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Abstract

The purpose of this work is to understand homological properties of structures appearing in

commutative algebra and algebraic combinatorics, objects such as commutative rings and asso-

ciated structures, such as ideals and modules, or simplicial complexes. In particular, we study

vanishing conditions for Ext and Tor in connection with homological dimensions of the modules

involved, the representation theory of maximal Cohen-Macaulay modules, and various homolog-

ical properties of simplicial complexes though the lens of combinatorial commutative algebra.

Specifically, we study when a Cohen-Macaulay local ring has only trivial vanishings of Ext or

Tor, and provide sufficient numerical criterion under which these condition are satisfied. We apply

these results to establish new cases of the famous Auslander-Reiten conjecture; other conditions

on Ext and Tor are also explored in connection with this conjecture. We also study the connection

between classifically studied representation types of the category of maximal Cohen-Macaulay

modules of a Cohen-Macaulay local ring and newly introduced representation types which study

those maximal Cohen-Macaulay modules that are not locally free on the punctured spectrum. We

provide a classification theorem in dimension 1, and discuss partial results and obstacles in higher

dimension. We also explore combinatorial constructions such as the nerve complex of a simplicial

complex, and introduce the new notion higher nerve complexes. We explore their connection with

order complexes of posets, in particular the face poset of a simplicial complex, and we prove that

the depth and h-vector of the Stanley-Reisner ring of a simplicial complex can be computed in

a nice way from the reduced homologies of these higher nerve complexes. We expand upon our

study of these notions by studying balanced simplicial complexes, and using this abstraction we

prove that, while one cannot characterize which of Serre’s conditions (S`) are satisfied by a simpli-

cial complex via the reduced homologies of higher nerve complexes, one can pin it down to one of

two possible values. We also provide a depth formula for arbitrary balanced simplicial complexes
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and consider total Euler characteristics of links; using the latter, we provide some applications to

the study of Gorenstein∗ complexes. Finally, we introduce the notion of minimal Cohen-Macaulay

simplicial complexes and provide some necessary and sufficient conditions for this property. We

conclude by showing that many recently introduced counterexamples to longstanding conjectures

in the literature are minimal Cohen-Macaulay.
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Chapter 1

Introduction

Commutative algebra studies commutative rings and attendant structures such as ideals and mod-

ules. It arises naturally from the study of familar mathematical objects such as polynomials and

power series’, and, in particular, is motivated by our innate desire to solve equations involving these

objects. For instance, the set of common zeroes of a collection of polynomials forms a geometric

object called a variety and understanding this variety geometrically is tantamount to understanding

algebraic properties of the polynomials involved. For example, the variety defined by the polyno-

mial y− x2 is the familiar parabola y = x2, which is smooth, while the variety defined by y2− x3

has a singularity, a cusp, at the origin (0,0). Commutative algebra provides a machinery for un-

derstanding such singular points; given any point P on a variety, we can attach a ring of germs of

certain functions at P. This allows us to translate questions about the geometry of a variety near a

point to questions about the algebraic structure of a commutative ring. In particular, this gives rise

to several algebraic conditions and invariants which serve to detect and measure singularities.

In the 1970’s, some of these conditions and invariants associated to commutative rings were

found to have powerful connections to algebraic combinatorics, in particular to combinatorial ob-

jects such as simplicial complexes or polytopes. Indeed, given a simplicial complex ∆ on the

vertices [n] := {1,2, . . . ,n} and a field k, we can naturally associate to ∆ an ideal I∆ ⊆ k[x1, . . . ,xn].

We can then associate to ∆ the ring k[∆] := k[x1, . . . ,xn]/I∆. The correspondence is functorial in

nature, and so, in particular, ∆ is isomorphic to Γ as simplicial complexes if and only if k[∆] and

k[Γ] are isomorphic as rings. In particular, this means that any algebraic property of k[∆] trans-

lates to a combinatorial, and sometimes even topological, property of ∆. This correspondence is

frequently called the Stanley-Reisner correspondence after Stanley and Reisner’s groundbreaking
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independent work which led to a proof of the upper bound theorem for simplicial spheres. Of

particular import, Reisner’s well-known criterion for Cohen-Macaulayness plays a guiding role.

1.0.1 Overview

In this section I will overview the main results of this document which can be divided into three

main themes: homological properties of modules over commutative rings to which the Chap-

ters 3 and 4 are devoted, Cohen-Macaulay representation theory to which Chapter 5 is devoted,

and combinatorial commutative algebra which is represented by Chapters 6, 7, and 8. Chapter

2 provides the necessary background in commutative algebra and algebraic combinatorics. The

results of this document can be largely found in the following papers written in part by the author:

[HL18, DEL19, DDD+19, LMn19, KLT20, DDL20].

Chapter 3 concerns work motivated by the following open conjecture in homological algebra:

Conjecture 1.0.1 (The Auslander-Reiten Conjecture [AR75]). Suppose (R,m,k) is a Noetherian

local ring. If M is a finitely generated R-module such that ExtiR(M,M) = ExtiR(M,R) = 0 for every

i > 0, then M is free.

Our approach in Chapter 3 is to establish new results on the Auslander-Reiten conjecture for

Cohen-Macaulay (CM) local rings by studying the following stronger condition:

Definition 1.0.1. We say a ring R satisfies trivial vanishing if, for any finitely generated R-modules

M and N, TorR
i (M,N) = 0 for i� 0 implies that either M or N has finite projective dimension.

This condition was considered by Huneke and Wiegand [HW97] and independently by Miller

[Mil98] who prove it holds for hypersurface rings. Jorgensen later extended this result to show that

any Golod ring satisfies trivial vanishing [Jor99], while Şega showed that trivial vanishing fails

for complete intersections of embedding codimension at least 2 [Ş03]. Modules over Golod rings

have the fastest growth of Betti numbers while those over complete intersections have the slowest

[Avr10]. Motivated by these results, we study growth rates of Betti numbers in general to establish
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a numerical criterion for any CM local ring to satisfy trivial vanishing. In particular our condition

involves 3 numerical invariants of R:

1. The embedding codimension codimR = µR(m)−dimR.

2. The Hilbert-Samuel multiplicity e(R) := lim
n→∞

(dimR)!lR(R/mn)

ndimR of R.

3. The generalized Loewy length of R, i.e., the value ``(R) := maxJ min{i | mi ⊆ J}, where J

ranges over the minimal reductions of m. This definition is designed for reduction to the

Artinian case, where ``(R) is nothing but the smallest i for which mi = 0.

Theorem 1.0.2 (Theorem 8.3). Let R be a Cohen-Macaulay (CM) local ring and set c = codimR

and `= ``(R). Suppose

e(R)<
4c+2`−1−

√
8c+4`−3

2
.

Then R satisfies trivial vanishing.

Applying this result, we characterize trivial vanishing for CM rings of small multiplicity or

codimension [LMn19, Theorem B]. Examples of [Ş03] and [Jc04] show that these results are

sharp.

As a consequence of our work on trivial vanishing, we are able to verify the Auslander-Reiten

conjecture in some new cases.

Theorem 1.0.3 (Theorem 3.5.3). Let R be a CM local ring. Assume R satisfies one of the following

conditions.

(1) e(R)≤ 7
4 codim(R)+1.

(2) e(R)≤ codim(R)+6 and R is Gorenstein.

Then the Auslander-Reiten conjecture holds for R. In particular, the conjecture holds if e(R)≤ 8,

or if e(R)≤ 11 and R is Gorenstein.
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In Chapter 4 we consider other homological conditions that can be imposed upon the mod-

ules in question. For instance, Vasconcelos proved that if R is Gorenstein and M is MCM, then

EndR(M) is free if and only if M is free [Vas68]. On the other hand, Ulrich, Hanes-Huneke, and

Jorgensen-Leuschke consider modules with a large number of generators, and prove the vanishing

of ExtiR(M,R) for certain values of i is enough to conclude R is Gorenstein [Ulr84, HH05, JL07].

Several results on the Auslander-Reiten conjecture also have this flavor [HL04, HcV04, GT17].

In Chapter 4, we introduce two categories with the aim of unifying and extending these results.

Definition 1.0.4. We let modR denote the category of finitely-generated R-modules, and we let

Deep(R) denote the full subcategory of modR with objects {X | depthX > depthR}. We then

define the following two full subcategories of modR.

1. ΩDeep(R) = {M | ∃ 0→M→ Rn→ X → 0 exact for some n ∈ N and X ∈ Deep(R)},

2. DF(R) = {M | ∃ 0→ R→Mn→ X → 0 exact for some n ∈ N and X ∈ Deep(R)}.

We use these categories to consider two general questions whose answers provide generaliza-

tions of the aforementioned results:

Question 1.0.2. When does HomR(M,N) have a free summand?"

Towards this question, we prove the following:

Theorem 1.0.5 (Theorem 4.3.4). Suppose that depthM ≥ t and N ∈ ΩDeep(R). Assume that

HomR(M,N) ∈ DF(R) and Ext16i6t−1
R (M,N) = 0. Then N has a free summand.

This allows us to generalize the previously mentioned results of Vasconcelos and Huneke-

Leuschke. When HomR(M,N) is actually free rather than only in DF(R), one can often apply

Theorem 4.1.1 to conclude than N is actually free. In some situations, one can even conclude that

M is free. For instance, we prove that if R and M satisfy Serre’s condition (S2) and HomR(M,R) is

free, then M is free (Theorem 4.3.7).

The second question we consider is the following:
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Question 1.0.3. When is HomR(M,N)∼= Nr for some r?.

For this question, we have the following main technical result:

Theorem 1.0.6 (Theorem 4.4.3). Assume that depth(N) = t, depth(M) > t, Ass(N) = Min(N),

and for some s≥ t, Ext16i6s
R (M,N) = 0. If Hom(M,N)∼= Nr for some r ∈N, then M/IM ∼= (R/I)r

for I = Ann(N).

Furthermore, if one of the following holds:

(1) N is faithful.

(2) Ass(R)⊆ Ass(N) and s > 0.

then M ∼= Rr.

As a consequence of Theorem 4.1.2, we obtain a new case of the Auslander-Reiten conjecture

(Corollary 4.4.7).

Chapter 5 focuses on Cohen-Macaulay representation theory; this theory studies the structure

of the category of maximal Cohen-Macaulay modules over a Cohen-Macaulay local ring R, de-

noted CMR. A starting point of this theory is the observation that R is regular if and only there’s

only a single indecomposable object in CMR, namely R itself. This observation shows that the

number of indecomposable objects in CMR can be used to measure singularities of R, and leads

one to consider various representation types of CMR for this purpose.

Definition 1.0.7. We say R has finite (resp. countable) CM-representation type if there are only

finitely (resp. countably) many indecomposable objects in CMR.

A celebrated theorem of Huneke-Leuchske shows that rings of finite CM-representation type

have isolated singularities [HL02]. On the other hand, Herzog showed that Gorenstein rings of

finite CM-type must be hypersurfaces [Her78]; these hypersurfaces were later classified, in case R

is complete and k is algebraically closed, see [LW12, Chapter 9] for an overview of this work.
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Rings of countable CM-type are not as well-understood as those of finite CM-type, but as long

as R is complete or k is uncountable, we still have dimSingR≤ 1 when R has countable CM-type

[HL03, Tak07].

The current focus of this theory lies in following folklore conjectures:

Conjecture 1.0.4.

(1) Suppose k is uncountable. If R has countable CM-type and is an isolated singularity, then R

has finite CM-type.

(2) If R is Gorenstein and has countable CM-type, then R is a hypersurface.

(3) If R has countable CM-type, then Rp has finite CM-type for all p 6=m.

In Chapter 5, we aim to progress these conjectures by introducing new representation types and

exploring their connection with countable CM-type.

Definition 1.0.8. We say R has finite (resp. countable) CM+-representation type R admits only

finitely (resp. countably) many nonisomorphic indecomposable modules that are not locally free

on SpecR−{m}.

We conjecture a deep connection between finite CM+-type and countable CM-type:

Conjecture 1.0.5 (conj11). Suppose R is Gorenstein and is not an isolated singularity. Then R has

countable CM-type if and only if R has finite CM+-type.

One piece of evidence for Conjecture 1.0.5 is given by Araya-Iima-Takahashi, who prove,

under mild technical hypotheses, that hypersurfaces of countable CM-type have finite CM+-type

[AIT12]. Chapter 5 provides further evidence for Conjecture 1.0.5; for instance, we show that

rings of finite CM+-type have the same singularities as those of countable CM-type.

The aim of Conjecture 1.0.5 is to replace the study of infinitely many objects with that of only

finitely many. In practice, this makes problems, such as those of Conjecture 1.0.4 much more

tractable. For instance, we can prove a corresponding version of Conjecture 1.0.4 (3) for rings
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of finite CM+-type (Theorem 5.4.3). Thus, if Conjecture 1.0.5 can be proven, then we would

immediately have Conjecture 1.0.4 (3), and other results of Chapter 5 would lead to progress on

(1) and (2) in small dimension (see Corollary 5.5.6 and Theorem 5.7.8).

The case where we best understand conjecture 1.0.5 is the dimension 1 case, where we provide

a classification theorem for Gorenstein non-isolated singularities of finite CM+-type.

Theorem 1.0.9 (Theorem 5.6.1). Let R be a homomorphic image of a regular local ring. Suppose

that R does not have an isolated singularity but is Gorenstein. If dimR = 1, then the following are

equivalent.

(1) The ring R has finite CM+-representation type.

(2) There exist a regular local ring S and a regular system of parameters x,y such that R is

isomorphic to S/(x2) or S/(x2y).

When either of these two conditions holds, the ring R has countable CM-representation type.

The proof of this result relies on examining how representation types pass to and from quotient

rings or birational extensions, the latter of which can be thought of as understanding some essential

features of integral closure in this setting. An advantage of these methods is that they are charac-

teristic free, a counterpoint to the classical approaches towards finite/countable CM-type. Since

we have a classification of hypersurfaces of countable CM-type for complete hypersurfaces with

some residue field and characteristic hypotheses, Theorem 1.0.9 implies Conjecture 1.0.5 holds

true in this case.

We discuss the difficulties of the higher dimension case and we present a number of partial

results, especially for the dimension 2 case, which still seems to boil down to a sufficient under-

standing of integral closure.

Chapter 6 switches focus to combinatorial commutative algebra and deals with nerve com-

plexes:
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Definition 1.0.10. Let A = {A1,A2, . . . ,Ar} be a family of sets. Consider

N(A) := {F ⊆ [r] : ∩i∈F Ai 6= /0}.

This simplicial complex is the nerve complex of A.

One interesting case occurs when A is the list of facets of a simplicial complex ∆; in this

case we denote the Nerve complex by N(∆). The famous Borsuk Nerve Theorem shows that ∆

and N(∆) have same homotopy type but, despite this, more refined algebraic and combinatorial

information of ∆ is not captured by N(∆) [Bor48]. For instance, the bowtie complex, whose facets

are, [1,2,3], [3,4,5], which is not CM, has the same nerve complex as the complex with facets

[1,2,3], [2,3,4], which is CM. In Chapter 6, we consider more general notions of these Nerve

complexes aimed at capturing deeper homological information.

Definition 1.0.11. Let A = {A1,A2, . . . ,Ar} be the set of facets of a simplicial complex ∆. Define

Ni(∆) := {F ⊆ [r] : |∩ j∈F A j| ≥ i}.

We call this simplicial complex the ith nerve complex of ∆, and we refer to the Ni(∆) as the higher

nerve complexes of ∆. We note that N1(∆) is the usual nerve complex N(∆).

We provide an extension of the Borsuk Nerve Theorem for higher nerve complexes.

Theorem 1.0.12 (Proposition 6.3.3). Let P denote the face poset of ∆. For any j, let [∆]> j denote

the order complex of P> j. Then [∆]> j is homotopy equivalent to N j+1(∆).

Using this result, and some new results about reduced homologies of links and certain induced

subcomplexes, we show that the higher nerve complexes of ∆ do indeed capture more refined

information about ∆. Specifically, we prove the following:

Theorem 1.0.13 ([DDD+19, Theorem 6.5.1 and Corollary 6.6.1]). We have

1. depth(k[∆]) = inf{i+ j : H̃i(N j(∆)) 6= 0}.
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2. For k ≥ 1 we have hk(∆) = (−1)k−1
∑ j≥1

(d− j
k−1

)
χ̃(N j(∆)) where hk(∆) denotes the kth entry

of the h-vector of k[∆].

In Chapter 7, we explore another point of view that can be taken on the work in the preceding

Chapter; we study the [∆]> j, whose homologies, as Theorem 1.0.12 shows, capture the same in-

formation as those of the higher nerve complexes of ∆. It turns out that the relevant structure of the

[∆]> j can be studied abstractly to great effect.

Definition 1.0.14. A simplicial complex ∆ is balanced if the vertices of ∆ can be colored in such a

way that no face of ∆ contains more than one vertex of a given color.

Balanced simplicial complexes have come up in a variety of applications; see e.g. [BFS87,

BVT13, CV13, JKV19]. The order complex O(P) of any finite poset P has a balanced structure,

which serves as a motivating example. In particular, the [∆]> j are always balanced. It’s common

to study balanced simplicial complexes by their rank selected subcomplexes; the S-rank selected

subcomplex ∆S is the induced subcomplex of ∆ on the vertices with colors in S. The so-called rank

selection theorems of Stanley and Munkres show that homological properties often pass from ∆ to

∆S. Specifically, rank selected subcomplexes of balanced CM complexes remain CM [Sta79], and,

removing a single rank (i.e. color) from ∆ cannot drop the depth by more than 1 [Mun84b].

As Serre’s condition (S`) generalizes the Cohen-Macaulay property, it is natural to consider if

there is any extension of Stanley’s theorem on rank selection of CM complexes to (S`). In Chapter

7 we prove this is indeed the case.

Theorem 1.0.15 (Theorem 7.3.2). Let ∆ be a balanced simplicial complex. If ∆ satisfies Serre’s

condition (S`), then so does every rank selected subcomplex of ∆.

In the case ∆ = O(P) for a finite poset P, O(P> j) is the subcomplex of ∆ with the bottom

j+1 ranks removed. For this case, one can nearly characterize (S`) with the vanishing of reduced

homologies of the O(P> j) (Theorems 7.3.3 and 7.3.4). However, we provide examples (Examples

7.6.4 and 7.6.5) that show Serre conditions cannot be completely characterized in this manner.
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In general, equality need not hold in Munkres’ theorem on rank selection and depth; though the

depth cannot drop by more than 1, it may stay the same or increase wildly. However, we prove that

one can often find a rank which, when removed, drops the depth by exactly 1 (Proposition 7.4.1).

Using this result, we provide a formula for depthk[∆], when ∆ is balanced, in terms of homologies

of rank selected subcomplexes (Theorem 7.4.3).

Recently, some new gluing constructions of Duval-Goeckner-Klivans-Martin have seen coun-

terexamples emerge to several long standing conjectures in algebraic combinatorics [DGKM16,

JKV19, DG18]. In Chapter 8, noticing some common structure among these examples, we con-

sider introduce and consider complexes which have some minimality condition with respect to the

Cohen-Macaulay property.

Definition 1.0.16. Let ∆ be a simplicial complex of dimension d− 1 with facet list {F1, . . . ,Fe},

and denote by ∆Fi the subcomplex of ∆ with facet list {F1, . . . ,Fi−1,Fi+1, . . . ,Fe}. We say ∆ is

minimal CM if ∆ is CM but ∆Fi is not CM for any i.

If Γ is a subcomplex of ∆ generated by facets of ∆, we say ∆ is shelled over Γ if the relative

complex (∆,Γ) is shellable (see [Sta96, Chapter III. 7] or [Sta87, Section 5]). This provides an

extension of the more commonly studied notion of a shellable complex, since shellable complexes

are merely those complexes that are shelled over the empty complex ∅.

In Chapter 8, we prove that every CM simplicial complex is shelled over a minimal CM com-

plex (Theorem 8.3.1). Thus the study of CM complexes reduces, in a large sense, to the study of

minimal ones. We provide various necessary and sufficient conditions for a complex to be minimal

CM (Theorem 8.1.2); for instance, a minimal CM complex must be acyclic, and a ball is minimal

CM if and only if it is strongly non-shellable in the sense of [Zie98].

We use these conditions to show that many important examples in the literature end up being

minimal CM. For instance, the non-partitionable CM complex C3 of [DGKM16], the balanced

non-partitionable CM complex C3 of [JKV19], and the complex Ω3 in [DG18], a 2-fold acyclic

complex with no decomposition into rank 2 boolean intervals, are all minimal CM.
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Chapter 2

Background

2.1 A Historical Note

Commutative algebra traces it’s roots in the study of polynomial equations; various efforts had

been simultaneously made in the 19th century at studying abstract properties of polynomials and

various properties of algebraic integers. For instance, Lagrange’s theorem, a well-known theorem

from group theory, was proven by Lagrange, not in the general form it is known in today, but as a

theorem about the number of different polynomials that appear when one permutes the variables

of a polynomial in n variables all n! different ways [Lag70]. Similar abstractions were made by

Dedekind who introduced the notion of an ideal as a subset of a set of numbers, composed of

algebraic integers that satisfy polynomial equations with integer coefficients [DD18]. A great

leap forward was made by Hilbert who coined the term Ring, and who proved several important

properties of polynomial rings over fields including: Hilbert’s basis theorem which says that such

a polynomial ring is Noetherian, Hilbert’s syzygy theorem which says that such a polynomial ring

is regular, and Hilbert’s Nullstellensatz which provides the key connection between the algebra of

polynomial rings and the geometry of varieties [Hil90]. But it was Emmy Noether who gave the

modern axiomatic definiton of a ring and developed the foundations of commutative ring theory.

Critically, Noether realized the importance of chain conditions such as what is now known as

the Noetherian condition, and she studied and proved the existence of primary decompositions for

ideals in Noetherian rings [Noe21]. Around the same time, Macaulay had proven the unmixedness

theorem for polynomial rings which would be later followed by Cohen’s proof of the same for

power series rings [Mac94, Coh46]. Both of these results would pave the way for the introduction
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of what are now called Cohen-Macaulay rings by Samuel and Zariski, just in time for the so-called

homological revolution of the 1950’s [ZS75].

The seminal text “Homological Algebra" of Cartan and Eilenberg in 1956 provided a complete

redirection, unifying various, at the time, disparate homology theories though their use of dervied

functors [CE56]. Coupled with Grothendieck’s reinvention of algebraic geometry around the same

time, these would pave the way for homological methods in commutative algebra. The Auslander-

Buchsbaum-Serre theorem, proved independently by Auslander-Buchsbaum and Serre in 1956,

was instrumental in showing that localizations of regular rings are regular, and did a great deal to

illustrate the utility of homological methods [AB57, Ser56]; the statement of the localization prob-

lem does not require homological algebra, but the first and standard proof is deeply homological

in nature. Soon after, Gorenstein rings were introduced by Grothendieck, and Bass’s highly influ-

ential paper “On the Unbiquity of Gorenstein Rings" lived up to its title and demonstrated their

ubiquity as well as their homological nature [Har67, Bas63]. From here, the so-called homological

conjectures have spurred forth a great deal of research, including, for instance, prime characteristic

methods and tight closure theory [HH89], the use of Chern classes in local algebra [Rob89], and

the recent use of perfectoid techniques and almost mathematics to attack these questions in mixed

characteristic [And18a, And18b].

In the 1970’s Hochster and Stanley independently, and for different purposes, began to study

what Stanley originally called face rings of simplicial complexes. The upper bound conjecture had

recently been proven for simplicial polytopes by McMullen, but the upper bound conjecture for

simplicial spheres was an important open combinatorial problem of the day. Stanley had the inge-

nious observation that this conjecture would follow if one could show that the face ring of a sim-

plicial sphere must be Cohen-Macaulay, but he did not know how to prove this [Sta75]. Hochster

gave the problem to his student Gerald Reisner who used characteristic p methods and reduction to

characteristic p to establish a combinatorial criterion for a face ring to be Cohen-Macaulay [Rei76];

a consequence of this criterion was that face rings of simplicial spheres are Cohen-Macaulay, and

so these algebraic methods had succeeded in solving an inherently combinatorial problem, thus
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beginning a period of deep interplay between commutative algebra and algebraic combinatorics.

For a wonderful and unique overview on the history of the upper bound theorem see [Sta14].

2.2 Background in commutative algebra

In this section we discuss some neccessary background on commutative algebra; [BH93] serves

as a suitable reference for much of what appears here. Let (R,m,k) be a local ring, that is, R is a

Noetherian ring having a unique maximal ideal m and k := R/m is the so-called residue field of R;

e.g. R is a formal power series ring over a field or over the p-adic integers, or is a homomorphic

image thereof. Let M be a finitely generated R-module with minimal generating set m1, . . . ,mr0 ;

so the minimal number of generators µR(M) of M is r0. Letting {ei} denote the standard basis of

the free module Rr0 , we have a surjective R-linear map p : Rr0 → M given by mapping ei 7→ mi.

We may repeat this process, replacing M by Ker p, and then continue this inductively to obtain a

minimal free resolution

F• : · · · → Rrn An−→ Rrn−1 → ··· → Rr1 A1−→ Rr0 p−→M→ 0

of M. This resolution provides a measure of how badly the module M fails to be free; one numerical

measure of this is the projective dimension pdR M of M i.e., the length of F•. Applying HomR(−,N)

or −⊗R N to a free resolution of M and taking (co)homology of the resulting complex at the ith

spot produces ExtiR(M,N) or TorR
i (M,N), respectively. In particular, one can show that pdR M =

max{i | ExtiR(M,k) 6= 0}= max{i | Tori
R(M,k) 6= 0}. We recall the following definition:

Definition 2.2.1. A local ring (R,m,k) is said to be regular if the minimal number of generators

µR(m) of m is equal to dimR, the Krull dimension of the ring R.

This definition is motivated by algebraic geometry where the local ring OP,Y of a variety V at a

point P is regular if and only if V is nonsingular at P.

The following famous theorem of Auslander-Buchsbaum and Serre shows that the inherently

geometric condtion of regularity can be characterized homologically:
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Theorem 2.2.2 (The Auslander-Buchsbaum-Serre Theorem [Ser56, AB57]). Let (R,m,k) be a

local ring. The following are equivalent:

1. R is regular.

2. pdR M < ∞ for every R-module M.

3. pdR k < ∞.

Expanding on the Auslander-Buchsbaum-Serre theorem, various conditions and invariants de-

fined through properties of Ext or Tor are used to codify and measure singularities. To explore

some of these, we need the following definitions:

Definition 2.2.3. A sequence of elements x = x1, . . . ,xn in R is said to be regular on an R-module

M if we have the following:

1. For each i, xi is a nonzerodivisor on M/(x1, . . . ,xi−1)M.

2. xM 6= M.

When R is local and M is finitely generated, then latter condition is equivalent to x⊆m, i.e.,

that none of the xi are units.

A standard example of a regular sequence (on the ring itself) is the variables x1, . . . ,xn in a

polynomial ring R = k[x1, . . . ,xn] or power series ring R = k[[x1, . . . ,xn]]; in fact, this example

serves as a strong motivation for the introduction of regular sequences and, in a manner that can be

made precise, regular sequences behave much like variables in polynomial or power series rings.

It turns out if R is local, or we are in an appropriate graded setting, then every permnutation of a

regular sequence is regular, and further, every regular sequence can be extended to one of maximal

length. The length of a maximal regular sequence is of particular import:

Proposition 2.2.1. If (R,m,k) is a local ring and M a finitely generated R-module, then the length

of every maximal regular sequence on M is the same and is called the depth of M; it can be

computed as follows:
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depthR M = inf{i | ExtiR(k,M) 6= 0}.

As the above Proposition shows, the depth is a homological invariant and can be thought of as

the homological size of the module involved. On the other hand, the Krull dimension represents the

topological size of the module. In general we have depthR M ≤ dimR M and things are much nicer

when these values coincide; in this case, the geometry of R provides a reasonable representation of

what’s happening algebraically:

Definition 2.2.4. An R-module M is said to be Cohen-Macaulay (CM) if depthM = dimM. We

say M is maximal Cohen-Macaulay (MCM) if depthM = dimR. The ring R is said to be CM if it

is CM as a module over itself, that is, if depthR = dimR.

To paraphrase Mel Hochster, life is really worth living in a Cohen-Macaulay ring [Hoc78].

Cohen-Macaulayness has many advantages, for instance, one can “cut down" by a maximal regular

sequence to get to a ring or module of dimension 0 where many problems become much more

tractable. This is a common approach and will be exploited many times during the body of this

text.

We also consider two refinements of the CM condition. As Proposition 2.2.1 shows, for a CM

local ring R, the first nonvanishing ExtiR(k,R) occurs when i = depthR. It turns out R has a special

structure when this Ext module is as small as possible:

Definition 2.2.5. If M is a finitely generated R-module we set r(M) = dimk ExtdepthR M(k,M) and

call it the (CM) type of M. We say R is Gorenstein if R is CM and r(R) = 1.

Gorenstein rings are nice from multiple angles; indeed, Hyman Bass’s original paper on the

topic expresses many characterization for the Gorenstein property [Bas63]. For instance, they are

exactly the rings which have finite injective dimension over themselves, and the R-dual functor

(−) = HomR(−,R) is especially well-behaved over a Gorenstein ring.

Finally we discuss complete intersections. As long is R is complete, the Cohen structure theo-

rem shows that R can be written as the homomorphic image of a regular local ring. As we tacitly
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implied earlier, going modulo a regular sequence behaves well with respect to many properties,

and, in particular, we should expect modding out a regular sequence in a regular local ring should

maintain a particularly nice set of properties. This is indeed the case, and inspires the following

class of rings, whose name hints at the underlying geometric theme:

Definition 2.2.6. A local ring (R,m,k) is said to be a complete intersection if R̂∼= S/Ifor a regular

local ring S and an ideal I in S generated by a regular sequence on S.

Complete intersections are as good as it gets short of being regular, and, as one might expect,

we have the familiar chain of implications:

Regular⇒ Complete Intersection⇒ Gorenstein⇒ Cohen-Macaulay.

Entire theories are devlpoed for complete intersections which have been difficult to nearly

impossible to adapt to more generality; for example the theory of support varieties developed by

Avramov-Buchweitz [AB00].

2.3 Background in algebraic combinatorics

In this section we survey some needed background in algebraic combinatorics; a suitable reference

for most of the material is [Sta96].

Definition 2.3.1. A simplicial complex ∆ on the set S is a collection of subsets of S such that that

is closed under inclusion, that is to say, if σ ∈ ∆ and τ ⊆ σ , then τ ∈ ∆.

The elements of ∆ are called faces of ∆ and faces which are maximal under inclusion in ∆ are

called facets. The dimension of a face σ ∈ ∆ is defined to be dimσ = |σ |−1 and the dimension of

∆ is defined to be dim∆ = max{dimσ | σ ∈ ∆}. We say ∆ is pure if every facet of ∆ has the same

dimension. It’s common to take S = {1, . . . ,n} for some n; we let V (∆) = {i ∈ S | {i} ∈ ∆} denote

the vertex set of ∆, and it also common to assume V (∆) = S. Throughout this document, we will

always assume the set S is finite.
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Simplicial complexes arise naturally from several areas of mathematics including topology and

commutative algebra. For instance, the proof of the classification theorem for compact surfaces

depends crucially on the fact that every compact surface admits a triangulation [Mun84a]. Any

simplicial complex ∆ has an associated topological space ||∆||, called the geometric realization of

∆, constructed by taking ||∆|| to be the subset of [0,1]S consisting of all functions f satisfying the

following two conditions:

1. {s ∈ S | f (s)> 0} ∈ ∆

2. ∑
s∈S

f (s) = 1.

We then give ||∆|| the subspace topology inherited from [0,1]S. In particular, we can think

about homologies/reduced homologies associated to ∆ though the lens of its geometric realization.

Many properties and invariants only depend on the homeomorphism class of ||∆||, we refer to such

properties as topological properties of ∆. Many properties and invariants we care about from the

algebraic front will turn out to topological.

One significant class of examples of simplicial complexes comes from posets; if P is a finite

poset, we let O(P) be the simplicial complex with vertex set P whose faces consist of all chains

in P. Then O(P) is a simplicial complex and, in particular, this construction allows one to think

of posets topologically. If P is the collection of nonempty faces of a simplicial complex ∆ under

inclusion, then O(P) is called the barycentric subdivision of ∆ and is denoted sd(∆). We have the

following (see e.g. [Gib10]):

Theorem 2.3.2. If ∆ is a simplicial complex then ||∆|| is homeomorphic to ||sd(∆)||.

Thus, in studying topological properties of ∆, we may replace ∆ by sd(∆), which has additional

structure. This approach will be used numerous times in the body of this text, especially in Chapter

7.

Finally, we discuss the Stanley-Reisner correspondence. Given a simplicial complex ∆ with

|V (∆)|= n and a field k, we let I∆ be the ideal of k[x1, . . . ,xn] generated by the nonfaces of ∆, that is
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to say the ideal generated by monomials of the form ∏i∈F xi where F /∈ ∆. On the other hand, if I is

a squarefree monomial ideal in k[x1, . . . ,xn], then I defines a simplicial complex by taking ∆= {σ ⊆

[n] |∏i∈σ xi /∈ I}. If ∆ is a simplicial complex we set k[∆] = k[x1, . . . ,xn]/I∆ and call it the Stanley-

Reisner ring of ∆ over k. The Stanley-Reisner ring of ∆ over k is determined, up to isomorphism, by

the isomorphism class of ∆; in fact, the correspondence is functorial in nature, and it turns out that

the Krull dimension of k[∆] is always equal dim∆+ 1. In particular, this correspondence allows

us to associate any algebraic property of k[∆] to a combinatorial property of ∆ and vice versa.

Among the most important properties in this theory remains Cohen-Macaulayness. To explore

combinatorial ramifications of this property we recall the following:

Definition 2.3.3. If ∆ is a simplicial complex on the vertex set S and σ ⊆ S, then the link of σ in

∆ is the simplicial complex

lk∆(σ) = {T ∈ ∆ | σ ∪T ∈ ∆ and σ ∩T =∅}.

Theorem 2.3.4 (Reisner’s Criterion [Rei76]). Let ∆ be a simplicial complex and k a field. Then

the following are equivalent:

1. k[∆] is Cohen-Macaulay.

2. H̃i−1(lk∆(σ);k) = 0 for all i and σ ∈ ∆ such that i+ |σ |−1 < dim∆.

This result was critical in the proof of the upper bound theorem for simplicial sphere, as it in

particular implies that any simplicial sphere is CM.

Reisner’s criterion was greatly extended by Hochster’s unplublished formula for the bigraded

Hilbert series of local cohomology modules of Stanley-Reisner rings (see [BH93, Theorem 5.3.8]).

One immediate consequence of Hochster’s formula is the following extension of Reisner’s result:

Proposition 2.3.1. We have that depthk[∆]≥ ` if and only if H̃i−1(lk∆(σ);k) = 0 for i and σ ∈ ∆

such that i+ |σ |< `.
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Work of Munkres modifies these characterizations slightly to show that Cohen-Maculay is a

topological property and the depth is a topological invariant of ∆ [Mun84b].
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Chapter 3

Extremal growth of Betti numbers and trivial vanishing of

(co)homology

3.1 Introduction

Let (R,m,k) be a Cohen-Macaulay (CM) local ring. In this chapter we consider the following

conditions on the vanishing of (co)homology.

1. For any finitely generated R-modules M and N, TorR
i (M,N) = 0 for i� 0 implies that either

M or N has finite projective dimension.

2. For any finitely generated R-modules M and N, ExtiR(M,N) = 0 for i� 0 implies that either

M has finite projective dimension or N has finite injective dimension.

Rings satisfying (1) have the least possible flexibility for asymptotic vanishing of homology,

and those satisfying (2) have the least flexibility for asymptotic vanishing of cohomology. While

(1) always implies (2), these conditions are equivalent under mild assumptions, e.g., if R has a

canonical module (Theorem 3.3.2). Following Jorgensen and Şega [Jc04], we say R satisfies trivial

vanishing if (1), and thus (2), holds for R.

In the past few decades, these rigidity conditions have gained much attention, in particular in

connection with the following long-standing conjecture.

Conjecture 3.1.1 (Auslander-Reiten [AR75]). Let R be a Noetherian ring and M a finitely gener-

ated R-module. If ExtiR(M,M⊕R) = 0 for every i > 0, then M is projective.
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Recently, much research activity has been centered on proving this conjecture. However, up

to date, it remains open (see for example [HL04],[HcV04],[CIST18],[NSW17],[Lin17a], and see

[CH10, Appendix A] for a survey on the topic).

The study of trivial vanishing was pioneered by Huneke and Wiegand [HW97] and indepen-

dently by Miller [Mil98], who show this condition holds for hypersurface rings. This was later

extended by Jorgensen to show that any Golod ring satisfies trivial vanishing [Jor99]. On the other

hand, Şega showed that trivial vanishing fails if codim(R)> 2 and the completion R̂ has embedded

deformations (i.e., R̂∼= Q/( f ) for some local ring (Q,p) and Q-regular sequence f ⊆ p2) [Ş03]. In

particular, any complete intersection of codimension larger than one cannot satisfy trivial vanish-

ing, a result originally obtained by Avramov and Buchweitz using the theory of support varieties

[AB00].

To summarize these results, we have a good understanding of the rigid behavior of Ext and

Tor over rings whose modules have Betti numbers of extremal growth; modules over Golod rings

have the fastest growth of Betti numbers while those over complete intersections have the slowest

[Avr10, 5.3.2 and 8.1.2]. A unification of these settings is given by the generalized Golod rings of

which both are examples; see [Avr94] or Subsection 3.2.1 for the definition. While the behavior of

Betti numbers over generalized Golod rings is more subtle, they still possess a wealth of structure.

In particular, any module M over a generalized Golod ring has a rational Poincaré series and these

rational expressions can be made to share a common denominator [Avr94, 1.5]. By studying

growth rates of Betti numbers in general, we establish a sufficient numerical condition for any

CM local ring to satisfy trivial vanishing, and we provide a refined version when R is generalized

Golod. Using this result, we are able to establish the Auslander-Reiten conjecture in a number of

new cases.

In order to describe our main results, we need to introduce some preliminary notation. We

denote by eR(M) (or simply e(R) when M = R) the (Hilbert-Samuel) multiplicity of the R-module

M, and we write µ(M) for the minimal number of generators of M. We let codimR := µ(m)−

dimR denote the codimension of R. In our proofs, we may assume R has an infinite residue field
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(See Proposition 3.3.5 and Remark 3.2.4). Then we can define the Loewy length ``(R) as the

maximum among min{i |mi ⊆ J} where J ranges over the minimal reductions of m (see Definition

3.2.5). We now present our first theorem; see Theorems 8.3 and 3.4.3.

Theorem A. Let R be a CM local ring and set c = codim(R) and ` = ``(R). Assume one of the

following conditions holds.

(1) e(R)< 4c+2`−1−
√

8c+4`−3
2 .

(2) R is generalized Golod and e(R)6 2c+ `−4.

Then R satisfies trivial vanishing.

The authors in [Jc04] provide examples of rings R that do not satisfy trivial vanishing for

which the completion has no embedded deformations. The first example is a Gorenstein ring with

e(R) = 12 and codim(R) = 5. From [Ş03], we know this example is minimal with respect to

codimension, as no such Gorenstein ring exists with codim(R) 6 4. The second example from

[Jc04] has e(R) = 8 and codim(R) = 4. In our next theorem, we show that both examples are

minimal with respect to codimension and multiplicity; see Propositions 3.4.8 and 3.4.10.

