0.15 segmentation 

threshold which would result in a larger surface area and volume in spite of similar surface elevation.  

Another potential caveat of using mode statistics could arise when using higher resolution 

bathymetry/DEMs.  With sufficient elevation measurement precision fewer values would repeat 

potentially leading to less stable mode estimates.   
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Additionally, it should be noted that this method may be ill-suited for canyon-filled lakes or 

reservoirs. If the topography near the shoreline is sufficiently steep then the water surface elevation can 

diverge signficantly from the land elevation above or below water if the DEM/bathymetry does not 

possess a high enough spatial resolution since this technique does not directly measure the water level 

itself (such as is done with an altimeter), but rather it assesses the elevation of the shoreline (above or 

below the water).   

2.6.3 Water Index Performance 

Table 2-5, Table 2-6, and Figure 2-5 each highlight a disparity in water index performance across 

the range of tested parameter combinations.  As mentioned, the combined indices, NDWI + MNDWI (B1 

& B4) and NDWI + MNDWI(B2 & B5), had better accuracy across a wide range of segmentation 

thresholds in comparison to MNDWI, NDWI, AWEInsh, and AWEIsh.  The improved results of the 

combined NDWI and MNDWI indices may be due to increased separation between the water and non-

water classes within the image as noted by Acharya et al. (2017) and Lu et al. (2011) in their study of 

combined water indices. Conversely, the poor performance of AWEInsh and AWEIsh is likely due to a 

few factors.  In terms of this research, the primary cause could be a lack of the additional preprocessing 

and atmospheric corrections steps undertaken by Feyisha et al. (2014) to improve image quality and 

produce a stable segmentation threshold at or near 0.  In our study, AWEIsh and AWEInsh had the 

narrowest RMSE curves (Figure 2-5) and produced the fewest number of sub-meter surface elevation 

accuracies of any of the tested water indices.   Peak performance for AWEIsh occurred around -0.10 

segmentation threshold while AWEIsh generally improved in accuracy until an abrupt decrease in 

accuracy at +0.19 segmentation threshold.  In any case, the peak accuracy performance threshholds for 

the two AWEI algorithms are significantly different than the stable 0 threshold envisioned by Feyisha et 

al. (2014)  Further research is needed to determine whether or not the additional preprocessing procedures 

undertaken by Feyisha et al. would improve the results from the indices.  
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2.6.4 Identification of Water Body Interest 

A few potential methods to identify the main water body of Lake McConaughy were examined.  

In addition to the vector intersect method ultimately used in this study, the cumulative cost (or cost 

distance) method, was also tested and found to be a functional, capable method.  The cumulative cost 

method within GEE does require some prior knowledge about the max dimensions of the area being 

investigated as it requires a maximum distance parameter to perform the calculation.  If the max distance 

parameter is set too small, the analysis would stop short of capturing the entire water body.  Also, if the 

water body were of sufficient size, using a large max distance could result in memory errors (Gorelick et 

al., 2016).  

The vector intersect method used in this project is a multi-step process where all of the water 

bodies within the study area are vectorized.  Like the cumulative cost method, the vectorization process 

can be memory intensive so one potential issue with this method could stem from particularly large water 

bodies with sufficiently complex shorelines.   

2.6.5 Water Volume Change 

The water volume change calculated using our method agrees well with using the pyramidal 

frustum equation.  Despite identical error statistics, our method estimates a maximum volume change of 

1.568 km3 between the maximum and minimum water levels during the study period compared to a 

pyramidal frustum volume change estimate of 1.541 km3 and an actual volume change of 1.659 km3.  The 

decreased accuracy of the pyramidal frustum method may be due to the oversimplifaction of the lake 

bottom morphology assumed by the method (Hollister & Milstead, 2010).  Also, with an RMSE of 0.074 

km3 CI95% [0.064, 0.084], our method outperformed the the 0.6 km3 RMSE Crétaux et al. (2015) obtained 

with a combination of Landsat, MODIS, and altimetry , for a reservoir with overlapping water volume 

ranges with Lake McConaughy.  While some of the error differences between our method and that of 

Crétaux et al. (2015) may be attributable to differences in the lakes themselves, the Crétaux et al. method 

is also subject to error due to the surface area measurements used to construct the surface area/elevation 
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relationship (coarse MODIS spatial resolution), temporal misalignment of altimeter measurements and 

surface area measurements  from Landsat imagery (passovers occurred on different days), and/or the 

varying accuracy of the multiple altimeters used in the study.  In our study, volume estimation has a 

MAPE of 4.856% which is greater than the MAPE of either surface area (3.095%) or surface elevation 

(0.061%) indicating error propogation throughout the calculations.  Increased accuracy for either surface 

elevation or surface area should improve the accuracies on water volume and water volume change.   

2.6.6 Surface Area to Elevation Relationships 

A common method for estimating water surface elevation using optical or SAR imagery is through 

the use of surface area to elevation relationships developed using the underlying bathymetry.  In this 

scenario, using regression equations developed from the bathymetry, elevation can be estimated using 

surface area.  The results of this analysis indicate that our method using water boundaries outperforms 

surface area to elevation relationships (0.768 meters CI95% [0.657, 0.885] for our method versus 0.824m 

RMSE CI95% [0.706, 0.934] for surface area to elevation relationships).  We expect that this is the result 

of using many values (thousands of shoreline elevation values) compared to a single surface area value 

for estimation.  Over long periods of time, erosional and depositional processes may change the 

underlying bathymetry and cause areas of the lake to expand (increased surface area) or contract 

(decreased surface area).  This change is then captured in the remote sensing imagery, but is not 

accounted for in the bathymetry unless additional surveys are conducted.  In this scenario, areas of change 

have a lower impact on the elevation estimate using shoreline boundaries as they are buoyed by the 

remaining lake shore compared to surface area to elevation relationships where the lost surface area will 

immediate result in lower elevation and volume estimates.   

2.6.7 Time Series Implications 

Over the course of the study period, two key patterns are visible in Figure 2-6.  First, each year there 

is a drawdown of the reservoir levels over the course of the summer.  The annual summer drawdown 

occurs because Lake McConaughy was built for irrigation and the CNPPID is required to release water to 
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irrigators upon request regardless of other recreational or environmental needs (Commission, n.d.). In 

terms of the summer drawdown, Figure 2-6 reveals some biases in the optimal segmentation threshold 

results in comparison to the measured ground-truth data.  In the first low period (1989-1994), surface 

elevation, surface area, and volume are overestimated early in the year before, generally, becoming more 

accurate in later months.  This bias pattern then again repeats itself at the beginning of the second, larger 

prolonged low period (2000-2009) before the bias pattern reverses once the reservoir reservoir falls to 

lower levels (2003-2008).  These biases, as well as some of the error at the highest water levels, likely 

occur because a single segmentation threshold is being used for the entire analysis period.  At high levels, 

the mixed pixels along the shoreline consist of shoreline and emergent vegetation which interfere with 

water classification.  At low lake levels, the spectral properties of the shoreline change in response to 

increasing beach area and changing water quality conditions.  In essence, the selected model performs 

better at some water levels than others due to changing spectral properties related to the surrounding non-

water landcover types.  Future research, which will include dynamic thresholding and other strategies, 

should address this issue.  As covered in the results, several other parameter combinations also performed 

well with nine combinations exceeding 0.80m RMSE and a total of 803 combinations better than 1.0m 

RMSE.  The total number of combinations with sub-meter performance illustrates some flexibility in the 

model selection.  However, it is important to acknowledge that each parameter combination has specific 

water levels in which the model is most accurate and that other water levels will exhibit some bias by 

either overestimating or underestimating water surface elevation.  The strong performance of multiple 

models and segmentation thresholds further indicates the gains that could be achieved through dynamic 

thresholding techniques. 

Figure 2-6 also shows a second, long-term drawdown of Lake McConaughy as a result of extended 

drought periods which result in decreased inflows and increased irrigation requirements (Joeckel & 

Diffendal, 2004).  Similar to the annual drawdown, but on a larger scale, the long-term drawdown has a 

direct impact upon recreational activities and ecological habitat.   The number and location of available 

boat docks, as well as the lake’s carrying capacity of sportfish, change in response to lake water levels.  
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At the lowest levels, fish mortality is a serious concern as poorer water conditions and potential toxic 

blue-green algae blooms place increased physical stress on fish and other organisms (Commission, n.d.). 

2.7 Conclusions 

The methods developed in this chapter have shown great promise for studying long-term lake water 

dynamics. While the ability to accurately estimate water surface elevation relies upon water indices and 

selecting an appropriate segmentation threshold, the use of appropriate boundary types and statistical 

measures can increase the range of acceptable values considerably.  Regardless of water indice or 

boundary type, estimates were least sensitive to changes in segmentation threshold using the mode 

statistic, followed by median, and finally mean; however at optimal segmentation threholds mean and 

median provide significantly better accuracy.  NDWI + MNDWI (B1 & B4) had the highest accuracy of 

the tested indices with 10 combinations having a RMSE better than 0.80 meter.  Overall, 803 of the tested 

parameter combinations produced RMSEs within 1.0 meter of in-situ gauge measurements with the 

lowest RMSE being 0.768 meters CI95% [0.657, 0.885] produced from NDWI + MNDWI (B1 & B4) with 

a combination boundary, mean statistic, and 0.06 segmentation threshold.  In general, if applying this 

method to ungauged water bodies we would recommend either of the NDWI + MNDWI water indices 

along with either an interior or combination boundary and the mode statistic.  However, if ground-truth is 

available, we would recommend training the model on the available data to further optimize the selected 

model.   Although altimeters are capable of calculating surface elevation at the sub-decimeter level, this 

level of accuracy is generally reserved for significantly larger water bodies with favorable shape, area, 

and topography.  While reliant upon existing bathymetry, the proposed methods in this chapter would 

expand lake dynamic studies to additional lakes for which bathymetry exists but altimeter observations 

are unavailable.  In the state of Kansas, for example, bathymetric surveys have been conducted for 

approximately 80 lakes and reservoirs, yet relatively few of these lakes are suitable to altimeter based 

studies (“Kansas Lakes and Reservoirs,” 2016).  The method could also be used for independent 

verification of new sensors and missions studying inland water dynamics.  Furthermore, this method 
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modestly outperformed surface area to elevation relationships with our method producing accuracies as 

high as 0.768 meters CI95% [0.657, 0.885] compared to a high accuracy of  0.824m RMSE CI95% [0.706, 

0.934] for surface area to elevation relationships.   

Additionally, our study successfully revealed the seasonal patterns of Lake McConaughy (highest 

level in the Spring and lowest in the late Fall in response to irrigation water diversions during the 

Summer), as well as recognized the moderate long-term trend present over the 25 year time period (R-

squared = 0.547 for lake surface elevation) which has major implications for not only agriculture in the 

surrounding area but also recreational activities, fish habitat, and water quality within the lake itself.    All 

in all, the results of lake surface elevation, surface area, and volume were in excellent agreement with 

ground-truth values.   

 While the methods showed promise in tracking long-term lake dynamics, it is expected that 

higher resolution imagery, DEMs, and bathymetry would increase the accuracy of our method as well as 

improve the ability to calculate volume change between time periods.  One potential source of error in 

this particular analysis likely occurs along the interface between the SRTM DEM and bathymetry data 

due to the bathymetry being collected at a lower lake surface elevation than was present during the SRTM 

mission.  Additionally, improved cloud filtering techniques would also boost the final analysis and 

dynamic segmentation thresholding techniques could improve accuracy across various surface elevation 

zones.  Finally, this study also assumes a static reservoir bottom for volume calculations.  In reality, this 

reservoir, like many around the world, has been in-filling with sediment over the entirety of its life.    

 Future research will focus upon improving DEM/bathymetry merging techniques, more robust 

cloud filtering techniques including FMask (available in the Landsat QA bands), methods of estimating 

sediment in-filling, as well as utilizing higher-resolution and/or temporal resolution imagery products to 

increase the number of available observations and estimation accuracy.  Overall, the long-term 

monitoring of water dynamics has the potential to improve water resource management as well as 
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increase our understanding of temporal changes in water quantity distribution and its impacts upon water-

dependent phenomena.     

2.8 Figures and Tables 

 
Figure 2-1: Lake McConaughy and its location in the state of Nebraska along with orbital paths of altimetry missions commonly 
used for inland water surface elevation monitoring within the vicinity of the reservoir.  Of the available sensors, only RA-2 
(orange color) onboard Envisat routinely crosses the main body of the reservoir but contains significant noise.  The background 
image is a natural-color USGS Landsat 5 TM Collection 1 Tier 1 Raw Scene from September 2nd, 2001.   
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Figure 2-2: SRTM DEM (left) and bathymetry merged with SRTM DEM (right). 

 
Figure 2-3: An example of binary water index image.  The top image is before the vector intersect approach has been applied 
and includes all water bodies within the study area.   
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Figure 2-4: Three potential types of lake water boundaries are possible with a binary water image: interior, exterior, and 
combination.  Water boundaries were identified using a one pixel radius square kernel to erode and/or dilate the water areas 
using morphological operations.  Considering the water body as a whole, each of the water boundary types has a different focus 
and therefore uses different elevation values from the underlying DEM when estimating water surface elevation.  Interior 
boundaries use submerged water pixels along the shoreline, exterior boundaries use land pixels along the shoreline,  and 
combination boundaries use both land and water pixels.  For a given image, interior boundaries will produce the lowest water 
surface elevation estimate and exterior boundaries will produce the highest estimate.  Combination boundary water surface 
elevation estimates will fall between those of interior and exterior boundaries. 

 



32 
 

 
 



33 
 

 
 

 

Figure 2-5: RMSE (Root-Mean-Square-Error) curves by water index types. (a) Normalized Difference Water Index (NDWI); (b) 
Modified Normalized Difference Water Index (MNDWI); (c) Automatic Water Extraction Index – no shadow (AWEInsh); (d) 
Automatic Water Extraction Index – shadow (AWEIsh); (e) NDWI + MNDWI (B1 & B4); (f) NDWI + MNDWI (B2 & B5).         
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Figure 2-6: Lake water surface elevation, surface area, and volume over time. (a) Surface elevation; (b) Surface area; (c) Water 
volume.   

 
Figure 2-7: (a) Reservoir maximum, minimum, median summer surface elevations and lake depth along a centralized line 
bisecting the reservoir longitudinally.  It shows the vast change in water quantity between the maximum and minimum reservoir 
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levels. Note that the y-axis is not in the same scale as the x-axis;  False-color infrared composites of peak reservoir level in June, 
1986 (b) and minimum reservoir level in September, 2006 (c).  The western end of the reservoir retreated nearly 14.5 kilometers 
during that time span. 

