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Abstract 

 

Dimensionless Type curves have been developed and used in the Oil and Gas industry for primary 

production performance evaluation. To Date, there is no physics-based dimensionless performance type 

curve developed for Enhanced Oil Recovery (EOR) of even conventional hydrocarbon-producing 

reservoirs. Predicting the production performance of unconventional and tight hydrocarbon reservoirs is 

challenging.  Each unconventional well drilling and completion normally cost a company $ 6-12 Million. 

Unconventional EOR (UEOR) is the next step in unlocking untapped unconventional and tight hydrocarbon 

reservoirs' full potential and helps in minimizing environmental footprints by targeting the remaining 

hydrocarbon left behind and consequently avoiding unnecessary drilling and minimizing carbon emission.  

To conduct a successful UEOR project, oil and gas companies perform comprehensive simulation 

studies to screen and select candidate wells (pilot) for UEOR, predict their response to the UEOR methods 

and agents, and forecast the performance of wells’ ongoing UEOR. This requires running thousands of 

simulation cases that might take several months to complete comprehensive techno-economic assessment 

and evaluation. AI-empowered Dimensionless Type Curves that honor physical laws can offer fast-track 

screening and accurate solutions.   

In this dissertation, Smart Physics-Inspired Compositional Dimensionless Type Curves (SPiC TCD) 

for UEOR are presented that aim to address the above-mentioned problem and save millions of dollars by 

optimizing the UEOR practice and consequently reducing the carbon emission and environmental footprints 

and using subsurface resources in an environmentally beneficial way, which is the current portfolio of the 

oil and gas industry. 

SPiC TCD respond to operators’ W3H questions (Where to inject, When to inject, What to inject, 

and How to inject an EOR solvent) while performing comprehensive field screening and designing 

unconventional EOR pilot(s). W3H methodology provides fast-track AI-aided physics-inspired solutions 

based on historical wells' performance with existing subsurface reservoir and fluid descriptions and 
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hydraulic fracture geometries and flow properties. This technique enables operators to make quick decisions 

on unconventional EOR pilot candidates’ selection and design to optimize design criteria such as the choice 

of injection solvent type and volume estimation, the optimum start of injection and soaking time as well as 

the frequency of this cyclic process and estimation and the soaking duration for the optimum oil recovery. 

To generate Smart Physics-Inspired Compositional Dimensionless Type Curves, a manageable 

number of numerical simulation cases are defined through the Physics-Guided Design of Experiment 

workflow. The workflow covers a wide range of operational design parameters pertaining to W3H criteria, 

reservoir rock and fluid properties, hydraulic fracture design, and their corresponding flow-related 

parameters such as fracture conductivity, fracture half-length, fracture height, fracture spacing, and the 

number of hydraulic fracture clusters per stage.  

Conventional design of experiment workflows fails in case of dealing with a system that operates 

based on known governing physical laws. This affects the accuracy of the proxy models and probabilistic 

modeling. Therefore, a detailed workflow is developed which is a physics quality control module to 

evaluate the response of the generated cases using the design of experiment techniques. It ensures the 

generated multidimensional distribution of the input parameters creates physically meaningful responses 

when solving the fluid flow equations.  The next step is to train a family of machine-learning algorithms. 

Deep neural network algorithms are employed to build the proxy models for Smart UEOR dimensionless 

type curve generation. Upon completion of the training, the physics-based blind hindcasting and model 

response evaluation according to the physical laws are conducted. The generated physics-based AI proxy 

models are capable of generating thousands of cases based on the different reservoir and fluid descriptions 

as well as hydraulic fracture properties and W3H operational design criteria within an hour instead of 

months. It enables fast and accurate decision-making for optimal UEOR practice in unconventional and 

tight oil reservoirs. 
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1 
INTRODUCTION 

Tight reservoirs are hydrocarbon-bearing formations with ultra-low permeability, often found in shale and 

tight sandstone. Economically, these formations are tough to develop due to tight matrix permeability and 

poor inter-pore connectivity. Such reservoirs are commonly developed with a large number of independent 

horizontal producers aided by a complex hydraulic fracture network to provide maximum reservoir contact. 

In addition to long horizontal wells and hydraulic fractures, early EOR application may improve and 

sustain the oil recovery from tight oil reservoirs. Unlike conventional reservoirs, the key performance 

indicators for the EOR pilot selection criteria in unconventional tight reservoirs are not well established 

yet. In this thesis, a detailed workflow is presented for quick screening based on the prior production 

history, reservoir characteristics, and the hydraulic fracture design parameters through Smart Physics 

Inspired Compositional Dimensionless Type Curves (SPiC TCD). In this chapter, a detailed stepwise 

workflow is presented to generate SPiC TCD and their application to answer operators’ W3H questions i.e. 

Where to inject, When to inject, What to inject, and How to inject an EOR solvent for the enhanced oil 

recovery from tight oil reservoirs. 
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1.1. Background 

Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs, especially in the 

US. However, the dilemma is their ultra-tight permeability and an uneconomically short-lived primary 

recovery factor. Therefore, the application of EOR in the early reservoir development phase is considered 

effective for fast-paced and economical tight oil recovery. To achieve these objectives, it is imperative to 

determine the optimum EOR potential and the best-suited EOR application for every individual tight oil 

reservoir to maximize its ultimate recovery factor. Since most of the tight oil reservoirs are found in wide 

spatial source rock with complex and compacted pores and poor geophysical properties, they hold high 

saturation of good quality oil, and therefore, every single percent increase in oil recovery from such huge 

reservoirs potentially provides an additional million barrels of oil.  

Due to poor rock quality, the common practice to develop tight reservoirs is to drill long horizontal 

wells to provide maximum reservoir contact and the wellbores are further subjected to massive multi-stage 

hydraulic fracturing to provide extensive support to the reservoir fluid to flow through artificial flow 

channels. However, with all such artificial support, the natural energy consumption, i.e., in-situ reservoir 

pressure, declines too rapidly during natural depletion which results in rapid oil production decline. 

Generally, more than half of the original well productivity diminishes within the first year of the well 

production life which results in poor reservoir fluid recovery. 

To overcome the highlighted issue, an easy solution to uplift the recovery factor is to provide effective 

energy support. Water and different gases are the most studied injectants at both laboratory and numerical 

simulation scales. In addition, a few actual field pilots are also performed in the United States with CO2, 

associated & lean hydrocarbon gas injection through huff and puff, and water flooding. Water did not show 

any appreciated response to improve the oil recovery; however, CO2 and hydrocarbon injection presented 

mixed results that are subjected to further investigation. The detailed observations on numerical simulation, 

laboratory, and field pilot tests are presented in the following chapter. 
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From the above context, it can be concluded that the EOR application in tight oil reservoirs is quite 

essential to boost the oil recovery at an early stage, and it would help individual well productivity to sustain 

for a longer period to improve the recovery factor. However, the process of selecting the best-suited 

injection solvent and designing an EOR operation in such complex reservoirs is not straightforward. Unlike 

conventional reservoirs, due to only a few actual field pilot studies, there is limited field data available that 

is inconclusive to generalize field development planning for a tight oil reservoir. The physical 

understanding of EOR applications in different circumstances from laboratory to field scale is the key to 

success and similarly, the fundamental physical concepts of fluid flow dynamics under non-unique 

confinement conditions play an important role.  

The precise selection of a particular EOR application type based on the reservoir rock, fluid, and 

petrophysical characteristics as well as the heterogeneity distribution are the pillar points to conducting a 

successful EOR application for optimum incremental hydrocarbon recovery. In addition, the prior 

production history, and the pre-existing hydraulic fracture design (if exist) are equally important for the 

EOR operational design and field implementation planning. After having the entire list of contributing 

factors in hand, the next and most critical step is to perform techno-economical evaluations to determine 

the most optimal EOR solution. 

It is always risky and expensive to implement a full field EOR application at once especially when the 

available data has some uncertainty and/or does not have sufficient data to build numerical models with 

enough confidence. The best solution to cope with this issue is to conduct multiple actual field pilots in 

different regions to understand the reservoir response with various EOR planning strategies for optimum 

oil recovery.  

There are multiple steps to conduct an actual field pilot as listed below. 
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• Representative region selection based on the common reservoir properties, fluid saturation 

distribution, and the production history that could represent the entire or at least a major portion of 

the field.  

• Candidate wells selection mainly based on their location and the production/ injection history 

• Mechanistic or fine-scale numerical model development and history matching 

• EOR process identification  

• Running hundreds of simulation cases to determine the most effective EOR plan to answer W3H 

questions i.e. Where, When, What, and How to implement an EOR pilot. 

• Collect all possible surface and sub-surface data from multiple pilots and update the numerical 

model, such that to prepare a full field EOR development plan. 

As mentioned earlier, it is time-consuming and computationally expensive work to do even in 

conventional reservoirs. For unconventional reservoirs, the process is more complicated because of multiple 

additional limitations. Therefore, in this thesis, a physics-based, automated, and quick workflow and an 

automated tool are introduced that can easily perform the entire job in no time. The only requirement for 

this tool is to have the primary flow performance data that would be used as a reference to provide multiple 

physics-based techno-economical EOR options to provide W3H answers. The automated data-driven tool 

“W3H” is developed using a huge data set, generated using a commercial compositional numerical 

simulator ‘CMG-GEM’. 

1.2. Problem Statement and Dissertation Contribution 

Since the classical ages of the oil and gas industry, the reservoir characterization, development 

planning, and flow performance monitoring of the conventional reservoirs are being done through a well-

testing approach normally using pressure transient analysis (PTA). The working procedure is to match the 

bottom hole flowing pressure response with multiple type curves to determine the reservoir and the near-

wellbore approximated formation properties. The only problem with this approach is the subjectivity of the 

well test and due to multiple possibilities of type curve matches, the accuracy is always been an issue even 
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for the conventional reservoirs. For the unconventional reservoirs, this approach is technically not possible 

due to poor rock type and isolated in-situ pressure support system that would take years to show any 

pressure build-up response on shutting in a producer and that is not economical at all. Therefore, pressure 

transient analysis is not an option for tight reservoirs, and it is practically not easy to completely alter the 

engineering operational practice therefore, the petroleum engineers came up with a similar approach to 

evaluate tight reservoirs through rate transient analysis (RTA) using the similar correlations and the 

equations. The only difference in this approach is to use the production rate along with the pressure data. 

The RTA application on tight wells is not straightforward like PTA on conventional reservoirs that are 

usually completed with vertical, slanted, or horizontal wells with shorter horizontal sections as compared 

to the tight reservoirs. Tight reservoirs are normally completed with long horizontal sections and massive 

multiple-staged hydraulic fractures and hence have a huge well surface area that makes the analysis 

complicated. In such hydraulically fractured long horizontal wells, the transient response is the combination 

of multiple factors including, reservoir matrix properties, reservoir fluid composition, and their PVT 

properties as well as the hydraulic fracture properties such as fracture half-length, fracture height, fracture 

conductivity, etc.  