Theorem B. Let R be a CM local ring with codim(R) 6= 1 and assume it satisfies one of the

following conditions.

(1) codim(R)6 3.

(2) e(R)6 7.

(3) e(R)6 11 and R is Gorenstein.

Then R satisfies trivial vanishing if and only if the completion R̂ has no embedded deformations.

We note that the assumption codim(R) 6= 1 is necessary by [HW97], and we also remark that

a key point to Theorem B is that CM rings of small codimension and multiplicity tend to be

generalized Golod (see Example 3.2.8). The only case covered by Theorem B where we do not

know R is generalized Golod is the case where Artinian reductions of R have h-vector (1,4,2).
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As a consequence of our work, we are able to verify the Auslander-Reiten conjecture in some

new cases; see Theorem 3.5.3 and Corollary 3.5.4.

Theorem C. Let R be a CM local ring. Assume R satisfies one of the following conditions.

(1) e(R)6 7
4 codim(R)+1.

(2) e(R)6 codim(R)+6 and R is Gorenstein.

Then the Auslander-Reiten conjecture (Conjecture 3.1.1) holds for R. In particular, the conjecture

holds if e(R)6 8, or if e(R)6 11 and R is Gorenstein.

In several other cases we show that a stronger condition is satisfied, namely, the uniform Aus-

lander condition which implies Conjecture 3.1.1 by [CH10]; see Corollary 3.5.1.

In [Ulr84], Ulrich provides conditions on a finitely generated R-module M so that the vanishing

of ExtiR(M,R) = 0 for 1 6 i 6 dim(R) forces R to be Gorenstein. In this sense, M can be used a

test module for the Gorenstein property. In [JL07] and [HH05], some variations on this result are

included. In the last part of the chapter, we expand upon these results by proving the following;

see Theorem 3.6.8. We recall that the ring R is generically Gorenstein if Rp is Gorenstein for every

p ∈ Ass(R).

Theorem D. Let R be a generically Gorenstein CM local ring that has a canonical module. As-

sume there exists a Maximal Cohen-Macaulay R-module M with eR(M) 6 2µ(M) and such that

ExtiR(M,R) = 0 for 16 i6 dim(R)+1. Then R is Gorenstein.

We now describe the layout of this chapter. In Section 3.2, we set the notation that is used

throughout the chapter. We also discuss preliminary results and definitions that are necessary in

our proofs. In Section 3.3, we give the definition of trivial vanishing and consider its behavior under

change of rings, specifically under local maps of finite flat dimension and hyperplane sections. In

Section 3.4, we include our main results; here we prove Theorem A ( Theorems 8.3 and 3.4.3) and

Theorem B (Propositions 3.4.8 and 3.4.10). Section 3.5 includes consequences for the uniform

Auslander condition and the Auslander-Reiten conjecture. In particular, this section includes the
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proof of Theorem C (Theorem 3.5.3). The last section, Section 3.6, includes the proof of Theorem

D (Theorem 3.6.8) and related results.

3.2 Notation and preliminary results

Throughout this chapter we assume all rings are Noetherian and all modules are finitely generated.

Let (R,m,k) be a local ring of dimension d and M be an R-module. We denote by β R
i (M) =

dimk TorR
i (k,M) the ith Betti number of M, µ(M) = β R

0 (M), the minimal number of generators of

M, and PR
M(t) = ∑

∞
i=0 β R

i (M)tn the Poincaré series of M over R. We also write ΩR
i (M) for the ith

syzygy of M and r(R) = dimk ExtdepthR
R (k,M) for its type. We write R̂ for the m-adic completion of

R.

If M has dimension s, we denote by

eR(M) = lim
n→∞

s!λ (M/mn)

ns

the Hilbert-Samuel multiplicity of M, where λ (N) denotes the length of the R-module N. If

M = R, we simply write e(R). The following invariant has appeared in different forms and has

played an important role in several results in the literature (see for example [HH05],[HcV04],

[JL07],[Ulr84]). We provide the following notation and name in order to simplify some of the

statements.

Definition 3.2.1. Let R be a local ring and M a non-zero R-module. We define the Ulrich index of

M, denoted by uR(M), as the ratio

uR(M) :=
eR(M)

µ(M)
.

Remark 3.2.2. We note that when M is CM, we always have the inequality eR(M) > µ(M), and

therefore uR(M)> 1. The Maximal Cohen-Macaulay (MCM) R-modules such that uR(M) = 1 are

the so-called Ulrich modules, therefore the Ulrich index provides a measure of how far a module

is from being Ulrich.
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The next lemma is the content of [JL07, 2.1] stated in our terminology (see also [JL08, 2.1]).

We remark that, although the original version of part (1) assumes N is MCM, its proof does not

actually requires this condition. If R has a canonical module ωR, we write

M∨ := HomR(M,ωR)

for its canonical dual. In the following statement we use the convention β R
−1(N) = 0.

Lemma 3.2.3 ([JL07, 2.1], [JL08, 2.1]). Let R be a CM local ring of dimension d. Let M and N

be R-modules and assume M is CM. Fix n ∈ N and assume one of the following conditions holds

(1) n> dimM and TorR
i (M,N) = 0 for every n−dimM 6 i6 n, or

(2) n > 0, R has a canonical module ωR, N is MCM, and ExtiR
(
M,N∨

)
= 0 for every n+ d−

dimM 6 i6 n+d.

Then β R
n (N)6 (uR(M)−1)β R

n−1(N).

The codimension of (R,m) is defined as codim(R) = µ(m)−dim(R). We note that, if R is Ar-

tinian, then codim(R) is simply µ(m). In the following remark we explain the process of reduction

to the Artinian case.

Remark 3.2.4. Let R be a CM local ring, it is always possible to reduce R to an Artinian ring with

the same codimension and multiplicity in the following way. First, we extend R to the faithfully

flat R-algebra R[X ]mR[X ] to assume R has infinite residue field. Then, we mod out R by a minimal

reduction of m .

We recall that the Loewy length of an Artinian local ring R is defined as ``(R)=min{i |mi = 0}.

We extend this definition to arbitrary CM local rings as follows.

Definition 3.2.5. Let R be a CM local ring. We define the Loewy length of R, denoted by ``(R), as

the maximum of the Lowey lengths of the Artinian reductions of R as in Remark 3.2.4. We remark

that when R is equicharacteristic, ``(R) is achieved when modding out by a general reduction of m

[Fou06, 5.3.3].
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The following result of Gasharov and Peeva will be crucial to the proofs of the main results

of this chapter. While their result is stated for Artinian rings, we include here a version of it for

arbitrary CM local rings. We remark that although part (1) is not explicitly stated therein, it is

included in the proof of [GP90, 2.2].

Proposition 3.2.6 ([GP90, 2.2], [Pee98, Proposition 3]). Let R be a CM local ring of dimension

d and M be an R-module. Set c = codim(R), e = e(R), and ` = ``(R). Then for every n >

max{d−depthM,µ(M)} we have,

(1) β R
n (M)> cβ R

n−1(M)− (e− c− `+2)β R
n−2(M),

(2) β R
n (M)> (2c− e+ `−2)β R

n−1(M), and

(3) If c> 3 and 2c− e+ `−2 = 1, there either the Betti numbers of M are eventually constant,

or there exists C > 1 such that β R
n (M)>Cβ R

n−1(M) for every n� 0.

We now discuss a class of rings introduced by Avramov in [Avr94].

3.2.1 Generalized Golod rings.

An acyclic closure of R is a DG-algebra resolution of k constructed via Tate’s process of adjoining

variables to kill cycles [Tat57]. The process starts with the Koszul complex KR = R〈X1〉, and, for

n > 1, it inductively adjoins variables Xn+1 in homological degree n+ 1 in such a way that the

classes of ∂ (Xn+1) minimally generate the homology H(R〈X6n〉). Here, Xn are exterior variables

if n is odd and divided powers variables if n is even. Setting X =
⋃

n>1 Xn, the resulting acyclic

closure R〈X〉 is a minimal free resolution of k [Gul68, Sch67]. We refer the reader to [Avr10,

Section 6.3] for more information.

In [Avr94], Avramov defines a local ring R to be generalized Golod (of level 6 n) if the DG-

algebra R〈X6n〉 admits a trivial Massey operation for some n > 1 (see [Avr10, 5.2.1]). We notice

that the classical Golod rings are precisely the generalized Golod rings of level 6 1. One of the

main motivations for introducing this class of rings is the following theorem.
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Theorem 3.2.7 ([Avr10, 1.5]). Let R be a generalized Golod ring, then there exists a polynomial

DenR(t) ∈ Z[t] such that for every R-module M there exists pM(t) ∈ Z[t] giving

PR
M(t) =

pM(t)
DenR(t)

.

Moreover, when M = k, all the roots of pk(t) have magnitude one.

We now present some classes of rings that are generalized Golod.

Example 3.2.8. The local ring R is generalized Golod in any of the following situations:

1. R is a complete intersection [Tat57].

2. R is Golod [GL69].

3. µ(m)−depth(R)6 3 [AKM88, 6.4], see also [Avr89, 3.5].

4. R is Gorenstein and µ(m)−depth(R)6 4 [AKM88, 6.4], see also [Avr89, 3.5].

5. R is one link from a complete intersection [AKM88, 6.4].

6. R is two links from a complete intersection and R is Gorenstein [AKM88, 6.4].

7. R is almost a complete intersection of codimension four, and 2 is a unit in R [KPS94, 4.2].

8. R is presented by Huneke-Ulrich ideals of full codimension [Kus95, 5.2].

9. R is Gorenstein and e(R)6 11 [Gup17, 6.9].

10. R is Gorenstein, m4 = 0, and µ(m2)6 4 [Gup17, 6.9].

11. R is presented by certain determinantal ideals of full codimension [AKM88, 6.5].

12. R is a CM stretched ring, or an almost stretched Gorenstein ring [CDG+16, 5.4], [Gup17,

6.1].

13. Certain compressed Artinian rings [Rc14, 5.1], [KcV18, 7.1].
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The following invariant has been studied by other authors as it measures the growth of Betti

numbers of modules [Avr10, Section 4]. We give this invariant the following name and notation

for clarity of our exposition.

Definition 3.2.9. Let M be an R-module of infinite projective dimension. We define the limit ratio

of M, denoted by lrR(M), as the formula

lrR(M) := limsup
n→∞

β R
n+1(M)

β R
n (M)

.

Clearly lrR(M)> 1. We remark that while it is unknown if lrR(M) is always finite (cf. [Avr10,

4.3.1]), this is indeed the case when R is a CM local ring [Avr10, 4.2.6]. The limit ratio is naturally

related to the curvature of M (see paragraph before [Avr10, 4.3.6]), and to the complexity of M,

i.e,

cxR(M) = inf{t ∈ N | there exists β ∈ R such that β
R
n (M)6 βnt−1 for every n> 1}.

Note that, by definition, cxR(M) = 0 if and only if M has finite projective dimension.

In fact, in Problems 4.3.6 and 4.3.9 of [Avr10], Avramov asks whether the limit in the definition

of lrR(M) always exists. By a result of Sun, this limit exists for modules of infinite complexity over

a generalized Golod ring.

Proposition 3.2.10 ([Sun98, Corollary]). Let R be a generalized Golod ring and M be an R-module.

Assume cxR(M) = ∞. Then the limit lim
n→∞

β R
n+1(M)

β R
n (M)

exists, and is greater than 1.

3.2.2 MCM approximations.

The following result of Auslander and Buchweitz, and the subsequent remark, allow us to often

replace arbitrary finitely generated modules for MCM modules when dealing with vanishing of

Ext.
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Theorem 3.2.11 ([AB89, Theorem A]). Let R be a CM local ring with canonical module ωR and

let N be an R-module. Then there exist R-modules Y and L, such that L is MCM, Y has finite

injective dimension, and they fit in a short exact sequence 0→ Y → L→ N→ 0.

The exact sequence from the previous lemma is commonly referred as an MCM approximation

of N.

Remark 3.2.12. We note that, since Y in Theorem 3.2.11 has finite injective dimension, for every

R-module M we have ExtiR(M,N) = 0 for i � 0 if and only if ExtiR(M,L) = 0 for i � 0. In

particular, if M = k , then N has finite injective dimension if and only if L does.

We now recall another notion of complexity. The plexity of N is defined in terms of its Bass

numbers, i.e., µ i
R(N) = dimk ExtiR(k,N). We have,

pxR(N) = inf{t ∈ N | there exists µ ∈ R such that µ
n
R(N)6 µnt−1 for every n> 1}.

For more information about these notions of complexity, see [Avr10, Section 4.2] and [Avr96].

There is a direct relation between the two complexities, we discuss this in the following remark.

Remark 3.2.13. Let R be a CM local ring of dimension d and with a canonical module ωR. Let

0→ Y → L→ N→ 0 be an MCM approximation of N (cf. Theorem 3.2.11), then

µ
i+d
R (N) = β

R
i ((L)

∨) for i > 0, and then, pxR(N) = cxR((L)∨).

To see this, choose x = x1, . . . ,xd a maximal regular sequence on R, L, and (L)∨. The claim now

follows by observing that

µ
i+d
R (N) = µ

i+d
R (L) = µ

i
R/xR(L/xL)

= β
R/xR
i

(
(L/xL)∨

)
= β

R/xR
i

(
(L)∨/x(L)∨

)
= β

R
i ((L)

∨)

for every i > 0, where the third equality holds by Matlis duality.
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3.3 Trivial vanishing

In this section we present the definition of the trivial vanishing condition for CM local rings and

prove some preliminary results.

Definition 3.3.1. A CM local ring R satisfies trivial Tor-vanishing if, for any R-modules M and N,

TorR
i (M,N) = 0 for i� 0 implies M or N has finite projective dimension. We say R satisfies trivial

Ext-vanishing if ExtiR(M,N) = 0 for i� 0 implies M has finite projective dimension or N has finite

injective dimension. If both conditions are satisfied, we simply say R satisfies trivial vanishing.

The relation between the two trivial vanishing conditions is explained by the following result.

Theorem 3.3.2. Let R be a CM local ring.

(1) If R satisfies trivial Tor-vanishing, then R satisfies trivial vanishing.

(2) If R has a canonical module, the two trivial vanishing conditions (Ext and Tor) are equivalent.

For the proof of this theorem we need some preparatory results.

Lemma 3.3.3. Let R be a CM local ring with canonical module ωR. Let M and N be R-modules

and assume that N, M⊗R N∨, and ΩR
1 (M)⊗R N∨ are MCM. Then, Ext1R(M,N) = 0 if and only if

TorR
1 (M,N∨) = 0.

Proof. From the exact sequence 0→ Ω1
R(M)→ Rµ(M) p−→ M → 0, and the natural isomorphism

(−⊗R N∨)∨ ∼= HomR(−,N), we obtain

(Ker(p⊗ idN∨))
∨ ∼= coker(HomR(p,N)).

If Ext1R(M,N) = 0, then coker(HomR(p,N)) = HomR(Ω
1
R(M),N), so we have Ker(p⊗R idN∨) =

Ω1
R(M)⊗R N∨. Thus TorR

1 (M,N∨) = 0. Similarly, if TorR
1 (M,N∨) = 0, then Ker(p⊗R idN∨) =

Ω1
R(N)⊗R N∨ and so coker(HomR(p,N)) = HomR(Ω

1
R(M),N). Thus Ext1R(M,N) = 0, and the

proof is complete.
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Lemma 3.3.4. Let R be a CM local ring of dimension d and with canonical module ωR. Let M

and N be R-modules and assume N is MCM. Then for each n ∈ N the following hold.

(1) If ExtiR(M,N) = 0 for 16 i6 d, then M⊗R N∨ is MCM.

(2) If ExtiR(M,N) = 0 for 16 i6 d +n, then TorR
i (M,N∨) = 0 for 16 i6 n.

(3) If TorR
i (M,N∨) = 0 for 16 i6 d +n, then ExtiR(M,N) = 0 for d +16 i6 d +n.

Proof. The proof of (1) is included in [DEL19, 5.3]. We remark that, although M is assumed to be

MCM in [DEL19], this hypothesis is not needed in the proof.

By (1), the assumption of (2) implies ΩR
i (M)⊗R N∨ is MCM for 06 i6 n. Hence, (2) follows

from applying Lemma 3.3.3.

For (3), since N∨ is MCM, the depth lemma implies ΩR
i (M)⊗N∨ is MCM for d 6 i6 d +n.

Then the conclusion follows from Lemma 3.3.3.

We now consider how the trivial vanishing conditions behave under extensions of finite flat

dimension and hyperplane sections. Many of our arguments draw inspiration from Section 2 of

[CH12]. For our purposes we only consider the case where R is CM. For similar results without

this hypothesis, see [AINSW20].

Proposition 3.3.5. Let (R,m)→ (S,n) be a local ring map with R CM.

(1) Assume S has finite flat dimension over R. If S satisfies trivial Tor-vanishing, then so does R.

(2) Assume S is flat over R. If S satisfies trivial Ext-vanishing, then so does R.

Proof. We begin with (1). Assume TorR
i (M,N) = 0 for i� 0. By replacing M and N with suf-

ficiently high syzygies , we may assume M, N, and M⊗R N are MCM, and that TorR
i (M,N) = 0

for i > 0. Let FM
• and FN

• be minimal free resolutions of M and N, respectively. Then FM
• ⊗R FN

•

is a minimal free resolution of M⊗R N. By [CFF02, 3.4(2)], we have FM
• ⊗R S and FN

• ⊗R S are

minimal free S-resolutions of M⊗R S and N⊗R S, respectively. Therefore,

TorS
i (M⊗R S,N⊗R S) = Hi(FM

• ⊗R S)⊗S (FN
• ⊗R S)∼= Hi((FM

• ⊗R FN
• )⊗R S) = 0,
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where the last equality follows from [CFF02, 3.4(2)]. As S satisfies trivial vanishing, we have

that either M⊗R S or N⊗R S has finite projective dimension over S. Since FM
• ⊗R S and FN

• ⊗R S

are minimal free resolutions of these modules, it follows that either M or N has finite projective

dimension over R, completing the proof.

We now prove (2). Assume S satisfies trivial Ext-vanishing and assume M and N are R-modules

with ExtiR(M,N) = 0 for i� 0. Since ExtiR(M,N)⊗S S ∼= ExtiS(M⊗R S,N ⊗R S) for each i, we

conclude ExtiS(M⊗R S,N⊗R S) = 0 for i� 0. By assumption we must have that M⊗R S has finite

projective dimension over S or N⊗R S has finite injective dimension over S. Therefore, the same

holds over R [FT77, Corollary 1]. This concludes the proof.

The following proposition is crucial for our results as it allows us to pass to complete rings in

the proofs, or even Artinian, and with infinite residue field.

Proposition 3.3.6. Let R be a CM local ring. The following conditions are equivalent

(1) R satisfies trivial Tor-vanishing.

(2) R/xR satisfies trivial Tor-vanishing for an R-regular sequence x ∈m\m2 .

(3) R̂ satisfies trivial Tor-vanishing.

Proof. Each condition (2)-(3) implies (1) by Proposition 3.3.5 (1). We show (1) implies both (2)

and (3), starting with (1) implies (2).

Assume R satisfies trivial Tor-vanishing and let M and N be R/xR-modules which satisfy

TorR/xR
i (M,N) = 0 for i� 0. A standard change of rings spectral sequence (see [Rot09, 10.73])

induces the following long exact sequence (cf. [HJ03, (1.4)]),

M⊗R/xR N Tor1
R(M,N) Tor1

R/xR(M,N) 0

Tor1
R/xR(M,N) Tor2

R(M,N) Tor2
R/xR(M,N)

Tor2
R/xR(M,N) Tor3

R(M,N) Tor3
R/xR(M,N)
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Since TorR/xR
i (M,N) = 0 for i� 0, it follows that TorR

i (M,N) = 0 for i� 0. By assumption M

or N must have finite projective dimension over R. Since x ∈ m \m2, the same holds over R/xR

[Nag75, Corollary 27.5]. The conclusion follows.

We now show (1) implies (3). Let x be a maximal R-regular sequence in m\m2. As (1) implies

(2), we know R/xR satisfies trivial Tor-vanishing. Since R/xR is Artinian, it is complete, and also

R/xR∼= R̂/xR̂. Then R̂ satisfies trivial Tor-vanishing by Proposition 3.3.5 (1).

We are now ready to prove Theorem 3.3.2.

Proof of Theorem 3.3.2. We begin with (2). By Remark 3.2.12 and by passing to sufficiently high

syzygies, we may assume M and N are MCM. The result now follows from Lemma 3.3.4 (2) and

(3).

We continue with (1). Assume R satisfies trivial Tor-vanishing. By Proposition 3.3.6, R̂ satisfies

trivial Tor-vanishing. Since R̂ has a canonical module, R̂ has trivial Ext-vanishing as well, and then

so does R by Proposition 3.3.5 (2).

Remark 3.3.7. In general, trivial vanishing need not ascend along flat local maps. Indeed, any

complete equicharacteristic CM local ring (S,n) is a finite flat extension of a regular local ring R

(Noether normalization lemma). But there exist such S that do not satisfy trivial vanishing (e.g., S

is a complete complete intersection with codim(S)> 2).

Trivial vanishing is also not preserved by modding out a regular element in m2; see Theorem

3.3.8 (2).

We now summarize results in the literature that characterize the trivial vanishing condition in

small codimension. We recall that R has an embedded deformation if there exists a a local ring

(Q,p) such that R∼= Q/( f ), for some regular sequence f ⊆ p2 .

Theorem 3.3.8. Let R be a CM local ring and set c = codim(R), then following hold.

(1) If c6 1, R satisfies trivial vanishing [HW97, 1.9].
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(2) If c> 2 and R̂ has an embedded deformation, then R does not satisfy trivial vanishing [Ş03,

4.2].

(3) If c = 2, then R satisfies trivial vanishing if and only if it is not a complete intersection if and

only if it is a Golod ring [Sch64], [Jc04, 1.1].

(4) If c = 3, or c = 4 and R is Gorenstein, then R satisfies trivial vanishing if and only if R̂ has

no embedded deformation (Proposition 3.4.10), [Ş03, 2.1].

(5) There exists R with c = 4, and another Gorenstein R with c = 5, such that R̂ has no embedded

deformation and R does not satisfy trivial vanishing [GP90, 3.10], [Jc04, 3.3].

3.4 Main results

This section includes our main results. We present several sufficient conditions for a CM local ring

to satisfy trivial vanishing.

The following is an important lemma for the proofs of our results; it allows us to relate the

vanishing of Tor with the growth of the Betti numbers of the modules involved.

Lemma 3.4.1. Let R be a CM local ring and set c = codim(R), e = e(R), and ` = ``(R). Let M

and N be non-free MCM R-modules and assume TorR
i (M,N) = 0 for i� 0, then

(1)

(lrR(M)+1)(lrR(N)+1)6 e.

(2) If the limits in lrR(M) and lrR(N) exist, we also have

lrR(M) lrR(N)6 e− c− `+2.

Proof. We begin with (1). By assumption, Tori
R(Ω

R
j (M),N) = 0 for i� 0 and j > 0. Therefore,
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from Lemma 3.2.3 it follows that

lrR(N)6 uR(Ω
R
j (M))−1 for every j > 0. (3.1)

Fix n ∈ Nn>0 and pick j ∈ N such that β R
j+1(M) > (lrR(M)− 1/n)β R

j (M). From the additivity of

multiplicities, we have

eR(Ω
R
j (M))+ eR(Ω

R
j+1(M)) = eR(R

β R
j (M)) = eβ

R
j (M).

Therefore, either

eR(Ω
R
j (M))6

eβ R
j (M)

lrR(M)−1/n+1
,

or,

eR(Ω
R
j+1(M))6

(lrR(M)−1/n)eβ R
j (M)

lrR(M)−1/n+1
<

eβ R
j+1(M)

lrR(M)−1/n+1
.

Hence, min{uR(Ω
R
j (M)),uR(Ω

R
j+1(M))} 6 e

lrR(M)−1/n+1
. Then from (3.1) we obtain e >

(lrR(M)−1/n+1)(lrR(N)+1). The result of (a) now follows by taking lim
n→∞

.

We continue with (2). We may assume R is Artinian (see Remark 3.2.4). Let i ∈ N and

consider the module Γ = ΩR
i+1(M)⊗R ΩR

i+1(N). By the vanishing of Tor assumption we have

Γ ↪→m2(Rβ R
i (M)⊗R Rβ R

i (N)). Therefore, from [GP90, 2.1], it follows that

(e− c− `+2)β R
i (M)β R

i (N)> µ(Γ) = β
R
i+1(M)β R

i+1(N).

The conclusion now follows by dividing by β R
i (M)β R

i (N) and taking lim
i→∞

.

We now present the first main result of this section which gives a sufficient numerical condition

for a ring to satisfy trivial vanishing.

Theorem 3.4.2. Let R be a CM local ring and set c = codim(R), e = e(R), and `= ``(R). If

e <
4c+2`−1−

√
8c+4`−3

2
, (3.2)
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then R satisfies trivial vanishing.

Proof. By Theorem 3.3.2 it suffices to show R satisfies trivial Tor-vanishing. In order to simplify

the notation, set b := 2c+ `−1, then we have

2e < 2b+1−
√

4b+1,

therefore b− e > 0. We proceed by contradiction. Assume there exists M and N of infinite

projective dimension with TorR
i (M,N) = 0 for i� 0. By replacing M and N with sufficiently

high syzygies, we may assume M and N are MCM. From Proposition 3.2.6 (2) it follows that

min{lrR(M), lrR(N)} > b− e. Therefore, by Lemma 3.4.1 (1) we have e > (b− e)2. After rear-

ranging terms, this inequality becomes

e2− (2b+1)e+b2 6 0,

which implies e> 2b+1−
√

4b+1
2 . This contradiction proves the result.

We are now ready to present the second main result of the section. In this theorem, we prove a

stronger result than Theorem 8.3 under the extra assumption that the ring is generalized Golod (cf.

[HcV04, 3.1]).

Theorem 3.4.3. Let R be a CM local ring that is also generalized Golod and set c = codim(R),

e = e(R), and `= ``(R). Assume

e6 2c+ `−3 (3.3)

then for any R-modules M and N, we have

(1) If TorR
i (M,N) = 0 for i� 0, then cxR(M)6 1, or, cxR(N)6 1.

(2) If ExtiR(M,N) = 0 for i� 0, then cxR(M)6 1, or, pxR(N)6 1.

(3) If, additionally, e6 2c+ `−4, then R satisfies trivial vanishing.
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Proof. By Proposition 3.3.6 we may assume R is complete. By Theorem 3.3.8 (1), (3) and [AB00]

the conclusion holds if c6 2. Therefore, we can assume c> 3. By the assumption and Proposition

3.2.6 (2), (3), every R-module has either infinite complexity, or complexity at most one. We note

that (2) follows from (1), Lemma 3.3.4 (2), and Remark 3.2.13. Then we only show the proof of

(1) and (3).

We begin with (1). By replacing M and N with sufficiently high syzygies, we may assume

M and N are MCM. We proceed by contradiction. Assume cxR(M) = cxR(N) = ∞. In order to

simplify the notation, set b := e− c− `+2. By Proposition 3.2.10 the limits in lrR(M) and lrR(N)

exist and are larger than one. Let γ be either one of these limits. By dividing the inequality in

Proposition 3.2.6 (1) by β R
n−1(-) and taking lim

n→∞
we obtain γ > c− b

γ
. Consider the polynomial

p(z) = z2− cz+ b and notice p(γ) > 0. By assumption p(z) has positive discriminant, c2− 4b >

4(2c+`−3−e)> 0. Hence, p(z) has only real roots. Moreover, c2−4b−(c−2)2> 0. Therefore,

c−
√

c2−4b
2 6 1. Since γ > 1, we have γ > c+

√
c2−4b
2 . Therefore,

lrR(M) lrR(N)>
(c+
√

c2−4b)2

4
>

(c+
√

c2−4b)(c−
√

c2−4b)
4

= b,

which contradicts Lemma 3.4.1. This finishes the proof of (1).

We continue with (3). Under the extra assumption e6 2c+ `−4, Proposition 3.2.6 (2) implies

that if an R-module has finite complexity, then it has finite projective dimension. This concludes

the proof.

Remark 3.4.4. We remark that the proof of Theorem 3.4.3 requires less from R than being as in

Example 3.2.8, or even generalized Golod. Indeed, it only requires that the limit lim
n→∞

β R
n+1(M)

β R
n (M)

exist under vanishing of Tor hypothesis. This strategy was used in [HcV04, 3.1] to prove a similar

result under the assumption m3 = 0.

Remark 3.4.5. By Theorem 3.3.8 (2), it follows that there is no CM local ring R for which R̂

has an embedded deformation, codim(R) > 2, and such that it satisfies (3.2) or the assumption of

Theorem 3.4.3 (3).
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A CM local ring R is stretched if e(R) = codim(R)+ ``(R)−1 [Sal80]. In [CDG+16, 5.4] it is

proved that this class of rings are generalized Golod. As a corollary of Theorem 3.4.3 we recover

the following result which originally appeared in [Gup17].

Corollary 3.4.6. Let R be a stretched CM local ring such that codim(R)> 3, then R satisfies trivial

vanishing.

The following proposition provides information from vanishing of Ext and Tor over a general-

ized Golod rings when one knows the Poincaré series and multiplicity (cf. [Ş03, 1.5]). We recall

the definition of DenR(t) was given in Theorem 3.2.8.

Proposition 3.4.7. Let R be a CM local ring that is also generalized Golod and and set c =

codim(R), e = e(R), and ` = ``(R). Let ρ = min{
√

e− 1,
√

e− c− `+2} and assume DenR(t)

does not have real roots in the interval [1/ρ,1), then

(1) If TorR
i (M,N) = 0 for i� 0, then either cxR(M) or cxR(N) is finite.

(2) If ExtiR(M,N) = 0 for i� 0, then either cxR(M) or pxR(N) is finite.

Proof. As in the proof of Theorem 3.4.3, it suffices to show (1), and also we may assume M and

N are MCM. We proceed by contradiction. Assume cxR(M) = cxR(N) = ∞. By [Avr89, (2.3)],

Theorem 3.2.7, and [Sun98, Corollary] it follows that min{lrR(M), lrR(N)} > ρ . This contradicts

Lemma 3.4.1.

We obtain the following result about trivial vanishing for rings of small multiplicity. We remark

that this result is optimal in the sense that the conclusion does not hold for higher multiplicities

(see Example 3.4.14). (cf. [GP90, 1.2])

Proposition 3.4.8. Let R be a CM local ring such that codim(R) 6= 1. If e(R)6 7, or e(R)6 11 and

R is Gorenstein, then R satisfies trivial vanishing if and only if R̂ has no embedded deformation.

We first discuss when R̂ has embedded deformations.
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Remark 3.4.9. Write R̂ = P/I where (P,n) is regular and I ⊆ p2. Set n = µ(I). Under the assump-

tions of Proposition 3.4.8, one observes from the following proof that if R does not satisfy trivial

vanishing, then codim(R)6 3, or codim(R) = 4 in the Gorenstein case. In these cases, by [Avr89,

3.6] we have that R̂ has a embedded deformation if and only if it is a complete intersection, of type

H(nnn−−−111,,,nnn−−−222) for n> 4 (cf. Remark 3.4.11), or of type G(nnn−−−111) for n> 5

Proof of Proposition 3.4.8. The forward direction is Theorem 3.3.8 (2); we prove the backward

one. By Theorem 3.3.2 it suffices to show R satisfies trivial Tor-vanishing. Set c = codim(R) and

` = ``(R). By Theorem 3.3.8 (3),(4) we may further assume c > 4, and c > 5 if R is Gorenstein.

Moreover, by [Jc04, 1.1] we may also assume `> 3.

If e(R) 6 7, the result follows by applying Theorem 8.3, then we assume R is Gorenstein and

e(R) 6 11. By [Gup17, 6.9] the ring R is generalized Golod and then Theorem 3.4.3 implies that

if TorR
i (M,N) = 0 for i� 0, then either M or N have complexity at most one (notice e(R) = c+2

if ` = 3). Hence, by [GP90, 1.1], one of these modules has finite projective dimension, finishing

the proof.

The following is a general result about codimension three CM local rings. A similar result

for Gorenstein local rings up to codimension four was shown by Şega in [Ş03]. Moreover, the

authors of the ongoing work [AINSW20] have informed us that they show trivial vanishing holds

if µ(m)−depth(R)6 3 (without the CM assumption) in all but some exceptional cases.

We say that a finitely generated R-module M is periodic of period p after n steps if there exist

p ∈ N such that ΩR
i (M)∼= ΩR

i+p(M) for every i> n (cf. [GP90]).

Proposition 3.4.10. Let R be a CM local ring of dimension d and codim(R) = 3. Then R satisfies

trivial vanishing if and only if R̂ has no embedded deformation.

Moreover, if R is not a complete intersection and M and N are R-modules with TorR
i (M,N) = 0

for i� 0, then either M or N is periodic of period two after at most d +1 steps.

We need the following observation prior to the proof the result
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Remark 3.4.11. In [Avr89, 3.6], Avramov explains the structure of CM rings of codim(R) 6 3

and such that R̂ has embedded deformation. Write R̂ = P/I where (P,n) is regular and I ⊆ p2.

Indeed, R̂ has a embedded deformation if and only if it is either a complete intersection, or of type

H(nnn−−−111,,,nnn−−−222) where n = µ(I)> 4. In the latter case, I can be assumed to be of the form J+(x),

where J is an ideal of height two that is generated by the maximal minors of a (n− 1)× (n− 2)

matrix with entries in n, and x is regular on P/J.

Proof of Proposition 3.4.10. We begin with the first statement. First we note that the forward

implication follows from Theorem 3.3.8 (2), hence we may focus on the backward implication.

By Proposition 3.3.6 we may assume R is complete. By Cohen Structure Theorem there exits

a regular local ring (P,n,k) such that R ∼= P/I with I ⊆ n2 and by [BE77, 1.3] the minimal P-

resolution of R has a DG-algebra structure. Set T to be the graded k-algebra TorP(R,k). In what

follows, for a graded k-algebra B such that B0 = k and Bi = 0 for i> 4, we denote by HB the vector

(dimk B1, dimk B2, dimk B3).

Set n = µ(I), τ = r(R) the type of R, and note that by assumption we have n > 4. Then we

have a minimal free S-resolution

0→ Sτ → Sn+τ−1→ Sn→ S→ R→ 0.

Equivalently, HT = (n, n+ τ − 1, τ). By [AKM88, 2.1], there exists a graded k-algebra A and a

vector space W such that T is isomorphic to the trivial extension AnW . We have the following

possibilities for HA [AKM88, 2.1]

R is of type TE, then HA = (3, 3, 0).

R is of type B, then HA = (2, 3, 1).

R is of type G(rrr), then HA = (r, r, 1) for some r > 2.

R is of type H(ppp,,,qqq) then HA = (p+1, p+q, q) for some p, q> 1.
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By comparing HT and HA on each of the cases above, we can immediately see that W 6=

0 unless R is Gorenstein of type G(nnn), or R is of type H(nnn−−− 111,,,τττ). If R is not as in the latter

exceptional cases, then it follows from [AINSW19, 5.3] that R satisfies trivial vanishing. If R is

of type G(nnn) then R also satisfies trivial vanishing by [Ş03, 2.3]. It remains to consider the case

H(nnn−−− 111,,,τττ). By [CVW20, 1.1] we must have p− 1 = q = τ = n− 2. The first statement now

follows by Remark 3.4.11.

We continue with the second statement. By replacing M and N with sufficiently high syzygies,

we may assume M and N are non-free MCM and R has an embedded deformation. Let (Q,p)

be a local ring such that R ∼= Q/( f ) where f ⊆ p2 is a regular sequence. Since R is not a com-

plete intersection, we must have codim(Q) = 2, and then Q is a Golod ring [Sch64]. Moreover,

TorQ
i (M,N) = 0 for i� 0 [AY98, 2.6]. By Theorem 3.3.8 (3) and the Auslander-Buchsbaum for-

mula, it follows that either M or N has projective dimension one over Q. The conclusion now

follows from [Avr89, (1.6)(II)].

3.4.1 Examples

In the remaining part of this section, we provide examples that discuss the sharpness of our results

and the necessity of the conditions. As with previous results, we set c = codim(R), e = e(R), and

`= ``(R).

We begin with the following example.

Example 3.4.12. Let R = k[[x,y]]/(x2,y2). We note that in this case e = 4, c = 2, and ` = 3.

Therefore, R satisfies equality in (3.2). However, R does not satisfy trivial vanishing by Theorem

3.3.8 (2). In fact, we may consider M = R/xR and N = R/yR for which we have TorR
i (M,N) = 0

for every i > 0.

Example 3.4.13. Let R1 = k[[x,y]]/(x,y)2, R2 = k[[z]]/(z2), and R = R1⊗k R2. We note that R has

an embedded deformation, then this is an example of the exceptional case in Proposition 3.4.10.

By Theorem 3.3.8 (2), R does not satisfy trivial vanishing. If fact, we may consider M = R/(x,y)R
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and N = R/zR. We also remark that, since e = 6, c = 3, and ` = 3, the inequality in (3.3) is

satisfied, but not the extra condition of Theorem 3.4.3 (3). Hence, this example shows that this

extra condition is necessary to guarantee trivial vanishing.

Example 3.4.14. Using [GP90, 3.1 3.4], the authors in [Jc04, 3.3] provided some examples of

rings that do not satisfy trivial vanishing. The first one is a Gorenstein ring such that e = 12, c = 5,

and ` = 4. The second one has e = 8, c = 4, and ` = 3. The completion of each these rings does

not have an embedded deformation [GP90, 3.10]. In these examples the right hand side of (3.2)

are approximately 9.9 and approximately 7.3, respectively.

Example 3.4.15. Let R be a Artinian Gorenstein local ring such that c = 6, `= 4, and µ(m2) = 4.

Therefore, e = 12. By [Gup17, 6.9] the ring R is generalized Golod. Thus, by Theorem 3.4.3 (3),

R satisfies trivial vanishing. We note that this conclusion cannot be obtained from Theorem 8.3.

We now present examples that show that the converse of our theorems do not hold.

Example 3.4.16. Assume R is a stretched CM local ring such that c > 3. By Corollary 3.4.6 R

satisfies trivial vanishing. However, if one fixes e and c, then for `� 0, the inequality (3.2) does

not hold. If R is Artinian Gorenstein and almost stretched, i.e., µ(m2) 6 2, then R is generalized

Golod and satisfies trivial vanishing [Gup17, 6.3]. However if R is Artinian and has h-vector

(1,5,2,2,2,2,1), then (3.3) fails.

Example 3.4.17. For every integer τ > 2, Yoshino constructed non-Gorenstein rings that do not

satisfy trivial vanishing and such that e= 2τ+2, c= τ+1, and `= 3 [Yos03, 4.2]. These examples

show that for rings that do not satisfy trivial vanishing, the distance between e and the right hand

side of (3.2) can be as large as possible, even if we assume the ring is not Gorenstein. Moreover,

for τ = 2, this example also shows that the extra condition of Theorem 3.4.3 (3) is necessary to

conclude trivial vanishing.
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3.5 The uniform Auslander condition and the Auslander-Reiten conjecture

In this section we prove that the Auslander-Reiten conjecture holds for a ring with small multiplic-

ity with respect to its codimension. We also provide new classes of rings that satisfy the following

condition.

Definition 3.5.1. The ring R satisfies the uniform Auslander condition (UAC) if there exists n ∈N

such that whenever ExtiR(M,N) = 0 for i� 0, this vanishing holds for i> n.