 

 
Figure 2-8: Surface cover frequency of Lake McConaughy during the entire study period from 1985-2009.  Blue regions indicate 
areas where water was always or almost always detected.  Red regions are areas where water was detected as little as one time.   
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Table 2-1: Band designations and additional information for the Landsat 5 Thematic Mapper.   

Mission Landsat 5 
Sensor Thematic Mapper 

GEE Date Range 03/16/1984 - 05/05/2012 
Band 1 Blue (30m) 0.45 - 0.52 µm 
Band 2 Green (30m) 0.52 - 0.60 µm 
Band 3 Red (30m) 0.63 - 0.69 µm 
Band 4 Near Infrared (30m) 0.76 - 0.90 µm 
Band 5 Shortwave Infrared 1 (30m) 1.55 - 1.75 µm 
Band 6 Thermal Infrared (60m) 10.40 - 12.50 µm 
Band 7 Shortwave Infrared 2 (30m) 2.08 - 2.35 µm 

Radiometric Resolution 8 bit (256 levels) 
Revisit Period 16 days 

 

Table 2-2: Water index formulas using Landsat 5 Thematic Mapper bandwidths. 

Water Indices 

Water Index Name Abbreviation Formula 

Normalized Difference Water Index NDWI (B2 - B4) / (B2 + B4) 

Modified Normalized Difference Water Index MNDWI (B2 - B5) / (B2 + B5) 

Automated Water Extraction Index - No Shadow AWEInsh 4 x (B2 - B5) - (0.25 x B4 + 2.75 x B7) 

Automated Water Extraction Index - Shadow AWEIsh B1 + 2.5 x B2 - 1.5 x (B4 + B5) - 0.25 x B7 

   
Water Index Combinations 

Combination Formula 

NDWI + MNDWI (B1 & B4) ((B2-B4) / (B2 + B4)) + ((B1 - B4) / (B1 + B4)) 

NDWI + MNDWI (B2 & B5)  ((B2-B4) / (B2 + B4)) + ((B2 - B5) / (B2 + B5)) 
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Table 2-3: Statistical formulas used to assess lake dynamic estimate accuracy.  

Equation Formula 

Root-mean-squared-error (RMSE) 

 

Mean absolute error (MAE) 
 

Mean bias error (MBE) 
 

Mean absolute percentage error (MAPE) 
 

 

Table 2-4: All parameters and values tested. 

 
Name Number of Values  

Values 

Water Indices 6 NDWI, MNDWI, AWEInsh, AWEIsh, NDWI+MNDWI (B1 & B4), 
NDWI+MNDWI (B2 & B5) 

Segmentation 
Thresholds 111 -0.35 to 0.75 with an increment of 0.01  

Boundary Types 3 Interior, Exterior, Combination 

Statistical Types 3 Mode, Median, Mean 

 

Table 2-5: The number of combinations by water index types which exceed selected water surface elevation RMSEs.  NDWI + 
MNDWI (B1 & B4), for example, had 245 combinations (24.5%) with RMSEs better (lower) than 1.0 meters and 10 
combinations (1.0%) better than 0.8 meters.    

  
Less Than 1.25 

 
Less Than 1.0 

 
Less Than 0.9 

 
Less Than 0.8 

Total Tested 
Combinations 

NDWI 212 21.2% 102 10.2% 29 2.9% 0 0.0% 999 

MNDWI 228 22.8 128 12.8% 17 1.7% 0 0.0% 999 

AWEInsh 10 1.0% 3 0.3% 0 0.0% 0 0.0% 999 

AWEIsh 136 13.6% 51 5.1% 4 0.0% 0 0.0% 999 

NDWI + MNDWI (B1 & B4) 481 48.1% 245 24.5% 86 8.6% 10 1.0% 999 

NDWI + MNDWI (B2 & B5) 488 48.8% 274 27.4% 35 3.5% 0 0.0% 999 

Totals 1,555 25.9% 803 13.4% 171 2.9% 10 0.2% 5,994 
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Table 2-6: Number of analyses with RMSEs less than 1.0 meter (water surface elevation).  Table is broken down by water index 
types and boundary / statistics types.  Of the tested parameter combinations, interior and combination boundaries outperformed 
exterior boundary in terms of water surface elevation accuracy.  

  Combination Interior Exterior 

  Mode Median Mean Mode Median Mean Mode Median Mean 

NDWI 19 17 12 23 14 7 11 12 0 

MNDWI 28 16 5 38 18 3 17 4 0 

AWEInsh 0 0 0 1 0 0 0 0 0 

AWEIsh 8 8 6 14 15 9 2 0 0 

NDWI + MNDWI (B1 & B4) 39 39 32 48 31 18 20 32 5 

NDWI + MNDWI (B2 & B5) 55 31 21 70 39 24 37 15 0 

Subtotals 149 111 76 194 117 61 87 63 5 

Total by Boundary 336 372 155 
 

Table 2-7: Accuracy statistics for water surface elevation, surface area, volume, and volume change using Landsat 5 image 
composites and merged bathymetry/SRTM data.  Also, error statistics for water volume change estimated the pyramidal frustum 
method are also included for comparison. 

Metric Root Mean 
Square Error 

Mean Absolute  
Error Mean Bias Error Mean Absolute  

Percentage Error 

Surface Elevation (m) 
0.768 0.601 -0.071 0.06% 

CI95% [0.657, 0.885] CI95% [0.513, 0.698] CI95% [-0.223, 0.073] CI95% [0.052, 0.071] 

Surface Area (km2) 
3.527 2.744 -0.009 3.10% 

CI95% [3.000, 4.085] CI95% [2.333, 3.198] CI95% [-0.709, 0.710] CI95% [2.584, 3.667] 

Volume (km3) 
0.069 0.055 -0.012 4.86% 

CI95% [0.060, 0.077] CI95% [0.047, 0.063] CI95% [-0.026, 0.002] CI95% [3.922, 5.876] 

Volume Change (km3) 
0.074 0.058 0.00 - 

CI95% [0.064, 0.084] CI95% [0.050, 0.067] CI95% [-0.014, 0.015] - 
          

Volume Change (km3) 
Pyramidal Frustum 

0.074 0.059 0.00 - 

CI95% [0.065, 0.084] CI95% [0.050, 0.068] CI95% [-0.014, 0.015] - 
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3 Maximizing Multi-Decadal Water Surface Elevation 
Estimates with Landsat Imagery and Elevation/Bathymetry 
Datasets 

3.1 Abstract 

Identifying patterns and trends in long-term lake dynamics is essential to establish effective water 

management procedures and boost our understanding of inland water’s role in the global water cycle.  

This research leverages Google Earth Engine to estimate multi-decadal water surface elevations for 52 

lakes and reservoirs with varying physical properties (shape, size, origin, ecoregion, underlying geology, 

and management practices).  Water surface elevation was estimated using the entire Landsat 4, 5, 7, and 8 

Landsat Top-of-Atmosphere Tier-1 Collection-1 archive from August 1982 through December 2017 via 

shoreline boundary statistics extracted from the National Elevation Dataset merged with lake bathymetry.  

Using the Pixel Quality Assessment (QA) band, image contamination (cloud, shadow, snow, ice, sensor 

error, etc.) was identified and removed to provide data returns for images with varying levels of image 

contamination.  To improve accuracy, data filtering techniques were identified which retained over 70% 

of images with detectable water boundaries producing 26 lakes with sub-meter root-mean-square-error 

accuracy and 40 lakes with sub-meter mean-absolute-error-accuracy using a generalize overall parameter 

model.  Additionally, lake-specific locally optimized models were also determined with 45 of the 52 lakes 

producing sub-meter root-mean-square-error accuracies and 49 with sub-meter mean-absolute-errors with 

individual lake accuracy as low as 0.191m RMSE CI95%[0.129, 0.243].  In general, individual lake 

accuracy is highly correlated with mean slope of surrounding terrain with low-slope shorelines having 

greater accuracy than high-slope shorelines.  Seasonal patterns in estimate accuracy were also identified.  

This research extends our ability to track lake dynamics over long time periods to lakes lacking traditional 

in-situ monitoring, enables rapid assessment of lake dynamics across large areas,  and balances a need for 

both high-accuracy measurements and maximum temporal resolution.  
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3.2 Introduction 

Over the last few decades, inland surface waters have been increasingly recognized as critically 

important to global climate, biodiversity, and security (Vörösmarty et al., 2010).  Historically, our 

primary source of water surface elevations has been in-situ hydrological gauge station networks installed 

at individual lake and reservoir sites.  Unfortunately, due to costs and logistics, in-situ monitoring stations 

are only available for a small subset of lakes globally and suffer greatly from uneven spatial and temporal 

distribution.   

Remote sensing has long been used to supplement in-situ networks by providing measurements 

of water surface area via single-band thresholds, water indices, tasseled cap wetness, supervised and 

unsupervised classifications, and other strategies (Crist, 1985; Feyisa et al., 2014; McFeeters, 1996; 

Rokni, Ahmad, Selamat, & Hazini, 2014; Zhou et al., 2017).  Using these techniques, numerous studies 

have used optical sensors, like Landsat Thematic Mapper and MODIS (Moderate Resolution Imaging 

Spectroradiometer), to assess long-term water surface area changes including Tulbure and Broich (2013), 

Tulbure et al. (2016), and Kang and Hong (2016).  In 2016, Pekel et al. published the Global Water 

Surface Explorer, developed using Google Earth Engine (Gorelick et al., 2016), which analyzed multi-

decadal Landsat imagery and provided the largest, most complete view of global surface waters, water 

surface areas, occurrence, and coverage trends to date.   

 While insightful, water surface area is a two-dimensional measurement.  To better our 

understanding of inland water dynamics, three-dimensional measurements (volume and volume change) 

are needed.  Achieving three-dimensional surface water measurements is dependent upon having accurate 

water surface elevations which can then be combined with either water surface area measurements or 

hypsometric curves (volume/area/elevation relationships) to estimate water volume and/or volume 

change.  Using remote sensing, several methods of measuring water surface elevation have been 

developed.  The primary method utilizes satellite altimeters (non-imaging, profiling instruments) which 



42 
 

 
 

measure the response time of radar/lidar signals reflected off the water’s surface to estimate water surface 

elevation.  While capable of high accuracy (3 – 10 cm) in ideal conditions (Asadzadeh Jarihani, Callow, 

Johansen, & Gouweleeuw, 2013b; J F Crétaux et al., 2016), the current fleet of altimeters were primarily 

designed for ocean and cryosphere monitoring and typically have wide ground-track spacings and poor 

spatial resolution which limit their ability to monitor small to medium sized water bodies (Solander et al., 

2016).  In fact, of the 52 lakes used in this study, only 28 receive direct flyovers from satellite altimeters 

(excluding altimeters with long-return periods allowing denser orbital paths like CryoSat) with most 

being less than 1 mile in length and potentially containing significant land contamination (“Pass locator: 

Aviso+,” n.d.).   Significant works blending optical imagery surface area measurements and satellite 

altimetry elevations include, but are not limited to, the works of Alsdorf et al. (2007), Crétaux and Birkett 

(2006), Duan and Bastiaanssen (2013), and Crétaux et al. (2016).  Recently, Busker et al. (2019) 

combined the satellite altimetry dataset DAHITI (Database for Hydrological Time Series over Inland 

Waters) (Schwatke, Dettmering, Bosch, & Seitz, 2015) with Global Surface Water Explorer (Pekel, 

Cottam, Gorelick, & Belward, 2016) monthly water surface area measurements to assess water volume 

change for 137 global reservoirs. 

 In addition to satellite altimetry, water surface elevation, total water volume, and volume change 

have also been commonly measured using optical remote sensing imagery based on area/elevation 

relationships derived from topographic and/or bathymetric datasets (Avisse et al., 2017; Zhang et al., 

2016).  Like in-situ hydrological stations, bathymetric data is only available for a small subset of lakes 

and reservoirs globally.  Some studies have attempted to estimate water surface elevation and/or volume 

by simulating bathymetry using data from surrounding and/or regional terrain (Tseng et al., 2016; van 

Bemmelen, Mann, de Ridder, Rutten, & van de Giesen, 2016), but these methods have several 

uncertainties limiting scalability such as site limitations in estimating slope from surrounding terrain or 

availability of similar watersheds for virtual dam placement.  However, in recent years, several 

governments have initiated large bathymetric survey campaigns to better understand and address growing 
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reservoir sedimentation concerns which threaten regional water supplies (Kress et al., 2005; Mcalister, 

Fox, Wilcox, & Srinivasan, 2013; Rahmani et al., 2018).  While not available on a global scale, these 

bathymetric surveys can be used to improve our understanding of climate and seasonal scale water 

dynamics at the local and regional level. 

The Landsat mission, including the satellites and multi-spectral instruments from Landsat 4, 5, 7, 

and 8, represents the longest, continuous remote sensing monitoring dataset and is ideally suited for this 

analysis (Wulder et al., 2016).  Despite possessing a modest 16-day revisit period, overlap along scene 

edges will provide additional measurements for several water bodies, and the 30-m spatial resolution will 

enable observation of smaller water bodies with greater accuracy than possible with other sensors 

featuring better temporal resolution but decreased spatial resolution, like MODIS (Keys & Scott, 2018; 

Moradi et al., 2014).  Furthermore, while many remote sensing studies have avoided using contaminated 

imagery (cloud, cloud shadow, snow, ice, sensor failure, etc.) careful analysis of image contamination can 

retain and maximize useful data (Zhao & Gao, 2018). 

 Most previous research on estimating water surface elevation uses the area/elevation 

relationships. This approach, however, depends on clear or composite imagery for water surface area 

estimate, which severely limits its temporal resolution. Expanding upon the earlier work of Weekley and 

Li (2019) and leveraging Google Earth Engine (Gorelick et al., 2016), we have developed a method of 

estimating water surface elevation by detecting water shoreline boundaries which are then used to extract 

elevation values from an underlying digital elevation model merged with bathymetric survey data. While 

previous studies have avoided using contaminated imagery (cloud, cloud shadow, snow, ice, sensor 

failure, etc.), our method uses pixel quality to identify and remove image contamination and other 

artifacts from the detected water shoreline boundary to enable water surface elevation estimation from 

images with varying levels of contamination.  Using the method, we analyzed the complete Landsat 4, 

5, 7, and 8 Top-of-Atmosphere Tier-1 Collection-1 archives for 52 lakes and reservoirs throughout the 

Western and Midwestern United States from August 1982 through December 2017.  Water surface 
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elevation estimate accuracy was assessed for lakes and reservoirs with wide ranging sizes, shapes, 

climates, environments, and geologies.  Given bathymetric data availability, the method used in this study 

is rapidly deployable and scalable within Google Earth Engine, can be used on lakes with and without 

existing in-situ elevation data, offers high-accuracy elevation estimates, and provides valuable insights 

into multi-decadal lake dynamics with high temporal resolution.  