However, most of the operators are using the RTA approach, though it's not accurate but economical, 

easy, and not much time-consuming. On contrary, the latest advancement in numerous reservoir 

simulations, laboratory, and actual field data made it possible to understand the physics and the possible 

response of in-situ hydrocarbons in different circumstances. Using those limited but reliable data, numerical 

simulation model development would be a more accurate solution but not economical at all. It would require 

a lot of computational and human effort and operational time. Since most of the tight reservoirs especially 

in the U.S. developed so quickly in the last couple of decades with thousands of hydraulically fractured 

long horizontal wells that later or sooner must be subjected to EOR to boost up the production as the 

economical primary recovery from such wells hardly last from few months to a couple of years. 
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As far as the EOR application is concerned in tight oil reservoirs, it requires detailed physics-based 

investigation based on individual wells’ historical performance. Though multiple operators invested a lot 

of their R&D time and finances to build numerical simulation models subjected to their reservoirs to 

determine the most suitable candidate for EOR pilot out of thousands of their pre-existing producers. But 

still, no generalized and robust tool is available that would provide quick and physics-based reliable 

solutions for not only EOR pilot candidate selection but also provide a complete EOR operational design 

for the given reservoir rock and fluid properties as well as the pre-existing hydraulic fracture design. 

Detailed reservoir simulation is an ideal technique to investigate physics-based analysis with numerical 

accuracy and come up with a plan but it’s not computationally economical to run thousands of simulation 

cases that would take years to explore all possible techno-economic options.  

Therefore, a quick and robust solution is required for designing an EOR application. EOR candidate 

selection and its operational planning is a critical procedure that is based on several aspects. Typically, the 

following are the key W3H factors that are required to be addressed. 

a. WHERE to inject – best-suited EOR pilot/development well selection based on the primary 

recovery performance and the oil saturation in place. 

b. WHEN to inject – to decide the suitable EOR timeline after primary production. 

c. WHAT to inject – the selection of an EOR solvent based on the reservoir rock and fluid properties. 

d. HOW to inject – EOR application design including the injection solvent volume and the soaking 

time. 

The motivation of this work is to address all the above-listed factors and in this dissertation, I introduce 

an automated and smart tool that provides quick Physics-Inspired Compositional Dimensionless Type 

Curves (SPiC TCD) to address W3H factors. Based on the said motivations, the smart tool is named ‘W3H 

– Smart Unconventional EOR Solutions’. The working phenomenon of this tool is inspired by Rate 

Transient Analysis (RTA) type curve matching technique. It provides a quick, physics-based solution for 

selecting the most suitable EOR pilot candidate among thousands of wells having different operational 
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histories as well as, drilled in different regions of a reservoir with different rock and fluid properties. It also 

provides multiple techno-economic options to an engineer to come up with an estimated additional oil 

recovery subjected to the EOR operational design. Table 1.1 presents a quick timeline comparison using 

the conventional ways that most of the operators use versus W3H and the workflow presented in this 

dissertation. 

Table 1.1 A quick comparison of a tight oil reservoir development conventional vs. smart W3H timeline 

Field Development Workflow Conventional Timeline Smart W3H Timeline 

Data Gathering & Analysis Days to weeks Less than an hour 

Numerical Model Generation Weeks to months – 

History Matching for Model validation  Weeks to months Less than an hour 

EOR forecasting using different solvent slug sizes & soaking time Weeks to months Less than an hour 

The entire project – An estimated timeline to explore all possible 

techno-economic options 
Months to year 

Few hours to a couple 

of days 

The entire study is performed in several steps; however, the major phases of this work are presented 

in a detailed workflow shown in Figure 1.1.  

Initially, a detailed literature review is performed to collect the most representative data to develop 

meaningful ranges of reservoir rock, fluid, and hydraulic fracture design parameters. Secondly, using 

typical tight oil reservoir rock and fluid properties and the commonly adopted hydraulic fracture design 

parameters, a numerical simulation model is generated using a compositional commercial reservoir 

simulator ‘CMG-GEM’. Categorically, the generated reservoir model is tuned and validated using the time-

based typical tight oil well flow responses observed in multiple wells performance data publicly available 

at the Society of Petroleum Engineers (SPE) data repository. 

For different circumstances, a thorough physical understanding is developed from the generated 

reservoir model followed by thousands of physics-based numerical simulation cases generation using 

different reservoir rock and fluid properties as well as the hydraulic fracture design parameters. The EOR 

operational design parameters are also utilized as one of the key sets of parameters to generate simulation 

cases. The entire reservoir matrix, fluid, and hydraulic fracture-related parameters were randomly 
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distributed to cover the entire possible range found in the literature using the Latin Hypercube Sampling 

(LHS) technique as a Physics-Guided Design of Experiment (PG-DOE).  

 

Figure 1.1 Complete study workflow 

In the next step, a data-driven machine-learning approach is applied to train an automated model for 

the generation of uncounted proxy models for the numerous combinations of reservoir rock and fluid as 

well as hydraulic fracture design parameters. Lastly, an automated graphical user-interface-based 

application ‘W3H’ is generated that is a plug-n-play type of application for quick EOR solutions to develop 

tight oil reservoirs.  
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1.3. Dissertation Organization  

This dissertation is comprised of a total of seven chapters that are organized as below: 

Chapter 1: Introduction 

In this chapter, a brief overview of tight oil reservoirs, their strategic development planning, and 

their unique characteristics are presented that support EOR application to accelerate and boost the overall 

oil recovery process. In addition, a detailed project workflow is presented in this chapter.  

Chapter 2: Literature Review 

This chapter presents a comprehensive literature review on tight oil reservoirs and their multi-

dimensional characteristics. In addition, the observations and reservoir simulation, laboratory, and EOR 

field pilots-based performance evaluation are presented such that to collect all necessary reservoir rock and 

fluid information, hydraulic fracture design parameters ranges, and the possible EOR operational design 

limits to develop a comprehensive numerical simulation-based database to train proxy models. 

Chapter 3: Reservoir Numerical Model Development   

In this chapter, a numerical mechanistic compositional reservoir simulation model is created for 

the physics-based database utilizing the usual tight oil reservoir rock and fluid properties.  Through 

consideration of various reservoir rock and fluid characteristics, hydraulic fracture design parameters, and 

various EOR operating designs, sensitivity analysis is used to generate a full physical knowledge of several 

aspects. 

Chapter 4: Spatio-Temporal Database Development 

Using the history-matched compositional mechanistic paradigm, this chapter discusses the creation 

of spatiotemporal databases. The reservoir rock and fluid characteristics, hydraulic fracture design 

parameters, and the operational design for EOR are all considered while creating a database. To account 

for a wide range of individual parameters, random sampling is carried out using an experimental design 

that enables the creation of a database for the full magnitude range of each parameter using a small number 

of simulation cases with randomly chosen combinations of various parameters. 
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Chapter 5: Smart Physics-Inspired Compositional Dimensionless Type Curves 

In this chapter, novel Physics-Inspired Smart Compositional Dimensionless Type Curves are 

introduced. Additionally, a generalized end-user poster is assembled in this chapter to cover all potential 

scenarios with various reservoir rock properties, in-situ fluid types, hydraulic fracture designs, and EOR 

operational designs for a quick and efficient primary and UEOR performance match as well as incremental 

hydrocarbon recovery predictions.  

Chapter 6: Smart Physics-Inspired Proxy Models Development 

In this chapter, a methodical approach and steps are discussed for creating random samples for a 

numerical simulation-based comprehensive data library, using a Physics Guided Design of Experiment, 

followed by the Deep Neural Network structure considered for the smart physics-inspired proxy models 

development. 

Chapter 7: Physics-Inspired Proxy Models Quality Check & Case Studies 

This chapter presents the prediction performance of the proxy models using both training and non-

training datasets. Several actual case studies are then presented and analyzed to show how the proxy models 

respond to the techno-economic unconventional EOR pilot screening. 

Chapter 8: W3H – User Manual  

This chapter introduces W3H, a physics-based alternative to computationally expensive numerical 

simulation tools that provides results in a matter of hours, helping to reduce the number of prospective 

UEOR pilot wells that need to be thoroughly studied. W3H is a straightforward and user-friendly tool that 

imports historical well performance data, information on the rock and fluid quality of the reservoir, and 

hydraulic fracture design parameters. After matching the primary recovery performance with the W3H 

dimensionless type curves, the smart tool offers multiple EOR options with the optimum incremental oil 

recovery.
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2 
LITERATURE REVIEW 

This chapter presents a comprehensive literature review on tight oil reservoirs and their multi-dimensional 

characteristics. In addition, the observations and reservoir simulation, laboratory, and EOR field pilot-

based performance evaluation are presented. Also, the significance of micro to the macro-scale assessment 

of tight oil reservoirs is presented in comparison to a conventional reservoir for the full field development 

planning and the EOR applicability. The fluid flow mechanisms and the physical laws are also included in 

the chapter that controls the in-situ fluid flow through nano-confined pore spaces. The typical ranges of 

tight oil reservoir rock and fluid properties are also listed in the chapter which is the most important part 

of this dissertation that is used to develop the entire dataset. 
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2.1. Introduction  

Crude oil from tight oil reservoirs (TOR) is the fastest-growing hydrocarbon resource worldwide and these 

reservoirs are being developed usually through horizontal drilling and multistage hydraulic fracturing. According to 

Energy Information Administration (EIA), the technically recoverable shale hydrocarbon resources are summed up to 

more than 350 billion barrels, globally. These reserves are present in shale formations laying under different 

international territories which is almost 10% of the total known fossil oil in the world. The estimated amount of 

technically recoverable top 10 shale oil reserves are listed in Table 2.1. Among the top 10 countries with maximum 

shale oil reserves, the United States falls in 2nd place after Russia with approximately 17% of the total global shale oil. 

China, Argentina, and Libya are the next biggest shale oil holders (EIA, 2013). The regional estimate of the technically 

recoverable shale oil share to the world is shown in Figure 1.1. This distribution is based on 46 countries across the 

world with North America having the highest technically recoverable share due to competitive technical advancement 

(EIA, 2017).  

Table 2.1 Top 10 countries with technically recoverable shale oil resources; data collected and summarized from multiple sources 

(EIA, 2013, 2021a, 2021b)  

Rank Country 
Shale Oil 

(Billion bbl.) 

Global Shale Oil Reserves 

(%) 

1 Russia 75 21.7 

2 USA 58 16.8 

3 China 32 9.8 

4 Argentina 27 7.8 

5 Libya 26 7.5 

6 Australia 18 5.2 

7 Venezuela 13 3.7 

8 Mexico 13 3.7 

9 Pakistan 9 2.6 

10 Canada 9 2.6 

 Total 345  

Figure 2.2 presents the significance of the U.S. shale oil production that is contributing to more than half of 

the whole U.S. oil production as of 2022. Among seven different regions of the U.S., the Permian basin located in the 

Southwest region alone contributed the most to the total U.S. shale crude oil production. It can be noticed in Figure 

2.2 that the overall shale U.S. crude oil production jumped from 5 to 8 MMbbl per day just in a couple of years i.e., 

from 2018 to 2020 and the progressive trend of the U.S. shale reservoirs’ rapid development can be noticed in the 
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same figure. In early 2020, due to the global pandemic situation, oil production was significantly cut down, globally, 

which is getting back on the same trend as pre-pandemic in 2022. Table 2.2 summarizes the reserves distribution based 

on individual basins and/or reservoirs (EIA, 2017; Long, 2022).  