In [CH10] the authors prove that if R satisfies the UAC then it satisfies Conjecture 3.1.1. Some

classes of rings that satisfy this condition are complete intesection rings, Golod rings, CM local

rings of codimension at most two, and Gorenstein rings of codimension at most four [AB00, Jc04,

Ş03]. We refer the reader to [CH10, Appendix A] for a survey on the topic and to [AINSW20] for

related results.

As a corollary of our results in the previous section, we are able to provide new classes of

rings that satisfy UAC and hence Conjecture 3.1.1. In particular, part (3) implies that the examples

constructed in [Jc04] for the failure of UAC are minimal with respect to codimension, and part (4)

shows they are minimal with respect to multiplicity.

Corollary 3.5.2. Let R be a CM local ring and assume R satisfies one of the following conditions.

(1) R satisfies the inequality (3.2).

(2) R is as one of (3)-(8) in Example 3.2.8 and satisfies the inequality (3.3), or R is any general-

ized Golod ring and satisfies the assumption of Theorem 3.4.3 (3).

(3) codim(R)6 3.

(4) e(R)6 7, or e(R)6 11 and R is Gorenstein.

Then R satisfies UAC and thus the Auslander-Reiten conjecture (Conjecture 3.1.1) holds for R.
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Proof. We can assume that R is complete [CH10, 5.5]. Let M and N be R-modules such that

ExtiR(M,N) = 0 for every i� 0. By Remark 3.2.12 and by replacing M for a sufficiently high

syzygy, we may assume M and N are MCM.

If R is as in (1), then it satisfies trivial vanishing and hence UAC.

Assume now R is as in (2). By Theorem 3.4.3, M or N∨ has finite complexity. Therefore, by

B [Avr89, 1.5] for (3)-(6),

B [KPS94, proof of 5.2] for (7), and

B [Avr89, 2.4], [Kus95, 5.2] for (8),

we have that M or N∨ has finite complete intersection (CI) dimension (see [AB00]). Therefore,

R satisfies UAC by [AB00, 4.7, 4.1.5]. The second statement of (2) is clear as R satisfies trivial

vanishing.

We now consider (3), we may assume codim(R) = 3 [Jc04, 1.1]. In this case Proposition 3.4.10

and its proof show that when R does not satisfy trivial vanishing, then one of M or N∨ has finite

CI-dimension. Thus the conclusion follows as before.

For (4), from the proof of Proposition 3.4.8 it follows that R satisfies trivial vanishing if

codim(R) > 4, or if codim(R) > 5 in the Gorenstein case. The result now follows from (3) and

[Ş03].

The following is the main theorem of this section.

Theorem 3.5.3. Let R be a CM local ring and set c = codim(R). Assume R satisfies one of the

following conditions.

(1) e(R)6 7
4c+1.

(2) e(R)6 c+6 and R is Gorenstein.

Let M be an R-module such that ExtRi (M,M⊕R) = 0 for i� 0. Then M has finite projective

dimension, i.e., the Auslander-Reiten conjecture (Conjecture 3.1.1) holds for R.
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Proof. Proceeding as in Proposition 3.3.5 (2), we may assume R is complete and k is infinite. We

may also replace M by ΩR
j (M) for any j ∈ N to assume M is MCM and ExtRi (M,M⊕R) = 0 for

i > 0 [HL04, 1.2]. Hence by standard arguments we may assume R is Artinian (see Remark 3.2.4).

We prove (1) first. Set `= ``(R) and b = 2c+ `−1. Notice that the right hand side of (3.2) is

f (b) := b+ 1
2−
√

b+ 1
4 , which is an increasing function for b> 0. By [HcV04, 4.1] the conclusion

holds if ` 6 3. Thus we may assume ` > 4 and hence f (b) > 2c+ 7
2 −
√

2c+ 13
4 . Let g(c) be the

right hand of the last inequality, viewed as a function of c. It suffices to show g(c)> 7
4c+1 which

is equivalent to 1
16(c−6)2 + 3

4 > 0. The result follows.

We now prove (2). If e(R)6 11, the conclusion follows from Corollary 3.5.2 (4), and if c> 7,

it follows from part (1) of this theorem. Hence we may assume c = 6 and e(R) = 12. By [HcV04,

4.1] and Theorem 8.3, it remains to consider when ` = 4. Therefore we are in the situation of

Example 3.4.15, and then R satisfies trivial vanishing. This finishes the proof.

Corollary 3.5.4. Let R be a CM local ring such that e(R)6 8. Then the Auslander-Reiten conjec-

ture holds for R.

Proof. By Corollary 3.5.2 we may assume codim(R)> 4. The conclusion then follows from The-

orem 3.5.3.

Remark 3.5.5. We note that if e(R) = 9, the only CM local rings for which we do not know

Conjecture 3.1.1 holds are those whose Artinian reductions have h-vectors (1,4,3,1), (1,4,2,2),

or (1,4,2,1,1). If e(R) = 12 and R is Gorenstein, then we do not know if this conjecture holds

when these h-vectors are (1,5,5,1), (1,5,4,1,1), or (1,5,3,2,1); the case (1,5,2,2,1,1) follows

from Theorem 3.4.3 or from [Gup17, 6.5].

3.6 Criteria for the Gorenstein property

In this section we expand upon several results in the literaure which provide criteria for R to be

Gorenstein based on vanishing of Ext.
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We begin with the following lemma. By using this result with M =ωR , we drop the generically

Gorenstein condition from [JL08, 2.4] (cf. [JL07, 2.4]). This in turn allows us to provide a more

general statement for [JL08, 2.4].

Lemma 3.6.1 ( [CSV10, A.1]). Let R be a CM local ring and M be an R-module such that eR(M) =

e(R). If M is not free, then β R
1 (M)> β R

0 (M).

We obtain the following criterion for the Gorenstein property. Similar results have appeared in

the work of several authors (see [HH05], [JL08], [Ulr84]). We recall that the notation uR(M) was

introduced in Definition 3.2.1.

Theorem 3.6.2. Let R be a CM local ring of dimension d and with canonical module ωR. Let M

be a CM R-module with uR(M)< 2. Assume ExtiR(M,R) = 0 for every d−dimM+16 i6 d+1.

Then R is Gorenstein.

Proof. The result follows from Lemma 3.6.1 by applying Lemma 3.2.3 (2) with N = ωR.

In [JL07], Jorgensen and Leuschke ask the following question.

Question 3.6.3 ([JL07, 2.6]). If R is a CM local ring with canonical module ωR, does β1(ωR) 6

β0(ωR) imply that R is Gorenstein?

They remark that a positive answer to this question would provide improvements to their results

[JL07, 2.2] and [JL07, 2.4]. We give a positive answer to Question 3.6.3 in a particular case, which

is sufficient to produce the desired improvement of [JL07, 2.4], as well as [HH05, 3.4] .

We first recall the following result of Asashiba and Hoshino. In the following statement, we

denote by M∗ the R-dual HomR(M,R).

Lemma 3.6.4 ([AH94, 2.1]). Let M and N be R-modules. Assume M is faithful and that we have

an exact sequence 0→ N
ϕ−→ R2 ψ−→M→ 0. Then there exists maps α , β , and an isomorphism θ
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that make the following diagram commute.

0 N R2 M 0

0 M∗ (R2)∗ N∗

ϕ

α

ψ

θ β

ψ∗ ϕ∗

We say that an R-module M has constant rank if there is an r ∈ N such that Mp
∼= Rr

p for all

p ∈ Ass(R). In this case, we refer to r as the rank of M and denote it by rankM.

We derive our result on Question 3.6.3 from the following more general result.

Proposition 3.6.5. Let R be a CM local ring. Assume there exists a non-free faithful MCM R-

module M, such that it has constant rank and max{β R
0 (M),β R

1 (M)}6 2. Then

(1) M is periodic of period two and is reflexive, i.e., the natural map M → M∗∗ is an isomor-

phism.

(2) If R is not Gorenstein, then it does not satisfy trivial vanishing.

Proof. We begin with (1). Since M is not free, M has infinite projective dimension. Therefore, we

must have β R
0 (M) = β R

1 (M) = 2 and rank(M) = rank(ΩR
1 (M)) = rank(ΩR

2 (M)) = 1 by additivity of

ranks. By Lemma 3.6.4, we have the following commutative diagram, where θ is an isomorphism.

0 ΩR
1 (M) R2 M 0

0 M∗ (R2)∗ (ΩR
1 (M))∗

ϕ

α

ψ

θ β

ψ∗ ϕ∗

By commutivity of the diagram, we have that α is injective and, by the snake lemma, we have that

Kerβ ∼= cokerα . Since M is MCM and Kerβ embeds into M, we have that either dim(cokerα)= d,

or cokerα = 0. On the other hand,

rank(cokerα) = rank(M∗)− rank(ΩR
1 (M)) = 0.
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Therefore, cokerα = 0 and then α is an isomorphism. Hence, β is an isomorphism as well since

rank(cokerβ ) = rank(M)− rank((ΩR
1 (M))∗) = 0.

We conclude that M ∼= M∗∗, Ext1R(M
∗,R) = 0, and that we have the following exact sequence

0→M∗→ R2→M→ 0.

Since (ΩR
1 (M))∗ ∼= M, we have that (Ω1

R(M))∗ is faithful, and then so is ΩR
1 (M). Then we may

apply Lemma 3.6.4 as above to obtain isomorphisms

Ω
R
1 (M)∼= (ΩR

2 (M))∗ ∼= (ΩR
1 (M))∗∗.

We also conclude Ext1R(M,R) = Ext1R((Ω
R
1 (M))∗,R) = 0 and that we have an exact sequence 0→

M→ R2→M∗→ 0. Splicing this sequence with the previous sequence 0→M∗→ R2→M→ 0

repeatedly, we construct a resolution of M. Hence, conclusion of (1) follows.

We observe that this argument shows ExtiR(M,R) = 0 for every i > 0 and hence (2) follows.

This finishes the proof.

Remark 3.6.6. The resolution constructed in the proof of Proposition 3.6.5 is an example of a

totally acyclic resolution of M. That is, a complex F• : · · · → F2→ F1→ F0→ F−1→ F−2→ ···

such that M ∼= coker(F1 → F0) and such that F and F∗ are exact. Modules admitting such a

resolution are called totally reflexive [AM02, 2.4].

With Proposition 3.6.5 in hand, we provide our result on Question 3.6.3. The ring R is gener-

ically Gorenstein if Rp is Gorenstein for every p ∈ Ass(R), or equivalently, if ωR has constant

rank.

We recall that r(R) denotes the type of R.

Corollary 3.6.7. Let R be a generically Gorenstein CM local ring such that r(R) = 2. Then

β R
1 (ωR)> 2.

Proof. We proceed by contradiction. Assume β R
1 (ωR)6 2, then Proposition 3.6.5 (1) implies that
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(ωR)
∗ is MCM and we have an exact sequence 0→ωR→ R2→ω∗R→ 0. By canonical duality, we

have the sequence 0→ (ω∗R)
∨→ ω2

R→ R→ 0 which splits. Then, by applying canonical duality

again, we conclude ωR free. The latter implies R is Gorenstein, which contradicts the assumption

r(R) = 2.

The following is the main result of this section. This theorem provides direct improvements to

[JL07, 2.4] and [HH05, 3.4].

Theorem 3.6.8. Let R be a generically Gorenstein CM local ring of dimension d and with canon-

ical module ωR. Assume there exists an MCM R-module M with uR(M) 6 2 and such that

ExtiR(M,R) = 0 for 16 i6 d +1. Then R is Gorenstein.

Proof. From Lemma 3.3.4 (1) it follows that M⊗R ωR is MCM. By Lemma 3.3.4 (2) we have an

exact sequence

0→M⊗R Ω
1
R(ωR)→M⊗R Rr(R)→M⊗R ωR→ 0 (3.4)

whence it follows M⊗R Ω1
R(ωR) is MCM as well. Therefore,

eR(M) = eR(M⊗R ωR)> µ(M⊗R ωR) = µ(M)r(R).

This implies r(R)6 2. If r(R) = 1, R is Gorenstein. Then we may assume r(R) = 2 which implies

Ω1
R(ω) has rank 1 by (3.4). Therefore,

eR(M) = e(M⊗R Ω
1
R(ωR))> µ(M⊗R Ω

1
R(ωR)) = µ(M)µ(Ω1

R(ωR)).

Hence µ(Ω1
R(ωR))6 2 which contradicts Corollary 3.6.7. This finishes the proof.
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Chapter 4

Hom and Ext, revisited

4.1 Introduction

Let R be a commutative Noetherian local ring and M,N be finitely generated R modules. The

purpose of the work in this chapter is to understand a large and growing body of results which take

the form: if HomR(M,N) has some nice properties and Ext1≤i≤n
R (M,N) = 0 for some n, then M

and N must be nice themselves.

For example, about 50 years ago Vasconcelos proved that if R is a Gorenstein ring of dimension

1, and M is a maximal Cohen-Macaulay (MCM) R-module such that EndR(M) is free, then M

is free [Vas68]. Ulrich proposed tests for the Gorensteiness of R using Ext-vanishing between

certain modules and R [Ulr84]. Huneke and Leuschke proved an interesting special case of the

famous Auslander-Reiten conjecture. One of the main results says that if R is a normal domain

of dimension d and M is a module locally free in codimension one, and if Ext1≤ j≤d
R (M,M) =

Ext1≤ j≤2d+1
R (M,R) = 0, then M must be free [HL04]. These influential results have been examined

and extended quite frequently, see [ACST17, GT17, Lin17b, Lin17a, CIST18] for a sample of

some of this interesting recent work and the references therein. These papers all serve as the main

inspiration for this chapter.

Our approach to the questions above is to first study the small dimension or depth situation.

This is important since most of the proofs involve an inductive process by localization or cutting

down with a regular sequence. Surprisingly, this simple-minded approach makes the problems

more transparent and yields significant improvements; we can usually remove assumptions such

as Cohen-Macaulayness, constant rank, M = N, etc., altogether. At the same time, proofs become
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shorter and more elementary. In fact, we do not need much preparatory material beyond graduate

level commutative algebra.

We now describe this chapter in more detail. Let R be a local ring of dimension d and depth

t. In Section 4.2 we define two categories of modules that are crucial for our analysis. One is

called ΩDeep(R), which consists of modules M that are a syzygy of some high-depth module.

That is, such an M fits into an exact sequence 0→M→ F → X → 0 with F free and depthX ≥ t.

Somewhat dually, the second category, DF(R), consists of M such that there is an exact sequence

0→ R→Mn→ X → 0 with depthX ≥ t (DF stands for “deeply faithful"). We establish a number

of simple but useful results about these categories. For example, they behave well with respect to

“cutting down by a general regular sequence", and any object lying in their intersection must have

a free summand (we actually prove a bit more, see Theorem 4.2.8).

In Section 4.3 we study the question: when does HomR(M,N) have a free summand or is free?

Our first main result is:

Theorem 4.1.1. Suppose that depthM≥ t and N ∈ΩDeep(R). Assume that HomR(M,N)∈DF(R)

and Ext16i6t−1
R (M,N) = 0. Then N has a free summand.

This allows us to generalize both the results by Vasconcelos and Huneke-Leuschke mentioned

above in Corollary 4.3.3 and Theorem 4.3.11. We also prove that if R and M satisfy Serre’s condi-

tion (S2) and HomR(M,R) is free, then M is free (see 4.3.7). The key point here is the dimension

one case. Lastly, we extend a result by Goto-Tatakashi to higher rank modules (see Theorem

4.3.13).

In Section 4.4 we study when HomR(M,N)∼= Nr for some r > 0. Again we start with the small

depth or dimension situation and build from there. Our main technical result is:

Theorem 4.1.2. Assume that depth(N) = t, depth(M)> t, Ass(N) = Min(N), and for some s≥ t,

Ext16i6s
R (M,N) = 0. If HomR(M,N)∼= Nr for some r ∈ N, then M/IM ∼= (R/I)r for I = Ann(N).

Furthermore, if one of the following holds:

1. N is faithful.

51



2. Ass(R)⊆ Ass(N) and s > 0.

then M ∼= Rr.

We give some applications, including a modest case of the Auslander-Reiten conjecture (Corol-

lary 4.4.7).

In the last section, we address a couple of related topics: a test for Gorensteiness inspired

by an old result of Ulrich (Corollary 4.5.1), and an equivalent condition for vanishing of Ext

modules that slightly extends results by Huneke-Hanes, Huneke-Jorgensen and Huneke-Leuschke

in [HH05, HJ03, HL04], see Corollary 4.5.4.

4.2 Two key categories

Throughout (R,m) is a Noetherian local ring with dim(R) = d and depth(R) = t. In this section we

define and establish basic facts about two categories of modules that play a crucial role for many

of our proofs.

But first, we set some notation. We let µ(M) denote the minimal number of generators of a

module M and l(M) its length. We say that M is generically free if Mp is free over Rp for any

p ∈ Ass(R). Let (Si) denote Serre’s condition: depthMp ≥min{i,htp} for all p ∈ SpecR.

M is said to be free in codimension n if Mp is free for each prime p of height at most n. We

say M has a rank if it is generically free and the rank over all p ∈ Ass(R) is constant. We use the

notation M | N to say that M is a summand of N.

For R, being (G j) means Gorenstein in codimension j. Let e(x,M) denote the multiplicity

of M with respect to a sequence x in R. Without further comment, we will often use the nota-

tion (−) = −⊗R R/x when the sequence x is clear from context. In case R is Cohen-Macaulay

and admits a canonical module ωR then, for an R-module M, we set M∨ = HomR(M,ωR). In

case R is Cohen-Macaulay and admits a canonical module ωR then, for an R-module M, we set

M∨ = HomR(M,ωR). As usual, mod(R) and CM(R) denote the category of finitely generated and

maximal Cohen-Macaulay modules respectively. We let Deep(R) = {X | depth(X)> t}. If C is a
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subcategory of R-modules, we use the notation

ΩC := {M | ∃ 0→M→ Rn→ X → 0 exact for some X ∈ C }.

We let Ωi+1C := ΩΩiC . The first category that is important to us is ΩDeep(R). That is:

ΩDeep(R) := {M | ∃ 0→M→ Rn→ X → 0 exact for some n ∈ N and X ∈ Deep(R)},

We also consider:

DF(R) := {M | ∃ 0→ R→Mn→ X → 0 exact for some n ∈ N and X ∈ Deep(R)}.

Recall that M is said to be a minimal syzygy if there is an exact sequence of the form 0→M→

Rµ(X) → X → 0. We define Ωmin Deep(R) = {M | ∃ 0→ M → Rµ(X) → X → 0 exact with X ∈

Deep(R)}. If M ∈Ωmin Deep(R), we say that M is a minimal syzygy in ΩDeep(R).

If M ∈Deep(R), we say that M is a deep module, and likewise if M ∈DF(R), we say that M is

deeply faithful.

Remark 4.2.1. 1. R is in ΩDeep(R)∩DF(R). Any t-syzygy module is in Deep(R) (in other

words Ωt mod(R)⊆ Deep(R)).

2. Both ΩDeep(R) and DF(R) are subcategories of Deep(R).

3. It is clear that for any X ∈ DF(R), X is faithful, and when depth(R) = 0 deeply faithful and

faithful modules coincide.

4. One can see that

Ω
t+1(modR)⊆ΩDeep(R).

5. If R is Cohen-Macaulay, then Deep(R) = CM(R). Furthermore, if R admits a canonical

module ω , then R is Gorenstein if and only if ΩCM(R) = CM(R). Indeed, if ω ∈ΩCM(R)
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then there is an exact sequence 0→ ω → Rn→C→ 0 with C ∈ CM(R). Dualizing into ω ,

we have an exact sequence 0→ C∨→ ωn → R→ 0. This sequence splits, so R has finite

injective dimension and is thus Gorenstein. For the converse, if R is Gorenstein and M is

maximial Cohen-Macaulay, then M is reflexive. Then dualizing the exact sequence 0→

Ω1
R(M)→ Rµ(M∗)→M∗→ 0 gives an exact sequence 0→M→ Rµ(M∗)→ (Ω1

R(M))∗→ 0.

6. Suppose R is Cohen-Macaulay and admits a canonical module ω . Then, from canonical

duality, we have

ΩCM(R) = {X∨ | X ∈ CM(R),∃ ωn
R� X , for some n ∈ N},

and

DF(R) = {X∨ | X ∈ CM(R),∃ Xn� ωR, for some n ∈ N}.

7. If M is a semi-dualizing module (that is, if the natural map R→ HomR(M,M) is an isomor-

phism and Exti>0
R (M,M) = 0), then M ∈ DF(R). See Lemma 4.3.1.

Remark 4.2.2. When the proof of a statement involves finitely many objects in Deep(R), one

can use prime avoidance to find a regular sequence x of length at most t on all of them. In such

situations we shall often say, without further comments, that x is a general regular sequence.

We illustrate the above remark in the following simple but useful result:

Lemma 4.2.1. Suppose t > 0. If M ∈ ΩDeep(R) (resp. M ∈ DF(R)) then, for a general regular

sequence x, we have M ∈ΩDeep(R) (resp. M ∈ DF(R)).

Proof. As M ∈ΩDeep(R) (resp. M ∈ DF(R)), there is an exact sequence 0→M→ Rn→ X → 0

with X ∈ Deep(R) (resp. 0→ R→Mn→ X → 0 with X ∈ Deep(R)). Then, as in Remark 4.2.2,

for sufficiently general x ∈m, x is regular on R and X , and so the sequences remain exact modulo

x. The result then follows from induction.

Lemma 4.2.2. Assume that t = 0, 0 6= M ∈ΩDeep(R) = Ωmod(R). The following are equivalent.
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1. R |M.

2. M is faithful.

3. Soc(R)* Ann(M).

4. M is not a minimal syzygy on R.

Proof. (4)⇒ (1)⇒ (2)⇒ (3) are clear. For (3)⇒ (4), assume that M is a minimal syzygy.

Consider the sequence 0→ M → Rn → X → 0 with n = µ(X). If M is free then X has finite

projective dimension, hence free, impossible. Thus M is not free, so it is a part of an infinite

minimal resolution. Therefore we have M ⊆mRn for some n, so Soc(R)M = 0.

Lemma 4.2.3. Let 0→ X
i1−→ Y

p1−→ Z→ 0 be an exact sequence.

1. If Y ∈ΩDeep(R) and Z ∈ Deep(R) then X ∈ΩDeep(R).

2. If X ∈ DF(R) and Z ∈ Deep(R) then Y ∈ DF(R).

Proof. 1. Since Y ∈ΩDeep(R), there is an exact sequence of the form 0→Y
i2−→ Rn p2−→C→ 0,

where C ∈Deep(R). Letting P be the pushout along p1 and i2, we have the following pushout

diagram with exact rows and columns:

0 0 0

0 X Y Z 0

0 X Rn P 0

0 0 C C 0

0 0 0

i1 p1

i2 ◦ i1

i2

p2
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Since Z,C ∈ Deep(R), it follows that P ∈ Deep(R) which shows that X ∈ΩDeep(R).

2. Since X ∈DF(R), there is an exact sequence of the form 0→ R
i2−→ Xn p2−→C→ 0 for some n.

We also have the exact sequence 0→ Xn in1−→ Y n pn
1−→ Zn→ 0. Letting P be the pushout along

p2 and in1, we have the following pushout diagram with exact rows and columns:

0 0 0

0 R Xn C 0

0 R Y n P 0

0 0 Zn Zn 0

0 0 0

i2 p2

in1 ◦ i2

in1

pn
1

But then P ∈ Deep(R) since C,Zn ∈ Deep(R), and thus Y ∈ DF(R), as desired.

Lemma 4.2.4. Assume that depth(R) = 0, M ∈ ΩDeep(R), and N ∈ DF(R). If there exists a

surjection M� N (resp. an injection N ↪→M), then R |M (resp. R |M and R | N).

Proof. First, assume that M � N. As M ∈ ΩDeep(R), if R - M then Soc(R)M = 0 by Lemma

4.2.2.

Since M � N, Soc(R)N = 0. But N is a nonzero faithful module which is a contradiction.

Hence R |M.

Now assume that N ↪→M. Then M,N are both faithful and in ΩDeep(R), so they have a free

summand by Lemma 4.2.2.

Proposition 4.2.3. Suppose that M,N ∈ Deep(R) and Ext16i6t−1
R (M,N) = 0. Then for any gen-

eral regular sequence x of length n ≤ t we have HomR(M,N) ∼= HomR(M,N) when n < t, and
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HomR(M,N) ↪→ HomR(M,N) when n = t.

Proof. This is standard argument. Apply HomR(−,N) to the short exact sequence

0→M→M→M/xM→ 0

and proceed by induction using [BH93, Lemma 1.2.4]. Note this does not require x to be a regular

sequence on R.

Lemma 4.2.5. If M ∈Ωmin Deep(R), then for a general regular sequence x⊆m, we have M/xM ∈

Ωmin Deep(R/xR).

Proof. Since M is a minimal syzygy, there is an exact sequence 0→ M→ Rµ(X)→ X → 0 with

X ∈ Deep(R). Then any regular sequence x on X suffices.

Lemma 4.2.6. If M ∈ ΩDeep(R), then R/xR | M/xM if and only if R | M, for a general regular

sequence x.

Proof. One direction is clear. If R |M, then M is not a minimal syzygy in ΩDeep(R). Therefore

M is not a minimal syzygy in ΩDeep(R) which implies R |M.

Lemma 4.2.7. If M ∈ΩDeep(R)∩DF(R) then R |M.

Proof. For t = 0 the result follows from Proposition 4.2.2. By Lemma 4.2.1 we may find a regular

sequence x so that M/xM ∈ΩDeep(R/xR)∩DF(R/xR). So R/xR |M/xM which implies R |M by

Lemma 4.2.6.

Theorem 4.2.8. Suppose that M ∈ΩDeep(R) and N ∈ DF(R).

1. If M� N then R |M.

2. If there is an exact sequence 0→ N→M→ X → 0 such that X ∈ Deep(R) then R |M.

Proof. We cut down using a general regular sequence and appeal to 4.2.4, 4.2.6, and 4.2.7.

57



4.3 When does HomR(M,N) contain a free summand?

For this section we retain the notation of Section 4.2.

Lemma 4.3.1. Let M,N be such that and Ext1≤i≤t−1
R (M,N) = 0.

1. Suppose N ∈ΩDeep(R). Then HomR(M,N) ∈ΩDeep(R).

2. Suppose HomR(M,N) ∈ DF(R) and N ∈ Deep(R). Then N ∈ DF(R).

Proof. Consider part (1). Let

· · · → F1→ F0→M→ 0

be a minimal free resolution of M. Since Ext16i6t−1
R (M,N) = 0 we have the following exact

sequence, given by applying HomR(−,N) to the resolution:

0→ HomR(M,N)→ Nl0 → Nl1 → ·· · → Nlt →C→ 0

Split this sequence into

0→ HomR(M,N)→ Nl0 → X → 0

and

0→ X → Nl1 → ··· → Nlt →C→ 0

Since N ∈ΩDeep(R) it follows from the latter sequence that X ∈Deep(R), and so HomR(M,N) ∈

ΩDeep(R), applying Lemma 4.2.3 to the former sequence.

Part (2) is proved similarly, also using Lemma 4.2.3.

Lemma 4.3.2. Suppose t = 0 and R |M∗. Then R |M.

Proof. Take a minimal presentation Rm A−→ Rn → M → 0 of M. This sequence induces an exact

sequence of the form

0→M∗→ Rn AT
−→ Rm→ TrM→ 0,
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where TrM denotes the Auslander transpose of M. Setting l = µ(M∗), we have another exact

sequence

Rl B−→ Rn AT
−→ Rm→ TrM→ 0

Since R |M∗, by Lemma 4.2.2, M∗ is not a minimal syzygy, and so B must contain a unit. Thus

there are invertible matrices P and Q so that QBP−1 has the block form

1 0

0 B′

. But this gives

rise to a chain isomorphism:

Rl Rn Rm TrM 0

Rl Rn Rm TrM 0

B AT

QBP−1 AT Q−1

P Q

Since QBP−1 has the form

1 0

0 B′

 and since AT Q−1 ·QBP−1 = 0, it must be that AT Q−1 has

a column of all 0’s. Hence (QT )−1A has a row of all 0’s. But this implies that R | coker((QT )−1A)∼=

coker(A) = M, as desired.

Lemma 4.3.3. Suppose Ext1≤i≤t
R (M,R) = 0. Then M∗ free implies M is free.

Proof. We may suppose M is not free. Then there is part of a free resolution of M of the form

Ft+1 → Ft → ··· → F1
A−→ F0 → M → 0 where imA ⊆ mF0. Dualizing this sequence, we obtain,

since Ext1≤i≤t
R (M,R) = 0, an exact sequence

0→M∗→ F∗0
AT
−→ F∗1 → ··· → F∗t → F∗t+1→C→ 0.

Split this sequence into exact sequences

0→M∗→ F∗0 → Y → 0
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and

0→ Y → F∗1 → ··· → F∗t → F∗t+1→C→ 0.

Then Y is a t +1 syzygy of C. But since M∗ is free, pdC ≤ t (recall that t = depthR). Hence Y is

a free summand of F∗1 . By Lemma 1.4.7 in [BH93] there is a unit in AT since Y = imAT . But, by

construction, A has no unit, and we have a contradiction.

Remark 4.3.1. If M ∈ Deep(R), one can also derive Lemma 4.3.3 from Lemma 4.3.2 by cutting

down a regular sequence and appealing to the trace map M⊗R M∗→ R, as in [Vas68].

Example 4.3.2. Suppose t > 0 and consider M = R⊕k. Then M∗ ∼= R, and Ext1≤i≤t−1
R (M,R) = 0,

but of course M is not free. Thus, in general, one cannot reduce the Ext vanishing hypothesis to

Ext1≤i≤t−1
R (M,R) = 0.

Theorem 4.3.4. Let M ∈ Deep(R) and N ∈ ΩDeep(R). Assume that HomR(M,N) ∈ DF(R) and

Ext16i6t−1
R (M,N) = 0. Then R | N.

Proof. By Lemma 4.3.1, we have HomR(M,N) ∈ ΩDeep(R)∩DF(R). Hence R | HomR(M,N)

by 4.2.7. As HomR(M,N) ↪→ HomR(M,N) and HomR(M,N) ∈ DF(R), HomR(M,N) ∈ DF(R).

Therefore N ∈ DF(R). Hence R | N and so R | N by from Lemmas 4.2.2 and 4.2.5.

Corollary 4.3.3. Let M ∈ Deep(R) and N ∈ ΩDeep(R). Furthermore, assume that HomR(M,N)

is free and Ext16i6t−1
R (M,N) = 0. Then N is free.

Proof. By Theorem 4.3.4, we have that R |N. Let N =Rn⊕N′ where n> 1. Suppose N′ 6= 0. Since

N ∈ΩDeep(R), N′ ∈ΩDeep(R) by Lemma 4.2.3. Further, since HomR(M,N)∼= HomR(M,Rn)⊕

HomR(M,N′) is free, HomR(M,N′) is free and since 0=Ext1≤i≤t−1
R (M,N)∼=Ext1≤i≤t−1

R (M,Rn)⊕

Ext1≤i≤t−1
R (M,N′) we have that Ext1≤i≤t−1

R (M,N′) = 0. Thus we may apply Theorem 4.3.4 to

obtain that R | N′. Induction on µ(N) now shows that N is free.
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Theorem 4.3.5. Let M ∈ Deep(R) and N ∈ ΩDeep(R). Suppose HomR(M,N) is free and that

Ext1≤i≤t
R (M,R) = Ext1≤i≤t−1

R (M,N) = 0. Then M is free.

Proof. By Corollary 4.3.3 we have that N is free. Thus N ∼= Rn for some n. Now we have

HomR(M,N)∼= (M∗)n is free, and thus M∗ is free. Thus M is free by Lemma 4.3.3.

Next we address the question of when M∗ is free. The most interesting case is when dimR≤ 1.

Lemma 4.3.6. Suppose R is Cohen-Macaulay with dimension d ≤ 1, and suppose M ∈ CM(R).

Then M∗ free implies M is free.

Proof. We have already obtained the result when d = 0 by Lemma 4.3.5. So we may suppose

d = 1. Let x be a general regular element on R and M. Now, since M∗ ∼= Rr for some r, we have

Mp
∼= Rr

p for all p∈MinR, from Lemma 4.3.5. Thus M has constant rank r. In particular, Mp
∼= M∗p

for all p ∈MinR. We have (see [BH93, Theorem 4.6.8])

e(x,M) = ∑
p∈MinR

e(x,R/p)l(Mp) = ∑
p∈MinR

e(x,R/p)l(M∗p) = e(x,M∗).

Note that we have an exact sequence 0→M∗ i−→ HomR(M,R) by Proposition 4.2.3.

Set n= µ(M). Then we have a map Rn
�M. Dualizing this gives a map j : HomR(M,R) ↪→Rn.

Since M∗ ∼= Rr, this gives us an exact sequence of the form

0→ Rr j◦i−→ Rn→C→ 0.

But then pdC < ∞ which means C is free, since depthR = 0. Thus this sequence splits, whence

the map i is a split injection. Thus HomR(M,R) ∼= Rr⊕L for some L. By Lemma 4.3.2 applied

repeatedly (as Krull-Schmidt holds over R̄ because it is Artinian), it follows that Rr |M. But since

l(M) = e(x,M) = e(x,M∗) = l(M∗) = l(Rr
), it must be that M ∼= Rr which implies M is free.
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Standard arguments now allow us to show that the freeness of M∗ forces that of M in general.

Theorem 4.3.7. Suppose R and M satisfy (S2). Then M∗ free implies M is free.

Proof. It suffices to show that M is reflexive. We assume d = dimR ≥ 2 as the small dimension

case was covered by 4.3.6. Also by 4.3.6, we have that Mp is free, in particular, reflexive, for all

p ∈ SpecR with htp≤ 1. The natural map M→M∗∗ is an isomorphism in codimension one, so is

an isomorphism (or one can appeal to [BH93, Proposition 1.4.1]).

In the next part we extend one of the main results of [HL04]:

Theorem 4.3.8. (Huneke-Leuschke)

Suppose R is Cohen-Macaulay and is a complete intersection in codimension 1. Furthermore,

assume thatQ⊆ R. If M is an R-module that is locally free in codimension one with constant rank,

Ext1≤i≤d
R (M,M) = 0, and Ext1≤i≤2d+1

R (M,R) = 0, then M is free.

We start with a very well-known fact about shifting Ext modules.

Lemma 4.3.9. If ExtiR(M,R) = ExtiR(ΩM,ΩN) = 0 then ExtiR(M,N) = 0 and if Exti+1
R (M,R) =

ExtiR(M,N) = 0, then ExtiR(ΩM,ΩN) = 0

Proof. The exact sequence 0→ΩN→ Rn→ N→ 0 induces an exact sequence

ExtiR(M,Rn)→ ExtiR(M,N)→ Exti+1
R (M,ΩN)→ Exti+1

R (M,R)

from which we obtain the result.

Lemma 4.3.10. Suppose R is a quotient of a regular local ring and suppose R is (S2) and (G1)

with Q ⊆ R. Let M ∈ ΩDeep(R) be a reflexive R-module, free in codimension 1, and suppose

Ext1≤i≤t−1
R (M,M) = 0. Then M is free.
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Proof. We may suppose R is complete, and since M is free in codimension 1, we may also suppose

dimR ≥ 2. We claim that M has constant rank. Take p,q ∈ MinR. Since R satisfies (S2), the

Hochster-Huneke graph of R is connected (see [HH94]). This means there is a chain of minimal

primes p = p1,p2, . . . ,pn = q such that ht(pi + pi+1) ≤ 1. Ergo, rankMpi = rankMpi+1 for each i,

since M is free on a minimal prime of pi + pi+1. In particular, rankMp = rankMq, and so M has

constant rank.

Now, we have R |EndR(M) from the trace map as explained in [HL04, Appendix]. By Theorem

4.3.4, M = R⊕M′. But now M′ satisfies the hypotheses again by Lemma 4.2.3, and so, proceeding

inductively on the number of generators gives that M is free.

Theorem 4.3.11. Suppose R is a quotient of a regular local ring and satisfies (S2) and (G1) with

Q ⊆ R . Suppose N ∈ mod(R) such that pdNp < ∞ for all p ∈ SpecR with htp ≤ 1. Set a =

min{t,depthN} and suppose Ext1≤i≤t−1
R (N,N) = Ext1≤i≤2t+1−a

R (N,R) = 0. Then N is free.

Proof. Set M = Ωt+2−a(N). Then M ∈ ΩDeep(R) and M is reflexive. This gives us that R |

End(M). By Lemma 4.3.9, we have Ext1≤i≤t−1(M,M) = 0. By Lemma 4.3.10, M is free. Thus

pdN ≤ t+2−a. If pdN = l, then ExtlR(N,X) 6= 0 for every finitely generated X 6= 0. But t+2−a≤

2t +1−a and so it must be that l = 0. Therefore, N is free.

Next we discuss and extend a result by Goto-Takahashi ([GT17, Corollary 4.3]). First, we

recall their result and give a somewhat simpler proof. Note that their result does not follow directly

from our previous results since, for instance, I may not be in ΩDeep(R).

Theorem 4.3.12. (Goto-Takahashi)

Suppose R is CM and that I is a CM ideal of height 1. Assume that

1. HomR(I, I) is free.

2. Ext1≤i≤d
R (I,R) = 0.
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3. Ext1≤i≤d−1
R (I, I) = 0.

Then I is free.

Proof. By standard reduction arguments (see [GT17, Theorem 3.3]) one can assume dimR = 1.

By prime avoidance, there exists a ∈ I which is not in Min(R)∪mI. Thus a is part of a minimal

generating set for I, and we have an exact sequence of the form

0→ R→ I
f−→C→ 0.

Since I has height 1, it follows that R/I has finite length. Thus, localizing the exact sequence

0→ I→ R→ R/I→ 0 at any p ∈Min(R), we obtain that I has constant rank 1. Ergo, C has finite

length. In general, if g ∈mHomR(X ,Y ) then img ∈mY . Thus the above argument gives us that f

is part of a minimal generating set for HomR(I,C). Now, since HomR(I, I) is free, it must be that

HomR(I, I)∼= R, since I has rank 1. Since Ext1R(I,R) = 0, we have the exact sequence

0→ HomR(I,R)→ R→ HomR(I,C)→ 0

Thus HomR(I,C) is cyclic, and { f} a generating set. By construction, f (a) = 0, and thus for every

g ∈HomR(I,C), we have g(a) = 0. But on the other hand, HomR(I,SocC) ↪→HomR(I,C) and the

former is isomorphic to HomR(I/mI,Soc(C)). But as this is a vector space, if C 6= 0, we may find

a map h ∈ HomR(I,C) so that h(a) ∈ Soc(C)−{0} and h(x) = 0 for any minimal generator x 6= a.

But this is a contradiction, and so C = 0, whence I ∼= R.

The next theorem extends the Goto-Takahashi result to modules of higher rank.

Theorem 4.3.13. Let R be a Cohen-Macaulay local normal domain. Let M be a maximal Cohen-

Macaulay module such that HomR(M,M) is free and

Ext1≤i≤d−1
R (M,M) = Ext1≤i≤d

R (M,R) = 0.
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Then M is free.

Proof. We employ a standard argument in the theory of Brauer groups. Let S = Rsh denote the

strict Henselization of R. Then S is still a local normal domain, and it is harmless to replace R by

S without affecting the assumptions and desired conclusion. Thus we assume R is Henselian with

a separably closed residue field k. Let A = EndR(M) and set r = rankR M. Then as M is reflexive

and A is a free module of rank r2, A is an Azumaya algebra (see for example [CGO75], proof of

Corollary 1.4). Then so is the k-algebra B = A⊗R k. Since k is separably closed, B is actually

isomorphic as an algebra to Endk(kr). Now as R is Hensenlian, one can lift idempotents, which

shows that M splits into a direct sum of ideals. These ideals inherit all the assumptions, so by

Theorem 4.3.12 they are all free, and so is M.