3.3 Study Area and Data 

Fifty-two lakes and reservoirs spread throughout the Western and Midwestern United States were 

selected to ensure a wide range of shapes, sizes, geologic origins, management practices, and climate 

zones (Figure 3-1). 

Four primary types of data were used in this analysis; Landsat Collection 1 Tier 1 TOA imagery, 

National Elevation Dataset digital elevation models, lake/reservoir bathymetric contours, and in-situ 

gauge stations.  The Global Surface Water Explorer (Pekel et al., 2016) was used as a supplementary 

dataset to aid in lake seed siting and assessing localized image contamination (the amount of image 

contamination within 500 meters of the median lake extent).  

Table 3-1 summarizes the sensor bands, resolutions, and other characteristics for each Landsat 

mission included in this study.  The complete Collection 1 Tier 1 TOA (Top-of-Atmosphere) archive 

from August 1982 through December 2017 for Landsat 4, 5, 7, and 8 was included in the study. Tier 1 

Landsat scenes have the highest available data quality with Level-1 Precision and Terrain (L1TP) 

correction, well-characterized radiometry, and inter-calibration across the various Landsat sensors making 

the collections well-suited for time series analysis (Wulder et al., 2016).  In addition to each sensor band, 

Level-1 Landsat products also include a Quality Assessment (QA) (USGS, 2018b, 2019) band which 

provides per-pixel bit values useful for identifying surface, atmospheric, and sensor conditions which 

could impact image analysis such as cloud cover, snow/ice, shadow, dropped pixels, and radiometric 

saturation (USGS EROS, 2017).  Surface reflectance is also available for Landsat; however, the USGS 
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reports that algorithms currently used to produce surface reflectance have not been optimized to work 

over surface water (“Landsat Surface Reflectance,” n.d.). 

As shown in Table 3-1, Landsat 8 differs from the earlier missions in several respects.  First, 

Landsat 8 has several additional bands as well as different band designations.  For Landsat 8, Band 1 is an 

ultra-blue band to detect coastal aerosols while Band 2 is a blue band like Band 1 on the earlier missions.  

Additionally, the radiometric resolution of Landsat 8 is 16-bit providing greater quantization and bit 

depth to the images (USGS, 2019).  All in all, despite the band and radiometric resolution differences the 

same general processing procedure was used for each sensor.   

Two types of elevation data were used in this research. First, the National Elevation Dataset 

(NED), now a part of the 3D Elevation Program (3DEP), is a 1/3 arc-second (approximately 10 meters 

north/south) seamless DEM with full coverage of the lower 48 states and was used to represent 

surrounding topography elevations for each water body (Archuleta et al., 2017).  The second elevation 

data source was lake bathymetric contours.  Bathymetric surveys were obtained from each of the 

following agencies or organizations; The United States Bureau of Reclamation (USBOR), the Texas 

Water Development Board (TWDB), the Kansas Biological Survey (KBS) in conjunction with the Kansas 

Water Office (KWO) , and the Minnesota Department of Natural Resources (MNDR) (“Kansas Lakes 

and Reservoirs,” 2016; “Lakes Data for Minnesota,” n.d.; “Technical Service Center | Reservoir 

Surveys,” n.d.; “Texas Water Development Board,” n.d.).   

Unlike the bathymetric surveys from the USBOR, KBS, and TWDB, the survey data provided by 

MDNR lacked the reference elevation of the water’s surface at the time of acquisition and instead only 

reported contour depth.  Fortunately, the edges of the hydro-flattened surfaces in NED were often close 

enough to the outer contour line to approximate a surface elevation which allowed the lakes to be 

included despite lacking this critical piece of information.  

In-situ gauge station data were obtained from multiple sources including the United States 

Geological Survey (USGS), the MNDR, and the California Department of Water Resources (CDWR) 

(“California Data Exchange Center,” n.d.; “Lakes Data for Minnesota,” n.d.; “USGS Lakes and 
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Reservoirs,” n.d.).   Like the bathymetric surveys, gauge data were also reported in a variety of vertical 

datums.  Both the in-situ gauge data and bathymetry data were adjusted to NAVD88 as needed 

(“VERTCON,” n.d.).  Table 3-2 provides additional information regarding each bathymetric survey and 

vertical datum adjustments. 

3.4 Methods 

The objective of this research is to obtain water surface elevation estimates from as many Landsat 

images as possible while maintaining high accuracy.  To do this, a multi-step process was developed to 

eliminate image contamination from the water shorelines allowing underlying elevation values to be 

extracted from merged bathymetry/topography and compiled into a single water surface elevation 

estimate. 

3.4.1 Digital Elevation Model and Bathymetry Merger 

The NED, like most DEMs and for most water bodies, is limited to a hydro-flattened surface 

approximately representing the water surface level at the time of the DEM data acquisition.  Additionally, 

many lakes and reservoirs have fluctuating water levels making the hydro-flattened surface insufficient 

for tracking long-term lake dynamics as the DEM cannot be directly used for water surface elevation 

estimates when water levels fall below the hydro-flattened elevation level (Avisse et al., 2017; Zhang et 

al., 2016).  To deal with this issue and establish a full elevation profile for each lake, the NED and 

bathymetric surveys were merged into a single DEM for each lake.  Despite differences in water level 

between the DEM hydro-flattened water surface and the bathymetry survey surface contour for each lake, 

which could result in gaps or overlaps in the two datasets, the basic merging process remained the same.  

First, hydro-flattened lake surfaces were masked and removed from the NED.  The unmasked NED raster 

was then converted into point features (each pixel is a point) and then merged with the bathymetry 

contours using the Topo to Raster tool in ArcGIS.  Adjustments to this procedure were made on a lake by 

lake basis to ensure a clean merger.  For consistency, in areas of raster point and bathymetric contour 
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overlap, priority was given to the bathymetric contours as this yielded a cleaner land/water interface in 

the resulting DEM.  It should also be noted that in many cases the vertical datum of the NED and the 

bathymetric survey data are different.  While the NED uses the North American Vertical Datum of 1988 

(NAVD88), many of the bathymetric surveys used either NGVD29 (National Geodetic Vertical Datum of 

1929) or a local, site-specific vertical datum.  Surveys using NGVD29 were adjusted to match NAVD88 

using VERTCON (“VERTCON,” n.d.). Other lakes required custom adjustments based upon reported 

datum differences within the bathymetric survey documents. 

3.4.2 Water Surface Elevation Estimation 

To estimate water surface elevation, the methodological procedure in Figure 3-2 was applied to 

every image in the Landsat stack intersecting the target lake.  In short, an image is first selected from the 

stack, a water index is applied, the water index image is segmented into water/non-water regions, water 

areas are vectorized and then filtered using a multi-point or linear seed (representing the permanent water 

body) to eliminate disconnected water bodies from the targeted lake body, and the targeted water body is 

then converted back into a raster.  Once the targeted water body has been isolated, the shoreline boundary 

is identified using kernel morphological operations (dilation and/or erosion) which is then used to mask 

the merged DEM/bathymetry data leaving a “ring” of elevation values corresponding to the shoreline 

(Weekley & Li, 2019).     

Unfortunately, image contamination, such as clouds, ice/snow, pixel drop-out, shadow, Scan Line 

Corrector failure, and other contamination/noise sources interfere not only with water detection but also 

shoreline detection.  To alleviate this issue, an additional round of kernel dilation is needed prior to the 

DEM/bathymetry mask.  In this case, the contaminated regions are identified, dilated, and used as a mask 

to remove erroneous shorelines adjacent to contaminated areas (Figure 3). 

Once contaminated sections of the shoreline have been removed, statistical measures of central 

tendency (mean, median, and mode) were calculated using the remaining pixels to estimate water surface 

elevation.  Although not covered in detail within this chapter, from elevation it is a relatively simple 
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process to estimate surface area and volume for each lake using an elevation/surface area/volume 

relationship formula derived from the merged DEM and bathymetry.  The full process effectively 

estimates water surface elevation, surface area, and volume despite image contamination which would 

otherwise hinder their measurements.  

3.4.3 Water Detection and Shoreline Extraction 

As discussed in the introduction, water detection has a long history in remote sensing.  Some 

methods, such as supervised image classification, require extensive field observations to train and test the 

classification while others, such as those involving decision trees, require rules which can be difficult to 

develop and may not be universally applicable to all data types (Huang, Chen, Zhang, & Wu, 2018).  In 

comparison to these techniques, water indices, which are calculated from two or more bands based on the 

spectral characteristics of water and non-water targets, are computationally efficient which makes them 

ideal for time-series analysis if a suitable segmentation threshold can be identified.  This research 

analyzes several common water indices including Normalized Difference Water Index (NDWI) 

(McFeeters, 1996), Modified Normalized Difference Water Index (MNDWI) (Xu, 2006), Automated 

Water Extraction Index (AWEIsh and AWEInsh) (Feyisa et al., 2014) and two combined indices formed 

from NDWI + MNDWI (Blue Band & B4) and NDWI + MNDWI (B2 & B5). 

The accuracy of water indices is highly dependent upon selecting an optimum segmentation 

threshold which can be a difficult process.  Multiple factors impact water identification including 

atmospheric conditions, water color (sediment load, dissolved organics, depth to bottom, etc.), time of 

day, and land cover composition.  These impacts are amplified in time-series analysis where conditions 

may change over time due to cyclical or seasonal effects.  Two strategies were utilized in this research. 

First, a series of pre-set naïve segmentation thresholds ranging between -0.15 to +0.25 in increments of 

0.05 were used.  This strategy, naïve segmentation thresholding, treats long-term water surface elevation 

estimation like linear regression, where the goal is to minimize the error for the entire analysis rather than 

for a single point in time.  In other words, the best naïve threshold is the one that minimizes the error over 
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the length of study period and as such may perform well under certain lake conditions while performing 

sub-optimally as conditions change.  The second strategy utilizes Otsu’s method (Otsu, 1979) to 

dynamically threshold each image.  Otsu’s method is an adaptive image processing technique used to split 

an image or dataset into two classes based on the observed distribution of pixel values.  For this research, 

global Otsu thresholding was implemented for each lake by restricting the operation to within 500 meters 

of observed water extents in the Global Water Surface Explorer dataset (same polygons as used to 

estimate local percent impacted) (Pekel et al., 2016).  Otsu’s method assumes the two classes (water and 

non-water) have roughly the same number of pixels.  Uneven distribution in pixel values, due to limited 

water surface area in comparison to non-water, or significant image contamination can affect the 

threshold calculation.  To alleviate some of these issues, local Otsu thresholding was also implemented.  

Local Otsu thresholding is a multi-step procedure requiring an initial water detection step using a naïve 

threshold value to identify an approximate shoreline location which is then used to isolate and buffer the 

shoreline to restrict the Otsu calculations to a specific region in order to provide a more precise 

segmentation threshold.  Furthermore, image contamination sources such as clouds, shadows, snow, ice, 

etc. were masked from the water index image prior to application of both the global and local Otsu’s 

method so that the dynamic threshold value would be restricted to clean land and water pixels.  Without 

the image contamination masking step, Otsu’s method may inappropriately separate other image features 

such as clouds and cloud shadow instead of land and water.  Table 3-3 summarizes the water indices and 

thresholds used in the analysis.  

With the segmented binary water/non-water image, the target water body was then isolated within 

the image to ensure all subsequent processing steps are applied only to the target lake.  In GEE, three 

isolation techniques are available including region group, cumulative cost, and vector filtering. Since all 

three methods produce the same result, vector filtering was used in this research as it was easier to 

implement and scale within the analysis.  To do this, all water bodies within the water/non-water binary 

image are vectorized, then using a seed (a point, line, or polygon placed within the water body manually), 

the target water body is selected, and all other water bodies are discarded.  The target water body is then 
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converted back to a raster.  Once isolated, the shoreline is identified using kernel morphological 

operations (dilation and erosion).  Figure 3-4 illustrates the three boundary types used to estimate lake 

water surface elevation.   

As mentioned, one of the primary objectives of this chapter is to maximize the temporal 

resolution of the water surface elevation estimates.  Many images contain some form of image 

contamination or noise which has a direct effect on the accuracy and identification of water pixels and the 

water boundary.  Unmitigated, this contamination produces erroneous water boundaries which may cross 

non-boundary water or land pixels incorporating false elevations into the calculations.  To alleviate this 

issue, contaminated areas identified using the Pixel QA Band (USGS, 2018b, 2019) were dilated using 

kernel morphological operations and then used as an additional mask to remove unwanted areas from the 

water boundary (Figure 3-3).  

3.4.4 Lake Surface Area and Volume 

While not covered extensively in this chapter due to the primary focus upon estimating water 

surface elevations and their accuracies across a wide range of environments and conditions, water surface 

area and volume estimates can also be estimated for contaminated images via elevation/surface 

area/volume relationships constructed from the merged DEM/bathymetry models.  It should be noted, 

however, that this method could result in measurement errors for lakes that have significantly changed 

over time as the relationship would reflect the lake state at the time of the topographic and/or bathymetric 

survey.  One lake in this study that this phenomenon could affect is Tuttle Creek Reservoir in Kansas, 

USA which has lost significant portions of its northern reach due to sediment infilling (Denoyelles & 

Kastens, 2016; Rahmani et al., 2018).   

3.4.5 Contamination/Impacted Area 

The localized contamination for each image was determined using the maximum water extent 

within the Global Water Surface Water Explorer (Pekel et al., 2016) for each lake plus 500 meters.  All 

non-clear pixels (cloud, cloud shadow, ice, snow, etc.) as flagged in each image’s Pixel QA band were 
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considered contamination (USGS, 2018b, 2019).  Additionally, gaps resulting from the Scan-line 

Corrector failure onboard Landsat 7 after May 31st, 2003 as well as uncovered portions of the lake where 

the Landsat scene only covers a portion of the water body were also considered contamination/impacted 

area for the purposes of this study.  The percent impact for each image is the total 

contamination/impacted area divided by the maximum lake extent plus 500 meters.  For most water 

bodies in this study, the maximum water extent plus 500 meters could be used as-is, but a few water 

bodies sourced from larger rivers, which would be detectable in the Landsat imagery, required some 

manual cleanup to limit the inclusion of upstream, non-lake areas in the analysis. 