 
Figure 1.1 Regionally technically recoverable shale oil 

reserves (Data collected and summarized from EIA, 2013, 

2021a, 2021b; Syed et al., 2022) 

 
Figure 2.2 U.S. tight oil recovery performance and the tight 

oil reservoirs development through rig counts  

Based on the experiences shared in this chapter from laboratory to field scale, a fact is established that the 

process of finding the most effective way to develop a shale reservoir is critical and time-consuming because of 

multiple factors including extremely small pore size, low and dual porosity distribution, and most importantly the 

ultra-tight permeability distribution (Du et al., 2019). In the last decade, considerable advancement is done to finally 

acknowledge a couple of techniques including horizontal well drilling and multistage massive hydraulic fracturing in 

tight formations as the most successful ones to develop TORs more effectively. A rapid increase in total oil production 

using these techniques is evidence of their success that could be noticed that resulted in a boost in total oil production 

to almost double since 2010 (EIA, 2021b). Figure 2.3 is presenting the production history and the projection of the 

U.S. shale oil production that is expected to hit the peak of 12 million barrels per day by the end of this decade using 

the current technology. However, these anticipated numbers would increase with further advancements in technology 

over time.  In Figure. 2.3, it is notable that tight oil is even today contributing around 70% to the total oil production 

(Syed et al., 2021a; 2021b; 2022; Usman Ahmed, 2016). EIA also reported that only 15% of the total crude oil in the 

U.S. used to be produced through horizontal wells which jumped to 96% of the entire oil production by the end of 

2018 through optimized horizontal drilling mainly in TORs. However, in parallel about 88,000 pre-existing vertical 

wells are also producing but to a very minor contribution towards the total volume and are considered to keep 
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producing until they become uneconomic. Figure 2.4 shows the status of the total vertical and horizontal well count 

in the major unconventional plays of the U.S. as of 2019 (EIA 2019; Kurtoglu, et al., 2013a; Perrin, 2019). 

Table 2.2 Technically recoverable shale oil resources in the U.S. per basin/ reservoir as of January 2020 (EIA, 2017) 

Region Basin/ Reservoir 
Technically Recoverable Shale Oil per Region 

(Billion bbl.) 

East 

Appalachian 

4.4 Illinois 

Michigan 

Gulf Coast 

Black Warrior 

31 TX-LA-MS Salt 

Western Gulf (Eagle Ford) 

Midcontinent 

Anadarko 

2.6 Arkoma 

Black Warrior 

Southwest 
Fort Worth 

112.6 
Permian 

Rocky Mountain/ 

Dakotas 

Denver 

25.1 

Grater Green River 

Paradox 

Powder River 

San Juan 

Southwestern Wyoming 

Uinta Piceance 

Wind River 

Northern Great 

Plains 

Montana Thrust Belt 

18.9 
North Central Montana 

Powder River 

Williston (Bakken) 

West Coast 
Columbia 

0.4 
San Joaquin/Los Angeles 

Apart from tight hydrocarbon (oil and gas) reservoirs, deep natural gas, geo-pressurized zones, coalbed 

methane, and methane hydrate reservoirs are also commonly referred to as unconventional reservoirs. For such 

complex reservoirs, a horizontal well provides comparatively greater contact to the reservoir and enhances the 

wellbore exposure to produce plenty of additional hydrocarbons that is why horizontal wells are also known as 

Maximum Reservoir Contact (MRC) wells, and their drilling process is called Extended Reached Drilling (ERD) 

(Syed, et al., 2016). However, MRC wells and hydraulic fractures make a great combination to generate greater 
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exposure of the hydrocarbon to flow from the matrix to the fractures through primary depletion with a higher 

differential pressure across the wellbore that results in an incredible increase in production (Butler, et al., 2021; 

Muther, et al., 2020a; Sprunger, et al., 2021; Syed, et al., 2021). Nevertheless, it has been a common observation in 

almost all the TORs that the resulting increased oil production does not sustain for long and comes to a rapid decline 

after some time that ranges between a few months to a couple of years (Syed et al., 2021c; Khan, et al., 2016; Todd 

and Evans, 2016). A schematic of a horizontal well with induced hydraulic fractures deep into the matrix is shown in 

Figure 2.5 concerning a vertical well. 

 
Figure 2.3 Projected U.S. tight oil production profiles of all major 

plays (Data collected and summarized from multiple sources as 

mentioned in the context) 

 
Figure 2.4 Existing vertical and horizontal well count 

in the U.S. reservoirs as of 2019 (Data collected and 

summarized from Kurtoglu, et al., 2013a; Perrin, 2019) 

              

Figure 2.5 Horizontal well schematic with stimulated hydraulic fractures and the vertical well for reference. 

2.2. Major Shale Oil Plays  

Bakken play is one of the most producing U.S. shale oil plays that is aerially lying over Montana and North 

Dakota in north-central America and a part of it lying in south-central Canada. This play is relatively thin layering in 
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the central part and quite deep at the Williston Basin and it includes both conventional as well as unconventional 

reservoirs. The entire Bakken formation is consisting of three major parts, lower, middle, and upper Bakken, out of 

which, middle Bakken is the primary production zone. The original oil in place is estimated at approximately 300 to 

900 billion barrels while the technically recoverable reserves based on today’s technology are approximately 5 to 25 

billion barrels (Li, et al., 2018; Wang, et al., 2020) 

Eagle Ford is the second highest producing play that is lying in south Texas with approximately 5 to 30 billion 

barrels of original oil in place. It mainly consists of higher carbonate shale percentage i.e., around 70% mainly in south 

Texas with Kerogen Type II while possessing higher shale content in the northwest region. The higher carbonate 

content makes it more brittle and hence it becomes more conducive for hydraulic fracture operations. Currently, Eagle 

Ford is contributing under 1 million barrels of oil production per day (DiStefano, et al., 2019; Liang and Zhao, 2019; 

Zhao, et al., 2020) 

Another major shale oil play in the U.S. is Wolfcamp which is lying in the midland basin, which is a major oil 

resource of the Permian Basin. It is having approximately 30 billion barrels of original oil in place. The Kerogen type 

for this play is found to be varying in the overall region between Type II and Type III. It is one of the most developed 

shale oil resources with more than 6500 producers and over 200 active rig counts (Casey, et al., 2018; Gherabati, et 

al., 2020; Smye, et al., 2020). 

The next is the Niobrara shale formation that is lying northeast of Denver, Colorado, with the presence of both 

conventional and unconventional oil resources. The Niobrara is consisting of three isolated zones i.e., Niobrara A, B, 

and C which are sitting on the top of Codell and Greenhorn formations. It is one of the deepest shale formations in the 

U.S. with approximately 7000 ft vertical depth with the formation thickness ranging between 150 to 300 ft (Heart 

Energy 2020; McCormack, et al., 2021; Yue, et al., 2021). 

The Utica shale is another important shale oil play in the U.S. that is a stacked play, that includes both the Utica 

formation and the underlying Point Pleasant formation of the Late Ordovician age. The formation extends in the 

subsurface from New York State in the north to northeastern Kentucky and Tennessee in the south. The typical depth 

of the formation varies from 2000 to 14000 ft and a wide range of thicknesses covers 70 to 750 ft (Heart Energy 2020; 

Gittings and Roach, 2020; Goodman, et al., 2019). Figure 2.6 is presenting the boundaries, structure (elevation of the 

opt contours), and isopachs (thickness contours) of all five plays discussed above. While Table 2.3 summarizes the 



17 
 

overall characteristics of all five plays. Multiple oil & gas companies are operating simultaneously on every individual 

play.  

Table 2.3 Summary of U.S. tight oil plays characteristics  

U.S. Plays Bakken Utica Shale Eagle Ford Wolfcamp Niobrara 

Geological Age 
Late Devonian & 

Early Mississippian 

Middle 

Ordovician 

Early 

Cretaceous 
Permian Late Cretaceous 

Basin Williston Basin Appalachian 
Maverick 

Basin 
Permian Denver-Julesburg 

Geographic location 
North Dakota & 

Montana 

Eastern 

United States 

South 

Texas 

West Texas & 

SE New Mexico 

NE Kansas, NE Colorado, SW 

Nebraska & SE Wyoming 

Average depth, ft 6000 5000 – 11000 7000 10000 – 12000 3000 – 14000 

Average thickness, ft 22 100 – 400 200 1200 – 2000 450 

Average porosity, % 8 2 – 8 9 5 – 9 6 – 9 

TOC, %  5 – 8 4.25 2 – 5 3 

 

Figure 2.6 Boundary, structure (elevation of the top contours), and isopachs (thickness contours) of (A) Bakken (B) Eagle Ford 

(C) Wolfcamp (D) Niobrara (E) Utica Shale (Maps gathered from EIA 2022) 

Apart from the U.S., Russia, and China are having the largest shale oil resources with approximately 75 and 

32 billion barrels of technically recoverable oil. Globally, shale oil resources are facing the same issue of short 

production life and very low ultimate oil recovery that typically ranges between 3% to 10%. Figure 2.7 presents an 

image of a typical well’s average annual production rate decline percentile for the first year of production from 

different major shale oil plays in the U.S. It can be observed that oil production decreases rapidly as high as 50% of 
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the initial flow rate. Therefore, to increase the oil recovery factor and the reservoir’s overall potential, 

secondary/tertiary oil recovery must be considered from day one of the field development. Due to ultra-tight 

permeability, gas injection is the only best-suited option that has been tested in a few pilots and found considerable 

results, especially with CO2 injection.   

 
Figure 2.7 First-year annual oil production rate decline percentile (Data collected and summarized from Barree, et al., 2009) 

2.3. Field Development Planning  

Conventional reservoirs with good permeability distribution are more likely to be developed with natural 

depletion drive. Whereas water flooding is the most economical secondary drive mechanism that aids oil recovery 

improvement, usually followed by Enhanced Oil Recovery (EOR)/tertiary recovery applications. The most common 

EOR applications include HC and non-HC gas injection for miscible and immiscible gas flooding, etc. The EOR 

processes are those that improve recovery from the injection of non-native fluid or energy deep into the reservoir. 

Chemical and thermal EOR methods are also very commonly adopted to develop and/or to re-develop conventional 

oil reservoirs (Syed, et al., 2011; 2016; 2019). But unlikely, the unconventional oil reservoirs do not give any response 

to natural depletion or water injection due to very low water injectivity because of ultra-tight permeability and the 

poor rock pores and pore throat size distribution that keep the oil isolated and trapped droplets (Sheng and Chen, 2014; 

Sheng, 2015). The contribution of rock structures and their mineralogy cannot be neglected either which is responsible 

for creating such ubiquitous matrix nature. For example, Figure 2.8 presents a schematic of pore throat size, structure, 

and types for unconventional reservoirs concerning conventional reservoirs. The hydrocarbon accumulation in 

conventional reservoir rock usually possesses a pore throat diameter of 1 micrometer that causes reservoir fluid 

accumulation and migration based on buoyancy factors. On contrary, unconventional reservoirs usually own pore 
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throats with lesser than 1-micrometer diameter, and fluid migration and accumulation happen by different mechanisms 

including overpressure, buoyancy, stable temperature, and pressure.  

 

Figure 2.8 Type, size, and structures of pore throats in conventional and unconventional reservoirs (modified from Hoteit and 

Firouzabadi, 2006) 

Considering the facts discussed above, EOR projects are capitally intensive, time-consuming, and highly 

uncertain processes that commercially require careful and systematic evaluation for successful unconventional field 

development planning. A well-defined staged evaluation process for field development mainly relies on consistent 

comparison of processes and the involvement of updated available and applicable technology. The maximum chances 

of success depend on the process of minimizing efforts spent on inappropriate scenarios and the communication with 

multi-disciplinary teams as well as commercial stakeholders. To present the complex nature of unconventional 

reservoirs, multiple formation rock & fluid characteristics, and rock mineralogy are summarized in Table 2.4.  

