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Abstract 
 

 The field of chemical biology has become a powerful driving force among the 

continuing effort to elucidate medicinally relevant biological hot spots. These so called 

hot spots consist of reactive nucleophiles and electrophiles found along bio-pathways. 

Many nucleophilic amino acid residues, such as cysteine and serine, are known to react 

with a-b unsaturated electrophiles like Michael acceptors. In recent years systematic 

assays to uncover hot spot reactivity, including Activity Based Protein Profiling (ABPP), 

have risen to the forefront of chemical biology. However, these assays are dependent 

upon chemical probe molecules designed to interact with a given type of biological 

entity. Therefore, a persistent need exists for novel chemical probes with easily 

modifiable chemical, stereochemical, and electronic properties. Ideally these chemical 

properties are synthetically built into the probe in a rapid and combinatorial manner to 

yield a unique and easily modified probe molecule.  

 This dissertation presents the design and synthesis of sultam chemical probes with 

a focus on a-b unsaturated systems. Chapter 1 contains a short review on a-b 

unsaturated Michael acceptors and biological reactivity, as well as the pharmaceutical 

history of enolic a-b unsaturated tetramic acids when combined with sultam molecules. 

Chapter 2 outlines the synthesis of six membered-triazole-fused sultams containing a-b 

unsaturated Michael acceptors. These chemical probes were generated via intermolecular 

click chemistry and ring closer by a novel C-vinylation reaction to form the sultam itself. 

Chapter 3 highlights the a-functionalization of tetramic acid inspired sultam probes or 

‘sultamic acids,’ to generate endo-enol and exo-enamine-a-b unsaturated sultam probes. 

These probes will be given to collaborators for use in chemical biology assays.   
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Section 1.1 The use of a,b Unsaturated Systems in Biological Discovery Assays.  

 The development of synthetic methods capable of rapidly generating diverse and 

novel chemical probes for use in biological discovery assays remains a staple of scientific 

endeavor. Electrophilic probe compounds with Michael acceptors have become of 

particular interest, due to the pervasive presence of nucleophilic amino acid residues such 

as cysteine and serine, in enzymatic active sites and protein function. There are many 

examples of a,b-unsaturated Michael accepting systems in natural products, as well as 

small molecule fragment-like warheads used in activity-based protein profiling assays 

(ABPP, vide infra).1 While lactams are not uncommon in natural products,2 the a,b-

unsaturated lactam remains relatively underrepresented in ABPP.3  Furthermore, non-

natural lactam analogs, sultams, are also underrepresented in protein profiling 

experiments.4  

 The disclosed dissertation work is designed to address the lack of sultams for use 

in chemical biology, 5  methods like ABPP, with a particular focus on combinatorial 

methods for the generation of acyl, enamine, and a,b-unsaturated Michael-accepting 

sultams. Sultams, 6  or cyclic sulfonamides, are non-hydrolyzable lactam surrogates 7 

possessing unique chemical properties. These attributes include a reduced pka compared 

to carbon analogs,8 as well as the inherent soft nucleophilicity of sulfur. Furthermore, the 

SO2N moiety has sp3 geometry, 9  as compared the sp2 geometry of a lactam. This 

additional three-dimensional geometry and augmented physiochemical properties have 

engendered sultams as a privileged scaffold in medicinal chemistry.10  

 The Hanson group has a long-standing interest in the development of new 

chemistry to S-heterocycles (sulfur-containing heterocycles), with a more focused interest 
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in the generation of molecular libraries of sultams for biological testing.11 Figure 1.1.1 

illustrates a brief history of a,b-unsaturated Michael-accepting sultams generated by the 

Hanson group. Many of these compounds have been found to possess various biological 

activities, ranging from thioredoxin activity, TGF-β/Nrf2 inhibition, and Scp-1 

phosphatase inhibition.11 

 

Figure 1.1.1. Hanson group published and un-published sultam Michael acceptors  

Inspired by this rich history, the presented dissertation work focuses on the use of 

tuneable coupling partners such as triazoles, benzyl groups, isocyanates and amines in an 
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enamine, and a,b-unsaturated sultam systems for use as probes in chemical biology 

screens.12   

 Cysteine (Cys) modification is a ubiquitous control mechanism in biology13 and 

can be found at every level of cellular activity from, protein structure, 14  cellular 

signaling, 15  transcriptional regulation, 16  protein degradation, 17  and cell death. 18  Many 

cysteine dependent biological pathways are implicated in major world health burdens 

such as cancer,19 inflammation,20 and infection.21 Critical cell signaling pathways known 

to be modulated by cysteine include: TGFb�(cell 

differentiation), 22 Nfkb (inflammation), 23  KEAP1 24  ubiquitination/deubiquitination 

(protein degradation),25 as well as kinase and phosphatase pathways (cell signaling).26 

The inherent soft nucleophilicity, 27  and varying pka28  of the cysteine residue afford 

multiple possibilities for post-translational states29 including oxidation,30 nitrosylation,31 

alkylation/acylation, 32  ubiquitination,25 disulfide formation, 33  phosphorylation,26 and 

metal chelation.34 Furthermore the cysteine-containing biomolecule glutathione (GSH)35 

is critical for cellular redox control.  

 

Figure 1.1.2. Diverse role of cysteine in biological pathways.36 
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 The rich biological chemistry of cysteine has made the residue an attractive target 

for drug development,37 as well as the object of intense fundamental scientific research. 

These general research efforts include chemical proteomic screens,38 such as activity- 

based protein profiling (ABPP)39, which are designed to uncover reactive amino acid 

residues in proteins. ABPP efforts typically focus on nucleophilic moieties like cysteine 

and serine, as these residues are frequently found in enzyme active sites.13,15 The 

laboratories of Cravatt40 and Weerapana41 have championed ABPP chemical reactivity 

screening, and along with other researchers 42  have made significant strides towards 

generating a body of data designed to elucidate the reactivity, 43  selectivity, 44  and 

biological function13-26 of numerous enzymatic and protein residues.   

 

Figure 1.1.3 IsoTOP-ABPP for whole proteome screening.  
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orthogonal proteolysis activity-based protein profiling (IsoTOP-ABPP) 45  and is 
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reactive probe, while unreacted thiols still complex. This mixture is then subjected to an 

azide-to-alkyne click reaction that attaches a light or normal isotope labeled biotin tag. 

The heavy and light mixes are then combined, enriched using streptavidin and analyzed 

by mass spectrometry. The heavy isotope tag forms a baseline thiol reactivity signal 

pattern, which is altered by any proteins attached to the chemical probe linked to the light 

tag. Thus IsoTOP-ABPP is a rapid proteome-wide tool for thiol reactivity discovery and 

is capable of identifying hundreds of “hot-spot” residues.45 

 While the sheer power of ABPP has boosted drug lead discovery efforts, and 

underpinned reactivity screening, the utility of these assays is dependent upon the design 

and use of novel chemical probes. A variety of chemical warheads have been found to 

react with various nucleophilic residues in ABPP assays. 46  Figure 1.1.4 emphasizes 

serine specific probe warheads while Figure 1.1.5 showcases cysteine probes. Lysine, 

tyrosine and threonine covalent probes are also known,46 but are omitted in the interest of 

space and scope. As seen in Figure 1.1.5, Michael acceptors occupy privileged space 

within cysteine reactivity profiling, and have begun to emerge in drug discovery as 

promising therapeutic candidates (vide infra).    

 

Figure 1.1.4. Serine-reactive probes used in ABPP. 
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Figure 1.1.5. Cysteine-reactive probes used in ABPP. 

 

Figure 1.1.6 Michael acceptors discovered and analyzed via ABPP.  
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to 0.015 µM.49 A Piperlongumine analog without the endo Michael acceptor was shown 

to be significantly less active.  

 Zhang and co-workers disclosed Compound 22, a novel Cathepsin C (CatC) 

inhibitor, which is thought to bind via catalytic Cys234.50 CatC is a lysosomal cysteine 

protease responsible for regulating neutrophil serine proteases, which are implicated in 

chronic inflammatory diseases such as rheumatoid arthritis.51 The Michael acceptor and 

clinical candidate GSK-2793660 is one of only two compounds to ever enter trials for 

CatC inhibition (Figure 1.1.7).50 

 

Figure 1.1.7. Michael accepting covalent drugs and drug candidates. 
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known as chromosome region maintenance 1 (CRM1), a protein responsible for nucleus-
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 Despite success of Michael acceptors as ABPP probes and covalent drug 57 

compounds, a systematic reactivity analysis of electrophilic motifs, like Michael 

acceptors, is an emerging field.1b,58 In 2014 Pfizer characterized GSH reactivity with 

simple electrophilic warheads including Michael acceptors. Figure 1.1.8 simplifies the 

general reactivity and half-life of electrophiles such as acrylamides, cyanamides, 

sulfones, and sulfonamides, with glutathione at a pH of 7.4.59  This seemingly simple 

assay reinvigorated the notion of tunable covalent warheads for therapeutic use.  

 Eli Lilly, another pharmaceutical giant, reported a systematic reactivity profiling 

N-acryloyl azetidines with GSH at near physiological conditions, 60  while Pfizer 

continued reactivity-profiling efforts with a 2016 manuscript detailing the intrinsic 

reactivity of electrophilic moieties with N-acetyl-L-lysine. The general reactivity trend 

with the amine nucleophile was found to mirror that of Figure 1.1.8. 61  

 

Figure 1.1.8. Summary of Pfizer systematic electrophilic warhead reactivity with GSH  

 Along with ABPP and reactivity profiling, non-systematic thiol screening have 

been performed on Michael acceptors with medicinally relevant cysteine residues and 

non-biological thiols.62 Roush and co-workers63 disclosed a vinyl sulfone as an inhibitor 

of cysteine protease cruzain, found in T. cruzi, the primary cause of Chagas’ disease. The 

Rosenthal64 group reported the synthesis of dipeptide vinyl sultams, which were found to 

have mild activity against the cysteine protease falcipain-2 found in P. falciparum 
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thioglycolate.66 No protein-macrocycle adduct was found even though BSA contains 35 

cysteine residues. Only one of these 35 cysteine residues is free, therefore denaturation 

and reduction was carried out before incubation with the macrocycle. A d-thiol adduct 

was found to be the sole product after 72 hours. The Love group disclosed and measured 

rates of thiol addition into vinyl sulfones mimics of the known T. cruzi inhibitor K777.67 

In 2016, Bogyo and co-workers reported a dipeptide vinyl sulfone capable of arresting 

the development, and causing the eventual death of P. falciparum via cysteine protease 

inhibition.68  

 

Figure 1.1.9 Non-systematic thiol screening 
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activity against mouse leukemia cells and has been shown to bind Cys269 of protein 

phosphatase 2A, and thereby disrupt cellular mitotic entry.71 

 Hypothemycin 72  inhibits mitogen-activated protein kinase kinase (MEK) by 

binding to a conserved cysteine found in 46 protein kinases.73 Hypothemycin is also a 

known inhibitor of oncogenic ras-transformation.74 5Z-7-Oxozeaenol75 has been shown 

to inhibit several protein kinases, including ERK2 and TAK1, via a free cysteine 

gatekeeper residue. 76  Furthermore 5Z-7-Oxozeaenol was found to bind to the hinge 

region residue Cys218 of MAP2K7, a kinase implicated in arthritis,77 hepatoma,78 and 

cardiac hypertrophy.79 The antibiotic abyssomicin C,80 binds to a cysteine near the active 

site of 4-amino-4-deoxychorismate (ADC) synthase, which is part of the biosynthesis of 

p-aminobenzoic acid. This critical bacterial pathway is not found in humans which makes 

it an attractive antibiotic route.81 Recently, studies have been directed at elucidating the 

reactivity and mechanism of action of the anticancer macrocycle rakicidin. 82  This 

macrocycle was shown to undergo an unprecedented reversible thiol addition into 

dehydroalanine via acyl-imine tautomerism. The emergence of ABPP, and the renewed 

interest in covalent modifiers as feasible drug candidates, has led to biological 

reexamination of electrophilic molecules such as Michael acceptors. Recent toxicology 

work has been geared towards evaluating, quantifying and predicting the potential toxic 

effect of these compounds.83   
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Figure 1.1.10 Natural biologically active Michael-acceptors.  

 One scaffold in need of re-examination is the a-methylene-g-lactone Michael 

acceptor. This well-known motif is found in 2–3% of all known natural products84 

including sesquiterpene lactones. Figure 1.1.11 shows Parthenolide, and Helenalin, both 

of which modulate Nfkb,85 as well as Deoxyelephantopin, a sesquiterpene lactone known 

to induce apoptosis in cancer cells. 86  While lactone–derived natural products are 

relatively ubiquitous in nature; the lactam counterparts are far less prevalent. Indeed, a-

methylene-d-lactams are very rare.87  The recently isolated humantenine-type alkaloid 

Gelegamine B possesses a novel exo-methylene, however any biological activity remains 

unknown. 88  Equally rare in nature are a-methylene-g-lactams, such as tetramic acid 

derivative Pukeleimid E, 89  a compound isolated from Lyngbya majuscula.87 While 

Pukeleimide E itself has not been evaluated for biological activity, similar five membered 

exo-methylene core scaffolds, 90  such as 3-(3,5-di-tert-butyl-4-

hydroxybenzylidene)pyrrolidin-2-ones have been shown to possess anti-inflammatory 

activity.91 
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Figure 1.1.11. Exo methylene natural products  

 The utility of Michael acceptors in ABPP as well as the prevalence of a,b-

unsaturated moieties in natural products has been reviewed above. Sultams bearing an 

exo-methylene Michael acceptor remain relativity-underexplored scaffolds in synthetic 

chemistry,92  and ABPP assays. Sultams are non-natural analogs of lactams and hold 

novel intrinsic properties such as sp3 geometry and attenuated pka. These novel scaffolds 

are promising probes for chemical biology due to these inherent properties, and have 

been found to have biological activity (Figure 1.1.1). Despite this, the current literature 

has few examples of any small, medium or macrocyclic a,b-unsaturated sultams in 

chemical biology assays. Therefore, the goal of Chapter 2 is to generate novel six 

membered exo-methylene a,b-unsaturated sultams for use as probes in chemical biology 

assays.  
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Section 1.2 Combination of Tetramic Acids and Sultams 

 The combination of enolic a,b-unsaturated systems with sultams has a remarkable 

place in antiviral research. The hepatitis C virus (HCV) was discovered in 1988 and 

rapidly became a major world health concern. The disease accounts for roughly 300,000 

deaths per year, and effects an estimated 3% (180 million people) of the world’s 

population.93 HCV is predominantly transmitted by exposure to infected blood, and up to 

90% of those infected will not develop symptoms upon acute infection, and therefore not 

realize their medical condition.93  

 A member of the Flaviviridae family, with relatives including dengue, West Nile, 

and yellow fever, HCV replicates at a rapid rate with approximately 1012 virions 

produced daily. 94  This rapid proliferation has a high error rate of 10-2–10-3 nucleotide 

substitutions per site per year,95 and is caused by the absence of proofreading ability in 

the HCV NS5B RNA-dependent RNA polymerase (RdRp). 96  Thus HCV has seven 

known genotypes with a staggering estimation of 30% divergence among the amino acids 

of each genotype.97 The lack of fail-safes in HCV and other viral genetic replication 

machinery not only gives rise to genome variability, but also is an evolutionary driving 

force for drug resistance.  In fact the death rate of HCV was once estimated to exceed the 

combined total from 60 other infection diseases including HIV.98  

 In recent years these intense drug development efforts have produced medication 

regiments capable of curing over 90 % of individuals afflicted with HCV (Figure 

1.2.1).94 Drug combinations are needed to help prevent the development of viral 

resistance, for example the drug trade-named Harvoni is the combination of 
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Ledipasvir/Sofosbuvir, while Epclusa makes use of Sofosbuvir/Velpatavir and is capable 

of treating six of the seven HCV genotypes.94   

 

Figure 1.2.1 HCV drugs93: A: macrocyclic NS3/4A protease inhibitors. B: NS5A serine 

protease inhibitors. C: NS5B polymerase inhibitors. 

 Modern HCV drugs include direct-acting antivirals (DAAs), molecules that are 

intended to directly inhibit viral proteins involved in the HCV life cycle.99 There are three 

well-known inhibition sites for HCV drugs within the DAAs paradigm. The NS3/4A 

protease is responsible for polyprotein cleavage, while NS5B polymerase inhibitors are 

capable of negating HCV RNA replication. Finally the NS5A inhibitors are a class of 

molecules able to inhibit viral replication and assembly processes, although the exact 

mechanism remains ambiguous.100,93,94 Of these targets, inhibition of the NS5B HCV 

polymerase is very promising, as this mechanism directly interferes with the reproduction 

of viral RNA, and there are no known mammalian RdRp.101 The NS5B RdRp has a right 
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handed topology with a three-dimensional structure containing domains commonly 

denoted the finger, palm and thumb regions. The interactions of the finger and thumb 

domain maintain the enzyme’s active conformation, and control RNA synthesis.102     

 Despite the undeniable advancement of HCV treatment the overall nature of the 

virus unfortunately lends itself to mutation and subsequent drug-resistance. As such the 

continuing development of molecules within privileged medicinal chemistry structural 

classes is needed for the continuing examination of HCV and other diseases. One such 

scaffold is the sulfonamide. In the realm of HCV research the sulfonamide is represented 

in a number of drugs,93 HCV inhibitory lead compounds, and biological hits.  

 With such a heavy sulfonamide presence in HCV research it is not surprising that 

a cyclic variant, benzothiadiazine analogs, are also well represented. These 

benzothiadiazine molecules are a fusion of two well-known cores: thiadiazine and 4-

hydroxyquinolin-2(1H)-one.96 A 2002 high-throughput screen of the GlaxoSmithKline 

(GSK) proprietary compound collection with a NS5B derived assay discovered the HCV 

inhibitory activity of benzothiadiazine compounds and inspired over a decade of HCV 

research (Scheme 1.2.1).103  

 Three years after this initial screening hit researchers at GlaxoSmithKline 

followed up with a two-pot asymmetric synthesis of benzothiadiazine-substituted 

tetramic acids. Scheme 1.2.1 illustrates the use of reductive amination, followed by 

amide bond formation and Dieckmann cyclization, to provide a unique fusion of sultam 

derivatives and tetramic acids. A small structure activity study found that increased steric 

bulk around the stereocenter, in addition to a meta amide moiety lead to a compound 

capable of reaching an IC50 against NS5B below 5 nM (Scheme 1.2.1).101  
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Scheme 1.2.1 A) Synthesis of tetramic derivatives. B) Tetramic lead compound. C) 2002 

GSK HTS lead compound.  

 

 The tetramic acid core was found to be a suitable mimic for the quinolone moiety, 

allowing GSK researchers to continue their efforts with a solid-phase synthesis of 

benzothiadiazine-substituted tetramic acids. This combinatorial project generated two 

libraries of 96 products each for SAR studies. In short, the S configuration was preferred, 

while initial R1 studies gave an order of tBu > iPr > Me > H.  Figure 1.2.2 illustrates the 

prototypical scaffold used by GSK for these tests as well as the more potent NS5B 

inhibitors.104  
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 Abbott Laboratories continued the benzothiadiazine HVC work with a series of 

publications from 2007 to 2009. The inhibitory target remained the NS5B RNA 

polymerase, however Abbott opted to focus on a series of 1-hydroxy-4,4-dialkyl-3-oxo-

3,4-dihydronaphthalenes bearing the generic ABCD ring structure, as shown in Scheme 

1.2.2.   

Scheme 1.2.2. Synthesis of Abbott ABCD benzothiadiazine ring core and products.   
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 This publication focused on a 7- or 8-step synthesis to derivatives of the generic 

ABCD core. Hydroboration, dihydroxylation, and cross metathesis products were 

generated on the B ring and tested for inhibitory potency against genotype 1 HCV NS5B 

polymerase. Of particular note to the herein disclosed dissertation work is the use of the 

geminal methyl thioether as a functional handle, as this is part of the disclosed sultam 

synthesis seen in Chapter 3. The most potent analogs from this very linear route are 

shown in Figure 1.2.3 with the top hit affording an IC50 of 4 nM against NS5B.105    

 

Figure 1.2.3 Most active compounds from Abbott 2007 benzothiadiazine synthesis. 

 Abbott Laboratories continued to explore these benzo-sultam/naphthalenone 

fused cores in a series of SAR papers. A 2008 manuscript detailed a series of gem-dialkyl 

naphthalenones with variations of the “B” ring,106 as previous work had illustrated the 

best thiadiazine substitution to be a meta-methyl sulfonamide.107 Aside from a shorter 

overall synthesis, with the key step still relying on diaza addition elimination of methyl 

sulfide, this publication confirmed the high bioactivity of the core scaffold, particularly 

the 10 nM hit containing a neo-hexyl a-substituent (Scheme 1.2.3). Although the neo-

hexyl analog did not have the lowest IC50 value, it was superior in the cell-based assay 

with an EC50 of 8 nM.106 This was due in part to the metabolic oxidation of the neopenyl 

substrate to a tertiary alcohol.       
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Scheme 1.2.3.  SAR of 1,1-dialkyl-2(1H)-naphthalenones 

 

 Abbott continued SAR studies with Des-A ring trials in combination with the use 

of N-1alkyl-4hydroxyquinolon-3-yl benzothiadiazines, a class of inhibitors known to bind 

to the palm domain of the HCV NS5B polymerase. 108   By early 2008 these 

pharmaceutical researchers had a variety of enzymatic inhibition data to work with, and it 

was known from models and X-ray data that the A-ring of the core scaffold fit into a 

small hydrophobic area of the binding site.109  This publication concluded that small 

aromatic rings and alkenyl groups in the 5-position of the “B” ring stand in for a removed 

“A” ring. The inhibitory retention was caused by “B” ring substitutions moving into the 

space previously taken up by the “A” ring.  
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Scheme 1.2.4. Des-A-ring N-1-alkyl-4-hydroxyquinolon-3-yl benzothiadiazine synthesis 

and SAR. 

 

 The construction of these N-1alkyl-4hydroxyquinolon-3-yl benzothiadiazines was 

dependent upon the formation and substitution of a dithioketene acetal intermediate, as 

well as Suzuki or Stille coupling reactions (Scheme 1.2.4). Products performed well in 

enzymatic assays giving low nanomolar IC50 values, as well as in cellular culture replicon 

assays with the 2-Furyl derivative affording an EC50 of 2.5 nM against NS5B in genotype 

1b of HCV. 110   
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Figure 1.2.4 details the in vivo findings of Compound 26 and Compound 30. Compound 
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26, and an overall estimated bioavailability of 94 %.111  
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Figure 1.2.4 Abbott rat pharmacokinetics compounds  

Benzylamine analog Compound 30 also demonstrated good oral bioavailability of 55.9 

%, a liver concentration of 3.25 uM at 12 hours, with a liver to plasma ration of greater 

than 10. This data lead Abbott to describe Compound 30 as an attractive potential HCV 

therapeutic with the option for convenient dosing regiments.112   

 In addition to Abbott and GSK, other pharmaceutical companies113 attempted to 

develop drugs targeting the HCV NS5B polymerase. Anadys Pharmaceuticals disclosed 

an evaluation 4-(1’,1’-dioxo-1’,4’-dihydro-1’λ6-benzo[1’,2’,4’] thiadiazin-3’-yl)-5-

hydroxy-2H-pyridazin-3-ones. Figure 1.2.5 shows the most promising Anadys inhibitor 

A, which was found to possess an IC50 of less than 10 nM against genotype 1b, and an 

antiviral potency (EC50) of 5 nM against 1b. Despite the promising initial in vitro and in 

vivo activity, orally administration to cynomolgus monkeys found a very low 

bioavailability. Anadys postulated this was caused by the low gut permeability associated 

with the highly polar nature of this molecule (PSA) = 203 Å.114 Thus, to reduce this 

polarity of the lead compound, 5,6-Dihydro-1H-pyridin-2-one B was generated (Figure 

1.2.5).  
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Figure 1.2.5. Anadys bioactive pyridazine-3-ones and pyridine-2-ones 

Anadys compound B had a much lower PSA of approximately 162 Å, as well as an 

improved bioavailability of 24 % in monkeys. The IC50 for genotype 1b was less than 10 

nM and the EC50 was 16 nM.115 This work again demonstrates the power of combining 

sultams with a tetramic acid core, as well as the use of benzyl amine functionality116 

when designing biological leads or probe compounds.   

 Roche, in conjunction with Array BioPharma, reported slightly less dramatic 

biological activity held by five membered tetramic acid/sultam compound. Compound 

1.2.5.8 showed good inhibitory activity against HCV NS5B with an enzymatic IC50 of 

0.003 μM, and a replicon EC50 of 0.1 μM. Crystallography suggested the sulfonamide 

oxygen was interacting with Asn291 and Ser288 via a water molecule; however, no 

interaction with Asp318 was seen as is common in the analogous benzothiazine series. 

Thus, a slightly bulkier more ridged sulfonamide analog was generated to improve this 

interaction, as well as cell permeation, and potency (Scheme 1.2.5). While these fused-

piperidine analogs did show a NS5B inhibition in the replicon assay with an EC50 of 

0.005 μM, there was significant binding to human serum, which lead Roche to conclude 

these promising bioactive molecules were not good drug candidates.117  
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Scheme 1.2.5. Roche synthesis of benzo[d]isothiazole-1,1-dioxides  

 

 Despite intense pharmaceutical development by multiple companies, no tetramic 

acid/sultam compound passed clinical trials and became a drug. However these efforts 

highlight the potential for such a combination to be used in chemical biology studies 

designed to uncover novel biological reactivity. The combination of tetramic acids and 

sultams shown above gives compelling reason to generate fully fused ‘sultamic acids’ 

wherein the sultam moiety is included in the tetramic core scaffold. Chapter 3 focuses on 

the design and synthesis of novel enamine and enolic a,b-unsaturated sultamic acids for 

use as probe molecules in chemical biology assays.      
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Section 2.1 Small Molecules for Chemical Biology 

 The development of small molecules containing chemically, sterically and 

stereochemically modifiable electrophilic warheads is paramount for the advancement of 

chemical biology. These electrophilic motifs are capable of modulating nucleophilic 

biological interactions, and are well-known probe molecules in chemical biology assays.1 

Previously, electrophilic molecules such as a,b-unsaturated Michael acceptors were 

excluded from screening decks due to fear of promiscuous, and off-target activity.2 

However in recent years advancements in the field of chemical biology, particularly the 

advent of activity-based-protein-profiling (ABPP),3 has demonstrated the possibility for 

selectivity and thus utility for electrophilic chemical probes, including a,b-unsaturated 

Michael acceptors.1  

 Despite the advancements in ABPP and the re-emergence of electrophilic and 

covalent molecules for chemical biology assays, a majority of probe molecules remain 

small fragment-like warheads lacking modifiable attenuation parameters. An electrophilic 

sultam was designed in an effort to achieve a chemically, sterically and stereochemically 

modifiable Michael accepting probe for use in chemical biology. This sultam was 

generated via the well-known click reaction, 4  which afforded an advanced synthetic 

intermediate with interchangeable and modifiable azide-derived substituents. The 

intermediate was then subjected to a novel Pd-catalyzed Heck-Type intramolecular  

C-vinylation of an appendant triazole, generating a novel triazole-fused a-methylene  

d-sultam chemotype, vide infra.      
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2.2. The use of Click Chemistry in the Synthesis of Small Molecules. 

 The highly selective and bio-orthogonal 5  Copper-catalyzed Cycloaddition-of-

Azide-to-Alkyne “click” reaction 6 was disclosed almost simultaneously in 2002 by co-

authors Fokin and Sharpless7, along with Meldal8. This copper-catalyzed azide-to-alkyne 

cycloaddition (CuAAC) selectively forms 1,4-disubstituted 1,2,3-triazoles. The novelty 

of this copper catalyzed reaction lies with the virtual non-existence of side products, or 

regioisomers, and established a new outlook on the well-known, but non-regioselective 

Huisgen 1,3-dipolar cycloaddition (Schemes 2.2.1, and 2.2.2).9 The triazole formed via 

CuAAC is itself found in a variety of biologically relevant10 molecules possessing anti-

HIV 11 , anti-cancer 12 , anti-bacterial, 13  antifungal 14  and antiepileptic 15  activities. 

Furthermore, the triazole has been found to be a rigid non-hydrolyzable mimic for an 

amide or peptide bond in regards to both atom placement, and electronic properties 

making it a useful bioisostere.16  While it is possible to form 1,5-disubstituted triazoles 

regioselectively utilizing ruthenium catalysis,17 the scope of this chapter is limited to the 

discussion of thermal or copper-catalyzed formation of di-substituted 1,2,3-triazoles, as 

this is the derivative represented in the disclosed thesis work. Furthermore, the extensive 

contributions of CuAAC in the fields of macrocyclic scaffolds,18 cyclic peptides,19 and 

polymers20 for material science or medicinal chemistry21 are not discussed.  
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Scheme 2.2.1 The Cu (I) catalyzed azide to alkyne click reaction22  

 

Scheme 2.2.2. A). Huisgen 1,3-dipolar cycloaddition. B). Meldal’s solid support 

CuAAC. C). The Fokin and Sharpless CuAAC reaction 
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of the click reaction allows for use in biological settings. Therefore in vivo and in vitro 
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uses for CuAAC are well established in the fields of protein tagging25, chemical biology/ 

activity-based protein profiling26, and biocompatible conjugation reactions.27 The utility 

of CuAAC in biological studies is extensive, 28  and has become instrumental in the 

development of new therapeutics.29  With this in mind, the disclosed thesis work focuses 

on the utilization of the CuAAC click reaction for the generation of small molecule 

electrophilic probes for use in chemical biology assays. There is a significant need for the 

development of novel electrophilic chemical probes, as identifying medicinally relevant 

nucleophiles in cells is critical to the continued advancement of therapeutic development.  

 The synthetic work in this chapter involves the intramolecular functionalization of 

triazoles generated via intermolecular click.30 This work utilizes intermolecular CuAAC 

to generate a triazole with an unsubstituted C5 position. Subsequent Pd-mediated 

intramolecular cyclization between the C5 and a vinylic C-sp2 (C-vinylation) affords an 

a-b unsaturated electrophilic sultam. Despite the use of intermolecular CuAAC, the 

disclosed sultams are formed via an intramolecular triazole fusion process, which can be 

envisioned as an alternative for an IM click reaction strategy. Therefore, an overview of 

small molecules generated via intramolecular click and/or intramolecular triazole fusion 

reactions is given below. This overview of chemical literature reveals a relative 

underutilization of intramolecular click chemistry in small molecule cyclization (when 

compared to intermolecular click approaches), as well as the still emerging field of 

intramolecular triazole functionalization and cyclization.  

 The intramolecular click (IM) reaction is a powerful transformation that is 

underutilized when compared with its intermolecular counterpart. A 2009 Scifinder 

search by Dutta found that 95% of ‘hits’ regarding the phrase “azide-alkyne 
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cycloaddition” referred to the intermolecular reaction.31a A similar search on June 21, 

2019 using the above phrase found 11,651 Scifinder references, standing in stark contrast 

to the search phrase “intramolecular azide-alkyne cycloaddition” which uncovered only 

184 references. Despite this remarkable literature disparity, a variety of IM click themed 

synthetic routes do exist for the formation of small molecules.32   

 In 2008, Chandrasekaran and co-workers reported an enantiopure route to 1,2,3-

triazole-fused 4,5,6,7-tetrahydropyrazin-6-ones (Scheme 2.2.3) via an intramolecular 

click cyclization. This method began with the esterification of amino acids, followed by 

alkylation, acylation and thermal azide to alkyne ring closer to form a 1,5 disubstituted 

triazole. An analogous procedure utilized the propargylation of primary amines, followed 

by acylation and IM click to generate N-benzyl derivatives. Notably, a sultam scaffold 

was generated by this protocol albeit in modest yield.33  

Scheme 2.2.3. Chandrasekaran’s amino acid derived IM click cyclization to fused 1,2,3-

triazoles.  

 

 The Dutta group published a systematic investigation of the IM click reaction in 

2009.31 Figure 2.2.1. shows an assortment of small heterocycles achieved by thermal 
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epoxides, amino acids and ketones underpinned these synthetic efforts. Furthermore, 

stereoselective product formation was possible, as well as routes requiring only four or 

five transformations to generate these drug-like molecules.     

Figure 2.2.1 IM click products generated by Dutta and co-workers.  

 

 Shi and co-workers published a novel synthesis of triazole-fused, trifluoromethyl 

substituted isoindolines in a 2016 communication.34 This work consisted of the use of 

hypervalent reagents acting in consort to achieve a trifluoromethylazidation/diazidation 

cascade. Intramolecular CuAAC was the final step in constructing the scaffold core. The 

proposed mechanism (Scheme 2.2.4) began with the in situ formation of a CF3 radical 

that was trapped by the alkylidenecyclopropane, without the generation of ring-opening 

side products. This benzyl radical is then proposed to combine with the azide coordinated 

Cu(II) complex, followed by a reductive elimination to form the diazidation product. 

Finally, IM CuAAC takes place to generate the fused product. 
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Scheme 2.2.4. Shi group’s radical cascade IM CuAAc cyclization to isoindolines. 

 

 Alkyne substrate scope included a proton, TMS, nbutyl, cyclopropyl groups as 

well as both electron donating and withdrawing phenyl substituents. The vinyl R2 group 

also contained phenyl derivatives such as 4-Me, 4-OMe, 4-Cl, and 4-CF3. The R3 aryl 

group consisted of chlorine and a methoxy group. This remarkable reaction showcases 

the power of IM click when used in conjunction with radical cascade chemistry.       

 In 2018, the Chen group published a thermal intramolecular click reaction for the 

generation of pentacyclic iminosugars.35 These scaffolds were found to be inhibitors of 

HIV reverse transcriptase with activity ranging from IC50 values between 0.69–14.38 

µM.   
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Scheme 2.2.5. Chen group’s synthesis of iminosugars. 

 

 The Anand group reported an intramolecular azide-to-alkyne cycloaddition 

catalyzed by CuOTf•toluene in 2018.36  This tandem method utilized a 1,6-conjugate 

addition of TMSN3 to o-alkynylated p-quinone methides followed by an intramolecular 

CuAAC cyclization to generate 1,2,3-triazole-fused isoindoline products. Scheme 2.2.6. 

illustrates the transformation wherein the azide performs a Michael addition into the 

quinone methide, which subsequently undergoes intramolecular click to form the 

isoindoline system. Mechanistic NMR and IR studies confirmed the addition-click 

mechanistic sequence. 

Scheme 2.2.6. The Anand 1,2,3-triazole fused isoindoline addition-click reaction. 
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amine condensation, followed by decarboxylative non-stabilized azomethine ylide 

formation and subsequent [3 + 2] maleimide cycloaddition (Scheme 2.2.7). To this was 

added propargyl bromide, which underwent N-propargylation, and finally thermal 

intramolecular click cyclization to form products in up to 65 % and a diastereomeric ratio 

(dr) of up to 7:1. While the Zhang and co-workers IM click reaction was copper free,38 

the use of microwaves as a facilitating synthetic tool is highly relevant to the disclosed 

thesis work.   

Scheme 2.2.7. Zhang’s copper-free one-pot synthesis of triazolobenzodiazepine 

compounds 

 

 A recent 2019 publication by Larin and Lautens highlighted the need for methods 

capable of installing a substituent and the triazole 5-position.39 To accomplish diversity at 

the 5-position while subsequently performing a ring closing acylation reaction, the 

Lautens group made use of a method denoted “interrupted click”.40 An interrupted click 

reaction involves trapping a nascent Cu(I)-triazole with an electrophile, effectively 

installing a species other than hydrogen at the 5-position.   

Scheme 2.2.8. Larin and Lautens interrupted click-acylation domino reaction 
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Scheme 2.2.8 shows the Larin and Lautens interrupted click-acylation domino reaction. 

Here the use of alkyne functionalized carbamoyl chlorides were subjected to a copper 

mediated click reaction. The copper triazolide formed by this intermolecular click was 

then trapped via acylation generating product 2.2.8.2 in yields up to 99 %. Benzylic and 

alkyl azides were well tolerated by the reaction, as were N-aryl groups. Benzene, 2-

MePh, 4-CF3Ph, 4-OMePh, 3-BrPh, and 4-BrPh were all compatible with the R2 position 

shown in Scheme 2.2.8. This work constitutes the first copper-catalyzed interrupted click 

formation of 5-acyl triazoles. The use of interrupted click to install a bromine or iodine at 

the C-5 triazole position could become of great facilitating value to a C-vinylation or C-

arylation synthetic pathway (vide infra).  
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2.3. C-arylation and C-vinylation of Triazoles  

 The functionalization of any unsubstituted C4 or C5 triazole carbons remains a 

developing field. The majority of the above examples showcase pathways designed with 

pre-determined triazole differentiation or leave the C4/C5 carbons unfunctionalized. 

There are fewer methods for the subsequent intramolecular C-H functionalization of 

triazole carbons, and the literature that exists contains a lack of substrate scope and 

functionality. Indeed, many synthetic methods are limited to mostly carbon backbone and 

aromatic structures. Therefore, a need exists for methods capable of intramolecular 

triazole substitution; most notably alkene-to-triazole fusion, (C-vinylation), of the C5 on 

1,4-disubstituted 1,2,3-triazoles. Ideally such methods would also demonstrate a 

tolerance for non-carbon scaffold backbones and a wide substrate scope. 

 Previous work in our group demonstrated the synthesis of 7- and 8-membered 

tricyclic biaryl sultams using an intramolecular Pd-catalyzed C-arylation reaction of an 

appendant triazole (Figure 2.3.1).41 This synthetic method was part of our larger efforts 

in the development of new chemistry to S-heterocycles (See Chapter 1 Figure 1.1.1). We 

envisioned that this chemistry could be adapted for intramolecular C-vinylation in the 

generation of triazole-fused sultams. As will be disclosed, refinement of this design 

affords a novel triazole-fused a-methylene d-sultam Michael-accepting chemotype, a 

well-known medicinal chemistry warhead, 42  capable of interaction with nucleophilic 

moieties in biomolecules43 (Figure 2.3.1). 
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Figure 2.3.1 a-Methylene d-sultam chemotype core disclosed in dissertation. 

 Thus, we herein present a method to generate an a-methylene d-sultam Michael-

accepting chemotype utilizing an intermolecular click and subsequent C-vinylation of the 

C5 position of an appendant triazole. To our knowledge, this sultam is the first of its kind 

to undergo such a fusion reaction, however there are several examples of C-arylation to 

form small molecules, as well as small number of C-vinylation methods. Below is the 

development of the intramolecular triazole fusion field, as well as seminal intermolecular 

examples. Ullmann-type copper mediated triazole-fusion reactions44 are well represented 

in this field, however in the interest of space, all but the methods capable of generating 

scaffolds most relevant to the dissertation work are omitted.       
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the elimination of hydroiodic acid and formation of an alkyne was favored over than the 

C-vinylation ring closing products 2.3.1.2.46  

Scheme 2.3.1. Huang’s intramolecular vinyl-to-triazole C-vinylation method.   
 

 

Entry R1/R2/R3 Time h % Yield 

1 Ph/Ph/MeOCH2 19 52 

2 Me/Ph/C5H11 20 71 

3 p-ClC6H4/p-ClC6H4/Bu 21 82 

4 Ph/Ph/C5H11 20 85 
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triazoles, 48  and no methods for arylation of 1,2,3-triazoles previously existed. 
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2006 Synlett.46 The Gevorgyan group’s method, as shown in Scheme 2.3.2, consisted of 

an intermolecular C-arylation between 1,4-disubstituted 1,2,3-triazoles and aryl 

bromides. Various palladium catalysts were used to generate the product in yields of up 

to 99 %, and good functional group tolerance.  
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phenomenon with DFT calculations and found negative charge building upon the C5 

carbon (Scheme 2.3.3). This caused Gevorgyan to postulate a more electrophilic 

mechanism for the C5 arylation, as seen in Scheme 2.3.3.47 A review on the subject of 

electrophilic, and transition metal-catalyzed heteroaromatic functionalization was 

published by the same group in 2007.49   

Scheme 2.3.2. Gevorgyan 2007 seminal C-arylation. 
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Scheme 2.3.3. A. Gevorgyan regioselective C5 arylation. B. Electrostatic charges. C. 

Proposed electrophilic arylation mechanism.   

 

 Oshima and co-workers divulged a microwave-assisted bimolecular arylation of 

1,4-disubstituted 1,2,3-triazoles with aryl chlorides in a 2007 publication. Scheme 2.3.4 

shows a complex reaction mixture containing triazole, aryl chloride, palladium acetate, 

P(c-C6H11)3, and potassium carbonate dissolved in toluene and DMF. This reaction was 

then microwaved at 250 ºC for 15 minutes to afford product 2.3.4.3 in quantitative yields. 

While the scope of N-substituents (R2) of 2.3.4.1 was limited to benzyls, and 4-toluene; 

the reaction was compatible with benzyl, n-C6H13, 4-pyridyl, and phenyl groups on the 4-

triazole position (R1). Compatible aryl chlorides included, chlorobenzene, 1-chloro-2-

methylbenzene, ethyl 4-chlorobenzoate, 1-chloro-4-methoxybenzene, and 4-chlorobenzyl 

acetate. The use of p-chlorobenzyl alcohol afforded only benzaldehyde as an oxidation 

by-product.50  

Scheme 2.3.4 Oshima 2007 intermolecular microwave C-arylation of triazoles 

 

N
N

N

Pd(OAc)2 (5 mol %)

Bu4NOAc (2 eq)
0.5 M NMP, 100 ºC

Ar
Br

N
N

N

Ar

Ph

H H H

Ph

N
N

NMe

H H
45

-0.45 +0.13

83 %
2.3.3.2

A B

C

N
N

N
R1

R2

ArPdBr

N
N

N
R1

R2H
ArPd

B

N
N

N
R1

R2ArPd

N
N

N
R1

R2Ar

2.3.3.1 2.3.3.3

2.3.3.4 2.3.3.5 2.3.3.6 2.3.3.7

N N
N

R1

R2

N N
N

R1

R2

Ar

0.025 mmol Pd(OAc)2
0.050 mmol P(c-C6H11)3

0.60 mmol K2CO3

Toluene (2 mL)
DMF (0.4 mL)
µW, 250 ºC

15 min

Ar
Cl

+

0.50 mmol
2.3.4.1

0.60 mmol
2.3.4.2 2.3.4.3



	 76	

 The Ackermann lab disclosed in 2008 a widely applicable Pd-catalyzed direct 

arylation of 1,2,3-triazoles with aryl chlorides. This paper highlighted the use of aryl 

chlorides in direct arylation reactions. As of 2008, the majority of direct arylations had 

been carried out on aryl iodides, bromides, and triflates via palladium or rhodium 

catalysis. While the Ackermann group highlighted Oshima and co-workers direct 

arylation of 1,2,3-triazoles with aryl chlorides; they did not fail to point out the 

limitations of Oshima’s method such as the required use of a microwave, and reaction 

temperatures of 250 ºC.  

 Thus, Ackermann and co-workers sought to improve the applicability of 1,2,3-

triazoles direct arylations with aryl chlorides. Scheme 2.3.5 is a subset of the Ackermann 

method, which consists of simple Pd(OAc)2 catalysis in combination with a PCy3 ligand 

and the mild base K2CO3 with conventional heating at 120 ºC. Alkyl groups, phenyl, 

benzyl, substituted benzyls, PMB, and Ph groups were tolerated as N-substituents, while 

phenyl derivatives such as methyl, esters, ketones, and heteroaromatics were found to be 

adequate coupling partners.51    
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Scheme 2.3.5 Ackermann’s 2008 palladium direct triazole arylation. 

 

Entry R1 R2 Ar % Yield 

1 Bn Ph 2-MeOC6H4 95 

2 Bn Ph 2-pyridine 82 

3 Octane Ph 4-MeC6H4 70 

4 Bn Pentane 4-MeC6H4 66 

  

In addition to the above intermolecular triazole coupling, Ackermann also demonstrated 

an early example of intramolecular C-sp2 to C-sp2-triazole coupling in the same 

manuscript. Scheme 2.3.6 details the co-opting of the bimolecular conditions to this 

intramolecular reaction generating a fused three-membered ring.51   

Scheme 2.3.6 Ackermann’s 2008 intramolecular triazole coupling. 
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cyclization of an aromatic C-sp2 carbon to a triazole (Scheme 2.3.7). This synthesis of 

fused polyheterocyclic ring systems began as a step-wise procedure (Path A) utilizing 

aqueous copper click chemistry and Pd-catalyzed C-arylation via microwave irradiation. 
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Scheme 2.3.7 Beccalii one-pot sequential C-arylation    

 

Upon development of the step-wise protocol, a one-pot sequential method (Path B) was 

uncovered by changing the click solvent, base, and catalysts to DMA, Et3N and CuI 

respectively.52 This was a step forward in the realm of ‘green’ chemistry, however the 

reaction suffered from relatively low overall yields. Furthermore, as this work ran 

concurrently with other early triazole arylation examples, the only similar work Beccalli 

and co-workers disclosed knowledge of was the Gevorgyan 2007 Organic Letters 

publication.  

 Lautens and co-workers carried the one-pot arylation mentality forward by 

publishing a 2010 synthesis of fused 1,2,3-triazoles heterocycles.53 This method (Scheme 

2.3.8) made use of 5-iodo-1,2,3-triazoles in an arylation reaction.  

Scheme 2.3.8 Lautens C-arylation via 5-iodo-1,2,3- triazoles. 
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This one-pot reaction consisted of the addition of azide, CuI and TBTA to an iodo alkyne 

in order to form 5-iodo-1,2,3-triazole products. The palladium mediated intramolecular 

C5 arylation reaction could then be immediately carried out to afford fused heterocycles 

in up to 95 %. A variety of R1 substitutions were tolerated on the alkyne benzene ring 

(Scheme 2.3.8) including 4-chloro, para-methylbenzoate, 2,4-difloro, and 3-nitro groups. 

Azide coupling partners (Scheme 2.3.8 R2) consisted of benzyl, PMP, hexyl, TMS and 

PMP groups. 

 The Ackermann group returned in 2010 to publish an unprecedented 

intramolecular dehydrogenative arylation of 1,2,3-triazoles for the generation of 

annulated phenanthrenes.54 Scheme 2.3.9 details this intramolecular C5 arylation, that 

does not utilize pre-functionalized aromatic systems (C–H functionalization). It is 

important to note that no coupling occurred in the absence of palladium, and the highest 

yields were achieved with Cu(OAc)2 as a stoichiometric terminal oxidant, even in the 

presence of air. A variety of functional groups were amenable with this coupling, 

including enolizable ketones or esters. Furthermore, in addition to the phenanthrene 

derivatives, 1,4-dihydrochromeno[3,4-d][1,2,3]triazole derived scaffolds were also 

generated by this method in yields up to 93%. Two of these scaffolds were utilized in 

intramolecular competition experiments designed to probe the coupling mechanism 

Scheme 2.3.10. Here the less sterically hindered position on the arene, as well as the less 

acidic C–H bond, where principally arylated.  
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Scheme 2.3.9 Ackermann’s dehydrogenative arylation of 1,2,3-triazoles.  

 

Entry R1/R2/R3 % Yield 

1 Oct/CO2Et/p-CO2Et 96 

2 Hex/Me/p-F 89 

3 Oct/C6H4p-COPh/ C6H4p-COPh 78 

4 Hex/OMe/p-Me 71 

 

Scheme 2.3.10 1,4-dihydrochromeno[3,4-d][1,2,3]triazole competition experiments 
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tolerated by the reaction, while nitrogen substitutions included hexane, p-OMeBn, p-

NO2Bn, and 3-thiophene.  

 The intramolecular C-arylation of 5-iodotriazoles is also shown in Scheme 2.3.11. 

and made use of phenol-derived linkers with the N-substitution limited to hexane. 

Phenolic R groups included p-OMe, p-tBu, m-CF3 and o-Cl, with product generated in up 

to 93 %. This publication by the Lautens group was novel, not only for the intramolecular 

C-vinylation, but also for the use of the 5-iodotriazoles, as this pathway allowed for a 

three-step synthesis of biologically intriguing molecules.   

Scheme 2.3.11. Lautens intramolecular C-vinylation and arylation reactions. 
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bromophenyl)imidazole[1,2-a]pyridine substitutions R1 limited to protons, or 6-Me/ 

CF3/Cl, as well as 7-OMe. Similar groups were utilized for R2 with F, Cl, and OMe on 

the 5-position of the benzene ring.  

Scheme 2.3.12 Fan’s bimetallic intramolecular cross-dehydrogenative C-arylation. 
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is quite rapid, and amenable to further library development, with the caveat of no 

stereocontrol disclosed.  

Scheme 2.3.13 Homami and Rezaei’s Ullmann-type C-arylation to fused benzazepines 
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the internal alkyne was limited to aromatic rings, while methyl and heteroatoms were 

tolerated on the azide-coupling partner. The terminal alkyne was shown to have excellent 

scope, with alkyl, aromatic, heteroaromatic, as well as cholesterol, proline, and glucose 

derivatives proved compatible with this method. This method can be classified as a C-

vinylation because the operative alkene is exo to the aromatic system, however there is 

conjugation with the benzene ring, highlighting how the dissertation work discussed 

below is unique among C-vinylations. 

Scheme 2.3.14 Lautens 2016 C-vinylation to 7 membered heterocycles. 
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two-part copper catalyzed mechanism was proposed consisting of triazole formation, 

followed by C-arylation via oxidative addition into the iodo-C5 triazole bond, re-

aromatization via deprotonation, and finally reductive elimination to form the compounds 

shown in Scheme 2.3.15. Notably, these compounds were tested for anticancer activity 

against A-549 cells (adenocarcinomic human alveolar basal epithelial cells) and modest 

activity was found. Finally, this arylation detailed a more robust tolerance for the 

backbone scaffold, namely the incorporation of a quinolinone, as well as sulfur, into the 

products.  