3.4.6 Lake Morphological Metrics 

Three additional lake morphological metrics were also calculated for analysis purposes: mean 

slope, median surface area, and median lake shape (surface area to perimeter ratio roughly approximating 

the shape as serpentine or spherical).  Like percent impacted, these three metrics are also calculated using 

the JRC Global Surface Water Explorer Mapping Layers (Pekel et al., 2016).  Median surface area and 

water extent were both determined using the Global Survey Water Explorer’s occurrence layer with 

values exceeding 50% occurrence.  Median lake shape was approximated using the ratio of median 

surface area to median lake shoreline perimeter, and, finally, mean slope was calculated from the NED 

using a 250 m buffered annulus around the median water occurrence extent in the Global Surface Water 

Explorer Mapping Layers. 

3.4.7 Model Selection and Validation 

Model selection was determined by comparing estimated lake surface elevations to in-situ lake 

elevation measurements using root-mean-squared-error (RMSE) and mean-absolute-error (MAE) 

calculated using bootstrap resampling (1,000 iterations).  For each lake (lake-specific locally optimized 

model) and all lakes (general models), the best model was determined using the lowest combined MAE 

and RMSE (ordinally ranked and summed).  Testing accuracy was evaluated using the out-of-bag 

samples in each bootstrap iteration.  Additionally, the total number of results was also considered in the 
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model selection process.  Only models generating lake surface elevation estimates for more than 25% of 

the intersecting images were considered (additional details in discussion).  

3.5 Results 

The highest overall accuracy for all 52 lakes together is 5.746m RMSE CI95%[5.208, 6.265] and 

1.810m MAE CI95%[1.739, 1.886] using NDWI, mode statistic, outside boundary, and localized Otsu 

dynamic thresholding (Table 3-4).  Using the overall best model, four lakes achieved sub-1m RMSE 

accuracy while 45 lakes total have RMSEs less than the overall 5.746m RMSE.  For MAE, 27 lakes 

achieved sub-1m MAE accuracy and 41 have MAEs lower than the overall 1.81m MAE.  The imbalance 

in the number of lakes with accuracy metrics lower than the overall accuracy indicates that most of the 

accuracy error comes from just a small number of lakes while the considerable difference between RMSE 

and MAE indicates large error variance.  The accuracy of each lake using the best overall general model 

is shown in Figure 3-5a.   

In addition to the best overall general model, given ground-truth data exist for a lake, lake-

specific locally optimized models can also be determined which deliver equal to or greater accuracy than 

the best overall general model.  Figure 3-5 shows that the best overall general model was also the best 

lake-specific locally optimized model for just one lake (Gibson Reservoir) and all other lake-specific 

models produced higher accuracies.  Overall, the lake-specific locally optimized accuracy was 4.327m 

RMSE CI95%[3.932, 4.742] and 1.172m MAE CI95%[1.126, 1.220] which is 1.419m RMSE better than 

the best overall general model.  Using this method, 25 lakes have sub-meter RMSE accuracies and 40 

lakes have sub-meter MAE accuracies.  While the accuracy gains in this approach are promising, the low 

overall RMSE accuracy (4.362m) relative to the number of lakes with sub-meter accuracies, as evidenced 

in Figure 3-5, indicates that much of the error is being driven by just a few lakes.  

To investigate potential reasons for increased estimate error within the small subset of lakes, as 

well as general error drivers overall, five potential error drivers were analyzed: mean slope within 250m 
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of the median shoreline, median surface area, median shape, mean percent impacted, and the total number 

of images used in the accuracy assessment process (the number of estimates with corresponding ground-

truth measurements) (Table 3-5).  Mean slope had the highest correlation with accuracy in all four cases 

(RMSE vs MAE and Best General Model vs Lake-Specific models) with r2 values ranging from 0.793 

CI95%[0.680, 0.899] to 0.892 CI95%[0.799, 0.948] indicating a very strong link between surface 

elevation estimate accuracy and the slope of the surrounding terrain.  The other four potential error 

drivers showed weak correlation to overall accuracy.   

Despite the weak correlation between image contamination (percent impacted) and median 

shoreline length to overall model accuracy at a lake by lake level, these two metrics could still 

significantly affect water surface elevation estimates on an image by image basis.  Image contamination 

restricts shoreline visibility effectively shortening the useable shoreline and reducing the number of 

elevation values available for water surface elevation estimates.  Figure 3-6A and B, which plot observed 

shoreline length against estimate error, shows increased error and greater uncertainty for short shorelines 

compared to longer shorelines.  For shorelines less than 7.5 km in length, the best general overall model 

accuracy approaches 10m RMSE (9.53 m RMSE) while the lake-specific models exceed 7.5m RMSE.  

While the bin widths used in this analysis were somewhat arbitrarily assigned and could be adjusted 

smaller or larger, Figure 3-6 indicates a substantial portion of the error in both the general overall model 

and the lake-specific models comes from images with significant local contamination which results in 

shorter observable shorelines. 

In addition to the link between shoreline length and estimate error, Figure 3-6 also reveals a 

second phenomenon impacting water surface elevation accuracy.   In the figure, numerous high error 

points appear sporadically across a range of shoreline lengths.  Investigation of the affected images 

reveals these errors are often caused by unidentified image contamination within the Pixel QA band 

causing deviations in the detected shoreline.  By comparing the mean estimated water surface elevation to 

that of the mode estimated water surface elevation, many measurements affected by the missing 
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contamination can be identified and removed.  This issue can also occur in areas with significant 

topographic relief where elevation changes rapidly. 

Using the details revealed in Figure 3-6, the analysis was repeated using several preset thresholds 

to eliminate erroneous measurements using shoreline length and/or mean-mode difference (Table 3-4).  

The results in Table 3-4 indicate that Mean-Mode difference thresholds and minimum shoreline lengths 

can substantially improve analysis accuracy while still retaining a high proportion of the available 

imagery and water surface elevation estimates.  Of the combinations and thresholds tested, the lake-

specific model with shorelines greater than or equal to 7.5km and Mean-Mode differences less than 5.0 

meters produces overall accuracies of 0.68m RMSE CI95%[0.616, 0.662] and 0.385m MAE 

CI95%[0.387, 0.391].  Additionally, this model produced sub-meter RMSE and MAE accuracies for 

nearly all tested lakes while retaining approximately 75% of all the estimates.  Unfortunately, due to its 

small size, at this level of filtering, all but six estimates for Flatiron Reservoir in Wyoming, USA are 

completely filtered.  However, even just using Mean-Mode difference filtering without minimum 

shoreline filtering, Flatiron Reservoir still retains sub-meter accuracy with 0.984m RMSE CI95%[0.875, 

1.098] and 0.747m MAE CI95%[0.664, 0.839].  Other small water bodies may be similarly affected with 

only high-water levels remaining in the results at this level of filtering. 

Two final tests for model accuracy were performed.  First, water surface elevation estimate 

accuracy was tested for each Landsat satellite using both the best general overall model and lake-specific 

locally optimized models with minimum shoreline length (>7.5 km) and Mean-Mode difference filtering 

(<5.0 m) (Table 3-6).  As expected, Landsat 7, which suffered Scan-Line Corrector failure (SLC-off) in 

May 2003 (Avisse et al., 2017), had the lowest overall accuracy.  However, Landsat 7 imagery prior to 

SLC-off performed quite well and had the second highest accuracy of all the Landsat missions.  

Unexpectedly, though, Landsat 8 had the lowest accuracy of all the non-SLC-off imagery.  It should be 

noted that (excluding the SLC-off imagery) Landsat 8 imagery also had the highest level of local image 

contamination which could be contributing to the decreased accuracy.  Finally, monthly accuracy was 



55 
 

 
 

assessed using both the best overall general model and the lake-specific locally optimized model with 

filtering.  In both models, the winter months had the greatest uncertainty and highest error of all months 

with general accuracy improving in the early spring months before a slight dip in accuracy occurred in 

late spring.  Late summer to mid-fall, which have the greatest number of useable images, produced the 

highest accuracy estimates (Figure 3-7).    

Figure 3-8 plots the results of the lake-specific locally optimized model with shoreline and Mean-

Mode filtering for selected lakes.  In general, the plots indicate good agreement between the estimated 

water surface elevations and the ground-truth measurements with long-term trends, cyclical patterns, 

seasonal patterns, droughts, and flooding events coinciding with available imagery are detectable.  In fact, 

even the lakes with lower accuracy, such as Anderson Ranch Reservoir in Idaho match the ground-truth 

data very well in time series.  The charts also reveal several locations, such as Lake Minnewaska in 

Minnesota, where several water surface elevation estimates are likely incorrect, possibly as result of 

unmitigated snow/ice contamination. Improved data filtering, or even manual removal of these data 

points could significantly improve the overall estimate accuracy.  

All told, due to the incomplete nature of the ground-truth records for many of these water bodies 

the methods used in this study generated 8,000 – 11,000 water surface elevation data points lacking 

ground-truth counterparts (Table 3-4).  Overall, between 31,000+ to 42,000+ water surface elevations 

were estimated using this technique with only 11,663 – 11,798 (depending on model and filtering) from 

images with less than 1% local image contamination (contamination within 500 m of the median lake 

extent).  

3.6 Discussion 

3.6.1 Terrain Slope 

High slope drives error due to the limited spatial resolution of the Landsat imagery.  In the case 

of high-slope areas, the 30-meter Landsat pixels are insufficient to resolve the water boundary with 
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enough detail to accurately place it on the ground.  In canyon-filled or mountainous reservoirs the 

elevation can change by ten meters or more in little to no distance which is a significant change within a 

single Landsat pixel.  When working with Landsat, aside from increased vertical accuracy, higher spatial 

resolution DEM products would likely yield little improvement over coarse resolution DEM since the 

placement of the boundary is based upon the 30-meter Landsat pixel.  The issue is further compounded 

due to the mixed boundary pixels.  The classification as water or non-water for mixed pixels can make a 

large difference in the elevation value used in the estimation process.  Conversely, the effect of mixed 

pixels for low slope water bodies have a lesser effect since the rate of elevation change is much less.  

Additionally, many canyon-filled and mountain-based reservoirs, including those used in this study, are 

riverine/serpentine in shape which results in a higher number of mixed pixels versus the total surface area 

of the reservoir compared to more elliptical shaped lakes and reservoirs.  Together, the steep slopes and 

relative long shorelines result in greater variance within the shoreline elevation values leading to greater 

uncertainty and decreased accuracy compared to gentler sloped water bodies.    

3.6.2 Image Contamination 

Despite the steps taken to eliminate image contamination it still affects many images causing 

large errors.  In many cases, however, problematic images can be identified and removed from the 

analysis by filtering the results using the local percent impacted or by setting a minimum shoreline length 

threshold.  The applicability of either method (local percent impacted or shoreline length) can be lake 

dependent due to some subtle differences between the two methods.  As covered earlier, local percent 

impacted considers image contamination within 500 meters of the maximum lake extent within the 

Global Surface Water Explorer water layers (Pekel et al., 2016).  Depending on the lake shape and size 

though, the lake contamination may have a limited effect on the water boundary where the water surface 

elevation estimate is being generated.  Therefore, it is possible for an image to have a relatively high local 

percent impacted value and yet the contamination to have a limited effect on the results such as cloud 

cover over the middle of a lake.  Water boundary length, on the other hand, directly influences the 
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number of elevation values used in the elevation estimate process.  For most water bodies, shorter 

shorelines indicate greater local contamination directly affecting the water boundary, which results in 

fewer elevation values being used in the estimate which increases its susceptibility to outlier influence.  

All told, shorter shorelines experience greater uncertainty and removing these boundaries improves 

estimate accuracy considerably (Table 3-4, Figure 3-6).  However, as we all know, shoreline length is 

also a physical property of the lake itself directly tied to its shape and size.  Smaller water bodies may 

require different minimum shoreline lengths than medium to larger water bodies to prevent being 

completely filtered from the results as mentioned earlier for Flatiron Reservoir (Wyoming, USA).  

3.6.3 Water Index Performance and Filtering 

While filtering the results using Mean-Mode differencing and/or minimum shoreline lengths can 

significantly improve the results it is important to not over-filter the data.  As mentioned earlier, the 

results in this chapter were restricted to models which retained a minimum of 25% of the total number of 

images with both estimated water surface elevations and ground-truth data.  Without the 25% minimum, 

several lakes did produce higher accuracy water surface elevations but did so because the models were 

over-filtered and only retained a handful of images with highly accurate results.  The 25% threshold in 

this study was arbitrarily determined and any future application of this technique should take this into 

consideration.  Fortunately, the general overall models we recommend are less susceptible to this effect.  

Some models, almost exclusively those using AWEInsh, were particularly susceptible to this issue.  In 

general, we would not recommend use of AWEInsh without careful calibration beyond what was utilized 

in this study as its performance was significantly worse than almost all other tested model combinations.  

Of the 594 model combinations tested in the general overall model analysis (no-filtering), the highest 

AWEInsh combination ranked 450th and occupied 95 of the 100 lowest ranks.  All the other water indices 

placed at least one model combination in the top 17.  Furthermore, in the lake-specific locally optimized 

models, all the water indices except for AWEInsh were represented by multiple lakes.  
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3.6.4 QA Band Limitations 

The QA bands processed and added to the Landsat imagery are an invaluable data source for 

rapid assessment of image contamination within a given image.  In this study, the QA bands were used to 

identify multiple forms of image contamination and noise sources which would negatively affect water 

surface elevation estimates.  While use of the QA bands to identify and eliminate image contamination 

greatly increased the number of valid water surface elevations, there are cases, both spurious and 

systematic, which impacted estimate accuracy.  As mentioned previously, the water boundary technique 

used in this study enables water surface elevation estimation from even partial imagery.  However, in 

several cases, even in otherwise clear imagery along boundaries, water boundaries were not detected due 

to a lack of Pixel QA data along the scene boundaries (Figure 3-9).  Additionally, multiple cases of 

missed clouds, cloud shadow, snow, ice, and other noise sources were identified which affected the water 

detection and boundary identification processes.  Incorrect water and water boundaries result in false 

elevation values being included in the estimate process resulting in greater error.   