The unconventional resources tend to be laterally extensive but only developed through diffusion-based 

processes since the unconventional hydrocarbons are not found within the discrete closures. That is why the presence 

of huge but inherent heterogeneities requires hundreds of wells to target sweet spots for commercial-scale field 

development. Table 2.5 enlists all the major reservoir specifications and the field development considerations usually 

considered while developing two different types of reservoirs. 
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Table 2.4 Typical rock/ formation and fluid properties of shale oil reservoirs 

Reservoir Formation, Rock and Fluid 

Properties 

Typical Range 

(Collected from Literature) 
References 

Permeability 1E-5–0.1 mD 

Alvarez and Schechter, 2016; 

Alfarge, et al., 2017a, 2017b; 

Alvarez, et al., 2017; 

Alharthy, et al., 2018a, 2018b; 

Adel, et al, 2018; 

Aziz, et al, 2021; 

Biresselioglu, 2016; 

Caineng, et al., 2013; 

Cho, et al., 2016; 

Dawson, et al., 2015; 

Fragoso, et al., 2018; 

Jin, et al., 2016; 

Kurtoglu, et al., 2013b; 

Kurtoglu, et al., 2014; 

Karimi, et al., 2019; 

Kerr, et al., 2020; 

Li, L., et al., 2019; 

Morsy, et al., 2013; 

Morsy and Sheng, 2014; 

Pu and Li, 2016; 

Rassenfoss, 2017, 2014; 

Sanaei, et al., 2018; 

Valluri, et al., 2016; 

Wang, D., et al., 2016, 2014, 2012, 

2011; 

Wang, D., et al., 2016; 

Yu and Sheng, 2016; 

Yu, et al., 2014; 

Yin, et al., 2017; 

Zhang, et al., 2013b; Zhang, 2016 

Porosity 2%–18% 

Reservoir temperature 200–240 oF 

Formation pressure 3000–8000 Psi 

Saturation pressure 2500–3500 Psi 

Ney pay thickness 8 –2600 ft. 

Formation depth 2000–14000 ft. 

Drive mechanism Poor sweep and low-pressure connectivity 

Initial water saturation 25%–50% 

Pressure gradient 0.42–0.7 psi/ft 

Rock type Mixed-silt, limestone, sand & shale 

Thermal maturity (Ro) 0.6%–1.8% 

Wettability Mixed to oil-wet 

Contact angle 80°–145° 

Oil‒water interfacial tension (IFT) 17–34 mN/m 

Natural fracture intensity 0–32 per ft 

Clay content 7%–30% 

Total organic content 0.1%–12% 

Bulk density 2.3–2.5 g/cm3 

Grain density 2.5–2.7 g/cm3 

Rock grain size Below 62.5 µm 

Average pore radius 0.01‒0.03 µm 

Oil viscosity Below 4.2 cP 

Oil API gravity 25 to 50o 

Gas oil ratio (GOR) 500–1800 scf/stb 

Oil polarity More towards paraffinic 

Fluid PH Acidic 

Total acid number 0.02–0.36 mg KOH/g 

Total base number 0.12–1.16 mg KOH/g 

Brine specific gravity Heavy 

Brine salinity High 

Brine total dissolved solids (TDS) 228500–285000 
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Table 2.5 Reservoir specifications and field development differences between conventional & unconventional 

 Conventional Reservoirs Unconventional Reservoirs 

R
es

er
v

o
ir

 S
p

ec
if

ic
a

ti
o

n
s 

Found in localized structural traps Found in aerially continuous thin formation deposits 

Relatively smaller original oil in place Relatively larger original oil in place 

Higher to moderate porosity Moderate to lower porosity 

Possesses inter-granular porosity Other/ Complex Porosity Types 

Permeability ranges > 0.1mD Permeability ranges << 0.1mD 

A strong relationship between porosity & 

permeability  

Generally, permeability increases with porosity but no 

strong relationship 

Follow traditional phase behavior Mostly works on complex PVT behavior 

API may vary from 7o to 50o API varies greatly within the range of 25o -50o 

Primary recovery ranges between 15% - 35% Primary recovery ranges between 2% - 8% 

F
ie

ld
 D

e
v

el
o

p
m

en
t 

P
la

n
n

in
g

 

Shows sustainable Production & Injection 

operations 
Rapidly declines production and shows poor injectivity 

Few wells are reliable enough for 

commerciality 

Several wells are required for commercial field 

development 

Field development assessments before 

development drilling 

Field development assessments during development 

drilling and the development plan keep on updating based 

on the regional flow performance 

Field development uncertainty/ risk factor 

ranges from Low to medium 

Always high uncertainty and the field development risk 

factor 

Both vertical and horizontal wells work with 

hydraulic fractures 

Horizontal wells are necessarily required with hydraulic 

fractures to maximize reservoir contact 

Follow the natural depletion process Artificial / manufacturing process 

Hard to find – Easy to produce Easy to find – Hard to produce 

Whereas Table 2.6 lists the summary of typical well properties drilled in different U.S. TORs to give an idea 

about the estimated cost for individual well drilling operations and the expected estimated ultimate oil recovery for 

the net profit approximation.  

Table 2.6 Typical wells information from major U.S. shale oil plays. (Heart Energy, 2020) 

 First 

Production 

Well Cost ($MM) EUR (Million 

bbl.) 

Well Spacing 

(ft.) 

Avg. Well Lateral (ft.) 

Bakken 2008 Approx. 8.5 -9 700 160 8500 – 10000 

Eagle Ford 2006 Approx. 6 - 9 600 40 – 80  6000 – 7000 

Wolfcamp 2011 Approx. 7 – 8 650 – 750  80 4500 – 6700 

Niobrara 2006 Approx. 3 – 5.5 250 – 450 160 4000 – 5100 

Utica 2011 Approx.6 – 8 3.6 – 5.4 160 500 – 900 

2.3.1. Field Development Stages and Planning Strategy  

It is a common practice to develop TORs in multiple stages and each stage could take several years to 

complete, therefore, the development of such reservoirs is comparatively expansive and becomes a mega-multibillion-
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dollar project. In the initial stage, the exploration has performed confirmation of the existence of the technically 

recoverable hydrocarbons. The geological investigation of the existing wells in the neighboring areas could be an easy 

start to have clear signs of hydrocarbons in the targeted area. On positive signs, detailed preliminary geological and 

geophysical surveys have performed the confirmation of the hydrocarbon's existence. During the same stage, the land 

acquisition and the drilling permits are obtained from the local and federal authorities (if needed), which could take a 

year. The second stage involves the seismic survey, its evaluation, and its characterization. The major objectives of 

this survey include the overall formation extent determination to define formation boundaries, a rough reserves 

estimation, and the most favorable exploratory well drilling spot determination. 

For exploration purposes, initially, a vertical well is drilled to obtain multiple well logs and core samples for 

the actual reservoir formation and in-situ fluid characterization. While developing unconventional reservoirs, 

comprehensive Rock-Eval pyrolysis is performed to determine basic properties including total organic carbon (TOC), 

thermal maturity (Tmax), hydrogen index (HI), etc. In addition, the geochemical properties such as rock traceability 

and the brittleness index are also measured in this step which is compulsorily needed for the optimum sweet spot 

determination while hydraulic fracturing the well. This entire exploration process approximately takes more than a 

year which is usually followed by drilling a few horizontal wells aided with multi-stage hydraulic fracturing networks 

for the early stage, usually single well based, hydrocarbon productivity estimation. Usually, micro-seismic surveys 

are also conducted to evaluate the hydraulic fracturing treatments and completion techniques optimization. In the 

development of tight hydrocarbon reservoirs, the application of massive and multi-staged hydraulic fractures is a 

common practice to provide optimum reservoir contact and flow channels for the in-situ fluid that does not flow easily 

from tight matrix pores.  

The next stage is comprised of hydrocarbon production potential analysis, analytically and numerically. After 

having enough confidence in the collected data and their analysis, a commercial field development plan is prepared. 

As a part of a commercial development plan, full-field drilling permits, pipelining, and facility construction permits 

are acquired from the concerned authorities. Finally, after having all the legal permits, the entire field is developed on 

a commercial scale that might include drilling smaller spaced a few hundred to more than a thousand horizontal wells. 

Not only primary production but also EOR application could be part of the full field development planning. 
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Due to ultra-tight permeably, usually, TORs are developed regionally through the individual well-based huff-

n-puff mechanism that is also known as a cyclic solvent injection (CSI). Apart from the well completion design, the 

hydraulic fracture design plays an important role to improve the EUR, however, a detailed sensitivity analysis on 

every individual well is necessarily required to determine the optimum well design and the hydraulic fracture design 

as well as the EOR operational design (Muther, et al., 2020a; 2020b; Syed, et al., 2022b). A detailed numerical 

simulation study is performed to evaluate the effects of multiple cluster count as presented in Figure 2.9, as well as 

the effects of fracture half-length, fracture spacing, and fracture effective permeability (Muther, et al., 2021b; 2022b; 

Syed, et al., 2021b; 2022b; 2020c). A few results of the numerical simulation-based study are presented in Figure 2.10 

which clearly illustrates that the increasing number of clusters per fracture helps to improve the oil recovery, but the 

stimulated reservoir volume (SRV) is the limiting factor that determines the optimum number of clusters required in 

each scenario. In addition, the effect of incremental fracture half-length, spacing, and the effective permeability or 

fracture conductivity positively improves the recovery factor significantly.  

 

Figure 2.9 3D Numerical model representation of (a) a single, (b) dual, and (c) triple clusters per fracture 

In addition to the hydraulic fracture design, the huff-n-puff operational scheme is also an important factor to 

consider with any injection solvent for the development of an unconventional oil reservoir. Considering CO2 as an 

example, the incremental number of huff-n-puff injection and soaking cycles play an effective role to improve the oil 

recovery significantly as presented in Figure 2.11. It can be noticed from the first figure that the ultimate oil recovery 

significantly improved with an incremental number of huff-n-puff cycles. However, the recovery/fluid-flow response 

deteriorates because of every individual cycle in a row due to reducing residual oil saturation near the wellbore and 

near the fractured zone (Syed, et al., 2022b). 



24 
 

 

Figure 2.10 Recovery response for (a) cluster count per fracture, (b) fracture half-length, (c) fracture spacing, and (d) effective 

fracture permeability as presented by Syed, et al. (2022b) 

 

Figure 2.11 Effect of multiple huff-n-puff cycles on (a) ultimate oil recovery, and (b) individual fluid-flow and recovery response 

after each huff-n-puff cycle as presented by Syed, et al. (2022b) 

2.3.2. Conventional Vs. Unconventional EOR  

In the bigger picture, the exploration and development of tight reservoirs require early integration of 

geoscience and engineering skills. In addition, the early development decisions for the TORs must be made without 

the benefit of local well production data because over large areas, the unconventional/tight hydrocarbon accumulations 

can contain extremely large in-place volumes (Balasubramanian, et al., 2018). Horizontal wells and infill drilling is 

one of the commonly applied short-term practices to increase rapid production, the maximum reservoir contact and 

the spacing between the wells vary based on the rock and the stimulated reservoir volume as well as the fluid quality 
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(Al-Farsi, et al., 2012). Lower the quality of oil and the rock permeability; closer will be the infill wells with extended 

lateral lengths (Syed, et al., 2021; 2022b). Before getting into more details about the EOR applications applicable in 

the TORs, let us look at the major differences between the conventional and the unconventional EOR schemes as 

briefly listed in Table 2.7. 