Scheme 2.3.15 Nagavelli’s C-arylation to form bioactive quinolinone derivatives. 
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2.4 Synthesis of Michael-Accepting a-Methylene d-Sultams Scaffolds (4-methylene-

3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide derivatives)  

 The above summary of intramolecular click and C-arylation/vinylation 

highlighted many chemical scaffolds, some of which held biological activity. However, 

as previously stated there exists a shortage of synthetic triazole vinylation methods 

designed for non-aromatic or non-carbon backboned motifs. These differentiation 

methods augment CuAAC reactions by achieving chemical diversity, and can be thought 

of as an alternative ring closing process to intramolecular click reactions. The dissertation 

work now disclosed was designed to address the gap in C-vinylation methods as well as 

generate a novel electrophilic chemical probe capable of aza/thiol Michael additions 

reactions. Michael additions are frequently used in chemical biology assays designed to 

illuminate biological processes (See Chapter 1 Figure 1.1.9, 1.1.10, and 1.1.11).60  

 A Michael-accepting triazole-fused sultam probe was designed for use in 

chemical biology screening. While Pd-catalyzed Heck-type reactions have been 

previously utilized by Metz61 and co-workers, to generate the a-methylene g-sultams 

shown in Figure 2.4.1, to the best of the author’s knowledge,62,63 the method disclosed 

herein is the first C-vinylation of an appendant triazole to generate a triazole-fused a-

methylene d-sultam chemotype. In this regard, a scalable synthetic method for the 

generation of Michael-accepting 1,2,3-triazole-fused a-methylene d-sultams is disclosed. 

 

Figure 2.4.1. Metz and co-workers Heck sultam products. 
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 The synthesis of the 1,2,3-triazole-fused a-methylene d-sultam scaffolds began 

with the formation of the requisite sulfonamide. 64  An amine was dissolved in 

dichloromethane at 0 °C in the presence of Et3N as a base, followed by the slow addition 

of 2-chloroethanesulfonyl chloride. The N-substituted vinyl sulfonamide 2.4.1.2 was 

formed in high yield after five hours (Scheme 2.4.1). Next, the olefin of sulfonamide 

2.4.1.2 was then subjected to a bromination reaction in order to generate dibromo-

compound 2.4.1.3. This intermediate was quenched with sodium thiosulfate, before 

undergoing extraction with brine and methylene chloride (DCM). The organic layer was 

condensed via rotary evaporation before the dibromo intermediate was immediately re-

dissolved in DCM and subjected to dehydrohalogenation by Et3N. Thus α-bromo vinyl 

sulfonamide 2.4.1.4 was obtained in good yield after column chromatography. An N-

alkylation was then carried out with propargyl bromide and K2CO3 in refluxing CH3CN 

in order to form the terminal alkyne click precursor sulfonamide 2.4.1.5. The yields of 

sulfonamide intermediates 2.4.1.2, 2.4.1.4 and 2.4.1.5 are summarized in Scheme 2.4.1.  

Scheme 2.4.1. Synthesis, substitutions and yields for sulfonamides. 
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Benzyl (Bn) 2.4.1.2.3 (76 %) 2.4.1.4.3 (79 %) 2.4.1.5.3 (94 %) 

Tert-butyl (tBu) 2.4.1.2.4 (77 %) 2.4.1.4.4 (78 %) 2.4.1.5.4 (95 %) 

L-Val•OMe 2.4.1.2.5 (52 %) 2.4.1.4.5 (73 %) 2.4.1.5.5 (57 %) 

L-Leu•OMe 2.4.1.2.6 (91 %) 2.4.1.4.6 (74 %) 2.4.1.5.6 (89 %) 

L-Ile•OMe 2.4.1.2.7 (76 %) 2.4.1.4.7 (74 %) 2.4.1.5.7 (85 %) 

L-Phe•OMe 2.4.1.2.8 (92 %) 2.4.1.4.8 (62 %) 2.4.1.5.8 (55 %) 

 Sulfonamide derivatives 2.4.1.5 were filtered, condensed and purified via normal 

phase silica chromatography before being subjected to a CuAAC reaction. As discussed 

above, it is well documented that Cu(I)-catalyst65 and Ru(II)-catalyst66 regioselectively 

generate 1,4- or 1,5-disubstituted triazoles, respectively. The method called for CuAAC67 

reaction in order to synthesize 1,4-disubstiuted 1,2,3-triazoles. This was accomplished by 

dissolving alkyne sulfonamide 2.4.1.5 in a mix of t-BuOH/CH2Cl2/H2O (1:1:1, 0.2 M) at 

room temperature before CuSO4•5H2O (0.2 eq) and (+)-sodium L-ascorbate (0.3 eq) were 

added. The reaction was stirred at room temperature overnight to obtain the triazole 

substituted sulfonamide intermediates 2.4.2.2.1-2.4.2.2.33 in moderate to high yields 

(57–96 %) after column chromatography.  

 The preparation of compounds 2.4.2.2.1-2.4.2.2.33 set the stage for the titled 

intramolecular C-vinylation cyclization. The novel Csp2-Csp2 bond formation occurred 

between the a-bromo-substituted vinylic carbon, and the unsubstituted C5 carbon of the 

triazole. The method for this Heck-type reaction consisted of mixing sulfonamide with 10 

mol% Pd(PPh3)4, 2 equivalents of KOAc, in 0.5M of anhydrous DMF, and heating 

overnight at 110 ºC. These conditions successfully formed bicyclic 1,2,3-triazole-fused 

Michael accepting sultams 2.4.2.3.1–2.4.2.3.33 in isolated yields of 49–88%. Overall the 

C-vinylation reaction showed compatibility with a wide range of substituted triazoles 
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including electron donating, withdrawing, and protected triazole coupling partners. 

Assortments of simple alkyl amines were also well tolerated.   

 After successful synthesis of achiral products with this six-step protocol, the 

method was applied to amines bearing a stereogenic center. Sulfonylation of optically 

pure amino esters occurred with no changes to the overall synthetic method required. 

Scheme 2.4.2 shows the click (2.4.2.2.1-2.4.2.2.33) and C-vinylation (2.4.2.3.1–

2.4.2.3.33) yields for these chiral bicyclic sultams comparable with the achiral 

derivatives. 

Scheme 2.4.2 Yields for sulfonamides and 4-methylene-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide. 
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5 Cy o-F-Bn 2.4.2.2.5 (76%)a 2.4.2.3.5 (55%)c 

6 Cy p-OCH3-Bn 2.4.2.2.6 (84%)b 2.4.2.3.6 (65%)c 
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8 (CH2)3OCH3 o-F-Bn 2.4.2.2.8 (84%)a 2.4.2.3.8 (na)c,d 

9 (CH2)3OCH3 p-CF3-Bn 2.4.2.2.9 (89%)a 2.4.2.3.9 (66%)d 

10 Bn p-CF3-Bn 2.4.2.2.10 (35%)a 2.4.2.3.10 (12%)d 

11 Bn o-F-Bn 2.4.2.2.11 (14%)a 2.4.2.3.11 (na)c,d 

12 tBu Bn 2.4.2.2.12 (74%)b 2.4.2.3.12 (88%)d 

13 tBu p-CF3-Bn 2.4.2.2.13 (87%)b 2.4.2.3.13 (72%)d 

14 tBu p-CH3-Bn 2.4.2.2.14 (66%)a 2.4.2.3.14 (73%)c 

15 tBu o-F-Bn 2.4.2.2.15 (57%)a 2.4.2.3.15 (75%)c 

16 tBu p-OCH3-Bn 2.4.2.2.16 (78%)b 2.4.2.3.16 (84 %)d 

17 tBu  2.4.2.2.17 (65%)a 2.4.2.3.17 (79%)c 

18 tBu (CH2)2OCH3 2.4.2.2.18 (78%)a 2.4.2.3.18 (81%)c 

19 tBu (CH2)2OCOCH3 2.4.2.2.19 (96%)a 2.4.2.3.19 (84%)c 

20 tBu 
 

2.4.2.2.20 (81%)a 2.4.2.3.20 (85%)c 

21 tBu CyCH2 2.4.2.2.21 (78%)a 2.4.2.3.21 (88%)c 

22 tBu 
 

2.4.2.2.22 (88%)a 2.4.2.3.22 (86%)c 

23 L-Val•OMe p-CF3-Bn 2.4.2.2.23 (70%)a 2.4.2.3.23 (60%)d 

24 L-Val•OMe o-F-Bn 2.4.2.2.24 (74%)a 2.4.2.3.24 (89%)e 

25 L-Val•OMe p-OCH3-Bn 2.4.2.2.25 (83%)b 2.4.2.3.25 (73%)d 

26 L-Leu•OMe p-CF3-Bn 2.4.2.2.26 (63%)b 2.4.2.3.26 (64%)d 

27 L-Leu•OMe o-F-Bn 2.4.2.2.27 (80 %)a 2.4.2.3.27 (na)e 

28 L-Leu•OMe p-F-Bn 2.4.2.2.28 (74%)a 2.4.2.3.28 (78%)d 
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29 L-Leu•OMe p-OCH3-Bn 2.4.2.2.29 (78%)a 2.4.2.3.29  (71%)d 

30 L-Ile•OMe p-CF3-Bn 2.4.2.2.30 (79%)b 2.6.3.30 (72 %)d 

31 L-Ile•OMe p-F-Bn 2.4.2.2.31 (78 %)a 2.6.3.31 (61 %)d 

32 L-Ile•OMe p-OCH3-Bn 2.4.2.2.32 (83%)a 2.6.3.32 (87 %)d 

33 L-Phe•OMe m-F-Bn 2.4.2.2.33 (49%)a 2.6.3.33 (71 %)d 

aCondition D.1 for click: CuSO4∙5H2O, (+)-Sodium L-ascorbate, t-BuOH/CH2Cl2/H2O 

(1:1:1), room temperature, 12 h. bCondition D.2 for click: Cu(OAc)2∙H2O, PPh3, 

toluene, microwave, 100 °C, 1 h. cCondition E.1 for C-vinylation: Pd(PPh3)4, KOAc, 

DMF, 100 °C, 12 h. d Condition E.2 for C-vinylation: Pd(PPh3)4, KOAc, DMF, 

microwave, 100 °C, 1 h 

 While the overnight copper-click and refluxing C-vinylation conditions worked 

satisfactorily, more rapid microwave-assisted methods were developed for both CuAAc 

and C-vinylation reactions. Microwave click methodology 68  consisted of alkyne 

sulfonamide 2.4.1.5, dissolved in 0.2 M anhydrous toluene, followed by the addition of 1 

equivalent of azide, 10 mol% of copper (II) acetate, and 10 mol% of triphenylphosphine. 

The reaction was then microwaved at 100 ºC for an hour, affording product 4-methylene-

3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide with comparable yields 

and greatly reduced reaction times. The applicability of the intramolecular triazole C-

vinylation was further increased by the substrate 2.4.2.2 compatibility with a microwave-

mediated C-vinylation. 69  This reaction consisted of dissolving a-bromo-triazole 

sulfonamide 2.4.2.2 in 0.05 M DMF followed by the addition of KOAc, and Pd(PPh3)4 in 

a microwave reaction vial that was next irradiated at 100 ºC for an hour. Comparable 
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yields were found between the microwave and conventional heating C-vinylation 

methods.  

 Despite large substrate scope, some SMs proved incompatible with either C-

vinylation methods, for reason not apparently clear at this time. These products consisted 

of L-leucine or ether derived amines combined with azide coupling partners generated 

from p-Me and o-F benzyl bromides. Despite repeated attempts, these intermediates 

never formed the required sultam via the C-vinylation reaction.  

 Next, the electrophilic nature of these sultams was probed by examining a 

representative compound for thiol reactivity. Sultam 2.4.2.3.13 was dissolved in THF 

with an equivalent of N-Ac-Cys-OMe and 1.1 equivalents of Et3N. The reaction was 

stirred for an hour before purification on normal phase silica to afford thiol adduct 2.4.3.1 

(Scheme 2.4.3). However, when the reaction was monitored by proton NMR, the 

disappearance of exo-cyclic vinyl peaks can be observed within five minutes, suggesting 

this thiol Michael addition is quite rapid.    

Scheme 2.4.3. Synthesis of Sultam-thiol adduct via thiol-Michael addition. 

 

 After showing these sultams are capable of rapid thiol addition, we sought to 

attenuate the electrophilic reactivity. In order to accomplish this, we performed an aza-

Michael addition into a small subsection of the original library (Scheme 2.4.4). This 

‘masking’ of the exo-cyclic Michael acceptor stands to fundamentally alter the reactivity 

of our sultam probe in chemical biology assays. There are examples of masked or latent 
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Michael acceptors in the literature where such chemical modifications have transformed 

the reactivity of natural products and pro-drugs.70  

Scheme 2.4.4 Aza-Michael reaction on 4-methylene-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide derivatives. 

 

Amine (R3/R4) R2  
p-CF3-Bn Bn p-OMe-Bn 

Morpholine 2.4.4.1.1 (96 %) 2.4.4.1.5 (96 %) 2.4.4.1.9 (90 %) 
Piperidine 2.4.4.1.2 (72 %) 2.4.4.1.6 (93 %) 2.4.4.1.10 (84 %) 

BnNH2 2.4.4.1.3 (95 %) 2.4.4.1.7 (80 %) 2.4.4.1.11 (95 %) 
iPr-NH2 2.4.4.1.4 (99 %) 2.4.4.1.8 (49 %) 2.4.4.1.12 (60 %) 

 

 In 2011, Colby and co-workers, illustrated how under near physiological 

conditions, an amino-masked parthenolide underwent a retro aza-Michael reaction in the 

presence of glutathione (GSH) to unveil the original a,b-unsaturated methylene-g-lactone 

motif.71 This retro-aza Michael reaction was more rapid in the presence of GSH than in 

its absence, leading Colby and co-workers to imply that an amino-masked Michael 

acceptor could be activated in the presence of a biological thiol (Scheme 2.4.5). This 

strategy has been explored in numerous medicinal chemistry manuscripts in an attempt to 

attenuate chemical reactivity and medicinal properties.72   
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Scheme 2.4.5 Colby and co-workers retro aza-Michael of parthenolide. 

 

 In order to examine the possibility of the amino-masked a,b-unsaturated sultam 

undergoing a retro aza-Michael in the presence of a thiol, product 2.4.6.1 was dissolved 

in DMSO, before the addition of an equivalent 1 M HCl and N-Ac-Cys•OMe (Scheme 

2.21). Despite overnight stirring and gentle heating, no product was observed after 

normal phase chromatography. This preliminary result suggests the amino masked sultam 

probes may be less activated for retro-aza-Michael than their carbon analogs, presumable 

due to the uniquely different properties of a sultam,73 when compared to a C-sp2 lactam 

or lactone structure. It is possible that differences sultam pKa, electronic properties and 

the inherent sp3 geometry of the SO2N warhead reinforce each other in such a way that 

makes retro-aza Michael unfavorable. Efforts to further explore these masked systems are 

in progress and will be reported in due course. 
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Scheme 2.4.6. Attempted un-masking of aza-Michael acceptor and subsequent thiol 

Michael addition. 

 

 The above dissertation work involved the development of a scalable six-step 

synthesis consisting of copper catalyzed azide to alkyne click chemistry and a novel 

palladium mediated intramolecular a-bromo vinyl-to-triazole cyclization. The method is 

amenable to both conventional and microwave irradiation, with achiral and chiral 

products generated in good yields. The potential for rapid thiol reactivity was illustrated 

and tempered by masking the Michael acceptor with amines. Acid-mediated unmasking 

was preliminarily examined however, no product was found, alluding to the possibility 

that these amino adducts are more stable than their carbon analogs.   

In conclusion, a scalable six-step synthesis utilizing copper catalyzed azide-to-

alkyne click chemistry and Pd-mediated intramolecular vinyl-to-triazole cyclization was 

utilized to generate novel a-methylene, d-sultams, namely 4-methylene-3,4,6,7-

tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxides. The intermolecular click 

reaction, followed by a C-vinylation of a triazole to a C-sp2 vinyl carbon, can be thought 

of as an alternative to IM click cyclization, and affords the possibility of further chemical 
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diversification. This	 method	 is	 amenable	 to	 both	 conventional	 and	 microwave	

irradiation	 and	 provided	 a	 range	 of	 products	 in	 good	 yields.	 These attenuated a,b 

unsaturated sultams were ultimately designed to be utilized as chemical probes for ABPP 

and chemical biology assays, in hope of uncovering biological reactivity in medicinally 

relevant systems.    
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Isothiazolidin-4-one 1,1-dioxide 
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Section 3.1 Tetramic Acid Natural Products and Synthesis 

 Tetramic acids are a well-known class of natural products and a privileged 

scaffold in medicinal chemistry. Many tetramic acids hold promising antibacterial and 

antifungal activity, motivating the development of rapid and scalable syntheses of these 

natural products, as well as non-natural synthetic analogs for screening in drug and 

chemical biology assays. Despite a number of synthetic efforts and a vast array of 

biological data pertaining to tetramic acids; the sultam analogs of tetramic acids, b-keto 

sultams, (analogs of isothiazolidin-4-one 1,1-dioxide), are far less prevalent in the 

literature, thus warranting the current body of work. Furthermore, use of b-keto sultams 

in chemical biology for the discovery and elucidation of novel biological reactivity is 

void in the literature.  

 This chapter focuses on the development and a-functionalization of b-keto 

sultams (analogs of isothiazolidin-4-one 1,1-dioxide) for eventual use in chemical 

biology assays. The development of these analogs of isothiazolidin-4-one 1,1-dioxide b-

keto sultams will aid in addressing the ever-present need for novel and functionalizable 

biomimetic chemical probes for elucidating novel bio-reactivity. The use of a-

functionalization enables further probe diversification, and is frequently found in natural 

tetramic acids themselves. Figure 3.1.1 illustrates the disclosed synthetic efforts towards 

a-functionalization of b-keto sultams.  
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Figure 3.1.1. Reported dissertation work towards a-functionalization of b-keto sultams 

 

 Exo-enol tetramic acids are well represented in nature, and can be isolated from a 

wide variety of terrestrial and marine bacteria, fungi and sponges.1 Naturally occurring 

tetramic acids arise from a mixed polyketide synthase and non-ribosomal peptide 

synthetase (PKS-NRPS) pathways. The keto tautomer is usually the predominate form. 

Many tetramic cores are substituted with an acyl group at the 3 position, with an amino 

acid derivative usually occupying the 5 position.1 Figure 3.1.2 shows the possible 

interconverting tautomers commonly seen in tetramic acids, a property which gives rise 

to a natural affinity to metals such as Fe3+, Zn2+, and Cu2+.1  

 

Figure 3.1.2. Tetramic core and tautomers. 

 One of the most well-known exo-enol tetramic acids is L-tenuazonic acid isolated 
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on Eupatorium adenophorum.2 L-tenuazonic itself is a photosynthesis inhibitor known to 

block the electron flow from QA to QB in photosystem II acceptor sites, and thereby 

cause cell necrosis via chloroplast-mediated reactive oxygen species.3 Melophlin B is 

known to display cytotoxic activity against HL60, HeLa and TF-1 cells, and is capable of 

reverting ras-transformed NIH3T3 cells to their “normal” state at concentrations of 5 µg 

mL-1, in addition to arresting the same cell line at the G1 phase at 1 µg mL-1.4  

 The 3-decalinoyltetramic acid family member Equisetin was isolated from 

Fusarium equisetin and displays biological activity ranging from antibiotic activity, HIV 

inhibition, cytotoxicity and mammalian DNA binding.5 Related compound paecilosetin 

was isolated from the fungus Paecilomyces farinosus and displays cytotoxic activity 

against leukemia P388 cells with an IC50 of 3.2 µg mL-1, in addition to antibacterial and 

antifungal activity. 6  This class of tetramic acids also includes Sch213766 a potent 

chemokine receptor CCR-5 inhibitor with an IC50 of 8.6 μM.7b   

 Sugars are a reasonably common substituent among tetramic acids.1 

Amycolamicin (AMM) was discovered in the broth of a soil actinomycete Amycolatopsis 

sp MK575-fF5, and contains the unusual sugars amycolose and amykitanose. AMM is a 

specific inhibitor of bacterial type II topoisomerase, inhibiting E. coli DNA gyrase with 

an IC50 of 24.4 ng mL-1. Furthermore, AMM did not inhibit human type II topoisomerase 

and is thought to possess a binding mode different to that of coumarin and quinolone 

antibiotics.8  

 Tirandamycin B contains both an exo-enol tetramic core and a bicyclic ketal 

structure. It was isolated from S. flaveolus and has a modest IC50 of 30 µM against 

Brugia malayi asparaginyl-tRNA synthetase (AsnRS). Brugia malayi worms cause River 
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Blindness Disease, and Tirandamycin B was found to kill adult worms in vitro with an 

IC50 of 1 µM. The in vitro activity, as well as the 10-fold selectivity for nematode over 

human AsnRS, suggests Tirandamycin B could be a promising anti-filarial lead.9  

 

Figure 3.1.3. Natural products with exo-enol tetramic acid core. 

 The large scaffold diversity found in exo-enol tetramic acid natural products have 

given rise to many synthetic efforts,10 particularly in recent years as more biological 

activity has been found.1,11 A summary of several standard methods to 3-acyltetramic 

acids (3ATs) as put forth by the Schobert group,10b can be seen in Figure 3.1.4. 
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Figure 3.1.4. Common synthetic routes to 3-acyltetramic acids  

 The Dieckmann cyclization is a well-known method for intramolecular 

cyclization, and prominent in tetramic acid synthesis. Boeckman and co-workers utilized 

an intramolecular Lacey-Dieckmann cyclization 12  followed by Horner-Wadsworth-

Emmons reaction in order to generate non-natural tetramic acids. 13  Scheme 3.1.1 

illustrates the use of a protected phosphonate as a starting point for 3At synthesis. This 

phosphonate underwent mild acid catalyzed amidation, followed by Lacey-Dieckmann 

cyclization to derive the acyl tetramic acid core. The core was then subjected to LDA 

mediated Horner-Wadsworth-Emmons reaction to generate a cyclohexane substituted 

non-natural 3Ats.  

 These conditions improved the synthetic toolbox for tetramic acid natural product 
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cyclization for the formation of the 3Ats core in the enantioselective synthesis of (+)-

Ikarugamycin.14     

Scheme 3.1.1 Use of Lacey-Dieckmann by Boeckman, followed by HWE. 

 

 The Ley group also developed Dieckmann routes to 3Ats.15 One of their most 

notable efforts in this area can be seen in the synthesis of Fuligorubin A. Scheme 3.1.2 

illustrates the use of tbutyl-4-diethylphosphono-3-oxobutanethioate and deca-2,4,6,8-

tetraenal coupling in conjunction with a glutamic acid derivative to arrive at Fuligorubin 

A.  

Scheme 3.1.2. Ley group tert-butoxide intramolecular Dieckmann on b-ketoamides. 
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Stoichiometric silver(I) trifluoroacetate was necessary for b-ketoamides formation, while 

tert-butoxide formed the 3 acyl tetramic acid core. Deprotection of the tBu group with 

formic acid then unveiled the natural product.16 

 Yoda and co-workers used O-acylation followed by an O- to C-acyl 

rearrangement to generate penicillenol A1 17  and penicillenol A2.18  These two natural 

products are cytotoxic to HL-60 cell with an IC50 of 0.76 µM and 16.26 µM respectively, 

and were discovered in endophytic fungus Penicillium sp. GQ-7. 19  The Yoda group 

synthesis began with protecting group installation, followed by Meldrum’s acid-derived 

tetramic acid core cyclization then Pd-mediated deprotection. An O- to C-acyl 

rearrangement with DCC and DMAP with CaCl2 to suppress racemization was used to 

form the core and 3Ats side-chain. Finally, N-methylation and TBS deprotection afforded 

(+)-penicillenol A2. Furthermore, Yoda and co-workers also utilized this powerful 

method, to generate a library of small 3Ats from isoleucine, TBS-protected threonine and 

serine, phenylalanine, and alanine. Carboxylic acid O-coupling partners included alkanes, 

cycloalkanes, benzyl and halogen-substituted benzyl groups (Scheme 3.1.3.).18 This 

method has also generated the tyrosine-derived antibacterial 3AT Epicoccarine A.20  
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Scheme 3.1.3. Yoda’s O- to C-acyl rearrangement to natural and un-natural 3Ats 
  

 

 Moloney and co-workers have also performed significant work on the formation 

of synthetic 3Ats (Figure 3.1.5).21 Traditional coupling conditions for carboxylic acids 

with DCC and catalytic DMAP were shown to afford the O-Acyl products in yields up to 

77 %. The use of acid chlorides and triethylamine also produced product in up to 95 % 

with fewer by-products. A Fries-type acyl migration was then shown to proceed with the 

addition of acetone cyanohydrin and triethylamine, or in the presence of excess DMAP. 

This led to the development of a procedure utilizing excess DMAP which was capable of 

directly generating 3-Ats in yields of up to 77 %.   

Figure 3.1.5. Moloney group routes to synthetic 3-Ats 
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 The Schobert group has made use of the use of Bestmann ylide method for a 

powerful and robust tetramic acid synthesis.22 The importance of this method to the field 

of 3-Ats natural product generation is best demonstrated by three total syntheses 

completed by Schobert and coworkers. 23  The 1,3-bis-acylated tetramic acid, 

Reutericyclin, was isolated from Lactobacillus reuteri24 and is active against the ulcer-

causing bacteria Helicobacter pylori plausibly due to its proton-ionophoric nature. 25 

Scheme 3.1.4 illustrates the formation of a leucine-derived tetramic acid via Bestmann 

ylide addition and subsequent elimination of triphenylphosphine oxide. Deprotection, and 

BF3•OEt2 mediated acylation affords the 3-acyl tetramic acid, which is then N-acylated to 

generate (5R)-Reutericyclin in good yield.22     

Scheme 3.1.4. Synthesis of (5R)-Reutericyclin utilizing the Bestmann ylide. 
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Scheme 3.1.5. Three step synthesis of Tenuazonic Acid 

 

The above natural product synthesis utilizes the Bestmann ylide to generate the tetramic 

core, however the true power of this reagent in 3-Ats synthesis lies in its ability to act as a 

Wittig intermediate. Scheme 3.1.6 shows a glycine-derived tetramic core undergoing an 

addition into the ylide to form a stable 3-(triphenylphosphoranylidene)acetyl 

intermediate. These intermediates can exit as a mix of ylide and betaine forms, and must 

be deprotonated with potassium tert-butoxide before undergoing E-selective Wittig 

reaction. Thus, the highly unsaturated tetramic acid Ravenic acid was generated, by 

Wittig addition elimination into (2E,4E,6E)-2-methylocta-2,4,6-trienal.27  

Scheme 3.1.6. Synthesis of Ravenic acid using a Wittig method. 
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Scheme 3.1.7. Synthesis of Torrubiellone D diastereomers  

 

The diastereomers of Torrubiellone D were found to have weak antibiotic activity 

against gram-positive Staphylococcus aureus and Enterococcus faecium. Wild-type E. 

coli was also not susceptible due to insufficient penetration through the outer LPS layer. 
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lacking a TolC efflux pump, or had a truncated LPS layer, an IC50 of 35 µM was seen for 
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Scheme 3.1.8. Synthesis of 3 Ats via aldehyde addition and oxidation/demethylation. 
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only 7 out of a possible 369 kinases. Moreover, nanomolar potency was found against 

FLT3, an acute myeloid leukemia target,31 with an IC50 = 505 nM. This led Lindsley and 

co-workers to postulate that Hybrubin A could be an attractive lead compound.  

Scheme 3.1.9. Synthesis of Hybrubin A 
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sulfonamides and now benzophosphadiazine proved valuable in the study of critical 

biopathways.33 

Scheme 3.1.10. Idenix 2017 Bioisosterism synthesis and NS5B inhibitor IDX375. 

 

 Another Idenix publication was released along with the synthesis and bioactivity 

of IDX375, and disclosed the generation of molecules for the companies HCV 

polymerase inhibitor program. While no biological data was provided this short 

communication highlighted the generation of 1,5,2-diazaphosphinines by combining 

amidine with 1-alkynylphosphonates or dithioketene phosphonates. Figure 3.1.6 shows 

examples of these compounds, which possess not only a tetramic acid, but also a 

potentially electrophilic a-b unsaturated moiety.34   
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 The massive potential tetramic acids and sultams hold for antiviral research was 

again shown in 2018, when Italian and French scientists published work on a Dengue 

virus (DENV) inhibitor.32 A close relative of HCV, the Dengue virus is the most common 

mosquito transferred virus and affects around 390 million people a year. There are four 

distinct types of Dengue all of which are dependent on the NS5 RNA-dependent RNA 

polymerase.  

 Scheme 3.1.11 shows the synthesis of these 2,3-dihydro-4H-1,2-benzothiazin-

4one 1,1-dioxide derived compounds, as well as a keto-tautomer, 35 also found to have 

intriguing activity against DENV3 NS5 RdRp. The two best enolic inhibitors possessed 

an IC50 of 0.6 and 0.9 µM inhibition against DENV3 NS5 RdRp, while the keto tautomer 

displayed an activity of 11.4 µM. Interestingly, when the sultam core was replaced with a 

comparatively less enolizable 2,3-dihydroquinoline scaffold, the inhibitory activity rose 

to above 50 µM indicating the importance of the sultam core. In silico modeling 

suggested that one of the sulfonamide oxygens of the core was in a direct interaction with 

Ser710. 
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Scheme 3.1.11. Synthesis and activity of 2,3-dihydro-4H-1,2-benzothiazin-4one 1,1-

dioxide core scaffolds and keto tautomer. 

 

 While these sultams were shown to be bona-fide inhibitors via negative tests for 
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Section 3.2 Enamine Tetramic Acids 

 Although there is a plethora of literature highlighting the use of both intra- and 

exo-cyclic enolic a-b unsaturated tetramic acids in natural products, synthesis and 

biology, very little exploration has been done on the enamine counterparts. Indeed, a July 

2, 2019 Scifinder search on the phrase “enamine tetramic acid” returned only four 

references.36 Furthermore, enamine tetramic acid natural products are rare.37 Figure 3.2.1 

shows known enamine tetramic acids. Fischerellin A, a natural product derived from the 

cyanobacteria Fisherella muscicola, has been shown to be a potent photosystem II 

inhibitor, with a 60 % photosynthesis inhibition and a total of 44 % grow inhibition 

against the common duckweed Lemna minor. Fungicidal activity for Fischerellin A 

includes the total growth inhibition against Uromyces appendiculatus (bean brown rust), 

and Erysiphe graminis (barley powdery mildew).38  

 Cladosin C, another rare enamine tetramic acid, was isolated in 2014 from the 

deep-sea fungus Cladosporium sphaerospermum 2005-01-E3, and shows an IC50 of 276 

µM against the influenza A H1N1 virus.39 Finally a derivative of Cyclopiazonic acid, α-

cyclopiazonic acid-imine (α-CPA-imine), is a third example of the incredibly rare 

enamine tetramic acid.40 Although nature is not yet known to generate much in the way 

of enamine tetramic acid natural products, new research is beginning to uncover exciting 

possibilities for these scaffolds in the realm of synthetic biology (vide infra).41    

 

Figure 3.2.1. Rare natural enamine tetramic acids.  
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 A 2004 review on ex-chiral pool enaminones highlighted the synthesis of 

Meldrum’s acid-derived enamine tetramic acids (Scheme 3.2.1). NMR analysis of final 

enamine product 3.2.1.4 showed a mix of major (Z)-isomers and the minor (E)-isomer, 

despite the immediate precursor dimethylamine 3.2.1.3 existing and the single (E)-

isomer.42   

Scheme 3.2.1 Synthesis of enamine tetramic acids via chiral pool 
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3 H CH2NHCO2Bn CH2CO2Me 35 
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5 Bn O-Bn Ph 83 

6 H CH2NHCO2Bn Ph 92 
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Scheme 3.2.2. Synthesis of inseparable mono-enamine compounds  

 

These enamine tetramic products possessed a herbicidal activity of up to 94 % growth 

inhibition against Brassica campestris as well as moderate activity against Echinochloa 

crusgalli or barnyard grass. Compound 3.2.2.8 also exhibited a growth inhibition of 70 % 

against the fungus B. cinerea.43 This same team of researchers followed up in a 2016 

publication with additional 3-ETs showing growth rate inhibitions ranging from 45–82 % 

for the fungi F. graminearaum, B. cinerea, R. solani.44 

  Moloney and co-workers disclosed the synthesis of 3-acyltetramates via an 

enamine intermediate.45 As seen in Scheme 3.2.3, acetic acid substituted tetramic core 

3.2.3.1 was treated with 4-methoxybenzoic acid, in the presence of dibenzylamine, to 

afford dibenzyl enamine 3.2.3.2 in low yield. This enamine was constructed as starting 

material for a two-step hydrogenolysis and hydrolysis protocol used to generate the enone 

tetramic acid 3.2.3.4, a derivative of the difficult to build46 b-tricarbonyl systems. 
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Scheme 3.2.3. Moloney group side chain manipulation to 3-acyltetramates 

 

 A concurrent study in the Moloney lab was performed on the SAR and antibiotic 

activity of 3-enaminetetramic acids. These analogs show the same type of tautomeric 

nature as their 3-acyltetramic acid counterparts. Figure 3.2.2 illustrates the imine and 

enamine possibilities for these scaffolds.47 The predominate tautomers of 3-

enaminetetramic acids are the enamine forms B and D.     

 

Figure 3.2.2 Tautomerism of 3-enaminetetramic acids, with B & D predominant.  
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rather lipophilic nature of tetramic enamines, which is contrary to the typically polar 

attributes found in most known antibacterial compounds.47  

Scheme 3.2.4 Moloney anti-bacterial activity of 3-enaminetetramic acids 

 

 A 2015 manuscript by Hirai and Sodeoka focused on uncovering inhibitors for 

dual-specificity protein phosphatases (DSPs).48 DSPs are capable of dephosphorylating 

both phosphotyrosine and phosphoserine/threonine on the same proteins.49 The authors 

began with a 3-acyltetronic acid, as this structure resembled that of the transition state in 

the dephosphorylation reaction of DSPs. However, the library derived from this scaffold 

yielded no selective inhibitors. This, in combination with the weak in cellulo activity 

inherent to acidic and poorly permeable nature of 3-acyltetronic acid, prompted the 

authors to alter the library in favor of a neutral enamine scaffold. This alteration 

improved cell permeability, and selectivity but altered the mode of action as well. The 3-

acyltetronic acid derivates were found to be a competitive inhibitor of the DSP VHR, 

while the enamine analogs were shown to bind to a neighboring pocket of the DSP 

CDC25A. This pocket contains the residues C384, R385 and Y386 near the bottom. 
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Enamine C of Table 3.2.1 was found to bind covalently to one of these residues, with the 

cysteine put forward as the most promising nucleophile. These enamine scaffolds were 

the first inhibitors shown to bind to the pocket and not active site of CDC25A. This 

change in the mechanism of inhibition accounts for the alterations in activity seen in 

Table 3.2.1. The enamines also possessed inhibitory activity against HL60 cells, the best 

of which was enamine B (R = o-OH) at 2.4 µM, while 3-acyltetronic acid A was over 100 

µM.      

 

DSP Inhibitor Tetronic acid A Enamine B 

R = H 

Enamine B 

R = m-Me 

Enamine B 

R = o-OH 

 
VHR 4.9 µM 11.4 µM 1.6 µM 24.9 µM 

CDC25A 6.2 µM 16.6 µM >100 µM 13.5 µM 

CDC25B 5.3 µM 8.4 µM >100 µM 4.3 µM 

MKP-3 4.3 µM >100 µM >100 µM >100 µM 

Table 3.2.1. Hirai and Sodeoka enamine DSP library   

 Ukrainian and French researchers disclosed a synthesis of sultam enamine 

tetramic cores in 2017.50 These spirocycloalkane 1λ6-isothiazolidine-1,1,4-triones were 

constructed via mesylation, alkylation and tert-butoxide mediated cyclization. As seen in 

Scheme 3.2.5 this work, while limited in substrate scope made use of enamine tetramic 
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acids not only as a synthetic intermediate in route to the core, but as an end product 

themselves.51  

Scheme 3.2.5. Synthesis of spirocycloalkane 1λ6-isothiazolidine-1,1,4-triones 
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conditions. This work highlights the use of b-keto sultams in reactivity profiling. These 

sultams were found to have enhanced reactivity when compared to dimedone analogs. 

The Carroll group postulated this reactivity was do to the destabilization of the carbanion 

via reduced resonance into the sulfur, and the non-planer ring characteristics of sultams.  
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Scheme 3.2.6. Carroll and co-workers reactivity profiling of b-keto sultams. 
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nucleophilic non-enzymatic process to form enamine tetramic acids.41 Cladosin I was 

found to be cytotoxic against HL-60 cells with an IC50 of 2.8 µM.    

 

Figure 3.2.3. Cladosins H–K along with aniline donor and HDAC inhibitor SAHA  
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Section 3.3 Synthesis of isothiazolidin-4-one 1,1-dioxides and 5-

(diaminomethylene)isothiazolidin-4-one 1,1-dioxide Derivatives 

 The above review showcased natural products containing tetramic acids, along 

with the common methods for tetramic acid synthesis. Furthermore, the unique chemical 

niche for sultams and tetramic acids was discussed in a brief synopsis of HCV drug 

development. The use of novel non-natural sultam-derived tetramic acids (b-keto 

sultams) as chemical biology probes has to the best of the author’s knowledge yet to be 

established. Therefore, the disclosed dissertation work details the use of Dieckmann 

cyclization followed by a-functionalization in order to generate a,b-unsaturated b-keto 

sultams, including enamine derivatives, for use as chemical probe molecules. 

 The dissertation work began with the synthesis of sulfonamides 3.3.1.2.1–

3.3.1.2.3 as seen in Scheme 3.3.1. An amino methyl ester was dissolved in dry methylene 

chloride and brought to 0 °C before the drop-wise addition of methanesulfonyl chloride. 

This sulfonylation reaction was allowed to warm to room temperature and stirred 

overnight, before being subjected to an aqueous work-up followed by normal-phase silica 

column chromatography purification. The amino esters of L-leucine, L-isoleucine and L-

alanine were chosen due to the presence of these amino acids in natural products such as 

Reutericyclin, Tenuazonic Acid and Fischerellin A. 
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Scheme 3.3.1 Yields of Mesylated amino esters  

 

Entry Amino ester R1 Yield 

1 L-Leucine 3.3.1.2.1 89 % 

2 L-Isoleucine 3.3.1.2.2 98 % 

3 L-Alanine 3.3.1.2.3 19 % 

 

 The formation of mesyl-amino esters 3.3.1.2.1–3.3.1.2.3 afforded both the 

Dieckmann cyclization nucleophile (SO2Me) as well as the methoxy leaving group. 

However, the Dieckmann was delayed in order to increase diversity, and avoid potential 

cross-reactivity with the relatively acidic NH. A simple N–benzylation reaction was 

utilized to accomplish both goals. This N–benzylation involved dissolving mesyl-amino 

esters 3.3.1.2.1–3.3.1.2.3 in acetonitrile, followed by the addition of potassium carbonate, 

and drop-wise addition of the desired benzyl bromide. The resulting mixture was refluxed 

at 75 °C overnight. The carbonate was then filtered off and the resulting residue was 

condensed and purified via normal phase silica column chromatography. Scheme 3.3.2 

highlights the diversification and yields of the pre-cyclization intermediates 3.3.2.1.1–

3.3.2.1.10 
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Scheme 3.3.2 Synthesis of N-benzylated intermediates. 
 

 

Entry R1 R2 Yield 

1 L-Leu p-CF3 3.3.2.1.1 81 % 

2 L-Leu p-F  3.3.2.1.2 76 % 

3 L-Leu o-Cl 3.3.2.1.3 86 % 

4 L-Leu H 3.3.2.1.4 87 % 

5 L-Leu p-Me 3.3.2.1.5 72 % 

6 L-Ile p-F 3.3.2.1.6 78 % 

7 L-Ile o-Cl 3.3.2.1.7 90 % 

8 L-Ile H 3.3.2.1.8 63 % 

9 L-Ile p-Me 3.3.2.1.9 87 % 

10 L- Ala p-F 3.3.2.1.10 81 % 

 

 Next, the Dieckmann cyclization was achieved with the use of slow addition of a 

LiHMDS-THF into a solution of intermediates 3.3.2.1.1–3.3.2.1.10 at -78 °C. The 

reaction was allowed to warm overnight to room temperature before being cooled to 0 °C 

and 1 M HCl was added until the pH = 3. The solvent was then removed by rotary 

evaporation, and the aqueous layer was extracted with methylene chloride and washed 

brine. The organic layers were combined, dried with (Na2SO4) and the solvent was 
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removed under reduced pressure to afford b-keto sultams 3.3.3.1.1–3.3.3.1.9 in yields up 

to 95 %. Interestingly, the L-alanine derivative 3.3.2.1.10 failed to cyclize.   

Scheme 3.3.3 Synthesis of isothiazolidin-4-one 1,1-dioxides derivatives  

 

Entry R1 R2 Yield 

1 L-Leu p-CF3 3.3.3.1.1 41 % 

2 L-Leu p-F 3.3.3.1.2 82 % 

3 L-Leu o-Cl 3.3.3.1.3 95 % 

4 L-Leu H 3.3.3.1.4 74 % 

5 L-Leu 4-Me 3.3.3.1.5 28 % 

6 L-Ile 4-F 3.3.3.1.6 25 % 

7 L-Ile o-Cl 3.3.3.1.7 72 % 

8 L-Ile H 3.3.3.1.8 81 % 

9 L-Ile 4-Me 3.3.3.1.9 77 % 

10 L- Ala p-F na 

 

 After the formation of isothiazolidin-4-one 1,1-dioxides derivatives 3.3.3.1.1–

3.3.3.1.9 experimentation towards generating enamine a,b-unsaturated b-keto sultams 

began. Three initial synthetic routes were designed. The first pathway involved the 

installation of an a-ketone via direct acylation, followed by amine addition and 

tautomerization. The second route consisted of coupling chemistry followed by amine 
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addition,47 while the third pathway made used of an aldol addition, followed by 

oxidation,55 amine addition and tautomerization (Figure 3.3.1).   

 

Figure 3.3.1 Initial proposed routes to enamine sultam products. 

 First, simple a-functionalization was attempted with simple acyl chlorides. 56  

Figure 3.3.2 shows four representative trials. Unfortunately, BF3•OEt2 returned only 

starting material, while Et3N and acryloyl chloride afforded only a mass spectra trace of 

the desired product. Switching electrophiles or attempting to trap the alcohol adduct 

generated by 4-methoxybenzoyl chloride with TBSCl showed only degradation.      

 

Figure 3.3.2 Attempts at a-functionalization with acyl chlorides 

 Since a-functionalization by substitution with acyl chlorides failed, coupling 
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However, DCC- or EDC-mediated coupling failed, as did combining b-keto sultam 

3.3.3.1.8 with a preformed coupling intermediate. Forcing conditions such as microwave 

heating showed only starting material degradation. Indeed, after multiple reactions only 

starting material or unidentifiable degradation material was isolated. Thus, coupling 

chemistry was also abandoned.      

Figure 3.3.3. Coupling attempts for a-functionalization 

 

 With the failures of simple acyl installation, and traditional tetramic acid coupling 

chemistry, synthetic efforts turned towards the well-known Mukaiyama aldol reaction.57 

This reaction was chosen in an attempt to avoid degradation by stepwise silyl enol ether 

formation, and to prevent retro-aldol by trapping the resulting product as a Lewis acid 

adducts. A reliable method for the formation of an endo-cyclic enol sultam intermediate 

was therefore required.  A little utilized method for generating TMS-enol ethers from a 

1,3-cyclohexanedione core, disclosed by Chu and Huckin, 58  was found to generate 

product in quantitative yields.  
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Scheme 3.3.4 Generation of TMS protected enolic b-keto sultams 

 

 Scheme 3.3.4 shows the formation of silyl enol ether 3.3.4.1. b-keto sultam 

3.3.3.1.3 was dissolved in methylene chloride and brought to -78°C before drop-wise 

addition of HMDS. The reaction was allowed to warm to 0°C before solvent and volatile 

HMDS by-product removal via rotary evaporation. The mechanism proposed by Chu and 

co-workers involved a-deprotonation, and enol protection by HMDS itself.  This method 

proved extremely reliable and generated product cleanly in quantitative yield. However, 

the scaffold itself was highly labile, and was prone to desilylation if not immediately 

utilized. Thus Figure 3.3.4 shows a representative proton NMR of silyl enol ether 3.3.4.1 

as evidence for the existence of this class of protected b-keto sultams.         
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Figure 3.3.4. Proton NMR spectra of 3.3.4.1 

 When read left to right, Figure 3.3.4 shows the four aromatic protons of the o-Cl 

ring, followed by the silyl enol-ether proton at approximately 5.7 ppm. The benzylic 

hydrogens can be seen as two doublets between 4.0 and 5.0 ppm, while the NCH-Leucine 

peak follows at 3.8 ppm. The L-Leucine fragment falls between 0.5 and 2.0 ppm, and the 

TMS protons were found at 0.4 ppm. The spectrum in Figure 3.3.4 was taken in 

deuterated chloroform, and is the crude product after solvent evaporation.  

 With a reliable silyl enol ether synthesis in hand, attempts towards the 

Mukaiyama aldol began. Figure 3.3.5 details examples of titanium tetrachloride, and 

BF3•OEt2 trials, however protodesilylation was uniformly seen across all attempts.  
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Figure 3.3.5 Lewis-Acid Mediated Mukaiyama aldol 

Lewis acid-mediated reactions were abandoned in favor of a novel TBAF-catalyzed 

Mukaiyama Aldol reaction. 59  A promising first attempt showed traces of product, 

however subsequent trials revealed only starting material degradation or the all-too-

familiar protodesilylation product (Table 3.3.1). Acidic conditions were completely 

abandoned, and after cursory attempts with basic Mukaiyama aldol conditions showed 

only degradation (Figure 3.3.6), the use of aldol chemistry was abandoned altogether.   
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Entry X R Yield 

1 o-Cl 
 

Trace 

2 o-Cl 
 

Degradation 

3 o-Cl  Degradation 

4 o-Cl 4-Pyridine Protodesilylation 

5 p-F p-Anisaldehyde Protodesilylation 

6 o-Cl Benzaldehyde Protodesilylation 

Table. 3.3.1 TBAF mediated Mukaiyama aldol attempts. 

 

Scheme 3.3.6 Base-mediated Mukaiyama aldol reaction  
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tautomerization. Such a direct double bond installation was found in a 2016 manuscript 

published by Doi and co-workers. 60  Scheme 3.3.5 highlights the use of ketene 

dithioacetals chemistry in the beginning steps of the synthesis of a monobenzo analog of 

Spiromamakone A. Here, cyclopentane-1,3-dione was dissolved in DMF before the 

addition of K2CO3 and carbon disulfide (CS2). The resulting thiolate was quenched with 

methyl iodide to afford ketene dithioacetal intermediate 3.3.5.2. This intermediate was 

subjected to an addition-elimination reaction with an Ar-MgBr, followed by oxidation 

and oxa-Michael addition in route to monobenzo Spiromamakone A.  

Scheme 3.3.5 ketene dithioacetal synthesis of a monobenzo Spiromamakone A 
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and Scheme 3.3.7 illustrates the use of various reagents, including primary amines, to 

generate substituted a,b-unsaturated products.  

Scheme 3.3.6 Singh synthesis of heterocyclic amines by ketene dithioacetal chemistry. 

 

Scheme 3.3.7 Singh addition of simple amines into ketene dithioacetals. 
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disulfide was added drop-wise and the reaction stirred for 3 minutes at 35 °C. Methyl 

iodide was added to the mixture, which was allowed to stir for one hour at room 

temperature. 63  Minimal reaction optimization was needed, and products 3.3.8.1.1–

3.3.8.1.4 were generated in yields 85% (Scheme 3.3.8).  

Scheme 3.3.8. Synthesis of ketene dithioacetal intermediates. 
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by normal-phase silica column chromatogram, these scaffolds proved rather sensitive and 

were typically used immediately after purification.   

 

Figure 3.3.7. Representative spectra for ketene dithioacetal intermediates.  

 With a reliable synthetic method for the installation of a diversifiable exocyclic 

a,b-unsaturated system in hand, experimentation next turned to functionalizing the 

Michael acceptor. Double aza-Michael addition was chosen for this purpose. The aza-
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Scheme 3.3.9 highlights the synthesis and products formed by this double aza-Michael 

addition.  
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Scheme 3.3.9. Synthesis of 5-(diaminomethylene)isothiazolidin-4-one 1,1-dioxide sultam 

derivatives.  

 

Entry R1 R2 R3 Yield 

1 L-Leu o-Cl Bn 3.3.9.1.1 23 % 
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alkaloid tryptamine. Interestingly, several reactions produced mono thiol ether side 

products as seen in Scheme 3.3.10. At, first condensation into the ketone and subsequent 

benzylic hydrogen abstraction was considered as a possible mechanism. However, when 

the non-benzylic amine 3-morpholinopropan-1-amine was utilized the side-product was 

again uncovered. Effort influenced by Lee and co-workers hybrid ampicillin-tetramic 

acid chemistry65 afforded only side-product as shown by the combination of 3.3.8.1.3 and 

6-aminopenicillanic acid.      