3.6.5 Segmentation Threshold 

Table 3-4 indicates that local Otsu thresholding offers the best overall performance across all four 

of the tested general overall models.  This is expected as Otsu’s method is a dynamic segmentation 

threshold calculated using a balance of land and water pixels along the shoreline.  Local Otsu 

thresholding was also the most commonly chosen segmentation threshold in all four versions of the lake-

specific locally optimized models.  Interestingly though, most individual lake models preferred naïve 

segmentation thresholds.  This could be for a few reasons such as peculiarities with the merged 

DEM/bathymetry where, despite accurate thresholding and water detection, deviations in the elevation 

values themselves would dictate the use of naïve thresholds which better estimate water surface elevation 

for that lake by over- or under-estimating the water area.  The bathymetry data used in this study come 

from a variety of sources with varying resolution and quality. Additionally, it was previously noted that 

the Minnesota lake bathymetry lacked a water surface elevation reference value for the bathymetric 
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contours.  If the estimated water surface elevations applied to those contours during the DEM/bathymetry 

merger process were incorrect, then that would affect selection of optimal segmentation thresholds which 

are determined by their ability to minimize water surface elevation estimate errors. Secondly, because 

Otsu’s method is dynamic, issues can arise where unmitigated image contamination, especially ice and 

snow in and around the water body, affect the threshold calculation process by pushing the class 

separation in one direction or the other.  However, in general, local Otsu’s thresholding was most 

adaptable and accurate water surface elevation strategy.  

3.6.6 Time Series 

Most time series in Figure 3-8 show good agreement with ground-truth.  Some errors are obvious, 

improved filtering methods or manual removal would significantly improve the accuracy, especially for 

Pinewood Reservoir (Colorado, USA) where most of the error comes from a single data point.  Some 

water bodies have limited results, so while the available points match up, significant portions of the time 

series are missing which results in an incomplete lake dynamic record.  For example, Lake Waha 

(Oregon, USA) misses all the minimum lake elevations visible in the ground-truth record.  In some cases, 

the missing data points may be due to the elevation result filtering being too stringent for that water body 

but could also be due to local conditions which prevent detection of the water boundary during those time 

periods.  Relatedly, the winter months have lower accuracy and greater uncertainty compared to summer 

and late fall in addition to having fewer valid images and estimates (Figure 3-7).  The lack of estimates 

and greater uncertainty are reflected in many of the time series.  For example, Beulah and several others 

consistently show dense elevation points in the summer drawdown months leading into fall and then 

relatively few elevation points during the winter and early spring when the lake/reservoir is refilling.  One 

other interesting observation is visible in the time-series charts.  Flood event peaks are seldom fully 

captured in the analysis, this is in part due to timing, and if the satellite is not overhead at the flood peak 

then it simply can’t capture those data as is the case with Kanopolis Reservoir (Kansas, USA) on July 

25th, 1993.  In that case, Landsat 5 passed overhead on July 20th (pre-flood peak) and on July 27th (post-
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flood peak).  Furthermore, it’s possible that water boundaries during flood events could be subject to 

increased emergent vegetation such as submerged tree stands which alter the already mixed pixels along 

the shoreline. 

3.7 Conclusions 

The data integration, image processing, and data analysis techniques used in this chapter have 

shown great promise for long-term lake dynamic studies.  Use of the Pixel QA band to locate, assess, and 

remove image noise and contamination sources such as cloud, cloud shadow, ice, snow, etc. not only 

improves the accuracy of the analysis but also improves the temporal resolution as well.  Overall, the 

analysis added, at minimum, 8,000 additional elevation estimates not currently available from any other 

data source including in-situ hydrological stations and the method dramatically improved upon the 

techniques, the accuracy, and the relevancy of the earlier work by Weekley and Li (2019).   

While application of this technique is dependent upon having lake bathymetry, either as a separate 

data source or through pre-impoundment DEM data, it has proven to be an accurate means of estimating 

water surface elevation across a wide range of environments and lake types.  Model accuracy is strongly 

linked to the mean slope near the lake shoreline but is also affected by high levels of local image 

contamination limiting the number of DEM/bathymetry elevation values available for estimating water 

surface elevation.  Using shoreline length and/or Mean-Mode differencing can significantly improve 

model accuracy for both general overall models and lake-specific locally optimized models.  If in-situ 

elevation data are available, lake-specific models offer the highest accuracy with 45 of the tested lakes 

producing sub-meter RMSE elevation accuracies and 49 producing sub-meter MAE accuracies.  Local 

Otsu dynamic thresholding was the best performing segmentation threshold for each of the general 

overall models tested (no-filtering and various combinations of minimum shoreline length and maximum 

Mean-Mode difference) and for most of the best lake-specific locally optimized models.   
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 The results of this research can significantly improve our knowledge and understanding of inland 

water dynamics at a variety of scales, from local to regional, and offers a scalable mechanism for rapid 

water dynamic assessment within the Google Earth Engine cloud-computing environment.  Additionally, 

SWOT (Surface Water and Ocean Topography Mission) (Solander et al., 2016), which launches in 2021, 

will provide lake elevation data at a global scale.  While SWOT itself is limited to a 3-year mission life, 

the elevation data it provides can be used to train lake-specific locally optimized models using the method 

in this chapter to capture high-accuracy, multi-decadal water dynamics for many lakes and reservoirs.   

  Future research will investigate means of estimating lake dynamics from surrounding topography 

(no bathymetry), improved image contamination removal methodologies, improved erroneous result 

filtering, integration of higher resolution satellite imagery, such as Sentinel-2 (10m), and integration with 

future SWOT elevation data.  All told, the method used in this chapter has significantly improved our 

understanding and monitoring ability of lakes and reservoirs of varying types, sizes, and environments.  
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3.8 Figures and Tables 

 

Figure 3-1:  Spatial distribution of lakes used in the study.    
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Figure 3-2: General processing procedure for estimating water surface elevation for any given lake with merged 
DEM/bathymetry data.  This procedure was implemented in GEE and applied to each image within the Landsat image stack.   

                

 
Figure 3-3: Comparison of boundaries with and without the dilated contamination mask for an image with approximately 50% 
localized contamination. Without the mask, the contaminated areas are identified as non-water which generates a boundary 
crossing the center of the lake in several locations (A).  However, using the Landsat QA band, not only can contaminated areas 
by identified, but they can be used to remove erroneous shorelines as well (B).    
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Figure 3-4: Three different types of shoreline water boundaries were used to estimate lake water surface elevation (Weekley & 
Li, 2019). 

 

 



65 
 

 
 

 
Figure 3-5: RMSE (A) and MAE (B) accuracy for each lake plotted from lowest to highest accuracy using the best overall model.  
For comparison, the best individual lake models are also shown.  
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Figure 3-6: A) General model absolute error (estimated surface elevation – ground truth elevation) vs shoreline length.  B) Lake-
specific model absolute error vs shoreline length.  C) General model estimate counts per 7.5 km bin.  D) Lake-specific model 
estimate counts per 7.5 km bin.  The charts for absolute error were each capped at 20 meters absolute error and all charts were 
capped at 350 km shoreline.  ~1% of measurements exceeded these thresholds.  
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Figure 3-7: Monthly RMSE accuracies and image counts for the best performing overall model and the best lake-specific models 
with shoreline filtering and mean-mode difference filtering.   
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Figure 3-8: Selected water surface elevation time series.  Most lakes showed good agreement between the estimated water 
surface elevations and the ground-truth.  Note, the y-scale varies for each chart due to differences in the estimated water levels. 

 

 

Figure 3-9: A) False-color infrared image of Big Hill Reservoir, Kansas, USA using Landsat 5 TOA Tier-1 Collection-1 image 
from July 16, 1993.  The lake appears to be free of image contamination at first glance, yet no water was detected for this image.  
B) The same image with the QA Band coverage displaying in grey.  C) The impacted areas (dark areas), clear areas (light 
areas), and unmasked underlying footprint (black).  All pixels with non-clear attribution, including no data regions, are 
considered impacted for the purposes of this study.    

0km                5km
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Table 3-2: Bathymetric survey information and vertical adjustment used (where applicable). 

Lake or Reservoir 
Survey Project 

Datum 
Vertical Adjustment to 

NAVD88 (meters) State 
Impoundment 

Year 
Survey 
Year 

Alan Henry Reservoir NGVD29 0.28968 Texas 1993 2017 

Anderson Ranch Reservoir NGVD29 1.01592 Idaho 1950 1998 

Lake Arlington NGVD29 0.00624 Texas 1957 2007 

Lake Arrowhead NGVD29 0.05976 Texas 1966 2013 

Arrowrock Reservoir NGVD29 1.03452 Idaho 1915 1997 

Benbrook Lake NGVD29 -0.01027 Texas 1952 1998 

Beulah Reservoir Local 3.38328 Oregon 1935 2000 

Big Hill Lake NGVD29 0.1396 Kansas 1981 2010 

Big Sandy Lake NGVD29 0.19003 Minnesota Natural Lake 1998 

Lake Bridgeport NGVD29 0.09306 Texas 1932 2010 

Bully Creek Reservoir Local 0.734568 Oregon 1963 2000 

Calamus Reservoir NGVD29 0.25615 Nebraska 1985 2012 

Cedar Bluff Reservoir NGVD29 0.2751 Kansas 1951 2000 

Cheney Reservoir NGVD29 0.14569 Kansas 1965 2010 

Clark Canyon Reservoir NGVD29 1.21555 Montana 1964 2000 

Clinton Lake NGVD29 0.0841 Kansas 1975 2009 

Council Grove Lake NGVD29 0.14369 Kansas 1964 2008 

Eagle Lake NGVD29 0.17539 Minnesota Natural Lake N/A 

El Dorado Lake NGVD29 0.13601 Kansas 1981 2010 

Elk City Lake NGVD29 0.14136 Kansas 1966 2010 

Fall River Lake NGVD29 0.14318 Kansas 1949 2010 

Flatiron Reservoir Local 2.298192 Colorado 1953 2012 

Gibson Reservoir Local 2.286 Montana 1929 2009 

Harry Strunk Lake NGVD29 0.30389 Nebraska 1949 2006 

Henry Hagg Lake NGVD29 1.0582 Oregon 1975 2001 

Hillsdale Lake NGVD29 0.12622 Kansas 1982 2009 

Kanopolis Lake NGVD29 0.13184 Kansas 1948 2007 

Keith Sebelius Lake NGVD29 0.26026 Kansas 1964 2000 

Keyhole Reservoir Local 0.64008 Wyoming 1952 2003 

Lovewell Reservoir NGVD29 0.16896 Kansas 1957 2011 

Melvern Lake NGVD29 0.15444 Kansas 1970 2009 

Merritt Reservoir NGVD29 0.3162 Nebraska 1964 2003 

Milford Lake NGVD29 0.12916 Kansas 1967 2009 

Millerton Lake NGVD29 0.75957 California 1944 2004 

Lake Minnewaska NGVD29 0.19972 Minnesota Natural Lake 1963 

Nambe Falls Reservoir NGVD29 1.05604 New Mexico 1976 2013 

Lake Osakis NGVD29 0.19487 Minnesota Natural Lake 1964 
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Perry Lake NGVD29 0.08266 Kansas 1966 2009 

Pinewood Reservoir NGVD29 1.09816 Colorado 1952 2012 

Lake Pokegama NGVD29 0.24636 Minnesota Natural Lake 1940 

Pomona Lake NGVD29 0.13858 Kansas 1965 2009 

Salton Sea NGVD29 0.59741 California 1905 1995 

Lake Sherburne Local 4.191 Montana 1919 2002 

Shetek NGVD29 0.18971 Minnesota Natural Lake 1959 

Siseebakwet NGVD29 0.25532 Minnesota Natural Lake 1951 

B. A. Steinhagen Lake NGVD29 0.00128 Texas 1951 2011 

Tuttle Creek Lake NGVD29 0.12448 Kansas 1962 2009 

Waconda Lake Local -0.19502 Kansas 1969 2001 

Lake Waha NGVD29 1.10815 Idaho Natural Lake 2006 

Warm Springs Reservoir NGVD29 1.12218 Oregon 1919 2000 

Whitewater Lake NGVD29 0.20048 Minnesota Natural Lake N/A 

Wilson Lake NGVD29 0.17543 Kansas 1964 2008 
 

 

Table 3-3: Overall, 594 different image processing parameter combinations were tested including six water indices, 11 
segmentation thresholds (nine pre-set, two dynamic), three boundary types, and three statistic types. 

Name Number 
of Values Values 

Water Indices 6 NDWI, MNDWI, AWEInsh, AWEIsh,  
NDWI+MNDWI (Blue & NIR), NDWI+MNDWI (Green & SWIR) 

Pre-set Thresholds 9 -0.15 to 0.25 with an increment of 0.05  
Otsu Dynamic Thresholding 2 Global Otsu’s Method, Local Otsu’s Method 
Boundary Types 3 Interior, Exterior, Combined 
Statistical Types 3 Mode, Median, Mean 
Total Tested Combinations 594   
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Table 3-5: Pearson’s product-moment correlation r2 for RMSE, MAE, and potential error drivers. 

 

  Best Overall Model (General Model) 
Best Lake Specific Models (Locally 

Optimized) 
  RMSE MAE RMSE MAE 

Mean Slope 0.892 0.824 0.801 0.793 
CI95%[0.799, 0.948] CI95%[0.714, 0.912] CI95%[0.659, 0.908] CI95%[0.680, 0.899] 

Mean % Impacted 
0.165 0.128 0.17 0.162 

CI95%[0.012, 
0.393] CI95%[0.000, 0.372] CI95%[0.026, 0.390] CI95%[0.009, 0.377] 

Median Lake Area 
0.059 0.063 0.048 0.052 

CI95%[0.007, 
0.203] CI95%[0.010, 0.225] CI95%[0.009, 0.159] CI95%[0.009, 0.180] 

Shoreline  
Perimeter Length 

0.074 0.087 0.048 0.048 
CI95%[0.006, 

0.182] CI95%[0.006, 0.225] CI95%[0.000, 0.139] CI95%[0.001, 0.145] 

Surface Area  
to Perimeter Ratio 

0.174 0.178 0.145 0.171 
CI95%[0.070, 

0.302] CI95%[0.067, 0.315] CI95%[0.058, 0.27] CI95%[0.079, 0.296] 

# of Images with Estimates 
and Ground-Truth 

0.024 0.018 0.05 0.041 
CI95%[0.000, 

0.108] CI95%[0.00, 0.073] CI95%[0.001, 0.167] CI95%[0.000, 0.130] 
 

Table 3-6: Accuracy metrics for each Landsat mission.  Accuracy statistics for total overall, SLC-On, and SLC-Off are provided 
for Landsat 7 ETM+.   