Remark 4.3.4. If Rsh is a UFD, then our argument shows that M is free without any assumption

on vanishing of Ext modules.

4.4 When is HomR(M,N)∼= Nr?

In this section we try to understand the question in the title. Let t be some fixed integer. Unlike the

previous sections, we don’t necessarily assume depthR = t.

Set υi(M) = dimk ExtiR(k,M). We let Fitt j(M) denote the j-th fitting ideal ideal of M, namely

the ideal generated by (n− j)-minors of any presentation matrix A of M in a sequence:

Rm A−→ Rn→M→ 0

We first recall a result ([GT17, Lemma 2.1]). For completeness, we provide an elementary

proof that avoids spectral sequences.

Proposition 4.4.1. (Goto-Takahashi) Let M,N be such that depth(M),depth(N)≥ t. Assume that

Ext16i6t
R (M,N) = 0. Then υt(HomR(M,N)) = µ(M)υt(N).
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Proof. Take Ft → ··· → F1 → F0 → M → 0 to be part of a (possibly non-minimal) free resolu-

tion of M where Fi 6= 0 for each i. Note that such a resolution exists even if pdM < t. Then

a similar argument to that of Lemma 4.3.1 shows that depthHomR(M,N) ≥ t. Now, we have

HomR(M,N)∼=HomR(M,N) for a general regular sequence of length t. Hence υt(HomR(M,N)) =

dimk HomR(k,HomR(M,N)) = dimk HomR(k,HomR(M,N)) = dimk HomR(k⊗R M,N) = µ(M) ·

υt(N).

Theorem 4.4.1. Suppose dimN = 0. Then HomR(M,N) ∼= Nr if and only if µ(M) = r and

Fittr−1(M)N = 0.

Proof. First we consider the case were dimR = 0

[⇒] Since HomR(M,N)∼=Nr we have, by Proposition 4.4.1 υ0(HomR(M,N)) = υ0(Nr) and so

µ(M)υ0(N)= rυ0(N) from which we see that µ(M)= r as υ0(N) 6= 0. We also have l(M⊗R N∨)=

l((Nr)∨) = rl(N∨) by Matlis duality. Take a minimal presentation

Rm A−→ Rr→M→ 0.

Tensoring with N∨ we have the exact sequence

(N∨)m A⊗RidN∨−−−−−→ (N∨)r→M⊗R N∨→ 0.

But l((N∨)r = l(M ⊗R N∨) since ((N∨)r)∨ ∼= Nr and (M ⊗R N∨)∨ ∼= HomR(M,N). Thus

im(A⊗R idN∨) = 0 which implies Fittr−1(M)⊆ Ann(N∨) = Ann(N).

[⇐] Suppose µ(M) = r and Fittr−1(M)N = 0. Since µ(M) = r, we may take a minimal pre-

sentation of M of the form

Rm A−→ Rr→M→ 0.
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Tensoring with N∨ we have the exact sequence

(N∨)m A⊗RidN∨−−−−−→ (N∨)r→M⊗R N∨→ 0.

Since Fittr−1(M)⊆ Ann(N) = Ann(N∨), we have im(A⊗R idN∨) = 0 and thus (N∨)r ∼= M⊗R N∨.

That HomR(M,N)∼= Nr now follows from Matlis duality. So we have the result when dimR = 0.

Now suppose dimR > 0. Set I = AnnN. Since N has finite length, I is m-primary. Set

(−) = (−)⊗R R/I. Then HomR(M,N) ∼= HomR(M,N) so that HomR(M,N) ∼= Nr. But from

the dimension 0 result, this holds if and only if Fittr−1(M)N = Fittr−1(M)N = 0 which precisely

means that Fittr−1(M)⊆ AnnN, as desired.

Corollary 4.4.2. If dimM = 0 and HomR(M,M)∼= Mr then Fittr−1(M) = AnnM.

Proof. We always have AnnM ⊆ Fittr−1(M). The result follows from combining this fact with the

Theorem 4.4.1.

Corollary 4.4.3. Suppose HomR(M,N)∼=Nr and suppose AssN =MinN. Then Fittr−1(M)N = 0.

Proof. For any p ∈Min(Fittr−1(M)N), we have HomRp(Mp,Np)∼= (Np)
r.

Since (Fittr−1(M)N)p ↪→ Np it follows that Np has depth 0. Thus p ∈ Ass(N) = Min(N)

and so Np has finite length. Theorem 4.4.1 gives us that Fittr−1(Mp)Np = (Fittr−1(M))pNp =

(Fittr−1(M))N)p = 0. But this says that (Fittr−1(M))N)p = 0 for all p ∈Min(Fittr−1(M)N) which

implies Fittr−1(M)N = 0.

Remark 4.4.4. We remark that the converse to Corollary 4.4.3 does not hold. Indeed, if M has

constant rank r, then Fittr−1(M) = 0, while HomR(M,N) need not be isomorphic to Nr. To be

more explicit, one could take R with depthR = 1 and let M =m and N = R.
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Lemma 4.4.2. Let M,N,P be nonzero R−modules such that Ass(P) ⊆ Ass(N) = Min(N). Sup-

pose that HomR(M,N)∼= HomR(P,N) and Ext1R(M,N) = 0. Then if P�M, P∼= M.

Proof. First assume that dim(N) = 0. From the exact sequence 0→ X → P→M→ 0 we have

0→ HomR(M,N)→ HomR(P,N)→ HomR(X ,N)→ 0.

By assumption l(HomR(X ,N)) = 0. Therefore X = 0.

If dim(N) > 0, for any p ∈ Min(N) = Ass(N), Xp = 0. So Ass(HomR(X ,N)) = Supp(X)∩

Ass(N) = /0, and thus HomR(X ,N) = 0.

Now, if X 6= 0, take q ∈Min(X). Then q ∈ Ass(P)⊆ Ass(N). But then HomRq(Xq,Nq) 6= 0, a

contradiction.

Theorem 4.4.3. Assume that depth(M)> t, depth(N) = t, Ass(N) = Min(N), and for some s≥ t,

Ext16i6s
R (M,N) = 0. If HomR(M,N)∼= Nr for some r ∈ N, then M/IM ∼= (R/I)r for I = Ann(N).

Furthermore, if one of the following holds:

1. N is faithful.

2. Ass(R)⊆ Ass(N) and s > 0.

then M ∼= Rr.

Proof. By Proposition 4.4.1, vt(Nr) = µ(M) · vt(N). Hence µ(M) = r. Since Ass(N) = Min(N),

Corollary 4.4.3 tells us that Fittr−1(M)⊆ I. Since M/IM is still r-generated over R/I, it must be a

free R/I module of rank r.

For the furthermore statements, if I = 0 then M ∼= Rr. Assume the second set of conditions. By

Lemma 4.4.2, we have M ∼= Rr.

Corollary 4.4.5. Let R→ S be a finite local homomorphism of local rings. Assume that S is regular

of dimension t, depthM ≥ t, and Ext1≤i≤t
R (M,S) = 0. If one of the following holds

1. S is faithful as an R-module.
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2. t > 0 and AssR R⊆ AssR S.

Then M is free.

Proof. Since Ext1≤i≤t
R (M,S) = 0, we have HomR(M,S) ∈ CM(S). But, since S is regular, we have

HomR(M,S)∼= Sl for some l ∈ N. Hence M is free, by Theorem 4.4.3.

The following example shows that the conditions of 4.4.3 and 4.4.5 are needed.

Example 4.4.6. Let R = k[[x,y]]/(xy), let S = R/(x) and M = R/(x) as in Corollary 4.4.5. Then

Ext1R(M,S) = 0 but of course M is not free.

It is worth noting that our results in this section can also be viewed as modest confirmation of

the Auslander-Reiten conjecture. For example Theorem 4.4.3 gives:

Corollary 4.4.7. Let M = R/I and depthM = t. Assume that Ass(R)⊆ Ass(M) = Min(M). Then

M is free if Ext1≤i≤max{1,t}
R (M,M) = 0.

Proof. Obviously HomR(M,M)∼= M, so we can apply Theorem 4.4.3.

4.5 Some other applications

In this section we treat some similar problems that have appeared in the literature. The first one

involves tests for Gorensteiness, in the spirit of [Ulr84]. Throughout this section we assume R is a

Cohen-Macaulay local ring with dimR = d and with canonical module ω .

Corollary 4.5.1. Suppose Ext1≤i≤d
R (M,R) = 0 and M is (S2). If M∨ ∼= M∗ then R is Gorenstein.

Proof. Since M is Cohen-Macaulay in codimension 1, the natural map M → M∨∨ is an isomor-

phism in codimension 1, thus an isomorphism. Since Ext1≤i≤d
R (M,R) = 0 it follows, as in the proof

of Lemma 4.3.1 that M∗ ∈ CM(R) and so (M∗)∨ ∼= M∨∨ ∼= M ∈ CM(R).

By assumption and Proposition 4.4.1 we have

υd(M∨) = υd(M∗) = µ(M)υd(R).
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Since υd(M∨) = µ(M) (one can appeal to Proposition 4.4.1 again), R has type one, and so is

Gorenstein.

Remark 4.5.2. The above was inspired by Theorem 2.1 of [Ulr84]. The situation there is as

follows. Let R→ S be a finite extension with dimS = dimR and S is Cohen-Macaulay, local, and

factorial. Under mild conditions, HomR(S,R) is isomorphic as an S module to a rank one reflexive

ideal of S, thus HomR(S,R)∼= S. Also HomR(S,ωR)∼= ωS ∼= S. One can now appeal to 4.5.1, with

M = S to give an Ext-vanishing test for the Gorensteiness of R.

For completeness, we give the following, which extends [HH05, Lemma 2.1], [Jor09, Theorem

2.7], and [HJ03, Theorem 5.9].

Lemma 4.5.1. Let M,N ∈ CM(R) Consider the conditions:

1. Ext1≤i≤d
R (M,N) = 0.

2. M⊗R N∨ is in CM(R).

Then (1)⇒ (2). If Ext1≤i≤d
R (M,N) have finite length then (2)⇒ (1).

Proof. Suppose x is a regular sequence. Set e(M) := e(x,M). First we have e(HomR(M,N)) =

e(M⊗R N∨) by the Associativity formula [BH93, Theorem 4.7.8]. Then, since HomR(M,N) ∈

CM(R), we have

e(HomR(M,N)) = l(HomR(M,N)) = l(HomR(M,N)) = l(M⊗R N∨).

But this says e(M⊗R N∨) = l(M⊗R N∨) = l(M⊗R N∨) from which we deduce that M⊗R N∨ is

MCM.

For the converse, first consider the case where where dimR = 1. Let x be R-regular and

xExt1R(M,N) = 0. The short exact sequence 0→ M x−→ M → M/xM → 0 induces the exact se-

quence

0→ HomR(M,N)
x−→ HomR(M,N)→ HomR(M/xM,N/xN)→ Ext1R(M,N)→ 0.

70



In this case, it suffices then, to show that HomR(M,N)/xHomR(M,N) ∼= HomR(M/xM,N/xN).

Since M⊗R N∨ is MCM, we see that
(M⊗R N∨)∨

x(M⊗R N∨)∨
∼= HomR(

M⊗R N∨

x(M⊗R N∨)
,

ω

xω
). But since (M⊗R

N∨)∨ ∼= HomR(M,N), this gives us that HomR(M,N)/xHomR(M,N) ∼= HomR(M/xM,N/xN) so

that Ext1R(M,N) = 0.

Now suppose dimR > 1 and choose a regular x ∈
⋂

1≤i≤d Ann(ExtiR(M,N)). Then the long

exact sequence in Ext, coming from the short exact sequence 0→M x−→M→M/xM→ 0, decom-

poses into short exact sequences

0→ ExtiR(M,N)→ Exti+1
R (M/xM,N)→ Exti+1

R (M,N)→ 0

for each 1 ≤ i ≤ d− 1. Further, we have Exti+1
R (M/xM,N) ∼= ExtiR/xR(M/xM,N/xN) for each

1≤ i≤ d−1. Thus it suffices to show ExtiR/xR(M/xM,N/xN) = 0 for each 1≤ i≤ d−1. But since

M⊗R N∨ MCM implies M/xM⊗R/xR (N/xN)∨ is MCM over R/xR, this follows from induction,

and we’re done.

To explore the previous Theorem a bit more, we make the following definition. A pair of

modules M,N ∈ CM(R) is called tight if Ext1≤i≤d
R (M,N) = 0 forces ExtiR(M,N) = 0 for all i > 0.

Remark 4.5.3. A pair (M,N) of maximal Cohen-Macaulay modules is tight in any of the following

situations:

1. M has projective dimension or N has finite injective dimension.

2. M is locally free in codimension one, M∗ is maximal Cohen-Macaulay and N =(M∗)∨ (when

R is Gorenstein the last two conditions simply mean N = M) [ACST17, Theorem 1.4].

3. M has finite complete intersection dimension and the complexity of M is at most d − 1

[CD11, Theorem 1.2].

Corollary 4.5.4. Suppose R is Cohen-Macaulay with canonical module ω and let M,N ∈ CM(R)

such that for all p ∈ Spec(R)−{m}, the pair (Mp,Np) is tight. Then the following are equivalent:
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1. Ext1≤i≤d
R (M,N) = 0.

2. M⊗R N∨ ∈ CM(R) .

Proof. Assume (2). Let p be a non-maximal prime. By induction on dimR, Ext1≤i≤htp
R (M,N)p =

0. By assumption on tightness of the pair (Mp,Np), Ext1≤i≤d
R (M,N)p = 0. So the modules

Ext1≤i≤d
R (M,N) have finite length, and we are done.
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Chapter 5

Maximal Cohen–Macaulay modules that are not locally free on

the punctured spectrum

5.1 Introduction

Cohen-Macaulay representation theory has been studied widely and deeply for more than four

decades. The theorems of Herzog [Her78] in the 1970s and of Buchweitz, Greuel and Schreyer

[BGS87] in the 1980s are recognized as some of the most crucial results in this long history of

Cohen-Macaulay representation theory. Both are concerned with Cohen–Macaulay local rings of

finite/countable CM-representation type, that is, Cohen-Macaulay local rings possessing finite-

ly/countably many nonisomorphic indecomposable maximal Cohen–Macaulay modules. Herzog

proved that quotient singularities of dimension two have finite CM-representation type and that

Gorenstein local rings of finite CM-representation type are hypersurfaces. Buchweitz, Greuel and

Schreyer proved that the local hypersurfaces of finite (resp. countable) CM-representation type are

precisely the local hypersurfaces of type (An) with n≥ 1, (Dn) with n≥ 4, and (En) with n= 6,7,8

(resp. (A∞) and (D∞)).

At the beginning of this century, Huneke and Leuschke [HL02] proved that Cohen-Macaulay

local rings of finite CM-representation type have isolated singularities. However, there are ample

examples of Cohen-Macaulay local rings not having isolated singularities, including the local hy-

persurfaces of type (A∞) and (D∞) appearing above. Cohen–Macaulay representation theory for

non-isolated singularities has been studied by many authors so far; see [AKM17, BD17, HN94,

IW14] for instance. It should be remarked that a Cohen-Macaulay local ring with a non-isolated
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singularity always admits maximal Cohen–Macaulay modules that are not locally free on the punc-

tured spectrum. Focusing on these modules, Araya, Iima and Takahashi [AIT12] found out that the

local hypersurfaces of type (A∞) and (D∞) have finite CM+-representation type, that is, there exist

only finitely many isomorphism classes of indecomposable maximal Cohen-Macaulay modules

that are not locally free on the punctured spectrum.

In this chapter, we investigate Cohen-Macaulay local rings of finite CM+-representation type

from various viewpoints. Our basic landmark is the following conjecture, which includes the

converse of the result of Araya, Iima and Takahashi stated above. We shall give positive results to

this conjecture.

Conjecture 5.1.1. Let R be a complete local Gorenstein ring of dimension d not having an isolated

singularity. Then the following two conditions are equivalent.

(1) The ring R has finite CM+-representation type.

(2) The ring R has countable CM-representation type.

Combining the result of Buchweitz, Greuel and Schreyer, this conjecture says that, when R is

a hypersurface having an uncountable algebraically closed coefficient field of characteristic not 2,

condition (2) is equivalent to R being an (A∞) or (D∞) singularity. In this setting, the implication

(2)⇒ (1) holds by [AIT12, Proposition 2.1].

From now on, we state our main results and the organization of this chapter. Section 5.2

is devoted to a couple of preliminary definitions and lemmas, while Section 5.3 presents some

conjectures and questions on finite/countable CM-representation type. Our results are stated in the

later sections. In what follows, let R be a Cohen–Macaulay local ring.

In Section 5.4, we consider the (Zariski-)closedness and (Krull) dimension of the singular

locus SingR of R in connection with the works of Huneke and Leuschke [HL02, HL03]. As we

state above, they proved in [HL02] that if R has finite CM-representation type, then it has an

isolated singularity, i.e., SingR has dimension at most zero. Also, they showed in [HL03] that if

R is complete or has uncountable residue field, and has countable CM-representation type, then
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SingR has dimension at most one. In relation to these results, we prove the following theorem,

whose second assertion extends the result of Huneke and Leuschke [HL03] from countable CM-

representation type to countable CM+-representation type (i.e., having infinitely but countably

many nonisomorphic indecomposable maximal Cohen–Macaulay modules that are not locally free

on the punctured spectrum).

Theorem 5.1.2 (Theorem 5.4.1 and Corollary 5.4.2). Let (R,m,k) be a Cohen–Macaulay local

ring.

(1) Suppose that R has finite CM+-representation type. Then the singular locus SingR is a finite

set. Equivalently, it is a closed subset of SpecR with dimension at most one.

(2) Suppose that R has countable CM+-representation type. Then the set SingR is at most count-

able. It has dimension at most one if R is either complete or k is uncountable.

Furthermore, Huneke and Leuschke [HL03] proved that if R admits a canonical module and

has countable CM-representation type, then the localization Rp at each prime ideal p of R has at

most countable CM-representation type as well. We prove a result on finite CM+-representation

type in the same context.

Theorem 5.1.3 (Theorem 5.4.3). Let (R,m) be a Cohen–Macaulay local ring with a canonical

module. Suppose that R has finite CM+-representation type. Then Rp has finite CM-representation

type for all p∈ SpecR\{m}. In particular, Rp has finite CM+-representation type for all p∈ SpecR.

In Section 5.5 we provide various necessary conditions for a given Cohen–Macaulay local ring

to have finite CM+-representation type.

Theorem 5.1.4 (Theorem 5.5.2). Let (R,m) be a Cohen–Macaulay local ring of dimension d > 0.

Let I be an ideal of R such that R/I is maximal Cohen–Macaulay over R. Then R has infinite

CM+-representation type in each of the following cases.

(1) The ring R/I has infinite CM+-representation type.
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(2) The set V(I) is contained in V(0 : I), and either R/I has infinite CM-representation type or

d ≥ 2.

(3) The ideal I + (0 : I) is not m-primary, R/I has infinite CM-representation type, and R/I is

either Gorenstein, a domain, or analytically unramified with d = 1.

This theorem may look technical, but it actually gives rise to a lot of restrictions which having

finite CM+-representation type produces, and is used in the later sections. One concrete example

where Theorem 5.5.2 applies is when I = (x) and (0 : x) = (x); see Corollary 5.5.5. Here we

introduce one of the applications of the above theorem. Denote by CM(R) the category of maximal

Cohen–Macaulay R-modules, and by Dsg(R) the singularity category of R.

Theorem 5.1.5 (Theorem 5.5.4). Let R be a Cohen–Macaulay local ring of dimension d > 0. Let I

be an ideal of R with V(I)⊆ V(0 : I) such that R/I is maximal Cohen–Macaulay over R. Suppose

that R has finite CM+-representation type. Then one must have d = 1. If In = 0 for some integer

n > 0, then CM(R) has dimension at most n−1 in the sense of [DT15]. If R is Gorenstein, then R

is a hypersurface and Dsg(R) has dimension at most n−1 in the sense of [Rou08].

There are folklore conjectures that a Gorenstein local ring of countable CM-representation type

is a hypersurface, and that, for a Cohen–Macaulay local ring R of countable CM-representation

type, CM(R) has dimension at most one. The above theorem gives partial answers to the variants

of these folklore conjectures for finite CM+-representation type.

In Section 5.6, we prove the following, which characterizes the Gorenstein rings or finite CM+-

representation type not having an isolated singularity in the dimension 1 case. This theorem has

the consequence of answering Conjecture 5.1.1 in the affirmative when R has an uncountable al-

gebraically closed coefficient field of characteristic not equal to 2.

Theorem 5.1.6 (Theorem 5.6.1). Let R be a homomorphic image of a regular local ring. Suppose

that R does not have an isolated singularity but is Gorenstein. If dimR = 1, the following are

equivalent.
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(1) The ring R has finite CM+-representation type.

(2) There exist a regular local ring S and a regular system of parameters x,y such that R is isomor-

phic to S/(x2) or S/(x2y).

When either of these two conditions holds, the ring R has countable CM-representation type.

In Section 5.7, we explore the higher-dimensional case, that is, we try to understand the Cohen–

Macaulay local rings R of finite CM+-representation type in the case where dimR ≥ 2. We prove

the following two results in this section.

Theorem 5.1.7 (Corollary 5.7.7). Let R be a complete local hypersurface of dimension d ≥ 2

which is not an integral domain. Suppose that R has finite CM+-representation type. Then one has

d = 2, and there exist a regular local ring S and elements x,y ∈ S with R∼= S/(xy) such that S/(x)

and S/(y) have finite CM-representation type and S/(x,y) is an integral domain of dimension 1.

Theorem 5.1.8 (Corollaries 5.7.9 and 5.7.10). Let R be a 2-dimensional non-normal Cohen–

Macaulay complete local domain. Suppose that R has finite CM+-representation type. Then the

integral closure R of R has finite CM-representation type. If R is Gorenstein, then R is a hypersur-

face.

The former theorem gives a strong restriction of the structure of a hypersurface of finite CM+-

representation type which is not an integral domain. The latter theorem supports the conjecture that

a Gorenstein local ring of finite CM+-representation type is a hypersurface. Note that, under the

assumption of the theorem plus the assumption that R is equicharacteristic zero, the integral closure

R is a quotient surface singularity by the theorem of Auslander [Aus86] and Esnault [Esn85].

5.2 Preliminaries

This section is devoted to stating our conventions, and to recalling the definitions of the notions

which repeatedly appear in this chapter.
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Convention 5.2.1. Throughout this chapter, unless otherwise specified, we adopt the following

convention. Rings are commutative and noetherian, and modules are finitely generated. Subcat-

egories are full and strict (i.e., closed under isomorphism). Subscripts and superscripts are often

omitted unless there is a risk of confusion. An identity matrix of suitable size is denoted by E.

Definition 5.2.2. Let R be a ring.

(1) An R-module M is maximal Cohen–Macaulay if the inequality depthMp ≥ dimRp holds for

all p ∈ SpecR. Hence, by definition, the zero module is maximal Cohen–Macaulay.

(2) We denote by modR the category of (finitely generated) R-modules, and by CM(R) the sub-

category of modR consisting of maximal Cohen–Macaulay R-modules. For a subcategory X

of modR, we denote by indX the set of isomorphism classes of indecomposable R-modules

in X , and by addR X the additive closure of X , that is, the subcategory of modR consisting

of direct summands of finite direct sums of objects in X .

(3) A subset S of SpecR is called specialization-closed if V(p)⊆ S for all p∈ S. This is equivalent

to saying that S is a union of closed subsets of SpecR in the Zariski topology.

(4) Let S be a subset of SpecR. Then it is easy to see that

sup{dimR/p | p ∈ S} ≥ sup{n≥ 0 | there exists a chain p0 ( p1 ( · · ·( pn in S},

and the equality holds if S is specialization-closed. The (Krull) dimension of a specialization-

closed subset S of SpecR is defined as this common number and denoted by dimS.

(5) The singular locus of R, denoted by SingR, is by definition the set of prime ideals p of R such

that Rp is not a regular local ring. It is clear that SingR is a specialization-closed subset of

SpecR. If R is excellent, then by definition SingR is a closed subset of SpecR in the Zariski

topology.
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(6) For an m×n matrix A over R, we denote by CokR A the cokernel of the map R⊕n→ R⊕m given

by x 7→ Ax, and by Is(A) the ideal of R generated by all the s-minors of A.

(7) For an R-module M, we denote by Fittr(M) is the rth Fitting invariant of M, that is, we have

Fittr(M) = Im−r(A) if there exists an exact sequence R⊕n A−→ R⊕m→M→ 0.

Definition 5.2.3. Let (R,m,k) be a local ring.

(1) For an R-module M, we denote by νR(M) the minimal number of generators of M, that is,

νR(M) = dimk(M⊗R k).

(2) Let M an R-module and n≥ 0 an integer. We denote by Ωn
RM (or simply ΩnM) the n-th syzygy

of M, i.e., the image of the n-th differential map in the minimal free resolution of M. This is

uniquely determined up to isomorphism.

(3) We denote by edimR the embedding dimension of R, and by codepthR the codepth of R, i.e.,

codepthR = edimR−depthR. We say that R is a hypersurface if codepthR≤ 1.

(4) An R-module M is called periodic if ΩeM ∼= M for some e > 0.

(5) The complexity of an R-module M, denoted by cxR M, is defined as the infimum of nonnegative

integers n such that there exists a real number r satisfying the inequality β R
i (M) ≤ rin−1 for

i� 0, where β R
i (M) stands for the ith Betti number of M.

(6) The Loewy length of R is defined by ``(R) = inf{n≥ 0 |mn = 0}. Note that ``(R)< ∞ if and

only if R is artinian.

Definition 5.2.4. Let R be a local ring.

(1) For a subcategory X of modR we denote by [X ] the smallest subcategory of modR containing

R and X that is closed under finite direct sums, direct summands and syzygies, i.e., [X ] =

addR({R}∪{ΩiX | i≥ 0, X ∈X }). When X consists of a single object X , we simply denote

it by [X ].
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(2) For subcategories X ,Y of modR we denote by X ◦Y the subcategory of modR consisting

of objects M which fit into an exact sequence 0→ X → M→ Y → 0 in modR with X ∈X

and Y ∈ Y . We set X •Y = [[X ]◦ [Y ]].

(3) Let C be a subcategory of modR. Put

[C ]r =


{0} (r = 0),

[C ] (r = 1),

[C ]r−1 •C = [[C ]r−1 ◦ [C ]] (r ≥ 2).

If C consists of a single object C, then we simply denote it by [C]r.

(4) Let X be a subcategory of modR. We define the dimension of X , denoted by dimX , as the

infimum of the integers n≥ 0 such that X = [G]n+1 for some G ∈X .

5.3 Conjectures and questions

In this section, we present several conjectures and questions which we deal with in later sections.

First of all, let us give several definitions of representation types, including that of finite CM+-

representation type, which is the main subject of this chapter.

Definition 5.3.1. Let R be a Cohen–Macaulay ring. By CM0(R) we denote the subcategory of

CM(R) consisting of modules that are locally free on the punctured spectrum of R, and set

CM+(R) := CM(R)\CM0(R).1

For each X ∈ {CM,CM0,CM+} we say that R has finite (resp. countable) X-representation type if

there exist only finitely (resp. countably) many isomorphism classes of indecomposable modules

in X(R). We say that R has infinite (resp. uncountable) X-representation type if R does not have

1The index 0 (resp. +) in CM0(R) (resp. CM+(R)) means that it consists of modules whose nonfree loci have zero
(resp. positive) dimension.
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finite (resp. countable) X-representation type. Also, R is said to have bounded X-representation

type if there exists an upper bound of the multiplicities of indecomposable modules in X(R), and

said to have unbounded X-representation type if R does not have bounded X-representation type.

Let R be a complete local hypersurface with uncountable algebraically closed coefficient field

of characteristic not two. Buchweitz, Greuel and Schreyer [BGS87, Theorem B] (see also [LW12,

Theorem 14.16]) prove that R has countable CM-representation type if and only if it is either an

(A∞)-singularity or a (D∞)-singularity. Moreover, when this is the case, they give a complete

classification of the indecomposable maximal Cohen–Macaulay R-modules. Using this result,

Araya, Iima and Takahashi [AIT12, Theorem 1.1 and Corollary 1.3] prove the following theorem

(see [DT15, Proposition 3.5(3)]), which provides examples of a Cohen–Macaulay local ring of

finite CM+-representation type.

Theorem 5.3.2 (Araya–Iima–Takahashi). Let R be a complete local hypersurface with uncountable

algebraically closed coefficient field of characteristic not two. If R has countable CM-representation

type, then the following statements hold.

(1) The ring R has finite CM+-representation type.

(2) There is an inequality dimCM(R)≤ 1.

By definition, there is a strong connection between finite CM+-representation type and finite

CM-representation type. The first assertion of Theorem 5.3.2 suggests to us that finite CM+-

representation type should also be closely related to countable CM-representation type. Several

conjectures have been presented so far concerning finite/countable CM-representation type, and

we set the following proposal.

Proposal 5.3.3. One should consider the conjectures on finite/countable CM-representation type

for finite CM+-representation type.

There has been a folklore conjecture on countable CM-representation type probably since the

1980s. Recently, this conjecture has been studied by Stone [Sto14].
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Conjecture 5.3.4. A Gorenstein local ring R of countable CM-representation type is a hypersur-

face.

This conjecture holds true if R has finite CM-representation type; see [Yos90, Theorem (8.15)].

Also, the conjecture holds if R is a complete intersection with algebraically closed uncountable

residue field; see [AI07, Existence Theorem 7.8]. The following example shows that the assump-

tion in the conjecture that R is Gorenstein is necessary.

Example 5.3.5. Let S = C[[x,y,z]]/(xy). Then S is an (A∞)-singularity of dimension 2, and has

countable CM-representation type by [BGS87, Theorem B]. Let R be the second Veronese sub-

ring of S, that is, R = C[[x2,xy,xz,y2,yz,z2]] ⊆ S. Then R is a Cohen–Macaulay non-Gorenstein

local ring of dimension 2. We claim that R has countable CM-representation type. Indeed, let

N1,N2, . . . be the non-isomorphic indecomposable maximal Cohen–Macaulay S-modules. Let M

be an indecomposable maximal Cohen–Macaulay R-module. Then N = HomR(S,M) is a maximal

Cohen–Macaulay S-module, and one can write N ∼= N⊕b1
a1 ⊕ ·· ·⊕N⊕bt

at
. Since R is a direct sum-

mand of S, the module M is a direct summand of N, and hence it is a direct summand of Nai for

some i. The claim follows from this.

Combining Conjecture 5.3.4 with Proposal 5.3.3 gives rise to the following question.

Question 5.3.6. Let R be a Gorenstein local ring which is not an isolated singularity. Suppose that

R has finite CM+-representation type. Then is R a hypersurface?

Here, the assumption that R is not an isolated singularity is necessary. Indeed, if R is an isolated

singularity, then # indCM+(R) = 0 < ∞. We shall give answers to Question 5.3.6 in Sections 5.5

and 5.7.

Theorem 5.3.2(2) leads us to the following conjecture.

Conjecture 5.3.7. Let R be a Cohen–Macaulay local ring R of countable CM-representation type.

Then there is an inequality dimCM(R)≤ 1.
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This conjecture holds true if R has finite CM-representation type; see [DT15, Proposition

3.7(1)]. Let R be a Gorenstein local ring. Then the stable category CM(R) of CM(R) is a tri-

angulated category, and one can consider the (Rouquier) dimension dimCM(R) of CM(R); we

refer the reader to [Rou08] for the details. One has dimCM(R)≤ dimCM(R) with equality if R is

a hypersurface; see [DT15, Proposition 3.5]. There seems to be a folklore conjecture asserting that

every (noncommutative) selfinjective algebra Λ of tame representation type satisfies the inequality

dim(modΛ)≤ 1. So Conjecture 5.3.7 is thought of as a Cohen–Macaulay version of this folklore

conjecture. Combining Conjecture 5.3.7 with Proposal 5.3.3 leads us to the following question.

Question 5.3.8. Let R be a Cohen–Macaulay local ring of finite CM+-representation type. Then

does one have dimCM(R)≤ 1?

We shall give partial answers to this question in Section 5.5.

Huneke and Leuschke ([HL03, Theorem 1.3]) prove the following theorem, which solves a

conjecture of Schreyer [Sch87, Conjecture 7.2.3] presented in the 1980s.

Theorem 5.3.9 (Huneke–Leuschke). Let (R,m,k) be an excellent Cohen–Macaulay local ring.

Assume that R is complete or k is uncountable. If R has countable CM-representation type, then

dimSingR≤ 1.

Indeed, the assumption that R is excellent is unnecessary; see [Tak07, Theorem 2.4]. This

result naturally makes us have the following question.

Question 5.3.10. Let R be a Cohen–Macaulay local ring. If R has finite CM+-representation type,

then does SingR have dimension at most one?

We shall give a complete answer to this question in the next Section 5.4. In fact, we can even

prove a stronger statement.

5.4 The closedness and dimension of the singular locus

In this section, we discuss the structure of the singular locus of a Cohen–Macaulay local ring of

finite CM+-representation type. First, we consider what the finiteness of the singular locus means.
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Lemma 5.4.1. Let R be a local ring with maximal ideal m. The following are equivalent.

(1) SingR is a finite set.

(2) SingR is a closed subset of SpecR in the Zariski topology, and has dimension at most one.

Proof. (2) =⇒ (1): We find an ideal I of R such that SingR = V(I). As SingR has dimension at

most one, so does the local ring R/I. Hence SpecR/I = MinR/I∪{m/I}, and this is a finite set.

(1) =⇒ (2): Write SingR = {p1, . . . ,pn}. As SingR is specialization-closed, it coincides with

the finite union V(p1)∪·· ·∪V(pn) of closed subsets of SpecR. Hence SingR is closed.

To show the other assertion, we claim (or recall) that a local ring R of dimension at least two

possesses infinitely many prime ideals of height one. Indeed, for any x ∈ m we have ht(x)≤ 1 by

Krull’s principal ideal theorem, that is, (x) is contained in some prime ideal p with htp ≤ 1. This

argument shows that m=
⋃
p∈SpecR,htp≤1 p. Now suppose that there exist only finitely many prime

ideals of R having height one. Then, since the number of the minimal primes is finite, so is the

number of prime ideals of height at most one. Therefore the above union is finite, and by prime

avoidance m is contained in some p ∈ SpecR with htp ≤ 1. This implies dimR ≤ 1, which is a

contradiction. Thus the claim follows.

Now, assume that SingR has dimension at least 2. Then dimR/p≥ 2 for some p ∈ SingR. The

above claim shows that the ring R/p has infinitely many prime ideals of height one, which have

the form q/p with q ∈ V(p). Then q is also in SingR, and hence SingR contains infinitely many

prime ideals. This contradiction shows that the dimension of SingR is at most 1.

The following theorem clarifies a close relationship between finite (resp. countable) CM+-

representation type and finiteness (resp. countablity) of the singular locus.

Theorem 5.4.1. Suppose R is a Cohen–Macaulay local ring of finite (resp. countable) CM+-

representation type. Then SingR is a finite (resp. countable) set.

Proof. We first consider the case where R has finite CM+-representation type. Write indCM+(R)=

{G1, . . . ,Gt}, and pick p ∈ SingR \ {m}. Set C = Ωd
R(R/p). We claim that p = annR TorR

1 (C,C).
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Indeed, TorR
1 (C,C) is isomorphic to T := TorR

1+2d(R/p,R/p), which is killed by p. Hence p is

contained in the annihilator. Also, Tp is isomorphic to TorRp

1+2d(κ(p),κ(p)), which does not vanish

as p belongs to the singular locus. Hence p is in the support of T , and contains the annihilator.

Now the claim follows.

Note that Cp is stably isomorphic to Ωd
Rp
(κ(p)), which is not Rp-free since Rp is singular. This

means that C belongs to CM+(R), and we get an isomorphism C ∼= G⊕a1
l1
⊕ ·· ·⊕G⊕as

ls ⊕H with

s≥ 1 and 1≤ l1 < · · ·< ls ≤ t and a1, . . . ,as ≥ 1 and H ∈ CM0(R). It is easy to see that

p=
(⋂

1≤i, j≤s annR TorR
1 (Gli,Gl j)

)
∩ annR TorR

1 (H,M)

for some R-module M. Since a prime ideal is irreducible in general, p coincides with one of the

annihilators in the right-hand side. The module H is locally free on the punctured spectrum, and

annR TorR
1 (H,M) contains a power of m. As p is a nonmaximal prime ideal, it cannot coincide with

annR TorR
1 (H,M). We thus have p = annR TorR

1 (Glp,Glq) for some p,q. This shows that we have

only finitely many such prime ideals p. Consequently, SingR\{m} is a finite set, and so is SingR.

We can analogously deal with the case where R has countable CM+-representation type. In this

case, we can write indCM+(R) = {G1,G2,G3, . . .}, and for each p ∈ SingR\{m} there exist p,q

such that p= annR TorR
1 (Glp,Glq).

Theorem 5.4.1 yields the following corollary, which gives a complete answer to Question

5.3.10. We should remark that the second assertion of the corollary highly refines Theorem 5.3.9

due to Huneke and Leuschke.

Corollary 5.4.2. Let R be a Cohen–Macaulay local ring.

(1) If R has finite CM+-representation type, then SingR is closed and has dimension at most one.

(2) Suppose that R has countable CM+-representation type.

(a) If k is uncountable, then SingR has dimension at most one.

(b) If R is complete, then SingR is closed and has dimension at most one.
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Proof. (1) The assertion follows from Theorem 5.4.1 and Lemma 5.4.1.

(2) Theorem 5.4.1 implies that SingR is a countable set. Note that SingR is specialization-

closed. If R is complete or k is uncountable, then we can apply [Tak07, Lemma 2.2] to deduce

that dimR/p ≤ 1 for all p ∈ SingR. In case R is complete, SingR is closed as well since R is

excellent.

Next we investigate the relationship of finite CM+-representation type with localization of the

base ring at a prime ideal. In particular, we prove the following theorem, which says that finite

CM+-representation type implies finite CM-representation type on the punctured spectrum. This

especially shows that finite CM+-representation type localizes, which should be compared with the

result of Huneke and Leuschke [HL03, Theorem 2.1] asserting that countable CM-representation

type localizes under the same assumption as in this theorem. This is also connected with the

conjecture that a Cohen–Macaulay local ring with an isolated singularity having countable CM-

representation type has finite CM-representation type [HL03, Page 3006].

Theorem 5.4.3. Let (R,m) be a Cohen–Macaulay local ring with a canonical module ω . Suppose

that R has finite CM+-representation type. Then Rp has finite CM-representation type for all p ∈

SpecR\{m}.

Proof. Assume that there exists a prime ideal p 6= m such that Rp has infinite CM-representation

type. Then the set indCM(Rp)\{ωp} is infinite, and we may choose N = {N1,N2,N3, . . .} to be

an infinite subset.