Scheme 3.3.10. Discovery of mono-methyl thiol ethers 
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 Unfortunately, the exact mechanism for the formation of these mono-thiol ether 

side-products remains ambiguous. Furthermore, despite extensively long efforts, no X-

ray quality crystals of any side-products could be obtained. Therefore, E/Z geometry on 

the pi bond also cannot be confirmed at this time. In summary, isothiazolidin-4-one 1,1-

dioxides were generated via intramolecular Dieckmann cyclization and functionalization 

of the a-position with carbon disulfide and amines to generate b-keto sultams 5-

(diaminomethylene)isothiazolidin-4-one 1,1-dioxide compounds 3.3.9.1.1–3.3.9.1.13. 

The long medicinal history of sultams and tetramic acids, the unique activity held by the 

fusion of these scaffolds and the relative scarcity of enamine derivatives was the driving 

force behind this thesis work. These novel chemical probes will be handed to 

collaborators for use in chemical biology assays and results shall be reported in due 

course.  
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Section 3.4 Synthesis of 4-hydroxy-2,3-dihydroisothiazole-5-carboxamide 1,1-dioxide 

Derivatives  

 While the exo-enol tetramic acid is a common natural product, the endo-enol 

scaffold is just as prevalent.1 Figure 3.4.1 shows natural products and drug candidates 

containing an endo a,b-unsaturated tetramic acid.  

 

Figure 3.4.1. Natural products and drug candidates containing an endo-enol scaffold.  
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pachydermin was isolated from the New Zealand basidiomycete Chamonixia 

pachydermis.70 This m-chloro natural product is known to degrade to a a-unsubstituted 

endo-enol analog via cyclization of the keto-tautomer, followed by decarbonylation and 

decarboxylation to release carbon monoxide and carbon dioxide.71   

 The lipophilic tetramic acid a-Lopomycin was isolated from Streptomyces 

aureofaciens, and possesses a modest MIC = 0.78 µg ml-1 against B. subtilis. 72 

Furthermore, a in silico flexible docking-based molecular dynamics simulation of 

190,084 natural product compounds against the Ebola virus Nucleocapside (EBOV NP) 

identified two compounds, one of which was a-Lopomycin, as promising lead 

compounds in the development of Ebola treatment.73 The experimental anticonvulsant 

phase III clinical candidate Losigamone is a methyl-substituted, and o-chloro racemic 

mixture of two threo isomers. Losigamone reduces the frequency of spontaneous and 

stimulus-induced epileptiform discharges in hippocampal slices by pre-synaptically 

effecting sodium channels.10c, 74 The spirotetramat pesticide Movento was developed by 

Bayer and is active against piercing-sucking insects.75 

 The above natural products and drug candidates have elicited numerous synthetic 

efforts to generate a-functionalized scaffolds. Many recent efforts have on generating 

small molecule heterocycles for drug lead compound development. Tetramic acid endo-

enol a-functionalization to generate amides has historically been a focal point for 

pharmaceutical and university researchers intent on drug development.  

 A team from Pharmacia & Upjohn Inc disclosed the synthesis of amide 

functionalized tetramic acids with anti-parasitic activity. Scheme 3.4.1 shows the  
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a-functionalization with 4-bromophenylisocyanate in the presence of triethylamine and 

refluxing xylene to form compound 3.4.1.2 in 80 % yield. Alternatively, ester 3.4.1.3 

underwent aminolysis with 4-bromoaniline to generate a similar benzofused product. 

These compounds were found to be active against the parasitic barber’s pole worm 

Haemonchus contortus.76   

Scheme 3.4.1 Pharmacia & Upjohn Inc anti-parasitic compounds 

 

 Scientists from Xenova Limited disclosed a similar amide synthesis in a 2002 

publication concerning plasminogen activator inhibitor-1 (PAI-1) inhibitor 

development.77 PAI-1 is a serine protease implicated in thromboembolic disease78 and 

cancer. 79  A Dieckmann cyclization route was utilized to generate esters 3.4.2.2 and 

3.4.2.5, which were then subjected to aminolysis. Tetrazole-containing compounds 

3.4.2.7 and 3.4.2.8 were found to possess good inhibitory activity against PAI-1.  The 

substrate scope included substituted phenyls on the amine, as well as phenyl and protons 

at the R1 position. The R2 group was held to an aniline-4-ether-octanoic side chain, which 

terminated in a free carboxylic acid, ester, or tetrazole functionality.77  
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Scheme 3.4.2. Xenova Limited amide functionalization  

 

 In 2008, researchers from Novartis detailed a study on the design of undecaprenyl 

pyrophosphate synthase (UPPS) inhibitors. The UPPS is critical for bacterial survival, as 

it catalyzes cis double bond formation during the condensation isopentenyl 

pyrophosphate with farnesyl pyrophosphate to generate C55 undecaprenyl pyrophosphate, 

a required lipid.80  Similar to the above examples, a Lacey-Dieckmann cyclization with 

NaOMe in methanol was utilized to form an enolic methyl ester tetramic acid. This 

methyl ester intermediate was then mixed with an amine in THF or EtOH and subjected 

to microwave heating at 120 °C for up to eight minutes, to generate amides via 

aminolysis81 (Figure 3.4.2).  
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Moloney and co-workers also disclosed UPPS inhibitors (Figure 3.4.2). These scaffolds 

were formed by butyl chloroformate and DMAP-mediated endo-enol a-esterification 

followed by aminolysis in refluxing toluene.82  The authors noted the potential of these 

compounds as topical antibiotics, while acknowledging the need for further optimization 

towards oral and injectable drugs. 

 In 2014 Wang and co-workers reported a microwave-assisted amide formation on 

leucine-derived tetramic acids.83 As seen in Scheme 3.4.3, these products were generated 

via aminolysis in 15 minutes with yields up to 72%. These products showed good 

antifungal activity against Pythium dissimile. Most recently in 2019, Moloney and co-

workers disclosed a cysteine-derived, bicyclic tetramic amide synthesis (Scheme 3.4.4).84 

These a-amide substituted products were found to be active against gram-positive 

bacteria via inhibition of bacterial topoisomerase IV (topo IV) or DNA gyrase, both of 

which are critical for DNA replication.85  
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Scheme 3.4.3. Wang and co-workers microwave assisted synthesis.  

 

Scheme 3.4.4 Moloney aminolysis to bioactive bicyclic tetramic acid amides. 
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nucleophiles and electrophiles, the most relevant of which are shown in Scheme 3.4.5. 

Primary and secondary amines were found to react with the ketone to afford endo- 

enamine scaffolds 3.4.5.2 and 3.4.5.4. A Wittig reagent was found to react with the  

a-position to generate product 3.4.5.3, while phenyl isocyanate was shown to produce 

amide product 3.4.5.5.     

Scheme 3.4.5. Dobrydnev sultam a-position differentiation. 
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was then purified by normal-phase silica column chromatography to afford a-amide b-

keto sultams in yields of up to 93%.    

Scheme 3.4.6. Synthesis of 4-hydroxy-2,3-dihydroisothiazole-5-carboxamide 1,1-dioxide 

 

Entry R1 R2 R3 Yield 

1 L-Leu H 4-Me-C6H6 3.4.6.1.1 65 % 

2 L-Leu o-Cl 4-Me-C6H6 3.4.6.1.2 67 % 

3 L-Leu o-Cl 4-OMeBn 3.4.6.1.3 28 % 

4 L-Leu o-Cl Ph 3.4.6.1.4 93 % 

5 L-Ile 4-Me 4-MeC6H4SO2 3.4.6.1.5 40 % 

6 L-Leu H 4-F-Ph 3.4.6.1.6 72 % 

7 L-Leu H Ph 3.4.6.1.7 88 % 

8 L-Leu o-Cl 4-F-Ph 3.4.6.1.8 91 % 

9 L-Leu o-Cl 4-MeC6H4SO2 3.4.6.1.9 60 % 

10 L-Leu H 4-MeC6H4SO2 3.4.6.1.10 57 % 

11 L-Leu o-Cl Cyclohexyl na 

12 L-Ile 4-Me 4-F-Ph na 

13 L-Leu H 
 

na 

14 L-Leu H 

 

na 
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 The amino ester L-leucine was well tolerated by the reaction while L-isoleucine 

suffered from decreased yields or failed to react. An isocyanate containing a 4-methoxy-

benzyl group delivered product in only 28% yield. Indeed, aromatic isocyanates proved 

necessary for product formation, as alkyl variants 2-isocyanato-2,4,4-trimethylpentane, 

Cyclohexyl isocyanate and 1-adamantyl isocyanate failed to react. N-substituents 

included benzyl rings, as well as o-Cl, and 4-Me benzyl substitutions.   

 In conclusion, this dissertation chapter has detailed the use of a rapid and scalable 

synthesis capable of producing novel tetramic acid derivatives termed b-keto sultams. 

These sultams were a-functionalized by amine and amides in order to generate novel 

chemical probes in good yields. Thanks to the rarity of a-substituted b-keto sultams, 

these scaffolds are understudied within chemical biology and medicinal chemistry.  The 

scarcity, as well as the wealth of bioactivity found in carbon analogs was the driving 

force behind thesis synthetic effort. These compounds will be used in chemical biology 

assays by collaborators in an effort to elucidate novel biological activity.      
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General Experimental:  

 All reactions were carried out in oven- or flame-dried glassware under argon atmosphere using 
standard gas-tight syringes, cannulae, and septa. Stirring was achieved with oven-dried magnetic stir bars. 
THF and CH2Cl2 were purified by passage through a purification system (Pure Process Technology). 
Anhydrous Et3N was obtained from an Aldrich and used without further purification. Anhydrous CH3CN, 
and anhydrous toluene were obtained from Aldrich and used without further purification. Pd(PPh3)4 was 
kept in a glove box under argon. Flash column chromatography was performed with Sorbent 
Technologies (30930M-25, Silica Gel 60A, 40-63 μm) and thin layer chromatography was performed on 
silica gel 60F254 plates (EM-5717, Merck). Deuterated solvents were purchased from Cambridge Isotope 
laboratories. 1H and 13C NMR spectra were recorded in CDCl3 (unless otherwise mentioned) on a Bruker 
DRX-500 or Bruker DRX-400 spectrometer operating at 500 MHz, 400 MHz, 300 MHz and 125 MHz, 
respectively and calibrated to the solvent peak. High-resolution mass spectrometry (HRMS) was recorded 
on a LCT Premier Spectrometer (Micromass UK Limited) operating on ESI (MeOH). Observed rotations 
at 589 nm were measured using POL-301 Polarimeter by LAXCO. The IR spectrum was recorded using a 
Nicolet iS 5 FTIR by ThermoFisher. Microwave irradiation was carried out using a Biotage® Initiator.   
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General Procedures  

General Procedure A for the synthesis of N-ethenesulfonamides 2.4.1.2.1–2.4.1.2.8:  

 

 An amine, or amino ester hydrochloride (1 equivalent) was dissolved in anhydrous CH2Cl2 (0.2 
M) and equipped with a septa and argon. The solution was cooled to 0 ºC, and subjected to dropwise 
addition of Et3N (3 equivalents), and drop-wise addition of 2-chloroethanesulfonyl chloride (1.2 
equivalents).  Upon completion of the reaction, as monitored by normal phase TLC, the reaction was 
diluted with CH2Cl2, washed with H2O, brine, and the organic layer was separated, dried (Na2SO4), 
filtered, and concentrated under reduced pressure.  The resulting crude oil was subjected to normal phase 
silica flash chromatography utilizing a gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc), to afford 
compounds 2.4.1.2.1–2.4.1.2.8 in yields ranging from 52–96 %.   

General Procedure B for the synthesis of 1-bromo ethenesulfonamides 2.4.1.4.1–2.4.1.4.8:  

 

 To a flame-dried round-bottomed flask, was added a sulfonamide 2.4.1.2.1–2.4.1.2.8 (1 
equivalent). The flask was equipped with a septa, and argon before anhydrous CH2Cl2 (0.2 M) was added. 
The reaction was cooled to 0 ºC, and a needle was used to effect drop-wise Br2 (3 equivalents) addition. 
The reaction was allowed to warm to room temperature, and stirred overnight. The reaction mixture, 
containing crude dibrominated sulfonamides 2.4.1.3.1–2.4.1.3.8, was cooled to 0 ºC and quenched with 
sat’d Na2S2O3, extracted with CH2Cl2, and washed with H2O, brine. The organic layer was separated, 
dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude products 2.4.1.3.1–2.4.1.3.8 
were immediately placed in an oven dried flask, dissolved in anhydrous CH2Cl2 (0.2 M), and cooled to 0 
ºC before Et3N (1.5 equivalents) was added. The reaction was stirred at room temperature overnight, and 
monitored by TLC.  Upon completion, the reaction mixture was diluted with CH2Cl2, washed with H2O, 
brine, and the organic layer was separated, dried (Na2SO4), filtered, and concentrated under reduced 
pressure.  The resulting crude oil was subjected to normal phase silica flash chromatography utilizing a 
gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc), to afford compounds 2.4.1.4.1–2.4.1.4.8 in yields 
ranging from 62–79 %.    
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General Procedure C for the synthesis of N-propargyl sulfonamides 2.4.1.5.1–2.4.1.5.8: 

 

 To a flame-dried round-bottomed flask was added a-bromo sulfonamides 2.4.1.3.1–2.4.1.3.8 (1 
equivalent). Anhydrous acetonitrile (0.2 M), K2CO3 (2.5 equivalents) and propargyl bromide (1.5 
equivalents) were added to the flask, which was then placed on an oil bath and fitted to a reflux apparatus 
and argon.  The reaction was heated at 75 ºC under the condenser overnight. Upon completion as shown 
by TLC, the reaction was filtered and the solvent concentrated under reduced pressure. The resulting 
crude oil was then purified on a normal phase silica flash column, utilizing a gradient of 10:1–8:1–5:1–
3:1–1:1 (hexanes:EtOAc), to afford sulfonamide products 2.4.1.5.1–2.4.1.5.8 in yields of 18–95 %.   

General Procedure D.1 for the aqueous synthesis of 1H-1,2,3-triazol-4-yl “click” sulfonamides 
2.4.2.2.1–2.4.2.2.33: 

 

 To a flask was added N-propargyl sulfonamides 2.4.1.5.1–2.4.1.5.8 (1 equivalent). A 1:1:1 
solution of CH2Cl2:tBuOH:H2O (0.2 M for total solution) was then added to the flask. The flask was then 
equipped with a septa and argon, before drop-wise addition of an azide (1.5 equivalents), followed by 
drop-wise addition of aqueous solutions of CuSO4•5H2O (0.2 equivalents, 25% total H2O volume 
required), and (+)-Na-L-C6H7O6 (0.3 equivalents, 25% the total H2O volume required). The reaction was 
then stirred at room temperature overnight. Upon reaction completion as seen by TLC, the reaction 
extracted with brine and CH2Cl2. The organic layer was separated and dried (Na2SO4), then filtered, and 
concentrated under reduced pressure. The resulting crude oil was purified by normal phase silica flash 
column chromatography utilizing a gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc), to afford 1H-
1,2,3-triazol-4-yl “click” sulfonamides 2.4.2.2.1–2.4.2.2.33 in yields of up to 14–96 %. 
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General Procedure D.2 for the microwave synthesis of 1H-1,2,3-triazol-4-yl “click” sulfonamides 
2.4.2.2.1–2.4.2.2.33: 

 

 To an oven-dried microwave vial was added N-propargyl sulfonamides 2.4.1.5.1–2.4.1.5.8  (1 
equivalent). Anhydrous toluene (0.2 M) was added followed by drop-wise addition of an azide (1.1 
equivalent). PPh3 (0.09 equivalents) and Cu(OAc)2•H2O (0.08 equivalents) were then added to the vial. 
The reaction vial was crimped shut before undergoing microwave irradiation for one hour at 100 ºC. 
Upon reaction completion as shown by TLC, the reaction was extracted with EtOAc and saturated brine. 
The organic layer was separated and dried with Na2SO4, then filtered, and concentrated under reduced 
pressure. The resulting crude oil was then purified by normal phase silica flash chromatography utilizing 
a gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc) to afford 1H-1,2,3-triazol-4-yl “click” sulfonamides 
2.4.2.2.1–2.4.2.2.33 in yields of 63–91 %. 

General Procedure E.1 for the overnight synthesis of triazole-fused sultams 2.4.2.3.1–2.4.2.3.33: 

 

 To a flame-dried round bottom flask was added sulfonamides 2.4.2.2.1–2.4.2.2.33 (1 equivalent). 
Anhydrous DMF (0.05 M) was then added to the flask followed by KOAc (2 equivalents), and Pd(PPh3)4 
(0.1 equivalent). The flask was then fitted with a reflux condenser, argon, and an oil bath before 
undergoing overnight heating at 100 ºC. Upon completion as seen by TLC, the reaction was extracted 
with EtOAc and brine. The organic layer was separated and dried with Na2SO4, then filtered and 
concentrated under reduced pressure. The resulting crude oil was purified by normal phase silica flash 
chromatography, utilizing a gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc), to afford sultams 
2.4.2.3.1–2.4.2.3.33 in yields of 49–89 %.   
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General Procedure E.2 for the microwave synthesis of triazole-fused sultams 2.4.2.3.1–2.4.2.3.33:  

 

 To an oven-dried microwave vial was added sulfonamides 2.4.2.2.1–2.4.2.2.33 (1 equivalent). 
Anhydrous DMF (0.05 M) was added to the vial followed by KOAc (2 equivalents), and Pd(PPh3)4 (0.1 
equivalent). The reaction vial was crimped shut before undergoing microwave irradiation at 100 ºC for 
one hour. Upon reaction completion as monitored by TLC, the reaction was extracted with EtOAc and 
brine. The organic layer was separated and dried with Na2SO4, then filtered and concentrated under 
reduced pressure. The resulting crude oil was purified by normal phase silica flash chromatography, 
utilizing a gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc) to afford sultams 2.4.2.3.1–2.4.2.3.33 in 
yields of 12–88 %.   

General procedure F for the synthesis of aza-Michael sultams 2.4.4.1.1–2.4.4.1.13:    

 

 To an oven-dried round bottom flask was added sultams 2.4.2.3.12/.13/.16 (1 equivalent). 
Anhydrous THF (0.5 M) was added to the flask, and the reaction equipped with a septa and argon. The 
flask then underwent drop-wise addition of DBU (0.2 equivalents), followed by drop-wise addition of an 
amine (1.2 equivalents). The reaction stirred at room temperature for 12 hours, or until completion as 
indicated by normal phase silica TLC. The reaction was then extracted with brine and EtAOc. The 
organic layer was separated and dried with Na2SO4, then filtered, and concentrated under reduced 
pressure. The resulting crude oil was then purified by normal phase silica chromatography, utilizing a 
gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc) to afford aza-Michael products 2.4.4.1.1–2.4.4.1.13 
in yields of 49–99 %. 
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General Procedure G for the synthesis of N-Ac-Cysteine Methyl Ester thiol adduct 2.4.3.1: 

 

 To an oven-dried flask was added sultam 2.4.2.3.13 (1 equivalent) and equipped with a septa and 
argon. Anhydrous THF (0.2 M) was added to the flask, followed by N-Ac-Cysteine Methyl Ester (1 
equivalent), and Et3N (1.1 equivalent). The reaction stirred at room temperature for an hour, and 
monitored by TLC. The crude oil was then purified on a normal phase silica flash column, utilizing a 
gradient of 10:1–8:1–5:1–3:1–1:1 (hexanes:EtOAc) to afford thiol adduct 2.4.3.1 was isolated in 75 %.  
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N-cyclohexylethenesulfonamide 

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.1 (96%, 

4.8 g) was isolated as brownish oil. 

Rf = 0.29 (EtOAc:Hexane = 1:2);  

FTIR (neat): 2934, 1326, 1067 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.53 (ddd, J = 16.5, 9.9, 0.9 Hz, 1H, CHaHb=CHc-), 6.22 (dd, J = 16.5, 3.4 

Hz, 1H, CHaHb=CHc-), 5.87 (dd, J = 9.9, 2.3 Hz, 1H, CHaHb=CHc-), 4.68 (s, 1H, NH), 3.13 (dddd, J = 

13.8, 10.2, 7.4, 4.1 Hz, 1H, -CH2CH2CHCH2CH2CH2-), 1.91 (d, J = 9.6 Hz, 2H, -CHaHb-CHaHb-CH-

CHaHb-CHaHb-CHaHb-), 1.69 (d, J = 9.7 Hz, 2H, -CHaHb-CHaHb-CH-CHaHb-CHaHb-CHaHb-), 1.54 (d, J = 

12.5 Hz, 1H, -CHaHb-CHaHb-CH-CHaHb-CHaHb-CHaHb-), 1.28 (dq, J = 21.5, 11.3, 10.0 Hz, 4H, -CHaHb-

CHaHb-CH-CHaHb-CHaHb-CHaHb-), 1.16 (dd, J = 19.7, 7.9 Hz, 1H, -CHaHb-CHaHb-CH-CHaHb-CHaHb-

CHaHb-); 

13C NMR (126 MHz, CDCl3) δ 137.3 (CH), 125.6 (CH2), 52.7 (CH), 34.2 (CH2), 25.2 (CH2, CH2), 24.8 

(CH2, CH2); 

HRMS calculated for C8H15NO2S 190.0896 (M+H)+; found 190.0905 (TOF MS ES+). 
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N-(3-methoxypropyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.2 (92%, 

1.10 g) was isolated as brownish oil. 

Rf = 0.28 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3300, 3057, 2931, 2877, 1387, 1187, 1028, 972, 925 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.50 (dd, J = 16.6, 9.9 Hz, 1H,CHaHb=CHc), 6.22 (dt, J = 16.6, 1.3 Hz, 

1H, CHaHb=CHc), 5.93 (d, J = 9.9 Hz, 1H, CHaHb=CHc), 4.99 (s, 1H NH), 3.51–3.46 (m, 2H, 

CH2CH2CH2OMe), 3.33–3.30 (m, 3H, OCH3), 3.13 (qd, J = 6.2, 1.6 Hz, 2H, CH2CH2CH2OMe), 1.81 (p, 

J = 6.0 Hz, 2H, CH2CH2CH2OMe); 

13C NMR (126 MHz, CDCl3) δ 136.03 (CH2=CHS), 126.54 (CH2=CHS), 71.52 (CH2OCH3), 58.98 

(OCH3), 41.92 (CH2), 29.35(CH2); 

HRMS calculated for C6H13NO3S 202.0508 (M+Na)+; found 202.0525 (TOF MS ES+). 
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N-benzylethenesulfonamide  

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.3 (76%, 

92 mg) was isolated as brownish oil. 

Rf = 0.51 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3279, 3087, 3030, 2930, 2850, 1674, 1604, 1585, 1495, 1454, 1323, 1063, 1002, 915, 737, 

700 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.34 (dt, J = 11.1, 6.7 Hz, 5H Ph), 6.49 (dd, J = 16.5, 9.8 Hz, 1H 

CHaHb=CHc), 6.26 (d, J = 16.5 Hz, 1H CHaHb=CHc), 5.92 (d, J = 9.9 Hz, 1H, CHaHb=CHc), 4.62 (s, 1H, 

NH), 4.22 (d, J = 6.1 Hz, 2H, CH2); 

13C NMR (126 MHz, CDCl3) 136.6 (CAr), 136.1 (CH2=CHS), 128.9 (2 CAr), 128.2 (CAr), 128.0 (2 CAr), 

126.9 (CH2=CHS), 47.1 (Bn) 

HRMS calculated for C9H11NO2S 198.0583 (M+H)+; found 198.0597 (TOF MS ES+). 
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N-(tert-butyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.4 (77%, 

5.16 g) was isolated as brownish oil. 

Rf = 0.50 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3285, 2976, 2876, 1477, 1428, 1393, 1321, 1041, 997 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.60 (dd, J = 16.5, 9.9 Hz, 1H, CHaHb=CHc), 6.23 (d, J = 16.5 Hz, 1H, 

CHaHb=CHc), 5.83 (d, J = 9.9 Hz, 1H, CHaHb=CHc), 4.21 (s, 1H, NH), 1.35 (s, 9H, tBu); 

13C NMR (126 MHz, CDCl3) δ 139.7 (CH2=CHS), 124.5 (CH2=CHS), 54.7 (C), 30.4 (3Me); 

HRMS calculated for C6H13NO2S 164.0740 (M+H)+; found 164.0749 (TOF MS ES+). 
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Methyl (vinylsulfonyl)-L-valinate  

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.5 (52%, 

69 mg) was isolated as brownish oil. 

Rf = 0.57 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -55.3 (c = 0.023, CH2Cl2);  

FTIR (neat): 3282, 3108, 3060, 2967, 2877, 1742, 1435, 1388, 1336, 1264, 1157, 1052, 993, 921 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.46 (dd, J = 16.5, 9.9 Hz, 1H, CHaHb=CHc), 6.17 (d, J = 16.5 Hz, 1H, 

CHaHb=CHc), 5.86 (d, J = 9.9 Hz, 1H CHaHb=CHc), 5.24 (s, 1H, NH), 3.70 (s, 3H, OCH3), 2.09 (dtd, J = 

13.6, 6.8, 4.9 Hz, 1H, CH3CHCH3), 0.96 (d, J = 6.8 Hz, 3H, CH3), 0.84 (d, J = 6.9 Hz, 3H, CH3); 

13C NMR (126 MHz, CDCl3) δ 172.3 (CO2Me), 136.0 (CH2=CHS), 126.7 (CH2=CHS), 61.0 

(NHCCO2Me), 52.4 (OMe), 31.4 (CH3CHCH3), 19.0 (CH3), 17.3 (CH3); 

HRMS calculated for C8H15NO4S 222.0795 (M+H)+; found 222.0802 (TOF MS ES+). 
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Methyl (vinylsulfonyl)-L-leucinate  

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.6 (91%, 

3.5 g) was isolated as brownish oil. 

Rf = 0.57 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -50.2 (c = 0.0045, CH2Cl2);  

FTIR (neat): 2967, 1740, 1435, 1388, 1335, 1252, 1138, 1052 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.47 (dd, J = 16.5, 9.9 Hz, 1H, CHaHb=CHc), 6.23 (dd, J = 16.6, 1.0 Hz, 

1H, CHaHb=CHc), 5.90 (d, J = 9.9 Hz, 1H, CHaHb=CHc), 4.92 (t, J = 10.6 Hz, 1H, NH), 3.79–3.76 (m, 

1H, NHCHCO2Me), 3.75 (s, 3H, Me), 2.19–2.09 (m, 1H, CH), 1.02 (d, J = 6.8 Hz, 3H, CH3), 0.88 (d, J = 

6.9 Hz, 3H, CH3); 

13C NMR (126 MHz, CDCl3) δ 172.5 (CO2Me), 136.1 (CH2=CHS), 127.0 (CH2=CHS), 61.0 

(NHCHCO2Me), 52.6 (OMe), 31.6 (CH2), 19.2 (2-CH3), 17.3 (CH); 

HRMS calculated for C9H17NO4S 253.1217 (M+NH4)+; found 253.1231 (TOF MS ES+). 
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Methyl (vinylsulfonyl)-L-isoleucinate  

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.7 (76%, 

1.96 g) was isolated as brownish oil. 

Rf = 0.25 (EtOAc:Hexane = 1:2);   

[𝒂]𝑫𝟐𝟎 = -42.57 (c = 0.007, CH2Cl2);  

FTIR (neat): 3108, 2966, 2879, 1740, 1455, 1385, 1337, 1275, 1157, 1087, 882 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.47 (dd, J = 16.5, 9.9 Hz, 1H, CHaHb=CHc), 6.22 (d, J = 16.5 Hz, 1H, 

CHaHb=CHc), 5.90 (d, J = 9.9 Hz, 1H, CHaHb=CHc), 4.97 (d, J = 9.8 Hz, 1H, NH), 3.81 (dd, J = 9.8, 4.9 

Hz, 1H, NHCHCO2Me), 3.74 (s, 3H, OMe), 1.87 (dddd, J = 13.5, 8.9, 5.7, 2.4 Hz, 1H, CHCH2CH3), 1.39 

(ddq, J = 14.8, 7.4, 4.5, 3.7 Hz, 1H, CHCH2CH3), 1.22–1.12 (m, 1H, CH3CHCH2), 0.97 (d, J = 6.8 Hz, 

3H, Me), 0.90 (t, J = 7.4 Hz, 3H, Me); 

13C NMR (126 MHz, CDCl3) δ 172.5 (CO2Me), 136.1 (CH2=CHS), 127.0 (CH2=CHS), 60.4 

(NHCHCO2Me), 52.5 (OMe), 38.4 (CH), 24.7 (CH2), 15.6 (Me), 11.5 (Me); 

HRMS calculated for C9H17NO4S 253.1217 (M+NH4)+; found 253.1231 (TOF MS ES+). 
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Methyl (vinylsulfonyl)-L-phenylalaninate  

 

 According to the reaction protocol described in general procedure A, compound 2.4.1.2.8 (92 %, 

3.04 g) was isolated as brownish oil. 

Rf = 0.60 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -20.0 (c = 0.0115, CH2Cl2);  

FTIR (neat): 3062, 3030, 2954, 1743, 1604, 1455, 1436, 1385, 1275, 1151, 1109, 1030, 904, 748, 702 

cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.32–7.24 (m, 3H, m-CH-p-CH-m-CH), 7.17–7.14 (m, 2H, 2-o-CH), 6.26 

(dd, J = 16.5, 9.8 Hz, 1H, CHaHb=CHc), 6.13 (d, J = 16.5 Hz, 1H, CHaHb=CHc), 5.78 (d, J = 9.7 Hz, 1H, 

CHaHb=CHc), 4.97 (s, 1H, NH), 4.23 (dt, J = 8.5, 6.3 Hz, 1H, NHCHCO2Me), 3.73 (s, 3H, OMe), 3.15–

3.03 (m, 2H, CH2); 

13C NMR (126 MHz, CDCl3) δ 171.7 (CO2Me), 136.0 (CH2=CHS), 135.2 (CAr), 129.6 (2 CAr), 128.8 (2 

CAr), 127.5 (CH2CHS), 126.6 (CAr), 56.8 (NHCHCO2Me), 52.7 (OMe), 39.5 (CH2); 

HRMS calculated for C12H15NO4S 270.0795 (M+H)+; found 270.0804 (TOF MS ES+). 
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1-Bromo-N-cyclohexylethenesulfonamide  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.1 (75%, 

150.2 mg) was isolated as brownish oil. 

Rf = 0.73 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3280, 2955, 1601, 1433, 1423, 1326, 1165, 1103, 925, 910, 755, 599, 552 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.86 (d, J = 2.9 Hz, 1H, CH2=CBrS), 6.18 (d, J = 2.9 Hz, 1H, CH2=CBrS), 

4.52 (s, 1H, NH), 3.21 (dddd, J = 7.8, 5.7, 3.9, 3.9 Hz, 1H, CH), 2.10–1.89 (m, 2H, Cy), 1.84–1.66 (m, 

2H, Cy), 1.63–1.51 (m, 1H, Cy), 1.40–1.25 (m, 4H, Cy), 1.24–1.12 (m, 1H, Cy);  

13C NMR (126 MHz, CDCl3) δ 128.5 (CH2=CHBrS), 127.8 (CH2=CHBrS), 53.4 (Cy), 33.8 (2 Cy), 25.1 

(2) (Cy), 24.6 (Cy);  

HRMS calculated for C8H14BrNO2S 269.1792 (M+H)+; found 269.1796 (TOF MS ES+). 
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1-Bromo-N-(3-methoxypropyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.2 (71%, 

120.6 mg) was isolated as brownish oil. 

Rf = 0.46 (EtOAC:Hexane = 1:1);  

FTIR (neat): 3236, 3112, 2971, 2879, 1619, 1453, 1349, 1193 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.83 (d, J = 2.9 Hz, 1H, CH2=CBrS), 6.21 (d, J = 2.9 Hz, 1H, CH2=CBrS), 

5.51 (s, 1H, NH), 3.63–3.46 (m, 2H, CH2), 3.35 (s, 3H, OMe), 3.25–3.02 (m, 2H, CH2), 1.92–1.77 (m, 2H, 

CH2);  

13C NMR (126 MHz, CDCl3) δ 128.3 (CH2=CHBrS), 127.1 (CH2=CHBrS), 71.7 (CH2OMe), 58.9 (OMe), 

42.8 (CH2), 28.6 (CH2);  

HRMS calculated for C6H12BrNO3S 257.9794 (M+H)+; found 257.9804 (TOF MS ES+).  
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N-Benzyl-1-bromoethenesulfonamide  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.3 (79%, 

132.5 mg) was isolated as brownish oil. 

Rf = 0.69 (EtOAc:Hexane 1:1);  

FTIR (neat): 3106, 2999, 2910, 1612, 1457, 1341, 1201 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.41–7.30 (m, 5H, Ph), 6.88 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.23 (d, J = 

3.0 Hz, 1H, CH2=CBrS), 5.04–4.63 (m, 1H, NH), 4.24 (d, J = 6.0 Hz, 2H CH2);  

13C NMR (126 MHz, CDCl3) δ 135.6 (CAr), 128.8 (2CAr), 128.7 (CAr), 128.3 (CH2=CH), 128.1 (2CAr), 

127.1 (CH2=CH), 47.7 (CH2);  

HRMS calculated for C9H10BrNO2S 275.9688 (M+H)+; found 275.9692 (TOF MS ES+). 
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1-Bromo-N-(tert-butyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.4 (78%, 

118.5 mg) was isolated as white solid. 

Rf = 0.51 (EtOAc:Hexane = 1:2);  

M. P. = 96–97 ºC;  

FTIR (neat): 3102, 2991, 2901, 1612, 1453, 1349, 1193 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.86 (d, J = 2.9 Hz, 1H, CH2=CBrS), 6.13 (d, J = 2.9 Hz, 1H, CH2=CBrS), 

1.37 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 131.2 (CH2=CBrS), 126.9 (CH2=CBrS), 55.4 (C tBu), 29.7 (tBu,);  

HRMS calculated for C6H12BrNO2S 259.0110 (M+H)+; found 259.0106 (TOF MS ES+). 
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Methyl ((1-bromovinyl)sulfonyl)-L-valinate  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.5 (73%, 

2.89 g) was isolated as brownish oil.  

Rf = 0.44 (EtOAC:Hexane = 1:2);  

[𝒂]𝑫𝟐𝟎 = -2.62 (c = 0.008, CH2Cl2);  

FTIR (neat): 2987, 1737, 1435, 1344, 1275, 1260, 1149, 1047, 888 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.83 (s, 1H, CH2=CBrS), 6.17 (s, 1H, CH2=CBrS), 5.23 (d, J = 9.1 Hz, 

1H, NH), 3.87 (dd, J = 9.4, 4.9 Hz, 1H NHCO2Me), 3.78 (s, 3H, OMe), 2.14 (dq, J = 13.5, 6.8 Hz, 1H, 

CH3CHCH3), 1.02 (d, J = 6.8 Hz, 3H, Me), 0.93 (d, J = 6.9 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) δ 171.3 (CO2Me), 128.3 (CH2CBrS), 127.4 (CH2CBrS), 61.8 

(NHCHCO2Me), 52.5 (OMe), 31.8 (MeCHMe), 18.8 (Me), 17.3(Me);  

HRMS calculated for C8H14BrNO4S 321.9719 (M+Na)+; found 321.9734 (TOF MS ES+). 

  

S
N
H

OO

Br

CO2CH3



 
 

210 

Methyl ((1-bromovinyl)sulfonyl)-L-leucinate  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.6 (74%, 

3.54 g) was isolated as syrup. 

Rf = 0.82 (EtOAc:Hexane = 1/1);  

[𝒂]𝑫𝟐𝟎= -13.2 (c = 0.0016, CH2Cl2);  

FTIR (neat): 3112, 2966, 1739, 1602, 1435, 1343, 1273, 1169, 1095, 1056, 885 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.83 (s, 1H, CH2=CBrS), 6.17 (s, 1H, CH2=CBrS), 5.14 (d, J = 9.2 Hz, 

1H, NH), 4.04 (td, J = 8.7, 6.3 Hz, 1H, NHCO2Me), 3.77 (s, 3H, OMe), 1.84 (dp, J = 13.4, 6.7 Hz, 1H, 

MeCHMe), 1.65–1.53 (m, 2H, CH2), 0.95 (t, J = 6.3 Hz, 6H, 2Me);  

13C NMR (126 MHz, CDCl3) δ 172.2 (CO2Me), 128.2 (CH2=CBrS), 127.4 (CH2=CBrS), 55.1 

(NHCHCO2Me), 52.5 (OMe), 42.5 (CH2), 24.3 (MeCHMe), 22.6 (Me), 21.6 (Me);  

HRMS calculated for C9H16BrNO4S 314.0056 (M+H)+; found 314.0049 (TOF MS ES+). 
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Methyl ((1-bromovinyl)sulfonyl)-L-isoleucinate  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.7 (74%, 

3.54 g) was isolated as brownish oil.  

Rf = 0.82 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎	= 9.37 (c = 0.0858, CH2Cl2);  

FTIR (neat): 3112, 2966, 1739, 1602, 1435, 1343, 1273, 1169, 1095, 1056, 885 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.85 (d, 1H CH2=CBrS), 6.19 (d, 1H, CH2=CBrS), 5.24 (d, J = 9.2 Hz, 1H, 

NH), 3.92 (dd, J = 9.3, 5.1 Hz, 1H, NHCHCO2Me), 3.77 (s, 3H, OMe), 1.87 (dddt, J = 11.4, 6.8, 4.6, 2.3 

Hz, 1H, MeCHCH2Me), 1.46 (dtd, J = 14.9, 7.4, 4.5 Hz, 1H, CHCH2Me), 1.34 – 1.13 (m, 1H, 

CHCH2Me), 0.97 (d, J = 6.8 Hz, 3H, Me), 0.92 (t, J = 7.4 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) δ 171.2 (CO2Me), 128.3(CH2=CBrS), 127.4 (CH2=CBrS), 61.0 

(NHCHCO2Me), 52.4 (OMe), 38.6 (MeCHCH2), 24.6 (CH2), 15.3 (Me), 11.3 (Me);  

HRMS calculated for C9H16BrNO4S 314.0056 (M+H)+; found 314.0049 (TOF MS ES+).
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Methyl ((1-bromovinyl)sulfonyl)-L-phenylalaninate  

 

 According to the reaction protocol described in general procedure B, compound 2.4.1.4.8 (62%, 

2.6 g) was isolated as brownish oil.   

Rf = 0.55 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -5.5 (c = 0.004, CH2Cl2);  

FTIR (neat): 2955, 2910, 1734, 1458, 1364, 1182, 1094, 1038, 922, 781 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.38–7.26 (m, 3H, 2m/1p-CH), 7.21–7.13 (m, 2H, 2o-CH), 6.78 (d, J = 

3.0 Hz, 1H, CH2=CBrS), 6.12 (d, J = 3.0 Hz, 1H, CH2=CBrS), 5.20 (d, J = 8.5 Hz, 1H, NH), 4.33 (dt, J = 

8.5, 5.7 Hz, 1H, NHCHCO2Me), 3.74 (d, J = 1.5 Hz, 3H, OMe), 3.14 (d, J = 5.7 Hz, 2H, CH2);  

13C NMR (126 MHz, CDCl3) δ 170.7 (CO2Me), 134.5 (CAr), 129.5 (2 CAr), 128.7 (2 CAr), 128.6 (CAr), 

128.2 (CH2=CBrS), 127.4 (CH2=CBrS), 57.3 (NHCHCO2Me), 52.6 (OMe), 39.5 (CH2);  

HRMS calculated for C12H14BrNO4S 369.9719 (M+Na)+; found 369.9750 (TOF MS ES+).  
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1-Bromo-N-cyclohexyl-N-(prop-2-yn-1-yl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.1 (90%, 

3.02g) was isolated as a brown syrup.  

Rf = 0.64 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3283, 2935, 2857, 1602, 1338, 1050, 884 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.84 (d, J = 2.9 Hz, 1H, CH2=CBrS), 6.14 (d, J = 2.9 Hz, 1H, CH2=CBrS), 

4.09 (d, J = 2.5 Hz, 2H, NCH2CCH), 3.69 (tt, J = 12.1, 3.7 Hz, 1H, CH), 2.26 (t, J = 2.5 Hz, 1H, 

NCH2CCH), 2.01 – 1.92 (m, 2H, Cy), 1.88 – 1.78 (m, 2H, Cy), 1.63 (td, J = 12.3, 3.5 Hz, 2H, Cy), 1.58 

(dd, J = 12.4, 3.6 Hz, 1H, Cy), 1.32 (qt, J = 13.2, 3.5 Hz, 2H, Cy), 1.09 (qt, J = 13.1, 3.7 Hz, 1H, Cy);  

13C NMR (126 MHz, CDCl3) δ 128.0 (CH2=CHBrS), 127.8 (CH2=CHBrS), 79.5 (CH2CCH), 72.3 

(CH2CCH), 59.2 (NCHCy), 33.2 (CH2CCH), 31.6 (2 Cy), 25.9 (2 Cy), 25.1 (Cy);  

HRMS calculated for C11H16BrNO2S 306.0158 (M+H)+; found 306.0164 (TOF MS ES+). 
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1-Bromo-N-(3-methoxypropyl)-N-(prop-2-yn-1-yl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.2 (18%, 

22 mg) was isolated as a brown syrup.  

Rf = 0.57 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3279, 3111, 3057, 2927, 2876, 1622, 1331, 1163, 1068, 882, 631 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.84 (d, J = 2.7 Hz, 1H, CH2=CBrS), 6.19 (d, J = 2.7 Hz, 1H, 

CH2=CBrS), 4.14 (d, J = 1.9 Hz, 2H, NCH2CC), 3.53 (t, J = 7.1 Hz, 2H, NCH2), 3.44 (t, J = 6.0 Hz, 2H, 

CH2OMe), 3.33 (s, 3H, OMe), 2.33 (s, 1H, CCH), 1.90 (p, J = 6.4 Hz, 2H, CH2CH2CH2); 

13C NMR (126 MHz, CDCl3) δ 128.6 (CH2=CBrS), 126.9 (CH2=CBrS), 76.6 (CH2CCH), 74.0 

(CH2CCH), 69.5 (CH2OMe), 58.8 (OMe), 45.6 (CH2), 37.4 (NCH2CCH), 28.4 (CH2); 

HRMS calculated for C9H14BrNO3S 317.9770 (M+Na)+; found 317.9759 (TOF MS ES+).
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N-Benzyl-1-bromo-N-(prop-2-yn-1-yl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.3 (94%, 

63 mg) was isolated as a brown syrup.  

Rf = 0.48 (EtOAc:Hexane = 1:3);  

FTIR (neat): 3285, 3062, 2932, 2871, 2123, 1601, 1497, 1454, 1358, 1061, 905, 736, 700 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.42–7.31 (m, 5H, Ph), 6.91 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.24 (d, J = 

3.0 Hz, 1H, CH2=CBrS), 4.64 (s, 2H, NCH2CC), 3.94 (d, J = 2.4 Hz, 2H, CH2), 2.37 (t, J = 2.4 Hz, 1H, 

CCH); 

13C NMR (126 MHz, CDCl3) δ 134.8 (CAr), 128.9 (2 CAr), 128.8 (2 CAr), 128.6 (CAr), 128.4 (CH2=CBrS), 

127.2 (CH2=CBrS), 75.9 (CCH), 74.5 (CCH), 51.4 (CH2Ph), 36.0 (NCH2CCH); 

HRMS calculated for C12H12BrNO2S 313.9845 (M+H)+; found 313.9854 (TOF MS ES+).
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1-Bromo-N-(tert-butyl)-N-(prop-2-yn-1-yl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.4 (95%, 

2.87 g) was isolated as a brown syrup.  

Rf = 0.43 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2957, 2884, 2400, 1773, 1724, 1182, 1069, 1036, 991, 959, 922 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.82 (d, J = 2.7 Hz, 1H, CH2=CBrS), 6.10 (d, J = 2.8 Hz, 1H, CH2=CBrS), 

4.24 (s, 2H, NCH2CCH), 2.33 (s, 1H, NCH2CCH), 1.54 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 131.0 (CH2=CBrS), 126.9 (CH2=CBrS), 81.0 (NCH2CCH), 72.5 

(NCH2CCH), 61.0 (CtBu) , 37.1 (NCH2CCH), 29.7 (tBu);  

HRMS calculated for C9H14BrNO2S 280.0001 (M+H)+; found 280.0013 (TOF MS ES+).  
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Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-valinate  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.5 (57%, 

11.9g) was isolated as an orange oil.  

Rf = 0.63 (EtOAc:Hexane = 1:2);  

[𝜶]𝑫𝟐𝟎 = -22.8 (c = 0.007, CH2Cl2);  

FTIR (neat): 1205, 1255, 1300, 1346, 1435, 1469, 1600, 1739, 2848, 2875, 2966, 3022, 3111, 3284 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.88 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.20 (d, J = 3.0 Hz, 1H, CH2=CBrS), 

4.52 (dd, J = 18.8, 2.5 Hz, 1H, NCH2CCH), 4.29 (dd, J = 18.8, 2.5 Hz, 1H, NCH2CCH), 4.03 (d, J = 10.4 

Hz, 1H CCH), 3.73 (s, 3H, OMe), 2.20 (m, 2H, NCHCH), 1.16 (d, J = 6.6 Hz, 3H, Me), 0.97 (d, J = 6.6 

Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) δ 170.7 (CO2Me), 129.3 (CH2=CBrS), 126.5 (CH2=CBrS), 78.9 (CCH), 

72.4 (CCH),), 65.6 (NCHCO2Me), 51.7 (OMe), 35.1 (CH2CCH), 28.9 (MeCHMe), 19.9 (Me), 19.1 (Me);  

HRMS calculated for C11H16BrNO4S 338.0056 (M+H)+; found 338.0054 (TOF MS ES+).
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Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-leucinate  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.6 (89%, 

3.1g) was isolated as a white solid.  

Rf = 0.71 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 =  -0.6 (c = 0.0016, CH2Cl2);  

FTIR (neat): 2958, 2870, 1741, 1642, 1469, 1273, 1156, 1055, 873 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.85 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.18 (d, J = 2.9 Hz, 1H, CH2=CBrS), 

4.54 (dd, J = 9.7, 5.1 Hz, 1H, NCH2CCH), 4.36–4.26 (m, 2H, CH2CCH), 3.73 (s, 3H, OMe), 2.29 (t, J = 

2.4 Hz, 1H, CCH), 1.91 (tdd, J = 13.1, 8.3, 4.5 Hz, 2H, CH2MeCHMe), 1.71 (td, J = 8.7, 3.7 Hz, 1H, 

CH2MeCHMe), 0.99 (d, J = 6.4 Hz, 3H, Me), 0.97 (d, J = 6.5 Hz, 3H, Me) 

13C NMR (126 MHz, CDCl3) δ 171.7 (CO2Me), 128.8 (CH2=CBrS), 127.0 (CH2=CBrS), 79.0 (CCH), 

72.6 (CCH), 58.5 (NCHCO2Me), 52.3 (OMe), 39.2 (CH2), 35.4 (CH2), 24.5 (CH), 22.7 (Me), 21.5(Me) 

HRMS calculated for C12H18BrNO4S 352.0213 (M+H)+; found 352.0240 (TOF MS ES+)  
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Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-isoleucinate  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.7 (85%, 

3.4g) was isolated as a clear oil.  

Rf = 0.68 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -41.5; (c = 0.004, CH2Cl2);  

FTIR (neat): 3284, 2967, 2936, 2878, 1738, 1602, 1462, 1435, 1258, 1150, 1048, 880 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.87 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.20 (d, J = 3.0 Hz, 1H, CH2=CBrS), 

4.55 (dd, J = 18.9, 2.5 Hz, 1H, NCH2CCH), 4.30 (dd, J = 18.9, 2.5 Hz, 1H, NCH2CCH), 4.09 (d, J = 10.4 

Hz, 1H, CCH), 3.72 (s, 3H, OMe), 2.30 (t, J = 2.5 Hz, 1H, NCHCO2Me), 2.13-1.84 (m, 2H, 

MeCH2CHMe), 1.27-1.11 (m, 1H, MeCH2CHMe), 1.02-0.82 (m, 6H, 2Me);  

13C NMR (126 MHz, CDCl3) δ 171.0 (CO2Me), 129.5 (CH2=CBrS), 126.5 (CH2=CBrS), 79.3 (CCH), 

72.2 (CCH), 64.5 (NCHCO2Me), 51.8 (OMe), 35.2 (NCH2), 35.0 (MeCHCH2), 25.7 (CH2Me), 15.3 (Me), 

10.7 (Me);  

HRMS calculated for C12H18BrNO4S 352.0213 (M+H)+; found 352.0239 (TOF MS ES+).  
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Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-phenylalaninate  

 

 According to the reaction protocol described in general procedure C, compound 2.4.1.5.8 (55%, 

2.6 g) was isolated as a clear oil.  