 



75 
 

 
 

 

 

4 Tracking Lake Surface Elevations with Proportional 
Hypsometric Relationships, Landsat Imagery, and Multiple 
DEMs 

4.1 Abstract 

Multi-decadal inland surface water dynamics are of increasing interest due to their widespread 

influence and importance to climate, agriculture, ecology, industry, and society yet, despite their 

importance, several key challenges impede long-term monitoring of inland surface waters globally.  First, 

the most accurate lake dynamic tracking methods utilize bathymetric survey data to construct 

hypsometric relationships, also known as storage curves, to estimate water quantities.  This research 

investigates two novel methods, one to address sub-hydroflattened surface estimate uncertainty issue, and 

a second to address limited temporal resolution issues, using 46 lakes and reservoirs spread across the 

western United States.  First, low water level estimate uncertainty was reduced using multiple digital 

elevation models (ALOS, SRTM, and NED) and the hypsometric relationship for each lake was derived 

from the digital elevation model with the lowest hydroflattened water surface.  This technique reduced the 

number of images with sub-hydroflattened water surfaces by at least 549 over the best individual DEM 

leading to increased accuracy by reducing the extrapolation distance for any remaining sub-

hydroflattened water surface levels while simultaneously increasing the number of estimates above the 

hydroflattened surface.  Second, this chapter introduces proportional hypsometry which dynamically 

generates surface area/elevation relationships for every image using clear pixel observation areas only 

(contamination is removed from both the image and underlying DEM).  Proportional hypsometry was 

found to be ill-suited for sub-hydroflattened water surface levels but produced comparable accuracy to 

clear images for above hydroflattened water levels.  Overall, using the lowest hydroflattened surface 
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along with proportional hypsometry improved the temporal resolution by enabling the analysis of nearly 

10,000 additional images while maintaining an accuracy level similar to images with <1% contamination 

(2.35 m RMSE and 1.61 m MAE vs 2.17 m RMSE and 1.53 m MAE).   Overall, this research decreases 

hypsometric analysis uncertainty while increasing temporal resolution and is scalable within cloud 

computing platforms such as Google Earth Engine enabling wide-scale regional and global water 

dynamic analysis.    

4.2 Introduction 

Multi-decadal inland surface water dynamics are of increasing interest due to their universal 

importance and widespread impact on climate, industry, agriculture, ecology, and society (Prigent et al., 

2012).  At the most basic level, water surface dynamics represent the spatiotemporal distribution of water 

on the landscape and describe where, when, and how much water is present using four key metrics: 

surface elevation, surface area, volume, and volume change (Weekley & Li, 2019).  However, despite its 

universal importance, inland surface waters are poorly understood, and several key challenges impede 

long-term monitoring of inland surface waters globally. 

 The first issue with large-scale, long-term lake dynamic monitoring is obtaining each of the 

necessary measurements.  As mentioned, the four common lake dynamic measurements are surface 

elevation, surface area, volume, and volume change.  Of the four metrics, surface elevation and surface 

area are the easiest to obtain and are the only two that are directly and independently measurable using 

current instruments and techniques.  Volume and volume change, on the other hand, are more difficult to 

obtain.  Volume change requires, at minimum, surface elevation and surface area measurements from two 

separate dates to estimate water volume change using conical or pyramidal frustum equations (Abileah & 

Vignudelli, 2011; J F Crétaux et al., 2016; Gao, 2015) while total water volume requires knowledge of 

underlying topography (bathymetry) which is only available for a small subset of global lakes and 

reservoirs (Alsdorf et al., 2007; Peng, Guo, Liu, & Liu, 2006).     
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 Despite the difficulties, several methods have been developed to measure lake water dynamics at 

various scales with most of the focus, at least historically, being on surface elevation and surface area 

measurements.  Surface elevation is commonly measured using gauges installed on-site.  As a result of 

their manual installation requirements, in-situ hydrological stations are only available for a small subset 

of global water bodies (Alsdorf et al., 2007).  Surface elevation is also dependent upon several factors, 

such as weather conditions which can cause variations in surface elevation across a single water body 

meaning that individual hydrological stations, which are point measurements, may not be representative 

of the water body as a whole (Alsdorf et al., 2007).  Due to the uneven distribution and limited 

availability of in-situ monitoring stations, remote sensing has commonly been used to supplement or 

outright replace in-situ measurements.  The most common method of obtaining water surface elevation 

via remote sensing is through satellite altimeters such as the RA (radar altimeter) sensor onboard 

European Space Agency’s ERS-1 (European Remote Sensing) satellite (“ERS-1: Aviso+,” n.d.) or the 

Poseidon-2 altimeter onboard the joint NASA (National Aeronautics and Space Administration) and 

CNES (French Space Agency) Jason-1 satellite.  Altimeters, which can be either radar- or laser-based, are 

non-imaging, nadir-looking, profiling instruments which estimate height (distance from sensor) by 

precisely measuring the return time of signals reflected off the surface.  Satellite altimetry, which has 

been used in numerous studies including works by Medina et al. (2008), Duan and Bastiaanssen (2013), 

Zhu et al. (2014), Crétaux et al. (2015), Schwatke el al. (2015), Dettmering et al. (2016), Göttl et al. 

(2016), and Okeowo et al. (2017), has repeatedly demonstrated high-accuracy water surface elevation 

estimates while certain conditions are met.  Satellite altimetry works best for large water bodies with long 

pass-overs with minimal contamination from surrounding terrain and under such conditions is capable of 

sub-decimeter accuracy (3 – 10 cm) (Solander et al., 2016).  Unfortunately, the current/historic altimeter 

fleet was designed for oceanographic and/or cryosphere mapping and therefore has large ground-track 

spacings and poor spatial resolution which limit its applicability for most water bodies.  In fact, it’s 

estimated that only 60% of water bodies larger than 100 km2 can be monitored for any appreciable period 

using current and historic satellite altimeters (Solander et al., 2016).   
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 While direct water surface elevation measurements may not be available for most water bodies 

due to the lack of in-situ monitoring or altimetry-based measurements, water surface area, assuming 

accurate detection methods are employed, is relatively easy to obtain and can be directly measured using 

optical and synthetic aperture radar imagery.  Water surface area measurements are also scale-able to 

regional and global levels (Pekel et al., 2016; Tulbure & Broich, 2013; Tulbure et al., 2016).  While 

useful in a wide range of applications, water surface area remains a two-dimensional measurement 

whereas, at minimum, water volume change estimates are needed to improve our understanding of 

surface water dynamics and its effects upon climate and other fields.  To extend the usefulness of water 

surface area measurements and fill in the gap of missing water surface elevations due to the limitations of 

in-situ and altimeter-based monitoring, several studies have used elevation data products such as digital 

elevation models and/or bathymetry to estimate water dynamics using hypsometric relationships relating 

surface area to volume and/or surface elevation (Avisse et al., 2017; Pan, Liao, Li, & Guo, 2013; Zhang et 

al., 2016) or elevations extracted from water surface boundaries (Tseng et al., 2016; Weekley & Li, 

2019).  Unfortunately, each of these methods has limitations in terms of expanding and scaling their 

applications.  The water boundary approach requires full or estimated bathymetric profiles to ensure 

water surface elevation estimates can be made if water levels are lower than they were at the time the 

digital elevation model was collected.  Like altimetry, bathymetric surveys are only available for a small 

subset of lakes globally which limits its application for global analysis (Alsdorf et al., 2007) while efforts 

to simulate bathymetric profiles from surrounding terrain have reported resolution scale dependencies and 

large uncertainties from lake to lake (Heathcote et al., 2015; Messager et al., 2016; Tseng et al., 2016).  

Hypsometric relationships, similarly, can be extrapolated to lower water levels from higher water levels 

by extending the slope of the storage curve using linear/polynomial regression and/or power relationships 

(Pan et al., 2013); however, concerns about accuracy uncertainty at increasingly lower water levels, 

relationship fit, and application to varying water bodies remain.  Furthermore, most hypsometry 

implementations rely upon having full, clear observations to accurately measure water surface area and 

any image contamination (clouds, cloud  shadow, snow, ice, sensor error) reduces the estimated water 
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surface area resulting in erroneous elevation, volume, and volume change estimates.  This issue is 

substantial as many areas of the planet have significant cloud cover and/or other image contamination for 

long periods each year and restricting water surface dynamic estimates to clear images only results in 

poor, uneven temporal resolution (Huang et al., 2018) and methods of filling data gaps and cloud 

contamination using data-filling or temporal windows are best suited only for larger water-bodies 

(Ogilvie et al., 2018).  

 This study presents a novel approach to improve digital elevation model (DEM) hypsometry-

based surface water dynamic monitoring.  First, this research uses multiple digital elevation models 

(ALOS – Advanced Land Observing Satellite, SRTM – Shuttle Radar Topography Mission, and NED – 

National Elevation Dataset) (Archuleta et al., 2017; Farr et al., 2007; Tadono et al., 2014) to select the 

lowest hydroflattened water surface for each lake which reduces the total number of sub-hydroflattened 

water surface estimates and decreases the uncertainty of the remaining sub-hydroflattened water surface 

estimates by reducing the extrapolation distance to those water levels.  Second, this research introduces 

proportional imagery/DEM hypsometric relationships which extend traditional hypsometry to 

contaminated imagery by removing image contamination from both the imagery and the underlying 

digital elevation model and constructs a new hypsometric surface area/elevation relationship for each 

satellite image.  Forty-six lakes throughout the western and midwestern United States were used to test 

the method which uses the entire Landsat 4, 5, 7, and 8 Tier-1 Collection-1 Top-of-Atmosphere image 

archives.  This research addresses the following gaps in hypsometric surface water dynamic monitoring: 

1) analyzes and compares regression methods of extending hypsometric curves from above 

hydroflattened surface to sub-surface levels; 2) investigates methods of reducing sub-hydroflattened 

water surface elevation estimate uncertainty; 3) analyzes hypsometric relationship estimate techniques for 

a variety of water bodies with varying geologies, shape, sizes, water qualities, climate regimes, 

management practices, and ecotypes; 4) identifies and mitigates a variety of image contamination sources 

to substantially improve the temporal resolution of hypsometry-based water surface dynamic monitoring; 
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and, finally, 5) this chapter pioneers a scalable solution using hypsometric relationships within Google 

Earth Engine (Gorelick et al., 2016) enabling global water dynamic monitoring using the entire Landsat 4, 

5, 7, and 8 archives.    

4.3 Data and Study Area 

This research was applied to forty-six lakes and reservoirs throughout the western and midwestern 

United States (Figure 4-1).  These forty-six lakes encompass a wide range of climate regimes, ecotypes, 

management practices, geologies and are diverse in their size, shape, and water qualities. 

As mentioned, this research utilized three different digital elevation models: ALOS DEM 

(Advanced Land Observing Satellite) (Tadono et al., 2014), SRTM (Shuttle Radar Topography Mission) 

(Farr et al., 2007), and NED (National Elevation Dataset) (Archuleta et al., 2017).  ALOS and SRTM are 

global datasets featuring 30-meter spatial resolution while NED is a 1/3 arc-second seamless DEM 

covering the lower 48 states (United States).  Additionally, elevation values in ALOS and NED are 

decimal-point data, while SRTM elevations are stored as integers.  For the purposes of this research, NED 

data was resampled to 30 meters to match the spatial resolution of ALOS and SRTM.  NED is vertically 

referenced to NAVD88 (North American Vertical Datum of 1988) while SRTM and ALOS are 

referenced to the EGM96 geoid.  Due to the close approximation of NAVD88 to the geoid used in 

EGM96, no vertical datum transformation was performed and each was used as-is (“SRTM NED Vertical 

Differencing,” n.d.), however, the vertical accuracy of each DEM varies spatially with lower accuracy 

typical in areas with greater vertical relief such as mountainous areas (Alganci, Besol, & Sertel, 2018; 

“What is the vertical accuracy of the 3D Elevation Program (3DEP) DEMs?,” n.d.).  Other global DEMs, 

like TanDEM-X (Rizzoli et al., 2017; Zhang et al., 2016), were not included in this study as they are not 

currently available in GEE (Gorelick et al., 2016).  Future analyses will incorporate more DEM options. 

In-situ gauge data, which was used for model selection and accuracy assessment, was obtained 

from multiple sources including the United States Geological Survey (USGS), the Minnesota Department 
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of Natural Resources (MNDR), and the California Department of Water Resources (CDWR) (“California 

Data Exchange Center,” n.d.; “Lakes Data for Minnesota,” n.d.; “USGS Lakes and Reservoirs,” n.d.).   

Depending upon the lake, in-situ gauge data are provided in a variety of vertical datums.  Where 

necessary, these data were adjusted to NAVD88 using VERTCON (“VERTCON,” n.d.). 

The entire Landsat 4, 5, 7, and 8 Collection 1 Tier 1 Top-of-Atmosphere (TOA) image archives 

(Table 4-1) from August 1982 through September 2019 were used in this research which provides multi-

decadal, medium resolution (30 meter), and moderate temporal resolution analysis for most water bodies 

around the globe.  Other sensors, such as Moderate Resolution Imaging Spectrometer (MODIS) (Gao, 

2015) or RapidEye (Heine, Stüve, Kleinschmit, & Itzerott, 2015), may offer improved temporal and/or 

spatial resolution but lack the long-term data record required for climate scale analysis.  Tier 1 Landsat 

scenes have the highest available data quality with Level-1 Precision and Terrain (L1TP) correction, well-

characterized radiometry, and inter-calibration across the various Landsat sensors making the collections 

well-suited for time-series analysis (Wulder et al., 2016).  In addition to the sensors bands, Level-1 

Landsat products also include a Quality Assessment (QA) (USGS, 2018b, 2019) band which provides 

per-pixel bit values corresponding to surface, atmospheric, and sensor conditions like cloud cover, 

snow/ice, shadow, dropped pixels, and radiometric saturation (USGS EROS, 2017).  Surface reflectance 

is also available for Landsat, however, the USGS reports that algorithms currently used to produce 

surface reflectance have not been optimized to work over surface water (“Landsat Surface Reflectance,” 

n.d.). 

4.4 Methods 

The general processing procedure is illustrated in Figure 4-2 and consists of three distinct sections. 

The first section (orange colored) involves selecting the target water body and generating a seed from the 

JRC Global Surface Water Explorer occurrence layer (Pekel et al., 2016).  The second section (green 

colored) involves pre-processing the Landsat image using a pre-set, naïve segmentation threshold (0.15) 
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to determine if the image is suitable for further processing.  If water is detected within the image and a 

water boundary can be determined, then the process can continue to the next section.  The final section 

(blue colored) involves dynamically estimating an image specific segmentation threshold using Otsu’s 

method (Otsu, 1979), then repeating the necessary steps to isolate the targeted water body, remove image 

contamination, estimate the observable water surface area, generate an image specific surface 

area/elevation relationship, and finally estimate water surface elevation.  Further explanation for several 

key steps is provided below. 