Table 2.7 Conventional vs. unconventional EOR mechanisms and development strategies 

Conventional EOR  Unconventional EOR 

Long-term increase in EUR Only short-term production restoration 

Considerable recovery enhancement Quick hydrocarbon production acceleration  

Sustained injection of external fluids Unable to sustain injection/limited external fluid injectivity 

The fluid flow mechanism observed through the 

matrix 
Complex fluid flow through natural fractures and nano-pores 

Fluid flow physics is relatively well understood 
Fluid flow physics & chemical processes are still not completely 

explainable 

IFT, wettability, and miscibility improvements are the 

key parameters to improving oil recovery 
The effects of these parameters are still not completely understood 

Targets in-place reservoir volume Only near-wellbore/ locally fractured areas (SRV) are the goal 

Development plans based on multiple productions & 

injection wells 

Usually, individual well (huff-n-puff) development plans work 

more efficiently 

It’s a mid to late life-cycle application Early life-cycle application 

Shows low to medium uncertainty and risk factor Mostly uncertain applications with a high-risk factor  

2.3.4. From Laboratory to Field Scale – Lessons Learned 

Because of the complicated nature of TORs, the EOR applications in conjunction with horizontal drilling are 

getting significant attention and motivation as discussed earlier. However, due to a poor understanding of geological 

constraints and the fluid flow performance in a TOR, the proper selection of an optimal EOR application, hydraulic 

fracture design, and the planned operational strategy is still a big challenge (Syed, et al., 2021; 2022b). There has been 

a lot of development research conducted over the years regarding the implementation of EOR in different U.S. TORs. 

A summarized evaluation of different EOR techniques based on laboratory analysis, numerical simulation, and field 

implementation is provided in Table 2.8. Whereas several experimental research projects are conducted on a laboratory 

scale is summarized in Table 2.9.  

Based on the collective learnings from the experimental core scale and the numerical field-scale simulation 

studies, several pilots were historically planned and conducted in the U.S. Some of them presented impressive 
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recoveries because of CO2 EOR, while a few of them ended up with no success but left lots of learning for better 

assessment and implementation in the future. A typical description of different US field development pilot projects 

for unconventional reservoirs is summarized in Table 2.10. 

2.4. Potential Unconventional EOR Techniques & Recovery Mechanisms  

As discussed in Table 2.6, the EOR applications in TORs are quite different in comparison to conventional 

reservoirs due to complex reservoir rock mineralogy and flow behavior. Due to the rapid production decline of 

unconventional tight hydrocarbon wells and low EUR, IOR/EOR techniques are essentially required to improve and 

sustain the production profile, economically. The only viable unconventional EOR technique so far is gas (CO2, 

enriched/associated hydrocarbon) injection. In recent years, numerous studies have been conducted on various types 

of EOR applications in TORs and a large volume of material has been presented in technical literature by academia 

and industry researchers (Alfarge, et al., 2017a; 2017b; Syed, et al., 2021; 2022b). 

Gas injection and most importantly the combination of the huff-n-puff process is the more frequently adopted 

technique to develop shale reservoirs in the U.S. since 2010, and most of the recent wells are drilled as MRC wells. 

The multi-stage fracturing is another factor that adds value to the process with either continuous gas injection in 

closed-spacing infill wells or huff-n-puff on widely spaced individual wells (Hoffman, 2018b; Thomas, et al., 2016; 

Todd and Evans, 2016). It was found from the literature that most of the recent research on U.S. TORs is conducted 

on Eagle Ford, Bakken, and Barnett formations to understand the applicability of different EOR techniques (Alfarge, 

et al., 2017a). From the IOR and EOR standpoint, several applications have been successfully tested in conventional 

fields but unfortunately, due to different reservoir rock architecture, mineralogy and the fluid flow performance in 

ultra-tight pores and the pore throats make it almost impossible to adopt any of the conventional applications at least 

without any modifications. There are hundreds of studies found to be very impressive in literature with improved 

recovery but at the same time, many other studies strongly contradict their findings (Alvarez, et al., 2014; Dawson, et 

al., 2015; Sanchez-Rivera, et al., 2015; Shuler, et al., 2011; Wang, et al., 2011; 2012;). 

The recovery mechanisms are not the same for the unconventional tight reservoirs as the conventional reservoirs 

due to different rock properties and heterogeneity distribution, fluid phase behavior as well as fluid flow mechanism, 

and mass transfer mechanism (Dawson, et al., 2015; Syed, et al., 2022a). The most expected mechanisms during gas 

(CO2 or HC) injection through the huff-n-puff processes include molecular diffusion in nano-pores, single-way mass 
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transfer, or gaseous phase evolution/expansion (Luo, et al., 2018). In addition, the cyclic pressurization and the 

resultant phenomenon of near wellbore/fracture oil swelling, viscosity reduction, and vaporizing gas drive are the 

expected mechanisms. With the above discussion, the EOR potential in major U.S. plays is listed in Figure 2.12 and 

consequently, a huge number of studies are conducted from laboratory scale to field pilot scale. The distribution in 

percentage is shown in Figure 2.13 for both, studies conducted on various scales and the major U.S. plays for which 

these studies are conducted. 

 

 

Figure 2.12 EOR potential in the U.S. reservoirs as of 2020 

 

 

Figure 2.13 Formations & the tools (lab to field scale) used 

for the EOR applications on tight oil reservoirs of the United 

States 

Table 2.8 Working phenomenon and lab/ simulation/ field tests of different EOR techniques in tight oil reservoirs 

EOR Base Phenomenon Observations & Learnings References 

M
is

ci
b

le
 &

 i
m

m
is

ci
b

le
 g

as
 i

n
je

ct
io

n
 

(C
O

2
, 

H
C

, 
le

an
 n

at
u

ra
l 

g
as

, 
an

d
 N

2
) 

• Molecular diffusion 

• Capillary pressure, 

wettability, fluid 

density, and viscosity 

reduction 

• High compressibility to 

push the oil toward the 

producer 

• Pressure maintenance  

• Oil swelling 

• Combination of all or 

some of the working 

mechanisms listed 

above 

• Tested in almost all the U.S. reported TORs including 

Eagle Ford and Upper, Middle, and Lower Bakken 

formations. 

• Most importantly, reservoir pressure maintenance and oil 

swelling were the dominant factors to provide a 

considerable recovery factor. 

• Huff-n-puff proved to be an important player with cyclic 

miscible (CO2, HC gas) as well as immiscible (N2) gas 

injection in field pilots. 

• CO2 is being tested more often in both the field and the 

lab tests. 

• Apart from field tests, there are several simulation and 

lab tests reported in the literature. 

• In lab and numerical studies, the gas molecular diffusion 

phenomenon is found to be more important to make a 

remarkable recovery in comparison. 

• Also, huff-n-puff gas injection is found to be considered 

successful in most of the simulation studies. 

Chen, et al., 2016 

Hawthorne, et al., 2019; 

Hoffman, 2012, 2018a; 

Kurtoglu and Salman, 

2015; 

Li, et al., 2015; 

Sheng, 2015; 

Sheng and Chen, 2014; 

Song and Yang, 2017; 

Syed, et al., 2020a, 2020b; 

Todd, et al., 2017; 

Tovar, et al., 2018; 
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• Oil-water interfacial 

tension reduction  

• Wettability alteration 

• A couple of field pilots were tested but no conclusive 

recovery performance review is presented in the 

literature. 

• In the lab, surfactants showed considerable results. 

• Also, anionic, and non-ionic surfactants are tested in the 

lab. 

• Most of the lab experiments are performed on the core 

samples taken from the Bakken formations. 

• Additionally, on a field scale, simulation studies are 

conducted that present promising results. 

Akbar, et al., 2021; 

Dawson, et al., 2015; 

Karadkar, et al., 2019; 

Nguyen, et al., 2014; 

Sanchez-Rivera, et al., 

2015; 

Shuler, et al., 2011; 

Wang, et al., 2012; 2011; 

Zhang, et al., 2018 
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• Clay swelling  

• Shale mineral cracking 

• Wettability alteration 

• Water imbibition 

• Osmotic Effect 

• No field trials are found in the literature 

• However, several experimental studies are conducted 

• Most of the studies in the lab are conducted on a core 

scale 

• Remarkable recovery performance is observed, 

noticeably due to shale cracking by clay swelling  

• But not conclusively understood to apply in the field. 

Most probably due to clay swelling that might play a 

negative role to make the permeability worse.  

• Also, poor sweep and conformance control is expected.  

Morsy and Sheng, 2014; 

Morsy, et al., 2013; 

Valluri, et al., 2016; 

Wang, et al., 2011, 2014; 

Zhang, J., et al., 2013b (?) 

 

C
ar

b
o

n
at

ed
 w

at
er

 f
lo

o
d

in
g
 

• Oil viscosity reduction 

• Oil swelling – increase 

in oil saturation and the 

relative permeability 

• Reduction in oil-water 

interfacial tension 

• Lab experiments are performed, and remarkable results 

are found to reduce residual oil saturation to as low as 

15% under reservoir operating conditions. 

• Also, water alternate gas with CO2 is tested in the lab and 

found good results 

• Requires limited modifications on surface water flooding 

facilities to implement in fields. 

• Comparatively more suitable in certain environments 

such as places with a limited supply of CO2 & difficult to 

build a recycling plant to capture or recycle CO2. 

Dong and Hoffman, 2013; 

Li, S., et al., 2019; 

Zou, et al., 2018 
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• Used for hydraulic 

fracturing and post-

fracturing EOR  

• Near wellbore & fracture. 

• Oil viscosity reduction 

• Oil swelling – increase 

in oil saturation and the 

relative permeability 

• Reduction in oil-water 

IFT 

• During lab experiments, fractures induced by pure CO2 

are much more complex with larger surface areas 

compared to fractures induced by water. 

• A significant reduction in viscosity as a function of shear 

rate is observed with silk water in comparison to water or 

foamed water under reservoir operating conditions. 

Ribeiro, et al., 2017; 

Wan, et al., 2015; 

Yin, et al., 2017;  

Zhang, et al., 2017 
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Table 2.9 Experimental research conducted on the U.S. shale reservoir rock and fluid samples. 