Rf = 0.65 (EtOAc:Hexane = 1:2);  

[𝒂]𝑫𝟐𝟎 = -27.81 (c = 0.0055, CH2Cl2);  

FTIR (neat): 3283, 2970, 2359, 2341, 1742, 1344, 1286, 1226, 1163, 1149, 700 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.39–7.23 (m, 5H, Ph), 6.81 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.13 (d, J = 

3.0 Hz, 1H, CH2=CBrS), 4.73 (ddd, J = 8.8, 6.7, 2.4 Hz, 1H NCHCO2Me), 4.45–4.29 (m, 2H, CH2Ph), 

3.71 (s, 1H, CCH) 3.65 (s, 3H, OMe), 3.41 (dd, J = 13.8, 8.8 Hz, 1H, NCH2CCH), 3.28 (dd, J = 13.8, 6.4 

Hz, 1H, NCH2CCH);  

13C NMR (126 MHz, CDCl3) δ 170.3 (CO2Me), 136.0 (CAr), 129.2 (2 CAr), 128.7 (CAr), 128.6 (2 CAr), 

128.6 (CH2=CBrS), 127.1 (CH2=CBrS), 78.2 (CCH), 73.4 (CCH), 61.4 (NCHCO2Me), 52.1 (OMe), 36.7 

(CH2CCH), 35.6 (CHCH2Ph);  

HRMS calculated for C15H16BrNO4S 403.0322 (M+NH4)+; found 403.0345 (TOF MS ES+). 
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1-Bromo-N-cyclohexyl-N-((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.1 (78%, 

0.97 g) was isolated as brownish oil. 

Rf = 0.62 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2934, 2857, 1642, 1601, 1547, 1516, 1451, 1338, 1051, 886, 815 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.61 (s, 1H, CHNNN), 7.18–7.11 (m, 4H Ar), 6.76 (d, J = 2.8 Hz, 1H, 

CHCBr), 6.09 (d, J = 2.8 Hz, 1H, CHCBr), 5.46 (s, 2H, NCH2Ar), 4.59 (s, 2H, NCH2NNN), 3.56 (tt, J = 

12.1, 3.7 Hz, 1H, NCHCH2), 2.34 (s, 3H, Me), 1.80–1.66 (m, 4H, Cy), 1.61–1.44 (m, 4H, Cy), 1.30–1.18 

(m, 2H, Cy);  

13C NMR (126 MHz, CDCl3) δ 146.5 (CAr), 138.6 (CAr), 131.6 (SO2NCH2CC), 129.7 (2 CAr), 128.0 

(CH2=CBrS), 127.9 (CH2=CBrS), 127.8 (2 CAr), 123.7 (SO2NCH2CC), 59.1 (ArCH2), 54.0 (NCH), 40.1 

(NCH2), 31.6 (2Cy), 26.0 (2Cy), 24.9 (Cy), 21.1 (Me);   

HRMS calculated for C19H25BrN4O2S 453.0954 (M+H)+; found 453.0967 (TOF MS ES+). 
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1-Bromo-N-cyclohexyl-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-

yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.2 (65%, 

0.906 g) was isolated as brownish oil. 

Rf = 0.26 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3145, 3112, 3057, 2937, 2859, 1621, 1601, 1452, 1324, 1052, 886, 817 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.68 (s, 1H, CHNNN), 7.54 (d, J = 8.1 Hz, 2H, m-CH), 7.29 (d, J = 8.1 

Hz, 2H, o-CH), 6.71 (d, J = 3.0 Hz, 1H, CHCBr), 6.05 (d, J = 2.9 Hz, 1H, CHCBr), 5.54 (s, 2H, ArCH2), 

4.55 (s, 2H, NCH2), 3.51 (tt, J = 12.0, 3.5 Hz, 1H, NCH), 1.72–1.61 (m, 4H, Cy), 1.54–1.38 (m, 4H, Cy), 

1.24–1.12 (m, 2H, Cy);  

13C NMR (126 MHz, CDCl3) δ 146.8 (SO2NCH2CC), 138.7 (CAR), 130.5 (CAr, q, 2JC–CF3 = 32.81 Hz), 

127.9 (CH2=CBrS), 127.8 (2 CAr), 127.5 (CH2=CBrS), 125.71 (q, 3JC–CF3 = 3.79 Hz, 2 CAr), 123.9 

(SO2NCH2CC), 123.5 (q, 1JC–CF3 = 272.10 Hz, CF3), 58.9 (NCH), 53.1 (ArCH2), 39.8 (NCH2), 31.5 (2 Cy), 

25.7 (Cy), 24.7 (2 Cy);  

HRMS calculated for C19H22BrF3N4O2S 507.0672 (M+H)+; found 507.0675 (TOF MS ES+).
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1-Bromo-N-cyclohexyl-N-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.3 (88%, 

0.36 g) was isolated as a white solid. 

Rf = 0.29 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3005, 2989, 1605, 1337, 1275, 1260, 1224, 1154, 1128, 1092, 750 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.56 (s, 1H, CHNNN), 7.17 (dd, J = 12.7, 4.8 Hz, 2H, ArH), 6.98 (t, J = 

8.4 Hz, 2H, ArH), 6.71 (d, J = 2.4 Hz, 1H, CHCBr), 6.04 (d, J = 2.4 Hz, 1H, CHCBr), 5.40 (s, 2H, 

ArCH2), 4.53 (s, 2H, NCH2), 3.49 (t, J = 12.0 Hz, 1H, NCH), 1.66 (dd, J = 22.5, 13.0 Hz, 4H, Cy), 1.59 – 

1.32 (m, 3H, Cy), 1.17 (q, J = 13.0 Hz, 2H, Cy), 1.01 (t, J = 12.9 Hz, 1H, Cy);  

13C NMR (126 MHz, CDCl3) δ 162.9 (d, J = 247.5 Hz, CAr), 147.0 (SO2NCH2CC), 130.6 (d, J = 3.3 Hz, 

SO2NCH2CC), 129.9 (d, J = 8.5 Hz, 2 CAr), 128.2 (CH2=CBrS), 127.8 (CH2=CBrS), 123.8 (CAr), 116.2 (d, 

J = 21.8 Hz, 2 CAr), 59.2 (ArCH2), 53.5 (NCH), 40.2 (NCH2), 31.7 (2 Cy), 26.1 (Cy), 25.0 (2 Cy);  

HRMS calculated for C18H22BrFN4O2S 457.0709 (M+H)+; found 457.0720 (TOF MS ES+). 

  

N
S
OO

N
N

N

F

Br



 
 

224 

N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-bromo-N-cyclohexylethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.4 (91%, 

0.44 g) was isolated as brown oil. 

Rf = 0.33 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3120, 2934, 2857, 1601, 1454, 1338, 1167, 1153, 1090, 1031, 916, 816, 718 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.65 (s, 1H, CHNNN), 7.39 (d, J = 5.9 Hz, 3H, ArH), 7.29 (d, J = 6.0 Hz, 

2H, ArH), 6.79 (d, J = 2.3 Hz, 1H, CHCBr), 6.12 (d, J = 2.3 Hz, 1H, CHCBr), 5.54 (s, 2H, ArCH2), 4.63 

(s, 2H, NCH2), 3.60 (t, J = 11.9 Hz, 1H, NCH), 1.88–1.70 (m, 4H, Cy), 1.68–1.44 (m, 3H, Cy), 1.28 (q, J 

= 13.0 Hz, 2H, Cy), 1.12 (t, J = 12.8 Hz, 1H, Cy);  

13C NMR (126 MHz, CDCl3) δ 146.6 (SO2NCH2CC), 134.6 (CAr), 129.0 (2 CAr), 128.7 (CH2=CBrS), 

128.0 (CH2=CBrS), 127.8 (SO2NCH2CC), 127.8 (2 CAr), 123.8 (CAr), 59.1 (ArCH2), 54.2 (NCH), 40.1 

(NCH2), 31.6 (Cy), 26.0 (2 Cy), 24.9 (2 Cy);  

HRMS calculated for C18H23BrN4O2S 439.0798 (M+H)+; found 439.0807 (TOF MS ES+). 

 

N
S
OO

N
N

N

Br



 
 

225 

1-bromo-N-cyclohexyl-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.5 (76%, 

0.955 g) was isolated as colorless oil. 

Rf = 0.63 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3147, 3110, 3053, 2935, 2857, 1618, 1600, 1589, 1493, 1455, 1051, 886, 759 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.65 (s, 1H, CHNNN), 7.14 (td, J = 7.5, 1.8 Hz, 1H, ArH), 7.08–7.05 (m, 

1H, ArH), 7.31–7.24 (m, 1H, ArH), 7.05–7.01 (m, 1H, ArH), 6.69 (d, J = 2.9 Hz, 1H, CHCBr), 6.02 (d, J 

= 2.9 Hz, 1H, CHCBr), 5.51 (s, 2H, ArCH2), 4.54 (s, 2H, NCH2), 3.52 (tt, J = 12.0, 3.5 Hz, 1H, NCH), 

1.74–1.62 (m, 4H, Cy), 1.55–1.39 (m, 4H, Cy), 1.24–1.10 (m, 2H, Cy); 

13C NMR (126 MHz, CDCl3) δ 160.3 (d, J = 248.1 Hz, CAR), 146.2 (SO2NCH2CC), 130.6 (d, 3JC–F = 8.19 

Hz, CAr), 130.0 (d, 5JC–F = 3.08 Hz, CAr), 127.8 (CH2=CBrS), 127.6 (CH2=CBrS), 124.5 (d, 4JC–F = 3.70 

Hz, CAr), 123.73 (SO2NCH2CC), 121.7 (d, 2JC–F = 14.61 Hz, CAr), 115.5 (d, 6JC–F = 20.95 Hz, CAr), 58.9 

(NCH), 47.5 (d, benzylCH2JC–F = 4.46 Hz), 39.8 (NCH2), 31.4 (2, Cy), 25.8 (Cy), 24.7 (2, Cy);  

HRMS calculated for C18H22BrFN4O2S 457.0704 (M+H)+; found 457.0712 (TOF MS ES+).

S
N

Br

OO

N
N

N
F



 
 

226 

1-Bromo-N-cyclohexyl-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.6 (84%, 

0.395 g) was isolated as colorless oil. 

Rf = 0.24 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3145, 3110, 3055, 2936, 2858, 1613, 1547, 1586, 1340, 1304, 1222, 1154, 1129, 1092, 999, 

916, 886, 850, 736, 702 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.58 (s, 1H, CHNNN), 7.20 (d, J = 8.6 Hz, 2H, ArH), 6.88 (d, J = 8.6 Hz, 

2H, ArH), 6.76 (d, J = 2.8 Hz, 1H, CHCBr), 6.09 (d, J = 2.8 Hz, 1H, CHCBr), 5.43 (s, 2H, Bn), 4.58 (s, 

2H, NCH2), 3.80 (s, 3H, OCH3), 3.60–3.50 (m, 1H, NCH), 1.73 (dd, J = 27.2, 13.1 Hz, 4H, Cy), 1.55–

1.44 (m, 3H, Cy), 1.25 (ddd, J = 16.3, 8.5, 3.3 Hz, 2H, Cy), 1.15–1.02 (m, 1H, Cy);  

13C NMR (126 MHz, CDCl3) δ 159.8 (COCH3), 146.5 (SO2NCH2CC), 129.4 (2 CAr), 128.0 

(SO2NCH2CC), 127.8 (CH2=CBrS), 126.6 (CH2=CBrS), 123.5 (CAr), 114.4 (2 CAr), 59.1 (Bn), 55.3 

(NCH), 53.7 (OCH3), 40.1 (NCH2), 31.6 (Cy), 26.0 (Cy), 24.9 (Cy);  

HRMS calculated for C19H25BrN4O3S 469.0904 (M+H)+; found 469.0919 (TOF MS ES+). 
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1-Bromo-N-(3-methoxypropyl)-N-((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-

sulfonamide   

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.7 (78%, 

1.81 g) was isolated as brown oil. 

Rf = 0.25 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2955, 2883, 1724, 1182, 1070, 1036, 991, 922 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.52 (s, 1H, CHNNN), 7.17 (d, J = 3.1 Hz, 4H, ArH), 6.78 (d, J = 2.9 Hz, 

1H, CHCBr), 6.09 (d, J = 2.9 Hz, 1H, CHCBr), 5.47 (s, 2H, Bn), 4.56 (s, 2H, NCH2), 3.40 (t, J = 7.4Hz, 

2H, CH2OMe), 3.31 (t, J = 6.1 Hz, 2H, NCH2), 3.26 (s, 3H, OMe), 2.35 (s, 3H, Me), 1.90–1.78 (m, 2H, 

CH2);  

13C NMR (126 MHz, CDCl3) δ 144.1 (CAr), 138.8 (CHCCH2), 131.3 (SO2NCH2CC), 129.8 (2 CAr), 128.2 

(CH2=CBrS), 128.1 (2 CAr), 127.2 (CH2=CBrS), 123.1 (SO2NCH2CC), 69.3 (CH2OMe), 58.5 (OMe), 54.1 

(ArCH2), 46.5 (NCH2), 44.0 (NCH2CH2), 28.2 (CH2), 21.1 (Me);  

HRMS calculated for C17H23BrN4O3S 443.0747 (M+H)+; found 443.0753 (TOF MS ES+). 
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1-bromo-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-N-(3-

methoxypropyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.8 (84%, 

1.97 g) was isolated as brownish oil. 

Rf = 0.28 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2931, 2876, 1641, 1618, 1452, 1339, 1158, 1115, 1051, 881, 754 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.59 (s, 1H, CHNNN), 7.35 (td, J = 8.0, 5.8 Hz, 1H, ArH), 7.08–7.02 (m, 

2H, ArH), 6.94 (dt, J = 9.1, 2.1 Hz, 1H, ArH), 6.80 (d, J = 2.9 Hz, 1H, CHCBr), 6.13 (d, J = 2.8 Hz, 1H, 

CHCBr), 5.52 (s, 2H, Bn), 4.59 (s, 2H, NCH2), 3.43–3.39 (m, 2H, CH2OMe), 3.32 (t, J = 6.0 Hz, 2H, 

NCH2CH2), 3.26 (s, 3H, OMe), 1.87–1.80 (m, 2H, CH2); 

13C NMR (126 MHz, CDCl3) δ 163.0 (d, 1JC–F = 247.47 Hz, CAr), 144.6 (SO2NCH2CC), 136.8 (d, 3JC–F = 

6.93 Hz, CAr), 130.8 (d, 5JC–F = 7.71 Hz, CAr), 128.4 (CH2=CBrS), 127.1 (CH2=CBrS), 123.5 (d, 4JC–F = 

3.03 Hz, CAr), 123.4 (SO2NCH2CC), 115.9 (d, 2JC–F = 20.95 Hz, CAr), 114.9 (d, 6JC–F = 22.21 Hz, CAr), 

69.3 (CH2OMe), 58.5 (OMe), 53.6 (NCH2), 46.6 (NCH2CH2), 44.2 (Bn), 28.3 (CH2);  

HRMS calculated for C16H20BrFN4O3S 447.0496 (M+H)+; found 447.0508 (TOF MS ES+). 
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1-bromo-N-(3-methoxypropyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-

yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.9 (89%, 

2.32 g) was isolated as brownish oil. 

Rf = 0.23 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3223, 2999, 2961, 2905, 1612, 1458, 1353, 1201 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.64 (s, 1H, CHNNN), 7.57 (d, J = 8.2 Hz, 2H, m-ArH), 7.37–7.29 (m, 

2H, o-ArH), 6.73 (d, J = 3.0 Hz, 1H, CHCBr), 6.08 (d, J = 3.0 Hz, 1H, CHCBr), 5.56 (s, 2H, ArCH2), 

4.54 (s, 2H, NCH2), 3.39–3.34 (m, 2H, NCH2CH2CH2O), 3.26 (t, J = 6.0 Hz, 2H, NCH2CH2CH2O), 3.19 

(s, 3H, OCH3), 1.81–1.74 (m, 2H, NCH2CH2CH2O);  

13C NMR (126 MHz, CDCl3) δ 144.4 (SO2NCH2CC), 138.5 (SO2NCH2CC), 130.6 (q, 2JC–CF3 = 32.65 Hz, 

CAr), 128.3 (CH2=CBrS), 128.0 (2 CAr), 126.8 (CH2=CBrS), 125.8 (q, 3JC–CF3 = 3.81 Hz 2 CAr), 123.6 (q, 

1JC–CF3 = 270.36 Hz, CF3), 123.4, (CAr), 69.1 (NCH2CH2CH2OCH3), 58.3 (NCH2CH2CH2OCH3), 53.2 

(ArCH2), 46.4 (NCH), 43.9 (NCH2CH2CH2OCH3), 28.1 (NCH2CH2CH2OCH3);  

HRMS calculated for C17H20BrF3N4O3S 497.0464 (M+H)+; found 497.0460 (TOF MS ES+). 
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N-Benzyl-1-bromo-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-

sulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.10 

(35%, 0.773 mg) was isolated as brownish oil. 

Rf = 0.50 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3110, 3064, 3031, 2932, 1646, 1621, 1495, 1325, 1067, 901, 822 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.62 (d, J = 8.1 Hz, 2H, ArH), 7.39 – 7.28 (m, 6H, ArH), 7.27 – 7.23 (m, 

2H, ArH), 6.79 (d, J = 3.0 Hz, 1H, CHCBr), 6.09 (d, J = 3.0 Hz, 1H, CHCBr), 5.50 (s, 2H, ArCH2), 4.50 

(s, 4H, NCH2:N3CH2);  

13C NMR (126 MHz, CDCl3) δ 143.6 (SO2NCH2CC), 138.3 (SO2NCH2CC), 135.1 (CAr), 130.9 (q, J = 

32.7 Hz, CAr), 128.8 (CH2=CBrS), 128.4 (2 CAr), 128.2 (2 CAr), 128.1 (2 CAr), 127.9 (CH2=CBrS), 127.4 

(2 CAr), 125.9 (q, JC–CF3 = 3.7 Hz, CAr), 123.6 (q, 1JC–CF3 = 272.3 Hz, CF3), 123.3 (CAr), 53.3 (Bn), 52.4 

(NCH), 42.8 (Bn);  

HRMS calculated for C20H18BrF3N4O2S 515.0359 (M+H)+; found 515.0363 (TOF MS ES+). 
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N-benzyl-1-bromo-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.11 

(14 %, 0.321 mg) was isolated as brownish oil. 

Rf = 0.55 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2955, 2885, 1458, 1345, 1036, 854, 734 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.42–7.34 (m, 4H, ArH), 7.32–7.27 (m, 3H, ArH), 7.23 (dd, J = 7.5, 1.9 

Hz, 1H, ArH), 7.19–7.11 (m, 2H, ArH), 6.78 (d, J = 2.9 Hz, 1H, CHCBr), 6.04 (d, J = 2.9 Hz, 1H, 

CHCBr), 5.51 (d, J = 1.1 Hz, 2H, ArCH2), 4.52 (s, 2H, NCH2), 4.47 (s, 2H, N3CH2);  

13C NMR (126 MHz, CDCl3) δ 161.5 (CAr), 143.1 (SO2NCH2CC), 135.2 (SO2NCH2CC), 131.0 (d, J = 

8.3 Hz, CAr), 130.6 (d, J = 3.2 Hz, CAr), 130.6 (CH2=CBrS), 128.9 (2 CAr), 128.7 (d, J = 11.7 Hz, CAr), 

128.5 (2 CAr), 128.0 (d, J = 8.3 Hz, CAr), 127.8 (CH2=CBrS), 124.8 (d, J = 3.7 Hz, CAr), 123.4 (CAr), 115.8 

(d, J = 21.1 Hz, CAr), 52.3 (ArCH2), 47.6 (NCH2), 42.4 (NCH2);   

HRMS calculated for C19H18BrFN4O2S 465.0391 (M+H)+; found 465.0396 (TOF MS ES+). 
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N-((1-Benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-bromo-N-(tert-butyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.12 

(74%, 877 mg) was isolated as brownish oil. 

Rf = 0.22 (EtOAc:Hexane = 1:2);   

FTIR (neat): 3138, 3034, 3011, 2983, 2926, 1601, 1497, 1457, 1367, 1053, 876, 754, 699 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.71 (s, 1H, CHNNN), 7.38–7.33 (m, 3H, ArH), 7.26–7.17 (m, 2H, ArH), 

6.79 (d, J = 3.0 Hz, 1H, CHCBr), 6.10 (d, J = 3.0 Hz, 1H, CHCBr), 5.53 (s, 2H, ArCH2), 4.78 (s, 2H, 

NCH2), 1.42 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 134.81 (SO2NCH2CC), 131.23 (SO2NCH2CC), 129.09 (2 CAr), 128.70 

(CH2=CBrS), 127.88 (2 CAr), 126.98 (CH2=CBrS), 60.83 (Bn), 54.24 (C tBu), 43.76 (NCH2), 29.96 (C 

tBu);  

HRMS calculated for C16H21BrN4O2S 413.0641 (M+H)+; found 413.0649 (TOF MS ES+). 
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1-bromo-N-(tert-butyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-

yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.13 

(87%, 1.085 g) was isolated as brownish oil. 

Rf = 0.60 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2981, 1644, 1512, 1438, 1370, 1067, 876, 819 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.76 (s, 1H, CHNNN), 7.67–7.56 (m, 2H, ArH), 7.35 (ddt, J = 7.6, 1.6, 

0.8 Hz, 2H, ArH), 6.80 (d, J = 3.0 Hz, 1H, CHCBr), 6.12 (d, J = 3.0 Hz, 1H, CHCBr), 5.59 (s, 2H, 

ArCH2), 4.79 (d, J = 0.6 Hz, 2H, NCH2), 1.42 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 147.7 (SO2NCH2CC), 138.8 (SO2NCH2CC), 131.2 (CH2=CBrS), 130.9 

(m, CAr) 128.1 (2 CAr), 127.2 (CH2=CBrS), 126.2 (q, J = 11.6 Hz, CAr), 124.5 (2 CAr), 123.9 (d, J = 272.4, 

CF3), 60.9 (Bn), 53.6 (CtBu), 43.8 (NCH2), 30.0 (tBu). 

HRMS calculated for C17H20BrF3N4O2S 481.0515 (M+H)+; found 481.0527 (TOF MS ES+). 
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1-Bromo-N-(tert-butyl)-N-((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide   

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.14 

(66%, 1.465 g) was isolated as brownish oil. 

Rf = 0.57 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3111, 3053, 2979, 2944, 2925, 1644, 1616, 1516, 1440, 1370, 1072, 930, 843 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.69 (s, 1H, CHNNN), 7.18–7.12 (m, 4H, ArH), 6.79 (d, J = 3.0 Hz, 1H, 

CHCBr), 6.10 (d, J = 3.0 Hz, 1H, CHCBr), 5.47 (s, 2H, ArCH2), 4.77 (s, 2H, NCH2), 2.35 (s, 3H, ArMe), 

1.41 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 147.0 (SO2NCH2CC), 138.6 (SO2NCH2CC), 131.6 (CAr), 131.1 

(CH2=CBrS), 129.7 (2 CAr), 127.9 (2, CAr), 126.9 (CH2=CBrS), 124.1 (CAr), 60.8 (Bn), 54.0 (CtBu), 43.7 

(NCH2), 29.9 (3 tBu), 21.1 (ArMe);  

HRMS calculated for C17H23BrN4O2S 427.0798 (M+H)+; found 427.0811 (TOF MS ES+). 
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1-bromo-N-(tert-butyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.15 

(57%, 0.572 g) was isolated as brownish oil. 

Rf = 0.57 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3060, 2980, 2944, 1644, 1618, 1593, 1452, 1401, 1370, 1040m 931, 875, 737 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.74 (s, 1H, CHNNN), 7.34 (ddd, J = 8.3, 7.6, 5.8 Hz, 1H, ArH), 7.12–

6.98 (m, 2H, ArH), 6.92 (dt, J = 9.4, 2.1 Hz, 1H, ArH), 6.80 (d, J = 3.0 Hz, 1H, CHCBr), 6.11 (d, J = 3.0 

Hz, 1H, CHCBr), 5.52 (s, 2H, ArCH2), 4.79 (d, J = 0.6 Hz, 2H, NCH2), 1.42 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 163.1 (d, J = 247.2 Hz, CAr), 147.4 (SO2NCH2CC), 137.1 (d, 3JC–F = 7.36 

Hz, CAr), 131.1 (CH2=CBrS), 130.7 (d, 5JC–F = 8.19 Hz, CAr), 127.0 (SO2NCH2CC), 124.3 (CH2=CBrS), 

123.30 (d, 4JC–F = 3.07 Hz, CAr), 115.7 (d, 2JC–F = 22.12 Hz, CAr), 114.7 (d, 6JC–F = 22.35 Hz, CAr), 60.8 

(Bn), 53.5 (CtBu), 43.7 (NCH2), 29.9 (tBu);  

HRMS calculated for C16H20BrFN4O2S 437.0629 (M+Li)+; found 437.0649 (TOF MS ES+).  
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1-Bromo-N-(tert-butyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.16 

(78%, 0.97 g) was isolated as brownish oil. 

Rf = 0.57 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3144, 3107, 2978, 2938, 1613, 1514, 1334, 1250, 1151, 1031, 813 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.66 (s, 1H, CHNNN), 7.20 (d, J = 8.3 Hz, 2H, ArH), 6.87 (d, J = 8.2 Hz, 

2H, ArH), 6.78 (d, J = 2.9 Hz, 1H, CHCBr), 6.09 (d, J = 2.9 Hz, 1H, CHCBr), 5.44 (s, 2H, ArCH2), 4.75 

(s, 2H, NCH2), 3.80 (d, J = 1.0 Hz, 3H, OMe), 1.40 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 159.2 (CAr), 146.4 (SO2NCH2CC), 130.6 (CH2=CBrS), 128.9 (2 CAr), 

126.5 (CAr), 126.5 (CH2=CBrS), 123.5 (SO2NCH2CC), 113.8 (2 CAr), 60.2 (CH2), 54.8 (OMe), 53.1 

(CtBu), 43.2 (CH2), 29.4 (tBu);  

HRMS calculated for C17H23BrN4O3S 443.0747 (M+H)+; found 443.0745 (TOF MS ES+). 
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1-bromo-N-(tert-butyl)-N-((1-(2-methylallyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.17 

(65%, 0.65 g) was isolated as brownish oil. 

Rf = 0.57 (EtOAc:Hexane = 1:1);    

FTIR (neat): 2978, 1658, 1603, 1459, 1442, 1402, 1335, 1036 876 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.75 (s, 1H, CHNNN), 6.82 (d, J = 3.0 Hz, 1H, CHCBrS), 6.13 (d, J = 3.0 

Hz, 1H, CHCBrS), 5.04–5.01 (m, 1H, CH2=CMe), 4.89 (s, 3H, CH2=CMe:CH2), 4.80 (s, 2H, CH2), 1.68 

(s, 3H, Me), 1.42 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 147.1 (SO2NCH2CC), 139.1 (CH2=CMe), 131.2 (SO2NCH2CC), 126.9 

(CH2=CBrS), 124.1 (CH2=CBrS), 115.4 (CH2=CMe), 60.8 (CH2), 56.3 CtBu), 43.9 (CH2), 29.9 (tBu), 

19.6 (Me);  

HRMS calculated for C13H21BrN4O2S 375.0490 (M-H)+; found 375.0507 (TOF MS ES+). 
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1-bromo-N-(tert-butyl)-N-((1-(2-methoxyethyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.18 

(78 %, 0.54 g) was isolated as brown oil. 

Rf = 0.32 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3114, 2980, 2934, 2834, 1645, 1474, 1440, 1370, 1345, 1157, 1077, 1043, 878 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.82 (d, J = 2.9 Hz, 1H, CHCBrS), 6.12 (d, J = 2.8 Hz, 1H, CHCBrS), 

4.78 (s, 2H, NCH2), 4.58 (s, 2H, CH2), 3.79 (s, 2H, CH2), 3.33 (s, 3H, OMe), 1.44 (s, 9H, tBu); 

13C NMR (126 MHz, CDCl3) δ 131.4 (SO2NCH2CC), 127.0 (SO2NCH2CC), 70.6 (CH2), 68.1 (CH2), 

60.9 (CtBu), 59.1 (OMe), 30.0 (tBu); 

HRMS calculated for C12H21BrN4O3S 381.0591 (M+H)+; found 381.0571 (TOF MS ES+). 
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2-(4-((1-bromo-N-(tert-butyl)vinylsulfonamido)methyl)-1H-1,2,3-triazol-1-yl)ethyl acetate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.19 

(96%, 0.91 g) was isolated as brownish oil. 

Rf = 0.33 (EtOAc:Hexane = 1:1);   

FTIR (neat): 2989, 2902, 2912, 1605, 1459, 1359, 1175 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.83 (s, 1H, CHNNN), 6.82 (d, J = 3.0 Hz, 1H, CHCBrS), 6.13 (d, J = 3.0 

Hz, 1H, CHCBrS), 4.80 (d, J = 0.6 Hz, 2H, NCH2), 4.62 (dd, J = 5.9, 4.6 Hz, 2H, CH2), 4.46 (dd, J = 5.9, 

4.6 Hz, 2H, CH2), 2.06 (s, 3H, CO2Me), 1.42 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 170.4 (CO), 141.1 (SO2NCH2CC), 136.9 (CH2=CBrS), 127.1 

(SO2NCH2CC), 114.0 (CH2=CBrS), 61.9 (CH2), 60.9 (CH2), 48.1, (CtBu) 43.5 (NCH2), 29.9 (tBu), 20.6 

(CO2Me);  

HRMS calculated for C13H21BrN4O4S 409.0540 (M+H)+; found 409.0555 (TOF MS ES+). 
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N-((1-(2-(1,3-dioxolan-2-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)-1-bromo-N-(tert-

butyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.20 

(81%, 0.89 g) was isolated as brownish oil. 

Rf = 0.28 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2978, 2890, 1643, 1474, 1402, 1437, 1402, 1370, 1157, 1101, 1043, 904, cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.78 (s, 1H, CHNNN), 6.82 (d, J = 3.0 Hz, 1H, CH=CBrS), 6.13 (d, J = 

3.0 Hz, 1H, CH=CBrS), 4.92 (t, J = 4.2 Hz, 1H, OCHO), 4.79 (s, 2H, CH2), 4.50 (t, J = 7.2 Hz, 2H, CH2), 

4.03–3.94 (m, 2H, CH2), 3.91–3.82 (m, 2H, CH2), 2.30 (ddd, J = 7.2, 7.2, 4.2 Hz, 2H, CH2), 1.42 (s, 9H, 

tBu);  

13C NMR (126 MHz, CDCl3) δ 146.7 (SO2NCH2CC), 131.2 (SO2NCH2CC), 126.9 (CH2=CBrS), 124.5 

(CH2=CBrS), 101.5 (OCHO), 65.1 (2 CH2), 60.8 (CtBu), 45.3 (CH2), 43.9 (CH2), 34.0 (CH2), 29.9 (tBu);  

HRMS calculated for C14H23BrN4O4S 423.0696 (M+H)+; found 423.0710 (TOF MS ES+). 
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1-bromo-N-(tert-butyl)-N-((1-(cyclohexylmethyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.21 

(78%, 0.26 g) was isolated as brownish oil. 

Rf = 0.68 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3137, 3002, 2991, 2905, 1612, 1453, 1347, 1197 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.72 (s, 1H, CHNNN), 6.82 (d, J = 3.0 Hz, 1H, CH=CBrS), 6.13 (d, J = 

3.0 Hz, 1H, CH=CBrS), 4.80 (s, 2H, CH2), 4.17 (d, J = 7.2 Hz, 2H, CH2), 1.89 (ttt, J = 11.0, 7.2, 3.5 Hz, 

1H, NCH2CH), 1.81–1.64 (m, 4H, CH2), 1.42 (s, 9H, tBu), 1.32–1.11 (m, 4H, CH2), 1.07–0.93 (m, 2H, 

CH2);  

13C NMR (126 MHz, CDCl3) δ 146.5 (SO2NCH2CC), 131.2 (SO2NCH2CC), 126.8 (CH2=CBrS), 124.5 

(CH2=CBrS), 60.8 (CtBu), 56.6 (CH2), 43.9 (CH2), 38.7 (CH), 30.4 (2CH2), 29.9 (tBu), 26.1 (CH2), 25.5 

(2CH2);  

HRMS calculated for C16H27BrN4O2S 419.1111 (M+H)+; found 419.1100 (TOF MS ES+). 
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1-bromo-N-(tert-butyl)-N-((1-(2-((tert-butyldimethylsilyl)oxy)-3-(4-methoxyphenoxy)propyl)-1H-

1,2,3-triazol-4-yl)methyl)ethenesulfonamide  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.22 

(88%, 0.67 g) was isolated as brownish oil. 

Rf = 0.63 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3050, 2954, 2930, 2896, 2857, 1745, 1646, 1612, 1592, 1509, 1442, 1400, 1389, 1370, 

1232, 1163, 1043, 882, 826 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.85 (s, 1H, CHNNN), 6.83 (s, 4H, ArH), 6.81 (d, J = 3.0 Hz, 1H, 

CH=CBrS), 6.12 (d, J = 3.0 Hz, 1H, CH=CBrS), 4.85–4.73 (m, 2H, CH2), 4.61 (dd, J = 13.8, 3.6 Hz, 1H, 

CH2), 4.50 (dd, J = 13.8, 6.5 Hz, 1H, CH2), 4.44 (qd, J = 5.8, 3.6 Hz, 1H, CHOTBS), 3.82–3.80 (m, 2H, 

CH2), 3.77 (s, 3H, OMe), 1.42 (s, 9H, tBu), 0.87 (s, 9H, tBu), 0.04 (s, 3H, Me), -0.06 (s, 3H, Me);  

13C NMR (126 MHz, CDCl3) δ 154.1 (CAr), 152.4 (CAr), 146.5 (SO2NCH2CC), 131.2 (SO2NCH2CC), 

126.9 (CH2=CBrS), 125.8 (CH2=CBrS), 115.5 (2 CAr), 114.7 (2 CAr), 69.9 (OCH2), 60.7 (CH2), 55.7 

(OMe), 53.9 (CtBu), 43.8 (CH2), 29.9 (3 CH3 
tBu), 25.7 (SitBu), 17.9 (3 CH3 SitBu), -4.8 (SiMe), -5.1 

(SiMe);  

HRMS calculated for C25H41BrN4O5SiS 617.1823 (M+H)+; found 617.1836 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-

L-valinate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.23 

(70 %, 162 mg) was isolated as brownish oil. 

Rf = 0.51 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -8.52 (c = 0.118, CH2Cl2);  

FTIR (neat): 3146, 3111, 2967, 2876, 1740, 1437, 1325, 1165, 1126, 1018, 773, 704 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.76 (s, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.79 (d, J 

= 3.1 Hz, 1H), 6.14 (d, J = 3.0 Hz, 1H), 5.58 (d, J = 3.1 Hz, 2H), 5.16 (d, J = 16.6 Hz, 1H), 4.79 (d, J = 

16.6 Hz, 1H), 3.89 (d, J = 10.7 Hz, 1H), 3.72 (s, 3H), 2.39 (dp, J = 10.6, 6.5 Hz, 1H), 0.89 (d, J = 6.7 Hz, 

3H), 0.67 (d, J = 6.5 Hz, 3H);  

13C NMR (126 MHz, CDCl3) 170.7 (CO), 145.9 (SO2NCH2CC), 138.8, (CAr) 131.1 (q, J = 32.8 Hz, CAr), 

129.5 (CH2=CBrH), 128.1 (2 CAr), 126.4 (SO2NCH2CC) 126.2 (q, J = 3.8 Hz, 2 CAr), 124.8 (CH2=CBrS), 

123.8 (d, J = 272.6 Hz, CF3) 66.5, (NCHCO2Me) 53.6 (CH2), 51.7 (OMe), 41.9 (CH2), 28.6 (CHMeMe), 

19.6 (Me), 19.1 (Me); 

HRMS calculated for C19H22BrF3N4O4S 537.0419 (M-H)+; found 537.0430 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-valinate 

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.24 

(74%, 0.391 g) was isolated as clear oil.  

Rf = 0.52 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -2.6 (c = 0.015, CH2Cl2);  

FTIR (neat): 3148, 3113, 2968, 2876, 1739, 1604, 1545, 1512, 1436, 1391, 1268, 1146, 1051, 888, 737 

cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.71 (s, 1H, CHNNN), 7.26 (s, 3H, ArH), 7.05 (t, J = 8.6 Hz, 2H, ArH), 

6.77 (d, J = 3.0 Hz, 1H, CH=CBrS), 6.12 (d, J = 3.0 Hz, 1H, CH=CBrS), 5.48 (d, J = 1.2 Hz, 2H, Bn), 

5.13 (d, J = 16.6 Hz, 1H, CH2), 4.77 (d, J = 16.6 Hz, 1H, CH2), 3.89 (d, J = 10.6 Hz, 1H, NCHCO2Me), 

3.72 (s, 3H, OMe), 2.37 (dq, J = 10.7, 6.5 Hz, 1H, CHMeMe), 0.88 (d, J = 6.6 Hz, 3H, Me), 0.65 (d, J = 

6.4 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) δ 170.7 (CO), 163.8 (d, J = 248.0 Hz, CAR), 145.6 (SO2NCH2CC), 130.6 (d, 

J = 2.7 Hz, CAr), 129.8 (d, J = 8.6 Hz, CAr), 129.4 (CH2=CBrS), 126.4 (SO2NCH2CC), 124.5 (CH2=CBrS), 

116.1 (d, J = 21.7 Hz, CAR), 66.5 (NCHCO2Me), 53.5 (CH2), 51.7 (OMe), 41.9 (CH2), 28.6 (CHMeMe), 

19.6 (Me), 19.2 (Me) (*Note: 2 Carbon resonances are missing in this 13C spectra);  

HRMS calculated for C18H22BrFN4O4S 511.0421 (M+Na)+; found 511.0420 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

valinate  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.25 

(83%, 0.379 g) was isolated as clear oil.  

Rf = 0.57 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -13.5 (c = 0.004, CH2Cl2);  

FTIR (neat): 2966, 2875, 1739, 1643, 1516, 1436, 1390, 1206, 1149, 1071, 890, 843 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.68 (s, 1H, CHNNN), 7.22 - 7.09 (m, 4H, ArH), 6.74 (d, J = 3.0 Hz, 1H, 

CH=CBrS), 6.08 (d, J = 3.1 Hz, 1H, CH=CBrS), 5.46 (d, J = 1.4 Hz, 2H, CH2), 5.11 (d, J = 16.5 Hz, 1H, 

CH2), 4.76 (d, J = 16.5 Hz, 1H, CH2), 3.89 (d, J = 10.6 Hz, 1H, NCHCO2Me), 3.71 (s, 3H, OMe), 2.39 

(dtd, J = 13.2, 6.6, 4.1 Hz, 1H, CHMeMe), 2.34 (s, 3H, OMe), 0.88 (d, J = 6.6 Hz, 3H, Me), 0.67 (d, J = 

6.5 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) δ 171.1 (CO), 145.8 (SO2NCH2CC), 139.2 (CAr), 132.2 (CAr), 129.8 (2 CAr), 

129.3 (CH2=CBrS), 128.5 (2 CAr), 127.0 (SO2NCH2CC), 124.9 (CH2=CBrS), 67.0, 61.0, 54.5, 52.2 (CH2), 

42.3 (CH2), 21.2 (CHMeMe), 19.6 (Me), 19.2 (Me);  

HRMS calculated for C19H25BrN4O5S 501.0801 (M+H)+; found 501.0782 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-

L-leucinate  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.26 

(63%, 0.328 g) was isolated as clear oil.  

Rf = 0.51 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -22.8 (c = 0.007, CH2Cl2);  

FTIR (neat): 2958, 2871, 1743, 1621, 1601, 1436, 1422, 1325, 1271, 1167, 1067, 993, 908, 824 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.77 (s, 1H, CHNNN), 7.63 (d, J = 8.1 Hz, 2H, ArH), 7.38 (d, J = 8.0 Hz, 

2H, ArH), 6.79 (d, J = 3.0 Hz, 1H, CH=CBrS), 6.16 (d, J = 3.0 Hz, 1H, CH=CBrS), 5.57 (s, 2H, CH2), 

4.81 (s, 2H, CH2), 4.46 (dd, J = 10.7, 4.3 Hz, 1H, NCHCO2Me), 3.70 (s, 3H, OMe), 1.92 (ddd, J = 14.5, 

10.8, 3.8 Hz, 1H, CHMeMe), 1.64 - 1.48 (m, 1H, CH2CHMeMe), 1.24 -1.12 (m, 1H, CH2CHMeMe), 

0.85 (d, J = 6.5 Hz, 3H, Me), 0.60 (d, J = 6.7 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) 171.4 (CO), 146.0 (SO2NCH2CC), 138.7 (CAr), 131.1 (q, J = 32.7 Hz, CAr), 

128.8 (CH2=CBrS), 128.3 (2 CAr), 126.6 (SO2NCH2CC), 126.2 (q, J = 3.6 Hz, 2 CAr) 124.6 (CH2=CBrS), 

59.1 (NCHCO2Me), 123.3 (d, J = 271 Hz, CF3), 53.6 (CH2), 52.3 (OMe), 42.3 (CH2), 38.9 

(CH2CHMeMe), 24.4 (MeCHMe), 22.6 (Me), 21.1 (Me). 

HRMS calculated for C20H24BrF3N4O4S 575.0546 (M+Na)+; found 575.0553 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-leucinate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.27 

(80%, 0.379 g) was isolated as clear oil.   

Rf = 0.45 (Solvent. EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -9.66 (c = 0.012, CH2Cl2);  

FTIR (neat): 3148, 3112, 3055, 2957, 2870, 1743, 1647, 1603, 1546, 1511, 1436, 1269, 1151, 1046, 993, 

908, 737 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.72 (s, 1H, CHNNN), 7.25 (m, 2H, ArH), 7.09 - 7.01 (m, 2H, ArH), 6.78 

(d, J = 2.9 Hz, 1H, ArH), 6.14 (d, J = 3.0 Hz, 1H, ArH), 5.47 (d, J = 1.8 Hz, 2H), 4.79 (s, 2H), 4.45 (dd, J 

= 10.8, 4.3 Hz, 1H), 3.69 (s, 3H, OMe), 1.91 (ddd, J = 14.4, 10.7, 3.8 Hz, 1H, CH2CHMeMe), 1.62 - 1.52 

(m, 1H, CH2CHMeMe), 1.18 (ddt, J = 13.5, 6.7, 3.7 Hz, 1H, CHMeMe), 0.84 (d, J = 6.5 Hz, 3H, Me), 

0.59 (d, J = 6.7 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) 171.4 (CO), 162.9 (d, J = 248.9 Hz, CAr), 145.8 (SO2NCH2CC), 130.7 (d, J 

= 3.0 Hz, CAr) 130.0 (d, J = 8.1 Hz, CAr) 128.7 (CH2=CBrS), 126.7 (SO2NCH2CC), 124.3 (CH2=CBrS), 

116.2 (d, J = 21.8 Hz, CAr), 59.1 (NCHCO2Me), 53.6 (CH2), 52.3 (OMe), 42.3 (CH2), 38.8 

(CH2CHMeMe), 24.3 (MeCHMe), 22.5 (Me), 21.13 (Me) (*Note: 2 Carbon resonances are missing in 

this 13C spectra). 

HRMS calculated for C19H24BrFN4O4S 525.0578 (M+Na)+; found 525.0580 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-leucinate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.28 

(74%, 0.246 g) was isolated as brown oil.   

Rf = 0.43 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -6.6 (c = 0.015, CH2Cl2);  

FTIR (neat): 2957, 1741, 1604, 1511, 1436, 1343, 1275, 1152, 1090, 1047, 764, 750 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.72 (s, 1H, CHNNN), 7.27 (dt, J = 8.7, 2.4 Hz, 2H, ArH), 7.09–7.02 (m, 

2H, ArH), 6.78 (d, J = 2.9 Hz, 1H, CH=CBrS), 6.14 (d, J = 3.0 Hz, 1H, CH=CBrS), 5.47 (d, J = 1.8 Hz, 

2H, CH2), 4.79 (s, 2H, CH2), 4.45 (dd, J = 10.8, 4.3 Hz, 1H, NCHCO2Me), 3.69 (s, 3H, OMe), 1.91 (ddd, 

J = 14.4, 10.7, 3.8 Hz, 1H, CH2CHMeMe), 1.57 (ddd, J = 14.3, 9.9, 4.3 Hz, 1H, CH2CHMeMe), 1.18 

(ddq, J = 13.0, 6.5, 3.3, 2.8 Hz, 1H, CHMeMe), 0.84 (d, J = 6.5 Hz, 3H, Me), 0.59 (d, J = 6.7 Hz, 3H, 

Me);  

13C NMR (126 MHz, CDCl3) δ 171.2 (CO), 162.8 (d, 1JC–F = 248.2 Hz, CAr), 145.6 (SO2NCH2CC), 130.5 

(d, 4JC–F = 3.4 Hz, CAr), 129.8 (d, 3JC–F = 8.6 Hz, 2 CAr), 128.6 (CH2=CBrS), 126.5 (SO2NCH2CC), 124.1 

(CH2=CBrS), 116.0 (d, 2JC–F = 21.8 Hz, 2 CAr), 59.0 (NCHCO2Me), 53.4 (CH2), 52.1 (OMe), 42.1 (CH2), 

38.7 (CH2CHMeMe), 24.2 (MeCHMe), 22.4 (Me), 20.9 (Me);  

HRMS calculated for C19H24BrFN4O4S 525.0578 (M+Na)+; found 525.0562 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

leucinate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.29 

(78%, 0.411 g) was isolated as clear oil.  

Rf = 0.42 (EtOAc:Hexane = 1:1);   

[𝒂]𝑫𝟐𝟎 = -21.1 (c = 0.05, CH2Cl2);  

FTIR (neat): 1206, 1223, 1250, 1304, 1344, 1439, 1462, 1514, 1586, 1599, 1613, 1744, 2330, 2342, 

2359, 2837, 2870, 2957, 3001 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.68 (s, 1H, CHNNN), 7.24 - 7.19 (m, 2H, ArH), 6.91 - 6.85 (m, 2H, 

ArH), 6.76 (d, J = 2.9 Hz, 1H, CH=CBrS), 6.12 (d, J = 3.0 Hz, 1H, CH=CBrS), 5.49 - 5.36 (m, 2H, CH2), 

4.78 (s, 2H, CH2), 4.45 (dd, J = 10.7, 4.3 Hz, 1H, NCHCO2Me), 3.80 (s, 3H, OMe), 3.68 (s, 3H, OMe), 

1.91 (ddd, J = 14.5, 10.8, 3.8 Hz, 1H, CH2CHMeMe), 1.56 (ddd, J = 14.3, 9.8, 4.3 Hz, 1H, 

CH2CHMeMe), 1.20 (ttt, J = 13.3, 6.6, 3.6 Hz, 1H, CH2CHMeMe), 0.83 (d, J = 6.5 Hz, 3H, Me), 0.59 (d, 

J = 6.7 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) δ 171.4 (CO), 160.0 (CAR), 145.4 (SO2NCH2CC), 129.6 (2 CAr), 128.7 

(CH2=CBrS), 126.7 (CAr), 126.6 (SO2NCH2CC) 124.0 (CH2=CBrS), 114.5 (2 CAr), 59.1 (NCHCO2Me), 

55.4 (OMe), 53.9 (CH2), 52.1 (OMe), 42.3 (CH2), 38.8 (CH2CHMeMe), 24.3 (MeCHMe), 22.5 (Me), 

21.1 (Me);  

HRMS calculated for C20H27BrN4O5S 537.0778 (M+Na)+; found 537.0779  (TOF MS ES+).  
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-

L-isoleucinate  

 

 According to the reaction protocol described in general procedure D.2, compound 2.4.2.2.30 

(79 %, 0.384 g) was isolated as clear oil.  

Rf = 0.54 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 =  -12.0 (c = 0.0036, CH2Cl2);  

FTIR (neat): 3112, 2967, 2879, 1739, 1647, 1612, 1455, 1269, 1169, 1067, 882, 824 cm-1;  

1H NMR (500 MHz, CDCl3) 7.77 (s, 1H, CHNNN), 7.62 (d, J = 8.1 Hz, 2H, ArH), 7.37 (d, J = 8.1 Hz, 

2H, ArH), 6.80 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.16 (d, J = 3.1 Hz, 1H, CH2=CBrS), 5.57 (s, 2H, CH2), 

5.21 (d, J = 16.8 Hz, 1H, CH2), 4.78 (d, J = 16.8 Hz, 1H, CH2), 3.97 (d, J = 10.6 Hz, 1H, NCHCO2Me), 

3.72 (s, 3H, OMe), 2.12 (dtd, J = 13.2, 6.7, 2.7 Hz, 1H, CHMe), 1.22 (dtt, J = 18.6, 7.6, 3.6 Hz, 1H, 

CH2Me), 0.94 (m, J = 6.6 Hz, 1H, CH2Me), 0.82 (d, J = 6.7 Hz, 3H, Me), 0.53 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) δ 170.7 (CO), 146.1 (SO2NCH2CC), 138.7 (CAr), 131.1 (q, J = 32.8 Hz, 

CAr), 129.6 (2 CAr), 128.2 (CH2=CBrS), 126.2 (SO2NCH2CC), 126.2 (q, J = 3.8 Hz 2 CAr), 124.6 

(CH2=CBrS), 123.8 (d, J = 271.2 Hz, CF3) 65.0 (NCHCO2Me), 53.6 (CH2), 51.7 (OMe), 42.0 (CH2), 34.2 

(CHMe), 25.6 (CH2Me), 15.1 (Me), 10.5 (Me); 

HRMS calculated for C20H24BrF3N4O4S 575.0546 (M+Na)+; found 575.0550 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

isoleucinate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.31 

(78 %, 0.369 g) was isolated as white solid.  