4.4.1 Lake Seeding 

In order to isolate the targeted water body for subsequent analyses, two types of seeds were 

utilized.  First, the targeted water body was manually seeded using a line placed within the water body (in 

the future, this step will be automated).  Using the manual seed, a larger, more complete seed was 

generated using the JRC Global Surface Water Explorer occurrence layer (Pekel et al., 2016).  In 

contaminated images, the larger seed is more likely to intersect disconnected water areas than the smaller 

linear seed.  For each lake, areas with >= 85% occurrence were selected and then isolated using the 

manual seed to keep each lake separate, and then converted to a vector for future use.  Ideally, areas with 

100% occurrence would be used, however, for some lakes the 100% occurrence areas were patchy, so a 

lower threshold was chosen. 

4.4.2 Water and Shoreline Detection 

For this research, water detection was completed using the Modified Normalized Water 

Difference Index (MNDWI) (Xu, 2006) expressed as the following: 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝑀𝑀𝑀𝑀𝑀𝑀
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺+𝑀𝑀𝑀𝑀𝑀𝑀

                                                                           (1) 

Water indices such as MNDWI, in comparison to other methods such as supervised or unsupervised 

image classification techniques, are computationally efficient algorithms making them suitable for large-



83 
 

 
 

scale analysis if an optimal water segmentation threshold can be determined.  Multiple water detection 

strategies exist within the literature, including NDWI (Normalized Water Difference Index) (McFeeters, 

1996), AWEI (Automated Water Extraction Index) (Feyisa et al., 2014), and Tasseled Cap Wetness 

(Baig, Zhang, Shuai, & Tong, 2014; Crist & Cicone, 1984).  Rather than comparing the effectiveness of 

different water detection algorithms, this research is primarily focused upon integrating multiple digital 

elevation models which can be done using a single water detection method. MNDWI was chosen as it is a 

popular water index with a long publication history (Duan & Bastiaanssen, 2013; Lu, Ouyang, Wu, Wei, 

& Tesemma, 2013; Ma et al., 2019; Rokni et al., 2014; Tulbure et al., 2016).  Unfortunately, when 

utilizing water index-based water detection methods such as MNDWI, no one ideal segmentation 

threshold exists as a result of changing land, water, and atmospheric conditions.  To alleviate this 

constraint, a two-pronged approach was developed for this research to account for these changing 

conditions and improve the water thresholding process.  First, the image pre-processing section used a 

naïve segmentation threshold of 0.15 to preliminarily determine if water, and more importantly a water 

boundary, was observable within the image.  If a water boundary was detectable, Otsu’s method (Otsu, 

1979), which is an adaptive image processing technique used to split an image or dataset into two classes 

based upon the observed distribution of pixel values, was then used to determine an image specific local 

segmentation threshold. Otsu’s method works best when each class (water and non-water in this case) has 

roughly the same number of pixels.  In this implementation, the classes (water and non-water) were 

rebalanced for each image by buffering the naively detected water boundary by 150 meters, masking and 

removing image contamination from the water index image (also aggressively expanded by 150 meters to 

ensure boundaries along contaminated edges were completely removed), and then applying Otsu’s 

method to the remaining water index pixels.   

4.4.3 Image Contamination 

Common image contamination sources include cloud, cloud shadow, ice, snow, and terrain 

shadow but also include sensor issues such as oversaturation, pixel drop out, and issues such as the scan-
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line corrector error which affected Landsat 7 images after May 31st, 2003.  Several image contamination 

steps were utilized in this research to quantify and alleviate the effects.  As mentioned earlier, the Landsat 

Tier-1 Collection-1 TOA datasets include Quality Assessment bands providing per-pixel bit values useful 

for identifying clear and non-clear pixels within a given image (USGS, 2018b, 2019).  To supplement this 

information and improve analysis in areas affected by terrain shadow, date/time-specific terrain shadows 

were generated using the applicable digital elevation model.  In short, all non-clear image pixels, terrain 

shadows, and uncovered areas within 500 meters of the JRC GSW (Pekel et al., 2016) observed water 

extent were treated as image contamination. 

4.4.4 Hypsometric Relationships 

One of the primary goals of this research was to improve elevation estimate accuracy by selecting 

the DEM with the lowest water surface elevation.  This was done using manually created linear seeds to 

estimate the water surface elevation in that region.  The JRC GSW-derived seeds were not used here as 

their extent may extend beyond the hydroflattened surface for some lakes.  For the purposes of this 

chapter, the lowest water surface DEM model will be referred to as the best combined DEM model.  

While water surfaces in SRTM and NED are generally hydroflattened, these surfaces often have some 

variation in the elevation.  Furthermore, visual inspection of the target lakes revealed much rougher water 

surfaces in the ALOS dataset than in the NED and SRTM datasets.  To deal with the variations in the 

surface elevations, the mean elevation along the linear seeds was calculated for each lake and each DEM 

and were then rounded up to the nearest integer value (this value could be adjusted on a lake by lake basis 

but was sufficient for the lakes used in this study).  Using the estimated water surface level, water surface 

area was then estimated at 1-meter intervals.  To extend the method to contaminated images, the 

hypsometric relationships were re-created for every image with an observable water shoreline by masking 

the image contamination from the applicable DEM.  Using these relationships, water surface elevation 

can be estimated using the estimated water surface area in each remaining image.  Figure 4-3 provides 

examples of clear and contaminated image hypsometric relationships.  
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4.4.5 Model Selection and Accuracy 

Model selection and accuracy were determined by comparing estimated lake surface elevations to 

in-situ lake elevation measurements using root-mean-squared-error (RMSE) and mean-absolute-error 

(MAE) calculated using a 60/40 train-test split repeated with 1,000 iterations.  The best model was 

determined using the lowest combined MAE and RMSE (ordinally ranked and summed) from the training 

datasets.  Testing accuracy is reported using both MAE and RMSE from the test samples.    

4.5 Results 

Table 4-2 summarizes the Landsat images used in the analysis.  All told, 71,598 Landsat images 

were found to overlap the 46 targeted water bodies partially or totally.  Of those images, 41,459 (57.9%) 

had observable water shorelines and 32,899 (45.9%) of those with observable shorelines had 

corresponding in-situ elevation measurements suitable for model selection and accuracy analysis.  

Additionally, 244 of the 14,170 images with <1% image contamination had no observable shorelines due 

to spurious pixels along the water shoreline being flagged in the Pixel QA band resulting in the complete 

removal of the shoreline.  

As stated, one of the primary goals of this study was to improve water surface elevation estimate 

accuracy and reduce low water level estimate uncertainty by constructing hypsometric relationships from 

the DEM (ALOS, NED, or SRTM) with the lowest water level for each lake.  Table 4-3 compares the 

elevation estimate accuracy for each DEM and the lowest hydroflattened surface DEM (LHFS DEM) for 

each lake fit with 1st, 2nd, and 3rd-order polynomials for all images with less than 1% image 

contamination.  This analysis represents traditional hypsometry where a single relationship model is used, 

and the analysis is constrained to contamination-free imagery. Using those criteria, the best combined 

DEM model fit with a 2nd-degree polynomial had the highest combined RMSE and MAE accuracy.     

Unfortunately, restricting hypsometric relationships to clear images only (<1% local 

contamination) severely limits the temporal resolution of the analysis and in many cases would eliminate 
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all winter images from potential analysis in areas with frequent snow, ice, and terrain shadow conditions 

(Table 4-2).  To improve upon this, proportional hypsometric relationships which allow analysis of 

contaminated imagery were also analyzed using all images with observable water boundaries and in-situ 

surface elevation measurements (Table 4-4). Using these criteria, the LHFS DEM model once again had 

the highest overall accuracy, however, the performance gain was limited to 1st-order equations due to 

significant uncertainty at low water levels for images at sub-hydroflattened water levels.  This effect is 

visible in the Figure 4-3 examples where the 2nd and 3rd-order relationships experience significant curving 

at sub-hydroflattened surface water levels (the curve direction could be downwards or upwards depending 

upon the amount and distribution of image contamination within a given image).   

To further improve the overall accuracy of the analysis, elevation estimates for sub-

hydroflattened water levels (an image is considered sub-hydroflattened if the estimated surface area is 

less than the surface area of the lowest DEM level) (Table 4-5) and above hydroflattened surfaces (Table 

4-6) were analyzed separately.  Using the results from Table 4-5 and Table 4-6, a single model using all 

images above the hydroflattened water surface and fitting them with a 3rd-degree polynomial to maximize 

the fit but restricting sub-hydroflattened surface estimates to just those with <1% image contamination 

and fitting them with a 2nd-degree polynomial was proposed and analyzed (Table 4-7).  While this model 

produces fewer estimates than the models used in Table 4-4, it provides significantly higher accuracy than 

using all the images and maintains most of the temporal resolution improvements gained from using 

proportional hypsometry.  The accuracy improvements of this model and the proportional hypsometric 

technique are illustrated in Figure 4-4.  Figure 4-4 shows a rapid decline in elevation estimate accuracy 

when including all images above and below the hydroflattened water surface (line 2-green) but also 

shows consistent accuracy when using proportional hypsometry to include all above hydroflattened 

surface images and limiting sub-hydroflattened surface estimates to images with <=1% local image 

contamination.  
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While the results of the proposed methods improve the overall accuracy for all 46 lakes, at the 

individual lake level the results are much more mixed.  Overall, just nine lakes produced sub-meter 

RMSE accuracies and 21 lakes produced sub-meter MAE accuracies using the LHFS DEM method.  

Conversely, 13 lakes had RMSEs and 11 had MAE accuracies greater than 2.5 meters.  Figure 4-5 

provides a time-series look at several lakes ranging from high accuracy to low accuracy using the Table 

4-7 model with the LHFS DEM and proportional hypsometry where all images above the hydroflattened 

water surface fit with a 3rd-degree polynomial and sub-hydroflattened surface estimates with <1% image 

contamination fit with a 2nd-degree polynomial. 

4.6 Discussion 

4.6.1 Digital Elevation Model Differences 

One of the key uncertainty sources which affected the accuracy of this analysis involved noted 

differences between the three digital elevation models beyond just the height of the water level 

(hydroflattened surface) on the DEM.  Figure 4-6 provides several examples highlighting the differences 

between the measured surface areas at common surface elevations.  Several lakes display significant 

difference in the measured surface areas such as Lake B.A. Steinhagen and Anderson Ranch Reservoir.  

In these cases, water surface elevations estimated using the NED are tens of meters less accurate than 

their SRTM or ALOS counterparts based upon comparison with in-situ measurements. Figure 4-7, which 

compares hillshades and inundated surface areas for B.A. Steinhagen Lake at 30 meters along with 

hillshades for Anderson Ranch Reservoir at 1,278 meters, shows the large difference in surface area 

associated with each DEM.  For B.A. Steinhagen, compared to ALOS or SRTM, the NED DEM is 

significantly smoother due to its 1/3 arc-second native resolution, however, the elevations are also 

significantly lower across large areas leading to substantially larger surface areas at each elevation while 

for Anderson Ranch Reservoir, the southwestern end of the reservoir near the dam is non-hydroflattened 

in the NED resulting in massive surface area differences between the DEMs  As mentioned earlier, the 

vertical accuracy of each of these data sets varies spatially.  While determining which DEM is most 
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accurate in each location is difficult without external reference data, in general, these differences illustrate 

the strength of using multiple DEMs to select the best DEM for each water body.  In fact, some of the 

bias visible in time series of some lakes may be due to vertical accuracy deviations in that specific area 

and could be corrected given supplementary elevation data such as elevation measurements from the 

upcoming SWOT (Surface Water and Ocean Topography) mission set to launch in 2021 (Biancamaria et 

al., 2016; Solander et al., 2016).     

4.6.2 Image Contamination 

The quality assessment bands available for each image within the Landsat archive make rapid 

assessment of local conditions easy and effective, however, limitations do exist.  In many cases, 

unidentified and misclassified image contamination affects the estimated water surface elevation by 

changing the amount of water detected within the target area.  Any erroneous or missed water affects not 

only the estimated water surface area, which alone impacts the water surface elevation estimate, but is 

also unlikely to be accounted for in the proportional hypsometric relationship further leading to increased 

error and uncertainty. 

4.6.3 Time Series and Individual Lake Accuracy 

The time series for each lake explored in Figure 4-5 highlighted some of the difficulties of using 

digital elevation models to estimate water surface elevation.  As noted, some lakes, especially isolated 

lakes with relatively consistent slopes were more accurate than lakes in high slope areas (canyons or 

mountains) and, as mentioned, the DEMs themselves exhibit spatially variable vertical accuracies 

dependent upon the type of terrain which may be responsible for much of the error seen in some areas.  

Other factors, such as DEM resolution can also influence accuracy as insufficient resolution can allow 

connections across barriers, such as dams and levees,  that do not actually exist. Additionally, areas with 

many inter-connected lakes, like those in Minnesota, USA, often suffered from low accuracy as well.  In 

these cases, the inter-connectivity may cause issues.  At some points in time the channel may be large 

enough to be detectable in the Landsat imagery and that additional surface area will be included in the 
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analysis.  If, in those cases, the water bodies are also connected in the DEM then the estimate will be 

accurate. However, if the channel is not captured in the DEM, or the other water body is at a different 

elevation, or the interconnection is not detectable in the Landsat imagery then the relationship can quickly 

become skewed and the estimate accuracy will diminish.  This is evidenced by the Figure 4-5 time-series 

for Big Sandy Lake in Minnesota, USA.  The elevation estimates for Big Sandy Lake are significantly 

lower than the in-situ elevation measurements due to wide-scale interconnectivity within the DEMs 

between water bodies in that region as illustrated in Figure 4-8.  In the case of Big Sandy Lake, the 

elevations are routinely underestimated because the DEMs connect Big Sandy Lake to Aitken Lake (and 

others) while the water channel itself does not fully connect within the Landsat imagery. 