Fix a module N ∈N . Then we can choose an R-module L such that N ∼= Lp. Take a maximal

Cohen–Macaulay approximation of L over R, that is, a short exact sequence

σ : 0→ Y → X → L→ 0

of R-modules such that X is maximal Cohen–Macaulay and Y has finite injective dimension; see

[AB89, Theorem 1.1]. Localization gives an exact sequence σp : 0→ Yp → Xp → N → 0. As

N is maximal Cohen–Macaulay, Yp is a maximal Cohen–Macaulay Rp-module of finite injective
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dimension. It follows from [BH93, Exercise 3.3.28(a)] that Yp ∼= ω
⊕n
p for some n ≥ 0. The exact

sequence σp splits, and we get an isomorphism Xp
∼= N⊕ω

⊕n
p . Note that ωp is an indecomposable

Rp-module.

Let X = X1⊕·· ·⊕Xm be a decomposition of X into indecomposable R-modules. Then there

is an isomorphism (X1)p⊕·· ·⊕ (Xm)p ∼= N⊕ω
⊕n
p . For each i write (Xi)p = Zi⊕ω

⊕li
p with li ≥ 0

an integer and Zi not containing ωp as a direct summand; then Zi is a maximal Cohen–Macaulay

Rp-module. We get an isomorphism

Z1⊕·· ·⊕Zm⊕ω
⊕(l1+···+lm)
p

∼= N⊕ω
⊕n
p .

Since EndRp(ωp) ∼= Rp is a local ring, the module Z1⊕ ·· · ⊕ Zm does not contain ωp as a direct

summand by [LW12, Lemma 1.2], while N is an indecomposable Rp-module with N �ωp. Further,

[LW12, Lemma 2.1] also implies that Z1⊕·· ·⊕Zm ∼= N and l1 + · · ·+ lm = n, so we may assume

that Z1 ∼= N and Z2 = · · ·= Zm = 0. We thus have that (X1)p ∼= N⊕ω
⊕l1
p .

Suppose that (X1)p is Rp-free. Then so are N and ωp, and we have N ∼= Rp
∼= ωp, which

contradicts the choice of N. Hence (X1)p is not Rp-free, which implies that X1 ∈ CM+(R).

Thus we have shown that for each integer i ≥ 1 there exist an integer ni ≥ 0 and a module

Ci ∈ indCM+(R) such that (Ci)p ∼= Ni⊕ω
⊕ni
p . Assume that Ci ∼= C j for some i 6= j. Then Ni⊕

ω
⊕ni
p
∼= N j⊕ω

⊕n j
p , and, appealing again to [LW12, Lemma 1.2], we see that Ni ∼= N j (and ni = n j),

contrary to the choice of N . Hence Ci � C j for all i 6= j, and we conclude that R has infinite

CM+-representation type. This contradiction completes the proof of the theorem.

Remark 5.4.4. In Corollary 5.4.2(1) we proved that the singular locus of a Cohen–Macaulay local

ring of finite CM+-representation type has dimension at most one. As an application of Theorem

5.4.3, we can get another proof of this statement under the assumption that R admits a canonical

module.

Let R be a d-dimensional Cohen–Macaulay local ring with a canonical module, and suppose

that R has finite CM+-representation type. Then Rp has finite CM-representation type for all non-

87



maximal prime ideals p of R by Theorem 5.4.3. In particular, Rp has an isolated singularity for all

such p by [HL02, Corollary 2]. This implies that Rq is a regular local ring in codimension d− 2,

and therefore dimSingR≤ 1.

5.5 Necessary conditions for finite CM+-representation type

In this section, we explore necessary conditions for a Cohen–Macaulay local ring to have finite

CM+-representation type. For this purpose we begin with stating and showing a couple of lemmas.

Lemma 5.5.1. Let R be a local ring.

(1) The subcategory of modR consisting of periodic modules is closed under finite direct sums: if

the R-modules M1, . . . ,Mn are periodic, then so is M1⊕·· ·⊕Mn.

(2) Let 0→ M1 → ··· → Mn → 0 be an exact sequence in modR. Let r ≥ 0 and 1 ≤ t ≤ n be

integers. If cxR(Mi)≤ r for all 1≤ i≤ n with i 6= t, then cxR(Mt)≤ r.

Proof. (1) is obvious so we need only show (2), and it suffices to show the statement when n = 3.

Suppose that M2,M3 have complexity at most r. Then we find p,q∈R>0 such that β R
j (M2)≤ p jr−1

and β R
j (M3) ≤ q jr−1 for j � 0. The induced exact sequence TorR

j+1(M3,k)→ TorR
j (M1,k)→

TorR
j (M2,k) shows that β R

j (M1) ≤ β R
j (M2)+β R

j+1(M3) ≤ (p+ qr) jr−1 for j� 0. Therefore we

obtain cxR(M3)≤ r. The other cases are handled similarly.

The subcategory CM+(R) of modR is stable under syzygies.

Lemma 5.5.2. Let R be a local ring. Let 0→ N → F → M→ 0 be an exact sequence in modR

such that F is free and M is maximal Cohen–Macaulay. Then M belongs to CM+(R) if and only if

so does N.

Proof. Note that all the modules N,F,M are maximal Cohen–Macaulay. Hence the assertion is

equivalent to saying that M belongs to CM0(R) if and only if so does N. The “if” part follows

from the fact that CM0(R) is stable under syzygies. To show the “only if” part, assume that N
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is in CM0(R). Let p be a nonmaximal prime ideal of R. Then Np is Rp-free, and we see that the

Rp-module Mp has projective dimension at most 1. Note that Mp is maximal Cohen–Macaulay over

Rp. The Auslander–Buchsbaum formula implies that Mp is free. Hence M is in CM0(R).

We state some containments among indecomposable maximal Cohen–Macaulay modules over

Cohen–Macaulay local rings, one of which is a homomorphic image of the other.

Proposition 5.5.1. Let R be a Cohen–Macaulay local ring of dimension d. Let I be an ideal of R

such that R/I is a maximal Cohen–Macaulay R-module. Then the following statements hold.

(1) indCM(R/I) is contained in indCM(R).

(2) indCM+(R/I) is contained in indCM+(R).

(3) indCM(R/I) is contained in indCM+(R), if V(I)⊆ V(0 : I).

Proof. Let M be an indecomposable maximal Cohen–Macaulay R/I-module. The definition of

indecomposability says M 6= 0. The equalities depthM = dimR/I = dimR imply M is a maximal

Cohen–Macaulay R-module. It is directly checked that M is indecomposable as an R-module. Now

(1) follows.

Let p be a prime ideal of R such that Mp
∼= (Rp)

⊕n for some n ≥ 0. If n = 0, then Mp = 0. If

n > 0, then IRp = 0 since IM = 0, and hence Mp
∼= R⊕n

p = (R/I)⊕n
p .

Let us consider the case where M is in CM+(R/I). Then there is a prime ideal q of R with

I ⊆ q 6= m such that Mq is not (R/I)q-free. Letting p := q in the above argument, we observe that

Mq is not Rq-free (note that the zero module is free). Thus M is in CM+(R), and (2) follows.

Next we consider the case where M is in CM0(R). As dimM = dimR/I = d > 0, there is a

nonmaximal prime ideal r of R such that Mr 6= 0. Letting p := r in the above argument, we have

IRr = 0. Hence r is not in the support of the R-module I, which is equivalent to saying that r does

not contain (0 : I). On the other hand, r is in the support of the R-module M, which implies that r

contains I. Thus V(I) is not contained in V(0 : I). We now observe that (3) holds.
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The lemma below says finite CM-representation type is equivalent to finite CM0-representation

type.

Lemma 5.5.3. Let R be a Cohen–Macaulay local ring. If R has infinite CM-representation type,

then R has infinite CM0-representation type.

Proof. Suppose that R has finite CM0-representation type. Then by [DT15, Corollary 1.2] it is an

isolated singularity. Hence CM(R) = CM0(R), and we have indCM(R/I) = indCM0(R/I), which

is a finite set. This contradicts the assumption that R has infinite CM-representation type.

Now we can prove the first main result of this section, which gives various necessary conditions

for a Cohen–Macaulay local ring to have finite CM+-representation type.

Theorem 5.5.2. Let R be a Cohen–Macaulay local ring of dimension d > 0. Let I be an ideal

of R, and assume that R/I is a maximal Cohen–Macaulay R-module. Then R has infinite CM+-

representation type in each of the following cases.

(1) R/I has infinite CM+-representation type.

(2) V(I)⊆ V(0 : I) and

(a) R/I has infinite CM-representation type, or

(b) d ≥ 2.

(3) ht(I +(0 : I))< d, R/I has infinite CM-representation type, and

(a) R/I is a Gorenstein ring, or

(b) R/I is a domain, or

(c) d = 1 and R/I is analytically unramified, or

(d) d = 1, k is infinite, and R/I is equicharacteristic and reduced.

Proof. (1)&(2a) These assertions immediately follow from (2) and (3) of Proposition 5.5.1, re-

spectively.
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(2b) In view of (2a), we may assume that R/I has finite CM-representation type. It follows

from [HL02, Corollary 2] that R/I is an isolated singularity. As d ≥ 2, the ring R/I is a (normal)

domain. Hence p := I is a prime ideal of R. As dimR/p = d, the prime ideal p is minimal. The

assumption V(p)⊆V(0 : p) implies (0 :R p)⊆ p. Localizing this inclusion at p, we get an inclusion

(0 :Rp pRp)⊆ pRp, which particularly says that Rp is not a field. Therefore p belongs to SingR.

Suppose that R has finite CM+-representation type. Then Corollary 5.4.2(1) implies that SingR

has dimension at most one. In particular, we obtain d = dimR/p ≤ 1, which is a contradiction.

Consequently, R has infinite CM+-representation type.

(3) We find a nonmaximal prime ideal p of R that contains the ideal I +(0 : I). Then, as p

contains I, the prime ideal p/I of R/I is defined, which is not maximal. Also, since p contains

(0 : I) as well, we see that IRp is a nonzero proper ideal of Rp.

We establish several claims.

Claim 5.5.4. Let M ∈ indCM0(R/I) with Mp 6= 0. Then M ∈ indCM+(R).

Proof of Claim. Proposition 5.5.1(1) implies M ∈ indCM(R). There exists an integer n ≥ 0 such

that

Mp = Mp/I
∼= (R/I)⊕n

p/I = (R/I)⊕n
p = (Rp/IRp)

⊕n.

Since Mp is nonzero, we have to have n > 0. Since IRp is a nonzero proper ideal of Rp, we have

that Mp is not a free Rp-module. We now conclude that M belongs to indCM+(R). �

Claim 5.5.5. When R/I is Gorenstein, for each M ∈ indCM0(R/I), either M or ΩR/IM is in

indCM+(R).

Proof of Claim. If Mp 6= 0, then M ∈ indCM+(R) by Claim 5.5.4. Assume Mp = 0. There is an

exact sequence 0→ N → (R/I)⊕n → M→ 0, where we set N := ΩR/IM and n := νR/I(M) > 0.

Localization at p gives an isomorphism Np
∼= (Rp/IRp)

⊕n. As n > 0 and IRp is a proper ideal, the

module Np is nonzero. Since R/I is Gorenstein, we apply Lemma 5.5.2 and [Yos90, Lemma (8.17)]

to see that N belongs to indCM0(R/I). Using Claim 5.5.4 again, we obtain N ∈ indCM+(R). �
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Claim 5.5.6. There is an inclusion

{M ∈ indCM0(R/I) |M has a rank as an R/I-module} ⊆ indCM+(R).

Proof of Claim. Take M from the left-hand side. Since the R/I-module M is maximal Cohen–

Macaulay, its annihilator has grade 0. Hence M has positive rank, and we see that SuppR/I M =

SpecR/I. Therefore Mp = Mp/I is nonzero. It follows from Claim 5.5.4 that M belongs to

indCM+(R). �

(3a) Suppose that R has finite CM+-representation type, namely, indCM+(R) is a finite set.

Lemma 5.5.3 guarantees that the set indCM0(R/I) is infinite, and hence the set difference

S := indCM0(R/I)\ indCM+(R)

is infinite as well. Thus we can choose a (countably) infinite subset {M1,M2,M3, . . .} of S . By

Claim 5.5.5 we see that ΩR/IMi belongs to indCM+(R) for all i. Note that ΩR/IMi 6∼= ΩR/IM j for all

distinct i, j since R/I is Gorenstein and Mi,M j are maximal Cohen–Macaulay over R/I. It follows

that indCM+(R) is an infinite set, which is a contradiction. Thus R has infinite CM+-representation

type.

(3b) Since R/I is a domain, every R/I-module has rank. Claim 5.5.6 implies that indCM0(R/I)

is contained in indCM+(R), while indCM0(R/I) is an infinite set by Lemma 5.5.3. It follows that

R has infinite CM+-representation type.

(3c) Note that CM(R/I) = CM0(R/I). Since R/I is analytically unramified and has infinite

CM-representation type, it follows from [LW12, Theorem 4.10] that the left-hand side of the in-

clusion in Claim 5.5.6 is infinite, and so is the right-hand side indCM+(R), that is, R has infinite

CM+-represenation type.

(3d) Since k is infinite and R/I is equicharacteristic, we can apply [LW12, Theorem 17.10] to

deduce that if R/I has unbounded CM-representation type, then the left-hand side of the inclusion

in Claim 5.5.6 is infinite (as R/I is reduced), and we are done. Hence we may assume that R/I has
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bounded CM-representation type. By [LW12, Theorems 10.1 and 17.10] the completion R̂/I has

infinite and bounded CM-representation type. According to [LW12, Theorem 17.9], the ring R̂/I

is isomorphic to one of the following three rings.

k[[x,y]]/(x2), k[[x,y]]/(x2y), k[[x,y,z]]/(yz,x2− xz,xz− z2).

The indecomposable maximal Cohen–Macaulay modules over these rings are classified; one can

find complete lists of those modules in [BGS87, Propositions 4.1 and 4.2] and [LW12, Example

14.23]. We can check by hand that each of these rings has an infinite family of nonisomorphic

indecomposable maximal Cohen–Macaulay modules of rank 1. This family of modules is ex-

tended from a family of R/I-modules by [LW05, Corollary 2.2], and these are nonisomorphic

indecomposable maximal Cohen–Macaulay R/I-modules of rank 1. Again, the left-hand side of

the inclusion in Claim 5.5.6 is infinite, and the proof is completed.

Two irreducible elements p,q of an integral domain R are said to be distinct if pR 6= qR. Apply-

ing our Theorem 5.5.2, we can obtain the following corollary, which is a basis in the next Section

5.6 to obtain a stronger result (Theorem 5.6.1).

Corollary 5.5.3. Let (S,n) be a regular local ring of dimension two. Take an element 0 6= f ∈ n

and set R = S/( f ). Suppose that R is not an isolated singularity (equivaently, is not reduced) but

has finite CM+-representation type. Then f has one of the following forms:

f =


p2qr with p,q,r distinct irreducibles and S/(pqr) has finite CM-representation type,

p2q with p,q distinct irreducibles and S/(pq) has finite CM-representation type,

p2 with p irreducible and S/(p) has finite CM-representation type.

Proof. As S is factorial, we can write f = pa1
1 · · · pan

n , where p1, . . . , pn are distinct irreducible

elements and n,a1, . . . ,an are positive integers. If a1 = · · ·= an = 1, then R is reduced, and hence

it is an isolated singularity, which is a contradiction. Thus we may assume a1 ≥ 2.
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Put x := p1 · · · pn ∈ R. We have

(x)+(0 : x) = (p1 · · · pn, pa1−1
1 pa2−1

2 · · · pan−1
n )⊆ (p1),

and hence ht((x) + (0 : x)) = 0 < 1. Taking advantage of Theorem 5.5.2(3a), we observe that

R/(x) has finite CM-representation type. Also, R/(x) = S/(p1 · · · pn) has multiplicity at least n.

By [LW12, Theorem 4.2 and Proposition 4.3] we see that n≤ 3.

Assume either a1 ≥ 3 or al ≥ 2 for some l ≥ 2, say l = 2. Then put x := p2
1 p2 · · · pn ∈ R. We

have

(x)+(0 : x) = (p2
1 p2 · · · pn, pa1−2

1 pa2−1
2 · · · pan−1

n )⊆


(p1) (if a1 ≥ 3),

(p2) (if a2 ≥ 2)

and hence ht((x)+ (0 : x)) = 0 < 1. The ring R/(x) = S/(p2
1 p2 · · · pn) is not reduced, so it is not

an isolated singularity. By [HL02, Corollary 2], it has infinite CM-representation type. Theorem

5.5.2(3a) implies that R has infinite CM+-representation type, which is a contradiction. Thus a1 = 2

and a2 = · · ·= an = 1.

Getting together all the above arguments completes the proof of the corollary.

To give applications of Theorem 5.5.2, we establish a lemma.

Lemma 5.5.7. Let R be a Gorenstein local ring of finite CM+-representation type. Then for all

M ∈ indCM+(R) one has cxR M = 1.

Proof. As R is Gorenstein, ΩiM ∈ indCM+(R) for all i≥ 0 by Lemma 5.5.2 and [Yos90, Lemma

8.17]. Since indCM+(R) is a finite set, ΩtM is periodic for some t ≥ 0. Hence M has complexity

at most one. As M is in CM+(R), it has to have infinite projective dimension. Thus the complexity

of M is equal to one.

Let R be a ring. We denote by Dsg(R) the singularity category of R, that is, the Verdier quotient

of the bounded derived category of finitely generated R-modules by perfect complexes. For an

R-module M, we denote by NFR(M) the nonfree locus of M, that is, the set of prime ideals p of R
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such that Mp is nonfree as an Rp-module. Now we prove the following result by using Theorem

5.5.2.

Theorem 5.5.4. Let R be a Cohen–Macaulay local ring of dimension d > 0. Let I be an ideal of

R with V(I) ⊆ V(0 : I), and assume that R/I is a maximal Cohen–Macaulay R-module. Suppose

that R has finite CM+-representation type. Then:

(1) One has d = 1.

(2) If In = 0, then dimCM(R)≤ n−1.

(3) If R is Gorenstein, then R is a hypersurface and dimDsg(R)≤ n−1.

Proof. (1) This is a direct consequence of Theorem 5.5.2(2b).

(2) It follows from Theorem 5.5.2(2a) that R/I has finite CM-representation type. Hence there

exists a maximal Cohen–Macaulay R/I-module G such that CM(R/I) = addR/I G. Take any max-

imal Cohen–Macaulay R-module M and put M0 := M. For each integer 0 ≤ i ≤ n−1 we have an

exact sequence 0→ (0 :Mi I)
fi−→Mi→Mi+1→ 0, where fi is the inclusion map.

Let us show that for all 0 ≤ i ≤ n− 1 the R-module Mi is maximal Cohen–Macaulay and

annihilated by In−i. We use induction on i. It clearly holds in the case i = 0, so let i≥ 1. Applying

the functor HomR(−,Mi−1) to the natural exact sequence 0→ I→ R→ R/I→ 0 induces an exact

sequence 0→ (0 :Mi−1 I)
fi−1−−→Mi−1→HomR(I,Mi−1), and hence Mi is identified with a submodule

of HomR(I,Mi−1). The induction hypothesis implies that Mi−1 is maximal Cohen–Macaulay and

In−i−1Mi−1 = 0. Then HomR(I,Mi−1) has positive depth (see [BH93, Exercise 1.4.19]), and so

does Mi. Since d = 1 by (1), the R-module Mi is maximal Cohen–Macaulay. Also, In−iMi−1 is

contained in (0 :Mi−1 I), which implies that In−i annihilates Mi−1/(0 :Mi−1 I) = Mi.

Thus, for each 0 ≤ i ≤ n− 1 the submodule (0 :Mi I) of Mi is also maximal Cohen–Macaulay

(as d = 1 again). Since it is killed by I, it is a maximal Cohen–Macaulay R/I-module. Therefore

(0 :Mi I) belongs to addR G = [G]1 for all 0 ≤ i ≤ n−1. Using that fact that M0 = M and Mn = 0,

we easily observe that M belongs to [G]n. It is concluded that CM(R) = [G]n, which means that

dimCM(R)≤ n−1.
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(3) We claim that the R-module R/I has complexity at most one. Indeed, we have

NFR(R/I) = V(I +(0 : I)) = V(I)∩V(0 : I) = V(I),

where the first equality follows from [Tak10, Proposition 1.15(4)]. As I is not m-primary, NFR(R/I)

contains a nonmaximal prime ideal of R. Hence R/I is in CM+(R). Since R/I is a local ring, it is

an indecomposable R-module, and therefore R/I ∈ indCM+(R). It is seen from Lemma 5.5.7 that

R/I has complexity at most one as an R-module. Now the claim follows.

Let X be an indecomposable R/I-module which is a direct summand of C :=Ωd
R/Ik. Proposition

5.5.1(3) implies that X belongs to indCM+(R). As in the proof of the first claim, Ωi
RX belongs to

indCM+(R) for all i≥ 0, and Ωn
RX is periodic for some n≥ 0. Therefore, we find an integer m≥ 0

such that Ωm
RC is periodic; see Lemma 6.7. This implies that C has complexity at most one. There

is an exact sequence

0→C→ (R/I)⊕rm−1 → ··· → (R/I)⊕r2 → (R/I)⊕r1 → R/I→ k→ 0.

As cxRC ≤ 1 and cxR(R/I) ≤ 1, we get cxR k ≤ 1. By [Avr10, Theorem 8.1.2] the ring R is a

hypersurface. The last assertion follows from [Buc87, Theorem 4.4.1] and [DT15, Proposition

3.5(3)].

The above theorem gives rise to the two corollaries below. Note that the theorem and the two

corollaries all give answers to Questions 5.3.6 and 5.3.8.

Corollary 5.5.5. Let R be a Cohen–Macaulay local ring of dimension d > 0 possessing an element

x ∈ R with (0 : x) = (x). Suppose that R has finite CM+-representation type. Then d = 1 and

dimCM(R)≤ 1. If R is Gorenstein, then R is a hypersurface and dimDsg(R)≤ 1.

Proof. We have x2 = 0. The sequence · · · x−→ R x−→ R x−→ ·· · is exact, which implies that R/(x) is a

maximal Cohen–Macaulay R-module. The assertions follow from Theorem 5.5.4.
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Corollary 5.5.6. Let R be a Gorenstein non-reduced local ring of dimension one. If R has finite

CM+-representation type, then R is a hypersurface.

Proof. Since R does not have an isolated singularity, SingR contains a nonmaximal prime ideal p.

It is easy to see that (R/p)p = κ(p) is not Rp-free, and we also have V(p) = {p,m} ⊆ SuppR(p) =

V(0 : p) as pRp 6= 0. Lemma 5.5.7 implies that the R-module R/p has complexity at most 1, and

the local ring R is a hypersurface by virtue of Theorem 5.5.4(3).

5.6 The one-dimensional hypersurfaces of finite CM+-representation type

The purpose of this section is to prove the following theorem.

Theorem 5.6.1. Let R be a homomorphic image of a regular local ring. Suppose that R does not

have an isolated singularity but is Gorenstein. If dimR = 1, then the following are equivalent.

(1) The ring R has finite CM+-representation type.

(2) There exist a regular local ring S and a regular system of parameters x,y such that R is isomor-

phic to S/(x2) or S/(x2y).

When either of these two conditions holds, the ring R has countable CM-representation type.

In fact, the last assertion and the implication (2)⇒ (1) follow from [BGS87, Propositions 4.1

and 4.2] and [AIT12, Proposition 2.1], respectively. The implication (1)⇒ (2) is an immediate

consequence of the combination of Corollaries 5.5.3, 5.5.6 with Theorems 5.6.2, 5.6.4, 5.6.5 shown

in this section. Note by Theorem 5.3.2 that the above theorem guarantees that under the assumption

that R is a complete Gorenstein local ring of dimension one, Question 5.3.8 has an affirmative

answer.

We establish three subsections, whose purposes are to prove Theorems 5.6.2, 5.6.4 and 5.6.5,

respectively.
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5.6.1 The hypersurface S/(p2)

For a ring A we denote by NZD(A) the set of non-zerodivisors of A, and by Q(A) the total quotient

ring ANZD(A) of A. A ring extension A⊆ B is called birational if B⊆ Q(A).

Lemma 5.6.1. Let A⊆ B be a birational extension. Let M be a B-module which is torsion-free as

an A-module. If M is indecomposable as a B-module, then M is indecomposable as an A-module

as well.

Proof. From the proof of [LW12, Proposition 4.14], we have EndA(M) = EndB(M). The claim

then follows from from [LW12, Proposition 1.1].

Let A be a ring and M an A-module. We denote by EndA(M) the quotient of EndA(M)

by the endomorphisms factoring through projective A-modules. For a flat A-algebra B one has

EndA(M)⊗A B∼= EndB(M⊗A B); this can be shown by using [Yos90, Lemma 3.9].

Lemma 5.6.2. Let A⊆ B be a finite birational extension of 1-dimensional Cohen–Macaulay local

rings. Then indCM+(B) is contained in indCM+(A).

Proof. Let M ∈ indCM+(B). Then depthA M = depthB M > 0, which shows that M is maximal

Cohen–Macaulay as an A-module. Lemma 5.6.1 implies M ∈ indCM(A). Set Q = Q(A) = Q(B).

Applying the functor Q⊗A− to the inclusions A⊆ B⊆ Q yields B⊗A Q = Q. Hence we have

M⊗B Q = M⊗B (B⊗A Q) = M⊗A Q, EndA(M)⊗A Q∼= EndQ(M⊗A Q)∼= EndQ(M⊗B Q).

Since M is in CM+(B), there is a minimal prime P of B such that MP is not BP-free. Note that MP =

(M⊗B Q)⊗Q QP and QP =BP. Hence M⊗B Q is not Q-projective, and we obtain EndQ(M⊗B Q) 6=

0. Therefore EndA(M)⊗A Q is nonzero, which means that the A-module EndA(M) is not torsion.

Thus SuppA(EndA(M)) contains a minimal prime of A, which implies that M belongs to CM+(A).

Consequently, we obtain M ∈ indCM+(A), and the lemma follows.

The following lemma is a consequence of [Yos90, Corollary 7.6], which is used not only now

but also later.
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Lemma 5.6.3. Let (S,n) be a regular local ring and x ∈ n, and set R = S/(x). Then

{M ∈ CM(R) |M is cyclic}/∼= = {R/yR | y ∈ S with x ∈ yS}/∼=.

In particular, there exist only finitely many nonisomorphic indecomposable cyclic maximal Cohen–

Macaulay R-modules.

Now we can achieve the purpose of this subsection.

Theorem 5.6.2. Let (S,n) be a regular local ring of dimension two, and let p∈ n2 be an irreducible

element. Then R = S/(p2) has infinite CM+-representation type.

Proof. Take any element t ∈ n that is regular on R. We consider the S-algebra T = S[z]/(tz− p,z2),

where z is an indeterminate over S. We establish two claims.

Claim 5.6.4. The ring T is a local complete intersection of dimension 1 and codimension 2 with t

being a system of parameters.

Proof of Claim. It is clear that T = S[[z]]/(tz− p,z2), which shows that T is a local ring, and

dimT = dimS[[z]]− ht(tz− p,z2) ≥ 3− 2 = 1 by Krull’s Hauptidealsatz. We note that T/tT =

S[[z]]/(t, p,z2) = (S/(t, p))[[z]]/(z2). As S/(t, p) is artinian, so is T/tT . Hence dimT = 1 and t is a

system of parameters of T , and thus T is a complete intersection (the equalities dimS[[z]] = 3 and

dimT = 1 imply ht(tz− p,z2) = 2, whence tz− p,z2 is a regular sequence). As (tz− p,z2) ⊆ n2,

the local ring T has codimension 2. �

Claim 5.6.5. The ring R is naturally embedded in T , and this embedding is a finite birational

extension.

Proof of Claim. Let φ : S→ T be the natural map and put I =Kerφ . As p2 = t2z2 = 0 in T , we have

(p2)⊆ I. Hence the map φ factors as S� R� S/I ↪→ T . It is seen that T is an R-module generated

by 1,z and S/I is an R-submodule of T . Since T has positive depth by Claim 5.6.4, so does S/I.

Thus S/I is a maximal Cohen–Macaulay cyclic module over the hypersurface R, and Lemma 5.6.3
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implies that I coincides with either (p) or (p2). If I = (p), then T = T/pT = S[z]/(tz, p,z2), which

contradicts the fact following from Claim 5.6.4 that t is T -regular. We get I = (p2), which means

the map R→ T is injective.

Let C be the cokernel of the injection R ↪→ T . Then C is generated by z as an R-module. Note

that tz = p = 0 in C. Hence C is a torsion R-module, which means C⊗R Q(R) = 0. Thus (Q(R)→

T ⊗R Q(R)) = (R ↪→ T )⊗R Q(R) is an isomorphism, while the natural map T → T ⊗R Q(R) is

injective as T is maximal Cohen–Macaulay over R by Claim 5.6.4. Thus the embedding R ↪→ T is

birational. �

By Claim 5.6.4, the ring T is a complete intersection, which implies that the element z2 is

regular on the ring S[z]/(tz− p) and so is z. It is easy to check that (0 :T z) = zT . Claim 5.6.4

also guarantees that T is not a hypersurface. It follows from Corollary 5.5.5 that T has infinite

CM+-representation type. Combining Claim 5.6.5 with Lemma 5.6.2, we obtain the inclusion

indCM+(T ) ⊆ indCM+(R). We now conclude that R has infinite CM+-representation type, and

the proof of the theorem is completed.

5.6.2 The hypersurface S/(p2qr)

Setup 5.6.3. Throughout this subsection, let (S,n) be a 2-dimensional regular local ring and p,q,r

pairwise distinct irreducible elements of S. Let R = S/(p2qr) be a local hypersurface of dimension

1. Setting p = pR, q = qR, r = rR and m = nR, one has SpecR = {p,q,r,m}. For each i ≥ 1 we

define matrices

Ai =


p 0 ri

0 pq p

0 0 pr

 , Bi =


pqr 0 −qri

0 pr −p

0 0 pq


over S. Put Mi = CokS Ai and Ni = CokS Bi.

Lemma 5.6.6. (1) For every i≥ 1 it holds that Mi,Ni ∈ CM+(R), ΩRMi = Ni and ΩRNi = Mi.

(2) For all positive integers i 6= j, one has Mi �M j and Ni � N j as R-modules.
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Proof. (1) It is clear that AiBi = BiAi = p2qrE. Hence Ai,Bi give a matrix factorization of p2qr

over S, and we have Mi,Ni ∈ CM(R), ΩRMi = Ni and ΩRNi = Mi; see [Yos90, Chapter 7]. Note

that q,r are units and p2 = 0 in Rp = S(p)/p2S(p). There are isomorphisms

(Mi)p∼=Cok
(

p 0 ri

0 p p
0 0 p

)
∼=Cok

(
p 0 1
0 p 0
0 0 p

)
∼=Cok

(
0 0 1
0 p 0
−p2 0 p

)
∼=Cok

(0 0 1
0 p 0
0 0 0

)
∼=Cok

( p 0
0 0

)∼=Rp⊕κ(p),

where all the cokernels are over Rp. Therefore Mi ∈ CM+(R), and we get Ni ∈ CM+(R) by Lemma

5.5.2.

(2) Suppose that there is an R-isomorphism Mi ∼= M j. It then holds that Fitt2(Mi) = Fitt2(M j),

which means (p,ri)R = (p,r j)R. This implies that (ri) = (r j) in the integral domain R/p= S/(p).

Since r 6= 0 in this ring, we get i = j. If Ni ∼= N j, then Mi ∼= ΩRNi ∼= ΩRN j ∼= M j by (1), and we get

i = j.

Lemma 5.6.7. There is an equality

{M ∈ CM+(R) |M is cyclic}/∼= = {R/(p), R/(pq), R/(pr), R/(pqr)}/∼=.

Proof. Let M be a cyclic R-module with M ∈ CM+(R). It follows from Lemma 5.6.3 that M is

isomorphic to R/ f R for some element f ∈ S which divides p2qr in S. The localizations Rq,Rr are

fields, and hence Mp is not Rp-free. As p2 = 0 in Rp = S(p)/p2S(p), it is observed that f ∈ pS\ p2S.

Thus f ∈ {p, pq, pr, pqr}. Conversely, for any g ∈ {p, pq, pr, pqr} we have (R/gR)p ∼= κ(p) and

get R/gR ∈ CM+(R).

Lemma 5.6.8. Let i≥ 1 be an integer. Then neither CokS/(pq)

(
p ri

0 p

)
nor CokS/(pr)

(
p

qri

)
contains

S/(p) as a direct summand.

Proof. (1) Set T = S/(pq) and C = CokT

(
p ri

0 p

)
. Consider the sequence

T⊕2

(
p ri

0 p

)
←−−−− T⊕2

(q
0

)
←−− T
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of homomorphisms of free T -modules. Clearly, this is a complex. Let (a
b) ∈ T⊕2 be such that(

p ri

0 p

)
(a

b) =
(

0
0

)
. In S we have pa+ rib = pqc and pb = pqd for some c,d ∈ S, and get b = qd

and pa+ riqd = pqc. Hence pa ∈ qS ∈ SpecS and a ∈ qS; we find e ∈ S with a = qe. Then

pqe+ riqd = pqc, and pe+ rid = pc. Therefore rid ∈ pS ∈ SpecS, and d ∈ pS; we find f ∈ S with

d = p f and get b = qp f . In T⊕2 we have (a
b) =

( qe
pq f
)
=
(qe

0
)
=
(q

0
)
(e). It follows that the above

sequence is exact, and the sequence

· · · p−→ T
q−→ T

p−→ T

(q
0

)
−−→ T⊕2

(
p ri

0 p

)
−−−−→ T⊕2→C→ 0

gives a minimal free resolution of the T -module C.

Now, assume that S/(p) = T/pT is a direct summand of C. Then C ∼= T/pT ⊕T/I for some

ideal I of T . There are equalities of Betti numbers

2 = β
T
1 (C) = β

T
1 (T/pT ⊕T/I) = β

T
1 (T/pT )+β

T
1 (T/I) = 1+β

T
1 (T/I),

and we get β T
1 (T/I) = 1. This means I is a nonzero proper principal ideal of T ; we write I =

gT where g is a nonzero nonunit of T . The uniqueness of a minimal free resolution yields a

commutative diagram

· · · p // T
∼= u3
��

q // T
∼= u2
��

p // T
∼= u1
��

(q
0

)
// T⊕2

∼=
( t1 t2

t3 t4

)
=:t

��

( p 0
0 g

)
// T⊕2

∼= (s1 s2
s3 s4 )=:s
��

//C // 0

· · · p
// T q

// T p
// T (q

0

) // T⊕2 (
p ri

0 p

) // T⊕2 //C // 0

whose vertical maps are isomorphisms. As s, t are isomorphisms, their determinants s1s4− s2s3

and t1t4− t2t3 are units of T . The commutativity of the diagram shows s3 p = pt3 and t3q = 0 in

T , which imply s3− t3 ∈ (0 :T p) = qT and t3 ∈ (0 :T q) = pT . Hence s3 is a nonunit of T , and

therefore s1,s4 are units of T . Again from the commutativity of the diagram we get s4g = pt4 and
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s2g = pt2+ rit4 in T , which give p(s2s−1
4 t4− t2) = rit4. Hence rit4 ∈ pT ∈ SpecT and t4 ∈ pT . We

now get t1t4− t2t3 is in pT , which contradicts the fact that it is a unit of T . Consequently, S/(p) is

not a direct summand of C.

(2) Put T = S/(pr) and C = CokT

(
p

qri

)
. We have SpecT = {pT,rT,nT}. Since (p,qri)T is

not contained in pT or rT , it is nT -primary and has positive grade. Hence the sequence

0→ T

( p
qri

)
−−−→ T⊕2→C→ 0

is exact, which gives a minimal free resolution of the T -module C. This implies pdRC = 1.

Suppose that S/(p) = T/pT is a direct summand of C. Then T/pT has projective dimension

at most one, which contradicts the fact that its minimal free resolution is · · · p−→ T
q−→ T

p−→ T →

T/pT → 0. It follows that S/(p) is not a direct summand of C.

Lemma 5.6.9. (1) The ring S/(p,q) is artinian, and hence the number ``(S/(p,q)) is finite.

(2) Let n≥ ``(S/(p,q)) be a positive integer.

(i) If X ∈ CM+(R) is a cyclic direct summand of Mn, then X is isomorphic to R/(pqr).

(ii) If Y ∈ CM+(R) is a cyclic direct summand of Nn, then Y is isomorphic to R/(pqr).

Proof. (1) The factoriality of S shows that pS is a prime ideal of S. As pS 6= qS, we have ht(p,q)S>

ht pS = 1. Since S has dimension two, the ideal (p,q)S is n-primary. Thus S/(p,q)S is an artinian

ring.

(2i) There is an R-module Z such that Mn ∼= X ⊕Z. According to Lemma 5.6.7, it holds that

X ∼= R/( f ) for some f ∈ {p, pq, pr, pqr}. There are isomorphisms

R/( f ,r)⊕Z/rZ ∼= Mn/rMn ∼= CokR/(r)

(
p 0 0
0 pq p
0 0 0

)
∼= CokR/(r)

(
p 0 0
0 0 p
0 0 0

)
∼= (R/(p,r))⊕2⊕R/(r).

Taking the completions and using the Krull–Schmidt property and [Eis95, Exercise 7.5], we ob-

serve that the ideal ( f ,r)R coincides with either (p,r)R or rR. Hence f 6= pq. Similarly, there are
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isomorphisms

R/( f ,q)⊕Z/qZ∼=Mn/qMn∼=CokR/(q)

(
p 0 rn

0 0 p
0 0 pr

)
∼=CokR/(q)

(
p 0 rn

0 0 p
0 0 0

)
∼=R/(q)⊕CokR/(q)

(
p rn

0 p

)
.

The assumption n≥ ``(S/(p,q)) implies rn ∈ nn⊆ (p,q)S. We observe from this that CokR/(q)

(
p rn

0 p

)
is isomorphic to CokR/(q)

(
p 0
0 p

)
, and obtain an isomorphism R/( f ,q)⊕Z/qZ∼=R/(q)⊕(R/(p,q))⊕2.

It follows that ( f ,q)R coincides with either qR or (p,q)R, which implies f 6= pr. Finally, consider

the isomorphisms

R/( f , pq)⊕Z/pqZ ∼= Mn/pqMn ∼= CokR/(pq)

(
p 0 rn

0 0 p
0 0 pr

)

∼= CokR/(pq)

(
p 0 rn

0 0 p
0 0 0

)
∼= R/(pq)⊕CokR/(pq)

(
p rn

0 p

)
.

If f = p, then R/( f , pq) = R/(p) and we see that this is a direct summand of CokR/(pq)

(
p rn

0 p

)
,

which contradicts Lemma 5.6.8. Thus f 6= p, and we conclude that f = pqr.

(2ii) We go along the same lines as the proof of (2i). We have Nn ∼=Y ⊕Z for some Z ∈modR,

and get Y ∼= R/( f ) for some f ∈ {p, pq, pr, pqr} by Lemma 5.6.7. The isomorphisms

R/( f ,r)⊕Z/rZ ∼= Nn/rNn ∼= CokR/(r)

(
0 0 0
0 0 p
0 0 pq

)
∼= CokR/(r)

(0 0 0
0 0 p
0 0 0

)
∼= R/(p,r)⊕ (R/(r))⊕2,

R/( f ,q)⊕Z/qZ ∼= Nn/qNn ∼= CokR/(q)

(0 0 0
0 pr p
0 0 0

)
∼= CokR/(q)

(0 0 0
0 0 p
0 0 0

)
∼= R/(p,q)⊕ (R/(q))⊕2

show that ( f ,q) (resp. ( f ,r)) coincides with either (p,q) or (q) (resp. either (p,r) or (r)), which

implies f 6= pq, pr. We also have isomorphisms

R/( f , pr)⊕Z/prZ ∼= Nn/prNn ∼= CokR/(pr)

(
0 0 qrn

0 0 p
0 0 pq

)

∼= CokR/(pr)

(
0 0 qrn

0 0 p
0 0 0

)
∼= CokR/(pr)

( p
qrn
)
⊕R/(pr).