Rf = 0.57 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟓 = -12.07 (c = 0.0825, CH2Cl2);  

FTIR (neat): 3147, 3112, 2967, 2878, 1738, 1604, 1436, 1344, 1269, 1146, 1093, 1051, 881, 735 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.71 (s, 1H, CHNNN), 7.28–7.23 (m, 2H, ArH), 7.06–7.00 (m, 2H, ArH), 

6.77 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.13 (d, J = 3.0 Hz, 1H, CH2=CBrS), 5.46 (s, 2H, CH2), 5.17 (d, J = 

16.7 Hz, 1H, CH2), 4.76 (d, J = 16.7 Hz, 1H, CH2), 3.96 (d, J = 10.7 Hz, 1H, NCHCO2Me), 3.71 (s, 3H, 

OMe), 2.10 (dtq, J = 13.4, 6.7, 4.0, 3.3 Hz, 1H, CHMe), 1.20 (dqd, J = 15.1, 7.8, 2.8 Hz, 1H, CH2Me), 

0.81 (d, J = 6.7 Hz, 3H, Me), 0.79–0.75 (m, 1H, CH2Me), 0.51 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) δ 170.7 (CO), 162.9 (d, J = 248.4 Hz, CAr), 145.8 (SO2NCH2CC), 130.7 (d, 

J = 2.8 Hz, CAr), 129.9 (d, J = 8.1 Hz, 2 CAr), 129.5 (CH2=CBrS), 126.2 (SO2NCH2CC), 124.3 

(CH2=CBrS), 116.1 (d, J = 21.7 Hz, 2 CAr), 65.0 (NCHCO2Me), 53.5 (CH2), 51.6 (OMe), 41.9 (CH2), 

34.2 (CHMe), 25.5 (CH2Me), 15.1 (Me), 10.1 (Me);  

HRMS calculated for C19H24BrFN4O4S 525.0578 (M+Na)+; found 525.0580 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

isoleucinate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.32 

(83%, 0.379 g) was isolated as clear oil.   

Rf = 0.57 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟓 = -13.5 (c = 0.054, CH2Cl2);  

FTIR (neat): 2965, 1738, 1645, 1436, 1343, 1199, 1169, 1091, 1051, 880, 819 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.68 (s, 1H, CHNNN), 7.16 (s, 4H, ArH), 6.77 (d, J = 3.0 Hz, 1H, 

CH2=CBrS), 6.12 (d, J = 3.0 Hz, 1H, CH2=CBrS), 5.45 (s, 2H, CH2), 5.17 (d, J = 16.7 Hz, 1H, CH2), 4.77 

(d, J = 16.7 Hz, 1H, CH2), 3.97 (d, J = 10.6 Hz, 1H, NCHCO2Me), 3.72 (s, 3H, OMe), 2.34 (s, 3H, OMe), 

2.13 (dpt, J = 16.1, 6.7, 3.1 Hz, 1H, CH-Ile), 1.28–1.19 (m, 1H, CH2Me), 0.82 (d, J = 6.7 Hz, 3H, Me), 

0.80–0.75 (m, 1H, CH2Me), 0.55 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) δ 170.7 (CO), 145.6 (SO2NCH2CC), 138.8 (CAr), 131.8 (CAr), 129.8 (2 CAr), 

129.5 (CH2=CBrS), 128.1 (2 CAr), 126.4 (SO2NCH2CC), 124.3 (CH2=CBrS), 65.1 (NCHCO2Me), 54.1 

(CH2), 51.7 (OMe), 42.0 (CH2), 34.2 (OMe), 25.6 (CH2Me), 21.3 (CHMe), 15.2 (Me), 10.2 (Me);  

HRMS calculated for C20H27BrN4O5S 515.0958 (M+H)+; found 515.0975 (TOF MS ES+). 
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Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(3-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

phenylalaninate  

 

 According to the reaction protocol described in general procedure D.1, compound 2.4.2.2.33 

(49%, 1.79 g) was isolated as brown oil. 

Rf = 0.18 (EtOAc:Hexane = 1:2);  

[𝒂]𝑫𝟐𝟎 = -14.72 (c = 0.174, CH2Cl2);  

FTIR (neat): 2955, 2882, 1772, 1724, 1420, 1170, 1069, 1036, 991, 922, cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H, CHNNN), 7.41–7.30 (m, 1H, ArH), 7.22–7.01 (m, 8H, ArH), 

6.69 (d, J = 3.0 Hz, 1H, CH2=CBrS), 6.04 (d, J = 3.0 Hz, 1H, CH2=CBrS), 5.58–5.38 (m, 2H, CH2), 4.91–

4.77 (m, 2H, CH2), 4.76 (dd, J = 8.1, 6.9 Hz, 1H, NCHCO2Me), 3.61 (s, 3H, OMe), 3.36 (dd, J = 14.6, 7.1 

Hz, 1H, CH2-Phe), 3.10 (dd, J = 14.6, 8.4 Hz, 1H, CH2ArPhe);  

13C NMR (126 MHz, CDCl3) δ 169.9 (CO), 160.1 (d, J = 249.6 Hz, CAr), 144.0 (SO2NCH2CC), 135.8 

(CAr), 130.6 (d, J = 8.2 Hz, CAr), 130.2 (d, J = 3.6 Hz, CAr), 128.5 (2 CAr), 128.5 (CH2=CBrS), 128.0 (2 

CAr), 126.4 (CAr), 126.3 (SO2NCH2CC), 124.4 (d, J = 3.6 Hz, CAr), 124.1 (CH2=CBrS), 121.6 (d, J = 14.5 

Hz, CAr) 115.5 (d, J = 21.3 Hz, CAR), 61.0 (NCHCO2Me), 51.8 (CH2), 47.2 (CH2), 41.9 (OMe), 36.0 

(CH2-ArPhe); 

HRMS calculated for C22H22BrFN4O4S 537.0602 (M+H)+; found 537.0609 (TOF MS ES+). 
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6-Cyclohexyl-3-(4-methylbenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.1 (48 

mg, 59%) was isolated as colorless syrup.  

Rf = 0.51 (EtOAc:Hexane = 1:2);  

FTIR (neat): 2932, 2857, 1645, 1516, 1451, 1344, 1271, 1211, 1171, 1114, 1086, 1071, 1042, 999, 850, 

808 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 7.8 Hz, 2H, ArH), 6.90 (d, J = 7.8 Hz, 2H, ArH), 6.10 (s, 1H, 

CH2=CSO2), 5.65 (s, 2H, ArCH2), 5.60 (s, 1H, CH2=CSO2), 4.66 (s, 2H, NCH2), 3.77 (dt, J = 11.3, 5.2 Hz, 

1H, NCH), 2.32 (s, 3H, ArCH3), 1.73 (d, J = 10.2 Hz, 2H, Cy), 1.63 (d, J = 9.1 Hz, 2H, Cy), 1.34–1.19 (m, 

6H, Cy);  

13C NMR (101 MHz, CDCl3) δ 141.5 (CH2=CSO2), 138.6 (SO2NCH2CC), 135.7 (CAr), 130.8 (CAr), 

130.1 (2 CAr), 127.0 (SO2NCH2CC), 126.0 (2 CAr), 115.5 (CH2=CSO2), 58.5 (ArCH2), 53.1 (NCH), 40.8 

(NCH2), 30.4 (2 Cy), 25.6 (ArCH3), 25.1 (2 Cy), 21.2 (Cy);  

HRMS calculated for C19H24N4O2S 373.1693 (M+H)+; found 373.1738 (TOF MS ES+).  
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6-Cyclohexyl-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.2 (71 

mg, 80%) was isolated as colorless syrup.  

Rf = 0.45 (EtOAc:Hexane = 1:2);   

FTIR (neat): 2935, 2858, 1622, 1452, 1327, 1067, 890 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.0 Hz, 2H, ArH), 7.16 (d, J = 7.9 Hz, 2H, ArH), 6.14 (s, 1H, 

CH2=CSO2), 5.75 (s, 2H, ArCH2), 5.54 (s, 1H, CH2=CSO2), 4.68 (s, 2H, NCH2), 3.83–3.75 (m, 1H, NCH), 

1.74 (d, J = 11.7 Hz, 2H, Cy), 1.61 (d, J = 14.7 Hz, 3H, Cy), 1.29 (dd, J = 21.2, 12.2 Hz, 5H, Cy);  

13C NMR (126 MHz, CDCl3) δ 141.6 (CH2=CSO2), 137.6 (SO2NCH2CC), 135.7 (CAr), 131.0 (q, 2JC–CF3 

=  32.8 Hz, CAr), 127.2 (d, J = 52.3 Hz, 2 CAr), 126.4 (SO2NCH2CC), 126.3 (q, 3JC–CF3 = 3.8 Hz, 2 CAr), 

123.5 (q, 1JC–CF3 = 272.4 Hz CF3), 115.0 (CH2=CSO2), 58.4 (ArCH2), 52.5 (NCH), 40.6 (NCH2), 30.3 (2 

Cy), 29.6 (Cy), 25.5 (2 Cy);  

HRMS calculated for C19H21F3N4O2S 427.1410 (M+H)+; found 427.1467 (TOF MS ES+). 
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6-Cyclohexyl-3-(4-fluorobenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.3 (30 

mg, 79%) was isolated as colorless syrup.  

Rf = 0.34 (EtOAc:Hexane = 1:2);  

FTIR (neat): 2928, 2855, 1511, 1343, 809, 764, 750 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.11–6.94 (m, 4H, ArH), 6.14 (s, 1H, CH2=CSO2), 5.66 (s, 2H, ArCH2), 

5.60 (s, 1H, CH2=CSO2), 4.66 (s, 2H, NCH2), 3.93–3.67 (m, 1H, NCH), 1.73 (d, J = 8.7 Hz, 2H, Cy), 1.60 

(d, J = 13.6 Hz, 2H, Cy), 1.28 (h, J = 13.1 Hz, 4H, Cy), 1.10 – 0.96 (m, 1H, Cy), 0.91 (d, J = 6.7 Hz, 1H, 

Cy);  

13C NMR (126 MHz, CDCl3) δ 162.6 (d, 1JC–F = 248.4 Hz, CAr), 141.5 (CH2=CSO2), 135.7 

(SO2NCH2CC), 129.5 (2 CAr), 128.0 (d, 3JC–F = 8.4 Hz, CAr), 126.8 (SO2NCH2CC), 116.4 (d, 2JC–F = 21.9 

Hz, 2 CAr), 115.1 (CH2=CSO2), 58.3 (ArCH2), 52.4 (NCH), 40.6 (NCH2), 30.3 (2 Cy), 25.5 (2 Cy), 25.0 

(Cy);  

HRMS calculated for C18H21FN4O2S 377.1442 (M+H)+; found 377.1580 (TOF MS ES+). 
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3-Benzyl-6-cyclohexyl-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.4 (41 

mg, 49%) was isolated as colorless syrup.  

Rf = 0.42 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3061, 2933, 2857, 1644, 1606, 1497, 1482, 1041, 890, 735 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.34 (m, 3H, ArH), 7.01 (d, J = 7.0 Hz, 2H, ArH), 6.10 (s, 1H, 

CH2=CSO2), 5.70 (s, 2H, ArCH2), 5.59 (s, 1H, CH2=CSO2), 4.67 (s, 2H, NCH2), 3.77 (dt, J = 11.3, 5.5 Hz, 

1H, NCH), 1.73 (d, J = 10.7 Hz, 2H, Cy), 1.61 (t, J = 12.6 Hz, 3H, Cy), 1.28 (h, J = 16.2, 14.3 Hz, 5H, 

Cy);  

13C NMR (101 MHz, CDCl3) δ 141.5 (CH2=CSO2), 135.7 (SO2NCH2CC), 133.9 (SO2NCH2CC), 129.4 

(2 CAr), 128.7 (CAr), 127.0 (CAr), 126.1 (2 CAr), 115.4 (CH2=CSO2), 58.5 (ArCH2), 53.2 (NCH), 40.8 

(NCH2), 30.4 (2 Cy), 25.6 (2 Cy), 25.1 (Cy);  

HRMS calculated for C18H22N4O2S 359.1536 (M+H)+; found 359.1555 (TOF MS ES+). 
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6-Cyclohexyl-3-(2-fluorobenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.5 (46 

mg, 55%) was isolated as colorless syrup.  

Rf = 0.36 (EtOAc:Hexane = 1:2);  

FTIR (neat): 2934, 2858, 1701, 1619, 1593, 1490, 1453, 1172, 1156, 1072, 926, 809, 737 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.34 (q, J = 7.2 Hz, 1H, ArH), 7.03 (t, J = 8.2 Hz, 1H, ArH), 6.83 (d, J = 

7.6 Hz, 1H, ArH), 6.68 (d, J = 9.1 Hz, 1H, ArH), 6.13 (s, 1H, CH2=CSO2), 5.69 (s, 2H, ArCH2), 5.56 (s, 

1H, CH2=CSO2), 4.67 (s, 2H, NCH2), 3.78 (t, J = 9.3 Hz, 1H, NCH), 1.74 (d, J = 10.6 Hz, 2H, Cy), 1.61 

(t, J = 12.5 Hz, 3H, Cy), 1.28 (dq, J = 23.4, 12.9 Hz, 5H, Cy);  

13C NMR (101 MHz, CDCl3) δ 163.3 (d, 1JC–F = 248.8 Hz, CAr), 141.7 (CH2=CSO2), 136.4 (d, 5JC–F =  

7.3 Hz, CAr), 135.8 (SO2NCH2CC), 131.2 (d, 3JC–F =  8.4 Hz, CAr), 127.1 (SO2NCH2CC), 121.7 (d, 4JC–F = 

3.1 Hz, CAr), 115.9 (d, 2JC–F = 21.0 Hz, CAr), 115.3 (CH2=CSO2), 113.3 (d, 5JC–F = 22.9 Hz, CAr), 58.5 

(ArCH2), 52.5 (NCH), 40.8 (NCH2), 30.5 (2 Cy), 25.6 (2 Cy), 25.1 (Cy);  

HRMS calculated for C18H21FN4O2S 377.1442 (M+H)+; found 377.1460. 
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6-Cyclohexyl-3-(4-methoxybenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.6 (63 

mg, 65%) was isolated as colorless syrup.  

Rf = 0.38 (EtOAc:Hexane = 1:2);  

FTIR (neat): 2934, 2857, 1613, 1514, 1452, 1380, 1250, 1211, 1171, 1155, 1071, 1040, 926, 809, 735 

cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.96 (d, J = 8.3 Hz, 2H, ArH), 6.85 (d, J = 8.3 Hz, 2H, ArH), 6.11 (s, 1H, 

CH2=CSO2), 5.64 (s, 1H, CH2=CSO2), 5.62 (s, 2H, ArCH2), 4.65 (s, 2H, NCH2), 3.77 (s, 3H, OCH3), 1.72 

(d, J = 9.5 Hz, 2H, Cy), 1.58 (d, J = 14.2 Hz, 3H, Cy), 1.35 – 1.15 (m, 5H, Cy);  

13C NMR (101 MHz, CDCl3) δ 159.7 (CAr), 141.4 (CH2=CSO2), 135.7 (SO2NCH2CC), 127.6 (2 CAr), 

126.8 (SO2NCH2CC), 125.7 (CAr), 115.5 (CH2=CSO2), 114.7 (2 CAr), 58.4 (ArCH2), 55.3 (OCH3), 52.8 

(NCH), 40.7 (NCH2), 30.4 (2 Cy), 25.6 (2 Cy), 25.1 (Cy);  

HRMS calculated for C19H24N4O3S 389.1647 (M+H)+; found 389.1690. 
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6-(3-methoxypropyl)-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.9 (66%, 

106 mg) was isolated as yellow oil. 

Rf = 0.17 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3055, 2928, 2877, 1622, 1531, 1514, 1481, 1421, 1327, 1169, 1127, 1068, 896, 819 cm-1;  

1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.1 Hz, 2H, ArH), 7.20 (d, J = 8.1 Hz, 2H, ArH), 6.16 (d, J = 

2.1 Hz, 1H, CH2=CSO2), 5.75 (s, 2H, ArCH2), 5.70 (d, J = 2.1 Hz, 1H, CH2=CSO2), 4.66 (s, 2H, NCH2), 

3.42 (t, J = 5.9 Hz, 2H, NCH2CH2CH2O), 3.29 (s, 3H, OCH3), 3.09 (t, J = 6.9 Hz, 2H, NCH2CH2CH2O), 

1.82 (ddd, J = 11.7, 6.0, 5.5 Hz, 2H, NCH2CH2CH2O). 

13C NMR (126 MHz, CDCl3) δ 140.2 (CH2=CSO2), 137.7 (SO2NCH2CC), 133.3 (SO2NCH2CC), 131.2 

(q, 2JC–CF3 = 32.65 Hz, CAr), 126.8 (2 CAr), 126.5 (q, 3JC–CF3 = 3.5 Hz, 2 CAr), 126.2 (q, 4JC–CF3 = 3.41 Hz, 

CAr), 124.2 (q, 1JC–CF3 = 272.2 Hz, CF3), 118.2 (CH2=CSO2), 69.1 (NCH2CH2CH2OCH3), 58.7 

(NCH2CH2CH2OCH3), 52.7 (ArCH2), 47.4 (NCH), 47.0 (NCH2CH2CH2OCH3), 28.8 

(NCH2CH2CH2OCH3). 

HRMS calculated for C17H19F3N4O3S 417.1203 (M+H)+; found 417.1206. 
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6-benzyl-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.10 

(12%, 11 mg) was isolated as yellow oil. 

Rf = 0.42 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2927, 1621, 1326, 1066, 899, 821, 789, 701 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 8.0 Hz, 2H, ArH), 7.34 (d, J = 4.6 Hz, 3H, ArH), 7.32 (d, J = 

8.0 Hz, 2H, ArH), 7.28 (d, J = 6.3 Hz, 1H, ArH), 7.24 (d, J = 7.2 Hz, 1H, ArH), 6.81 (d, J = 2.9 Hz, 1H, 

CH2=CSO2), 6.11 (d, J = 2.9 Hz, 1H, CH2=CSO2), 5.50 (s, 2H, CF3-ArCH2), 4.51 (s, 2H, NCH2Ar), 4.50 

(s, 2H, NCH2triazole). 

13C NMR (126 MHz, CDCl3) δ 144.0 (CH2=CSO2), 138.5 (SO2NCH2CC), 135.4 (SO2NCH2CC), 129.1 

(2 CAr), 128.7 (2 CAr), 128.5 (CAr), 128.4 (CAr), 128.2 (2 CAr), 127.7 (2 CAr), 126.3 (q, JC–CF3 = 3.86 Hz, 2 

CAr), 123.8 (d, J = 273.0 Hz, CF3), 123.5 (CH2=CSO2), 53.6 (N3CH2Ar), 52.7 (NCH2Ar), 43.2 

(NCH2triazole), 29.8. 

HRMS calculated for C20H17F3N4O2S 435.1097 (M+H)+; found 435.1081. 
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3-Benzyl-6-(tert-butyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-

dioxide  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.12 

(88%, 135.5 mg) was isolated as brownish oil. 

Rf = 0.18 (EtOAc:Hexane = 1:2);  

FTIR (neat): 3112, 3062, 3032, 2979, 1739, 1644, 1605, 1588, 1497, 1074, 877, 735 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.50–7.31 (m, 3H, ArH), 7.09–7.02 (m, 2H, ArH), 6.14 (d, J = 2.1 Hz, 1H, 

CH2=CSO2), 5.72 (d, J = 1.2 Hz, 2H, ArCH2), 5.63–5.60 (m, 1H, CH2=CSO2), 4.83 (d, J = 1.6 Hz, 2H, 

NCH2), 1.38 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 141.8 (CH2=CSO2), 136.5 (SO2NCH2CC), 133.8 (CAr), 129.4 (2 CAr), 

128.7 (CAr), 126.9 (SO2NCH2CC), 126.0 (2 CAr), 115.3 (CH2=CSO2), 61.0 (ArCH2), 53.5 (NC), 43.8 

(NCH2), 29.7 (tBu); 

HRMS calculated for C16H20N4O2S 333.1380 (M+H)+; found 333.1387 (TOF MS ES+). 
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6-(tert-Butyl)-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide   

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.13 

(72%, 0.346 g) was isolated as brownish oil. 

Rf = 0.41 (EtOAc:Hexane =1:1);  

FTIR (neat): 2980, 1643, 1622, 1508, 1472, 1439, 1370, 1326, 1067, 876, 840 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.65 (d, J = 8.2 Hz, 2H, ArH), 7.23–7.16 (m, 2H, ArH), 6.17 (d, J = 2.2 

Hz, 1H, CH2=CSO2), 5.77 (s, 2H, ArCH2), 5.56 (d, J = 2.2 Hz, 1H, CH2=CSO2), 4.84 (s, 2H, NCH2), 1.39 

(s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 142.1 (CH2=CSO2), 137.7 (SO2NCH2CC), 136.5 (SO2NCH2CC), 131.2 

(q, 2JC–CF3 = 32.9 Hz, CAr), 128.0 (CAr), 127.0 (2 CAr), 126.5 (q, 3JC–CF3 = 3.9 Hz, 2 CAr), 123.7 (q, 1J = 

270.76 Hz, CF3), 115.0 (CH2=CSO2), 61.2, 52.6, 43.7, 29.7 (tBu);  

HRMS calculated for C17H19F3N4O2S 401.1254 (M+H)+; found 401.1256 (TOF MS ES+). 
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6-(tert-butyl)-3-(4-methylbenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.14 

(73%, 0.303 g) was isolated as brownish oil. 

Rf = 0.55 (EtOAc:Hexane =1:1);  

FTIR (neat): 2979, 2944, 2924, 1697, 1644, 1616, 1581, 1516, 1473, 1369, 1040, 876, 843 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.18–7.13 (m, 2H, ArH), 6.93 (d, J = 8.0 Hz, 2H, ArH), 6.12 (d, J = 2.1 

Hz, 1H, CH2=CSO2), 5.66 (s, 2H, ArCH2), 5.63 (d, J = 2.1 Hz, 1H, CH2=CSO2), 4.81 (s, 2H, NCH2), 2.33 

(s, 3H, ArCH3), 1.36 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 141.7 (CH2=CSO2), 138.4 (SO2NCH2CC), 136.4 (SO2NCH2CC), 130.6 

(CAr), 129.9 (2 CAr), 126.8 (2 CAr), 125.9 (CAr), 115.3 (CH2=CSO2), 60.9 (NCH2), 52.9 (ArCH2), 43.7 

(NC), 29.6 (tBu), 21.0 CH3;  

HRMS calculated for C17H22N4O2S 347.1536 (M+H)+; found 347.1552 (TOF MS ES+). 
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6-(tert-Butyl)-3-(2-fluorobenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.15 

(75%, 0.316 g) was isolated as brownish oil. 

Rf = 0.55 (EtOAc:Hexane =1:1);  

FTIR (neat): 3137, 3101, 2971, 2911, 1610, 1459, 1352, 1206 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.36 (dd, J = 8.0, 5.7 Hz, 1H, ArH), 7.05 (ddd, J = 8.5, 2.6, 0.9 Hz, 1H, 

ArH), 6.85 (ddd, J = 7.7, 1.8, 0.9 Hz, 1H ArH), 6.74 (ddd, J = 9.4, 2.6, 1.5 Hz, 1H ArH), 6.16 (d, J = 2.2 

Hz, 1H, CH2=CSO2), 5.71 (s, 2H, ArCH2), 5.59 (d, J = 2.2 Hz, 1H, CH2=CSO2), 4.83 (s, 2H, NCH2), 1.38 

(s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 163.2 (d, 1JC–F = 248.56 Hz, CAr), 141.9 (CH2=CSO2), 136.5 

(SO2NCH2CC), 136.2 (d, 3JC–F = 7.2 Hz, CAr), 131.1 (d, 5JC–F = 8.2 Hz, CAr), 127.0 (SO2NCH2CC), 121.6 

(d, 4JC–F = 3.10 Hz, CAr), 115.8 (d, 2JC–F = 20.25 Hz, CAr), 115.1 (CH2=CSO2), 113.2 (d, 6JC–F = 22.8 Hz, 

CAr), 61.1, 52.5 (d, CH2-BenzylJC–F = 2.04 Hz, ArCH2), 43.7, 29.9 (tBu);  

HRMS calculated for C16H19FN4O2S 351.1286 (M+H)+; found 351.1298 (TOF MS ES+). 
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6-(tert-Butyl)-3-(4-methoxybenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.16 

(84%, 200 mg) was isolated as brownish oil. 

Rf = 0.40 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3004, 2980, 2918, 2848, 1612, 1585, 1514, 1457, 1344, 1259, 1155, 1097, 875 cm-1;  

1H NMR (400 MHz, CDCl3) δ 6.98 (d, J = 8.6 Hz, 2H, ArH), 6.86 (d, J = 8.7 Hz, 2H, ArH), 6.14 (d, J = 

2.1 Hz, 1H, CH2=CSO2), 5.66 (d, J = 2.1 Hz, 1H, CH2=CSO2), 5.63 (s, 2H, ArCH2), 4.80 (s, 2H, NCH2), 

3.78 (s, 3H, OCH3), 1.36 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 159.6 (CAr), 141.7 (CH2CSO2), 136.4 (SO2NCH2CC), 127.4 (2 CAr), 

126.6 (CAr), 125.5 (SO2NCH2CC), 115.3 (CH2=CSO2), 114.6 (2 CAr), 60.9, 55.2, 52.7, 43.7, 29.6 (tBu);  

HRMS calculated for C17H22N4O3S 362.1413 (M+)+; found 362.1429 (TOF MS ES+). 

 



 
 

267 

6-(tert-Butyl)-3-(2-methylallyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.17 

(79%, 0.281 g) was isolated as brownish oil. 

Rf = 0.71 (EtOAc:Hexane =1:1);   

FTIR (neat): 3083, 2979, 2941, 1706, 1659, 1607, 1448, 1379, 1071, 873 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.20 (d, J = 1.0 Hz, 1H, CH2=CSO2), 6.11 (d, J = 1.0 Hz, 1H, CH2=CSO2), 

5.05 – 5.03 (m, 1H, CHaHbC), 4.95 (s, 2H, N3CH2), 4.91 (dt, J = 2.3, 1.2 Hz, 1H, CHaHbC), 4.76 (s, 2H, 

NCH2), 1.70 (t, J = 1.2 Hz, 3H, CtBu), 1.37 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 140.9 (CH2=CSO2), 139.5 (SO2NCH2CC), 139.1 (N3CH2CCH2), 139.0 

(SO2NCH2CC), 115.4 (CH2=CSO2), 113.5 (N3CH2CCH2), 61.4, 60.5, 43.6, 29.8 (tBu), 19.7 CCH3;  

HRMS calculated for C13H20N4O2S 297.1380 (M+H)+; found 297.1380 (TOF MS ES+). 
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6-(tert-butyl)-3-(2-methoxyethyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.18 

(81%, 0.292 g) was isolated as brownish oil. 

Rf = 0.34 (EtOAc:Hexane =1:1);  

FTIR (neat): 3111, 3100, 2912, 1601, 1473, 1356, 1205 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.30 (q, J = 1.9 Hz, 2H, CH2=CSO2), 4.76 (s, 2H, NCH2), 4.60 (t, J = 5.3 

Hz, 2H, OCH2CH2N), 3.87 (t, J = 5.3 Hz, 2H, OCH2CH2N), 3.29 (s, 3H, OCH3), 1.39 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 140.7 (CH2=CSO2), 136.7 (SO2NCH2CC), 127.6 (SO2NCH2CC), 115.7 

(CH2=CSO2), 71.0 (CH3OCH2CH2N3), 60.9, 59.1, 49.6, 43.6, 29.6 (tBu);  

HRMS calculated for C12H20N4O3S 301.1329 (M+H)+; found 301.1339 (TOF MS ES+). 
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2-(6-(tert-butyl)-4-methylene-5,5-dioxido-6,7-dihydro-[1,2,3]triazolo[4,5-d][1,2]thiazin-3(4H)-

yl)ethyl acetate  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.19 

(84%, 0.331 g) was isolated as brownish oil. 

Rf = 0.26 (EtOAc:Hexane =1:1);  

FTIR (neat): 2977, 2923, 1743, 1643, 1439, 1344, 1229, 1148, 1043, 877 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.36 (d, J = 2.3 Hz, 1H, CH2=CSO2), 6.09 (d, J = 2.3 Hz, 1H, CH2=CSO2), 

4.79 (s, 2H, CO2CH2CH2N3), 4.73 (t, J = 5.7 Hz, 2H, CO2CH2CH2N3), 4.53 (t, J = 5.7 Hz, 2H, NCH2), 

2.03 (s, 3H, CH3CO2), 1.41 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 170.4 (CO2), 141.3 (CH2=CSO2), 137.1 (SO2NCH2CC), 127.1 

(SO2NCH2CC), 114.4 (CH2=CSO2), 61.9, 61.1, 48.1, 43.6, 29.7 (tBu), 20.5 (CH3CO2);  

HRMS calculated for C13H20N4O4S 329.1278 (M+H)+; found 329.1296 (TOF MS ES+). 
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3-(2-(1,3-dioxolan-2-yl)ethyl)-6-(tert-butyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.20 

(85%, 0.349 g) was isolated as brownish oil. 

Rf = 0.28 (EtOAc:Hexane =1:1);  

FTIR (neat): 2938, 3110, 2989, 2915, 1612, 1453, 1359, 1216 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.35 (d, J = 2.4 Hz, 1H, CH2=CSO2), 6.11 (d, J = 2.4 Hz, 1H, CH2=CSO2), 

4.99 (t, J = 3.8 Hz, 1H, CHO2CH2CH2N3), 4.79 (s, 2H, NCH2), 4.65–4.59 (m, 2H, CHO2CH2CH2N3), 

4.04–4.00 (m, 2H, OCH2CH2O), 3.92–3.88 (m, 2H, OCH2CH2O), 2.37–2.29 (m, 2H, CHO2CH2CH2N3), 

1.40 (s, 9H, tBu);  

13C NMR (126 MHz, CDCl3) δ 141.4 (CH2=CSO2), 137.1 (SO2NCH2CC), 126.3 (SO2NCH2CC), 114.5 

(CH2=CSO2), 101.1 (OCHO), 65.2 (2 OCH2CH2O), 61.0, 44.6, 43.7, 32.9, 29.7 (tBu);  

HRMS calculated for C14H22N4O4S 343.1435 (M+H)+; found 343.1449 (TOF MS ES+). 
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6-(tert-butyl)-3-(cyclohexylmethyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.21 

(88%, 0.157 g) was isolated as brownish oil. 

Rf = 0.68 (EtOAc:Hexane =1:1);  

FTIR (neat): 2978, 2927, 2853, 1643, 1531, 1474, 1450, 1369, 1153, 1061, 876 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.31 (d, J = 2.2 Hz, 1H, CH2=CSO2), 5.87 (d, J = 2.1 Hz, 1H, CH2=CSO2), 

4.77 (s, 2H, NCH2), 4.28 (d, J = 7.3 Hz, 2H, CH2Cy), 1.92–1.80 (m, 1H, Cy), 1.77 – 1.70 (m, 2H, Cy), 

1.70–1.58 (m, 3H, Cy), 1.39 (s, 9H, tBu), 1.28–1.14 (m, 3H, Cy), 1.13–1.01 (m, 2H, Cy);  

13C NMR (126 MHz, CDCl3) δ 141.2 (CH2=CSO2), 137.4 (SO2NCH2CC), 126.3 (SO2NCH2CC), 113.8 

(CH2=CSO2), 60.9, 55.9, 43.6, 37.8 (Cy), 30.4 (2 Cy), 29.7 (tBu), 25.9 (Cy), 25.3 (2 Cy);  

HRMS calculated for C16H26N4O2S 339.1849 (M+H)+; found 339.1863 (TOF MS ES+). 
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6-(tert-butyl)-3-(2-((tert-butyldimethylsilyl)oxy)-3-(4-methoxyphenoxy)propyl)-4-methylene-3,4,6,7-

tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.22 

(86%, 0.156 mg) was isolated as brownish oil. 

Rf = 0.65 (EtOAc:Hexane =1:1);  

FTIR (neat): 2953, 2929, 2896, 1643, 1508, 1441, 1400,1388, 1232, 1162, 1107, 1043, 881, 826 cm-1;  

1H NMR (500 MHz, CDCl3) δ 6.86 (s, 4H, (ArH), 6.33 (dd, J = 12.3, 1.9 Hz, 2H, CH2=CSO2), 4.93–4.68 

(m, 3H, (OCH2CH(OTBS)CH2N3), 4.65–4.47 (m, 2H, NCH2), 4.08–3.87 (m, 2H, 

(OCH2CH(OTBS)CH2N3)), 3.79 (s, 3H, OCH3), 1.43 (s, 9H, tBu), 0.80 (s, 9H, OSiCH3CH3C(CH3)3), -

0.03 (s, 3H, OSiCH3CH3C(CH3)3), -0.27 (s, 3H, OSiCH3CH3C(CH3)3);  

13C NMR (126 MHz, CDCl3) δ 154.4 (CAr), 152.1 (CAr), 140.9 (CH2=CSO2), 136.9 (SO2NCH2CC), 

127.5 (SO2NCH2CC), 115.4 (2 CAr), 115.0 (CH2CSO2), 114.8 (2 CAr), 70.3 (OCH2CH(OTBS)), 70.2 

(OCH2CH(OTBS), 61.1 (OCH3), 55.7, 53.0, 43.5, 30.0 (tBu), 25.6 (3 OSiCH3CH3C(CH3)3), 17.8, 

(OSiCH3CH3C(CH3)3), -5.14, (OSiCH3CH3C(CH3)3), -5.4, (OSiCH3CH3(CH3)3);  

HRMS calculated for C25H40N4O5SiS 537.2561 (M+H)+; found 537.2575 (TOF MS ES+).  

  

N
S
OO

N
N N

O
OTBS

H3CO



 
 

273 

Methyl (S)-3-methyl-2-(4-methylene-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-4,7-dihydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-6(3H)-yl)butanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.23 

(60%, 15 mg) was isolated as yellow oil. 

Rf = 0.28 (EtOAc:Hexane =1:1);  

[𝒂]𝑫𝟐𝟎 = 0.545 (c = 0.0055, CH2Cl2); 

FTIR (neat): 2968, 1740, 1622, 1436, 1422, 1327, 1274, 1169, 1067, 934, 819 cm-1  

1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 2H, ArH), 7.20 (d, J = 8.1 Hz, 2H, ArH), 6.11 (d, J = 

2.3 Hz, 1H, CH2=CSO2), 5.89 (d, J = 16.6 Hz, 1H, N3CH2), 5.62 (d, J = 16.6 Hz, 1H, N3CH2), 5.52 (d, J = 

2.3 Hz, 1H, CH2=CSO2), 4.84 (s, 2H, NCH2), 4.10 (d, J = 10.2 Hz, 1H, NCH), 3.40 (s, 3H, OCH3), 2.37–

2.10 (m, 1H, CH3CHCH3), 1.03 (d, J = 6.7 Hz, 3H, MeCHMe), 0.96 (d, J = 6.6 Hz, 3H, MeCHMe);  

13C NMR (126 MHz, CDCl3) δ 169.8 (CO), 141.0 (CH2=CSO2), 137.7 (CAr), 134.5 (SO2NCH2CC), 

128.3 (SO2NCH2CC), 131.1 (q, 2JC–CF3 =32.9 Hz, CAr), 126.5 (2 CAr), 126.3 (q, 3JC–CF3 = 3.7 Hz, 2 CAr), 

123.5 (q, 1JC–CF3 = 272.3 Hz, CF3), 115.3 (CH2=CSO2), 65.3 (NCH), 52.3 (ArCH2), 51.5 (OCH3), 42.2 

(NCH2), 28.3 (MeCHMe), 19.2 (MeCHMe), 19.1 (MeCHMe);  

HRMS calculated for C19H21F3N4O4S 459.1308 (M+H); found 459.1344 (TOF MS ES+). 
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Methyl (S)-2-(3-(2-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylbutanoate  

 

 According to the reaction protocol described in general procedure E.1, compound 2.4.2.3.24 

(89%, 0.079g) was isolated as yellow oil.  

Rf = 0.48 (EtOAc:Hexane =1:1);   

[𝒂]𝑫𝟐𝟎 = -26.0 (c = 0.0005, CH2Cl2);  

FTIR (neat): 1207, 1227, 1273, 1348, 1437, 1512, 1738, 2342, 2359, 2967 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.08 (s, 2H, ArH), 7.06 (d, J = 1.6 Hz, 2H, ArH), 6.11 (d, J = 2.2 Hz, 1H, 

CH2=CSO2), 5.80 (d, J = 16.0 Hz, 1H, CH2), 5.59 (d, J = 2.2 Hz, 1H, CH2=CSO2), 5.52 (d, J = 16.1 Hz, 

1H, CH2), 4.82 (s, 2H, CH2), 4.08 (d, J = 10.2 Hz, 1H, NCHCO2Me), 3.37 (s, 3H, OMe), 2.18 (ddt, J = 

13.3, 10.3, 6.6 Hz, 1H, CHMeMe), 1.02 (d, J = 6.7 Hz, 3H, Me), 0.95 (d, J = 6.6 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) δ 169.8 (CO), 162.8 (d, J = 248.3 Hz, CAr), 141.0 (CH2=CSO2), 134.7 

(SO2NCH2CC), 130.4 (d, J = 8.3 Hz, CAr), 129.7 (d, J = 3.6 Hz, CAr), 128.2 (d, J = 8.2 Hz, CAr), 126.4 

(SO2NCH2CC), 116.5 (d, J = 21.8 Hz, CAr), 115.6 (CH2=CSO2), 65.4 (NCHCO2Me), 52.4 (CH2), 51.6 

(OMe), 42.3 (CH2), 28.4 (MeCHMe), 19.3 (Me), 19.2 (Me) (*Note: identification of a quat Carbon not 

made); 

HRMS calculated for C18H21FN4O4S 409.1340 (M+H)+; found 409.1344 (TOF MS ES+). 
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Methyl (S)-2-(3-(4-methoxybenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylbutanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.25 

(73%, 0.081 g) was isolated as clear oil.   

Rf = 0.61 (EtOAc:Hexane =1:1);   

[𝒂]𝑫𝟐𝟎 = -2.97 (c = 0.0235, CH2Cl2);  

FTIR (neat): 2964, 2927, 2874, 1739, 1642, 1516, 1436, 1347, 1273, 1167, 1041, 889 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.19 (d, J = 7.9 Hz, 2H, ArH), 6.98 (d, J = 7.8 Hz, 2H, ArH), 6.11 (d, J = 

2.3 Hz, 1H CH2=CSO2), 5.83 (d, J = 16.0 Hz, 1H, N3CH2), 5.64 (d, J = 2.1 Hz, 1H CH2=CSO2), 5.51 (d, J 

= 16.2 Hz, 1H, N3CH2), 4.84 (s, 2H, NCH2), 4.09 (dd, J = 10.4, 1.2 Hz, 1H, NCH), 3.38 (d, J = 1.5 Hz, 

3H, OMe), 2.36 (s, 3H, CO2Me), 2.20 (dp, J = 10.2, 6.6 Hz, 1H, MeCHMe), 1.05 (d, J = 6.6 Hz, 3H, 

MeCHCH3), 0.97 (d, J = 6.6 Hz, 3H, MeCHMe);  

13C NMR (126 MHz, CDCl3) δ 169.7 (COO), 140.7 (CH2=CSO2), 138.6 (CAr), 134.5 (SO2NCH2CC), 

130.1 (2 CAr), 130.0 (CAr), 126.3 (SO2NCH2CC), 126.1 (2 CAr), 115.8 (CH2=CSO2), 65.4 (NCH), 52.8 

(ArCH2), 51.5 (OCH3), 42.2 (NCH2), 28.3 (MeCHMe), 21.1, 19.2 (MeCHMe), 19.1 (MeCHMe); 

HRMS calculated for C19H24N4O5S 421.1540 (M+H)+; found 421.1525 (TOF MS ES+). 
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Methyl (S)-4-methyl-2-(4-methylene-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-4,7-dihydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-6(3H)-yl)pentanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.26 

(64%, 0.053 g) was isolated as yellow oil.   

Rf = 0.50 (EtOAc:Hexane =1:1);  

[𝒂]𝑫𝟐𝟎 = -4.218 (c = 0.0275, CH2Cl2);  

FTIR (neat): 2959, 2872, 1743, 1644, 1514, 1327, 1251, 1171, 1051, 883, 820 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.57 (d, J = 8.2 Hz, 2H, ArH), 7.13 (d, J = 8.0 Hz, 2H, ArH), 6.01 (d, J = 

2.2 Hz, 1H, CH2=CSO2), 5.81 (d, J = 16.7 Hz, 1H, N3CH2), 5.60 (d, J = 16.7 Hz, 1H, N3CH2), 5.43 (d, J = 

2.3 Hz, 1H, CH2=CSO2), 4.71 (d, J = 16.9 Hz, 1H, NCHCO2Me), 4.68 – 4.58 (m, 2H, NCH2), 3.46 (s, 3H, 

OMe), 1.69 – 1.62 (m, 2H, CH2CHMeMe), 1.62 – 1.53 (m, 1H, MeCHMe), 0.90 (t, J = 6.5 Hz, 6H, 2Me);  

13C NMR (126 MHz, CDCl3) δ 171.0 (COO), 141.2 (CH2=CSO2), 137.9 (CAr), 135.0 (SO2NCH2CC), 

131.1 (q, 2JC–CF3 =32.7 Hz, CAr), 126.9 (SO2NCH2CC), 126.6 (2 CAr), 126.4 (q, 3JC–CF3 = 3.7 Hz, 2 CAr), 

123.5 (q, 1JC–CF3 = 272.8 Hz, CF3), 114.6 (CH2=CSO2), 58.4 (NCH), 52.5 (ArCH2), 52.2 (OMe), 41.9 

(NCH2), 38.0 (CH2CHMeMe), 24.8 (MeCHMe), 23.1, (MeCHMe), 21.0, (MeCHMe);  

HRMS calculated for C20H23F3N4O4S 473.1465 (M+H)+; found 473.1469 (TOF MS ES+). 
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Methyl (S)-2-(3-(4-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-4-methylpentanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.28 

(78%, 0.074 g) was isolated as clear oil.   

Rf = 0.57 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -4.549 (c = 0.0255, CH2Cl2);  

FTIR (neat): 2958, 2872, 1742, 1644, 1512, 1438, 1388, 1270, 1159, 1050, 883, 823, cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.13 – 7.05 (m, 4H, ArH), 6.11 (d, J = 2.2 Hz, 1H, CH2=CSO2), 5.80 (dd, 

J = 16.2, 1.2 Hz, 1H, N3CH2), 5.64 – 5.57 (m, 2H, N3CH2, CH2=CSO2), 4.78 (d, J = 16.7 Hz, 1H, 

NCHCO2Me), 4.74 (d, J = 11.0 Hz, 2H, NCH2), 3.53 (s, 3H, OMe), 1.81 – 1.54 (m, 4H, CH2CHMeMe, 

MeCHMe), 0.98 (t, J = 6.2 Hz, 6H, 2Me). 

13C NMR (126 MHz, CDCl3) δ 170.9 (CO), 162.8 (1JC–F = 246.5 Hz, CAr), 141.0 (CH2=CSO2), 135.0 

(SO2NCH2CC), 129.7 (4JC–F = 3.64 Hz, CAr), 128.1 (3JC–F = 8.05 Hz, 2, CAr), 126.5 (SO2NCH2CC), 116.4 

(2JC–F = 21.56 Hz, 2, CAr), 114.7 (CH2=CSO2), 58.2 (NCH), 52.3 (ArCH2), 52.1 (OCH3), 42.8 (NCH2), 

38.0 (CHCH2CHNCOOCH3), 24.7 (CH3CHCH3), 23.0, (CH3CHCH3), 21.0, (CH3CHCH3);  

HRMS calculated for C19H23FN4O4S 423.1497 (M+H)+; found 423.1491 (TOF MS ES+). 
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Methyl (S)-2-(3-(4-methoxybenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-4-methylpentanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.29 

(71%, 0.068 g) was isolated as clear oil.   

Rf = 0.51 (EtOAc:Hexane =1:1);  

[𝒂]𝑫𝟐𝟎 = -42.7 (c = 0.004, CH2Cl2);  

FTIR (neat): 2957, 2871, 1742, 1612, 1586, 1514, 1439, 1250, 1156, 1032, 818 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.07 - 6.96 (m, 2H, ArH), 6.92 - 6.82 (m, 2H, ArH), 6.08 (d, J = 2.1 Hz, 

1H, CH2=CSO2), 5.73 (dt, J = 16.0, 0.8 Hz, 1H, N3CH2), 5.62 (d, J = 2.1 Hz, 1H CH2=CSO2), 5.54 (d, J = 

16.0 Hz, 1H, N3CH2), 4.77 - 4.63 (m, 3H, NCH2, NCHCO2Me), 3.79 (s, 3H, ArOMe), 3.47 (s, 3H, 

CO2Me), 1.72 - 1.58 (m, 3H, CH2CHMeMe, CHMeMe), 0.94 (t, J = 6.4 Hz, 6H, 2Me);  

13C NMR (126 MHz, CDCl3) δ 170.9 (CO), 159.8 (CAr), 140.8 (CH2=CSO2), 135.0 (SO2NCH2CC), 

127.7 (2 CAr), 126.6 (SO2NCH2CC), 125.9 (CAr), 115.0 (CH2=CSO2), 114.7 (2 CAr), 58.2 (NCHCO2Me), 

55.4 (ArOMe), 52.7 (Bn), 52.1 (OMe), 41.9 (NCH2), 38.0 (CH2CHMeMe), 24.8 (MeCHMe), 23.1 (Me), 

21.1 (Me);  

HRMS calculated for C20H26N4O5S 435.1697 (M+H)+; found 435.1704 (TOF MS ES+). 
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Methyl (2S,3S)-3-methyl-2-(4-methylene-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-4,7-dihydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-6(3H)-yl)pentanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.30 

(72 %, 0.67 g) was isolated as clear oil.   

Rf = 0.60 (EtOAc:Hexane =1:1);  

[𝒂]𝑫𝟐𝟎 = -6.41 (c = 0.0265, CH2Cl2);  

FTIR (neat): 1209, 1242, 1265, 1322, 1392, 1421, 1435, 1469, 1625, 1745, 2878, 2963 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.58 (d, J = 8.1 Hz, 2H, ArH), 7.13 (d, J = 8.1 Hz, 2H, ArH), 6.03 (d, J = 

2.3 Hz, 1H, CH2=CSO2), 5.82 (d, J = 16.6 Hz, 1H, N3CH2), 5.55 (d, J = 16.6 Hz, 1H, N3CH2), 5.46 (d, J = 

2.3 Hz, 1H, CH2=CSO2), 4.93 – 4.65 (m, 2H, NCH2), 4.13 (d, J = 10.4 Hz, 1H, NCHCO2Me), 3.32 (s, 3H, 

CO2CH3), 2.00 – 1.88 (m, 1H, MeCHMe), 1.55 (dqd, J = 15.1, 7.6, 3.3 Hz, 1H, CH2Me), 1.23 – 1.10 (m, 

1H, CH2Me), 0.93 – 0.78 (m, 6H, 2Me). 

13C NMR (126 MHz, CDCl3) δ 170.0 (CO), 141.1 (CH2=CSO2), 137.9 (CAr), 134.5 (SO2NCH2CC), 

131.1 (q, 2JC–CF3 =31.9 Hz, CAr), 126.6 (2 CAr), 126.5, 126.4 (q, 3JC–CF3 = 3.7 Hz, 2 CAr), 123.6 (q, 1JC–CF3 = 

270.8 Hz, CF3), 115.5 (CH2=CSO2), 63.9 (NCH), 52.4 (ArCH2), 51.6 (OMe), 42.3 (NCH2), 34.1, (CHMe), 

25.2, (CH2Me), 15.4, (Me), 10.2, (Me);  

HRMS calculated for C20H23F3N4O4S 473.1465 (M+H)+; found 473.1469 (TOF MS ES+).  
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Methyl (2S,3S)-2-(3-(4-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylpentanoate  

  

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.31 

(61 %, 0.049 g) was isolated as clear oil.  

Rf = 0.65 (EtOAc:Hexane = 1:1);  

[𝒂]𝑫𝟐𝟎 = -6.47 (c = 0.0105, CH2Cl2);  

FTIR (neat): 2962, 2928, 1740, 1643, 1512, 1436, 1152, 1043, cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.22 - 7.10 (m, 2H, ArH), 6.96 (d, J = 8.2 Hz, 2H, ArH), 6.08 (d, J = 2.1 

Hz, 1H, CH2=CSO2), 5.80 (d, J = 16.2 Hz, 1H, N3CH2), 5.61 (d, J = 2.2 Hz, 1H, CH2=CSO2), 5.48 (d, J = 

16.2 Hz, 1H, N3CH2), 4.88 - 4.75 (m, 2H, CH2), 4.17 (d, J = 10.5 Hz, 1H, NCHCO2Me), 3.34 (s, 3H, 

CO2Me), 2.07 - 1.91 (m, 1H, CHMe), 1.31 - 1.15 (m, 2H, CH2Me), 0.97 - 0.84 (m, 6H, 2Me);  

13C NMR (126 MHz, CDCl3) δ 169.8 (CO), 140.8 (CH2=CSO2), 138.7 (CAr), 134.5 (SO2NCH2CC), 131.0 

(CAr), 130.1 (2 CAr), 126.3 (SO2NCH2CC) 126.2 (2 CAr), 115.9 (CH2=CSO2), 63.8 (NCHCO2Me), 52.9 

(CH2), 51.6 (CO2Me), 42.3 (CH2), 33.9 (CHMe), 25.1 (CH2Me), 15.4 (Me), 10.2 (Me);  

HRMS calculated for C19H23FN4O4S 440.1762 (M+NH4)+; found 440.1772 (TOF MS ES+). 
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Methyl (2S,3S)-2-(3-(4-methoxybenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylpentanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.32 

87 %, 0.078 g) was isolated as clear oil.   