4.7 Conclusions 

Overall, despite low general accuracy in comparison to some previous papers which used DEMs to 

estimate water surface elevation using hypsometric relationships, the strategies developed in this chapter 

were successful on multiple fronts.  The first and second goals of this research were: 1) to analyze and  

compare methods of extending hypsometric curves from the above hydroflattened surface to sub-surface 

levels and 2) investigate methods of reducing sub-hydroflattened water surface elevation estimation 

uncertainty.  These goals were accomplished by analyzing the accuracy of 1st, 2nd, and 3rd-order 

polynomials and by using multiple DEMs to lower the hydroflattened water surface using the Lowest 

Hydroflattened Surface (LHFS) DEM at each location.  For clear images (<1% image contamination), 

using the lowest hydroflattened surface DEM and 2nd-order polynomials had the highest accuracy for at 

2.52 m RMSE CI95%[2.42, 2.61] and 1.74 m MAE CI95%[1.67, 1.8] and reduced the number of 

remaining subsurface estimates between 549 and 3,597 images versus using a single DEM.  The LHFS 

DEM model also increased accuracy by 1.2 meters over the best single DEM model.  Additional accuracy 

gains and decreases in low-level uncertainty should be expected as more DEMs are included in the 

analysis.  
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The third goal of this research was the assess the technique’s performance across water bodies of 

various shape, sizes, water qualities, climate regimes, management practices, and ecotypes.  This was 

accomplished using 46 lakes and reservoirs across the western and midwestern United States.  While 

limited information was provided regarding individual lake accuracies, it was found that accuracy did 

vary significantly from location to location with deviations being driven by DEM quality issues and 

interconnected water bodies in some regions.  As such, future research will investigate methods of 

correcting for DEM related errors using in-situ or satellite sensor data, like SWOT, to apply a local terrain 

bias correction.   The fourth goal, 4) identify and mitigate a variety of image contamination sources to 

substantially improve the temporal resolution of hypsometry-based water surface dynamic monitoring 

was also successful.  Typical hypsometric relationships are restricted to clear imagery, but proportional 

hypsometry utilizes the quality assessment band to remove image contamination from the underlying 

DEM for each Landsat image and then generates a unique hypsometric relationship for each image with 

an observable water shoreline (the shoreline is necessary to ensure the surface area and elevation 

intersect).  Using proportional hypsometry, the temporal resolution of the analysis improved substantially.  

Unfortunately, proportional hypsometry suffers from increased uncertainty at sub-hydroflattened water 

surface elevations (images with surface levels remaining below the best combined DEM) and should be 

limited to use when water levels are above the hydroflattened surface to enable higher degree (3rd-degree) 

polynomial line fitting.  Despite this limitation, proportional hypsometry of above hydroflattened water 

surface images (combined with images with <1% local image contamination for sub-hydroflattened water 

levels) enabled analysis of 23,341 out of 32,899 images with observable water boundaries and 

corresponding in-situ measurements.  Furthermore, proportional hypsometry maintained comparable 

accuracy to clear imagery (<1% local image contamination) while providing 12,680 additional elevation 

estimates (23,341 vs 10,661) for the 46 lakes used in this study.   

At the individual lake level, accuracy error was primarily driven by limitations in the DEMs.  

Spatially, the vertical accuracy of each DEM varies, especially in areas with substantial vertical relief. 
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Furthermore, lake inter-connectivity in some regions caused significant deviations as well.  Areas of 

inter-connectivity would likely be better suited to techniques using water boundary extents, such as 

Weekley and Li (2019), as the elevation values would be pulled directly from the DEM.  In theory, 

estimate bias could be reduced through the inclusion of supplementary elevation data such a SWOT. 

Finally, this research was developed using Google Earth Engine using readily available datasets.  

While future research will work to improve the overall accuracy of the analysis and remove detected 

biases, the method as-is is readily deployable and scalable for lakes across the globe.  For future 

hypsometric based studies, we would recommend using multiple digital elevation models to reduce the 

number of sub-hydroflattened surface water levels.  For the remaining sub-hydroflattened surface images 

we would recommend limiting the analysis to clear images (<1% local image contamination) and using a 

2nd-degree polynomial to fit the relationship.  Furthermore, we would recommend using proportional 

hypsometry for all above-hydroflattened surface water levels and fitting the relationship using a 3rd-

degree polynomial.  Future research will include analysis of additional DEMs such as the ASTER global 

DEM (version 3) and incorporation of remotely-sensed surface area/elevation pairs (such as altimetry in 

combination with optical imagery) to improve the analysis as well investigate means of incorporating 

elevation data to correct the biases resulting from DEM vertical accuracy error in mountainous and other 

high error regions. 
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4.8 Figures and Tables 

 

Figure 4-1: Forty-six lakes and reservoirs utilized within the study.  
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Figure 4-2: The general processing procedure used in this study to dynamically estimate water surface elevation using 
hypsometric relationships.  
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Figure 4-3: Clear and contaminated Landsat 5 image examples for Clinton Lake, Kansas, USA from (a) September 3, 1985 and 
(b) April 27, 2008.  Each example shows the lake as it appears in (1) false-color infrared, (2) false-color infrared with 
transparency overlaying a hill shade with detected water in blue and image contamination in yellow, and (3) the resulting 
hypsometric relationship. 

 
Figure 4-4: Accuracy comparison as the amount of image contamination increases for 1) all images above the hydroflattened 

water level, 2) the LHFS DEM model with all images (3rd-degree fit for above hydroflattened surface images and 2nd-degree fit 
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for sub-hydroflattened surface images), and 3) the LHFS DEM model with all above-hydroflattened surface images (3rd-degree 
fit) and images with <=1% local image contamination (2nd-degree fit).     
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Figure 4-5: Time-series charts for selected lakes and reservoirs. Blue points represent the estimated water surface elevations 
while the gray line represents in-situ water surface elevation measurements. 
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Figure 4-6: Common water levels and their accompanying surface areas for selected water bodies.  

 

 
Figure 4-7: Comparison of the 30 meters above sea level inundation extent on the (a) NED, (b) SRTM, and (c) ALOS digital 
elevation models for B.A. Steinhagen Lake in Texas, U.S.A and 1,278 meters above sea level on (d) NED, (e) SRTM, and (f) 
ALOS digital elevation models for Anderson Ranch Reservoir in Idaho, USA. 
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Figure 4-8: Large-scale interconnectivity of water bodies in the area of Big Sandy Lake, Minnesota, USA.  False-color infrared 
Landsat 5 image from August 16, 1999 overlaid with a NED 30m hillshade to highlight the elevation differences.  The blue area 
is the detected water for Big Sandy Lake and the green area is the connected area for the DEM at the August 16, 1999 in-situ 
elevation level. For this lake, the interconnected water body issue was present for all tested DEMs as well as the full-resolution 
NED. 
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Table 4-2: Number of Landsat images included in the analysis.  <1% contamination represents images available to conventional 
hypsometric techniques.  <100% contamination are the number images with at least one clear image pixel within 500 meters of 
the JRC GSW observed water extents for each lake (the <100% Contaminated column also includes images with <1% 
contamination). 

Image Counts < 1% Contamination <100% Contaminated Not Used 
(100% Contaminated) 

Total Image 
Count 

All Overlapping 
Images 14,170 (19.8%) 59,920 (83.7%) 11,678 (16.3%) 

71,598 (100%) 
With an Observable 
Shoreline Boundary 13,926 (19.5%) 41,459 (57.9%) 30,139 (42.1%) 

With an Observable 
Shoreline Boundary 

and In-Situ Elevation 
10,661 (14.9%) 32,899 (45.9%) 38,699 (54.1%) 

 

Table 4-3: Comparison of hypsometric relationships generated from ALOS, NED, SRTM, and the LHFS DEM for all clear 
images (<1% contamination).   
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Table 4-4: Accuracy assessment for all 32,899 images with observable shorelines and in-situ surface elevation measurements.   

 

 

Table 4-5: Accuracy comparison for sub-hydroflattened surface images with <1% local image contamination. 
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Table 4-6: Accuracy comparison for all images above hydroflattened water surface levels. An image is above hydroflattened if 
the estimated water surface area is larger than the surface area of the DEM’s hydroflattened water surface. 

 

 

Table 4-7: Accuracy comparison for all DEM models using all above hydroflattened surface images fit with a 3rd-degree 
polynomial and sub-hydroflattened surface images with <1% local image contamination fit with a 2nd-degree polynomial. 
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5 Conclusions 

This dissertation consists of three components which share a common, overarching theme related to 

the exploration and development of scalable long-term surface water dynamic monitoring using available 

optical imagery, digital elevation models, and bathymetric datasets.   

Chapter 2, Tracking Multi-Decadal Lake Water Dynamics with Landsat Imagery and 

Topography/Bathymetry (Weekley & Li, 2019) provides a methodology for tracking surface water 

dynamics using Lake McConaughy in Nebraska, USA as an example to demonstrate the techniques.  The 

major findings and contributions can be summarized as follows: 

1. This research introduces a scalable framework deployable within Google Earth Engine (Gorelick 

et al., 2016) and enables rapid assessment of gauged and un-gauged water bodies increasing our 

knowledge and understanding of critical water systems.  

2. Surface water boundaries are a viable method of estimating surface water elevation from an 

underlying merged digital elevation model and bathymetric survey dataset, especially on small 

to medium-sized water bodies not currently observable using other common surface water 

monitoring sensors such as satellite altimeters.   

3. Surface water elevation estimate accuracy varies depending upon the water indice, segmentation 

threshold, and water boundary type, and statistic used.  In this study, the highest accuracy 

parameter combination produced water surface elevation estimates as accurate as 0.768 meters 

RMSE CI95% [0.657, 0.885] using NDWI + MNDWI (B1 & B4) with a combination boundary, 

mean statistic, and 0.06 segmentation threshold.  In total, 5,994 different parameter model 

combinations were evaluated. 

4. The method identified seasonal and long-term patterns in Lake McConaughy’s surface elevation, 

surface area, and volume. These trends have significant impact on regional agriculture, 

recreational activities, fish habitat, and overall water quality.  
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Chapter 3, Maximizing Multi-Decadal Water Surface Elevation Estimates with Landsat Imagery and 

Elevation/Bathymetry Datasets builds and expands upon the work in Chapter 2.  In Chapter 2, the 

analysis was limited by a single study area as well as the use of image composites which limited the 

temporal resolution.  Chapter 3 improves upon the techniques developed in Chapter 2 with the following 

major contributions and findings: 

1. The analysis uses the entire Landsat 4, 5, 7, and 8 Top-of-Atmosphere Tier-1 Collection-1 image 

archives between August 1982 and December 2017 providing 35 years of surface water dynamic 

data.   

2. Temporal resolution was maximized using the Pixel Quality Assurance band to eliminate image 

contamination such as cloud, cloud shadow, ice, snow, and sensor error.  Nearly 43,000 water 

surface elevations were produced including at least 8,000+ additional elevation estimates that are 

not currently available from any other data source including in-situ hydrological records.    

3. Fifty-two lakes and reservoirs across the Western and Midwestern United States were analyzed 

to determine how the analysis could be applied to water bodies with varying shapes, sizes, 

geologies, climate regimes, and management practices.  

4. The analysis integrates bathymetric survey data of various resolutions and ages with the National 

Elevation Dataset.  In general, model accuracy appears to be strongly linked to mean slope near 

the lake shoreline due to the spatial resolution of the digital elevation models, bathymetry survey 

data, and most importantly the Landsat 30-meter image pixel.  

5. Elevation accuracy uncertainty increased for images with fewer observable shoreline pixels 

(increased image contamination).  Filtering the results based upon shoreline length and/or Mean-

Mode differencing could significantly improve model accuracy.   

6. The accuracy of water surface elevation estimates varies from water body to water body.  While 

a general overall model was identified, this model is optimized for the 52 lakes used explicitly in 

this analysis.  Given the availability of some ground-truth data, such as in-situ ground station 

data, or the elevations which will be available from the upcoming SWOT (Surface Water and 



106 
 

 
 

Ocean Topography) mission (Biancamaria et al., 2016), locally optimized models can be 

developed for each individual water body.  Using this technique, in addition to filtering of 

shoreline lengths and Mean-Mode difference, 45 lakes produced sub-meter RMSE elevation 

accuracies and 49 produced sub-meter MAE accuracies.   

7. 594 parameter combinations were tested.  Local Otsu dynamic thresholding was the best 

performing segmentation threshold strategy for each of the general models as well as most of the 

lake-specific locally optimized models.   

Chapter 4, Tracking Lake Surface Elevations with Proportional Hypsometric Relationships, Landsat 

Imagery, and Multiple DEMs is a further step in extending lake dynamic research to regional and global 

levels.  While the analysis here itself focuses upon 46 water bodies, it introduces several novel techniques 

for providing large-scale lake dynamic analysis.  The following are key findings and major contributions 

for Chapter 4:  

1. Hypsometric relationships can be used to estimate sub-hydroflattened water surface elevations 

albeit at a lower temporal resolution, slightly lower accuracy, and increased uncertainty versus 

above hydroflattened water levels.  However, these estimates enable lake dynamic tracking, 

including surface area and water volume change, for water bodies lacking bathymetric survey 

data.  

2. Multiple Digital Elevation Models can be used to reduce sub-hydroflattened water surface 

elevation estimate uncertainty by using the Lowest Hydroflattened Surface model (the DEM 

with the lowest hydroflattened surface and therefore a shorter extrapolation distance to low 

water levels and fewer sub-hydroflattened water surface levels overall).   

3. Proportional hypsometry, which enables analysis of contaminated imagery by removing it from 

both the image and underlying DEM, can be used to estimate water surface elevation for above-

hydroflattened water surface levels with just a small decrease in estimate accuracy in 

comparison to traditional hypsometric techniques.  Proportional hypsometry produced 12,680 
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additional water surface elevation estimates in comparison to traditional hypsometry techniques 

which require clear image conditions.  

4. While the overall accuracy is significantly less than that produced using bathymetric data in 

Chapters 2 and 3, the techniques developed in this chapter provide critical groundwork for 

feasible path to multi-decadal lake dynamic research at the global scale.   

Overall, the research conducted for this dissertation produced multiple lake dynamic monitoring 

strategies.  For lakes and water bodies with bathymetry, the methods developed in Chapters 2 and 3 

provide high to moderate accuracy.  For lakes without bathymetry, the techniques developed in Chapter 4 

have shown promise for large-scale analysis. While the techniques currently lack the accuracy available 

in Chapters 2 and 3, future research could reduce this uncertainty and improve estimate accuracy.   

Future research opportunities for long-term lake dynamic monitoring may include the following 

topics and applications: 

1. Development of web application interfaces for estimating long-term lake dynamics from 

user selected water bodies and user provided data.  

2. Expansion of analysis to full regional and global scales.   

3. Collect, compare, and evaluate additional available digital elevation models, especially in 

relation to the LHFS model used in Chapter 4.   

4. Assessment of higher resolution image datasets such as Sentinel as higher resolution 

imagery may increase estimate accuracy.  

5. Investigate use of SWOT data as a bias adjustment for LHFS and proportional hypsometry 

techniques.   
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