Using Lemma 5.6.8, we see that f 6= p, and obtain f = pqr.
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The purpose of this subsection is now fulfilled.

Theorem 5.6.4. Let S be a regular local ring of dimension two. Let p,q,r be distinct irreducible

elements of S. Then R = S/(p2qr) has infinite CM+-representation type.

Proof. We assume that R has finite CM+-representation type, and derive a contradiction. It follows

from Lemma 5.6.6(1) that there exists an integer a≥ 1 such that both Mi and Ni are decomposable

for all i ≥ a; we write Mi ∼= Xi⊕Yi for some R-modules Xi,Yi with ν(Xi) = 1 and ν(Yi) = 2.

In view of Lemmas 5.6.3 and 5.6.6(2), we see that there exists an integer b ≥ a such that Yh is

indecomposable for all h ≥ b and that Yi � Yj for all i, j ≥ b with i 6= j. Then, we have to have

Yi ∈ CM0(R) for all i≥ b, and hence Xi ∈ CM+(R) for all i≥ b (by Lemma 5.6.6(1)). Putting c =

max{b, ``(S/(p,q))} and applying Lemma 5.6.9(2i), we obtain that Xi is isomorphic to R/(pqr)

for all i≥ c. There are isomorphisms

Ni ∼= ΩRMi ∼= ΩRXi⊕ΩRYi ∼= ΩR(R/(pqr))⊕ΩRYi ∼= R/(p)⊕ΩRYi,

where the first isomorphism follows from Lemma 5.6.6(1). Since R/(p) is in CM+(R), it follows

from Lemma 5.6.9(2ii) that R/(p)∼= R/(pqr), which is absurd.

5.6.3 The hypersurface S/(p2q)

The goal of this subsection is to prove the following theorem.

Theorem 5.6.5. Let (S,n) be a 2-dimensional regular local ring. Let p,q be distinct irreducible

elements of S. Suppose that R = S/(p2q) has finite CM+-representation type. Then p,q /∈ n2.

Note that the rings R and R/p2R are local hypersurfaces of dimension one. If p ∈ n2, then

R/p2R = S/(p2) has infinite CM+-representation type by Theorem 5.6.2, and so does R by Theo-

rem 5.5.2(1), which contradicts the assumption of the theorem. Hence p /∈ n2, and p is a member

of a regular system of parameters of S. Thus we establish the following setting.
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Setup 5.6.6. Throughout the remainder of this subsection, let (S,n) be a regular local ring of

dimension two. Let x,y be a regular system of parameters of S, namely, n = (x,y). Let h ∈ n2 be

an irreducible element, and write h = x2s+ xyt + y2u with s, t,u ∈ S. Let R = S/(x2h) be a local

hypersurface of dimension one. One has SpecR = {p,q,m}, where we set p = xR, q = hR and

m= nR. For each integer i≥ 1 we define matrices

Ai =


x 0 yi

0 xy x

0 xh 0

 , Bi =


xh −yih yi+1

0 0 x

0 xh −xy


over S. We put Mi = CokS Ai and Ni = CokS Bi.

In what follows, we argue along similar lines as in the previous subsection.

Lemma 5.6.10 (cf. Lemma 5.6.6). (1) Let i ≥ 1 be an integer. The modules Mi and Ni belong to

CM+(R), and it holds that ΩRMi = Ni and ΩRNi = Mi.

(2) Let i, j ≥ 1 be integers with i 6= j. One then have Mi �M j and Ni � N j as R-modules.

Proof. (1) We have AiBi = BiAi = x2hE. The matrices Ai,Bi give a matrix factorization of x2h over

S. We have that Mi,Ni are maximal Cohen–Macaulay R-modules with ΩRMi = Ni and ΩRNi = Mi.

Note that y,h are units and x2 = 0 in Rp = S(x)/x2S(x). We have

(Mi)p ∼= CokRp

(
x 0 yi

0 xy x
0 x 0

)
∼= CokRp

(
x 0 yi

0 0 x
0 x 0

)
∼= CokRp

(
x 0 1
0 0 x
0 x 0

)
∼= CokRp

(
0 0 1
−x2 0 x

0 x 0

)
= CokRp

(
0 0 1
0 0 x
0 x 0

)
∼= CokRp

(
0 0 1
0 0 0
0 x 0

)
∼= CokRp

(
0 0
0 x

)∼= Rp⊕κ(p),

which shows that Mi ∈ CM+(R), and Lemma 5.5.2 implies Ni ∈ CM+(R) as well.

(2) If Mi ∼= M j, then (x,yi)R = Fitt2(Mi) = Fitt2(M j) = (x,y j)R, and (yi) = (y j) in the discrete

valuation ring R/xR = S/(x) with y a uniformizer, which implies i = j. As Ni,N j are the first

syzygies of Mi,M j by (1), we see that if Ni ∼= N j, then i = j.

Lemma 5.6.11 (cf. Lemma 5.6.7). It holds that {M ∈CM+(R) |M is cyclic}/∼== {R/(x), R/(xh)}/∼=.
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Proof. It is easy to see that neither (R/(x))p nor (R/(xh))p is Rp-free. Let M ∈ CM+(R) be cyclic.

As Rq is a field, Mp is not Rp-free. Using Lemma 5.6.3, we get M ∼= R/ f R for some f ∈ S with

f | x2h, x | f and x2 - f . Hence, either f = x or f = xh holds.

Lemma 5.6.12 (cf. Lemma 5.6.9). Let i ≥ 1 be an integer. Let C be a cyclic R-module with

C ∈ CM+(R). If C is a direct summand of either Mi or Ni, then C is isomorphic to R/(xh).

Proof. (1) First, consider the case where C is a direct summand of Mi. Assume that C is not

isomorphic to R/(xh). Then C ∼= R/(x) by Lemma 5.6.11. Application of the functor −⊗R R/(xy)

shows that C/xyC =C ∼= R/(x) is a direct summand of

Mi/xyMi = CokR/(xy)

(
x 0 yi

0 0 x
0 xh 0

)
∼= CokR/(xy)

(
x yi 0
0 x 0
0 0 xh

)
∼= CokR/(xy)

(
x yi

0 x

)
⊕R/(xy,xh).

As (x) 6=(xy,xh), we have R/(x)�R/(xy,xh) and hence R/(x) is a direct summand of CokR/(xy)

(
x yi

0 x

)
.

Note that R/(xy) = S/(x2h,xy) = S/(x2(x2s+ xyt + y2u),xy) = S/(x4s,xy). Put T := R/(xy,x4) =

S/(x4,xy). Applying the functor −⊗R R/(x4), we see that T/(x) = R/(x) is a direct summand of

L := CokT

(
x yi

0 x

)
. Write L = T/(x)⊕D with D ∈modT . It is easy to verify that the sequence

0← L← T⊕2

(
x yi

0 x

)
←−−−− T⊕2

(
y x3 0
0 0 x3

)
←−−−−−− T⊕3

is exact, and we observe D∼= T/(v) for some v ∈ T . Uniqueness of a minimal free resolution gives

rise to a commutative diagram

0 Loo

∼=
��

T⊕2oo

∼= (a1 a2
a3 a4 )��

T⊕2

(
x yi

0 x

)
oo

∼=
(b1 b2

b3 b4

)
��

T⊕3

(
y x3 0
0 0 x3

)
oo

0 T/(x)⊕T/(v)oo T⊕2oo T⊕2(
x 0
0 v

)oo

with vertical maps being isomorphisms. The elements a1a4−a2a3 and b1b4−b2b3 are units of T .

We have a1yi +a2x = xb2 and a1x = xb1 in T . Hence a1yi ∈ (x) ∈ SpecT , which implies a1 ∈ (x).
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Also, a1−b1 ∈ (0 : x) = (x3,y), which implies b1 ∈ (x,y). It follows that a2,a3,b2,b3 are units of

T . The equality a3x = vb3 implies that (x) = (v) in T . We obtain isomorphisms

T/(x3,y)⊕T/(x3)∼= CokT

(
y x3 0
0 0 x3

)
∼= ΩT L∼= (x)⊕ (v)∼= (x)⊕2 ∼= (T/(x3,y))⊕2.

It follows that (x3) = (x3,y) in T , which is a contradiction. Consequently, C is isomorphic to

R/(xh).

(2) Next we consider the case where C is a direct summand of Ni. The proof is analogous to that

of (1). Again, assume C � R/(xh). Then C ∼= R/(x) by Lemma 5.6.11. Set T := R/(xh) = S/(xh).

Applying −⊗R T , we see that R/(x) = T/(x) is a direct summand of

Ni/xhNi = CokT

(
0 −yih yi+1

0 0 x
0 0 −xy

)
∼= CokT

(
0 −yih yi+1

0 0 x
0 0 0

)
∼= T ⊕CokT

(
yih yi+1

0 x

)
,

which implies that T/(x) is a direct summand of L := CokT

(
yih yi+1

0 x

)
. There are an isomorphism

L∼= T/(x)⊕T/(v) with v ∈ T and a commutative diagram:

0 Loo

∼=
��

T⊕2oo

∼= (a1 a2
a3 a4 )��

T⊕2

(
yih yi+1

0 x

)
oo

∼=
(b1 b2

b3 b4

)
��

0 T/(x)⊕T/(v)oo T⊕2oo T⊕2(
x 0
0 v

)oo

Note that SpecT = {(x),(h),nT}. We have (h) 3 a1yih = xb1 ∈ (x), which implies a1 ∈ (x) and

b1 ∈ (h). As a1a4−a2a3 and b1b4−b2b3 are units, so are a2,a3,b2,b3. The equalities a3yih = vb3

and a3yi+1 +a4x = vb4 imply a3yi(b−1
3 hb4− y) = a4x ∈ (x), which gives b−1

3 hb4− y ∈ (x). Hence

y ∈ (x,h) = (x,x2s+ xyt + y2u) = (x,y2u) in T , which is a contradiction. Thus C ∼= R/(xh).

Lemma 5.6.13 (cf. Theorem 5.6.4). The ring R has infinite CM+-representation type.

Proof. Assume contrarily that R has finite CM+-representation type. Then, by (1) and (2) of

Lemma 5.6.10, there exists an integer a≥ 1 such that Mi is decomposable for all integers i≥ a.
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Suppose that for some i≥ 1 the module Mi has a cyclic direct summand C ∈ CM+(R). Then C

is isomorphic to R/(xh) by Lemma 5.6.12, and ΩRC = R/(x) is a direct summand of ΩRMi = Ni

by Lemma 5.6.10(1). Applying Lemma 5.6.12 again, we have to have R/(x)∼= R/(xh), which is a

contradiction.

Thus Mi has no cyclic direct summand belonging to CM+(R) for all i≥ 1. This means that for

every i≥ a the R-module Mi has an indecomposable direct summand Yi ∈ CM+(R) with ν(Yi) = 2.

This, in turn, contradicts the assumption that R has finite CM+-representation type.

Now the purpose of this subsection is readily accomplished:

Proof of Theorem 5.6.5. The theorem is an immediate consequence of Lemma 5.6.13 and what we

state just after the theorem.

5.7 On the higher-dimensional case

In this section, we explore the higher-dimensional case: we consider Cohen–Macaulay local rings

R with dimR≥ 2 and having finite CM+-representation type. In particular, we give various results

supporting Conjecture 5.1.1. We begin with presenting an example by using a result obtained in

Section 4.

Example 5.7.1. Let S be a regular local ring with a regular system of parameters x,y,z. Then

R = S/(xyz) has infinite CM+-representation type.

Proof. Let I = (xy) be an ideal of R. Then (0 : I) = (z) in R, and ht(I +(0 : I)) = ht(xy,z) = 1 <

2 = dimR. The ring R/I = S/(xy) is a 2-dimensional hypersurface which does not have an isolated

singularity. We see by [HL02, Corollary 2] that R/I has infinite CM-representation type. It follows

from Theorem 5.5.2(3a) that R has infinite CM+-representation type.

Remark 5.7.2. We remark that the indecomposables in CM0(R) for R = k[[x,y,z]]/(xyz) have been

classified by Burban and Drozd (see [BD17, Theorem 8.6]).
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We consider constructing from a given hypersurface of infinite CM+-representation type an-

other hypersurface of infinite CM+-representation type. For this we establish the following lemma,

which provides a version of Knörrer’s periodicity theorem for CM+(R).

Lemma 5.7.1. Let (S,n) be a regular local ring, and let f ,g∈ S. Let R= S/( f ) and R]= S[[x]]/( f +

x2g) be hypersurfaces with x an indeterminate over S. Then the following statements hold.

(1) There is an additive functor

Φ : CM+(R)→ CM+(R]), Cok(A,B) 7→ Cok
((

A −xE
xgE B

)
,
( B xE
−xgE A

))
.

(2) Let M ∈ indCM+(R) and put N = Φ(M). Then one has either N ∈ indCM+(R]) or N ∼= X⊕Y

for some X ,Y ∈ indCM+(R]).

Proof. (1) It holds that
(

A −xE
xgE B

)( B xE
−xgE A

)
=
( B xE
−xgE A

)( A −xE
xgE B

)
= ( f + x2g)E. If (V,W ) :

(A,B) → (A′,B′) is a morphism of matrix factorizations of f over S, then
((

V 0
0 W

)
,
(

W 0
0 V

))
:((

A −xE
xgE B

)
,
( B xE
−xgE A

))
→
((

A′ −xE
xgE B′

)
,
(

B′ xE
−xgE A′

))
is a morphism of matrix factorizations of

f + x2g over S[[x]]. We observe that Φ defines an additive functor from CM(R) to CM(R]).

Fix M ∈CM+(R). Let (A,B) be the corresponding matrix factorization. Set N =CokS[[x]]

(
A −xE

xgE B

)
.

There is a nonmaximal prime ideal p of S such that Mp is not Rp-free. Put q= pS[[x]]+ xS[[x]]. We

see that q is a nonmaximal prime ideal of S[[x]]. Suppose that Nq
∼= (R])⊕n

q for some n. Then

R⊕n
p
∼= ((R]/xR])⊕n)q ∼= Nq/xNq

∼= CokS[[x]]q

(
A 0
0 B

)∼= CokSp A⊕CokSp B∼= Mp⊕ (ΩRM)p,

which implies that Mp is Rp-free, a contradiction. Therefore Nq is not (R])q-free, and we obtain

N ∈ CM+(R]). Thus Φ induces an additive functor from CM+(R) to CM+(R]).

(2) Let (A,B) be the matrix factorization which gives M. Then N = CokS[[x]]

(
A −xE

xgE B

)
. Sup-

pose that N is decomposable. Then N ∼= X⊕Y for some nonzero modules X ,Y ∈ CM(R]). It holds

that

X/xX⊕Y/xY ∼= N/xN ∼= CokS
(

A 0
0 B

)∼= CokS A⊕CokS B∼= M⊕ΩRM.
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Since R is Gorenstein, not only M but also ΩRM is indecomposable; see [Yos90, Lemma 8.17].

Nakayama’s lemma guarantees that X/xX and Y/xY are nonzero, and both X and Y have to be

indecomposable. We may assume that M ∼= X/xX and ΩRM ∼= Y/xY . Take a nonmaximal prime

ideal p of S such that Mp is not Rp-free. Then q := pS[[x]]+ xS[[x]] is a nonmaximal prime ideal of

S[[x]] as in the proof of (1). We easily see that the Rp-module (ΩRM)p is not free. Now it follows

that neither Xq nor Yq is free over (R])q, which shows that X ,Y ∈ CM+(R]).

Infinite CM+-representation type ascends from R to R].

Proposition 5.7.3. Let (S,n) be a regular local ring and f ,g∈ S. Let R= S/( f ) and R]= S[[x]]/( f +

x2g) be hypersurfaces with x an indeterminate. If R has infinite CM+-representation type, then so

does R].

Proof. Pick any M1 ∈ indCM+(R). The set indCM+(R)\{M1,ΩM1} is infinite, and we pick any

M2 in this set. The set indCM+(R) \ {M1,ΩM1,M2,ΩM2} is infinite, and we pick any M3 in

it. Iterating this procedure, we obtain modules M1,M2,M3, . . . in indCM+(R) such that Mi �M j

and Mi ∼= ΩM j for all i 6= j. We put Ni = ΦMi for each i, where Φ is the functor defined in

Lemma 5.7.1. Then by the lemma Ni is either in indCM+(R]) or isomorphic to Xi⊕Yi for some

Xi,Yi ∈ indCM+(R]).

Assume Ni ∼= N j for some i 6= j. Then, as we saw in the proof of the lemma, there are iso-

morphisms Mi⊕ΩMi ∼= Ni/xNi ∼= N j/xN j ∼= M j ⊕ΩM j and the modules Mi,ΩMi,M j,ΩM j are

indecomposable. This contradicts the choice of these modules. Hence we have Ni � N j for all

i 6= j.

Suppose that there are only a finite number, say n, of indecomposable modules in CM+(R).

Then it is seen that the set {N1,N2,N3, . . .}/∼= has cardinality at most n+
(n+1

2

)
, which is a con-

tradiction. We now conclude that R] has infinite CM+-representation type, and the proof of the

proposition is completed.

Here is an application of Proposition 5.7.3.
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Corollary 5.7.4. Let R be a 2-dimensional complete local hypersurface with algebraically closed

residue field k of characteristic 0 and not having an isolated singularity. Suppose that R has multi-

plicity at most 2. If R has finite CM+-representation type, then R∼= k[[x,y,z]]/( f ) with f = x2 + y2

or f = x2 + y2z, and hence R has countable CM-representation type.

Proof. If e(R) = 1, then R is regular, which contradicts the assumption that R does not have an

isolated singularity. Hence e(R) = 2, and the combination of Cohen’s structure theorem and the

Weierstrass preparation theorem shows R ∼= k[[x,y,z]]/(x2 + g) for some g ∈ k[[y,z]]; see [Yos90,

Proof of Theorem 8.8]. It follows from Proposition 5.7.3 that the 1-dimensional hypersurface

S := k[[y,z]]/(g) has finite CM+-representation type. By virtue of Theorem 5.6.1, we obtain g = y2

or g = y2z after changing variables (i.e., after applying a k-algebra automorphism of k[[y,z]]). We

observe that R is isomorphic to either k[[x,y,z]]/(x2 + y2) or k[[x,y,z]]/(x2 + y2z). It follows from

[LW12, Propositions 14.17 and 14.19] that R has countable CM-representation type.

Proposition 5.7.3 can provide a lot of examples of hypersurfaces of infinite CM+-representation

type of higher dimension. The following example is not covered by this proposition or any other

general result given in this chapter.

Example 5.7.5. Let S be a regular local ring with a regular system of parameters x,y,z. Let

f = xn + x2ya+ y2b

be an irreducible element of S with n≥ 4 and a,b∈ S. Then the hypersurface R= S/( f ) has infinite

CM+-representation type.

Proof. Putting g = x2a+ yb, we have f = xn + yg. For each integer i ≥ 0 we define a pair of

matrices Ai =
(

x2 xzi

0 −x2

)
and Bi =

(
xn−2 xn−3zi

0 −xn−2

)
, which gives a matrix factorization of xn over S and

S/(y). Define another pair of matrices A]
i =

(
Ai −yE
gE Bi

)
and B]

i =
(

Bi yE
−gE Ai

)
. These form a matrix

factorization of f over S, and hence Mi := CokS(A
]
i ) is a maximal Cohen–Macaulay R-module.
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There are equalities

FittS3(Mi) = I1(A
]
i ) = (x2,xzi,xn−2,xn−3zi,y,g)S = (x2,xzi,y)S

of ideals of S, where we use n≥ 4.

Suppose that Mi∼=M j for some i< j. Then (x2,xzi,y)S=(x2,xz j,y)S and (x2,xzi)S=(x2,xz j)S,

where S := S/(y) is a regular local ring having the regular system of parameters x,z. Hence

zi ∈ (x,z j)S and zi ∈ z jS̃ where S̃ := S/xS is a discrete valuation ring with z a uniformizer. This

gives a contradiction, and we see that Mi �M j for all i 6= j.

Let p= (x,y)S ∈ SpecS, and fix an integer i≥ 0. Note that all the entries of Ai,Bi are in p since

n ≥ 4. It follows from [Yos90, Remark 7.5] that the Rp-module (Mi)p does not have a nonzero

free summand. Since f is assumed to be irreducible, R is an integral domain. Hence each nonzero

direct summand X of the maximal Cohen–Macaulay R-module Mi has positive rank, and hence has

full support. Therefore Xp 6= 0, and thus all the indecomposable direct summands of Mi belong to

indCM+(R). Since all the Mi are generated by four elements, it is observed that indCM+(R) is an

infinite set.

To prove our next result, we prepare a lemma on unique factorization domains.

Lemma 5.7.2. Let R be a Cohen–Macaulay factorial local ring with dimR ≥ 3. Let I be an ideal

of R generated by two elements. Then depthR/I > 0.

Proof. We write I = (x,y)R and put g= gcd{x,y}. Then x= gx′ and y= gy′ for some x′,y′ ∈ R, and

we set I′ = (x′,y′)R. There is an exact sequence 0→ R/I′
g−→ R/I→ R/gR→ 0 of R-modules. As

R is Cohen–Macaulay, we have depthR≥ 3 and ht I′ = grade I′. Since R is a domain and g 6= 0, we

have depthR/gR= depthR−1≥ 2. If ht I′= 1, then I′ is contained in a principal prime ideal, which

contradicts the fact that x′,y′ are coprime. Hence ht I′ = 2, and the sequence x′,y′ is R-regular. It

follows that depthR/I′ = depthR−2≥ 1, and the depth lemma implies depthR/I ≥ 1.

Now we can prove the following theorem, which provides the shape of a hypersurface of infinite

CM+-representation type.
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Theorem 5.7.6. Let (S,n) be a regular local ring and x,y ∈ n. Suppose that the ideal (x,y) of S is

neither prime nor n-primary. Then R = S/(xy) has infinite CM+-representation type.

Proof. Lemma 5.7.2 guarantees that there exists an S/(x,y)-regular element a∈ n. Take a minimal

prime p of (x,y). Since (x,y) is not prime, we can choose an element b∈ p\(x,y). Set zn = anb for

each n. The matrices An =
( x zn

0 −y
)

and Bn =
( y zn

0 −x
)

with n≥ 1 form a matrix factorization of xy over

S, and Mn = CokS An is a maximal Cohen–Macaulay R-module. Put In := I1(An) = (x,y,zn) ⊆ S.

Since the In are pairwise distinct, the Mn are pairwise nonisomorphic. If Mn is decomposable,

it decomposes into two cyclic R-modules, while Lemma 5.6.3 says that there are only finitely

many such cyclic modules up to isomorphism. Thus we find infinitely many n such that Mn is

indecomposable. Since (x,y,zn) is contained in p, each (Mn)p has no nonzero free summand by

[Yos90, (7.5.1)]. In particular, we have Mn ∈ CM+(R). Now it is seen that R has infinite CM+-

representation type.

Applying the above theorem, we can obtain a couple of restrictions for a hypersurface of di-

mension at least 2 which is not an integral domain but has finite CM+-representation type.

Corollary 5.7.7. Let R be a complete local hypersurface of dimension d≥ 2 which is not a domain.

Suppose that R has finite CM+-representation type. Then one has d = 2, and there exist a complete

regular local ring S of dimension 3 and elements x,y ∈ S satisfying the following conditions.

(1) R is isomorphic to S/(xy).

(2) S/(x) and S/(y) have finite CM-representation type.

(3) S/(x,y) is a domain of dimension 1.

Proof. Corollary 5.4.2(1) says that R satisfies Serre’s condition (Rd−2). Suppose d ≥ 3. Then

R satisfies (R1), and hence it is normal. In particular, R is a domain, contrary to our assump-

tion. Therefore, we have to have d = 2. Cohen’s structure theorem yields R ∼= S/ f S for some

3-dimensional complete regular local ring (S,n) and f ∈ n \ n2. As R is not a domain, there

are elements x,y ∈ S with f = xy. Since dimS = 3, the ideal (x,y)S is not n-primary. Hence
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dimS/(x,y)S = 1, and S/(x,y)S is a domain by Theorem 5.7.6. We have dimR = dimR/xR = 2,

(0 :R x) = yR and ht(xR+(0 :R x)) < 2. It follows from Theorem 5.5.2(3a) that S/xS has finite

CM-representation type, and similarly so does S/yS.

Proposition 5.7.3 gives an ascent property of infinite CM+-representation type. Now we presents

a descent property of infinite CM+-representation type.

Theorem 5.7.8. Let φ : (R,m,k)→ (S,n, l) be a finite local homomorphism of Cohen–Macaulay

local rings of dimension d such that S is a domain. Set p= Kerφ and assume the following.

(a) The induced embedding R/p ↪→ S is birational.

(b) There exists q ∈ V(p)\{m} such that Rq is not a direct summand of Sq.

If S has infinite CM-representation type, then R has infinite CM+-representation type.

Proof. We prove the theorem by establishing several claims.

Claim 5.7.3. Let X 6= 0 be an R-submodule of a maximal Cohen–Macaulay S-module M. Then

Xq 6= 0.

Proof of Claim. Assume Xq = 0. Then there exists an element s∈ annR X such that s /∈ q. As p⊆ q,

we have s /∈ p, which means φ(s) 6= 0. Choose a nonzero element x ∈ X . Since s annihilates X , we

have 0 = s ·x = φ(s)x in M. This contradicts the fact that M is torsion-free over the domain S. �

Claim 5.7.4. Let M ∈ CM0(S). Let X be an indecomposable R-module which is a direct summand

of M. Then X ∈ indCM+(R).

Proof of Claim. As depthR M = depthS M ≥ d, we have M ∈CM(R) and hence X ∈ indCM(R). To

show the claim, it suffices to verify that Xq is not Rq-free.

Take an exact sequence σ : 0→ ΩSM → S⊕n → M → 0. Since M belongs to CM0(S), the

S-module E := Ext1S(M,ΩSM) has finite length. The induced field extension k ↪→ l is finite be-

cause so is the homomorphism φ , and hence E also has finite length as an R-module. As q is

a nonmaximal prime ideal of R, we have 0 = Eq = Ext1Sq(Mq,(ΩSM)q), and the exact sequence
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σq : 0→ (ΩSM)q→ S⊕n
q →Mq→ 0 corresponds to an element in this Ext module. Hence σq has

to split, and Mq is a direct summand of S⊕n
q as an Sq-module. (Note that Sq is not necessarily a

local ring.) The Rq-module Xq is a direct summand of Mq, and is nonzero by Claim 5.7.3.

Suppose that Xq is Rq-free. Then Rq is a direct summand of S⊕n
q in modRq. As Rq is a local

ring, Rq is a direct summand of Sq. This contradicts the assumption of the theorem, and thus Xq is

not Rq-free. �

Claim 5.7.5. One has the inclusion indCM0(S)⊆ indCM+(R).

Proof of Claim. Take M ∈ indCM0(S). Lemma 5.6.1 implies that M is indecomposable as an

R/p-module, and it is indecomposable as an R-module. Taking X := M in Claim 5.7.4, we have

M ∈ indCM+(R). �

It follows from Lemma 5.5.3 that S has infinite CM0-representation type. Claim 5.7.5 implies

that R has infinite CM+-representation type, and the proof of the theorem is completed.

We obtain an application of the above theorem, which gives an answer to Question 5.3.6. For

a ring R we denote by R the integral closure of R. Recall that a typical example of a henselian

Nagata ring is a complete local ring.

Corollary 5.7.9. Let R be a 2-dimensional henselian Nagata Cohen–Macaulay non-normal local

ring. Suppose that R has finite CM+-representation type. Then the following statements hold.

(1) There exists a minimal prime p of R such that the integral closure R/p has finite CM-representation

type. In particular, if R is a domain, then R has finite CM-representation type.

(2) If R is Gorenstein, then R is a hypersurface.

Proof. By Corollary 5.4.2(1) the singular locus of R has dimension at most one, so that R satisfies

Serre’s condition (R0). As R is Cohen–Macaulay, it is reduced. Let S = R be the integral closure

of R. We have a decomposition S = R/p1⊕·· ·⊕R/pn as R-modules, where MinR = {p1, . . . ,pn}

(see [HS06, Corollary 2.1.13]). Since R is Nagata, the extension R ⊆ S is finite. The ring S is

normal and has dimension two, so it is Cohen–Macaulay.
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We claim that if p is a nonmaximal prime ideal of R such that Sp is Rp-free, then Rp is a regular

local ring. In fact, if htp = 0, then Rp is a field. Let htp = 1. The induced map SpecS→ SpecR

is surjective, and we find a prime ideal P of S such that P∩R = p. We easily see htP = 1. As S is

normal, SP is regular. The induced map Rp→ SP factors as Rp
a−→ Sp

b−→ SP, where a is a finite free

extension, and b is flat since SP = (Sp)PSp . Hence Rp→ SP is a flat local homomorphism. As SP is

regular, so is Rp.

Since R does not have an isolated singularity, there exists a nonmaximal prime ideal p of R

such that Rp is not regular. The claim implies that Sp is not Rp-free, whence S ∈ CM+(R). There

exists an integer 1≤ l ≤ n such that T := R/pl belongs to CM+(R).

Put p := pl ∈ MinR. The ring R/p is also Nagata, and the extension R/p ⊆ T is finite and

birational. The ring T is a 2-dimensional henselian normal local domain, whence it is a Cohen–

Macaulay. Choose a nonmaximal prime ideal q of R such that Tq is not Rq-free. If p is not contained

in q, then (R/p)q = κ(p)q = 0 and Tq = 0, which particularly says that Tq is Rq-free, a contradiction.

Hence p⊆ q.

Suppose that Rq is a direct summand of Tq. Then there is an isomorphism Tq ∼= Rq⊕X of Rq-

modules. Since Tq is annihilated by p, so is Rq. We have ring extensions Rq = (R/p)q ⊆ Tq ⊆ κ(p),

which especially says that Rq is a domain and that Tq has rank one as an Rq-module. Hence the

Rq-module X has rank zero, and it is easy to see that X = 0. We get Tq ∼= Rq, which contradicts the

choice of q. Consequently, Tq does not have a direct summand isomorphic to Rq.

Now, application of Theorem 5.7.8 proves the assertion (1). To show (2), we consider the

T -module U = Ω2
T (T/mT ). Fix any nonzero direct summand X of U or T in modR. Note that

T = R/p is a torsion-free module over R/p. Since U is a submodule of a nonzero free T -module,

U is also torsion-free over R/p, and so is X . We easily see from this that Xq 6= 0. The module

Xq is a direct summand of Uq
∼= T⊕edimR−1

q . As Rq is not a direct summand of Tq, it is not a

direct summand of Xq. In particular, X belongs to CM+(R). Thus, all the indecomposable direct

summands of U and of T in modR belong to indCM+(R), and it follows from Lemma 5.5.7 that

they have complexity at most one. Hence U and T have complexity at most one over R, and so
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does T/mT . We obtain cxR k ≤ 1, and R is a hypersurface by [Avr10, Theorem 8.1.2].

The above result yields a strong restriction for finite CM+-representation type in dimension

two.

Corollary 5.7.10. Let R be a 2-dimensional non-normal Gorenstein complete local ring. If R has

finite CM+-representation type, then the integral closure R has finite CM-representation type.

Proof. If R is a domain, then the assertion follows from Corollary 5.7.9(1). Hence let us assume

that R is not a domain. By Corollary 5.7.9(2) the ring R is a hypersurface. We can apply Corollary

5.7.7 to see that there exists a 3-dimensional regular local ring S and elements x,y∈ S such that R is

isomorphic to S/(xy) and S/(x),S/(y) have finite CM-representation type. Note by [HL02, Corol-

lary 2] that S/(x),S/(y) are normal. As in the beginning of the proof of Corollary 5.7.9, the ring R

is reduced. Hence (x) 6= (y), and we have an isomorphism R∼= S/(x)×S/(y) = S/(x)×S/(y); see

[HS06, Corollary 2.1.13]. There is a natural category equivalence modR∼=modS/(x)×modS/(y),

which induces a category equivalence CM(R)∼= CM(S/(x))×CM(S/(y)). It is observed from this

that R has finite CM-representation type.

The converse of Corollary 5.7.10 does not necessarily hold, as the following example says.

Example 5.7.11. Let R= k[[x,y,z]]/(x4−y3z) be a quotient of the formal power series ring k[[x,y,z]]

over a field k. Then R is a 2-dimensional complete non-normal local hypersurface. The assign-

ment x 7→ s3t, y 7→ s4, z 7→ t4 gives an isomorphism from R to the subring S = k[[s4,s3t, t4]] of

the formal power series ring T = k[[s, t]]. The integral closure of S is the fourth Veronese sub-

ring k[[s4,s3t,s2t2,st3, t4]] of T , which has finite CM-representation type by [LW12, Theorem 6.3].

Hence R has finite CM-representation type. However, as x4−y3z = x4+x2y ·0+y2(−yz), the ring

R does not have finite CM+-representation type by Example 5.7.5.

Remark 5.7.12. The integral closure has to actually be regular (under the assumptions of Corollary

5.7.10) provided that our conjecture that countable CM-representation type is equivalent to finite

CM+-representation type holds true in this setting.
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Chapter 6

Higher Nerves of simplicial complexes

6.1 Introduction

The nerve complex has been an important object of study in algebraic combinatorics [Bas03,

Bjö03, Bor48, CJS15, Grü70, KM05, LSVJ11, PUV16]. We remind the reader of its definition:

Definition 6.1.1. Let A = {A1,A2, . . . ,Ar} be a family of sets. Consider

N(A) := {F ⊆ [r] : ∩i∈F Ai 6= /0}.

This simplicial complex is the nerve complex of A.

Of special interest is the case where A is the set of facets of a simplicial complex ∆; in this

case, one sets N(∆) := N(A). We propose a natural extension of this notion.

Definition 6.1.2. Let A = {A1,A2, . . . ,Ar} be the set of facets of a simplicial complex ∆. Define

Ni(∆) := {F ⊆ [r] : |∩ j∈F A j| ≥ i}.

We call this simplicial complex the ith nerve complex of ∆ and we refer to the Ni(∆) and the higher

nerve complexes of ∆.

When i = 1, this definition recovers N(∆).

The Nerve Theorem of Borsuk [Bor48] gives that N(∆) and ∆ have the same homologies. We

now explain how the higher nerves relate to the original complex in a more subtle manner. Namely,
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their homologies determine important algebraic and combinatorial properties of ∆. We summarize

our main quantitative results below.

Theorem 6.1.1 (Main Theorem). Let k be a field, let ∆ be a simplicial complex of dimension d−1,

and let k[∆] be the associated Stanley-Reisner ring. Let H̃i denote ith reduced simplicial homology

with coefficients in k, and let χ denote Euler characteristic. Then:

1. H̃i(N j(∆)) = 0 for i+ j > d and 1≤ j ≤ d (see Corollary 6.3.4).

2. depth(k[∆]) = inf{i+ j : H̃i(N j(∆)) 6= 0} (see Theorem 6.5.2).

3. For i≥ 0, fi(∆) =
d

∑
j=i+1

(
j−1

i

)
χ(N j(∆)) (see Theorem 6.6.1).

In short, the numbers bi j = dim H̃i(N j(∆)) for 0≤ i≤ d− j and 1≤ j ≤ d can be presented in

a nice table which determine both the depth and the f -vector (and thus also the h-vector) of ∆. We

provide an explicit example below.

Example 6.1.3. Consider the simplicial complex ∆ with facets

{F1 := ABCD,F2 := BCDE,F3 := DEFG,F4 := DFGH}.

The following are geometric realizations of the complex and its higher nerves:

∆ N1(∆) N2(∆) N3(∆) N4(∆)

DE

B

G

H

A

F

C

F4

F1F2

F3 F4

F1F2

F3 F4

F1F2

F3 F4

F1F2

F3

Figure 6.1: Nerves of ∆
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H̃0 H̃1 H̃2 χ

N1 0 0 0 1
N2 0 0 0 1
N3 1 0 0 2
N4 3 0 0 4

Figure 6.2: Nerve Homologies

Using our main theorem and the Table 2, depthk[∆] = 3 and f (∆) = (1,8,17,14,4).

There are consequences to our main results. For instance, we provide a formula to compute the

regularity of any monomial ideal, not necessarily square-free, in Theorem 6.7.1. Other algebraic

properties such as Serre’s condition (Sr) can also be detected from the nerve table; this is a topic

that will be explored in Chapter 7.

Remark 6.1.4. Though we will not consider it in this document, one can also define higher nerves

in a more general setting. Let A be a collection of subsets of a topological space X . Define Ni(A) :=

{F ⊆ [r] : dim∩ j∈FA j ≥ i}, where dim represents Krull dimension. In this setting, special interest

is given to the case where X is a Noetherian algebraic scheme; in this case, one sets Ni(X) :=Ni(A),

where A is the collection of irreducible components of X . In particular, if X = SpecR for a local

ring R, then the Ni(X) provide a natural generalization of the Lyubeznik complex of R (see [Lyu07,

Theorem 1.1] for the definition). If, instead, X = SpecR for R a Stanley-Reisner ring of a simplicial

complex ∆, then the complex defined in this remark coincides with that of Definition 6.1.2, via the

Stanley-Reisner correspondence. Our results in the Stanley-Reisner case raise some intriguing

questions about higher nerve complexes of local schemes that can be viewed as extensions of

results by Hartshorne and Katzman-Lyubeznik-Zhang ([Har62, KLZ16]).

We now briefly describe the structure of this chapter. In Section 8.2, we cover combinatorial

background and fix the notation we will use throughout the chapter. In Section 6.3, we recall and

prove certain basic facts about depth and connectivity of a complex, which motivate our results

and will be used in our proofs. We provide a strengthened version of the classical Nerve Theorem

that suits our purpose in Proposition 6.3.3. This proposition is a critical component of parts (1)
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and (2) of our main theorem. We conclude this section by proving part (1) of our main theorem.

In Section 6.4, we provide several lemmata, the main technical tools of most of our proofs. Section

8.3 is devoted to the proof of the second part of our main theorem. Section 6.6 gives the proof of

the third part of our main theorem and provides a formula for the h-vector in terms of homologies

of higher nerves in Corollary 6.6.1. Section 6.7 applies our main theorem to give a formula for

computing the Castelnuovo-Mumford regularity of any monomial ideal.

6.2 Notation and definitions

In this section we introduce the notation we will use throughout this chapter. Unless otherwise

stated, we fix the field k and let H̃i denote ith reduced simplicial or singular homology, whichever

is appropriate, always with coefficients in k.

We will use V (∆) to represent the vertex set of a simplicial complex ∆; we will use V instead

of V (∆) when the choice of ∆ is clear; we also set n := |V (∆)| and S := k[x1, . . . ,xn]. We denote a

subcomplex of ∆ induced on the vertex set W as ∆|W := {F ∈ ∆ : F ⊆W}.

Given a subset T ⊆ V (∆), we may define the star, the anti-star, and the link of T , denoted

st∆(T ), ast∆(T ), and lk∆(T ), respectively, as follows:

st∆ T := {G ∈ ∆ : T ∪G ∈ ∆}

ast∆ T := {G ∈ ∆ : T ∩G =∅}= ∆|V\T

lk∆ T := {G ∈ ∆ : T ∪G ∈ ∆ and T ∩G =∅}= st∆ T ∩ ast∆ T

The star and link of T are the void complex exactly when T /∈ ∆, and the link of T is the

irrelevant complex {∅} exactly when T is a facet. On the other hand, the anti-star of any T (V (∆)

is nonempty.