Rf = 0.60 (EtOAc:Hexane = 1:1); 

[𝒂]𝑫𝟐𝟎 = -5.75 (c = 0.029, CH2Cl2);  

FTIR (neat): 2966, 2929, 2878, 1739, 1644, 1516, 1454, 1317, 1233, 1199, 1071, 889 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 8.1 Hz, 2H, ArH), 7.24–7.14 (m, 2H, ArH), 6.10 (d, J = 2.3 

Hz, 1H, CH2=CSO2), 5.95 - 5.81 (m, 1H, N3CH2), 5.62 (d, J = 16.6 Hz, 1H, N3CH2), 5.52 (d, J = 2.3 Hz, 

1H, CH2=CSO2), 4.93 - 4.77 (m, 2H, NCH2), 4.19 (d, J = 10.4 Hz, 1H, NCH), 3.39 (s, 3H, OMe), 2.33 (s, 

3H, OMe) 2.08 - 1.92 (m, 1H, CHMe), 1.62 (dqd, J = 15.1, 7.5, 3.3 Hz, 1H, CH2Me), 1.29 - 1.13 (m, 1H, 

CH2Me), 0.92 (dd, J = 8.0, 7.1 Hz, 6H, 2Me);  

13C NMR (126 MHz, CDCl3) δ 169.8 (CO), 140.8 (CH2=CSO2), 138.7 (SO2NCH2CC), 134.5 (CAr), 

131.0 (CAr), 130.1 (2 CAr), 126.3 (SO2NCH2CC), 126.2 (2CAr), 115.9 (CH2=CSO2), 63.8 (NCHCO2Me), 

52.9 (BnCH2), 51.5 (CO2Me), 42.2 (CH2), 33.9 (CH-Ile), 25.1 (CH2Me), 21.2 (OMe), 15.3 (Me), 10.2 

(Me); 

HRMS calculated for C20H26N4O5S 435.1697 (M+H)+; found 435.1709 (TOF MS ES+). 
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Methyl (S)-2-(3-(3-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-phenylpropanoate  

 

 According to the reaction protocol described in general procedure E.2, compound 2.4.2.3.33 

(71 %, 0.0181 g) was isolated as clear oil.  

Rf = 0.51 (EtOAc:Hexane =1:1);  

[𝒂]𝑫𝟐𝟎 = -16.5 (c = 0.00133, CH2Cl2);  

FTIR (neat): 2953, 1730, 1456, 1359, 1260, 1178, 1035, 764, 750, 702 cm-1;  

1H NMR (500 MHz, CDCl3) δ 7.36 (ddd, J = 8.0, 4.2, 2.7 Hz, 1H, ArH), 7.19 – 7.11 (m, 2H, ArH), 7.07 

(dd, J = 5.0, 2.0 Hz, 3H, ArH), 7.00 (dd, J = 6.6, 2.8 Hz, 2H, ArH), 6.94 (td, J = 7.7, 1.6 Hz, 1H, ArH), 

5.81 (d, J = 2.5 Hz, 1H, CHb=CSO2), 5.70 – 5.52 (m, 2H, N3CH2Ar), 5.38 (d, J = 2.5 Hz, 1H, CH2=CSO2), 

4.98 (dd, J = 10.3, 5.6 Hz, 1H, NCHCO2Me), 4.86 – 4.71 (m, 2H, NCH2), 3.64 (s, 3H, OMe), 3.30 (dd, J 

= 14.5, 5.7 Hz, 1H, CH2-ArPhe), 2.90 (dd, J = 14.5, 10.3 Hz, 1H, CH2-ArPhe)  

13C NMR (126 MHz, CDCl3) δ 170.0 (CO), 159.4 (d, 1JC–F = 246.7 Hz, CAr), 135.3 (CH2=CSO2), 134.2 

(SO2NCH2CC), 130.6 (d, 3’JC–F = 8.2 Hz, CAr), 129.1 (2 CAr), 129.0 (CAr), 128.5 (d, 4JC–F 2.9 Hz, CAr), 

128.4 (2 CAr), 128.1 (CAr), 127.0 (SO2NCH2CC), 125.0 (d, 3JC–F 3.6 Hz, CAr), 120.7 (d, 2JC–F 14.1 Hz, CAr), 

115.7 (d, 2’JC–F = 21.0 Hz, CAr), 114.2 (d, J = 2.6 Hz, (CH2=CSO2), 60.9 (NCH), 52.4 (OCH3), 46.3 

(N3CH2Ph), 42.0 (NCH2), 35.8 (PhCH2);  

HRMS calculated for C22H21FN4O4S 479.1160 (M+Na)+; found 479.1169 (TOF MS ES+). 
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6-(tert-butyl)-4-(morpholinomethyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.1 (96%, 

29 mg) was isolated as colorless oil. 

Rf = 0.28 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2957, 2360, 1724, 1621, 1421, 1326, 1167, 1129, 1067, 827 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.0 Hz, 2H, ArH), 7.12 (d, J = 8.0 Hz, 2H, ArH), 6.00 (d, J = 

16.1 Hz, 1H, CH2), 5.84 (d, J = 16.0 Hz, 1H, CH2), 4.70 (d, J = 14.6 Hz, 1H, CH2), 4.45 (d, J = 14.6 Hz, 

1H, CH2), 3.92 (dd, J = 9.2, 2.3 Hz, 1H, NCH2CHS), 3.66 (t, J = 4.5 Hz, 4H, 2CH2), 3.22 (dd, J = 13.2, 

2.6 Hz, 1H, NCH2CHS), 2.73 (dd, J = 13.0, 9.5 Hz, 1H, NCH2CHS), 2.60 (dt, J = 9.4, 4.5 Hz, 2H, CH2), 

2.38 (m 2H, CH2), 1.51 (s, 9H, tBu); 

13C NMR (126 MHz, CDCl3) δ 139.2 (CAr), 138.8 (SO2NCH2CC), 130.9 (d, J = 33.4 Hz, CAr), 130.4 

(SO2NCH2CC), 126.7 (2 CAr), 126.3 (q, J = 10.8 Hz, 2 CAr), 124. 9 (CF3) 66.9 (2 OCH2CH2N), 61.1, 56.2, 

54.4, 51.9, 43.4, 30.0 (tBu); 

HRMS calculated for C21H28F3N5O3S 488.1938 (M+H)+; found 488.1956 (TOF MS ES+). 

  

N
S

N
N N

OO

F3C

N
O



 
 

284 

6-(tert-butyl)-4-(piperidin-1-ylmethyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.2 (72%, 

8.7 mg) was isolated as colorless oil.  

Rf = 0.60 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2952, 1723, 1421, 1327, 1164, 1127, 1067, 1036, 991 cm-1; 

1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.0 Hz, 2H, ArH), 7.15 (d, J = 8.0 Hz, 2H, ArH), 6.12 (d, J = 

15.9 Hz, 1H, CH2), 5.82 (d, J = 16.0 Hz, 1H, CH2), 4.69 (d, J = 14.6 Hz, 1H, CH2), 4.43 (d, J = 14.6 Hz, 

1H, CH2), 3.92 (d, J = 9.4 Hz, 1H, NCH2CHS), 3.16 (dd, J = 13.0, 2.5 Hz, 1H, NCH2CHS), 2.71 (dd, J = 

12.8, 10.4 Hz, 1H, NCH2CHS), 2.51 (m, 2H, CH2), 2.28 (dt, J = 10.4, 4.6 Hz, 2H CH2), 1.59 (m, 4H 2 

CH2), 1.50 (s, 9H, tBu), 1.25 (s, 2H, CH2); 

13C NMR (126 MHz, CDCl3) δ 139.1 (d, = 1.0 Hz, CAr), 139.0 (SO2NCH2CC), 130.7 (q, J = 32.8 Hz, CAr), 

130.6 (SO2NCH2CC), 126.8 (2 CAr), 126.2 (q, J = 3.6, 2 CAr), 123.92 (d, J = 272.3 Hz, CF3) 61.4, 60.9, 

56.5, 55.5, 51.9, 43.4, 30.0 (tBu), 26.1, 23.9; 

HRMS calculated for C22H30F3N5O2S 486.2145 (M+H)+; found 486.2170 (TOF MS ES+). 
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4-((benzylamino)methyl)-6-(tert-butyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.3 (95%, 

30 mg) was isolated as colorless oil. 

Rf = 0.37 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2953, 1723, 1421, 1326, 1168, 1127, 1067, 1035 cm-1; 

1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.0 Hz, 2H, ArH), 7.32 (dt, J = 13.9, 6.0 Hz, 3H, ArH), 7.22 

(d, J = 7.3 Hz, 2H, ArH), 7.06 (d, J = 7.9 Hz, 2H, ArH), 5.58  (m, 2H, CH2), 4.64 (d, J = 14.9 Hz, 1H, 

CH2), 4.45 (d, J = 14.9 Hz, 1H CH2), 4.00 (m, 1H, CH2CHS), 3.77 (d, J = 13.4 Hz, 1H, CH2), 3.64 (d, J = 

13.3 Hz, 1H, CH2), 3.19 (dd, J = 13.5, 7.0 Hz, 1H, CH2CHS), 2.84 (dd, J = 13.6, 4.1 Hz, 1H, CH2CHS), 

1.45 (s, 9H); 

13C NMR (126 MHz, CDCl3) δ 140.0 (CAr), 139.1 (SO2NCH2CC), 138.2 (CAr), 131.0 (d, J = 32.8 Hz, 

CAr) 128.8 (2 CAr), 128.7 (d, J = 13.9 Hz, CAr), 128.4 (2 CAr), 128.3 (SO2NCH2CC), 127.6 (CAr), 127.4 

(CAr), 126.2 (q, J = 3.7 Hz, 2 CAr), 123.8 (d, J = 273.0 Hz, CF3), 61.1, 58.8, 53.7, 51.8, 48.9, 43.1, 30.0 

(tBu); 

HRMS calculated for C24H28F3N5O2S 506.1838 (M-H)+; found 506.1814 (TOF MS ES+). 
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6-(tert-butyl)-4-((isopropylamino)methyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.4 (99%, 

29 mg) was isolated as colorless oil. 

Rf = 0.28 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2967, 2929, 2870, 1621, 1468, 1370, 1326, 1067, 817 cm-1; 

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.0 Hz, 2H, CAR), 7.24 (d, 2H, CAR), 5.87 (d, J = 16.0 Hz, 1H, 

CH2), 5.67 (d, J = 16.0 Hz, 1H, CH2), 4.68 (d, J = 14.8 Hz, 1H, CH2), 4.44 (d, J = 14.7 Hz, 1H, CH2), 

3.98 (t, J = 5.8 Hz, 1H, CH2CHS), 3.27 (dd, J = 13.2, 6.6 Hz, 1H, CH2CHS), 2.83 (dd, J = 13.2, 5.4 Hz, 

1H, CH2CHS), 2.66 (dq, J = 11.9, 5.9 Hz, 1H, MeCHMe), 1.50 (s, 9H, tBu), 1.00 (d, J = 6.2 Hz, 3H, Me), 

0.95 (d, J = 6.2 Hz, 3H, Me); 

13C NMR (126 MHz, CDCl3) δ 139.8 (SO2NCH2CC), 138.5 (d, J = 1.1 Hz, CAr), 131.0 (d, J = 32.8 Hz, 

CAr), 128.6 (SO2NCH2CC), 127.3 (2 CAr), 126.3 (q, J = 3.7 Hz, 2 CAr), 123.8 (d, J = 273.0 Hz, CF3) 61.1, 

59.0, 51.9, 49.1, 48.4, 43.2, 30.0 (tBu), 22.9 (Me), 22.8 (Me); 

HRMS calculated for C20H28F3N5O2S 458.1838 (M-H)+; found 458.1819 (TOF MS ES+). 
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3-benzyl-6-(tert-butyl)-4-(morpholinomethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.5 (96%, 

24 mg) was isolated as colorless oil.  

Rf = 0.13 (EtOAc:Hexane = 1:2);  

FTIR (neat): 2964, 2359, 1497, 1455, 1325, 1196, 1130, 1116, 1071, 1033, 1005, 731, 708 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.33 (q, J = 7.6, 6.9 Hz, 3H, ArH), 7.00 (d, J = 7.0 Hz, 2H, ArH), 5.94 

(m, 2H, CH2), 4.69 (d, J = 14.7 Hz, 1H, CH2), 4.44 (d, J = 14.6 Hz, 1H, CH2), 3.92 (dd, J = 9.1, 3.2 Hz, 

1H, CH2CHS), 3.68 (t, J = 4.5 Hz, 4H, CH2), 3.18 (dd, J = 13.2, 3.2 Hz, 1H, CH2CHS), 2.73 (dd, J = 

13.1, 9.3 Hz, 1H, CH2CHS), 2.58 (dt, J = 9.7, 4.5 Hz, 2H, CH2), 2.33 (dt, J = 10.5, 4.6 Hz, 2H, CH2), 1.49 

(s, 9H, tBu); 

13C NMR (126 MHz, CDCl3) δ 139.1 (SO2NCH2CC), 134.7 (CAr), 130.1 (CAr), 129.3 (2 CAr), 128.6 

(SO2NCH2CC), 126.4 (2 CAr), 66.9 (2 OCH2), 61.0, 60.9, 56.3, 54.3, 52.6, 30.0 (tBu); 

HRMS calculated for C20H29N5O3S 420.2064 (M+H)+; found 420.2061 (TOF MS ES+). 
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3-benzyl-6-(tert-butyl)-4-(piperidin-1-ylmethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.6 (93%, 

25 mg) was isolated as colorless oil. 

Rf = 0.70 (EtOAc:Hexane = 2:1);  

FTIR (neat): 3032, 2934, 2853, 2799, 2762, 2359, 1590, 14.55, 1327, 1077, 772, 734 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.32 (q, J = 9.5, 8.0 Hz, 3H, ArH), 7.04 (d, J = 7.4 Hz, 2H, ArH), 6.02 (d, 

J = 15.6 Hz, 1H, CH2), 5.79 (d, J = 15.6 Hz, 1H, CH2), 4.68 (d, J = 14.5 Hz, 1H, CH2), 4.42 (d, J = 14.6 

Hz, 1H, CH2), 3.93 (dd, J = 10.0, 2.7 Hz, 1H, CH2CHS), 3.14 (dd, J = 12.9, 3.0 Hz, 1H, CH2CHS), 2.71 

(dd, J = 12.9, 10.2 Hz, 1H, CH2CHS), 2.60 (m, 2H, CH2), 2.28 (dt, J = 10.8, 5.2 Hz, 2H, CH2), 1.57 (dd, J 

= 12.3, 6.9 Hz, 6H, 3CH2), 1.49 (s, 9H, tBu); 

13C NMR (126 MHz, CDCl3) δ 138.8 (SO2NCH2CC), 135.0 (CAr), 130.4 (CAr), 129.2 (2 CAr), 128.4 

(SO2NCH2CC), 126.5 (2 CAr), 61.5, 60.8, 56.6, 55.5, 52.5, 43.4, 30.0 (tBu), 26.2, 24.0; 

HRMS calculated for C21H31N5O2S 418.2271 (M+H)+; found 418.2220 (TOF MS ES+). 
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3-benzyl-4-((benzylamino)methyl)-6-(tert-butyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.7 (80%, 

21 mg) was isolated as colorless oil.  

Rf = 0.31 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2954, 2360, 1714, 1414, 1181, 1036, cm-1 

1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 7.1 Hz, 3H, ArH), 7.23 (d, J = 6.8 Hz, 1H, ArH), 7.21 (m, 

3H, ArH), 6.98 (m, 2H, ArH), 5.47 (d, J = 15.7 Hz, 1H, CH2), 5.34 (d, J = 15.7 Hz, 1H, CH2), 4.58 (d, J = 

15.0 Hz, 1H, CH2), 4.38 (d, J = 14.9 Hz, 1H, CH2), 3.92 (dd, J = 7.0, 3.0 Hz, 1H, CH2CHS), 3.71 (d, J = 

13.3 Hz, 1H, CH2), 3.54 (d, J = 13.3 Hz, 1H, CH2), 3.07 (dd, J = 13.6, 7.5 Hz, 1H, CH2CHS), 2.73 (dd, J 

= 13.6, 3.4 Hz, 1H, CH2CHS), 1.36 (s, 9H, tBu); 

13C NMR (126 MHz, CDCl3) δ 139.9 (SO2NCH2CC), 139.2 (CAr), 134.1 (CAr), 129.3 (2 CAr), 128.8 

(CAr), 128.7 (2 CAr), 128.4 (2 CAr), 128.0 (SO2NCH2CC), 127.5 (CAr), 127.1 (2 CAr), 60.9, 58.9, 53.6, 

52.6, 48.7, 43.1, 29.9 (tBu); 

HRMS calculated for C23H29N5O2S 440.2115 (M+H)+; found 440.2133 (TOF MS ES+). 
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3-benzyl-6-(tert-butyl)-4-((isopropylamino)methyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.8 (49%, 

30 mg) was isolated as colorless oil.  

Rf = 0.28 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2952, 1722, 1443, 1326, 1034, 990, 920 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 7.3 Hz, 3H, ArH), 7.17 (d, J = 6.9 Hz, 2H, ArH), 5.75 (d, J = 

15.6 Hz, 1H, CH2), 5.65 (d, J = 15.6 Hz, 1H, CH2), 4.66 (d, J = 14.8 Hz, 1H, CH2), 4.43 (d, J = 14.8 Hz, 

1H, CH2), 4.12 (d, J = 5.8 Hz, 1H, CH2CHS), 3.20 (dd, J = 13.3, 7.5 Hz, 1H, CH2CHS), 2.85 (dd, J = 

13.5, 4.0 Hz, 1H, CH2CHS), 2.72 (dt, J = 12.2, 6.2 Hz, 1H, MeCHMe), 1.49 (s, 9H, tBu), 1.01 (dd, J = 

13.1, 6.2 Hz, 6H, 2Me); 

13C NMR (126 MHz, CDCl3) δ 139.7 (SO2NCH2CC), 134.4 (CAr), 129.3 9 (2 CAr), 128.7 (SO2NCH2CC), 

128.0 (CAr), 127.1 (2 CAr), 61.0, 58.6, 52.6, 49.2, 47.9, 43.2, 30.0 (tBu), 22.5 (2 MeCHMe); 

HRMS calculated for C19H29N5O2S 392.2115 (M+H)+; found 392.2131 (TOF MS ES+). 
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6-(tert-butyl)-3-(4-methoxybenzyl)-4-(morpholinomethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.9 (90%, 

38 mg) was isolated as colorless oil.  

Rf = 0.28 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2961, 2853, 1612, 1514, 1458, 1326, 1179, 1033, 815 cm-1 

1H NMR (400 MHz, CDCl3) 6.96 (d, J = 8.2 Hz, 2H, ArH), 6.85 (d, J = 8.4 Hz, 2H, ArH), 5.83–5.71 (m, 

2H, CH2), 4.67 (d, J = 14.6 Hz, 1H, CH2), 4.41 (d, J = 14.6 Hz, 1H, CH2), 3.96–3.90 (m, 1H, CH2CHS), 

3.78 (s, 3H, OMe), 3.70 (t, J = 4.3 Hz, 4H, 2CH2), 3.18 (dd, J = 13.2, 2.9 Hz, 1H, CH2CHS), 2.74 (dd, J = 

13.1, 9.2 Hz, 1H, CH2CHS), 2.60 (dt, J = 9.0, 4.0 Hz, 2H, CH2), 2.36 (dt, J = 10.0, 4.4 Hz, 2H, CH2), 1.49 

(s, 9H, tBu). 

13C NMR (126 MHz, CDCl3) 159.7 (CAr), 139.0 (SO2NCH2CC), 129.8 (CAr), 127.9 (2 CAr), 126.5 

(SO2NCH2CC), 114.6 (2 CAr), 66.9 (2 OCH2), 61.0, 60.9, 56.3, 55.4, 54.3, 52.2, 43.4, 29.9 (tBu); 

HRMS calculated for C21H31N5O4S 450.2170 (M+H)+; found 450.2173 (TOF MS ES+). 
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6-(tert-butyl)-3-(4-methoxybenzyl)-4-(piperidin-1-ylmethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.10 (84%, 

41 mg) was isolated as colorless oil.  

Rf = 0.37 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3054, 2934, 2853, 2799, 1613, 1514, 1455, 1326, 1133, 1032, 817 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.00 (t, J = 7.2 Hz, 2H, ArH), 6.86 (t, J = 9.1 Hz, 2H, ArH), 5.91 (d, J = 

15.3 Hz, 1H, CH2), 5.72 (d, J = 15.2 Hz, 1H, CH2), 5.65 (d, J = 8.3 Hz, 1H), 4.66 (d, J = 14.5 Hz, 1H, 

CH2), 4.39 (d, J = 14.5 Hz, 1H, CH2), 3.97–3.91 (m, 1H, CH2CHS), 3.79 (s, 1H), 3.78 (s, 3H, OMe), 3.14 

(dd, J = 13.1, 2.6 Hz, 1H, CH2CHS), 2.70 (dd, J = 12.9, 10.1 Hz, 1H, CH2CHS), 2.61–2.52 (m, 2H, CH2), 

2.35–2.26 (m, 2H, CH2), 1.60 (s, 4H, 2CH2), 1.48 (s, 9H, tBu); 

13C NMR (126 MHz, CDCl3) δ 159.6 (CAr), 138.8 (SO2NCH2CC), 130.1 (CAr), 128.1 (2 CAr), 127.6 

(SO2NCH2CC), 114.5 (2 CAr), 61.5, 60.7, 56.6, 55.5, 55.4, 52.2, 43.4, 29.9 (tBu), 26.2 (2), 24.0; 

HRMS calculated for C22H33N5O3S 448.2377 (M+H)+; found 448.2369 (TOF MS ES+). 
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4-((benzylamino)methyl)-6-(tert-butyl)-3-(4-methoxybenzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide  

 

According to the reaction protocol described in general procedure F, compound 2.4.4.1.11 (95%, 23 mg) 

was isolated as colorless oil.  

Rf = 0.32 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2953, 1722, 1613, 1515, 1442, 1182, 1032, 851 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.37 – 7.27 (m, 3H, ArH), 7.26 – 7.23 (m, 2H, ArH), 6.97 – 6.92 (m, 2H, 

ArH), 6.85 – 6.80 (m, 2H, ArH), 5.45 (d, J = 15.4 Hz, 1H, CH2), 5.31 (d, J = 15.4 Hz, 1H, CH2), 4.62 (d, 

J = 14.9 Hz, 1H, CH2), 4.42 (dd, J = 14.9, 1.1 Hz, 1H, CH2), 3.95 (dd, J = 7.5, 3.3 Hz, 1H, CH2CHS), 

3.78 (s, 3H, OMe), 3.76 (d, J = 4.5 Hz, 1H, CH2), 3.62 (d, J = 13.4 Hz, 1H, CH2), 3.13 (dd, J = 13.6, 7.6 

Hz, 1H, CH2CHS), 2.78 (dd, J = 13.6, 3.6 Hz, 1H, CH2CHS), 1.42 (s, 9H, tBu). 

13C NMR (126 MHz, CDCl3) δ 159.9 (CAr), 139.9 (SO2NCH2CC), 139.2 (CAr), 132.2 (CAr) 128.7 (2 CAr), 

128.7 (2 CAr), 128.4 (2 CAr), 127.8 (SO2NCH2CC), 127.5 (CAr), 114.6 (2 CAr), 60.9, 58.9, 55.4, 53.6, 52.3, 

48.9, 43.1, 29.9 (tBu); 

HRMS calculated for C24H31N5O3S 470.2220 (M+H)+; found 470.2242 (TOF MS ES+). 
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6-(tert-butyl)-4-((isopropylamino)methyl)-3-(4-methoxybenzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.4.1.12 (60%, 

16 mg) was isolated as colorless oil. 

Rf = 0.14 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2964, 1612, 1585, 1514, 1464, 1370, 1324, 1249, 1032, 815, cm-1 

1H NMR (400 MHz, CDCl3) δ 7.10 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.66 - 5.51 (m, 2H), 

4.64 (d, J = 14.8 Hz, 1H), 4.41 (dd, J = 14.7, 1.2 Hz, 1H), 3.99 (dd, J = 6.8, 4.6 Hz, 1H), 3.78 (s, 3H), 

3.21 (dd, J = 13.3, 7.3 Hz, 1H), 2.82 (dd, J = 13.3, 4.5 Hz, 1H), 2.68 (hept, J = 6.3 Hz, 1H), 2.01 (s, 1H), 

1.48 (s, 9H), 1.02 (d, J = 6.2 Hz, 3H), 0.98 (d, J = 6.3 Hz, 3H);  

13C NMR (126 MHz, CDCl3) δ 159.9 (CAr), 139.6 (SO2NCH2CC), 128.6 (2 CAr), 128.1 (CAr), 126.2 

(SO2NCH2CC), 114.6 (2 CAr), 60.9, 59.0, 55.4, 52.3, 49.0, 48.2, 43.2, 30.0 (tBu), 22.9 (MeCHMe), 22.8 

(MeCHMe); 

HRMS calculated for C20H31N5O3S 444.2040 (M+Na)+; found 444.2068 (TOF MS ES+). 
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Methyl N-acetyl-S-((6-(tert-butyl)-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-4-yl)methyl)-L-cysteinate   

 

 According to the reaction protocol described in general procedure G, compound 2.4.3.1 (75%, 15 

mg) was isolated as colorless oil.  

Rf = 0.01 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3368, 3289, 3056, 2982, 2956, 1744, 1666, 1589, 1536, 1437, 1403, 1372, 1067, 817 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 7.5 Hz, 2H, ArH), 7.22 (t, J = 7.4 Hz, 2H, ArH), 6.27 (dd, J = 

29.7, 7.1 Hz, 1H, NHCHCO2Me), 5.83 (d, J = 2.3 Hz, 2H, CH2), 4.77 (ddt, J = 10.5, 7.3, 5.3 Hz, 1H, 

CH2CHS), 4.69 (dd, J = 14.6, 2.6 Hz, 1H, CH2), 4.40 (d, J = 14.6 Hz, 1H, CH2), 3.99–3.93 (m, 1H, 

CH2CHS), 3.76 (d, J = 5.9 Hz, 3H, OMe), 3.42–3.34 (m, 1H, CH2CHS), 3.03 (td, J = 13.4, 12.8, 5.0 Hz, 

1H, CH2S), 2.97–2.90 (m, 1H, CH2S), 2.02 (d, J = 1.3 Hz, 3H, COMe), 1.51 (d, J = 2.8 Hz, 9H, tBu). 

13C NMR (126 MHz, CDCl3) δ 170.9 (d, J = 3.5 Hz, CO), 170.0 (CO), 139.7 (SO2NCH2CC), 138.2 (t, J 

= 8.2, 6.7 Hz, CAr), 131.0 (q, J = 32.1 Hz, CAr) 128.9 (dd, J = 13.1, 1.7 Hz, SO2NCH2CC), 127.4 (d, J = 

5.7 Hz, 2 CAr), 126.3 (dp, J = 28.9, 3.4 Hz, 2 CAr), 124.9 (d, J = 271.7 Hz, CF3) 61.3, 58.2 (d, J = 17.3 

Hz,), 53.1 (d, J = 7.2 Hz,), 52.2 (dd, J = 9.1 Hz,), 51.9, 43.4 (d, J = 5.6 Hz,), 35.6 (d, J = 9.2 Hz,), 34.9 (d, 

J = 50.9 Hz,), 29.9 (dd, J = 5.9, 3.6 Hz, tBu), 23.2 (t, J = 2.9, 1.7 Hz,) 

HRMS calculated for C23H30F3N5O5S2 600.1533 (M+Na)+; found 600.1541 (TOF MS ES+). 
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3-benzyl-6-(tert-butyl)-4-((4-(trifluoromethyl)piperidin-1-yl)methyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide  

 

 According to the reaction protocol described in general procedure F, compound 2.4.6.1 (47%, 55 

mg) was isolated as colorless oil.  

Rf = 0.66 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3033, 2932, 2850, 2813, 1677, 1605, 1455, 1370, 1084, 730, 670 cm-1 

1H NMR (400 MHz, CDCl3) δ 7.33 (tt, J = 8.8, 4.6 Hz, 3H, ArH), 6.99 (d, J = 6.5 Hz, 2H, ArH), 5.85–

5.74 (m, 2H, CH2), 4.68 (d, J = 14.6 Hz, 1H, CH2), 4.42 (dd, J = 14.6, 1.1 Hz, 1H, CH2), 3.92 (dd, J = 9.4, 

2.4 Hz, 1H, CH2CHS), 3.15 (dd, J = 13.2, 3.2 Hz, 1H, CH2CHS), 3.06 (d, J = 11.8 Hz, 1H, CH2), 2.74 

(dd, J = 13.2, 9.4 Hz, 1H, CH2CHS), 2.63 (d, J = 11.4 Hz, 1H, CH2), 2.15 (td, J = 11.9, 2.5 Hz, 1H, CH2), 

2.10–1.97 (m, 2H, CH2), 1.95–1.89 (m, 1H, CH2), 1.78 (dt, J = 12.9, 2.6 Hz, 1H, CH2), 1.58 (qd, J = 12.5, 

3.8 Hz, 1H, CH2), 1.48 (s, 9H, tBu), 1.42 (dd, J = 13.2, 3.5 Hz, 1H, CH2); 

13C NMR (126 MHz, CDCl3) δ 139.0 (SO2NCH2CC), 134.7 (CAr), 130.1 (CAr), 129.2 (2 CAr), 128.5 

(SO2NCH2CC), 127.30 (d, J = 278.3 Hz, CF3), 126.3 (2 CAr), 60.9, 60.5, 56.7, 54.2, 52.4 (d, J = 23.0 Hz,), 

43.4, 40.0 (q, J = 27.4 Hz, CCF3) 29.9 (tBu) 24.75 (dd, J = 19.8, 2.6 Hz,) (*Note: Have not identified 

symmetric equivalent carbons in piperidine and aromatic group); 

HRMS calculated for C22H30F3N5O2S 486.2145 (M+H)+; found 486.2140 (TOF MS ES+). 
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N-cyclohexylethenesulfonamide (2.4.1.2.1) 
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N-(3-methoxypropyl)ethenesulfonamide (2.4.1.2.2) 
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N-benzylethenesulfonamide (2.4.1.2.3) 
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N-(tert-butyl)ethenesulfonamide (2.4.1.2.4) 
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Methyl (vinylsulfonyl)-L-valinate (2.4.1.2.5) 
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Methyl (vinylsulfonyl)-L-leucinate (2.4.1.2.6) 
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Methyl (vinylsulfonyl)-L-isoleucinate (2.4.1.2.7) 

 

 

  

S
N
H

OO

CO2Me



 
 

304 

Methyl (vinylsulfonyl)-L-phenylalaninate (2.4.1.2.8) 
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1-bromo-N-cyclohexylethenesulfonamide (2.4.1.4.1) 
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1-bromo-N-(3-methoxypropyl)ethenesulfonamide (2.4.1.4.2) 
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N-benzyl-1-bromoethenesulfonamide (2.4.1.4.3)  
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1-Bromo-N-(tert-butyl)ethenesulfonamide (2.4.1.4.4) 
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Methyl ((1-bromovinyl)sulfonyl)-L-valinate (2.4.1.4.5)  
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Methyl ((1-bromovinyl)sulfonyl)-L-leucinate (2.4.1.4.6) 
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Methyl ((1-bromovinyl)sulfonyl)-L-isoleucinate (2.4.1.4.7) 
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Methyl ((1-bromovinyl)sulfonyl)-L-phenylalaninate (2.4.1.4.8) 

 

  



 
 

313 

1-Bromo-N-cyclohexyl-N-(prop-2-yn-1-yl)ethene-1-sulfonamide (2.4.1.5.1) 

  



 
 

314 

1-Bromo-N-(3-methoxypropyl)-N-(prop-2-yn-1-yl)ethene-1-sulfonamide (2.4.1.5.2) 
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N-Benzyl-1-bromo-N-(prop-2-yn-1-yl)ethene-1-sulfonamide (2.4.1.5.3) 
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1-Bromo-N-(tert-butyl)-N-(prop-2-yn-1-yl)ethene-1-sulfonamide (2.4.1.5.4) 
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Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-valinate (2.4.1.5.5) 
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Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-leucinate (2.4.1.5.6) 

 

   



 
 

319 

Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-isoleucinate (2.4.1.5.7) 
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Methyl N-((1-bromovinyl)sulfonyl)-N-(prop-2-yn-1-yl)-L-phenylalaninate (2.4.1.5.8) 
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1-Bromo-N-cyclohexyl-N-((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide 

(2.4.2.2.1) 
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1-Bromo-N-cyclohexyl-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)ethane-

sulfonamide (2.4.2.2.2) 

 

N
S
OO

N
N

N

F3C

Br



 
 

323 

1-Bromo-N-cyclohexyl-N-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide 

(2.4.2.2.3) 
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N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-bromo-N-cyclohexylethene-1-sulfonamide (2.4.2.2.4) 

  



 
 

325 

1-Bromo-N-cyclohexyl-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide 

(2.4.2.2.5) 
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326 

1-Bromo-N-cyclohexyl-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide 
(2.4.2.2.6)  
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1-Bromo-N-(3-methoxypropyl)-N-((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-

sulfonamide (2.4.2.2.7) 

 



 
 

328 

1-bromo-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-N-(3-
methoxypropyl)ethenesulfonamide (2.4.2.2.8)  
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 1-bromo-N-(3-Methoxypropyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-
yl)methyl)ethenesulfonamide (2.4.2.2.9) 
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N-Benzyl-1-bromo-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1- 

sulfonamide (2.4.2.2.10)  
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 N-benzyl-1-bromo-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide 

(2.4.2.2.11)  
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N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1-bromo-N-(tert-butyl)ethenesulfonamide (2.4.2.2.12) 
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1-bromo-N-(tert-butyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-

yl)methyl)ethenesulfonamide (2.4.2.2.13)  
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1-bromo-N-(tert-butyl)-N-((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide 

(2.4.2.2.14) 
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1-bromo-N-(tert-butyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide 
(2.4.2.2.15)  

 

 

  

N
S
OO

N
N

N

Br

F



 
 

336 

1-Bromo-N-(tert-butyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide 

(2.4.2.2.16)  

  



 
 

337 

1-Bromo-N-(tert-butyl)-N-((1-(2-methylallyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide  

(2.4.2.2.17)  
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1-bromo-N-(tert-butyl)-N-((1-(2-methoxyethyl)-1H-1,2,3-triazol-4-yl)methyl)ethene-1-sulfonamide 
(2.4.2.2.18) 
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2-(4-((1-bromo-N-(tert-butyl)vinylsulfonamido)methyl)-1H-1,2,3-triazol-1-yl)ethyl acetate 
(2.4.2.2.19) 
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N-((1-(2-(1,3-dioxolan-2-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)-1-bromo-N-(tert-
butyl)ethenesulfonamide (2.4.2.2.20) 
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1-Bromo-N-(tert-butyl)-N-((1-(cyclohexylmethyl)-1H-1,2,3-triazol-4-yl)methyl)ethenesulfonamide 

(2.4.2.2.21) 
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1-Bromo-N-(tert-butyl)-N-((1-(2-((tert-butyldimethylsilyl)oxy)-3-(4-methoxyphenoxy)propyl)-1H-
1,2,3-triazol-4-yl)methyl)ethenesulfonamide (2.4.2.2.22)  

 

 

  

N
S
OO

N
N

N

Br

O
OTBS

OMe



 
 

343 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-

L-valinate (2.4.2.2.23)  

 

   



 
 

344 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-valinate 

(2.4.2.2.24)  

  



 
 

345 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

valinate (2.4.2.2.25)  

 

  



 
 

346 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-

L-leucinate (2.4.2.2.26)  

 

  



 
 

347 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-leucinate 
(2.4.2.2.27) 

 

   



 
 

348 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-leucinate 
(2.4.2.2.28) 

 

 

  



 
 

349 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-
leucinate (2.4.2.2.29)  

 

 

  



 
 

350 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-

L-isoleucinate (2.4.2.2.30)  

  

   



 
 

351 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(2-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

isoleucinate (2.4.2.2.31)  
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352 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

isoleucinate (2.4.2.2.32) 

 

   



 
 

353 

Methyl N-((1-bromovinyl)sulfonyl)-N-((1-(3-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-L-

phenylalaninate (2.4.2.2.33) 

 

 



 
 

354 

6-Cyclohexyl-3-(4-methylbenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide (2.4.2.3.1)  

 

  



 
 

355 

6-cyclohexyl-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide (2.4.2.3.2)  
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6-cyclohexyl-3-(4-fluorobenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide (2.4.2.3.3)  
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3-Benzyl-6-cyclohexyl-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide 
(2.4.2.3.4) 
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6-Cyclohexyl-3-(2-fluorobenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 
5,5-dioxide (2.4.2.3.5) 
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6-Cyclohexyl-3-(4-methoxybenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-
d][1,2]thiazine 5,5-dioxide (2.4.2.3.6)  

 

 



 
 

360 

6-(3-methoxypropyl)-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.2.3.9) 
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361 

6-benzyl-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide (2.4.2.3.10) 
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362 

3-benzyl-6-(tert-butyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide 

(2.4.2.3.12)  
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363 

6-(tert-butyl)-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-
d][1,2]thiazine 5,5-dioxide (2.4.2.3.13) 
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364 

6-(tert-Butyl)-4-methylene-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-
d][1,2]thiazine 5,5-dioxide (2.4.2.3.14) 
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365 

6-(tert-Butyl)-3-(2-fluorobenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide (2.4.2.3.15) 
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366 

6-(tert-butyl)-3-(4-methoxybenzyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 
5,5-dioxide (2.4.2.3.16) 

 

  



 
 

367 

6-(tert-butyl)-3-(2-methylallyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 
5,5-dioxide (2.4.2.3.17) 
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368 

6-(tert-butyl)-3-(2-methoxyethyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 

5,5-dioxide (2.4.2.3.18) 
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369 

2-(6-(tert-butyl)-4-methylene-5,5-dioxido-6,7-dihydro-[1,2,3]triazolo[4,5-d][1,2]thiazin-3(4H)-

yl)ethyl acetate (2.4.2.3.19) 
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370 

3-(2-(1,3-dioxolan-2-yl)ethyl)-6-(tert-butyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide (2.4.2.3.20) 
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371 

6-(tert-butyl)-3-(cyclohexylmethyl)-4-methylene-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-
d][1,2]thiazine 5,5-dioxide (2.4.2.3.21) 
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372 

6-(tert-butyl)-3-(2-((tert-butyldimethylsilyl)oxy)-3-(4-methoxyphenoxy)propyl)-4-methylene-3,4,6,7-

tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.2.3.22) 
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373 

Methyl (S)-3-methyl-2-(4-methylene-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-4,7-dihydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-6(3H)-yl)butanoate (2.4.2.3.23) 

 

  



 
 

374 

Methyl(S)-2-(3-(2-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylbutanoate (2.4.2.3.24) 
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375 

Methyl (S)-2-(3-(4-methoxybenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylbutanoate (2.4.2.3.25) 

 

 



 
 

376 

Methyl (S)-4-methyl-2-(4-methylene-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-4,7-dihydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-6(3H)-yl)pentanoate (2.4.2.3.26) 

 

  



 
 

377 

Methyl (S)-2-(3-(4-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-
d][1,2]thiazin-6(3H)-yl)-4-methylpentanoate (2.4.2.3.28) 

 

  



 
 

378 

Methyl (S)-2-(3-(4-methoxybenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-4-methylpentanoate (2.4.2.3.29) 

 

  



 
 

379 

Methyl (2S,3S)-3-methyl-2-(4-methylene-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-4,7-dihydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-6(3H)-yl)pentanoate  (2.6.3.30) 

 

  



 
 

380 

Methyl (2S,3S)-2-(3-(2-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylpentanoate (2.4.2.3.31)  
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381 

Methyl (2S,3S)-2-(3-(4-methoxybenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-methylpentanoate (2.4.2.3.32) 

 

 



 
 

382 

Methyl (S)-2-(3-(3-fluorobenzyl)-4-methylene-5,5-dioxido-4,7-dihydro-[1,2,3]triazolo[4,5-

d][1,2]thiazin-6(3H)-yl)-3-phenylpropanoate (2.4.2.3.33) 

  



 
 

383 

6-(tert-butyl)-4-(morpholinomethyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-
[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.4.1.1) 

 

 

 



 
 

384 

6-(tert-butyl)-4-(piperidin-1-ylmethyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.4.1.2) 

 

 



 
 

385 

4-((benzylamino)methyl)-6-(tert-butyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-
[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.4.1.3) 

 

 



 
 

386 

6-(tert-butyl)-4-((isopropylamino)methyl)-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-
[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.4.1.4) 

 

 



 
 

387 

3-benzyl-6-(tert-butyl)-4-(morpholinomethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 
5,5-dioxide (2.4.4.1.5) 

 

 



 
 

388 

3-benzyl-6-(tert-butyl)-4-(piperidin-1-ylmethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-d][1,2]thiazine 
5,5-dioxide (2.4.4.1.6) 

 

 



 
 

389 

3-benzyl-4-((benzylamino)methyl)-6-(tert-butyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-
d][1,2]thiazine 5,5-dioxide (2.4.4.1.7) 

 



 
 

390 

3-benzyl-6-(tert-butyl)-4-((isopropylamino)methyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-
d][1,2]thiazine 5,5-dioxide (2.4.4.1.8) 
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391 

6-(tert-butyl)-3-(4-methoxybenzyl)-4-(morpholinomethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide (2.4.4.1.9) 
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392 

6-(tert-butyl)-3-(4-methoxybenzyl)-4-(piperidin-1-ylmethyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-

d][1,2]thiazine 5,5-dioxide (2.4.4.1.10) 
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393 

4-((benzylamino)methyl)-6-(tert-butyl)-3-(4-methoxybenzyl)-3,4,6,7-tetrahydro-[1,2,3]triazolo[4,5-
d][1,2]thiazine 5,5-dioxide (2.4.4.1.11) 

 

 

  



 
 

394 

6-(tert-butyl)-4-((isopropylamino)methyl)-3-(4-methoxybenzyl)-3,4,6,7-tetrahydro-
[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.4.1.12) 
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395 

Methyl N-acetyl-S-((6-(tert-butyl)-5,5-dioxido-3-(4-(trifluoromethyl)benzyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazin-4-yl)methyl)-L-cysteinate (2.4.3.1) 
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396 

3-benzyl-6-(tert-butyl)-4-((4-(trifluoromethyl)piperidin-1-yl)methyl)-3,4,6,7-tetrahydro-

[1,2,3]triazolo[4,5-d][1,2]thiazine 5,5-dioxide (2.4.6.1) 
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General Procedures 
 
General Procedure A for Mestyl-sulfonamide compounds 3.3.1.2.1–3.3.1.2.3:  
 

 
 
 The HCl salts of Amino esters (1 equivalent) were dissolved in methylene chloride (0.2 
M) and triethylamine (3 equivalents) was added. The reaction was brought to 0 ºC in an ice bath 
before Methanesulfonyl chloride (1.2 equivalents) was added. The reaction was stirred 0 ºC to 
room temperature overnight. Upon completion by normal phase thin-layer-chromatography, the 
reaction was extracted with saturated brine and methylene chloride, dried with sodium sulfate, 
filtered and condensed. The product was purified with normal phase silica flash chromatography 
to afford mestylated amino esters 3.3.1.2.1–3.3.1.2.3 in yields up to 98 %.   
 
General Procedure B for N-benzylated sulfonamide compounds 3.3.2.1.1–3.3.2.1.10:  
 

 
 
 Mestyl-sulfonamides 3.3.1.2.1–3.3.1.2.3 (1 equivalent) were dissolved in anhydrous 
acetonitrile (0.2 M) before K2CO3 (3 equivalents) was added. Next, a benzyl bromide (2 
equivalents) was added to the flask and the reaction was heated at 75 ºC overnight using a 
condenser. Upon reaction completion by normal phase thin layer chromatography, the K2CO3 was 
filtered off, the reaction condensed and the product purified by normal phase flash 
chromatography to afford N-benzylated sulfonamide 3.3.2.1.1–3.3.2.1.10 in yields up to 90 %. 
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General Procedure C for Dieckmann cyclization to sultams 3.3.3.1.1–3.3.3.1.9:  
 

 
 
 N-benzylated sulfonamide 3.3.2.1.1–3.3.2.1.10 (1 equivalent) were dissolved in 
anhydrous tetrahydrofuran under argon before the solution was brought to -78 ºC via a dry ice 
and acetone bath. Next, LiHMDS (1M in THF, 2 equivalents) was with added drop-wise to the 
flask, and the reaction was stirred from -78 ºC to room temperature overnight. The reaction was 
quenched with 1 M HCl until the solution was pH = 3 by pH paper. Rotary evaporation was used 
to remove the solvent, before the product was re-dissolved in ethyl acetate and extracted with 
saturated brine. The organic layer was dried with sodium sulfate, filtered, and condensed. The 
residue was then purified by normal phase flash chromatography to afford sultams 3.3.3.1.1–
3.3.3.1.9 in yields of up to 95 %.      
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Methyl (methylsulfonyl)-L-leucinate  

 

According to the reaction protocol described in general procedure A, compound 3.3.1.2.1 (89 %, 

2.18 g) 

[𝜶]𝑫𝟐𝟎 = -8.05 (c = 0.018, CH2Cl2); 

Rf = 0.54 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3281, 2958, 2872, 1743, 1435, 1369, 1327, 1273, 1143, 1096 cm-1; 

1H NMR (400 MHz, CDCl3) 4.81 (s, 1H, NH), 4.13 (td, J = 9.1, 5.1 Hz, 1H, CHCO2Me), 3.78 

(s, 3H, OMe), 2.94 (s, 3H, SO2Me), 1.89–1.78 (m, 1H, MeCHMe), 1.62 (ddd, J = 13.7, 8.6, 5.0 

Hz, 1H, CH2), 1.58–1.50 (m, 1H, CH2), 0.96 (t, J = 6.9 Hz, 6H, 2Me); 

13C NMR (126 MHz, CDCl3) 173.6 (CO), 54.6 (NHCHCO2Me), 52.8 (CO2Me), 42.3 (SO2Me), 

41.4 (CH2), 24.5 (MeCHMe), 22.9 (Me), 21.4 (Me); 

HRMS calculated for C8H17NO4S 246.0776 (M+Na)+; found 246.0779 (TOF MS ES+). 
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Methyl (methylsulfonyl)-L-isoleucinate  

 

According to the reaction protocol described in general procedure A, compound 3.3.1.2.2 (98 %, 

3.02 g) 

[𝜶]𝑫𝟐𝟎= -2.54 (c = 0.011, CH2Cl2); 

Rf = 0.40 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3426, 2966, 2936, 1736, 1454, 1382, 1327, 1252, 1157, 1057, cm-1; 

1H NMR (400 MHz, CDCl3) 4.92 (d, J = 29.5 Hz, 1H, NH), 4.03–3.97 (m, 1H, NHCHCO2Me), 

3.79 (d, J = 3.1 Hz, 3H, OMe), 2.93 (s, 3H, SO2Me), 1.91 (dtq, J = 10.4, 7.6, 5.3 Hz, 1H, CHMe), 

1.39 (dtt, J = 14.7, 7.4, 3.7 Hz, 1H, CH2Me), 1.22–1.09 (m, 1H, CH2Me), 0.99 (dd, J = 6.8, 2.6 

Hz, 3H, Me), 0.91 (td, J = 7.2, 2.2 Hz, 3H, Me); 

13C NMR (126 MHz, CDCl3) 172.6 (CO), 60.7 (NHCHCO2Me), 52.6 (CO2Me), 41.1 (SO2Me), 

38.3 (CHMe), 24.6 (CH2Me), 15.7 (Me), 11.5 (Me); 

HRMS calculated for C8H17NO4S 246.0776 (M+Na)+; found 246.0782 (TOF MS ES+). 
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Methyl (methylsulfonyl)-L-alaninate  

 

According to the reaction protocol described in general procedure A, compound 3.3.1.2.3 (19 %, 

0.25 g) 

[𝜶]𝑫𝟐𝟎	= -24.00 (c = 0.0035, CH2Cl2); 

Rf = 0.17 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3421, 2959, 1736, 1440, 1312, 1260, 1160, 1053 cm-1; 

1H NMR (400 MHz, CDCl3) 4.98 (s, 1H, NH), 4.21 (p, J = 7.2 Hz, 1H, NHCHCO2Me), 3.79 (s, 

3H, OMe), 2.98 (s, 3H, SO2Me), 1.48 (d, J = 7.2 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 173.28 (CO), 53.01 (NHCHCO2Me), 51.81 (OMe), 41.76 

(SO2Me), 20.0 (Me). 