Core 

Samples 

Permeability, 

mD 

Porosity, 

% 
Injection Gas 

Recovery 

Mechanism 

Oil Recovery 

Factor, % 
Reference 

E
ag

le
 F

o
rd

 

<0.001 4.4 

N2 

Flooding 
17.94 

Sheng and Chen, 

2014 

0.004 13.1 19.88 

<0.001 4.4 
Huff-n-puff 

22.52 

<0.001 13.1 24.13 

0.0024 7.28 CO2 
Huff-n-puff 

7-hour soaking 
56.8 Li L., et al., 2019 

- - 

CO2 

Miscible 

Huff-n-puff 

5 cycles 
31 

 

Alvarez, et al., 

2017; 

Hawthorne, et al., 

2019 

 

CO2 

Above miscible 

Huff-n-puff 

3 cycles 
41 

CO2 

Way above miscible 

Huff-n-puff 

6 cycles 
49 

CO2 

Immiscible 

Huff-n-puff 

2 cycles 
0.9 

0.005 5 N2 

Cyclic gas injection 

14.23–39.66 Zhu, et al., 2021 

- 7.7 
CO2 

20–71 Todd and Evans, 

2016 

M
an

co
s 

- 5 10–63 

- - N2 

Cyclic gas injection 

1-day soaking 
13.5 

Jin, et al., 2019 
Cyclic gas injection 

2-day soaking 
16.96 

Cyclic gas injection 

3-day soaking 
19.59 

B
ak

k
en

 0.27 – 0.83 
18.6 – 

23.1 
CO2 

Near miscible 

Huff-n-puff 

40-hour soaking 

63 

 

Syed, et al., 2020a; 

Wang, et al., 2010 

 

Miscible 

Huff-n-puff 

60-hour soaking 

61 

Immiscible 

Huff-n-puff 

60-hour Soaking 

42.8 

0.29 – 0.44 
18.9 – 

23.6 
Water + CO2 CO2 WAG 80.1–88.1 

Dong and 

Hoffman, 2013; 

Yang, et al., 2015 

Upper 

Bakken 
- - CO2 

Oil extraction 

10–43 Sheng, 2015 

M
id

d
le

 

B
ak

k
en

 

0.081 – 1.03 4.4 – 5.4 

C1 >90 

Sheng & Chen, 2014 

C2 ~100 

C1-85% - C2-15% >90 

CO2 >90 

N2 26 

L
o

w
er

 

B
ak

k
en

 

0.081 – 1.03 4.4 – 5.4 

C1 ~18 

C2 ~27 

C1-85% - C2-15% ~32 

CO2 
<10 

- - 8–48 Sheng & Chen, 2014 

Barnett - - N2 
Cyclic gas injection 

1-day soaking 
6.5–17.79 Sheng & Chen, 2014 
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Table 2.10 Observations and learnings collected from the field pilots conducted on unconventional shale reservoirs of the U.S. 

Res. Year Injectant EOR Observations & Learnings References 
B

ak
k

en
 

2008 

CO2 

 
  

  
  
  

  
 H

u
ff

-n
-P

u
ff

 

Reported a successful injectivity test with no incremental oil 

recovery because of injection. The injectivity was successful due 

to 1-2 miles of horizontal well and a massive hydraulic fracturing 

network. 

 

Sheng and Chen, 

2014 

2009 

Found a successful injectivity test with a minor increase in oil rate 

and recovery. The minor increase is likely caused by frac-hits. 

2012 

Water 

Successful injectivity test with water but almost no incremental 

recovery. After multiple huff-n-puff cycles, observed an 

incremental oil response possibly due to the late reach of CO2 

deeper into the formation. 

Adel, et al., 

2018; 

Kurtoglu, et al., 

2013b; 

Song and Yang, 

2017; 

Sheng & Chen, 

2014 

2012 

F
lo

o
d

in
g
 

Limited success in waterflood conductivity test with no 

incremental oil recovery and early water breakthrough (within a 

month). The oil rates were reduced because of the large amount of 

water restricting oil flow. 

 

Sheng and Chen, 

2014 

2014 CO2 

G
as

 i
n

je
ct

io
n
 Reported unsuccessful experience because of CO2 breakthrough at 

an offset well on the same day with a huge CO2 content possibly 

due to a connected thief zone among the two wells. 

2014 Water 

 
 

F
lo

o
d

in
g
 

Successful water flooding injectivity test with no incremental oil 

recovery due to early water breakthrough and its rapid increase 

(within a week) in one of the offset wells. 

2014 
Produced 

HC gas 

After an unsuccessful experience with water flooding in 2012, 

produced HC gas with around 90% of C1 and C2 mixture injected 

for a couple of months that partially resulted in improved oil 

recovery from the offset wells. But, due to some major stimulation 

events and high GOR in offset neighboring wells made this 

experience quite complicated to call a success story. 
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E
ag

le
 F

o
rd

 

2012 

Produced 

lean HC 

gas 

H
u

ff
-n

-P
u

ff
 

However, the provided operational data including GOR trends 

seems unrealistic (GOR was found to be low during the HC gas 

injection) but still, the overall recovery performance was found 

good with a cyclic trend of improved oil rates after every injection 

and soaking cycle of 4 to 6 weeks. 

Hoffman, 2018b 

Thomas, et al., 

2016 

2015 
Produced 

HC gas 
G

as
 i

n
je

ct
io

n
 

Based on the decline curve analysis, both pilots showed a 

considerable incremental recovery with natural gas injection. 

Hoffman, 2018b 

2015 
Produced 

HC gas 

2015 
Produced 

HC gas 

H
u

ff
-n

-P
u

ff
 

Like previous experience, also this pilot showed promising results 

with an incremental oil recovery because of hydrocarbon gas 

injection. 

2015 Produced 

rich HC 

gas 

It is quite difficult to conclude results for these pilots due to the 

unavailability of enough performance data. 2015 

2016 
Produced 

HC gas 

It is a huge huff-n-puff, multiple wells-based field-scale pilots 

started in mid-2016 that showed impressive results with notable 

incremental oil recovery. 

2.5. UEOR Physics & Fluid Flow Mechanism at Nano-Pore Scale 

As discussed in earlier sections hydraulic fractures are compulsorily generated to develop unconventional 

reservoirs but proper dealing with the interaction between the matrix and the hydraulically induced fractures is very 

important. Hydraulic fractures are usually in macro size as compared to the natural fractures that are found in micro 

size; therefore, hydraulic fractures help to enhance the economical fluid flow through improved flow channels for the 

hydrocarbons from matrix nano-pores. As a part of post-fracture operations, the micro seismic data is gathered to 

understand the effectiveness of hydraulic fractures and the subsequent development of the fracture network (Barree, 

et al., 2015; Shuler, et al., 2011; Xie, et al., 2015). Due to tight permeability and poor injectivity as well as productivity, 

the huff-n-puff is the most preferred gas injection/EOR mechanism that is applied in TORs. The huff-n-puff operation 

is performed in three steps as explained on a micro/ pore-scale level in Figure 2.14. During huff-n-puff, CO2 is injected 

into the reservoir through the fractures while the concentration gradient pushes CO2 to invade the matrix in the first 

step. During the second step, the well is shut in which allows CO2 to interact with the formation of oil resulting in oil 

swelling and oil viscosity reduction. Finally, in step 3, the miscible or immiscible oil and CO2 migrate out of the pores 
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towards the fracture by diffusion, injected CO2 equalizes pressure inside the rock pores, and the excess CO2 plus the 

heavy hydrocarbons stay back into the rock pores. 

 

Figure 2.14 Stages of CO2 huff-n-puff in fractured oil reservoir on a micro/ pore level in comparison to continuous gas injection 

in conventional oil reservoirs (Syed, et al., 2022b) 

It is foremost important to study the dynamic fluid flow properties under nano-confinement. However, it is 

not easy, time-consuming, and expensive to capture physics through experimental studies at a nano-pore scale 

therefore dynamic molecular simulation has become a powerful tool to analyze the molecular structure and their 

dynamic behavior. There are two commonly used simulation methods in molecular modeling including Monte Carlo 

(Alder and Wainwright, 1959) and molecular dynamics (Alder and Wainwright, 1957; EIA 2021a). There are several 

studies recently conducted on different EOR/fluid-fluid and fluid-nano-pore interaction mechanisms. Most 

importantly, each EOR mechanism behaves differently to target different fluid-fluid and fluid-nanopore interaction 

properties. Table 2.11 presents a summary of a few UEOR physics-based dynamic molecular simulation studies for 

different injection solvents. 
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Table 2.11 UEOR physics-dynamic molecular simulation studies 

EOR 

Mechanism 

Fluid-Fluid & Fluid-Nano-Pore 

Interaction Mechanisms 
References 

C
O

2
 i

n
je

ct
io

n
 

Oil Swelling 

Li, C., et al., 2019a; 

Liu, et al. 2016; 

Muther, et al., 2021a 

Viscosity reduction 
Muther, et al., 2021a; 

Zhao, et al., 2015 

Oil/water interfacial tension (IFT) 

de Lara, et al., 2012; 

Makimura, et al., 2013; 

Zhang, et al., 2013a 

N
2
, 

C
H

4
 &

 C
2
H

6
 

in
je

ct
io

n
 Oil/water interfacial tension (IFT) 

Li, et al., 2020; 

Muther, et al., 2021a; 

Syed, et al., 2012; 2021a 

Syed, 2012 

Minimum miscibility pressure (MMP) 
Chun, et al., 2015; 

Peng, et al., 2018 

S
u

rf
ac

ta
n

t–
ch

em
ic

al
 E

O
R

 

Self-assembly structure 

Cai, et al., 2018; 

Jalili and Akhavan, 2009; 

Ruiz-Morales & Romero-Martínez, 2018; 

Tang, et al., 2014 

Surface adsorption 

Memon, et al., 2020; 2021; 

Muther, et al., 2021a; 2022a; 2022c; 

Qu, et al., 2016 

Temperature sensitivity 
Chen and Xu, 2013; 

Sammalkorpi, et al., 2007 

Salt resistance 

Li, C., et al., 2019b; 

Sammalkorpi, et al., 2007; 

Yan, et al., 2010 

Effect of surfactant or 

surfactant/nanoparticles on oil/water IFT 

Metropolis and Ulam, 1949; 

Vu and Papavassiliou, 2019 

CO2 or any other solvent injection process into the reservoir matrix through fractures, at first helps to maintain 

the reservoir pressure, and secondly, the miscibility between the oil and the gas is expected to be achieved after 

multiple contacts. Molecular diffusion mainly determines the rate and the maturity of the miscibility between oil and 

the injected gas. Figure 2.15 presents a three-step miscibility development from the lower to higher pressure in a visual 

PVT cell for an oil sample taken from one of the U.S. unconventional reservoirs. In the first step i.e., the swelling 

pressure range, the CO2 dissolves into the oil phase that causing the oil volume to increase (oil swelling). While it can 

be observed in the transition from the 2nd to 3rd step, with further increase in pressure, the oil volume decreased and 
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the gas color on the top changed that indicating that oil got extracted into the gas phase where the pressure point exists 

before the pressure reaches MMP. The discussed example leads to the conclusion that unidirectional diffusion can be 

considered for the low-pressure gas injection and production process but mostly, the reservoir pressure is well above 

the MMP, especially for the TORs. Therefore, careful binary interaction and multicomponent diffusion coefficient 

selection is the key to performing realistic physics-based numerical simulation, and the upscaling process from lab to 

field scale will be more meaningful with the correct diffusion parameters selection. 

 

Figure 2.15 Interactions (swelling and solubility) between CO2 and crude oil under different pressure conditions (Tsau, 2011).   

It is a well-understood fact that gravity drainage, physical diffusion, viscous flow, and capillary forces are 

the driving forces for fluid flow in porous media. However, one force is usually found more dominating over others 

depending on the reservoir rock and fluid properties as well as on the operating conditions. In unconventional 

reservoirs with ultra-low matrix permeability, gravity drainage is considered inefficient; molecular diffusion plays an 

important role in fluid flow. Molecular diffusion is defined as the molecular movement caused by Brownian motion 

or fluid composition gradient in a mixture of fluids (Yu, et al. 2014). As discussed previously, most of the TORs are 

developed through EOR application, either continuous injection or the huff-n-puff technique, which is mainly led by 

the molecular–diffusion mechanisms. The correct identification of molecular diffusion is necessarily important in the 

numerical simulation process that defines the miscibility process between the injected gas and the formation. In 

literature, a dimensionless number called Peclet number (Pe) is widely used to measure the relative importance of 

molecular diffusion flow to the convention flow. The Pe is expressed as shown below; 
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Pe =
Diffusion time

Convection time
=  

L2

D⁄

L
v⁄

=  Lv
D⁄  Eq. 2.1 

where; v is the bulk velocity, L is a characteristic length, and D is the molecular diffusion coefficient. Mathematically, 

Pe below unity defines the molecular diffusion-based fluid flow and the dispersion flow is considered when the Pe 

ranged between unity to 50 and above 50, convection is considered the dominant flow in the porous media 

(Mohebbinia and Wong, 2017). 