We call ∆(k) := {σ ∈ ∆ : |σ | ≤ k+1} the k-skeleton of ∆.

Definition 6.2.1. Let F>k(∆) denote the face poset of ∆ restricted to faces of ∆ with cardinality

strictly greater than k.
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We note the face poset of ∆ is F>−1(∆). Furthermore F>(dim∆+1)(∆) is the empty poset.

Definition 6.2.2. The order complex of a poset P, denoted O(P), is the simplicial complex whose

faces are all chains in P.

We will denote the geometric realization of ∆ as ||∆||.

Given a complex ∆, its barycentric subdivision may be defined as sd∆ := O(F>0(∆)). The

following is well-known (see Corollary 5.7 of [Gib10] for example).

Lemma 6.2.1. The realization ||∆|| is homeomorphic to ||sd∆||. In particular, H̃i(∆) = H̃i(sd∆)

for all i.

We let ρ : F>0(∆)→V (sd∆) be the map which sends an element of F>0(∆) to itself viewed

as a vertex of sd∆.

We will often use the following shorthand:

[∆]>k = O(F>k(∆))

= sd∆
∣∣
V (sd∆)\V (sd(∆(k−1)))

Notice that the image of ρ may be restricted to V ([∆]>k) by restricting its domain to F>k(∆).

A simplicial map f : ∆1→∆2 is a function f : V (∆1)→V (∆2) so that for all σ ∈∆1, f (σ)∈∆2.

We say a simplicial map f is a simplicial isomorphism if f has an inverse that is a simplicial map.

Note that if f : Q→ P is an order-reversing or order-preserving poset map, then f : O(Q)→O(P)

is a simplicial map.

Given a simplicial complex ∆, we also consider algebraic properties of its Stanley-Reisner ring.

Readers unfamiliar with the algebraic terminology used may see [BH93] or a similar text for more

background. Unless otherwise stated, we write d for dimk[∆], the Krull dimension of the ring

k[∆]. We also use s(∆) to mean the minimal cardinality of facets of ∆. By depthk[∆] we mean

the depth of the k-algebra k[∆]; for a combinatorial characterization of depthk[∆], see Corollary

6.3.1. We say that ∆ is Cohen-Macaulay whenever k[∆] is Cohen-Macaulay, that is, whenever

dimk[∆] = depthk[∆].
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We further note that

dimk[∆] = max{|F | : F is a facet of ∆}

depthk[∆] = max{i : ∆
(i−1) is Cohen-Macaulay} ≤ s(∆).

6.3 Preparatory results

In this section, we begin by exploring what is known in the literature and use our construction to

prove some immediate results. Many of these results follow as a consequence of our main theorem,

but their immediacy shows that our construction is a natural one. We then prove a generalization

of the Borsuk Nerve Theorem for simplicial complexes.

We now present Hochster’s formula, which will be used throughout this chapter and the next. It

relates the ith local cohomology module of k[∆] supported on m, denoted H i
m(k[∆]), to the reduced

homology of links of certain faces of ∆. Here m is the ideal of k[∆] generated by the residue classes

of all variables in S.

Theorem 6.3.1 (Hochster [BH93]). Let ∆ be a simplicial complex. Then the Hilbert series of the

local cohomology modules of k[∆] with respect to the fine grading is given by:

HilbH i
m(k[∆])(t) = ∑

T∈∆

dimk H̃i−|T |−1(lk∆ T ) ∏
v j∈T

t−1
j

1− t−1
j

.

One has depthk[∆] =min{i : H i
m(k[∆]) 6= 0} and dimk[∆] =max{i : H i

m(k[∆]) 6= 0}, so Hochster’s

formula allows us to characterize depth and dimension of k[∆] in terms of homologies of links of

faces. The following is a generalization of Reisner’s well known criterion for Cohen-Macaulayness.

Corollary 6.3.1. Let ∆ be a simplicial complex. Then depthk[∆]≥ t if and only if H̃i−1(lk∆ T ) = 0

for all T ∈ ∆ with i+ |T |< t.

The following theorem, known as the Borsuk Nerve Theorem, is one of the main tools for

working with the classical nerve complex.
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Theorem 6.3.2 ([Bor48, Section 9, Corollary 2]). ∆ and N1(∆) have same homotopy type. In

particular, H̃i(∆)∼= H̃i(N1(∆)) for all i.

Note if depthk[∆]≥ t, then H̃i−1(∆) = H̃i−1(N1(∆)) = 0 for i < t by Corollary 6.3.1 and Corol-

lary 6.3.2.

Following from the definition of higher nerves, we are able to quickly derive the following

results.

Lemma 6.3.3. If i≤ s(∆) and Ni(∆) is connected, then ∆(1) is an i-connected graph.

Proof. Since Ni(∆) is connected, there is a spanning tree of Ni(∆)
(1). Let S be a set of all vertices of

∆ except for at most i−1 of them. We have that N1(∆|S) is connected, since the facets of ∆|S are a

subset of the facets of ∆, and the induced spanning tree is preserved. Since connectedness is equiv-

alent to trivial 0th reduced homology and N1(−) preserves reduced homology, ∆|S is connected.

Therefore ∆(1) is i-connected.

Corollary 6.3.2. Let t = depthk[∆]. Then ∆(1) is a (t−1)-connected graph.

Proof. Since ∆(t−1) is Cohen-Macaulay, the facet-ridge graph of ∆(t−1) is connected by [Har62];

that is, between any pair of (t − 1)-faces of ∆, there is a sequence of (t − 1)-faces, so that each

consecutive pair intersects in a (t−2)-face. Then for any pair of facets of ∆, by choosing a (t−1)-

face for each, and finding such a sequence between them, we construct from this a sequence of

facets so that each consecutive pair intersects in a (t− 2)-face. Therefore Nt−1(∆) is connected,

and the result then follows from Lemma 6.3.3.

An easy proof of Borsuk’s Nerve Theorem (Theorem 6.3.2) uses the following result.

Theorem 6.3.4 ([Qui78], Proposition 1.6). Let f : ∆→ O(P) be a simplicial map. If for all x ∈ P

we have that f−1(P≥x) is contractible, then f induces a homotopy equivalence between ∆ and

O(P).

This theorem also provides a proof of our generalization of the classical Nerve Theorem. This

result is probably known to experts, but we could not find the statement we need, so we provide a

proof.
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Proposition 6.3.3 (Generalized Nerve Theorem). [∆]> j is homotopy equivalent to N j+1(∆).

Proof. We use a similar approach as that of Theorem 10.6 in [Bjö95].

Let P = F>0(N j+1(∆)) and define f : F> j(∆)→ P by

f (σ) = {Fi : σ ⊆ Fi facet of ∆}.

This map is order-reversing, and it is well-defined, since |σ | ≥ j+1. Therefore, f : O(F> j(∆))→

O(P) is a simplicial map. For any τ ∈ P, we have that

f−1(P≥τ) =
⋂

Fi∈τ

Fi,

which is a face of ∆ and is thus contractible. Therefore, by Theorem 6.3.4, f induces a homotopy

equivalence between O(F> j(∆)) and O(P). Since O(P) is the barycentric subdivision of N j+1(∆),

Lemma 6.2.1 says that ||O(P)|| ∼= ||N j+1(∆)||, and therefore, O(F> j(∆)) = [∆]> j is homotopy

equivalent to N j+1(∆).

Notice when j = 0, we recover the classical Nerve Theorem.

We may now prove part (1) of our main theorem as a corollary.

Corollary 6.3.4. For a simplicial complex ∆, H̃i(N j(∆)) = 0 for i+ j > d and 1≤ j ≤ d.

Proof. By Proposition 6.3.3, we get

H̃i(N j(∆)) = H̃i([∆]> j−1).

But [∆]> j−1 has dimension at most d− j and the result follows.

6.4 Lemmata

In this section, we introduce several lemmata that will be integral to proving our main theorem.

We refer to Section 8.2 for notation.
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Lemma 6.4.1. Let T be a face of ∆ and |T | = k > 0. Then, lk[∆]>k−1
(ρ(T )) ∼= [lk∆(T )]>0 as

simplicial complexes. In particular, H̃i(lk[∆]>k−1
(ρ(T )))∼= H̃i(lk∆(T )) for every i.

Proof. First note that if T is a facet then lk∆(T ) = {∅} = [lk∆(T )]>0. But, since T is a facet,

{ρ(T )} must be a facet of [∆]>k−1, since this is a chain of maximal length containing ρ(T ). Thus

lk[∆]>k−1
(ρ(T )) = {∅}= [lk∆(T )]>0, and thus we have the result if T is a facet.

Now suppose T ∈∆ is not a facet and define the function f :V ([lk(T )]>0)→V (lk[∆]>k−1
(ρ(T )))

by f (ρ(τ)) = ρ(τ ∪T ). One can check that f is a simplicial isomorphism.

In particular, f induces a homeomorphism between the geometric realizations of [lk∆(T )]>0

and lk[∆]k−1
(ρ(T )), and the result follows from Lemma 6.2.1.

Lemma 6.4.2. Suppose b is a non-isolated vertex of ∆. Then there is a Mayer-Vietoris exact

sequence of the form

· · · → H̃i(∆)→ H̃i−1(lk∆(b))→ H̃i−1(ast∆(b))→ H̃i−1(∆)→ ···

Proof. Notice that st∆(b)∪ast∆(b)=∆ and st(b)∩ast∆(b)= lk∆(b). Since b is non-isolated, lk∆(b)

is nonempty. Thus we have a Mayer-Vietoris exact sequence in reduced homology:

· · · → H̃i(∆)→ H̃i−1(lk∆(b))→ H̃i−1(st∆(b))⊕ H̃i−1(ast∆(b))→ H̃i−1(∆)→ ···

Since st∆(T ) is a cone, it is acyclic, and the result follows.

Lemma 6.4.3. Let T be a non-trivial, non-facet face of ∆ with |T | = k. Let i be such that

H̃i([∆]>k−1) = H̃i−1([∆]>k−1) = 0. Then

H̃i−1(lk∆(T ))∼= H̃i−1(ast[∆]>k−1
(ρ(T ))).

Proof. Since T is not a facet, ρ(T ) is not an isolated vertex of [∆]>k−1. Thus, Lemma 6.4.2 gives
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an exact sequence

H̃i([∆]>k−1)→ H̃i−1(lk[∆]>k−1
(ρ(T )))→ H̃i−1(ast[∆]>k−1

(ρ(T )))→ H̃i−1([∆]>k−1)

Since H̃i([∆]>k−1) = H̃i−1([∆]>k−1) = 0, the middle map in this sequence is an isomorphism,

so H̃i−1(ast[∆]>k−1
(ρ(T ))) ∼= H̃i−1(lk[∆]>k−1

(ρ(T ))).

By Lemma 6.4.1, we have H̃i−1(lk[∆]>k−1
(ρ(T )))∼= H̃i−1(lk∆(T )) which gives the result.

Lemma 6.4.4. Let ∆ be a simplicial complex and J (V =V (∆) such that dim(∆|J) = 0. Assume

that H̃i−1(∆) = H̃i(∆) = 0. Then

H̃i−1(∆|V\J)∼=
⊕
x∈J

H̃i−1(∆|V\{x}).

Proof. We will proceed by induction on |J|. When |J| = 1, the result is immediate. Suppose the

result holds for any J of cardinality k for some k ≥ 1, and suppose now that |J|= k+1. Let x ∈ J

and J′ = J \{x}. Suppose σ ∈ ∆. If x ∈ σ , then σ ∈ ∆|V\J′ ; otherwise if σ contained some y ∈ J′,

then {x,y} ∈ ∆, contradicting the fact that dim(∆|J) = 0. If x /∈ σ , then σ ∈ ∆|V\{x}. Therefore,

∆ = ∆|V\J′ ∪∆|V\{x}. Note that ∆|V\J′ ∩∆|V\{x} = ∆|V\J 6=∅.

We have the following Mayer-Vietoris sequence in reduced homology:

· · · → H̃i(∆)→ H̃i−1(∆|V\J)→ H̃i−1(∆|V\J′)⊕ H̃i−1(∆|V\{x})→ H̃i−1(∆)→ ···

Because H̃i−1(∆) = H̃i(∆) = 0, we have that

H̃i−1(∆|V\J)∼= H̃i−1(∆|V\J′)⊕ H̃i−1(∆|V\{x}).

By induction, H̃i−1(∆|V\J′)∼=
⊕

y∈J′ H̃i−1(∆|V\{y}). Therefore

H̃i−1(∆|V\J)∼=
⊕
x∈J

H̃i−1(∆|V\{x}).
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6.5 Depth and higher nerves

Theorem 6.5.1. For a fixed m, the following are equivalent:

1. H̃i−1(N j+1(∆)) = 0 for all i, j ≥ 0 such that i+ j < m.

2. H̃i−1(lk∆(T )) = 0 for all i, j ≥ 0, |T |= j, and i+ j < m.

Proof. We begin the proof by showing that each condition implies m ≤ s(∆) and thus we will

never need to consider the case when T is a facet. Consider the first condition: if m > s(∆), then

we may take j = s(∆)−1, i = 1. This nerve will have an isolated vertex corresponding to the facet

of smallest size. The nerve will not be connected unless that facet is the only facet. However, if

this facet is the only facet, then we contradict the first condition for j = s(∆), i = 0. Now consider

the second condition: suppose m > s(∆). Then take j = s(∆), i = 0. Then we have a contradiction

when T is a facet.

To prove equivalence, we will induct on j. Thus, let us begin by considering the case j = 0. The

first set of equations is then H̃i−1(N1(∆)) = 0 for all i < m. Using Theorem 6.3.2, we get that this

statement is equivalent to H̃i−1(∆) = 0 for all i < m. When j = 0, the second set of equations is in

fact H̃i−1(∆) = 0 for all i < m, since |T |= 0 implies T is the empty set. Thus we have equivalence

when j = 0.

Now, let us take as our induction hypothesis that our theorem holds for j = k− 1. Consider

j = k < m. Assuming either set of equations holds, the j = 0 case again says that H̃i−1(∆) = 0 for

all i<m. By Proposition 6.3.3 and the j = k−1 case, either set of equations yields H̃i−1([∆]>k) = 0

for all i < m− (k−1). Therefore, we may apply Lemma 6.4.3 for all i < m− (k−1)−1 = m− k.

Thus, we have

⊕
T∈∆
|T |=k

H̃i−1(lk∆(T ))∼=
⊕
T∈∆
|T |=k

H̃i−1(ast[∆]>k−1
(ρ(T ))).
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Applying Lemma 6.4.4, we get:

H̃i−1([∆]>k)∼=
⊕
T∈∆
|T |=k

H̃i−1(ast[∆]>k−1
(ρ(T ))).

And by Proposition 6.3.3:

H̃i−1([∆]>k)∼= H̃i−1(Nk+1(∆)).

Thus, we have completed the proof by induction.

Combining Corollary 6.3.1 and Theorem 6.5.1, we obtain the second part of our main theorem,

Theorem 6.1.1, restated here:

Theorem 6.5.2. For a simplicial complex ∆, depth(k[∆]) = inf{i+ j : H̃i(N j(∆)) 6= 0}.

Remark 6.5.1. Since depth is a topological property ([Mun84b, Theorem 3.1]), we always have

depthk[∆] = depthk[sd∆] by Lemma 6.2.1. One can apply [Hib91, Proposition 2.8] repeatedly

to show that depth[∆]> j ≥ depthk[∆]− j for every j ≤ d. In particular, by Corollary 6.3.1, this

implies H̃i(N j(∆)) = 0 for i < depthk[∆]− j. Therefore, one immediately obtains depthk[∆] ≤

inf{i+ j : H̃i(N j(∆)) 6= 0}. However, the converse to [Hib91, Proposition 2.8] does not hold, even

with additional hypotheses on vanishing of homology, and therefore, these methods are incapable

of establishing the reverse inequality.

6.6 The f -vector and the h-vector

In this section, we prove part 3 of Theorem 6.1.1. We set χ(N j(∆)) to be the Euler characteristic

of N j(∆) and χ̃(N j(∆)) to be the reduced Euler characteristic of N j(∆). We use fi(∆) to indicate

the ith entry in the f -vector of ∆.

Theorem 6.6.1. Let i≥ 0,

fi(∆) =
d

∑
j=i+1

(
j−1

i

)
χ(N j(∆))
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We note that f−1 is always 1.

Proof. Before we proceed, we introduce some additional notation:

Let fh,k be the number of h-faces in Nk(∆). We note that for any complex ∆, fh,k is 0 for large

enough h and for large enough k.

If a face appears in Nk+1(∆), then that face also appears in Nk(∆). We wish to count the h-faces

of Nk(∆) which first appear in Nk(∆). This number is given by

fh,k− fh,k+1.

For a collection of facets ρ let ϕ(ρ) = ∩F∈ρF . Note that for a given α ∈ ∆, the set of ρ such

that α ⊆ ϕ(ρ) is a Boolean lattice. Let y,x1, . . . ,xn be indeterminates, and let xα = ∏i∈α xi. Then,

∑
ρ

∑
α⊆ϕ(ρ)

(−1)|ρ|xαy|α| = ∑
α∈∆

xαy|α| ∑
ρ

α⊆ϕ(ρ)

(−1)|ρ| = 0.

This is because for each α , the set of such ρ is Boolean, and therefore, ∑
ρ

α⊆ϕ(ρ)

(−1)|ρ| = 0.

Now, setting xi = 1 for all i and solving for the ρ = /0 term yields:

∑
α∈∆

y|α| = − ∑
ρ 6= /0

(−1)|ρ| ∑
α⊆ϕ(ρ)

y|α| = ∑
ρ 6= /0

(−1)|ρ|−1
|ϕ(ρ)|

∑
j=0

(
|ϕ(ρ)|

j

)
y j.

Taking the (i+1)st coefficient of each side yields:
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fi(∆) = ∑
ρ 6= /0

|ϕ(ρ)|≥i+1

(−1)|ρ|−1
(
|ϕ(ρ)|
i+1

)

=
∞

∑
h=0

∞

∑
k=i+1

(−1)h
(

k
i+1

)
#{ρ | |ρ|−1 = h, ρ ∈ Nk(∆)\Nk+1(∆)}

=
∞

∑
h=0

(−1)h
∞

∑
k=i+1

(
k

i+ i

)
( fh,k− fh,k+1)

=
∞

∑
h=0

(−1)h
∞

∑
k=i+1

( fh,k− fh,k+1)
k

∑
j=i+1

(
j−1

i

)

=
∞

∑
h=0

(−1)h
d

∑
j=i+1

∞

∑
k= j

(
j−1

i

)
( fh,k− fh,k+1)

=
d

∑
j=i+1

(
j−1

i

)
∞

∑
h=0

(−1)h fh, j

=
d

∑
j=i+1

(
j−1

i

)
χ(N j(∆)).

For the convenience of the reader, we have worked out the corresponding formula for the h-

vector (h0 = 1,h1, . . . ,hd) of ∆.

Corollary 6.6.1. For k ≥ 1 we have:

hk(∆) = (−1)k−1
∑
j≥1

(
d− j
k−1

)
χ̃(N j(∆)).

We also record the following:

Corollary 6.6.2. If ∆1 and ∆2 are simplicial complexes with H̃i−1(N j(∆1))∼= H̃i−1(N j(∆2)) for all

i, j, then ∆1 and ∆2 have identical f -vectors and h-vectors.
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6.7 LCM-lattice and regularity of monomial ideals

In this section, we use our main theorem, Theorem 6.1.1, to deduce a formula for the Castelnuovo-

Mumford regularity of any monomial ideal I, denoted by reg(I). We first fix some notation moti-

vated by [GPW99]. Suppose f1, . . . , fr are the minimal monomial generators of I.

Definition 6.7.1. We define the j-th LCM complex of I to be:

L j(I) := {F ⊆ [r] : | lcmi∈F( fi)| ≤ j}.

Theorem 6.7.1. Let I be a monomial ideal. Then:

reg(I) = sup{ j− i : H̃i(L j(I)) 6= 0}.

Proof. Let Ipol = (g1, . . . ,gr) be the polarization of I. Then it is well-known that reg(I) = reg(Ipol)

(see for instance [Pee11, Theorem 21.10]). From the construction of the gi’s from the fi’s, it is

obvious that for any subset F ⊆ [r], lcmi∈F( fi) and lcmi∈F(gi) have the same size. Thus, the

problem reduces to the case when I is a square-free monomial ideal.

Now let I∨ be the Alexander dual of I. It is the Stanley-Reisner ideal of some complex ∆. We

have that

reg(I) = pdS/I∨ = n−depthS/I∨

by the Eagon-Reiner theorem ([MS05, Theorem 5.59]) and the Auslander-Buchsbaum formula.

We now note that each gi is precisely the product of variables in the complement of the corre-

sponding facet Fi of ∆. Thus L j(I) = Nn− j(∆). Putting all of these together, we have:

reg(I) = n− inf{i+ j : H̃i(Ln− j(I)) 6= 0}= sup{ j− i : H̃i(L j(I)) 6= 0}

as desired.

Remark 6.7.2. Our formula above should be compared with Theorem 2.1 in [GPW99].
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Chapter 7

Rank selection and depth conditions for balanced simplicial

complexes

7.1 Introduction

Let k be a field, A = k[x1, . . . ,xn], and I a square-free monomial ideal in A. The Stanley-Reisner

correspondence associates to R :=A/I a simplicial complex ∆ whose topological and combinatorial

properties capture the algebraic structure of R. Exploiting this correspondence has been an active

line of investigation over the past few decades. Due to their combinatorial characterization ([Rei76,

Theorem 1]), Stanley-Reisner rings that are Cohen-Macaulay have received particular attention.

However, the Cohen-Macaulay property is quite strong in this setting, and so there has been a

focus in recent years on considering weaker algebraic properties such as Serre’s condition (S`) or

bounds on depthR which still have interesting combinatorial ramifications. For instance, even (S2)

forces ∆ to be pure, and (S`) implies the h-vector of R is nonnegative up to the `th spot [MT09]; see

[PSFTY14] for a survey of related results. The main purpose of this chapter is to consider Serre’s

condition and the depth of Stanley-Reisner rings by studying balanced simplicial complexes.

A balanced simplicial complex ∆ is a simplicial complex of dimension d− 1, together with

an ordered partition π = (V1, . . . ,Vd) of the vertex set of ∆ such that |F ∩Vi| ≤ 1 for every F ∈ ∆

and every i. To put it another way, the vertices of ∆ are colored so that no face of ∆ has more

than one vertex of a given color. The motivating example of a balanced simplicial complex is

the order complex O(P) of a finite poset P, whose vertex set is P and whose faces consist of all

chains in P; we partition the vertices of O(P) by their height in P. When P is the face poset of a
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simplicial complex ∆ (excluding the empty face), O(P) is nothing but the barycentric subdivision

of ∆, and it’s well known that its geometric realization is homeomorphic to that of ∆. Thus we

can study topological characteristics of any simplicial complex via the combinatorial structure of

a balanced simplicial complex. In particular, we may study homological properties such as the

Cohen-Macaulay property and Serre’s condition (S`), and numerical invariants such as depth in

this manner.

Let (∆,π) be a balanced simplicial complex of dimension d− 1 with ordered partition π =

(V1, . . . ,Vd), and let k[∆] denote its Stanley-Reisner ring over the field k. If S ⊆ [d], we let ∆S be

the subcomplex of ∆ induced on
⋃

i∈SVi, and we refer to ∆S as the S-rank selected subcomplex of

∆. It’s often convenient to think about the ranks we remove rather than those we retain, and so we

also set ∆̃S := ∆[d]−S. If S = {i} is a singleton, we abuse notation and write ∆i or ∆̃i, as appropriate.

The so-called rank selection theorems of Stanley ([Sta79]) and Munkres ([Mun84b]) show that

homological properties often pass from ∆ to ∆S. Specifically, we have the following:

Theorem 7.1.1 ([Sta79]). Let (∆,π) be a balanced simplicial complex. If k[∆] is Cohen-Macaulay,

then k[∆S] is Cohen-Macaulay for any S⊆ [d].

Theorem 7.1.2 ([Mun84b]). Let (∆,π) be a balanced simplicial complex. Then, for any i ∈ [d],

depthk[∆̃i]≥ depthk[∆]−1.

As Serre’s condition (S`) generalizes the Cohen-Macaulay property, it is natural to consider if

there is any extension of Theorem 7.1.1 to (S`). We prove this is indeed the case.

Theorem 7.1.3. Let (∆,π) be a balanced simplicial complex of dimension d−1. If k[∆] satisfies

Serre’s condition (S`), then k[∆S] satisfies (S`) for any S⊆ [d].

If P is a finite poset, we let P> j be the subposet consisting of the elements of P with height

greater than j. In the case ∆ = O(P) for a finite poset P, O(P> j) is the subcomplex of ∆ with the

bottom j+1 ranks removed. For this case, one can nearly characterize (S`) with the vanishing of

reduced homologies of the O(P> j).
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Theorem 7.1.4. Let P be a finite poset.

1. If k[O(P)] satisfies (S`), then H̃i−1(O(P> j);k) = 0 whenever i+ j < d and 0≤ i < `.

2. If P is the face poset of a simplicial complex ∆ and H̃i−1(O(P> j);k) = 0 whenever i+ j < d

and 0≤ i≤ `, then k[O(P)], and thus k[∆], satisfies (S`).

It’s natural to ask whether one can fully characterize (S`) in this way i.e., whether the converse

of (1) or (2) hold. We provide examples (Examples 7.6.4 and 7.6.5) that show this is not the case.

In general, equality need not hold in Theorem 7.1.2; depth ∆̃i can be any value between dim ∆̃i

and depthk[∆]−1. However, we prove that one can often find a rank so that equality is achieved.

Proposition 7.1.1. Let (∆,π) be a balanced simplicial complex of dimension d−1, with ordered

partition π = (V1, . . . ,Vd). If H̃depthk[∆]−1(∆) = 0, then there is an i ∈ [d] such that depthk[∆̃i] =

depthk[∆]−1.

Using Proposition 7.1.1, we provide a formula for depthk[∆] (see Theorem 7.4.3).

Finally, we provide a formula for sums of reduced Euler characteristics of links. Our formula

is analogous to those of [HN02, Section 2 Lemma 1 (i)] and [Swa05, Proposition 2.3].

Theorem 7.1.5. Suppose ∆ is pure and let P be the face poset of ∆. Write χ for Euler characteristic

and χ̃ for reduced Euler characteristic. Then

∑
T∈∆
|T |=k

χ̃(lk∆(T )) = χ(O(P>k))−χ(O(P>k−1)).

We now describe the structure of this chapter. In Section 2, we set notation and provide the

algebraic and combinatorial background we appeal to throughout the chapter. In Section 3, we

prove Theorems 7.1.3 and 7.1.4 (see Theorems 7.3.2, 7.3.3 and 7.3.4). Section 4 contains a proof

of Proposition 7.1.1 (Proposition 7.4.2) as well as a formula for depthk[∆] (Theorem 7.4.3). In

Section 5, we prove Theorem 7.1.5 (Theorem 7.5.3) and provide an application to Gorenstein∗

complexes. The last section discusses open problems related to this work and provides examples

indicating the sharpness of our results.
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7.2 Background and notation

In this section we set notation and provide needed background for the chapter. Once and for all,

fix the base field k. We let H̃i denote ith simplicial or singular homology, whichever is appropriate,

always taken with respect to the field k. We use χ for Euler characteristic and χ̃ for reduced Euler

characteristic.

Given a simplicial complex ∆, we write k[∆] for its Stanley-Reisner ring over k. We write V (∆)

for the vertex set of ∆, but, if ∆ is clear from context, we generally write V for V (∆) and n for |V |;

we set A := k[x1, . . . ,xn]. We write fi(∆) for the number of i-dimensional faces of ∆, and hi(∆) for

the ith entry of the h-vector of ∆; so hi(∆) = ∑
i
j=0(−1)i− j(d− j

i− j

)
f j−1(∆). We let ||∆|| denote the

geometric realization of ∆. We call ∆(k) := {σ ∈ ∆ : dimσ ≤ k} the k-skeleton of ∆.

Given a subset T ⊆V (∆), we use ∆|T := {σ ∈ ∆ | σ ⊆ T} for the induced subcomplex of ∆ on

T . We may then define the star, the anti-star, and the link of T , respectively, as follows:

st∆ T := {G ∈ ∆ | T ∪G ∈ ∆}

ast∆ T := {G ∈ ∆ | T ∩G =∅}= ∆|V−T

lk∆ T := {G ∈ ∆ | T ∪G ∈ ∆ and T ∩G =∅}= st∆ T ∩ ast∆ T

We note that st∆ T and lk∆ T are the void complex ∅ exactly when T /∈ ∆, and lk∆(T ) is the

irrelevant complex {∅} exactly when T is a facet of ∆. On the other hand, ast∆(T ) is nonempty

as long as long as T 6= V . Of import, st∆(T ) is a cone over lk∆(T ) for any T ∈ ∆, in particular is

acyclic. When T = {v}, we abuse notation and write st∆(v), ast∆(v), and lk∆(v).

We say that J ⊆ V (∆) is an independent set for ∆ if {a,b} /∈ ∆ for any a,b ∈ J with a 6= b.

Motivated by [Hib91], we say that J ⊆V (∆) is an excellent set for ∆ if J is an independent set for

∆ and J∩F 6= ∅ for every facet F ∈ ∆. When ∆ is clear from context, we simply say that J is an

independent set or that J is an excellent set, as appropriate.

The main computational tools are two exact sequences seen in the previous chapter; we record

them here for the convenience of the reader:
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Proposition 7.2.1 (Lemma 6.4.2). Suppose b is a non-isolated vertex of ∆. Then there is a Mayer-

Vietoris exact sequence of the form

· · · → H̃i(∆)→ H̃i−1(lk∆(b))→ H̃i−1(ast∆(b))→ H̃i−1(∆)→ ···

Proposition 7.2.2 (Proof of Lemma 6.4.3). Suppose {x}( J (V and J is an independent set. Set

J′ = J−{x}. Then there is a Mayer-Vietoris exact sequence of the form

· · · → H̃i(∆)→ H̃i−1(ast∆(J))→ H̃i−1(ast∆(J′))⊕ H̃i−1(ast∆(x))→ H̃i−1(∆)→ ···

We also consider algebraic properties of k[∆]; one can see [BH93] as a reference for this subject.

We use dimk[∆] for the Krull dimension of the ring k[∆]; so dim∆ = dimk[∆]−1. We write d for

dimk[∆] when ∆ is clear from context. By depthk[∆] we mean the depth of the k-algebra k[∆];

for a combinatorial characterization of depth, see Proposition 7.2.3. We say ∆ is Cohen-Macaulay

whenever k[∆] is Cohen-Macaulay, that is, if depthk[∆] = dimk[∆]. Recall the following:

Definition 7.2.1. A commutative Noetherian ring R satisfies Serre’s Condition, (S`), if, for all

p ∈ SpecR, depthRp ≥min{`,dimRp}.

We say ∆ satisfies (S`) if k[∆] does. Every simplicial complex satisfies (S1), and a simplicial

complex satisfies (Sd) if and only if it is Cohen-Macaulay.

The following is an immediate consequence of Hochster’s formula ([BH93, Theorem 5.3.8])

and gives a useful characterization of depth for Stanley-Reisner rings in terms of reduced homolo-

gies of links:

Proposition 7.2.3. If ∆ is a simplicial complex, then depthk[∆]≥ t if and only if H̃i−1(lk∆(T )) = 0

for all T ∈ ∆ with i+ |T |< t.

The corresponding result for (S`) can be found in [Ter07]:
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Proposition 7.2.4 ([Ter07]). Let ∆ be a simplicial complex. Then ∆ satisfies (S`) for `≥ 2 if and

only if H̃i−1(lk∆(T )) = 0 whenever i+ |T | < d and 0 ≤ i < `. In particular, (S`) complexes are

pure if `≥ 2.

One can obtain similar characterizations for other algebraic properties of k[∆]. We define

coreV (∆) := {v ∈ V (∆) | st∆(v) 6= ∆} and set core∆ := ∆|coreV (∆). We say that ∆ is Gorenstein

if the ring k[∆] is Gorenstein; if, in addition, core∆ = ∆, we say that ∆ is Gorenstein∗. One has the

following, see [BH93, Theorem 5.6.1]:

Theorem 7.2.2. A simplicial complex ∆ is Gorenstein∗ if and only if

H̃i−1(lk∆(T ))∼=


k if i = d−|T |

0 if i 6= d−|T |

Now, let P be a finite poset. If p ∈ P, we let ht(p) denote the length of a longest chain p1 ≺

p2 ≺ ·· · ≺ pi = p and let htP := max{ht p | p ∈ P}. We denote by P> j the poset obtained by

restricting to elements p ∈ P so that ht p > j. The order complex of P, denoted O(P), is the

simplicial complex on P consisting of all chains of elements in P. Let F (∆) denote the face poset

of ∆. We set [∆]> j := O(F (∆)> j). We note that when j = 0, [∆]>0 is the barycentric subdivision

of ∆. The following is well known (see [Gib10, Corollary 5.7], for example):

Lemma 7.2.3. The realization ||∆|| is homeomorphic to ||[∆]>0||. In particular, H̃i(∆)∼= H̃i([∆]>0)

for all i.

We let ρ : ∆−{∅}→V ([∆]>0) be the map which sends T to itself viewed as a vertex of [∆]>0.

There are several advantages of working with [∆]>k. For instance, the following result of the

previous chapter:

Lemma 7.2.4 (Lemma 6.4.1). Let T ∈ ∆. Then [lk∆(T )]>0 ∼= lk[∆]>|T |−1
(ρ(T )) as simplicial com-

plexes. In particular, H̃i(lk∆(T ))∼= H̃i(lk[∆]>|T |−1
(ρ(T ))) for each i.

Definition 7.2.5. A balanced simplicial complex is a pair (∆,π) satisfying:
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1. ∆ is d−1 dimensional simplicial complex on a vertex set V .

2. π = (V1, . . . ,Vd) is an ordered partition of V .

3. For every facet F ∈ ∆ and every i ∈ [d], |F ∩Vi| ≤ 1.

Balanced simplicial complexes were introduced by Stanley in [Sta79]. One can find more

information on balanced simplicial complexes in [BFS87, BGS82, Gar80]; [Sta96] gives a more

modern treatment of the subject. An important property of balanced simplicial complexes is that

each Vi is an independent set for ∆, and, if ∆ is pure, the Vi are excellent sets for ∆. If (∆,π) is a

balanced simplicial complex with π = (V1, . . . ,Vd), and if S ⊆ [d], we define the S-rank selected

subcomplex of ∆ to be the complex ∆S := ∆|⋃
i∈S Vi; for notational convenience, we also set ∆̃S =

∆[d]−S. If (∆,π) is a balanced simplicial complex, we often suppress the ordered partition π and

simply refer to ∆ as a balanced simplicial complex; in this case we always write π = (V1, . . . ,Vd)

for the corresponding ordered partition.

Now, let P be a finite poset. If we set Vi := {p | ht(p)= i} and π =(V1, . . . ,VhtP), then (O(P),π)

is a balanced simplicial complex. In particular, this means [∆]> j is always a balanced simplicial

complex for any j.

Finally, we recall the higher nerve complexes of [DDD+19]:

Definition 7.2.6. Let {A1,A2, . . . ,Ar} be the collection of facets of ∆. The simplicial complex

Ni(∆) := {F ⊆ [r] : |
⋂
j∈F

A j| ≥ i}

is called the ith Nerve Complex of ∆. We refer to the Ni(∆) as the higher Nerve Complexes of ∆.

We note that N0(∆) = 2[r] and N1(∆) is the classical nerve complex of ∆.

As we will need the key properties of higher nerve complexes for this chapter, we recall the

main result of the previous chapter:

Theorem 7.2.7 (Theorem 6.1.1).

140



(1) H̃i−1(N j+1(∆)) = 0 for i+ j > d and 1≤ j ≤ d.

(2) depthk[∆] = inf{i+ j : H̃i−1(N j+1(∆)) = 0}.

(3) For i≥ 0,

fi(∆) =
d−1

∑
j=i

(
j
i

)
χ(N j+1(∆)).

(4) H̃i([∆]>k)∼= H̃i(Nk+1(∆)) for any i and any k.

7.3 Rank selection theorems for Serre’s condition

In this section we prove some general statements and use them to derive Theorems 7.1.3 and 7.1.4.

Lemma 7.3.1. Suppose J ⊆V is excellent and ∆ satisfies (S`). Set ∆̃ := ast∆(J). Then ∆̃ satisfies

(S`).

Proof. We proceed by induction on `. The claim is clear when ` = 1, since every simplicial

complex satisfies (S1). So, suppose we know the result for all 1 ≤ j ≤ ` and suppose ∆ satisfies

(S`+1). Inductive hypothesis gives us that ∆̃ satisfies (S`), and we will show ∆̃ satisfies S`+1; the

Lemma will then follow from induction.

By Proposition 7.2.4, we have that H̃i−1(lk∆(T )) = 0 whenever i+ |T | < d and 0 ≤ i ≤ `,

H̃i−1(lk∆̃
(T )) = 0 whenever i + |T | < d − 1 and 0 ≤ i < `, and it remains only to show that

H̃`−1(lk∆̃
(T )) = 0 for all T ∈ ∆̃ with `+ |T |< d−1.

Pick T ∈ ∆̃ such that `+ |T | < d−1. Let σ ⊇ T be a facet of ∆. Since J is excellent, there is

a b ∈ J∩σ , and thus {b}∪T ∈ ∆. Since b /∈ T , this means b ∈ lk∆(T ). Note T ∪{b} cannot be a

facet of ∆, since this would mean |T |+1 = d, whilst `+ |T |< d−1. Set S = J∩V (lk∆(T )); then

we have lk
∆̃
(T ) = astlk∆(T )(S). By Proposition 7.2.1, we have, for any b ∈ S, the exact sequence:

H̃`(astlk∆(T )(b))
i∗b−→ H̃`(lk∆(T ))→ H̃`−1(lklk∆(T )(b))→ H̃`−1(astlk∆(T )(b))→ H̃`−1(lk∆(T ))

where i∗b is the induced map coming from the inclusion ib : astlk∆(T )(b) ↪→ lk∆(T ). As lklk∆(T )(b) =
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lk∆(T ∪{b}) and since `+ |T | < d−1, we have H̃`−1(lklk∆(T )(b)) = 0. Since H̃`−1(lk∆(T )) = 0,

we obtain H̃`−1(astlk∆(T )(b)) = 0 and that i∗b is surjective, from exactness.

Now, since J is an independent set in ∆, S is an independent set in lk∆(T ). We claim that

H̃`−1(astlk∆(T )(I)) = 0 for any ∅( I ⊆ S. To see this, we induct on |I|. Note that the claim is true

when |I|= 1, from above. Now suppose the claim is true for every I with |I|= k, and suppose we

are given an I with |I|= k+1. Write I = L∪{a} so that |L|= k. By Proposition 7.2.2 we have the

exact sequence

H̃`(astlk∆(T )(a))⊕ H̃`(astlk∆(T )(L)) H̃`(lk∆(T ))

H̃`−1(astlk∆(T )(I)) H̃`−1(astlk∆(T )(a))⊕ H̃`−1(astlk∆(T )(L))

i∗a− k∗

where k∗ is the induced map coming from the inclusion k : astlk∆(T )(L) ↪→ lk∆(T ).