HRMS calculated for C5H11NO4S 199.0753 (M+NH4)+; found 199.0743 (TOF MS ES+). 
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Methyl N-(methylsulfonyl)-N-(4-(trifluoromethyl)benzyl)-L-leucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.1 (81 %, 

0.373 g) 

[𝜶]𝑫𝟐𝟎	= -42.0 (c = 0.041, CH2Cl2); 

Rf = 0.60 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3011, 2959, 2871, 1743, 1619, 1470, 1438, 1387, 1269, 1147, 1054, 818 cm-1; 

1H NMR (400 MHz, CDCl3) 7.56 (d, J = 5.8 Hz, 4H, ArH), 4.70 (d, J = 16.6 Hz, 1H, Bn), 4.61 

(dd, J = 9.7, 4.3 Hz, 1H, NHCHCO2Me), 4.28 (d, J = 16.6 Hz, 1H, Bn), 3.72 (s, 3H, OMe), 2.92 

(s, 3H, SO2Me), 1.51 (ddd, J = 13.1, 6.0, 3.2 Hz, 1H, MeCHMe), 1.45–1.34 (m, 2H, 

CH2CHMeMe), 0.83 (d, J = 6.1 Hz, 3H, Me), 0.45 (d, J = 6.2 Hz, 3H, Me); 

13C NMR (126 MHz, CDCl3) 172.3 (CO), 141.9 (ArC), 130.30 (q, J = 32.4 Hz, p-CCF3), 128.7 

(2 o-ArC), 125.4 (q, J = 3.8 Hz, 2 m-ArC), 124.6 (m, CF3) 59.3 (NCHCO2Me), 52.5 (CO2Me), 

49.1 (Bn), 39.4 (SO2Me), 39.1 (CH2CHMeMe), 24.3 (CHMeMe), 22.3 (Me), 21.1 (Me); 

HRMS calculated for C16H22F3NO4S 404.1119 (M+Na)+; found 404.1103 (TOF MS ES+). 
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Methyl N-(4-fluorobenzyl)-N-(methylsulfonyl)-L-leucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.2 (76 %, 

0.563 g) 

[𝜶]𝑫𝟐𝟎	= -31.44 (c = 0.058, CH2Cl2); 

Rf = 0.54 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3009, 2958, 2870, 1731, 1605, 1510, 1336, 1221, 1140, 1050, 833 cm-1; 

1H NMR (400 MHz, CDCl3) 7.44–7.36 (m, 2H, ArH), 7.02–6.93 (m, 2H, ArH), 4.64–4.54 (m, 

2H, Bn), 4.19 (d, J = 16.1 Hz, 1H, NCHCO2Me), 3.73–3.69 (m, 3H, OMe), 2.89 (d, J = 1.9 Hz, 

3H, SO2Me), 1.56–1.37 (m, 3H, CHMeMe:CH2CHMeMe), 0.82 (d, J = 5.4 Hz, 3H, Me), 0.50 (d, 

J = 5.5 Hz, 3H, Me); 

13C NMR (126 MHz, CDCl3) 172.1 (CO), 163.3, 161.3 (ArCF), 133.2 (ArC, d, J = 2.77 Hz), 

130.3 (2 ArC d, J = 8.3 Hz) 115.2 (2 ArC d, J = 22.4 Hz), 59.0 (NCHCO2Me), 52.3 (CO2Me), 

48.8 (Bn), 39.5 (SO2Me), 38.9 (CH2CHMeMe), 24.1 (MeCHMe), 22.4 (Me), 21.0 (Me); 

HRMS calculated for C15H22FNO4S 354.1151 (M+Na)+; found 354.1157 (TOF MS ES+). 
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Methyl N-(2-chlorobenzyl)-N-(methylsulfonyl)-L-leucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.3 (86 %, 

0.331 g) 

[𝜶]𝑫𝟐𝟎 = -63.14 (c = 0.0035, CH2Cl2); 

Rf = 0.68 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2957, 2928, 1744, 1643, 1442, 1327, 1269, 1152, 1065, 759 cm-1; 

1H NMR (400 MHz, CDCl3) 7.77 (dd, J = 7.7, 1.4 Hz, 1H, ArH), 7.30 (ddd, J = 10.7, 7.7, 1.4 

Hz, 2H, ArH), 7.21 (td, J = 7.6, 1.7 Hz, 1H, ArH), 4.63 (d, J = 10.8 Hz, 2H, Bn), 4.61–4.58 (m, 

1H, NCHCO2Me), 3.77 (s, 3H, OMe), 3.01 (s, 3H, SO2Me), 1.61–1.47 (m, 2H, CH2CHMeMe), 

1.40 (ddd, J = 13.0, 9.9, 3.0 Hz, 1H, MeCHMe), 0.86 (d, J = 6.2 Hz, 3H, Me), 0.52 (d, J = 6.4 Hz, 

3H, Me); 

13C NMR (126 MHz, CDCl3) 172.3 (CO), 135.1 (ArC), 132.6 (ArC), 130.7 (ArC), 129.3 (ArC), 

128.9 (ArC), 127.1 (ArC), 59.4 (NCHCO2Me), 52.5 (CO2Me), 46.5 (Bn), 39.2 (SO2Me), 38.9 

(CH2CHMeMe), 24.5 (MeCHMe), 22.5 (Me), 21.3 (Me); 

HRMS calculated for C15H22ClNO4S 370.0856 (M+Na)+; found 370.0858 (TOF MS ES+). 
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Methyl N-benzyl-N-(methylsulfonyl)-L-leucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.4 (87 %, 

0.661 g)  

[𝜶]𝑫𝟐𝟎 = -4.57 (c = 0.007, CH2Cl2); 

Rf = 0.65 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3064, 3030, 2957, 2869, 1739, 1604, 1496, 1455, 1333, 1268, 1146, 1082, 1048, 

750, 699 cm-1; 

1H NMR (400 MHz, CDCl3) 7.44 (d, J = 7.3 Hz, 2H, ArH), 7.31 (q, J = 6.4 Hz, 3H, ArH), 4.65 

(d, J = 16.0 Hz, 1H, Bn), 4.61 (d, J = 5.7 Hz, 1H, NCHCO2Me), 4.26 (d, J = 15.9 Hz, 1H, Bn), 

3.73 (s, 3H, OMe), 2.92 (s, 3H, SO2Me), 1.56–1.46 (m, 3H, CHMeMe:CH2CHMeMe), 0.85 (d, J 

= 6.0 Hz, 3H, Me), 0.53 (d, J = 6.2 Hz, 3H, Me); 

13C NMR (126 MHz, CDCl3) 172.4 (CO), 137.3 (ArC), 128.7 (2 ArC), 128.6 (2 ArC), 127.9 

(ArC), 59.1 (NCHCO2Me), 52.4 (CO2Me), 49.7 (Bn), 39.9 (SO2Me), 39.0 (CH2CHMeMe), 24.3 

(MeCHMe), 22.5 (Me), 21.2 (Me); 

HRMS calculated for C15H23NO4S 336.1246 (M+Na)+; found 336.1251 (TOF MS ES+). 
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Methyl N-(4-methylbenzyl)-N-(methylsulfonyl)-L-leucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.5 (72 %, 

1.17 g)  

[𝜶]𝑫𝟐𝟎 = -25.75 (c = 0.02, CH2Cl2); 

Rf = 0.67 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2957, 2870, 1739, 1515, 1440, 1333, 1249, 1146, 1038, 809 cm-1; 

1H NMR (400 MHz, CDCl3) 7.30 (d, J = 8.0 Hz, 2H, ArH), 7.12 (d, J = 7.8 Hz, 2H, ArH), 4.59 

(dd, J = 15.1, 8.0 Hz, 2H, Bn:NCHCO2Me), 4.22 (d, J = 15.8 Hz, 1H, Bn), 3.72 (s, 3H, OMe), 

2.90 (s, 3H, SO2Me), 2.32 (s, 3H, ArMe), 1.53 (qq, J = 13.2, 6.7, 6.0 Hz, 3H, 

CH2CHMeMe:CHMeMe), 0.85 (d, J = 6.2 Hz, 3H, Me), 0.57 (d, J = 6.3 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 172.4 (CO), 137.6 (ArC), 134.1 (ArC), 129.2 (2 ArC), 128.8 (2 

ArC), 59.0 (NCHCO2Me), 52.4 (CO2Me), 49.4 (Bn), 40.0 (SO2Me), 39.0 (CH2CHMeMe), 24.3 

(MeCHMe), 22.6 (Me), 21.3 (Me), 21.2 (Me); 

HRMS calculated for C16H25NO4S 350.1402 (M+Na)+; found 350.1385 (TOF MS ES+). 
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Methyl N-(4-fluorobenzyl)-N-(methylsulfonyl)-L-isoleucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.6 (78 %, 

0.836 g)  

[𝜶]𝑫𝟐𝟎 = -37.61 (c = 0.013, CH2Cl2); 

Rf = 0.57 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3074, 2967, 2935, 2877, 1738, 1605, 1510, 1438, 1257, 1144, 1040, 822 cm-1; 

1H NMR (400 MHz, CDCl3) 7.46–7.41 (m, 2H, ArH), 7.05–6.98 (m, 2H, ArH), 4.55 (d, J = 15.5 

Hz, 1H, Bn), 4.41 (d, J = 15.5 Hz, 1H, Bn), 4.19 (d, J = 10.8 Hz, 1H, NCHCO2Me), 3.77 (s, 3H, 

OMe), 2.76 (s, 3H, SO2Me), 1.70 (dddq, J = 13.0, 9.3, 6.5, 3.3, 2.7 Hz, 1H, CHMe), 1.47 (dqd, J 

= 15.2, 7.6, 2.6 Hz, 1H, CH2Me), 0.91 (dtd, J = 13.7, 7.2, 2.6 Hz, 1H, CH2Me), 0.81 (d, J = 6.5 

Hz, 3H, Me), 0.57 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (101 MHz, CDCl3) 171.5 (CO), 163.7 (ArC), 132.85 (d, J = 3.4 Hz, ArC), 131.0 (d, J 

= 8.18 Hz, 2 ArC), 115.4 (d, J = 21.51 Hz, 2 ArC), 65.3 (NCHCO2Me), 52.0 (CO2Me), 48.0 (Bn), 

39.9 (SO2Me), 34.3 (CHMe), 25.3 (CH2Me), 15.8 (Me), 10.7 (Me); 

HRMS calculated for C15H22FNO4S 309.1549 (M+)+; found 309.1542 (TOF MS ES+). 
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Methyl N-(2-chlorobenzyl)-N-(methylsulfonyl)-L-isoleucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.7 (90 %, 

2.20 g)  

[𝜶]𝑫𝟐𝟎	= -21.67 (c = 0.0245, CH2Cl2); 

Rf = 0.71 (EtOAc:Hexane = 1:3);  

FTIR (neat): 3070, 2967, 2934, 2876, 1738, 1643, 1471, 1444, 1377, 1339, 1146, 1057, 753 cm-1; 

1H NMR (400 MHz, CDCl3) 7.73 (d, J = 7.7 Hz, 1H, ArH), 7.32 (d, J = 7.9 Hz, 1H, ArH), 7.28 

(d, J = 7.0 Hz, 1H, ArH), 7.22–7.18 (m, 1H, ArH), 5.00 (d, J = 17.2 Hz, 1H, Bn), 4.54 (d, J = 

17.2 Hz, 1H, Bn), 4.25 (d, J = 9.6 Hz, 1H, NCHCO2Me), 3.75 (d, J = 0.8 Hz, 3H, OMe), 2.92–

2.91 (m, 3H, SO2Me), 1.66 (tqd, J = 9.6, 6.6, 2.8 Hz, 1H, CHMe), 1.55 (dqd, J = 15.2, 7.6, 2.8 

Hz, 1H, CH2Me), 1.01–0.87 (m, 1H, CH2Me), 0.83 (d, J = 6.6 Hz, 3H, Me), 0.55 (t, J = 7.4 Hz, 

3H, Me). 

13C NMR (126 MHz, CDCl3) 171.6 (CO), 135.1 (ArC), 132.7 (ArC), 130.5 (ArC), 129.4 (ArC), 

128.7 (ArC), 127.0 (ArC), 65.3 (NCHCO2Me), 52.0 (CO2Me), 46.1 (Bn), 38.7 (SO2Me), 34.9 

(CHMe), 26.2 (CH2Me), 15.9 (Me), 10.8 (Me); 

HRMS calculated for C15H22ClNO4S 370.0856 (M+Na)+; found 370.0875 (TOF MS ES+). 
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Methyl N-benzyl-N-(methylsulfonyl)-L-isoleucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.8 (63 %, 

1.32 g)  

[𝜶]𝑫𝟐𝟎	= -34.87 (c = 0.0425, CH2Cl2); 

Rf = 0.61 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3031, 2967, 2935, 2876, 1739, 1496, 1456, 1437, 1340, 1267, 1151, 1038, 751, 702 

cm-1; 

1H NMR (400 MHz, CDCl3) 7.46–7.42 (m, 2H, ArH), 7.35–7.27 (m, 3H, ArH), 4.58 (d, J = 15.4 

Hz, 1H, Bn), 4.43 (d, J = 15.4 Hz, 1H, Bn), 4.21 (d, J = 10.8 Hz, 1H, NCHCO2Me), 3.76 (s, 3H, 

OMe), 2.75 (s, 3H, SO2Me), 1.74 (dddq, J = 13.1, 9.4, 6.6, 3.3, 2.7 Hz, 1H, CHMe), 1.57–1.46 

(m, 1H, CH2Me), 0.92 (ddq, J = 14.4, 10.0, 7.3 Hz, 1H, CH2Me), 0.82 (d, J = 6.5 Hz, 3H, Me), 

0.57 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 171.5 (CO), 136.9 (ArC), 129.3 (2 ArC), 128.5 (2 ArC), 127.9 

(ArC), 65.4 (NCHCO2Me), 52.0 (OMe), 48.7 (Bn), 40.0 (SO2Me), 34.2 (CHMe), 25.4 (CH2Me), 

15.9 (Me), 10.7 (Me); 

HRMS calculated for C15H23NO4S 312.1270 (M-H)+; found 312.1255 (TOF MS ES+). 
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Methyl N-(4-methylbenzyl)-N-(methylsulfonyl)-L-isoleucinate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.9 (87 %, 

0.530 g)  

[𝜶]𝑫𝟐𝟎 = -37.27 (c = 0.011, CH2Cl2); 

Rf = 0.62 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3009, 2967, 2933, 1739, 1515, 1437, 1380, 1143, 1041, 833 cm-1; 

1H NMR (400 MHz, CDCl3) 7.30 (d, J = 8.0 Hz, 2H, ArH), 7.12 (d, J = 7.9 Hz, 2H, ArH), 4.51 

(d, J = 15.3 Hz, 1H, Bn), 4.38 (d, J = 15.3 Hz, 1H, Bn), 4.20 (d, J = 10.8 Hz, 1H, NCHCO2Me), 

3.76 (s, 3H, OMe), 2.72 (s, 3H, SO2Me), 2.33 (s, 3H, ArMe), 1.78 (dddq, J = 13.0, 9.4, 6.5, 3.3, 

2.7 Hz, 1H, CHMe), 1.53 (dqd, J = 15.1, 7.3, 2.4 Hz, 1H, CH2Me), 0.93 (ddt, J = 14.5, 10.0, 7.2 

Hz, 1H, CH2Me), 0.83 (d, J = 6.5 Hz, 3H, Me), 0.62 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 171.5 (CO), 137.7 (ArC), 133.7 (ArC), 129.3 (2 ArC), 129.2 (2 

ArC), 65.3 (NCHCO2Me), 52.0 (OMe), 48.4 (Bn), 40.3 (SO2Me), 34.1 (CHMe), 25.3 (CH2Me), 

21.2 (ArMe), 15.9 (Me), 10.7 (Me); 

HRMS calculated for C16H25NO4S 350.1402 (M+Na)+; found 350.1391 (TOF MS ES+). 
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Methyl N-(4-fluorobenzyl)-N-(methylsulfonyl)-L-alaninate  

 

According to the reaction protocol described in general procedure B, compound 3.3.2.1.10 (81 %, 

0.328 g)  

[𝜶]𝑫𝟐𝟎	= -19.69 (c = 0.0695, CH2Cl2); 

Rf = 0.24 (EtOAc:Hexane = 1:3);  

FTIR (neat): 3071, 3001, 2953, 1747, 1605, 1510, 1455, 1381, 1144, 1040, 847 cm-1; 

1H NMR (400 MHz, CDCl3) 7.41–7.36 (m, 2H, ArH), 7.05–6.99 (m, 2H, ArH), 4.67 (q, J = 7.4 

Hz, 1H, NCHCO2Me), 4.59 (d, J = 16.0 Hz, 1H, Bn), 4.28 (d, J = 16.2 Hz, 1H, Bn), 3.72 (s, 3H, 

OMe), 2.94 (s, 3H, SO2Me), 1.32 (d, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 172.2 (CO), 163.4 (ArC), 133.4 (d, J = 2.8 Hz, ArC) 129.7 (d, J = 

7.9 Hz, 2 ArC), 115.5 (d, J = 21.3 Hz, 2 ArC), 56.2 (NCHCO2Me), 52.6 (OMe), 48.8 (Bn), 40.0 

(SO2Me), 17.5 (Me); 

HRMS calculated for C12H16FNO4S 288.0706 (M-H)+; found 288.0704 (TOF MS ES+). 
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(S)-3-isobutyl-2-(4-(trifluoromethyl)benzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.1 (41 %, 

0.741 g) 

[𝜶]𝑫𝟐𝟎 = 2.78 (c = 0.033, CH2Cl2);  

Rf = 0.65 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2960, 1770, 1620, 1461, 1421, 1326, 1166, 1067, 860 cm-1; 

1H NMR (500 MHz, CDCl3) 7.65 (d, J = 8.1 Hz, 2H, ArH), 7.53 (d, J = 8.0 Hz, 2H, ArH), 4.58 

(d, J = 15.5 Hz, 1H, Bn), 4.45 (d, J = 15.5 Hz, 1H, Bn), 3.84 (d, J = 17.9 Hz, 2H, COCH2SO2), 

3.76–3.72 (m, 1H, NCHCO2Me), 1.76–1.70 (m, 1H, MeCHMe), 1.67–1.65 (m, 1H, CH2), 1.65–

1.63 (m, 1H, CH2), 0.79 (d, J = 6.6 Hz, 3H, Me), 0.77 (d, J = 6.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 198.7 (CO), 138.9 (ArC), 130.9 (q, J = 32.7 Hz p-ArC), 129.1 (2 

o-ArC), 126.1 (q, J = 3.7 Hz, 2 m-ArC), 123.9 (d, J = 272.3 Hz, CF3), 67.4 (NCHCO2Me), 55.2 

(COCH2SO2), 47.1 (Bn), 39.2 (CH2CHMeMe), 24.7 (MeCHMe), 22.6 (Me), 22.2 (Me); 

HRMS calculated for C15H18F3NO3S 367.1303 (M+NH4)+; found 367.1296 (TOF MS ES+). 
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(S)-2-(4-fluorobenzyl)-3-isobutylisothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.2 (82 %, 

0.354 g)  

[𝜶]𝑫𝟐𝟎 = 26.17 (c = 0.040, CH2Cl2); 

Rf = 0.71 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3073, 2959, 2872, 1763, 1604, 1511, 1467, 1321, 1037, 839 cm-1; 

1H NMR (400 MHz, CDCl3) 7.37 (ddd, J = 8.2, 5.2, 2.5 Hz, 2H, ArH), 7.10–7.04 (m, 2H, ArH), 

4.56 (d, J = 15.1 Hz, 1H, Bn), 4.32 (d, J = 15.1 Hz, 1H, Bn), 3.84 (dd, J = 17.0, 1.2 Hz, 1H, 

COCH2SO2), 3.75 (d, J = 17.0 Hz, 1H, COCH2SO2), 3.73 (td, J = 6.7, 1.2 Hz, 1H, NCHCO2Me), 

1.73 (dq, J = 12.6, 6.4 Hz, 1H, CHMeMe), 1.67–1.62 (m, 2H, CH2CHMeMe), 0.81 (d, J = 6.5 

Hz, 3H, Me), 0.78 (d, J = 6.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 199.2 (CO), 163.8 (ArC), 130.8 (d, J = 8.1 Hz, 2 ArC), 130.3 (d, J 

= 3.4 Hz, ArC), 116.0 (d, J = 21.6 Hz, 2 ArC), 67.0 (NCHCO2Me), 55.3 (COCH2SO2), 47.1 (Bn), 

39.3 (CH2CHMeMe), 24.6 (MeCHMe), 22.6 (Me), 22.2 (Me); 

HRMS calculated for C14H18FNO3S 322.0889 (M+Na)+; found 322.0878 (TOF MS ES+). 
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(S)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.3 (95%, 

0.589 g)  

[𝜶]𝑫𝟐𝟎 = -47.68 (c = 0.0095, CH2Cl2); 

Rf = 0.37 (EtOAc:Hexane = 1:3);  

FTIR (neat): 2959, 2871, 1718, 1471, 1336, 1038, 848 cm-1; 

1H NMR (400 MHz, CDCl3) 7.56 (dd, J = 7.2, 2.1 Hz, 1H, ArH), 7.42–7.38 (m, 1H, ArH), 7.34–

7.28 (m, 2H, ArH), 4.71 (d, J = 15.4 Hz, 1H, Bn), 4.55 (d, J = 15.4 Hz, 1H, Bn), 3.85 (d, J = 0.9 

Hz, 1H, COCH2SO2), 3.84 (s, 1H, COCH2SO2), 3.83–3.79 (m, 1H, NCHCO2Me), 1.67 (qd, J = 

7.7, 5.1 Hz, 3H, CHMeMe:CH2CHMeMe), 0.77 (d, J = 6.3 Hz, 3H, Me), 0.75 (d, J = 6.3 Hz, 3H, 

Me). 

13C NMR (126 MHz, CDCl3) 199.2 (CO), 133.9 (ArC), 132.7 (ArC), 131.0 (ArC), 130.0 (ArC), 

129.9 (ArC), 127.5 (ArC), 68.1 (NCHCO2Me), 55.1 (COCH2SO2), 45.2 (Bn), 39.6 

(CH2CHMeMe), 24.6 (MeCHMe), 22.7 (Me), 22.0 (Me); 

HRMS calculated for C14H18ClNO3S 315.0696 (M+)+; found 315.0691 (TOF MS ES+). 
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(S)-2-benzyl-3-isobutylisothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.4 (74 %, 

0.448 g)  

[𝜶]𝑫𝟐𝟎 = -55.86 (c = 0.045, CH2Cl2); 

Rf = 0.57 (EtOAc:Hexane = 1:3 x2);  

FTIR (neat): 3065, 3006, 2958, 2870, 1760, 1496, 1456, 1319, 1053, 749, 699 cm-1; 

1H NMR (400 MHz, CDCl3) 7.40–7.32 (m, 5H, ArH), 4.63 (d, J = 14.9 Hz, 1H, Bn), 4.32 (d, J = 

14.9 Hz, 1H, Bn), 3.82 (dd, J = 17.0, 1.1 Hz, 1H, COCH2SO2), 3.77 (d, J = 3.0 Hz, 1H, 

COCH2SO2), 3.76–3.72 (m, 1H, NCHCO2Me), 1.74 (tt, J = 13.2, 6.6 Hz, 1H, CHMeMe), 1.65 

(td, J = 6.6, 4.1 Hz, 2H, CH2CHMeMe), 0.80 (d, J = 6.5 Hz, 3H, Me), 0.77 (d, J = 6.4 Hz, 3H, 

Me). 

13C NMR (126 MHz, CDCl3) 199.5 (CO), 134.4 (ArC), 129.1 (2 ArC), 128.6 (2 ArC), 66.9 

(NCHCO2Me), 55.3 (COCH2SO2), 47.9 (Bn), 39.4 (CH2CHMeMe), 24.6 (CHMeMe), 22.6 (Me), 

22.2 (Me); 

HRMS calculated for C14H19NO3S 304.0983 (M+Na)+; found 304.1000 (TOF MS ES+). 
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(S)-3-isobutyl-2-(4-methylbenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.5 (28 %, 

0.303 g)  

[𝜶]𝑫𝟐𝟎 = -12.75 (c = 0.004, CH2Cl2); 

Rf = 0.51 (EtOAc:Hexane = 1:3);  

FTIR (neat): 3007, 2959, 2931, 1735, 1642, 1515, 1467, 1331, 1054, 808 cm-1; 

1H NMR (400 MHz, CDCl3) 7.27 (d, J = 8.0 Hz, 2H, ArH), 7.17 (d, J = 7.9 Hz, 2H, ArH), 4.64 

(d, J = 14.9 Hz, 1H, Bn), 4.23 (d, J = 14.9 Hz, 1H, Bn), 3.80 (dd, J = 16.9, 1.1 Hz, 1H, 

COCH2SO2), 3.77–3.74 (m, 1H, NCHCO2Me), 3.71 (d, J = 16.9 Hz, 1H, COCH2SO2), 2.35 (s, 

3H, ArMe), 1.82–1.72 (m, 1H, MeCHMe), 1.72–1.59 (m, 2H, CH2CHMeMe), 0.82 (d, J = 6.5 

Hz, 3H, Me), 0.79 (d, J = 6.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 199.8 (CO), 138.6 (ArC), 131.2 (ArC), 129.7 (2 ArC), 129.1 (2 

ArC), 66.7 (NCHCO2Me), 55.5 (COCH2SO2), 47.8 (Bn), 39.5 (CH2CHMeMe), 24.7 (MeCHMe), 

22.6 (ArMe), 22.3 (Me), 21.2 (Me); 

HRMS calculated for C15H21NO3S 318.1140 (M+Na)+; found 318.1130 (TOF MS ES+). 
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(S)-3-((S)-sec-butyl)-2-(4-fluorobenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.6 (25 %, 

0.193 g)  

[𝜶]𝑫𝟐𝟎 = -35.55 (c = 0.0045, CH2Cl2); 

Rf = 0.66 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2964, 2879, 1771, 1604, 1510, 1460, 1036, 841 cm-1; 

1H NMR (400 MHz, CDCl3) 7.42–7.37 (m, 2H, ArH), 7.10–7.03 (m, 2H, ArH), 4.56 (d, J = 15.7 

Hz, 1H, Bn), 4.33 (d, J = 15.7 Hz, 1H, Bn), 3.77 (s, 2H, COCH2SO2), 3.67 (d, J = 3.9 Hz, 1H, 

NCHCO2Me), 1.83–1.73 (m, 1H, CHMe), 1.56–1.45 (m, 1H, CH2Me), 1.39 (dp, J = 15.1, 7.5 Hz, 

1H, CH2-Ile), 0.90 (d, J = 6.9 Hz, 3H, Me), 0.80 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (101 MHz, CDCl3) 197.8 (CO), 162.7 (d, J = 247.6 Hz, ArC), 130.8 (d, J = 8.1 Hz, 2 

ArC), 130.2 (d, J = 2.9 Hz, ArC) 116.0 (d, J = 21.5 Hz, 2 ArC), 71.8 (NCHCO2Me), 56.6 

(COCH2SO2), 45.8 (Bn), 36.3 (CHMe), 25.8 (CH2Me), 14.1 (Me), 12.0 (Me); 

HRMS calculated for C14H18FNO3S 322.0889 (M+Na)+; found 322.0889 (TOF MS ES+). 
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(S)-3-((S)-sec-butyl)-2-(2-chlorobenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.7 (72 %, 

0.593 g)  

[𝜶]𝑫𝟐𝟎 = 47.5 (c = 0.004, CH2Cl2); 

Rf = 0.65 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2966, 2934, 1758, 1444, 1324, 1036, 755 cm-1; 

1H NMR (400 MHz, CDCl3) 7.65 (dd, J = 7.3, 2.0 Hz, 1H, ArH), 7.39 (dd, J = 7.7, 1.6 Hz, 1H, 

ArH), 7.34–7.27 (m, 2H, ArH), 4.73 (d, J = 16.0 Hz, 1H, Bn), 4.53 (d, J = 16.0 Hz, 1H, Bn), 3.81 

(s, 2H, COCH2SO2), 3.77 (d, J = 3.8 Hz, 1H, NCHCO2Me), 1.75 (dddd, J = 13.3, 11.1, 6.6, 4.3 

Hz, 1H, CHMe), 1.53 (dtd, J = 14.8, 7.4, 6.2 Hz, 1H, CH2Me), 1.42–1.30 (m, 1H, CH2Me), 0.88 

(d, J = 6.9 Hz, 3H, Me), 0.82 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 197.9 (CO), 133.6 (ArC), 132.8 (ArC), 131.0 (ArC), 129.9 (ArC), 

129.7 (ArC), 127.5 (ArC), 73.6 (NCHCO2Me), 56.5 (COCH2SO2), 44.3 (Bn), 36.7 (CHMe), 25.9 

(CH2Me), 14.1 (Me), 11.9 (Me); 

HRMS calculated for C14H18ClNO3S 338.0594 (M+Na)+; found 338.0601 (TOF MS ES+). 
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(S)-2-benzyl-3-((S)-sec-butyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.8 (81 %, 

0.92 g)  

[𝜶]𝑫𝟐𝟎 = -4.68 (c = 0.054, CH2Cl2); 

Rf = 0.71 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3064, 2965, 2877, 1754, 1604, 1588, 1496, 1456, 1320, 1086, 1045, 738, 700 cm-1; 

1H NMR (400 MHz, CDCl3) 7.43–7.30 (m, 5H, ArH), 4.62 (d, J = 15.6 Hz, 1H, Bn), 4.33 (d, J = 

15.6 Hz, 1H, Bn), 3.77 (s, 2H, COCH2SO2), 3.68 (d, J = 4.0 Hz, 1H, NCHCO2Me), 1.79 (dtq, J = 

10.8, 6.8, 4.0, 3.4 Hz, 1H, CHMe), 1.50 (tt, J = 13.9, 7.4 Hz, 1H, CH2Me), 1.37 (dp, J = 15.2, 7.5 

Hz, 1H, CH2Me), 0.90 (d, J = 6.9 Hz, 3H, Me), 0.78 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 198.1 (CO), 134.3 (ArC), 129.0 (2 ArC), 129.0 (2 ArC), 128.5 

(ArC), 71.8 (NCHCO2Me), 56.7 (COCH2SO2), 46.6 (Bn), 36.3 (CHMe), 25.8 (CH2Me), 14.1 

(Me), 11.9 (Me); 

HRMS calculated for C14H19NO3S 282.1164 (M+H)+; found 282.1161 (TOF MS ES+). 
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(S)-3-((S)-sec-butyl)-2-(4-methylbenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure C, compound 3.3.3.1.9 (77 %, 

0.566 g) 

[𝜶]𝑫𝟐𝟎	= -34.22 (c = 0.0045, CH2Cl2);  

Rf = 0.67 (EtOAc:Hexane = 1:1);  

FTIR (neat): 2965, 2930, 1758, 1515, 1459, 1313, 1045, 818 cm-1; 

1H NMR (400 MHz, CDCl3) 7.29 (d, J = 8.0 Hz, 2H, ArH), 7.17 (d, J = 7.9 Hz, 2H, ArH), 4.63 

(d, J = 15.5 Hz, 1H, Bn), 4.25 (d, J = 15.5 Hz, 1H, Bn), 3.75–3.74 (m, 2H, COCH2SO2), 3.67 (d, 

J = 3.9 Hz, 1H, NCHCO2Me), 2.35 (s, 3H, ArMe), 1.82 (dtq, J = 13.6, 6.8, 4.2, 3.4 Hz, 1H, 

CHMe), 1.57–1.45 (m, 1H, CH2Me), 1.39 (td, J = 14.5, 13.9, 7.7 Hz, 1H, CH2Me), 0.91 (d, J = 

6.9 Hz, 3H, Me), 0.80 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 198.3 (CO), 138.3 (ArC), 131.1 (ArC), 129.7 (2 ArC), 129.1 (2 

ArC), 71.7 (NCHCO2Me), 56.7 (COCH2SO2), 46.4 (Bn), 36.3 (CHMe), 25.8 (CH2Me), 21.3 

(ArMe), 14.1 (Me), 11.9 (Me); 

HRMS calculated for C15H21NO3S 318.1140 (M+Na)+; found 318.1151 (TOF MS ES+). 
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Methyl (methylsulfonyl)-L-leucinate 3.3.1.2.1   
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Methyl (methylsulfonyl)-L-isoleucinate 3.3.1.2.2   
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Methyl (methylsulfonyl)-L-alaninate 3.3.1.2.3 
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Methyl N-(methylsulfonyl)-N-(4-(trifluoromethyl)benzyl)-L-leucinate 3.3.2.1.1 
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Methyl N-(4-fluorobenzyl)-N-(methylsulfonyl)-L-leucinate 3.3.2.1.2 
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Methyl N-(2-chlorobenzyl)-N-(methylsulfonyl)-L-leucinate 3.3.2.1.3 
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Methyl N-benzyl-N-(methylsulfonyl)-L-leucinate 3.3.2.1.4 
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Methyl N-(4-methylbenzyl)-N-(methylsulfonyl)-L-leucinate 3.3.2.1.5	
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Methyl N-(4-fluorobenzyl)-N-(methylsulfonyl)-L-isoleucinate 3.3.2.1.6 
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Methyl N-(2-chlorobenzyl)-N-(methylsulfonyl)-L-isoleucinate 3.3.2.1.7 
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Methyl N-benzyl-N-(methylsulfonyl)-L-isoleucinate 3.3.2.1.8	
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Methyl N-(4-methylbenzyl)-N-(methylsulfonyl)-L-isoleucinate 3.3.2.1.9 

 

  

Me
S

N CO2Me

OO



 433 

Methyl N-(4-fluorobenzyl)-N-(methylsulfonyl)-L-alaninate 3.3.2.1.10 

 

 

	 	

Me
S

N CO2Me

OO

F



 434 

(S)-3-isobutyl-2-(4-(trifluoromethyl)benzyl)isothiazolidin-4-one 1,1-dioxide 3.3.3.1.1 
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(S)-2-(4-fluorobenzyl)-3-isobutylisothiazolidin-4-one 1,1-dioxide 3.3.3.1.2 
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(S)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-one 1,1-dioxide 3.3.3.1.3 
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(S)-2-benzyl-3-isobutylisothiazolidin-4-one 1,1-dioxide 3.3.3.1.4 
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(S)-3-isobutyl-2-(4-methylbenzyl)isothiazolidin-4-one 1,1-dioxide 3.3.3.1.5 
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(S)-3-((S)-sec-butyl)-2-(4-fluorobenzyl)isothiazolidin-4-one 1,1-dioxide 3.3.3.1.6 
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(S)-3-((S)-sec-butyl)-2-(2-chlorobenzyl)isothiazolidin-4-one 1,1-dioxide 3.3.3.1.7 
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(S)-2-benzyl-3-((S)-sec-butyl)isothiazolidin-4-one 1,1-dioxide 3.3.3.1.8	
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(S)-3-((S)-sec-butyl)-2-(4-methylbenzyl)isothiazolidin-4-one 1,1-dioxide 3.3.3.1.9 
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General Procedure  

General Procedure A to Bis-thiol ethers 3.3.8.1.1–3.3.8.1.4:  

 

 A sultam (1 equivalent) was dissolved in dimethylformamide (0.05 M) before K2CO3 (3 
equivalents) was added. The reaction was warmed to 35 °C in an oil bath before carbon disulfide 
(1.5 equivalents) was added drop-wise to the flask. The reaction was stirred at 35 °C for 3 min 
before methyl iodide (2 equivalents) was added. The flask was removed from the oil bath and 
stirred at room temperature for an additional hour. The mixture was extracted with ethyl acetate, 
and brine. The organic layer was then dried with sodium sulfate before being filtered and 
condensed by rotary evaporation. A normal phase silica flash column was then utilized to purify 
the product in yields of up to 85 %.      

General Procedure B for the synthesis of Bis enamines 3.3.9.1.1–3.3.9.1.13:  

	

 Bis thiol ether sultams 3.3.8.1.1–3.3.8.1.4 (1 equivalent) was dissolved in tetrahydrofuran 
(0.1 M) before Et3N (2.1 equivalents) and amine (2.1 equivalents) were added to the flask. The 
reaction was stirred at 40 ºC for 24 hours. Then mixture was then transferred to a normal phase 
silica flash column for purification in order to yield product in up to 83 %.   
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(S)-5-(bis(benzylamino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-one 1,1-
dioxide  

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.1 (23%, 

15 mg) was isolated as clear oil. 

Rf = 0.31 (EtOAc:Hexane = 1:3 x 3);  

[𝜶]𝑫𝟐𝟎 = -0.38 (c = 0.0105, CH2Cl2); 

FTIR (neat): 3335, 3063, 3031, 2955, 2926, 2868, 1616, 1548, 1496, 1443, 1247, 1177, 1049, 

732, 697 cm-1; 

1H NMR (400 MHz, CDCl3) 7.65 (dd, J = 7.5, 1.7 Hz, 1H, ArH), 7.39–7.27 (m, 8H, ArH), 7.24 

(td, J = 4.7, 4.3, 2.8 Hz, 5H, ArH), 4.76 (d, J = 15.8 Hz, 1H, NCH2-o-ClBn), 4.58 (d, J = 5.8 Hz, 

4H, 2-NCH2Bn), 4.30 (d, J = 15.8 Hz, 1H, NCH2-o-ClBn), 3.72 (t, J = 5.8 Hz, 1H, 

NCHCH2CHMeMe), 1.78 (dq, J = 13.1, 6.6 Hz, 1H, MeCHMe), 1.69 (dt, J = 12.8, 6.3 Hz, 1H, 

CH2), 1.64–1.57 (m, 1H, CH2), 0.81 (d, J = 6.4 Hz, 3H, Me), 0.73 (d, J = 6.5 Hz, 3H, Me).   

13C NMR (101 MHz, CDCl3) 186.9 (CO), 158.6 (C(NH)2), 136.0 (2 ArC), 133.9 (ArC), 133.7 

(ArC), 130.9 (ArC), 129.6 (ArC), 129.3 (4 ArC), 129.1 (ArC), 128.5 (2 ArC), 127.1 (ArC), 127.0 

(4 ArC), 91.8 (COCC(NH)2), 66.5 (NCHCH2CHMeMe), 48.5 (Bn), 46.6 (Bn), 40.4 (Bn), 24.6 

(CH2CHMeMe), 22.8 (Me), 22.8 (Me); 

HRMS calculated for C29H32ClN3O3S 560.1751 (M+Na)+; found 560.1780 (TOF MS ES+). 
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(S)-5-(bis(prop-2-yn-1-ylamino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-
one 1,1-dioxide  

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.2 (54%, 

12 mg)  

was isolated as clear oil. 

Rf = 0.14 (EtOAc:Hexane = 1:3 x 3);  

[𝜶]𝑫𝟐𝟎 = -3.0 (c = 0.006, CH2Cl2); 

FTIR (neat): 3299, 3060, 2957, 2928, 2869, 2124, 1617, 1470, 1443, 1403, 1344, 1263, 1134, 

1049, 754 cm-1; 

1H NMR (400 MHz, CDCl3) 7.61 (dd, J = 7.3, 1.5 Hz, 1H, ArH), 7.36 (dd, J = 7.6, 1.4 Hz, 1H, 

ArH), 7.28 (dd, J = 7.4, 1.4 Hz, 1H, ArH), 7.26–7.20 (m, 1H, ArH), 4.72 (d, J = 15.7 Hz, 1H, 

Bn), 4.33 (dd, J = 6.1, 2.3 Hz, 4H, 2CH2NH), 4.28 (d, J = 15.7 Hz, 1H, Bn), 3.67 (t, J = 6.0 Hz, 

1H, NCHCH2CHMeMe), 2.49 (t, J = 2.4 Hz, 2H, 2CCH), 1.74 (dq, J = 13.1, 6.5 Hz, 1H, 

MeCHMe), 1.65 (dt, J = 12.9, 6.3 Hz, 1H, CH2CHMeMe), 1.56 (dt, J = 14.0, 6.4 Hz, 1H, 

CH2CHMeMe), 0.78 (d, J = 6.5 Hz, 3H, Me), 0.71 (d, J = 6.5 Hz, 3H, Me).  

13C NMR (101 MHz, CDCl3) 187.4 (CO), 158.6 (C(NH)2), 133.7 (ArC), 133.7 (ArC), 130.9 

(ArC), 129.7 (ArC), 129.2 (ArC), 127.1 (ArC), 91.9 (COCC(NH)2), 77.7 (2 CCH), 74.9 (2 CCH), 

66.3 (NCHCH2CHMeMe), 46.5 (BnC), 40.4 (CH2CHMeMe), 34.3 (2 NHCH2CCH), 24.6 

(MeCHMe), 22.7 (2Me);  

HRMS calculated for C21H24ClN3O3S 434.1305 (M+H)+; found 434.1288 (TOF MS ES+). 
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(S)-2-benzyl-5-(bis((4-methylbenzyl)amino)methylene)-3-isobutylisothiazolidin-4-one 1,1-
dioxide  

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.3 (83%, 

25 mg) was isolated as clear oil.  

Rf = 0.25 (EtOAc:Hexane = 1:3 x 3);  

[𝜶]𝑫𝟐𝟎 = -8.28 (c = 0.007, CH2Cl2); 

FTIR (neat); 3338, 3053, 3028, 2955, 2923, 2867, 1617, 1550, 1516, 1495, 1454, 1262, 1131, 

1065, 801, 736, 699 cm-1; 

1H NMR (400 MHz, CDCl3) 7.43 (d, J = 6.9 Hz, 2H, ArH), 7.37–7.28 (m, 3H, ArH), 7.14 (q, J = 

8.1 Hz, 8H, ArH), 4.53 (d, J = 5.6 Hz, 4H, 2CH2NH), 4.45 (d, J = 14.8 Hz, 1H, Bn), 4.28 (d, J = 

14.8 Hz, 1H, Bn), 3.62 (t, J = 5.8 Hz, 1H, NCHCH2CHMeMe), 2.34 (s, 6H, 2Me), 1.80 (dp, J = 

13.1, 6.6 Hz, 1H, MeCHMe), 1.72–1.64 (m, 1H, CH2CHMeMe), 1.54 (dt, J = 14.0, 6.3 Hz, 1H, 

CH2CHMeMe), 0.79 (d, J = 6.5 Hz, 3H, Me), 0.72 (d, J = 6.6 Hz, 3H, Me).  

13C NMR (101 MHz, CDCl3) 186.9 (CO), 158.5 (C(NH)2), 138.3 (ArC), 135.8 (ArC), 133.0 

(ArC), 129.9 (4 ArC), 129.1 (2 ArC), 128.6 (2 ArC), 127.9 (ArC), 127.0 (4 ArC), 91.7 

(COCC(NH)2), 65.2 (NCHCH2CHMeMe), 49.0 (2 BnC), 48.4 (BnC), 40.1 (CH2CHMeMe), 24.6 

(MeCHMe), 22.8 (Me), 22.8 (Me), 21.2 (2 MeAr); 

HRMS calculated for C31H37N3O3S 532.2634 (M+H)+; found 532.2631 (TOF MS ES+). 
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(S)-2-benzyl-5-(bis((2-methoxybenzyl)amino)methylene)-3-isobutylisothiazolidin-4-one 1,1-
dioxide 	

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.4 (42%, 8 

mg) was isolated as clear oil. 

Rf = 0.17 (EtOAc:Hexane = 1:3 x 3);  

[𝜶]𝑫𝟐𝟎 = -11.0 (c = 0.004, CH2Cl2); 

FTIR (neat): 3342, 3063, 3030, 3006, 2955, 2926, 2867, 1615, 1555, 1494, 1464, 1438, 1351, 

1247, 1170, 1063, 755, 700 cm-1; 

1H NMR (400 MHz, CDCl3) 7.45–7.40 (m, 2H, ArH), 7.35–7.27 (m, 5H, ArH), 7.21 (dd, J = 

7.4, 1.4 Hz, 2H, ArH), 6.94 (td, J = 7.5, 0.9 Hz, 2H, ArH), 6.87 (d, J = 8.1 Hz, 2H, ArH), 4.58 (d, 

J = 5.6 Hz, 4H, 2NHCH2Ar), 4.46 (d, J = 14.8 Hz, 1H, Bn), 4.26 (d, J = 14.8 Hz, 1H, Bn), 3.76 

(s, 6H, 2OMe), 3.58 (t, J = 5.8 Hz, 1H, NCHCH2CHMeMe), 1.77 (dp, J = 13.2, 6.6 Hz, 1H, 

MeCHMe), 1.70–1.61 (m, 1H, CH2CHMeMe), 1.51 (dt, J = 14.0, 6.3 Hz, 1H, CH2CHMeMe), 

0.77 (d, J = 6.5 Hz, 3H, Me), 0.69 (d, J = 6.6 Hz, 3H, Me); 

13C NMR (101 MHz, CDCl3) 186.5 (CO), 158.5 (C(NH)2), 157.1 (2 ArC), 136.1 (ArC), 129.8 (2 

ArC), 129.1 (2 ArC), 129.1 (2 ArC), 128.6 (2 ArC), 127.8 (ArC), 124.5 (2 ArC), 121.0 (2 ArC), 

110.6 (2 ArC), 91.6 (COCC(NH)2), 65.1 (NCHCH2CHMeMe), 55.3 (2 OMe), 49.2 (2 Bn), 40.2 

(CH2CHMeMe), 24.6 (MeCHMe) , 22.9 (Me), 22.8 (Me); 

HRMS calculated for C31H37N3O5S 564.2532 (M+H)+; found 564.2556 (TOF MS ES+). 
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(S)-5-(bis((benzo[d][1,3]dioxol-5-ylmethyl)amino)methylene)-3-((S)-sec-butyl)-2-(2-
chlorobenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.5 (24%, 8 

mg) was isolated as clear oil. 

Rf = 0.43 (EtOAc:Hexane = 1:1);  

[𝜶]𝑫𝟐𝟎 = -0.2 (c = 0.005, CH2Cl2); 

FTIR (neat): 3349, 3063, 2961, 2920, 2875, 1614, 1548, 1503, 1490, 1445, 1374, 1323, 1251, 

1128, 1038, 808, 755 cm-1; 

1H NMR (400 MHz, CDCl3) 7.73 (ddd, J = 12.4, 7.7, 1.4 Hz, 1H, ArH), 7.37–7.27 (m, 2H, 

ArH), 7.24–7.18 (m, 1H, ArH), 6.77 (d, J = 8.5 Hz, 2H, ArH), 6.69 (d, J = 6.2 Hz, 4H, ArH), 5.97 

(s, 4H, 2OCH2O), 4.85 (dd, J = 28.0, 16.6 Hz, 1H, NCH2Ar), 4.48 (d, J = 5.3 Hz, 4H, 

2NHCH2Ar), 4.32 (dd, J = 16.6, 14.1 Hz, 1H, NCH2Ar), 3.74 (dd, J = 17.9, 2.7 Hz, 1H, 

NCHCHMe), 1.91–1.73 (m, 1H, CHMe), 1.65–1.52 (m, 1H, CH2Me), 1.52–1.39 (m, 1H, 

CH2Me), 0.92 (d, J = 6.9 Hz, 3H, Me), 0.83 (q, J = 7.5 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) 185.32 (CO), 158.22 (C(NH)2), 148.58 (2 CAR), 147.95 (d, J = 1.76 

Hz, 2 CAr) 133.8 (d, J= 122.8 Hz, CAr), 133.8 (d, J = 199.8 Hz, CAr), 129.76 (d, J = 203.2 Hz, CAr), 

129.60 (d, J = 13.8 Hz, CAr), 129.54 (d, J = 14.0 Hz, CAr), 129.45 (d, J = 170.9 Hz, CAr), 127.22 

(2 CAr), 120.71 (2 CAr), 108.87 (2 CAr), 107.68 (2 CAr), 101.53 (2 OCH2O), 92.91 (COCC(NH)2), 

72.12 (NCHCHMe), 48.53 (Bn), 46.41 (2 Bn), 37.60 (CHMe), 25.62 (CH2Me), 14.5 (Me), 12.3 

(Me) 

HRMS calculated for C31H32ClN3O7S 648.1547 (M+Na)+; found 648.1544 (TOF MS ES+). 
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(S)-2-benzyl-5-(bis(prop-2-yn-1-ylamino)methylene)-3-isobutylisothiazolidin-4-one 1,1-

dioxide   

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.6 (50%, 9 

mg) was isolated as clear oil.  

Rf = 0.13 (EtOAc:Hexane = 1:3 x3);  

[𝜶]𝑫𝟐𝟎 = 15.1 (c = 0.0045, acetone); 

FTIR (neat) 3438, 3028, 2969, 2955, 2868, 2122, 1738, 1628, 1495, 1454, 1066.81, 698 cm-1; 

1H NMR (400 MHz, CDCl3) 7.41 (d, J = 7.0 Hz, 2H, ArH), 7.36–7.31 (m, 2H, ArH), 7.29 (d, J = 

7.0 Hz, 1H, ArH), 4.41 (d, J = 14.8 Hz, 1H, Bn), 4.33 (dd, J = 6.1, 2.3 Hz, 4H, 2NCH2CCH), 

4.28 (d, J = 14.8 Hz, 1H, Bn), 3.60 (t, J = 5.9 Hz, 1H, NCHCH2CHMeMe), 2.49 (t, J = 2.4 Hz, 

2H, 2CCH), 1.77 (dp, J = 13.2, 6.6 Hz, 1H, MeCHMe), 1.69–1.60 (m, 1H, CH2CHMeMe), 1.52 

(dt, J = 14.0, 6.4 Hz, 1H, CH2CHMeMe), 0.77 (d, J = 6.5 Hz, 3H, Me), 0.71 (d, J = 6.6 Hz, 3H, 

Me). 