2.5.1. Molecular Diffusion 

Hawthorne et al. (2013) extensively investigated the CO2 diffusion-mechanism on a laboratory scale using 

core samples gathered from the Bakken formation and conceptually concluded that the injected solvent (CO2) flows 

into and through the fractures and it floods the rock driven by the pressure differential across the injection and the 

outlet points. It is also concluded that the oil migrates from nano-pores to bulk fractures via swelling and reduced 

viscosity on mixing with the injected solvent, and as the pressure gradient reduces, the oil production process gradually 

shifts from pressure gradient to concentration-gradient diffusion from pores into the fractures (Alfarge, et al., 2017c; 

Hawthorne, et al., 2013; Sigmund, 1976). 

Generally, a couple of empirical correlations driven by Sigmund (Holm and Josendal, 1980; Sigmund, 1976), 

and Wilke & Chang (1955) are used in commercial simulators, such as CMG GEM, for the diffusion coefficient 

estimation in the bulk phase. In Sigmund correlation, the binary interaction coefficient (Dij) between two components 

is given by; 

Dij =
ρk

0Dij
0

ρk

(0.99589 + 0.096016ρkr − 0.22035 ρkr
2 + 0.032874 ρkr

3 ) Eq. 2.2 

where ρk
0Dij

0  is the zero-pressure limit of the density-diffusion coefficient product in phase k; ρk and ρkr are the molar 

density and reduced molar density of the diffusion mixture, respectively. Also, ρk
0Dij

0  and ρkr are mathematically 

defined as; 

ρk
0Dij

0 =
0.0018583 T

1
2⁄

σij
2εijR

(
1

Mi

+
1

Mj

)

1
2⁄

 Eq. 2.3 

ρkr = ρk

∑ yikvci

5
3⁄nc

i=1

∑ yikvci

2
3⁄nc

i=1

 Eq. 2.4 
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where Mi is the molecular weight of component i; σij is the collision diameter; εij is the collision integral of the 

Lennard-Jones potential; yik is the mole fraction of component i in phase k; vci is the critical volume of component i. 

Whereas, the components σij and εij are calculated using the following expressions; 

σij =
σi + σj

2
 

Eq. 2.5 

σi = (2.3551 − 0.087ωi) (
Tci

Pci

)

1
3⁄

 Eq. 2.6 

εij =
1.06036

Tij
0.1561 +

0.193

exp(0.47635Tij)
+

1.03587

exp(1.52996Tij)
+

1.7674

exp(3.89411Tij)
 

Eq. 2.7 

where ω is the acentric factor; Tci and Pci are the critical temperature and pressure, respectively. Finally, the diffusion 

coefficient of component i in a multicomponent mixture of phase k is calculated by; 

Dik =
1−yik

∑ (
yjk

Dij
⁄ )i≠j

  
Eq. 2.8 

Similarly, Wilke-Chang proposed a diffusion coefficient based on a series of laboratory measurements for various 

hydrocarbon solvents and other systems in the literature (Christiansen and Haines, 1987). The mathematical 

expression is given below; 

Dik =
7.4 × 10−8(Mik

′ )
1

2⁄ T

μkvbi
0.6  Eq. 2.9 

Mik
′ =

∑ yjkMjj≠i

1 − yik

 Eq. 2.10 

where Mik
′  is the molecular weight of the solvent; μk is the viscosity of phase k; and vbi is the partial molar volume of 

component i at the boiling point. 

2.5.2. Minimum Miscibility Pressure 

Minimum miscibility pressure (MMP) is the lowest pressure at which the interfacial tension (IFT) between 

the two fluids (oil and injected solvent) vanishes completely after multiple contacts and both fluids become miscible. 

MMP is usually measured in the lab through multiple techniques including the sand-packed slim tube method (Rao, 

1997), the rising bubble method (Stalkup, 1987), and the vanishing IFT method (Zick, 1986). The presence of porous 

media is not a compulsory factor for the measurement of MMP and that is fine for the conventional reservoirs where 

the large pores phase behavior is not affected by confinement. However, measuring MMP with real confinement for 

the unconventional tight formation is a significant challenge and practically it is not yet well defined. Therefore, MMP 
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measurement with good accuracy can be determined numerically through fluid-flow and thermodynamic phase-

equilibrium principles.  

Numerically, there are multiple approaches to calculating MMP including 1D compositional gas-oil fluid-

flow slim tube simulation (Wang and Orr Jr, 1997), no-flow predetermined mixing technique using single or multiple 

connecting cells (Teklu, et al., 2014), and the method of characteristics (Muther, et al., 2022c). Teklu, et al., (2014) 

investigated MMP for Bakken oil samples with CO2 as the effects of capillary pressure, the change in critical-property 

on phase behavior, and the IFT in the thermodynamics in nano-pores. Table 2.12 presents the unconventional Bakken 

reservoir oil composition, gas composition, and other reservoir and fluid properties that were invested in the study. 

Figure 2.16 presents the MMP results of 100% CO2 gas injection in the Bakken oil sample for the pore radii of 4 and 

20 nm with the reference of no confinement case.  

Compared with the unconfined case, the MMP for the Bakken oil was reduced approximately by 130 psi for 

the 4 nm case in comparison to the unconfined case. As far as the 20 nm case is concerned, a similar MMP is noticed 

in the unconfined case (Muther, et al., 2022a). Another study suggests that Ethane is a strong EOR solvent (MMP –

1343 psi) as compared to CO2 (2523 psi) at 100 oC for the Bakken oil. Whereas methane and nitrogen are having 

considerably high MMPs of 4510 and 14706 psi, respectively (O'Bryan and Bourgoyne, 1990). 

Table 2.12 Bakken oil composition and EOS parameters – Tres = 241 oF (Teklu, et al., 2014) 

Components Oil Tc, oF Pc, psi 𝛚 

Binary Interaction Coefficients 

CO2 C1 C2 

CO2 – 87.60 1071 0.225 – – – 

C1 0.367 -124.66 655.02 0.010 0.100 – – 

C2 0.148 89.97 721.99 0.102 0.130 0.0050 – 

C3 0.093 205.97 615.76 0.152 0.135 0.0035 0.0031 

C4 0.057 299.208 546.46 0.189 0.130 0.0035 0.0031 

C5-6 0.064 415.479 461.29 0.268 0.125 0.0037 0.0031 

C7-12 0.158 593.25 363.34 0.429 0.120 0.0033 0.0026 

C13-21 0.073 872.10 249.61 0.720 0.120 0.0033 0.0026 

C22-80 0.037 1384.5 190.12 1.015 0.120 0.0033 0.0026 
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Figure 2.16 The f(Ki, pn) vs. pressure for Bakken oil & 100% CO2 inj. at different pore radii (modified from Teklu, et al., 2014) 

f(Ki, P
n) = min

[
 
 
 
 
√∑(1 − Ki)

2

Nc

i=1
]
 
 
 
 

 
Eq. 2.11 

where K is the equilibrium constant; P represents pressure, and Nc is the number of components in the above 

expression. 

2.5.3. Solubility 

Solubility is defined as the ability of a solvent to dissolve in oil that directly influences oil recovery. Higher 

solubility factor causes oil swelling and oil viscosity reduction, and both help the oil to migrate from nano-pores to 

wellbores via fractures. The pressure-composition experiments are evident that CO2 is the most likely soluble solvent 

in oil (Williams, et al., 2004). However, methane and CO2 both show high solubility, but CO2 achieves a certain 

number solubility level at a much lesser pressure than methane needs to achieve (Li and Luo, 2017). This effect can 

also be defined through the gas-oil ratio (GOR) for the oil saturated with CO2 as a function of pressure. Figure 2.17 

is a good example of measured GOR of live oil with different high-pressure solvents (Habibi, et al., 2017b). It is 

noticeable that natural gas and enriched natural gas showed reasonable solubility and adding CO2 into the system 

improved the solubility significantly at lower saturation pressure. 

2.5.4. Oil Swelling  

Oil swelling due to dissolved high-pressure injection solvents is another important factor to highlight that 

generates a localized pressure gradient, which causes oil to migrate from pores to fractures. Therefore, solvents that 

cause more swelling of the reservoir oil are good candidates for the EOR. An excellent visual example of crude oil 
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swelling due to the dissolution of high-pressure CO2 and Nitrogen injection is presented in Figure 2.18 (Habibi, et al., 

2017a, Pereira, et al., 2016). The oil volume increased significantly with CO2 in comparison to nitrogen at the same 

elevated pressure observed after the same period.  

 

Figure 2.17 Measured gas/oil ratios of live oil with different high-pressure gases (modified from Habibi, et al., 2017b) 

 

Figure 2.28 Oil interface with CO2 and N2 injection at elevated pressure. (a) Only crude oil, (b) oil with injection 

solvents at elevated pressure, (c) oil with injection solvents at elevated pressure after 5 hr (Habibi, et al., 2017a) 

2.5.5. Oil Viscosity  

Another important interaction parameter is the reduced oil viscosity as the result of high-pressure solvent 

dissolution into the crude oil. The reduced oil viscosity aids the oil in its displacement from the pores to fractures. 

This effect of viscosity reduction is more prevalent with CO2 as compared to any other solvents. Figure 2.19 is an 
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excellent example of the effect of dissolved CO2 and other solvents on the viscosity of a live oil sample taken from 

the Bakken formation (Zhao, et al., 2015). It is clear from the figure that, as the saturation pressure increases, the 

viscosity of the crude oil and CO2 mixture rapidly declines in comparison to other solvents. 

 

Figure 2.19 Measured viscosities of live oil with different elevated pressure solvents (modified from Habibi, et al., 

2017b). 

2.5.6. Interfacial Tension (IFT) 

Interfacial tension (IFT) reduction due to the dissolution of elevated pressure solvents into crude oil is a 

critical parameter that helps to improve oil recovery. The IFT reduction with increasing pressure is the most dramatic 

in the gas phase. Focusing on CO2 injection, as the pressure increases, CO2 invades into a less compressible liquid 

phase causing a decrease in IFT with an increase in pressure. However, the IFT plays a major role in conventional 

reservoirs but not in the TORs where the CO2 is pushed into the pores primarily by diffusion processes (EIA 2022).  