By inductive hypothesis, we have that H̃`−1(astlk∆(T )(a))⊕ H̃`−1(astlk∆(T )(L)) = 0. As we saw

previously, i∗a is surjective so that i∗a− k∗ is as well. Thus we obtain H̃`−1(astlk∆(T )(I)) = 0 from

exactness. Therefore, induction gives us that H̃`−1(astlk∆(T )(S)) = H̃`−1(lk∆̃
(T )) = 0, and thus, ∆̃

satisfies (S`+1).

Theorems 7.1.3 and 7.1.4 (1) now follow as quick consequences of Lemma 7.3.1:

Theorem 7.3.2. Let ∆ be a balanced simplicial complex. If ∆ satisfies (S`), then ∆S satisfies (S`)

for any S⊆ [d].

Proof. The claim is clear when ` = 1. When ` ≥ 2, ∆ is pure, and the result follows by applying

Lemma 7.3.1 inductively on each i ∈ [d]−S.

Theorem 7.3.3. If P is a finite poset satisfying (S`), then H̃i−1(O(P> j)) = 0 whenever i+ j < d

and 0 ≤ i < `. In particular, if ∆ is a simplicial complex satisfying (S`), then H̃i−1([∆]> j) = 0
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whenever i+ j < d and 0≤ i < `.

Proof. Suppose P is (S`). By Theorem 7.3.2, O(P> j) satisfies (S`) for each 0 ≤ j ≤ d− 1. In

particular, H̃i−1(O(P> j)) = 0 for i < d− j and 0 ≤ i < `. It only remains to remark that if ∆ is

a simplicial complex satisfying (S`), then, since ||∆|| ∼= ||[∆]>0|| and since (S`) is a topological

property ([Yan11, Theorem 4.4 (d)]), [∆]>0 satisfies (S`).

Remarkably, Theorem 7.3.3 admits a partial converse (Theorem 7.1.4 (2)) when P is the face

poset of a simplicial complex.

Theorem 7.3.4. If H̃i−1([∆]> j) = 0 whenever i+ j < d and 0≤ i≤ `, then ∆ satisfies (S`).

Proof. We follow a similar approach to that of Lemma 7.3.1; we induct on `. The result is clear

when `= 1. Suppose we know the result for ` and suppose H̃i−1([∆]> j) = 0 whenever i+ j < d and

0≤ i≤ `+1. From induction hypothesis, we have that ∆ satisfies (S`). Note that we assumed, in

particular, that H̃0([∆]> j)= 0 whenever j < d−1. Thus, no facet of ∆ can have cardinality less than

or equal to d−1; that is, ∆ is pure. Since ∆ is (S`), we have H̃i−1(lk∆(T )) = 0 whenever i+ |T |< d

and 0≤ i < `, and we need only show that H̃`−1(lk∆(T )) = 0 whenever |T |< d−`. To see this, we

proceed by induction on |T |. When |T |= 0, we have H̃`−1(lk(T )) = H̃`−1(∆) = H̃`−1([∆]>0) = 0.

Suppose H̃`−1(lk(T )) = 0 whenever j = |T |< d− `, and consider T ∈ ∆ with j+1 = |T |< d− `.

Letting S = {ρ(T ) | T ∈ ∆, |T | = j+1} and writing S = I∪{ρ(T )}, we have, by Proposition

7.2.2, the exact sequence

H̃`−1([∆]> j+1) H̃`−1(ast[∆]> j(ρ(T )))⊕ H̃`−1(ast[∆]> j(I)) H̃`−1([∆]> j)

Since H̃`−1([∆]> j+1) = 0 = H̃`−1([∆]> j), we have H̃`−1(ast[∆]> j(ρ(T )))⊕ H̃`−1(ast[∆]> j(I)) =

0. In particular, H̃`−1(ast[∆]> j(ρ(T ))) = 0.
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As ∆ is pure, T is not a facet, and so ρ(T ) is a non-isolated vertex of [∆]> j. By Proposition

7.2.1, we have the exact sequence

H̃`(ast[∆]> j(ρ(T )))→ H̃`([∆]> j)→ H̃`−1(lk[∆]> j(ρ(T )))→ H̃`−1(ast[∆]> j(ρ(T )))→ H̃`−1([∆]> j)

Since H̃`−1(ast[∆]> j(ρ(T ))) = 0= H̃`([∆]> j), we have H̃`−1(lk[∆]> j(ρ(T ))) = 0= H̃`−1(lk(T )),

by Proposition 7.2.3. Thus, ∆ satisfies (S`+1), and the result follows from induction.

Remark 7.3.1. When ` = 2, the conclusion of Theorem 7.3.3 is equivalent to H̃0([∆]>d−2) = 0,

since, for a pure complex, connectivity of [∆]> j implies connectivity of [∆]> j−1.

Remark 7.3.2. Since, by Theorem 7.2.7 (4), H̃i−1([∆]> j)∼= H̃i−1(N j+1(∆)) for any i and j, Theo-

rems 7.3.3 and 7.3.4 also serve as a version of Theorem 7.2.7 (2) for (S`).

Remark 7.3.3. Theorems 7.3.3 and 7.3.4 show that the reduced homologies of the [∆]> j determine

one of two values as the largest ` such that ∆ satisfies (S`). As Examples 7.6.4 and 7.6.5 show, the

reduced homologies of the [∆]> j alone cannot determine which of these values ` actually is. We

would be quite interested to know what information can be used in tandem with the H̃i−1([∆]> j) to

determine this value; see Question 7.6.1.

7.4 Depth of rank selected subcomplexes

The following lemma follows from [Hib91, Proposition 2.8] and a slightly weaker version can be

found in [Mun84b, Theorem 6.4]:

Lemma 7.4.1. Suppose J is an independent set. Set ∆̃ = ast∆(J). Then depth ∆̃≥ depth∆−1.

We first provide a variation on this lemma:

Lemma 7.4.2. Let depth∆ = ` and suppose H̃`−1(∆) = 0. Choose T ∈ ∆ of minimal cardinality

such that H̃`−|T |−1(lk∆(T )) 6= 0 (that such a T exists follows from Proposition 7.2.3). Let J be an

independent set and suppose T = T ′∪{b} with b ∈ J. Set ∆̃ = ast∆(J). Then H̃`−|T ′|−2(lk∆̃
(T ′)) 6=

0. In particular, depth ∆̃ = `−1.
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Proof. If T is a facet of ∆, then we have that |T |= ` by minimality, and, as lk∆(T ) = lklk∆(T ′)(b),

that {b} is a facet of lk∆(T ′). By our minimality hypothesis, H̃0(lk∆(T ′)) = 0. It follows that

lk∆(T ′) is a simplex with facet {b}, and so lk
∆̃
(T ′) = astlk∆(T ′)(b) = {∅}. Thus T ′ is a facet of ∆̃,

and so H̃`−1−|T ′|−1(lk∆̃
(T ′)) = H̃−1(lk∆̃

(T ′)) 6= 0.

Otherwise, set S = J∩V (lk∆(T ′)) and note that lk
∆̃
(T ′) = astlk∆(T ′)(S). Lemma 7.2.1 gives the

following exact sequence

H̃`−|T |(lk∆(T ′))→ H̃`−|T |−1(lklk∆(T ′)(b))→ H̃`−|T |−1(astlk∆(T ′)(b))→ H̃`−|T |−1(lk∆(T ′))

By minimality of |T | and Proposition 7.2.3, we have H̃`−|T |(lk∆(T ′)) = H̃`−|T |−1(lk∆(T ′)) = 0.

Thus, H̃`−|T |−1(lklk∆(T ′)(b))
∼= H̃`−|T |−1(astlk∆(T ′)(b)). But, lklk∆(T ′)(b) = lk∆(T ′∪{b}) = lk∆(T ),

and so, in particular, H̃`−|T |−1(astlk∆(T ′)(b)) 6= 0.

But now, [DDD+19, Lemma 4.3] gives that

H̃i−|T |−1(astlk∆(T ′)(S))
∼=
⊕
x∈S

H̃i−|T |−1(astlk∆(T ′)(x)),

in particular, that lk
∆̃
(T ′) is nonzero. That depth ∆̃ = `− 1 now follows from Lemma 7.4.1 and

Proposition 7.2.3.

Proposition 7.4.1. Let ∆ be a balanced simplicial complex. Suppose H̃`−1(∆) = 0. Then there

exists an i such that depthast∆(Vi) = `−1.

Proof. This follows immediately from Lemma 7.4.2.

With these results in hand, we now provide a formula for depth∆.

Theorem 7.4.3. If ∆ is a balanced simplicial complex, then

depth∆ = min{i+ |S| | H̃i−1(∆̃S) 6= 0}.
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Proof. That

depth∆≤min{i+ |S| | H̃i−1(∆̃S) 6= 0}

follows at once from Lemma 7.4.1, so we need only concern ourselves with the reverse inequality.

We proceed by induction on depth∆, noting that the claim is clear when depth∆ = 0, that is, when

∆ = {∅}. Suppose depth∆ = `. The claim is clear if H̃`−1(∆) 6= 0, so we may suppose this is not

the case. By Proposition 7.4.1, there is an i with depthast∆(Vi) = `−1. From inductive hypothesis,

we have `− 1 = min{i + |S| | H̃i−1(ast∆(Vi)[d]−S)}. In particular, there is an S ⊆ [d − 1] with

H̃`−|S|−2(ast∆(Vi)) = H̃`−|S∪{i}|−1(∆̃|S∪{i}|) 6= 0, and the result follows.

Corollary 7.4.2. Let P be a finite poset. For any S⊆ {1, . . . ,htP}, let P̃S denote the poset obtained

by restricting P to elements whose height is not in S. Then

depthO(P) = min{i+ |S| | H̃i−1(O(P̃S)) 6= 0}.

In particular, for any simplicial complex ∆, we can compute depth∆ by taking P to be the face

poset of ∆.

7.5 Euler characteristics of links and truncated posets

We now shift our attention to Theorem 7.1.5. Through this section we set Fk = {T ∈ ∆, |T |= k}.

Lemma 7.5.1. Suppose ∆ is pure. Then

∑
T∈Fk

fi−1(lk∆(T )) =
(

i+ k
k

)
fi+k−1(∆).

Proof. Note that
(

i+ k
k

)
the number of (k− 1)-dimensional faces contained in each (i+ k− 1)-

dimensional face. Thus the right hand side counts each (i+ k−1)-dimensional face exactly once

for each of its subfaces of dimension k−1. On the other hand, fi−1(lk∆(T )) counts each (i+k−1)-
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dimensional face containing T . Thus on the left hand side, each (i+k−1)-dimensional face is also

counted exactly once for each (k−1)-dimensional face it contains, and so the sides are equal.

As in [HN02, Section 2 Lemma 1 (i)] and [Swa05, Proposition 2.3], one can combine this with

Theorem 1.3 (3) to obtain a formula for ∑
T∈∆
|T |=k

hi(lk∆(T )) in terms of Euler characteristics of higher

nerves. We follow a similar approach to obtain a particularly simple formula for ∑
T∈∆
|T |=k

χ̃(lk∆(T )).

To do this we need the following identity:

Lemma 7.5.2. If k is a positive integer, then, for any nonnegative integer j, we have

j

∑
i=0

(−1)i+1
(

i+ k
k

)(
j

i+ k−1

)
=


−1 j = k−1

1 j = k

0 j 6= k,k−1

.

Proof. By Pascal’s identity, we have that
j

∑
i=0

(−1)i+1
(

i+ k
k

)(
j

i+ k−1

)
equals

j−k+1

∑
i=0

(−1)i+1
(

i+ k−1
k−1

)(
j

i+ k−1

)
+

j−k+1

∑
i=0

(−1)i+1
(

i+ k−1
k

)(
j

i+ k−1

)
Applying the subset of a subset identity to both terms, this equals

j−k+1

∑
i=0

(−1)i+1
(

j
k−1

)(
j− k+1

i

)
+

j−k+1

∑
i=0

(−1)i+1
(

j
k

)(
j− k
i−1

)

=−
(

j
k−1

) j−k+1

∑
i=0

(−1)i
(

j− k+1
i

)
−
(

j
k

) j−k+1

∑
i=0

(−1)i
(

j− k
i−1

)

=−
(

j
k−1

) j−k+1

∑
i=0

(−1)i
(

j− k+1
i

)
+

(
j
k

) j−k

∑
i=0

(−1)i
(

j− k
i

)
.

The first term is 0 unless j = k−1 and the second is 0 unless j = k. We easily check that the

sum is −1 when j = k−1 and 1 when j = k, giving the result.
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Theorem 7.5.3. Suppose ∆ is pure. Then

∑
T∈∆
|T |=k

χ̃(lk∆(T )) = χ([∆]>k)−χ([∆]>k−1)

Proof. The claim is clear if k = 0, since [∆]>0 is the barycentric subdivision of ∆, and since [∆]>−1

is a cone. So we suppose k ≥ 1.

We have

∑
T∈Fk

χ̃(lk∆(T )) =
d−k

∑
i=0

∑
T∈Fk

(−1)i+1 fi−1(lk∆(T ))

=
d−k

∑
i=0

(−1)i+1
(

i+ k
k

)
fi+k−1(∆)

=
d−k

∑
i=0

d−1

∑
j=i+k−1

(−1)i+1
(

i+ k
k

)(
j

i+ k−1

)
χ(N j+1(∆))

=
d−1

∑
j=0

j

∑
i=0

(−1)i+1
(

i+ k
k

)(
j

i+ k−1

)
χ(N j+1(∆))

= χ(Nk+1(∆))−χ(Nk(∆)) (By Lemma 7.5.2).

The result then follows from Theorem 7.2.7 (4).

Note that, as long as k 6= d, ∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>k)−χ([∆]>k−1) = χ̃([∆]>k)− χ̃([∆]>k−1).

Corollary 7.5.1. Suppose ∆ is pure. Then

i

∑
k= j

∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>i)−χ([∆]> j−1).

In particular,
i

∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) = χ([∆]>i).
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As an application, we provide a result analogous to those of sections 7.3 and 7.4 for Gorenstein∗

complexes.

Corollary 7.5.2. Suppose ∆ is Gorenstein∗. Then

dimk H̃i−1([∆]> j) =


dimk H̃ j−1(∆

( j−1)) if i = d− j

0 if i 6= d− j.

The converse holds if lk∆(T ) is non-acyclic for each T ∈ ∆.

Proof. By Theorem 7.2.7 (4), H̃i−1([∆]> j) ∼= H̃i−1(N j+1(∆)) for any i and j. Thus, by Theorems

7.2.7 (1) and 7.2.2, both conditions imply ∆ is Cohen-Macaulay, in particular, that ∆( j−1) is Cohen-

Macaulay for every j ([Fr0, Theorem 8]). In this case, we have

dimk H̃ j−1(∆
( j−1)) = (−1) j

χ̃(∆( j−1)) =
j

∑
k=0

(−1) j−k fk−1(∆).

Suppose ∆ is Gorenstein∗. Then, by Theorem 7.2.2

H̃i−1(lk∆(T ))∼=


k if i = d− j

0 if i 6= d− j

Likewise, since ∆ is Cohen-Macaulay, we have H̃i−1(N j+1(∆))= 0 unless i= d− j by Theorem

7.2.7. By Corollary 7.5.1 we have

j

∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) =
j

∑
k=0

∑
T∈Fk

(−1)d−k−1

=
j

∑
k=0

(−1)d−k−1 fk−1(∆) = (−1)d− j−1 dimk H̃d− j−1([∆]> j)

and the result follows.

149



Now suppose lk∆(T ) is non-acyclic for each T ∈ ∆ and that

dimk H̃i−1([∆]> j) =


j

∑
k=0

(−1) j−k fk−1(∆) if i = d− j

0 if i 6= d− j.

.

Since ∆ is Cohen-Macaulay, H̃i−1(lk∆(T )) = 0 unless i = d− |T |. Now we induct on |T | to

show that H̃d−|T |−1(lk∆(T )) ∼= k for each T . For the case T = ∅, we have dim H̃d−1(lk∆ T ) =

dim H̃d−1(∆) = dim H̃d−1([∆]>0) = f−1(∆) = 1. Now suppose H̃d−|T |−1(lk∆(T )) ∼= k whenever

|T |< j. Then

j

∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) = χ̃([∆]> j) = (−1)d− j−1 dimk H̃d− j−1(N j+1(∆)) =
j

∑
k=0

(−1)d−k−1 fk−1(∆)

Similarly,
j−1

∑
k=0

∑
T∈Fk

χ̃(lk∆(T )) =
j−1

∑
k=0

(−1)d−k−1 fk−1(∆),

and thus

∑
T∈Fj

χ̃(lk∆(T )) = ∑
T∈Fj

(−1)d− j−1 dimk H̃d− j−1(lk∆(T )) = (−1)d− j−1 f j−1(∆).

Then

∑
T∈Fj

dimk H̃d− j−1(lk∆(T )) = f j−1(∆),

but, since lk∆(T ) is non-acyclic for each T , we must have dimk H̃d− j−1(lk∆(T )) = 1 for each

T ∈ Fj, by pigeonhole. The result now follows from induction.

Remark 7.5.3. We claim the result of Corollary 7.5.2 is analogous to those of Sections 7.3 and

7.4, but this is perhaps not obvious. To see this, note that dimk H̃i−1(∆
( j−1)) = dimk H̃i−1(P−1

>d− j)

where P is the face poset of ∆. In essence, our result says that, when ∆ is Gorenstein∗, removing
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j ranks from the bottom of P gives the same homologies as removing d− j ranks from the top,

though these homologies are in different degrees.

7.6 Open problems and examples

We say that A ⊆ ∆ is independent if σ ∪ τ /∈ ∆ for all σ ,τ ∈ A with σ 6= τ . We say that A is

excellent if, additionally, for every facet F of ∆, F ⊇ σ for some (necessarily unique) σ ∈ A. Note

that J = {v1, . . . ,vm} ⊆ V is independent (resp. excellent) if and only if {{v1}, . . . ,{vm}} is an

independent (resp. excellent) subset of ∆. If A⊆ ∆ is independent, we set

∆A := ∆−{σ ∈ ∆ | σ ⊇ τ for some τ ∈ A}.

If A = {{v1}, . . . ,{vm}}where J = {v1, . . . ,vm}⊆V is independent, then ∆A = ast∆(J). Essentially

the same argument as [Hib91, Proposition 2.8] shows the following extension of Lemma 7.4.2:

Proposition 7.6.1. Suppose A⊆ ∆ is independent. Then depth∆A ≥ depth∆−1.

We conjecture a similar extension of Lemma 7.3.1.

Conjecture 7.6.2. Suppose A⊆ ∆ is excellent. If ∆ satisfies (S`), then ∆A satisfies (S`).

Remark 7.6.3. If A is independent and `≥ 2, the conclusion can only hold if A is excellent, since

(S2) complexes are pure. Similar to Proposition 7.6.1, one can modify the argument of [Hib91,

Proposition 2.8] to show that ∆A satisfies (S`−1) whenever ∆ satisfies (S`) and A is excellent. How-

ever, as in the proof of Theorem 7.3.3, one often needs to cut away excellent subsets inductively,

and, for this purpose, (S`−1) is not generally good enough; in particular, we cannot conclude any-

thing when ∆ only satisfies (S2). A positive answer to this conjecture would allow one to extend

Theorem 7.1.3 to balanced complexes of a more general type, along the lines of [Hib91, Section

3].

The following examples show the converses of Theorems 7.3.3 and 7.3.4 do not hold, even for

face posets of simplicial complexes:

151



Example 7.6.4. Consider the complex ∆1 with facets:

{4,5,6},{1,5,6},{1,3,5},{2,3,6},{2,5,6},{2,4,6}.

This complex is not (S2) but has H̃i−1([∆1]> j) = 0 for all i, j with i+ j < d and 0≤ i < 2.

Example 7.6.5. Consider the complex ∆2 with facets:

{4,5,6},{3,5,6},{2,3,5},{2,3,4},{1,3,4},{2,4,6}.

This complex is (S2) but H̃1([∆2]>0) is non-trivial.

In fact, H̃i−1([∆1]> j) ∼= H̃i−1([∆2]> j) for every i and every j. Since ∆2 is (S2) and ∆1 is not,

this shows that (S2) cannot be determined in general by reduced homologies of the [∆]> j. Further,

Example 7.6.5 is Buchsbaum while Example 7.6.4 is not, so Buchsbaum cannot be determined

either. In a similar fashion, the following example shows that Gorenstein cannot be detected in

general.

Example 7.6.6. Let Γ1 be the complex with facets

{2,3,4},{1,3,4},{1,2,5},{2,3,5},{1,2,4},{1,3,5}

and Γ2 the complex with facets

{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,5},{1,3,5}.

Then [Γ1]> j and [Γ2]> j have isomorphic homologies for each j, but Γ1 is Gorenstein whilst Γ2 is

not (it is not even 2-Cohen-Macaulay).

The above discussion leads us to ask the following general question:
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Question 7.6.1. In addition to the reduced homologies of the [∆]> j, what information does one

need to determine if a simplicial complex satisfies conditions such as (S`), Buchsbaum, or Goren-

stein?
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Chapter 8

Minimal Cohen-Macaulay simplicial complexes

8.1 Introduction

In this chapter, we introduce and study the notion of a minimal Cohen-Macaulay complex. Fix

a field k. Let ∆ be a simplicial complex. We say ∆ is minimal Cohen-Macaulay (over k) if it is

Cohen-Macaulay and removing any facet from the facet list of ∆ results in a complex which is not

Cohen-Macaulay. See Section 8.2 for precise definitions.

For the rest of the chapter we shall write CM for Cohen-Macaulay. We first observe a crucial

fact.

Theorem 8.1.1. Any CM complex is shelled over a minimal CM complex. (Theorem 8.3.1)

Thus, in a strong sense, understanding CM complexes amounts to understanding the minimal

ones. We support this claim by demonstrating that many interesting examples of CM complexes

in combinatorics are minimal. Theorem 8.1.1 also puts shellable complexes in a broader context:

they are precisely complexes shelled over the empty one. Its proof relies on a simple but somewhat

surprising statement (Lemma 8.3.1), which might be of independent interest.

Below is a collection of the main technical results of this chapter which establish various nec-

essary and sufficient conditions for a complex to be minimal CM.

Theorem 8.1.2. The following statements hold.

1. A minimal CM complex is acyclic. (Corollary 8.3.3)

2. Let ∆ be CM and i-fold acyclic. If no facet of ∆ contains more than i− 1 boundary ridges,

then ∆ is minimal CM. (Theorem 8.3.3)
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3. If ∆ is a ball, then ∆ is minimal CM if and only if it is strongly non-shellable in the sense of

[Zie98]. (Proposition 8.3.7)

4. If ∆ is minimal CM and Γ is CM, then ∆?Γ is minimal CM. (Theorem 8.4.2)

In Section 8.2, we give the formal definitions, provide background, and set notation. Section

8.3 contains the proofs of Theorem 8.3.1, Theorem 8.3.3, Corollary 8.3.3 and Proposition 8.3.7.

In Section 8.4, we provide many ways to build new minimal Cohen Macaulay from old ones, such

as gluing (Corollary 8.4.1, Proposition 8.4.2) and taking joins (Theorem 8.4.2). In the last section,

we use our results to examine many classical and recent examples of Cohen-Macaulay complexes

from the literature and show that they are minimal.

8.2 Background and notation

Once and for all, fix the base field k. We let H̃i denote the ith simplicial or singular homology, as

appropriate, always with coefficients in k. We use χ̃ for reduced Euler characteristic. Throughout

this chapter, we let ∆ be a simplicial complex of dimension d−1 with facet list {F1, . . . ,Fe}, and

we denote by ∆Fi the subcomplex of ∆ with facet list {F1, . . . ,Fi−1,Fi+1, . . . ,Fe}. We write fi(∆)

for the number of i-dimensional faces of ∆, and hi(∆) for the ith entry of the h-vector of ∆; so

hi(∆) = ∑
i
k=0
(d−k

i−k

)
(−1)i−k fk−1(∆). In particular, we note that hd(∆) = ∑

d
k=0(−1)d−k fk−1(∆) =

(−1)d−1χ̃(∆). The depth of ∆ is, by definition, the depth of the Stanley-Reisner ring k[∆] of ∆. We

say ∆ is CM if depth∆ = d. The following consequence of Hochster’s formula ([BH93, Theorem

5.3.8]) is an extension of Reisner’s famous criterion for Cohen-Macaulayness ([Rei76, Theorem])

and gives a combinatorial characterization of depth.

Proposition 8.2.1. depth∆≥ ` if and only if H̃i−1(lk∆(σ)) = 0 for all σ ∈ ∆ such that i+ |σ |< `.

We use ∆(i) := {σ ∈∆ : |σ | ≤ i+1} to denote the i-skeleton of ∆; it is well known that depth∆=

max{i | ∆(i−1) is CM}, see for example [Fr0, Theorem 8].

The following definition gives the main focus of this chapter .
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Definition 8.2.1. We say ∆ is minimal CM if ∆ is CM but ∆Fi is not CM for any i. In particular,

we note that a simplex is minimal CM if and only if it is the void complex ∅.

The following related concept provides an extension of the notion of shellability.

Definition 8.2.2. We say ∆F to ∆ is a shelling move if 〈F〉∩∆F is generated by facets of ∂F , that

is to say, if 〈F〉∩∆F is pure of codimension 1. If Γ is a subcomplex of ∆ generated by facets of

∆, we say ∆ is shelled over Γ if there exists a sequence of shelling moves taking Γ to ∆. To put it

another way, ∆ is shelled over Γ if the relative complex (∆,Γ) is shellable (see [Sta96, Chapter III.

7] or [AS16, Section 4]).

We note that shellable complexes are exactly those which are shelled over ∅.

Definition 8.2.3. The intersection face of a facet F ∈ ∆ is the face of ∆ defined as

ß(F) := {x ∈ F : F−{x} 6∈ ∆F}.

If ∆F to ∆ is a shelling move, then ß(F) is the intersection of the facets of 〈F〉∩∆F . Further, in

this context, ß(F) is the complement of the unique minimal face of 〈F〉 \∆F , which is commonly

called the of the restriction face of F ; see [BW96].

Definition 8.2.4. We say that ∆ is l-fold acyclic if lk∆(σ) is acyclic for all σ ∈ ∆ with |σ |< l.

Definition 8.2.5. We say a ridge σ ∈ ∆ is a boundary ridge if σ is contained in a unique facet of ∆.

Definition 8.2.6. A pseudomanifold is a simplicial complex that is pure, has a connected facet-

ridge graph, and every ridge is in exactly two facets.

Definition 8.2.7 (See [MT09]). We say ∆ satisfies Serre’s condition (S`) if ` = 1 or if ` ≥ 2 and,

for any σ ∈ ∆, H̃i−1(lk∆(σ)) = 0 whenever i+ |σ | < d and 0 ≤ i < `. In particular, we note that

any complex satisfying (S2) is pure.
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8.3 Main results

In this section we prove most of our main technical results regarding minimal CM complexes. We

start with the following lemma.

Lemma 8.3.1. Suppose ∆ satisfies Serre’s condition (S2). Then, for any facet F ∈ ∆, ∆ is shelled

over ∆F .

Proof. The claim is clear if ∆ is a simplex, so we suppose this is not the case. Noting that ∆ is pure

(since it satisfies (S2)), we want to show that 〈F〉∩∆F is pure of dimension d−2. Let σ be a facet

of 〈F〉∩∆F . Then F \σ is a facet of lk∆(σ), and any other facet of lk∆(σ) can be written in the

form G\σ where G ∈ ∆F . If v ∈ F \σ ∩G\σ , then σ ∪{v} ∈ 〈F〉∩∆F , contradicting that σ is a

facet. Thus F \σ ∩G\σ =∅. Thus F \σ has trivial intersection with every other facet of lk∆(σ),

and so lk∆(σ) is disconnected. Since ∆ satisfies (S2), this must mean that σ is (d−2)-dimensional.

Ergo, 〈F〉∩∆F is pure of dimension d−2, and so ∆ is shelled over ∆F .

Theorem 8.3.1. If ∆ is a CM complex, then there is a minimal CM complex Γ so that ∆ is shelled

over Γ.

Proof. Since ∆ is CM, it also satisfies (S2). We can then apply Lemma 8.3.1 to conclude that,

for every facet F of ∆, ∆ is shelled over ∆F . If none of these is CM, then ∆ is minimal CM by

definition. If not, we may continue this process to eventually reach a minimal one.

Remark 8.3.2. It is not hard to see that a given CM complex can be shelled over two different

minimal ones. For instance, let ∆ = K(2)
6 be the complete two-skeleton of the simplex on 6 vertices,

and let Γ be a triangulation of the projective plane on 6 vertices. Then ∆ is shellable and is also

shelled over Γ. That Γ is minimal CM follows from Corollary 8.3.5.

Next, we aim to prove that minimal CM complexes are acyclic. This is accomplished by

showing a more general result.
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Theorem 8.3.2. Suppose H̃d−1(∆) 6= 0. Then there is a facet of maximal cardinality Fi of ∆ so that

the following hold:

dim H̃i−1(∆Fi) =


dim H̃i−1(∆) if 0≤ i < d

dim H̃i−1(∆)−1 if i = d
(1)

fk−1(∆Fi) =


fk−1(∆) if 0≤ i < d

fk−1(∆)−1 if i = d
(2)

depth∆ = depth∆Fi. (3)

Proof. Let C• : 0→Cd−1
∂d−1−−→ ·· · ∂2−→C1

∂1−→C0→ 0 be the associated chain complex of ∆. Choose

a nonzero C ∈ H̃d−1(∆) = Ker∂d−1. Write C =
e

∑
i=1

riFi where, without loss of generality, r1 6= 0.

Then ∂d−1(C) =
e

∑
i=1

ri∂d−1(Fi) = 0 so ∂ (F1) =
e

∑
i=2

(− ri

r1
)∂d−1(Fi). Thus, if we remove F1, its

boundary remains, and so it follows that

∆
(d−2) = ∆

(d−2)
F1

. (8.1)

So (1) and (2) are now immediate, and it only remains to show (3). Suppose σ ∈∆F1 . Following

from (8.1), we have (lk∆(σ))(dimlk∆(σ)−1) = (lk∆F1
(σ))

(dimlk∆F1
(σ)−1)

and so lk∆F1
(σ) and lk∆(σ)

have the same homologies except potentially in top degree. It follows that depth∆ = depth∆F1 .

Corollary 8.3.3. Minimal CM complexes are acyclic.

Proof. This is an immediate consequence of Lemmas 8.3.1 and Theorem 8.3.2.

While highly acyclic CM complexes need not be minimal CM (a complex with a shelling such

that each restriction face is a vertex is (d−2)-acyclic but not minimal CM), one can provide some

additional conditions under which they are. We accomplish this via the following Lemma:
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Lemma 8.3.4. Suppose ∆ is a CM complex. If F is a facet of ∆ such that χ̃(lk∆(ß(F))) = 0, then

∆F is not CM.

Proof. Set j = |ß(F)|. We first note that

hd− j(lk∆(ß(F)) =
d− j

∑
i=0

(−1)d− j−i fi−1(lk∆(ß(F)) = (−1)d− j−1
χ̃(lk∆(ß(F))) = 0.

Since every ridge in F \ r(F) in lk∆(ß(F)) is contained in some other facet of lk∆(ß(F)),

fi−1(lk∆F (r(F))) =


fi−1(lk∆(ß(F))) if 0≤ i < d− j

fi−1(lk∆(ß(F)))−1 if i = d− j.

This implies

hd− j(lk∆F (ß(F))) = (−1)d− j−1
χ̃(lk∆F (ß(F)))

= (−1)d− j−1
χ̃(lk∆(ß(F)))−1

= 0−1

=−1.

Thus lk∆F (σ) has a negative entry in its h-vector, and so cannot be CM. In particular, ∆F is not

CM, so ∆ is minimal CM.

Theorem 8.3.3. If ∆ is an `-fold acyclic CM simplicial complex and F is a facet of ∆ that contains

no more than `−1 boundary ridges, then ∆F is not CM. In particular, if every facet of ∆ contains

no more than `−1 boundary ridges, then ∆ is minimal CM.

Proof. Let F be a facet of ∆. Since ∆ is `-fold acyclic and since |ß(F)| ≤ `− 1, lk∆(ß(F)) is
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acyclic. The result now follows from Lemma 8.3.4.

Setting `= 1 immediately gives the following special case.

Corollary 8.3.5. If ∆ is an acyclic CM with no boundary ridges, then ∆ is minimal CM. In partic-

ular, acyclic CM psuedomanifolds are minimal CM.

We now consider the relationship between the minimal CM property and the strongly non-

shellable property for balls. Strongly non-shellablility has been used quite frequently in the study

of non-shellable balls (see e.g. [DK78, Hac00, Lut04a, Lut04b, Zie98]). It is defined as follows:

Definition 8.3.4. We say a ball B is strongly non-shellable if BF is a non-ball for any facet F ∈ B.

Remark 8.3.6. A strongly non-shellable ball is often defined (as in [Zie98]) as a ball B that does

not contain a free facet, i.e., a facet F such that 〈F〉∩∂B is a ball of dimension d−2. It’s easy to see

this definition is equivalent to the one we provide; it follows immediately from [Zie98, Proposition

2.4 (iii)] that any ball with a free facet cannot be strongly non-shellable in our notion. On the other

hand, if BF is a ball, then, as in the proof of Proposition 8.3.7, 〈F〉∩∂B is generated by the ridges

not containing σ , so it must also be a ball.

Proposition 8.3.7. For a ball B, the following are equivalent:

(1) B is minimal CM.

(2) B is strongly non-shellable.

Proof. We first show (1) implies (2). Suppose B is minimal CM. Then removing any facet of B

gives a complex that is not CM. This certainly can’t be a ball, so B is strongly non-shellable.

We now show that (2) implies (1). Suppose B is strongly non-shellable. Let F be a facet of B.

Let ρ1, . . .ρk be the ridges of ∆ contained in both 〈F〉 and ∂B. Let ρk+1 . . . ,ρd+1 be the other ridges

of ∆ contained in 〈F〉. We consider two complexes, I := BF ∩〈F〉 and O := ∂B∩〈F〉. Every ρi is
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either F and another facet, and therefore in I, or only in F , and therefore in O. This implies that I

and O partition the ρi. Furthermore, any facet of I that is not a ρi is contained in B, and vice versa.

Since O cannot be a ball by [Zie98, Proposition 2.4 (iii)], it has some facet which is not a

ρi and more generally has a face which is not contained in 〈ρk+1, . . . ,ρd+1〉. Since ß(F) is the

unique minimal face of 〈F〉 not contained in 〈ρk+1, . . . ,ρd+1〉, ß(F) must be contained in O. By

the definition of O, we get that ß(F) is in the boundary of B. This means that lkB(ß(F)) is a ball,

and by Lemma 8.3.4, BF is not CM. This is true for all facets of B, so B is minimal CM.

8.4 Building new minimal CM complexes from old ones

In this section we provide several results which show operations such as gluing or taking joins can

be used to construct new examples of minimal CM complexes.

We begin with results on gluing, starting with the following corollary of Theorem 8.3.3.

Corollary 8.4.1. Suppose ∆1 and ∆2 are CM acyclic complexes. Set Γ = ∆1 ∩ ∆2. Suppose

∂∆1,∂∆2 ⊆ Γ, that dim(∂∆1) = dimΓ = dim(∂∆2), and that Γ is acyclic and CM. Then ∆1∪∆2 is

minimal CM.

Proof. The assumptions and construction ensures that any ridge of ∆ = ∆1∪∆2 is contained in at

least two facets. Thus, we can appeal to Corollary 8.3.5.

For our next gluing result, we need the following dual notion of minimal CM.

Definition 8.4.1. We say ∆ is strongly CM if ∆ is CM and ∆Fi is CM for any i.

Proposition 8.4.2. If ∆ and Γ are minimal CM of dimension d− 1 and ∆∩Γ is strongly CM of

dimension d−1, then ∆∪Γ is minimal CM.
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Proof. We have an exact sequence 0→ k[∆∪Γ]→ k[∆]⊕k[Γ]→ k[∆∩Γ]→ 0 and then k[∆∪Γ] is

CM by the depth lemma. Now let F be a facet of ∆∩Γ. Without loss of generality, assume F ∈ ∆.

If F /∈ ∆∩Γ, then we have the exact sequence

0→ k[∆F ∪Γ]→ k[∆F ]⊕ k[Γ]→ k[∆∩Γ]→ 0.

Since k[∆F ] is not CM, neither is k[∆F ∪Γ]. Otherwise, F ∈ ∆∩Γ, and we have the exact sequence

0→ k[(∆∪Γ)F ]→ k[∆F ]⊕ k[ΓF ]→ k[(∆∩Γ)F ]→ 0.

Since ∆∩Γ is CM and k[∆F ]⊕ k[ΓF ] is not, k[(∆∪Γ)F ] is not CM, completing the proof.

Remark 8.4.3. The proof of Proposition 8.4.2 does not actually require ∆∩Γ to be strongly CM,

only that ∆∩Γ have dimension and depth d−1, and that (∆∩Γ)F be CM for every facet F ∈ ∆∩Γ.

We end this section by showing that the join of a minimal CM complex and another (not

necessarily minimal) CM complex is minimal CM.

Theorem 8.4.2. If ∆ is minimal CM and Γ is CM, then ∆?Γ is minimal CM.

Proof. First we note that ∆?Γ is CM. Now, let F be a facet of ∆?Γ. We may write F = F ′ ?G for

some facets F ′ of ∆ and G of Γ. Since ∆F ′ is not CM, there exists σ ∈ ∆F ′ such that H̃i(lk∆F ′ (σ)) 6=

0 for some i < dim(∆)−|σ |.

We now show that L = lk∆F ′ (σ) and L′ = lk(∆?Γ)F (σ ?G)) are isomorphic posets. If τ ∈ L, it is

immediate that τ ? /0 ∈ L′. Furthermore, if τ ? /0 ∈ L′, then τ ∈ L. Suppose τ ? γ ∈ L′, then γ ∪G ∈ Γ

and γ ∩G = /0. This implies that γ = /0. So L and L′ are isomorphic posets.

With this isomorphism, we see that H̃i(lk(∆?Γ)F (σ ?G)) 6= 0 for some i < dim(∆?Γ)−|σ ?G|.

Thus (∆ ? Γ)F is not CM by Reisner’s Criterion ([Rei76, Theorem 1]), and therefore, ∆ ? Γ is

minimal CM.
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8.5 Examples

In this section, we consider some notable examples of CM complexes from the literature, and show

that they are minimal CM. We expect that this is far from a complete list of minimal CM examples

currently published.

A large class of minimal CM complexes are those that satisfy the conditions of Corollary 8.3.5.

The following complexes fall in this class:

• Triangulations of RP2n (over k of characteristic not 2)

• The dunce hat

• Bing’s House with 2 rooms [Hac99]

• The pastry [Doo18]

The following are all strongly non-shellable balls, which are minimal CM by Proposition 8.3.7.

• Rudin’s Ball [Rud58]

• B3
16,48, B3

12,37,a, and B3
12,37,b [Lut04b]

• B3,9,18 [Lut04a]

• Ziegler’s Ball [Zie98]

This next class of minimal CM complexes are constructible complexes which are not them-

selves balls. Each of these were verified to be minimal CM by applying Theorem 8.3.3.

• The complex C3 in [DGKM16], a non-partitionable CM complex

• The complex C3 in [JV18], a balanced non-partitionable CM complex

• The complex Ω3 in [DG18], a 2-fold acyclic complex with no decomposition into rank 2

boolean intervals
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Each of these complexes is a counterexample to an associated conjecture in the literature; see

the references for more details. They are each the result of gluing many copies of a CM complex

along a CM subcomplex, a similar process to Proposition 8.4.2.
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