13C NMR (126 MHz, CDCl3) 187.7 (CO), 158.7 (C(NH)2), 135.5 (ArC), 129.1 (2 ArC), 128.7 (2 

ArC), 128.1 (ArC), 92.0 (COCC(NH)2), 77.7 (2 CCH), 74.8 (2 CCH), 65.1 (NCHCH2CHMeMe), 

48.9 (Bn), 40.1 (CH2CHMeMe), 34.3 (2 NHCH2CCH), 24.6 (MeCHMe), 22.8 (Me), 22.8 (Me); 

HRMS calculated for C21H25N3O3S 400.1695 (M+H)+; found 400.1704 (TOF MS ES+). 
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(S)-5-(bis((2-(1H-indol-2-yl)ethyl)amino)methylene)-3-((S)-sec-butyl)-2-(4-
methylbenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.7 (57%, 

15 mg) was isolated as clear oil. 

Rf = 0.08 (EtOAc:Hexane = 1:3 x3);  

[𝜶]𝑫𝟐𝟎 = -41.3 (c = 0.003, CH2Cl2); 

FTIR (neat): 3346, 3053, 3012, 2962, 2923, 2874, 1609, 1552, 1515, 1457, 1420, 1355, 1233, 

1174, 1125, 1094, 810, 740 cm-1; 

1H NMR (500 MHz, CDCl3) 8.13 (s, 2H, 2 ArNH), 7.48 (d, J = 7.8 Hz, 2H, ArH), 7.32 (dd, J = 

12.7, 8.0 Hz, 4H, ArH), 7.20 (t, J = 7.5 Hz, 2H, ArH), 7.12 (dd, J = 17.5, 7.9 Hz, 4H, ArH), 7.06 

(s, 2H, ArH), 4.46 (d, J = 15.4 Hz, 1H, Bn), 4.34 (d, J = 15.3 Hz, 1H, Bn), 3.63–3.58 (m, 1H, 

NCHCHMe), 3.56 (s, 3H, CH2), 2.99 (d, J = 5.9 Hz, 4H, 2CH2), 2.33 (s, 3H, p-Me), 1.89–1.73 

(m, 2H, CHMe), 1.54 (tt, J = 13.9, 7.2 Hz, 1H, CH2Me), 1.44 (tt, J = 15.5, 8.0 Hz, 1H, CH2Me), 

0.93 (d, J = 6.8 Hz, 3H, Me), 0.83 (q, J = 7.8 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) 184.6 (CO), 158.2 (C(NH)2), 137.5 (ArC), 136.5 (2 ArC), 132.9 (2 

ArC), 129.3 (2 ArC), 128.7 (2 ArC), 128.5 (2 ArC), 126.8 (2 ArC), 123.5 (ArC), 122.4 (2 ArC), 

119.7 (2 ArC), 118.3 (2 ArC), 111.6 (2 ArC), 92.7 (COCC(NH)2), 69.6 (NCHCHMe), 47.4 (Bn), 

45.1 (2 CH2), 37.2 (CHMe), 25.9 (2 CH2), 25.4 (CH2Me), 21.2 (ArMe), 14.7 (Me), 12.3 (Me); 

HRMS calculated for C36H41N5O3S 624.3008 (M+H)+; found 624.3038 (TOF MS ES+). 
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(S)-5-(bis((2-(1H-indol-2-yl)ethyl)amino)methylene)-3-((S)-sec-butyl)-2-(2-
chlorobenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.8 (64%, 

22 mg) was isolated as clear oil. 

Rf = 0.31 (EtOAc:Hexane = 1:1);  

[𝜶]𝑫𝟐𝟎 = -0.27, (c = 0.011, CH2Cl2); 

FTIR (neat): 3349, 3056, 2962, 2925, 2874, 1609, 1552, 1457, 1443, 1354, 1263, 1048, 865, 

811, 741 cm-1; 

1H NMR (400 MHz, CDCl3) 8.08 (s, 2H, 2 ArNH), 7.75–7.68 (m, 1H, ArH), 7.49 (d, J = 7.8 Hz, 

2H, ArH), 7.35 (d, J = 8.0 Hz, 3H, ArH), 7.31–7.27 (m, 1H, ArH), 7.24–7.18 (m, 3H, ArH), 

7.14–7.08 (m, 4H, ArH), 4.85 (dd, J = 26.9, 16.9 Hz, 1H, Bn), 4.32 (dd, J = 16.8, 13.6 Hz, 1H, 

Bn), 3.69 (dd, J = 19.7, 2.7 Hz, 1H, NCHCHMe), 3.59 (s, 4H, CH2), 3.01 (t, J = 6.4 Hz, 4H, 

CH2), 1.90–1.70 (m, 1H, CHMe), 1.55 (ddd, J = 20.4, 10.1, 6.5 Hz, 1H, CH2Me), 1.50–1.38 (m, 

1H, CH2Me), 0.89 (d, J = 6.9 Hz, 3H, Me), 0.86–0.78 (m, 3H, Me).  

13C NMR (126 MHz, CDCl3) 184.4 (CO), 158.3 (C(NH)2), 136.5 (2 ArC), 134.6 (d, J = 37.4 Hz, 

ArC), 133.1 (d, J = 40.2 ArC), , 130.4 (ArC), 129.9 (ArC), 129.5 (2 ArC), 128.8 (2 ArC), 128.6 

(ArC), 127.2 (ArC), 126.8 (2 ArC), 122.4 (2 ArC), 119.7 (2 ArC), 118.3 (2 ArC), 111.6 (2 ArC), 

92.7 (COCC(NH)2), 72.0 (NCHCHMe), 47.5 (2 CH2), 46.3 (Bn), 45.2 (2 CH2), 37.5 (CHMe), 

25.7 (d, J = 59.9 Hz, CH2Me), 14.6 (Me), 12.3 (Me). 

HRMS calculated for C35H38ClN5O3S 644.2462 (M+H)+; found 644.2454 (TOF MS ES+). 
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(S)-5-(bis((2-methoxybenzyl)amino)methylene)-3-((S)-sec-butyl)-2-(2-
chlorobenzyl)isothiazolidin-4-one 1,1-dioxide  

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.9 (31%, 9 

mg) was isolated as clear oil.  

Rf = 0.33 (EtOAc:Hexane = 1:3 x3);  

[𝜶]𝑫𝟐𝟎 = 1.3 (c = 0.0045, CH2Cl2);  

FTIR (neat): 3345, 3065, 2961, 2928, 2874, 2838, 1614, 1554, 1494, 1463, 1439, 1378, 1320, 

1248, 1178, 1048, 754 cm-1; 

1H NMR (400 MHz, CDCl3) 7.80–7.71 (m, 1H, ArH), 7.33–7.27 (m, 4H, ArH), 7.21 (d, J = 7.5 

Hz, 3H,ArH), 6.94 (t, J = 7.5 Hz, 2H, ArH), 6.87 (d, J = 8.2 Hz, 2H, ArH), 4.87 (dd, J = 27.5, 

16.8 Hz, 1H, Bn-o-Cl), 4.58 (d, J = 4.9 Hz, 4H, 2Bn), 4.31 (dd, J = 16.8, 12.7 Hz, 1H, Bn-o-Cl), 

3.76 (s, 6H, 2OMe), 3.68 (d, J = 2.8 Hz, 1H, NCHCHMe), 1.63–1.53 (m, 2H, CH2Me), 1.50–1.39 

(m, 1H, CHMe), 0.91 (d, J = 6.9 Hz, 3H, Me), 0.82 (t, J = 7.3 Hz, 3H, Me). 

13C NMR (101 MHz, CDCl3) 184.4 (CO), 158.3 (C(NH)2), 134.9 (ArC), 134.6 (ArC), 133.2 

(ArC), 130.5 (ArC), 129.8 (2 ArC), 129.4 (ArC), 129.1 (ArC), 128.7 (ArC), 128.5 (2 ArC), 127.1 

(ArC), 124.5 (2 ArC), 121.0 (2 ArC), 110.6 (2 ArC), 72.1 (NCHCHMe), 55.4 (2 OMe), 46.5 (Bn-

o-Cl), 37.6 (CHMe), 25.5 (CH2Me), 14.6 (Me), 12.3 (Me); 

HRMS calculated for C31H36ClN3O5S 598.2142 (M+H)+; found 598.2151 (TOF MS ES+). 
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(S)-2-benzyl-5-(bis((4-methoxybenzyl)amino)methylene)-3-isobutylisothiazolidin-4-one 1,1-
dioxide 	

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.10 (52%, 

10 mg) was isolated as clear oil.  

Rf = 0.11 (EtOAc:Hexane = 1:3 x3);  

[𝜶]𝑫𝟐𝟎 = -3.86 (c = 0.0075, CH2Cl2); 

FTIR (neat): 3346, 3063, 3032, 2999, 2955, 2931, 2868, 1613, 1549, 1514, 1496, 1455, 1440, 

1250, 1177, 1064, 825, 759, 700 cm-1; 

1H NMR (400 MHz, CDCl3) 7.45–7.41 (m, 2H, ArH), 7.37–7.29 (m, 3H, ArH), 7.17 (d, J = 8.7 

Hz, 4H, ArH), 6.91–6.86 (m, 4H, ArH), 4.52 (d, J = 5.5 Hz, 4H, 2Bn), 4.45 (d, J = 14.8 Hz, 1H, 

Bn), 4.28 (d, J = 14.8 Hz, 1H, Bn), 3.81 (s, 6H, 2OMe), 3.62 (t, J = 5.8 Hz, 1H, 

NCHCH2CHMeMe), 1.79 (dt, J = 13.3, 6.5 Hz, 1H, MeCHMe), 1.72–1.63 (m, 1H, 

CH2CHMeMe), 1.58–1.49 (d, J = 6.6 Hz, 1H, CH2CHMeMe), 0.79 (d, J = 6.5 Hz, 3H, Me), 0.71 

(d, J = 6.6 Hz, 3H, Me);  

13C NMR (126 MHz, CDCl3) 186.9 (CO), 159.7 (C(NH)2), 158.4 (2 ArC), 135.8 (ArC), 129.1 (2 

ArC), 128.7 (2 ArC), 128.5 (4 ArC), 128.0 (2 ArC), 114.7 (4 ArC), 91.8 (COCC(NH)2), 65.2 

(NCHCH2CHMeMe), 55.4 (2 OMe), 49.0 (2 Bn), 48.2 (Bn), 40.1 (CH2CHMeMe), 24.6 

MeCHMe), 22.8 (2 Me). 

HRMS calculated for C31H37N3O5S 586.2352 (M+Na)+; found 586.2375 (TOF MS ES+). 
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(S)-5-(bis((4-methylbenzyl)amino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-
one 1,1-dioxide 	

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.11 (44 %, 

12 mg) was isolated as clear oil. 

Rf = 0.24 (EtOAc:Hexane = 1:3);  

[𝜶]𝑫𝟐𝟎 = 0.83 (c = 0.006, CH2Cl2); 

FTIR (neat): 3342, 3056, 3024, 2962, 2925, 2874, 1615, 1551, 1516, 1443, 1379, 1263, 1048, 

802, 753 cm-1; 

1H NMR (400 MHz, CDCl3) 7.78–7.68 (m, 1H, ArH), 7.36–7.32 (m, 1H, ArH), 7.31–7.27 (m, 

1H, ArH), 7.22 (dd, J = 7.5, 1.8 Hz, 1H, ArH), 7.18–7.10 (m, 8H, ArH), 4.86 (dd, J = 28.2, 16.7 

Hz, 1H, Bn), 4.53 (t, J = 4.6 Hz, 4H, 2Bn), 4.38–4.27 (m, 1H, Bn), 3.77 (d, J = 5.2 Hz, 1H, 

NCHCHMe), 2.34 (s, 6H, 2Me), 1.63–1.54 (m, 1H, CHMe), 1.52–1.39 (m, 2H, CH2), 0.93 (d, J = 

6.9 Hz, 3H, Me), 0.88–0.83 (m, 3H, Me). 

13C NMR (126 MHz, CDCl3) 185.08 (CO), 158.40 (C(NH)2), 138.34 (2 CAr), 134.36 (2 CAr), 

133.06 (CAr), 130.57 (CAr), 130.01 (4 CAr), 129.53 (CAr), 128.92 (CAr), 127.38 (CAr), 127.21 (CAr), 

127.04 (4 CAr), 92.87 (COCC(NH)2), 72.17 (NCHCHMe), 48.48 (Bn), 46.41 (2 Bn), 37.59 

(CHMe), 25.61 (CH2Me), 21.27 (2 ArMe), 14.58 (Me), 12.36 (Me). 

HRMS calculated for C31H36ClN3O3S 551.2373 (M+)+; found 551.2391 (TOF MS ES+). 
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(S)-5-(bis((4-methoxybenzyl)amino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-
4-one 1,1-dioxide 	

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.12 (44 %, 

13 mg) was isolated as clear oil.  

Rf = 0.10 (EtOAc:Hexane = 1:3);  

[𝜶]𝑫𝟐𝟎 = 5.14 (c = 0.0105, CH2Cl2); 

FTIR (neat): 3350, 3063, 2961, 2928, 2874, 2837, 1711, 1612, 1549, 1514, 1462, 1443, 1378, 

1250, 1203, 1035, 824, 755 cm-1; 

1H NMR (400 MHz, CDCl3) 7.74 (ddd, J = 13.1, 7.7, 1.3 Hz, 1H, ArH), 7.40–7.28 (m, 2H, 

ArH), 7.22 (dt, J = 5.8, 1.7 Hz, 1H, ArH), 7.16 (dd, J = 8.6, 2.0 Hz, 4H, ArH), 6.88 (d, J = 8.6 

Hz, 4H, ArH), 4.86 (dd, J = 28.3, 16.7 Hz, 1H, Bn), 4.53 (t, J = 4.5 Hz, 4H, 2Bn), 4.32 (dd, J = 

16.5, 14.3 Hz, 1H, Bn), 3.80 (s, 6H, 2OMe), 3.74 (dd, J = 19.0, 2.7 Hz, 1H, NCHCHMe), 1.62–

1.53 (m, 2H, CH2), 1.52–1.45 (m, 1H, CHMe), 0.92 (d, J = 6.9 Hz, 3H, Me), 0.86–0.81 (m, 3H, 

Me). 

13C NMR (126 MHz, CDCl3) 185.1 (CO), 159.7 (C(NH)2), 158.2 (d, J = 10.3 Hz, 2 CAr), 134.5 

(d, J = 38.2 Hz, CAr), 133.1 (d, J = 40.3 Hz, CAr), 130.55 (2 CAr), 129.54 (CAr), 128.93 (CAr), 

128.56 (4 CAr), 127.96 (CAr), 127.21 (CAr), 114.75 (4 CAr), 92.87 (COCC(NH)2), 72.17 

(NCHCHMe), 55.47 (2 OMe), 48.32 (Bn), 46.45 (2 Bn), 37.60 (CHMe), 25.59 (CH2Me), 14.59 

(Me), 12.36 (Me). 

HRMS calculated for C31H36ClN3O5S 598.2142 (M+H)+; found 598.2156 (TOF MS ES+). 
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(S)-5-(bis((4-methoxybenzyl)amino)methylene)-3-((S)-sec-butyl)-2-(4-
methylbenzyl)isothiazolidin-4-one 1,1-dioxide 	

 

According to the reaction protocol described in general procedure B, compound 3.3.9.1.13 (20 %, 

3 mg) was isolated as clear oil.  

Rf = 0.17 (EtOAc:Hexane = 1:3 x3);  

[𝜶]𝑫𝟐𝟎  = -0.92 (c = 0.0065, CH2Cl2); 

FTIR (neat): 3434, 3092, 3023, 2963, 2926, 2875, 1627, 1515, 1458, 1378, 1284, 1204, 1180, 

1117, 1021, 839 cm-1; 

1H NMR (400 MHz, CDCl3) 7.32 (d, J = 7.7 Hz, 2H, ArH), 7.15 (t, J = 8.1 Hz, 6H, ArH), 6.88 

(d, J = 8.5 Hz, 4H, ArH), 4.51 (d, J = 5.1 Hz, 4H, 2Bn), 4.44 (d, J = 15.7 Hz, 1H, Bn-p-Me), 4.34 

(d, J = 15.3 Hz, 1H, Bn-p-Me), 3.80 (s, 6H, 2OMe), 3.63 (d, J = 2.5 Hz, 1H, NCHCHMe), 2.33 

(s, 3H, ArMe), 1.61–1.50 (m, 2H, CH2), 1.45 (dt, J = 15.2, 7.7 Hz, 1H, CHMe), 0.96 (d, J = 6.9 

Hz, 3H, Me), 0.83 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 185.3 (CO), 159.7 (C(NH)2), 158.3 (2 ArC), 137.5 (ArC), 132.9 

(ArC), 129.3 (2 ArC), 128.8 (2 ArC), 128.5 (4 ArC), 128.0 (2 ArC), 114.7 (4 ArC), 92.9 

(COCC(NH)2), 69.8 (NCHCHMe), 55.4 (2 OMe), 53.5 (Bn-p-Me), 47.5 (2 Bn), 37.2 (CHMe), 

25.5 (CH2Me), 21.2 (ArMe), 14.7 (Me), 12.3 (Me). 

HRMS calculated for C32H39N3O5S 600.258 (M+Na)+; found 600.2435 (TOF MS ES+). 
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(S)-3-((S)-sec-butyl)-2-(4-methylbenzyl)-5-((methylthio)methylene)isothiazolidin-4-one 1,1-
dioxide 	

 

According to the reaction protocol described in general procedure B, compound 3.3.10.1 (42 %, 9 

mg) was isolated as clear oil. 

Rf = 0.13 (MeOH:DCM= 1:10);  

[𝜶]𝑫𝟐𝟎  = 24.6 (c = 0.0045, acetone); 

FTIR (neat): 3437, 3027, 3016, 2969, 1738, 1636, 1616, 1517, 1454, 1365, 1216, 1112, 1091, 

835 cm-1; 

1H NMR (400 MHz, CDCl3) 7.29 (d, J = 7.9 Hz, 2H, ArH), 7.14 (d, J = 7.8 Hz, 2H, ArH), 5.71 

(s, 1H, MeSCHC), 4.46 (d, J = 15.4 Hz, 1H, Bn), 4.27 (d, J = 15.4 Hz, 1H, Bn), 3.81 (d, J = 2.4 

Hz, 1H, NCHCHMe), 3.73 (s, 3H, SMe), 2.33 (s, 3H, ArMe), 1.71 (qd, J = 7.7, 6.9, 2.1 Hz, 1H, 

CHMe), 1.35 (pd, J = 7.4, 2.5 Hz, 2H, CH2), 0.89 (d, J = 6.9 Hz, 3H, Me), 0.79 (t, J = 7.4 Hz, 3H, 

Me). 

13C NMR (126 MHz, CDCl3) 167.2 (CO), 137.7 (ArC), 132.5 (ArC), 129.4 (2 ArC), 128.8 (2 

ArC), 128.5 (COCC(SMe), 97.4 (COCC(SMe), 65.4 (NCHCHMe), 58.5 (SMe), 46.9 (Bn), 36.8 

CHMe), 25.4 (CH2), 21.2 (ArMe), 14.0 (Me), 12.4 (Me). 

HRMS calculated for C17H23NO3S2 352.1041 (M-H)+; found 352.1048 (TOF MS ES+). 
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(S)-3-((S)-sec-butyl)-2-(4-fluorobenzyl)-5-((methylthio)methylene)isothiazolidin-4-
one	1,1-dioxide		
 

 

According to the reaction protocol described in general procedure B, compound 3.3.10.2 (72 %, 

13 mg) was isolated as clear oil.  

Rf = 0.54 (EtOAc:Hexane = 1:3 x3);  

[𝜶]𝑫𝟐𝟎  = 6.4 (c = 0.005, acetone); 

FTIR (neat): 2963, 2935, 1628, 1510, 1459, 1390, 1014, 968, 825, 731 cm-1; 

1H NMR (500 MHz, CDCl3) 7.40 (dd, J = 8.0, 5.8 Hz, 2H, ArH), 7.03 (t, J = 8.6 Hz, 2H, ArH), 

5.72 (s, 1H, MeSCHC), 4.45–4.31 (m, 2H, Bn), 3.80 (d, J = 2.2 Hz, 1H, NCHCHMe), 3.74 (s, 

3H, SMe), 1.74–1.66 (m, 1H, CHMe), 1.41–1.32 (m, 2H, CH2Me), 0.90 (d, J = 6.9 Hz, 3H, Me), 

0.81 (t, J = 7.4 Hz, 3H, Me). 

13C NMR (126 MHz, CDCl3) 167.0 (CO), 163.5 (C(SMe)), 131.6 (d, J= 2.9 Hz, ArC), 130.5 (d, 

J= 8.3Hz, 2 ArC), 130.2 (d, J= 8.1 Hz, ArC), 115.7 (d, J= 21.3 Hz, 2 ArC), 97.4 (COCC(SMe), 

65.8 (NCHCHMe), 58.6 (SMe), 46.8 (Bn), 36.9 (CHMe), 25.4 (CH2Me), 14.1 (Me), 12.4 (Me). 

HRMS calculated for C16H20FNO3S2 380.0766 (M+Na)+; found 380.0782 (TOF MS ES+). 
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(S)-2-(2-chlorobenzyl)-3-isobutyl-5-(methylthio)methylene)isothiazolidin-4-one 1,1-dioxide  
	

 

According to the reaction protocol described in general procedure B, compound 3.3.10.3 (14 %, 5 

mg) was isolated as clear oil. 

Rf = 0.30 (EtOAc:Hexane = 1:3);  

[𝜶]𝑫𝟐𝟎 = 1.12 (c = 0.008, CH2Cl2); 

FTIR (neat): 3423, 3094, 2956, 2926, 2869, 1630, 1573, 1444, 1389, 1285, 1118, 1050, 1038, 

756, 735, 714, 684 cm-1; 

1H NMR (400 MHz, CDCl3) 7.66–7.63 (m, 1H, ArH), 7.36 (dd, J = 7.7, 1.2 Hz, 1H, ArH), 7.31–

7.27 (m, 1H, ArH), 7.23 (td, J = 7.7, 1.8 Hz, 1H, ArH), 5.73 (s, 1H, MeSCHC), 4.72 (d, J = 16.1 

Hz, 1H, Bn), 4.34 (d, J = 16.1 Hz, 1H, Bn), 3.93 (t, J = 5.1 Hz, 1H, NCHCH2CHMeMe), 3.78 (s, 

3H, SMe), 1.69 (tt, J = 13.1, 6.5 Hz, 1H, MeCHMe), 1.61–1.48 (m, 2H, CH2CHMeMe), 0.76 (d, 

J = 6.5 Hz, 3H, Me), 0.73 (d, J = 6.6 Hz, 3H, Me). 

13C NMR (101 MHz, CDCl3) 168.3 (CO), 133.7 (ArC), 133.5 (ArC), 130.8 (ArC), 129.6 (ArC), 

129.2 (ArC), 127.3 (ArC), 96.4 (COCCSMe), 62.2 (NCHCH2CHMeMe), 58.6 (SMe), 45.5 

(CH2), 40.0 (CH2), 24.0 (MeCHMe), 23.2 (Me), 22.7 (Me). 

HRMS calculated for C16H20ClNO3S2 372.0495 (M-H)+; found 372.0510 (TOF MS ES+). 
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(S)-5-(bis(benzylamino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-one 1,1-
dioxide 3.3.9.1.1	
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(S)-5-(bis(prop-2-yn-1-ylamino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-
one 1,1-dioxide 3.3.9.1.2 
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(S)-2-benzyl-5-(bis((4-methylbenzyl)amino)methylene)-3-isobutylisothiazolidin-4-one 1,1-
dioxide 3.3.9.1.3 
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(S)-2-benzyl-5-(bis((2-methoxybenzyl)amino)methylene)-3-isobutylisothiazolidin-4-one 1,1-
dioxide 3.3.9.1.4 

 

 

N
S
OO

O

NH

HN

MeO

OMe



	 464	

(S)-5-(bis((benzo[d][1,3]dioxol-5-ylmethyl)amino)methylene)-2-(2-chlorobenzyl)-3-
isobutylisothiazolidin-4-one 1,1-dioxide 3.3.9.1.5 
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(S)-2-benzyl-5-(bis(prop-2-yn-1-ylamino)methylene)-3-isobutylisothiazolidin-4-one 1,1-
dioxide 3.3.9.1.6	
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(S)-5-(bis((2-(1H-indol-2-yl)ethyl)amino)methylene)-3-((S)-sec-butyl)-2-(4-
methylbenzyl)isothiazolidin-4-one 1,1-dioxide 3.3.9.1.7 
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(S)-5-(bis((2-(1H-indol-2-yl)ethyl)amino)methylene)-2-(2-chlorobenzyl)-3-
isobutylisothiazolidin-4-one 1,1-dioxide 3.3.9.1.8 
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(S)-5-(bis((2-methoxybenzyl)amino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-
4-one 1,1-dioxide 3.3.9.1.9 
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(S)-2-benzyl-5-(bis((4-methoxybenzyl)amino)methylene)-3-isobutylisothiazolidin-4-one 1,1-
dioxide 3.3.9.1.10 
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(S)-5-(bis((4-methylbenzyl)amino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-4-
one 1,1-dioxide 3.3.9.1.11 
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(S)-5-(bis((4-methoxybenzyl)amino)methylene)-2-(2-chlorobenzyl)-3-isobutylisothiazolidin-
4-one 1,1-dioxide 3.3.9.1.12 
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(S)-5-(bis((4-methoxybenzyl)amino)methylene)-3-((S)-sec-butyl)-2-(4-
methylbenzyl)isothiazolidin-4-one 1,1-dioxide 3.3.9.1.13 
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(S)-3-((S)-sec-butyl)-2-(4-methylbenzyl)-5-((methylthio)methylene)isothiazolidin-4-one 1,1-
dioxide 3.3.10.1 

 

 

S
N

OO

O

MeS

H

Me



	 474	

(S)-3-((S)-sec-butyl)-2-(4-fluorobenzyl)-5-((methylthio)methylene)isothiazolidin-4-
one	1,1-dioxide	3.3.10.2	
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(S)-2-(2-chlorobenzyl)-3-isobutyl-5-((methylthio)methylene)isothiazolidin-4-one 1,1-dioxide 
3.3.10.3 
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General Procedure 
 
General Procedure A for the generation of a-amide enolic sultams 3.4.6.1.1–3.4.6.1.10:  
 

 
 
 A sultam (1 equivalent) was added to a microwave vial, and dissolved in acetonitrile (0.1 
M). Triethylamine (1 equivalent) was then added, followed by isocyanate (1 equivalent). The vial 
lid was seal using a crimp head, and the reaction was microwaved at 80 ºC for 40 min. The 
solvent was then removed using a rotary evaporator, and a normal phase silica flash column was 
used to purify the product affording sultams 3.4.6.1.1–3.4.6.1.10 in yields up to 93 %.    
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 (S)-2-benzyl-4-hydroxy-3-isobutyl-N-(p-tolyl)-2,3-dihydroisothiazole-5-carboxamide 1,1-
dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.1 (65%, 

21 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -15.42 (c = 0.0105, CH2Cl2); 

Rf = 0.57 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3367, 3268, 3031, 2955, 2925, 2868, 1638, 1582, 1537, 1496, 1454, 1386, 1238, 

1140, 1051, 819, 766, 698 cm-1; 

1H NMR (500 MHz, DMSO-d6) 10.74 (s, 1H, NH), 7.37 (d, J = 7.4 Hz, 4H, ArH), 7.29 (t, J = 

7.2 Hz, 2H, ArH), 7.22 (t, J = 7.1 Hz, 1H, ArH), 7.01 (d, J = 7.8 Hz, 2H, ArH), 4.31 (d, J = 15.4 

Hz, 1H, Bn), 4.01 (d, J = 15.4 Hz, 1H, Bn), 2.46 (s, 1H, NCHCH2CHMeMe), 2.19 (s, 3H, ArMe), 

1.66 (dp, J = 12.5, 6.2 Hz, 1H, MeCHMe), 1.41 (dt, J = 12.0, 5.6 Hz, 1H, CH2CHMeMe), 1.30 

(dt, J = 12.8, 5.7 Hz, 1H, CH2CHMeMe), 0.66 (d, J = 6.4 Hz, 3H, Me), 0.61 (d, J = 6.5 Hz, 3H, 

Me); 

13C NMR (126 MHz, DMSO-d6) 180.8 (COH), 161.0 (CO), 137.9 (ArC), 137.7 (ArC), 130.0 

(ArC), 129.1 (2 ArC), 128.5 (2 ArC), 128.1 (2 ArC), 127.0 (ArC), 118.2 (2 ArC), 96.8 

(COHCCO), 63.8 (NCHCH2CHMeMe), 48.0 (Bn), 40.4 (CH2CHMeMe), 23.8 (MeCHMe), 22.9 

(Me), 22.8 (Me), 20.3 (ArMe); 

HRMS calculated for C22H26N2O4S 437.1511 (M+Na)+; found 437.1510 (TOF MS ES+). 
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(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-(p-tolyl)-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.2 (67 %, 

35mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -8.03 (c = 0.029, CH2Cl2); 

Rf = 0.16 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3436, 3026, 2969, 2954, 2868, 1738, 1636, 1585, 1539, 1515, 1425, 1365, 1229, 

1140, 1048, 816, 754 cm-1; 

1H NMR (500 MHz, DMSO-d6) 10.73 (s, 1H, NH), 7.64 (d, J = 7.5 Hz, 1H, ArH), 7.38 (t, J = 

8.1 Hz, 3H, ArH), 7.31 (t, J = 7.4 Hz, 1H, ArH), 7.26 (t, J = 7.4 Hz, 1H, ArH), 7.01 (d, J = 8.1 

Hz, 2H, ArH), 4.57 (d, J = 16.2 Hz, 1H, Bn), 3.99 (d, J = 16.3 Hz, 1H, Bn), 2.46 (s, 1H, 

NCHCH2CHMeMe), 2.19 (s, 3H, ArMe), 1.62 (dp, J = 13.2, 6.6 Hz, 1H, MeCHMe), 1.42 (dt, J = 

12.9, 6.2 Hz, 1H, CH2CHMeMe), 1.33 (dt, J = 13.5, 6.2 Hz, 1H, CH2CHMeMe), 0.68 (d, J = 6.6 

Hz, 3H, Me), 0.61 (d, J = 6.6 Hz, 3H, Me). 

13C NMR (126 MHz, DMSO-d6) 180.7 (COH), 161.0 (CO), 137.6 (ArC), 135.6 (ArC), 132.2 

(ArC), 130.6 (ArC), 130.2 (ArC), 129.1 (2 ArC), 129.0 (ArC), 128.8 (ArC), 127.0 (ArC), 118.3 

(2 ArC), 96.7 (COHCCO), 65.1 (NCHCH2CHMeMe), 46.7 (Bn), 40.4 (CH2CHMeMe), 23.9 

(MeCHMe), 22.9 (Me), 22.7 (Me), 20.3 (ArMe);  

HRMS calculated for C22H25ClN2O4S 471.1121 (M+Na)+; found 471.1144 (TOF MS ES+). 
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(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-(4-methoxybenzyl)-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.3 (28%, 

15 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = 10.0 (c = 0.0015, CH2Cl2);  

Rf = 0.28 (EtOAc:Hexane = 1:0);  

FTIR (neat): 3407, 2975, 2956, 2932, 2869, 1700, 1612, 1545, 1513, 1466, 1248, 1174, 1034, 

817, 754 cm-1; 

1H NMR (600 MHz, CD3CN-d3) 7.60 (s, 1H, ArH), 7.40–7.36 (m, 1H, ArH), 7.27–7.24 (m, 2H, 

ArH), 7.16 (dd, J = 21.2, 6.8 Hz, 2H, ArH), 6.79 (dd, J = 13.0, 8.6 Hz, 2H, ArH), 4.67 (d, J = 

15.9 Hz, 1H, Bn-o-Cl), 4.33 (s, 2H, Bn-p-OMe), 4.04 (d, J = 15.7 Hz, 1H, Bn-o-Cl), 3.70 (s, 3H, 

OMe), 3.56 (s, 1H, NCHCH2CHMeMe), 1.61 (dq, J = 12.5, 6.3 Hz, 1H, MeCHMe), 1.53 (s, 1H, 

CH2CHMeMe), 1.42 (s, 1H, CH2CHMeMe), 0.68 (d, J = 6.0 Hz, 3H, Me), 0.59 (d, J = 6.1 Hz, 

3H, Me). 

13C NMR (151 MHz, CD3CN-d3) 159.8 (CO), 135.8 (ArC), 134.1 (ArC), 132.1 (ArC), 131.9 

(ArC), 130.3 (2 ArC), 130.1 (ArC), 130.0 (ArC), 129.7 (ArC), 128.0 (ArC), 114.8 (2 ArC), 67.3 

(NCHCH2CHMeMe), 55.8 (OMe), 44.1 (Bn), 42.6 (Bn), 41.3 (CH2CHMeMe), 25.1 (MeCHMe), 

23.5 (Me), 23.0 (Me); 

HRMS calculated for C23H27ClN2O5S 501.1227 (M+Na)+; found 501.1230 (TOF MS ES+). 
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(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-phenyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.4 (93%, 

55 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -1.77 (c = 0.027, CH2Cl2); 

Rf = 0.13 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3386, 3059, 2955, 2929, 2868, 1641, 1584, 1543, 1445, 1238, 1140, 1050, 765, 755, 

693 cm-1; 

1H NMR (500 MHz, DMSO-d6) 10.83 (s, 1H, NH), 7.64 (d, J = 7.6 Hz, 1H, ArH), 7.48 (d, J = 

8.1 Hz, 2H, ArH), 7.40 (d, J = 7.8 Hz, 1H, ArH), 7.31 (t, J = 7.4 Hz, 1H, ArH), 7.26 (t, J = 7.5 

Hz, 1H, ArH), 7.20 (t, J = 7.8 Hz, 2H, ArH), 6.88 (t, J = 7.3 Hz, 1H, ArH), 4.57 (d, J = 16.2 Hz, 

1H, Bn), 3.98 (d, J = 16.3 Hz, 1H, Bn), 3.42 (t, J = 5.6 Hz, 1H, NCHCH2CHMeMe), 1.62 (dp, J = 

13.3, 6.6 Hz, 1H, MeCHMe), 1.41 (dt, J = 12.6, 6.2 Hz, 1H, CH2CHMeMe), 1.33 (dt, J = 13.5, 

6.1 Hz, 1H, CH2CHMeMe), 0.68 (d, J = 6.6 Hz, 3H, Me), 0.61 (d, J = 6.6 Hz, 3H, Me). 

13C NMR (126 MHz, DMSO-d6) 180.9 (COH), 161.0 (CO), 140.2 (ArC), 135.6 (ArC), 132.2 

(ArC), 130.6 (ArC), 129.0 (ArC), 128.7 (ArC), 128.7 (2 ArC), 127.0 (ArC), 121.4 (ArC), 118.2 

(2 ArC), 96.8 (COHCCO), 65.0 (NCHCH2MeMe), 46.7 (Bn), 40.4 (CH2CHMeMe), 23.9 

(MeCHMe), 22.9 (Me), 22.7 (Me); 

HRMS calculated for C21H23ClN2O4S 457.0965 (M+Na)+; found 457.0961 (TOF MS ES+). 
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(S)-3-((S)-sec-butyl)-4-hydroxy-2-(4-methylbenzyl)-N-tosyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.5 (40 %, 

28 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -29.42 (c = 0.014, CH2Cl2);  

Rf = 0.08 (EtOAc:Hexane = 1:0);  

FTIR (neat): 3443, 3029, 2963, 2925, 2874, 1708, 1651, 1593, 1515, 1447, 1163, 1088, 848, 816 

cm-1; 

1H NMR (500 MHz, DMSO-d6) 12.17 (s, 1H, NH), 7.83 (d, J = 7.7 Hz, 2H, ArH), 7.40 (d, J = 

7.7 Hz, 2H, ArH), 7.25 (d, J = 7.2 Hz, 2H, ArH), 7.11 (d, J = 7.3 Hz, 2H, ArH), 4.26 (d, J = 16.0 

Hz, 1H, Bn), 4.11 (d, J = 15.8 Hz, 1H, Bn), 2.39 (s, 3H, ArMe), 2.36 (d, J = 7.8 Hz, 1H, 

NCHMe), 2.27 (s, 3H, ArMe), 1.63–1.56 (m, 1H, MeCHMe), 1.42 (dq, J = 13.7, 6.6 Hz, 1H, 

CH2Me), 1.30 (dq, J = 13.4, 7.1, 6.7 Hz, 1H, CH2-Ile), 0.75 (d, J = 7.2 Hz, 3H, Me), 0.71 (d, J = 

7.1 Hz, 3H, Me); 

13C NMR (126 MHz, DMSO-d6) 182.2 (COH), 157.9 (CO), 143.5 (ArC), 137.7 (ArC), 136.0 

(ArC), 134.6 (ArC), 129.3 (2 ArC), 128.7 (2 ArC), 128.1 (2 ArC), 127.4 (2 ArC), 97.5 

(COHCCO), 68.6 (NCHMe), 47.0 (Bn), 36.6 (CH-Ile), 24.7 (CH2Me), 21.0 (ArMe), 20.6 

(ArMe), 14.4 (Me), 12.1 (Me); 

HRMS calculated for C23H28N2O6S2 515.1287 (M+Na)+; found 515.1276 (TOF MS ES+). 
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(S)-2-benzyl-N-(4-fluorophenyl)-4-hydroxy-3-isobutyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.6 (72%, 

21 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -14.95 (c = 0.0105, CH2Cl2); 

Rf = 0.62 (EtOAc:Hexane = 1:0);  

FTIR (neat): 3432, 3269, 3064, 2956, 2928, 2868, 1640, 1582, 1546, 1509, 1454, 1210, 1140, 

1052, 835, 766, 698 cm-1; 

1H NMR (500 MHz, DMSO-d6) 10.89 (s, 1H, NH), 7.53 (dd, J = 9.0, 5.0 Hz, 2H, ArH), 7.41 (d, 

J = 7.4 Hz, 2H, ArH), 7.33 (t, J = 7.5 Hz, 2H, ArH), 7.25 (t, J = 7.3 Hz, 1H, ArH), 7.07 (t, J = 8.9 

Hz, 2H, ArH), 4.35 (d, J = 15.4 Hz, 1H, Bn), 4.05 (d, J = 15.4 Hz, 1H, Bn), 3.32 (d, J = 5.5 Hz, 

1H, NCHCH2CHMeMe), 1.69 (dp, J = 13.3, 6.6 Hz, 1H, MeCHMe), 1.44 (dt, J = 12.4, 6.0 Hz, 

1H, CH2CHMeMe), 1.33 (dt, J = 13.5, 6.1 Hz, 1H, CH2CHMeMe), 0.70 (d, J = 6.6 Hz, 3H, Me), 

0.64 (d, J = 6.7 Hz, 3H, Me). 

13C NMR (126 MHz, DMSO-d6) 181.0 (COH), 161.0 (CO), 156.96 (d, J = 237.6 Hz, ArC), 

137.9 (ArC), 136.6 (d, J = 1.8 Hz, ArC), 128.5 (2 ArC), 128.1  (2 ArC), 127.0 (ArC), 119.7 (d, J 

= 7.5 Hz, 2 ArC), 115.2 (d, J = 21.9 Hz, 2 ArC), 96.7 (COHCCO), 63.7 (NCHCH2CHMeMe), 

48.0 (Bn), 23.8 (MeCHMe), 22.8 (Me), 22.8 (Me); 

HRMS calculated for C21H23FN2O4S 441.1260 (M+Na)+; found 441.1280 (TOF MS ES+). 
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(S)-2-benzyl-4-hydroxy-3-isobutyl-N-phenyl-2,3-dihydroisothiazole-5-carboxamide 1,1-
dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.7 (88%, 

37 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -13.05 (c = 0.018, CH2Cl2); 

Rf = 0.11 (EtOAc:Hexane = 1:1);  

FTIR (neat): 3430, 3259, 3110, 3060, 3031, 2955, 2927, 2868, 1643, 1583, 1543, 1497, 1445, 

1387, 1237, 1139, 1052, 766, 697 cm-1; 

1H NMR (500 MHz, DMSO-d6) 10.87 (s, 1H, NH), 7.52 (d, J = 7.8 Hz, 2H, ArH), 7.41 (d, J = 

7.4 Hz, 2H, ArH), 7.33 (t, J = 7.5 Hz, 2H, ArH), 7.25 (q, J = 7.9 Hz, 3H, ArH), 6.92 (t, J = 7.3 

Hz, 1H, ArH), 4.36 (d, J = 15.4 Hz, 1H, Bn), 4.06 (d, J = 15.4 Hz, 1H, Bn), 3.33 (t, J = 5.4 Hz, 

1H, NCHCH2CHMeMe), 1.70 (dp, J = 13.2, 6.6 Hz, 1H, MeCHMe), 1.45 (dt, J = 12.4, 6.0 Hz, 

1H, CH2CHMeMe), 1.34 (dt, J = 13.4, 6.1 Hz, 1H, CH2CHMeMe), 0.71 (d, J = 6.6 Hz, 3H, Me), 

0.65 (d, J = 6.7 Hz, 3H, Me). 

13C NMR (126 MHz, DMSO-d6) 180.9 (COH), 161.1 (CO), 140.2 (ArC), 137.9 (ArC), 128.7 (2 

ArC), 128.5 (2 ArC), 128.1 (2 ArC), 127.0 (ArC), 121.3 (ArC), 118.2 (2 ArC), 96.8 (COHCCO), 

63.8 (NCHCH2CHMeMe), 48.0 (Bn), 23.8 (MeCHMe), 22.8 (Me), 22.8 (Me); 

HRMS calculated for C21H24N2O4S 423.1355 (M+Na)+; found 423.1354 (TOF MS ES+). 

	

	

	

	

N
S
OO

HO

N
H

O



	 484	

(S)-2-(2-chlorobenzyl)-N-(4-fluorophenyl)-4-hydroxy-3-isobutyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.8 (91%, 

65 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -13.62 (c = 0.032, CH2Cl2); 

Rf = 0.60 (EtOAc:Hexane = 1:0);  

FTIR (neat): 3431, 3270, 3135, 3065, 2956, 2929, 2868, 1643, 1584, 1545, 1509, 1470, 1240, 

1210, 1141, 1052, 835, 764 cm-1; 

1H NMR (500 MHz, DMSO-d6) 10.84 (s, 1H, NH), 7.65 (d, J = 7.5 Hz, 1H, ArH), 7.52 (dd, J = 

8.7, 5.0 Hz, 2H, ArH), 7.39 (d, J = 7.8 Hz, 1H, ArH), 7.31 (t, J = 7.4 Hz, 1H, ArH), 7.26 (t, J = 

7.4 Hz, 1H, ArH), 7.04 (t, J = 8.8 Hz, 2H, ArH), 4.58 (d, J = 16.2 Hz, 1H, Bn), 4.00 (d, J = 16.2 

Hz, 1H, Bn), 3.44 (t, J = 5.4 Hz, 1H, NCHCH2CHMeMe), 1.63 (dp, J = 13.2, 6.5 Hz, 1H, 

MeCHMe), 1.42 (dt, J = 12.9, 6.2 Hz, 1H, CH2CHMeMe), 1.34 (dt, J = 13.5, 6.2 Hz, 1H, 

CH2CHMeMe), 0.68 (d, J = 6.6 Hz, 3H, Me), 0.62 (d, J = 6.6 Hz, 3H, Me). 

13C NMR (126 MHz, DMSO-d6) 181.0 (COH), 161.1 (CO), 157.1 (d, J = 236.9 Hz, ArC), 136.5 

(d, J = 1.5 Hz, ArC), 135.5 (ArC), 132.3 (ArC), 130.7 (ArC), 129.1 (ArC), 128.8 (ArC), 127.1 (2 

ArC), 119.8 (d, J = 7.2 Hz, ArC), 115.2 (d, J = 22.6 Hz, 2 ArC), 96.6 (COHCCO), 65.1 

(NCHCH2CHMeMe), 46.7 (Bn), 40.4 (CH2CHMeMe), 23.9 (MeCHMe), 22.9 (Me), 22.7 (Me);  

HRMS calculated for C21H22ClFN2O4S 475.0871 (M+Na)+; found 475.0886 (TOF MS ES+). 
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(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-tosyl-2,3-dihydroisothiazole-5-carboxamide 
1,1-dioxide 

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.9 (60%, 

49 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -4.66 (c = 0.018, CH2Cl2); 

Rf = 0.28 (EtOAc:Hexane = 1:0 x 2);  

FTIR (neat): 3431, 3065, 2955, 2927, 2868, 1667, 1589, 1443, 1259, 1140, 1087, 822, 763 cm-1; 

1H NMR (500 MHz, DMSO-d6) 11.96 (s, 1H, NH), 7.37 (t, J = 9.0 Hz, 4H, ArH), 7.26 (dq, J = 

22.3, 7.0 Hz, 4H, ArH), 4.51 (d, J = 16.1 Hz, 1H, Bn), 3.95 (d, J = 16.1 Hz, 1H, Bn), 3.49 (t, J = 

5.6 Hz, 1H, NCHCH2CHMeMe), 2.35 (s, 3H, ArMe), 1.55 (tt, J = 13.0, 6.1 Hz, 1H, MeCHMe), 

1.37 (dt, J = 12.8, 6.2 Hz, 1H, CH2CHMeMe), 1.27 (dt, J = 13.4, 6.0 Hz, 1H, CH2CHMeMe), 

0.64 (d, J = 6.6 Hz, 3H, Me), 0.58 (d, J = 6.7 Hz, 3H, Me). 

13C NMR (126 MHz, DMSO-d6) 183.5 (COH), 158.0 (CO), 143.6 (ArC), 137.6 (ArC), 135.1 

(ArC), 132.3 (ArC), 130.6 (ArC), 129.3 (2 ArC), 129.1 (ArC), 128.9 (ArC), 127.4 (2 ArC), 127.1 

(ArC), 96.2 (COHCCO), 65.2 (NCHCH2CHMeMe), 46.7 (Bn), 40.4 (CH2CHMeMe), 23.8 

(MeCHMe), 22.7 (Me), 22.6 (Me), 21.0 (ArMe); 

HRMS calculated for C22H25ClN2O6S2 535.0740 (M+Na)+; found 535.0732 (TOF MS ES+). 
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(S)-2-benzyl-4-hydroxy-3-isobutyl-N-tosyl-2,3-dihydroisothiazole-5-carboxamide 1,1-
dioxide  

 

According to the reaction protocol described in general procedure A, compound 3.4.6.1.10 (57%, 

31 mg) was isolated as clear oil. 

[𝜶]𝑫𝟐𝟎 = -13.48 (c = 0.0155, CH2Cl2);  

Rf = 0.18 (EtOAc:Hexane = 1:0);  

FTIR (neat): 3422, 3064, 3031, 2955, 2925, 2868, 1666, 1631, 1588, 1451, 1386, 1322, 1256, 

1162, 1085, 1051, 822, 764, 697 cm-1; 

1H NMR (500 MHz, DMSO-d6) 11.98 (s, 1H, NH), 7.34 (dd, J = 16.5, 7.0 Hz, 4H, ArH), 7.29–

7.19 (m, 5H, ArH), 4.26 (d, J = 15.2 Hz, 1H, Bn), 3.99 (d, J = 15.1 Hz, 1H, Bn), 3.19 (s, 1H, 

NCHCH2CHMeMe), 2.35 (s, 3H, ArMe), 1.63–1.55 (m, 1H, MeCHMe), 1.41–1.34 (m, 1H, 

CH2CHMeMe), 1.29–1.23 (m, 1H, CH2CHMeMe), 0.64–0.61 (m, 3H, Me), 0.60–0.57 (m, 3H, 

Me). 

13C NMR (126 MHz, DMSO-d6) 183.5 (COH), 158.0 (CO), 143.5 (ArC), 137.6 (ArC), 137.4 

(ArC), 129.3 (2 ArC), 128.4 (2 ArC), 128.2 (2 ArC), 127.4 (2 ArC), 127.1 (ArC), 96.2 

(COHCCO), 63.9 (NCHCH2CHMeMe), 47.8 (Bn), 40.4 (CH2CHMeMe), 23.7 (MeCHMe), 22.8 

(Me), 22.7 (Me), 21.0 (ArMe); 

HRMS calculated for C22H26N2O6S2 501.1130 (M+Na)+; found 501.1132 (TOF MS ES+). 
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	 487	

(S)-2-benzyl-4-hydroxy-3-isobutyl-N-(p-tolyl)-2,3-dihydroisothiazole-5-carboxamide 1,1-
dioxide	3.4.6.1.1	
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	 488	

(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-(p-tolyl)-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide 3.4.6.1.2 
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(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-(4-methoxybenzyl)-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide 3.4.6.1.3	
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(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-phenyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide 3.4.6.1.4	
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	 491	

(S)-3-((S)-sec-butyl)-4-hydroxy-2-(4-methylbenzyl)-N-tosyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide 3.4.6.1.5	
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(S)-2-benzyl-N-(4-fluorophenyl)-4-hydroxy-3-isobutyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide 3.4.6.1.6 
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(S)-2-benzyl-4-hydroxy-3-isobutyl-N-phenyl-2,3-dihydroisothiazole-5-carboxamide 1,1-
dioxide 3.4.6.1.7	
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(S)-2-(2-chlorobenzyl)-N-(4-fluorophenyl)-4-hydroxy-3-isobutyl-2,3-dihydroisothiazole-5-
carboxamide 1,1-dioxide 3.4.6.1.8	
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(S)-2-(2-chlorobenzyl)-4-hydroxy-3-isobutyl-N-tosyl-2,3-dihydroisothiazole-5-carboxamide 
1,1-dioxide 3.4.6.1.9	
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(S)-2-benzyl-4-hydroxy-3-isobutyl-N-tosyl-2,3-dihydroisothiazole-5-carboxamide 1,1-
dioxide 3.4.6.1.10	
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