2.5.7. Adsorption & Desorption – Solvent Trapping Mechanism 

The adsorption and desorption of the injected solvents on the nanopores surfaces are important especially 

while dealing with the tight formation for the solvent injection process efficiency. The overall system's efficiency 

mainly depends on the total organic content (TOC). The adsorption of CO2 can significantly reduce the gas saturation 

in the rock pores. It is considered the second-order mechanism or the by-product of CO2 miscibility into the formation 

liquid and the effect of adsorption would be more substantial in the formations with higher TOC. Table 2.13 shows a 

comparative study conducted on major U.S. tight formations for the maximum absolute adsorption capacity.  
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Table 2.13 Maximum absolute adsorption capacities for different U.S. tight reservoirs (Heller, R. and Zoback, M., 2014) 

Major U.S  

Tight Formations 

Total Organic Content 

(%) 

Maximum Absolute Adsorption Capacity at 

2000 Psi and 104 oF (Scf/ton) 

Barnett and Montney 5.3 151  

Marcellus  1.2 64 

Eagle Ford 1.8 33 

 

The phenomenon of CO2 adsorption into the nano-pores and on the pore surfaces aids CO2 molecular 

diffusivity into the tight reservoirs and the effect is more prominent with the higher TOC and the combination of these 

phenomena theoretically justifies the essential CO2 trapping mechanism. The trapped CO2 can be a large fraction of 

the total injected solvent volume into liquid-rich shale plays that mainly depends on the TOC content and the CO2 

diffusion coefficient. In this study, the Langmuir multicomponent isotherm model is utilized that was initially 

established for the coal formations (Arri, L.E., et al., 1992, Hall, F.E., et al., 1994), the mathematical expression is 

given below: 

𝛾𝑖 = 𝛾𝑚𝑎𝑥,𝑖

𝑦𝑖𝛿𝑖𝑝

1 + 𝑝 ∑ 𝑦𝑘𝛿𝑘
𝑁𝑐
𝑘=1

 
Eq. 2.12 

where 𝛾𝑖and 𝛾𝑚𝑎𝑥 are the moles of adsorbed component and the Langmuir maximum morels of adsorbed component 

i per unit mass of rock (gmol/lb.), respectively. 𝛿𝑖 represents the Langmuir constant (Psi-1), 𝑝 and 𝑦𝑖  denotes the gas 

phase pressure and the mole fraction of the adsorbed component i in the gas phase, respectively. Whereas Nc 

characterizes the total number of components that contribute to adsorption. 

It is important to note that the adsorption and desorption interlink with the pressure paths. Therefore, in the 

huff-n-puff process, in which a single well contributes to injection and production, both phenomena actively 

participate i.e., adsorption of solvent occurs during injection and desorption during production. It is also worth noticing 

that the adsorption and desorption paths for CO2 are not similar and they showed a hysteresis effect under moderate 

pressure conditions (Culp, J.T., et al., 2008). Figure 2.20 is showing a schematic of injected solvent desorption as the 

function of the initial pressure point that appears to be pressure path dependent. During gas injection, the formation 

pressure increases that causing adsorption followed by pressure depletion due to production from different pressure 

points showing dissimilar desorption paths. This phenomenon is similar to the capillary pressure and relative 

permeability hysteresis effect that works based on the wetting phase saturation as the common scale for multiple 

phases, whereas the adsorption and the desorption are the single-phase phenomenon.  
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Figure 2.20 Schematic of Injected solvent (CO2) adsorption and desorption paths during the huff-n-puff process at different 

pressures. The phenomenon is explained by Jesson et al. (2008) for a fixed temperature and TOC. 

2.6. Smart Physics Inspired Compositional Dimensionless Type Curves – SPiC TCD 

Generally, reservoir rock & fluid characterization and hydrocarbon production forecasting is performed based on 

historical production performance and there are not many techniques being used classically. For example, pressure 

transient analysis is a ‘high frequency/ high resolution’ data analysis technique that depends on historical production 

performance data and for which, he data quality is the key. The most adopted technique for production forecasting 

was introduced almost a century back based on the empirical analysis of the historical production performance, the 

technique is called ‘Decline Curve’ analysis (DCA). It is important to note that the objective of introducing DCA was 

economic analysis, not technical (Cutler, W.W., 1924). Later with time, multiple techniques were introduced that were 

presented in different representations such as Cartesian, log-log, and semi-log scale plots. In 1944, Arps introduced 

exponential and hyperbolic families of decline curves (Arps, J.J., 1944) that were transformed into log-log type curves 

by Fetkovich (Fetkovich, M.J., 1973), however, this technique provides an empirical solution but seems to work as a 

general tool, is that more of a coincidence or theory…found no answer in the literature.  

Moving further down the road, a promising analytical solution was introduced by van Everdingen and Hust in 

1949, which was re-plotted by Fetkovich (Fetkovich, M.J., 1973). Fetkovich further extended the work and introduced 

composite decline-type curves that were generated on multiple assumptions including; a single well based on constant 

bottom hole flowing pressure and the radial flow in a finite radial reservoir system. The analysis based on this 

technique is theoretically simple and practical to be performed using dimensionless type curves that can use the field 
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data, but it has a drawback i.e., limited by the solution model as well as the data quality (Whitson, C.H. and Sognesand, 

S., 1990).  

In this dissertation, initially, the numerical physics-based huge dataset is developed using multiple 

realizations with the combinations of different reservoir rock and fluid properties, including multiple 

reservoir fluid compositions representing different fluid types, as well as the hydraulic fracture design 

parameters. Secondly, the dimensionless type curves are generated for the entire dataset to be matched with 

the reservoir flow performance data in log-log format. The well flow performance library and the 

dimensionless numerical type curves are then used to train and develop an AI-assisted neural network model 

for the generation of numerous proxy models and smart dimensionless semi-empirical compositional type 

curves.  

For hydraulically fractured horizontal wells, the dimensionless types are usually plotted on a log-

log plot, having a dimensionless flow rate ‘qD’ on the y-axis against the dimensionless time ‘tDxf’ on the x-

axis. The equations of both parameters are reported in the literature by multiple authors (Gringarten, A.C., 

et al., 1974; 1975; Chukwu, I.F., 1989; Cox, D.O., et al., 1996; Chen, C.C. and Raghvan, R., 1997) as given 

below;  

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =  𝑞𝐷 =
141.2 𝑞 𝐵 𝜇

𝑘 ℎ (𝑃𝑖 − 𝑃𝑤𝑓)
 

Eq. 2.13 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 =  𝑡𝐷𝑥𝑓 =
0.0063 𝑘 𝑡

∅ 𝜇 𝑐𝑡𝑥𝑓
2  

Eq. 2.14 

where; q is the liquid flow rate, and B and µ are the liquid formation volume factor and viscosity, 

respectively. k, Ø, and h are the permeability and the matrix porosity, and the formation thickness, 

respectively. Similarly, Pi and Pwf are the initial reservoir pressure and the bottom hole flowing pressures, 

respectively. ct is the total compressibility, Xf represents the hydraulic fracture half-length, and t is time.  
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2.7. Artificial Neural Network – Proxy Reservoir Performance Modeling  

The concept of the neural network was introduced long back in the mid-20th century (McCulloch, W.S. and Pitts, 

W., 1943) and was studied by several scientists and researchers based on their needs on the applicability in different 

industries. The artificial neural network (ANN) is introduced as an information-processing technique that has worked 

with a particular set of performance characteristics like the biological neural networks found in human brains 

(Mohaghegh, S., 2000). In other words, as in a biological system, all organisms are composed of cells and neurons 

that form a complex nervous system that mainly comprises a cell body, an axon, and dendrites as shown in Figure 

2.21. Multiple types of ANNs have been implemented by several users based on the nature of the data. Deep Neural 

Networks (DNN), Convolutional Neural Networks (CNN), Graphical Neural Networks (GNN), and Physics Inspired 

Neural Networks (PINN) are a few commonly applied and reported ANNs in the literature (Zou, J., et al., 2008).  

The working phenomenon of ANN is inspired by the biological neuron system, as shown in Figure 2.21, that 

works directionally by passing a piece of information into a cell body that enters through the input terminals called 

dendrites that generate an output response which travels through myelin sheat towards the axon terminal that works 

as an output terminal as well as an input receiving end for another neuron. In the case of the connected neuron, the 

generated response from the first neuron acts as input information for the second neuron and this process similarly 

goes on. Typically, a human brain contains around 10 to 500 billion neurons (McClelland, J.L. and Rumelhart, D.E., 

1989) that are characteristically divided into different sections and each section consists of about a further 500 neurons 

(Stubbs, D.F., 1988). Biologists estimated that each neuron network consists of more than 100,000 neurons that 

connect (Mohaghegh, S., 2000). The actual neuron system is very complex that cannot be mimicked 100% therefore, 

for the mathematical calculations; ANNs are developed based on a few assumptions including; the information that 

passes through elements called neurons, and each connection that links up the neurons have its weightage. 

In this work, DNNs are utilized to generate reservoir performance and proxy models. DNN consists of several 

hidden layers and each layer consists of several neurons. These networks are capable of processing complex data and 

algorithms. A typical DNN works on the phenomenon explained in the schematics shown in Figure 2.22.  

The provided input information multiplies by the connection links weightage and the resultant product, enters 

a neuron where all the inputs are summed up and the defined activation function of the neuron is applied that leads to 

an output. Thus, a neuron typically has multiple inputs and only a single output. The typical DNN consists of a single 
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input layer and one or multiple hidden layers that result in a single output layer. The input and output layers determine 

the input and the outputs of the given problem while the hidden layers are responsible for the extraction features from 

the provided dataset. The training of any type of ANNs requires huge datasets, however, a huge amount of data requires 

exceptional computing power. Data preprocessing is an essential step that mainly controls the quality of the dataset as 

well as the training quality of the ANN model. It is a fact that any neural network is only as good as the quality of the 

input data that is used to train the model (Parmar, 2018).  

  
Figure 2.21 Typical biological neuron system - Two 

Bipolar Neurons (Conte, E., et al., 2006) 

 

Figure 2.22 Schematic of Artificial Neuron Network (ANN) 

working phenomenon (Syed, et al., 2022a) 

2.7.1. Working Phenomenon of Deep Neural Network (DNN) Application 

Like any other engineering application, usually, the supervised DNNs are applied for reservoir engineering 

as well as the EOR problems. The basic steps include representative input data collection and their characterization to 

be used for the training, testing, and verification process. Data normalization is an important step to perform for the 

balanced weightage distribution that is being done while providing the input data. Lastly, the optimized number of 

hidden layers and the training function is defined. Once the model is set, data testing and training are performed, 

followed by data de-normalization for the confidence-building before using the prediction model for any future 

operation (Abdullah, M., et al., 2019, Khamidy, N.I., et al., 2019, Moosavi, S.R., et al., 2019, Sun, Q. and Ertekin, T., 

2020).   

The input data for each DNN model is considered different depending on the application. The selected data 

could be a collection of experimental testing, numerical simulation, or actual field operational data, etc. Practically, 

most of the reservoir engineering operations are supervised, therefore; both input and outputs are required to be 

provided while defining the sample data in the first step. Typically, the provided data set is divided into three sections 

including training, testing, and verification. The training data I used to develop the DNN model while the provided 

output data set helps to determine the weights of each input. The weight calibration is performed through the 
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feedforward backpropagation algorithm that is being done through error backpropagation in the network. While the 

testing dataset is used to measure the network generalization and it is a continuous process that keeps running until 

the generalization stops improving. Finally, the remaining dataset i.e., the verification dataset is utilized for the 

evaluation of the overall network performance. Keeping in mind that the verification dataset is not used in any step of 

network building or testing (Demuth, H., et al., 2007).  

One of the most important factors to highlight in this section is the data normalization that is necessarily done 

on the dataset especially when the magnitude of input or the output data are too different, therefore, scaling of the data 

is required to be performed (Saeedi, A., et l., 2007, Zabihi, R., et al., 2011). One of the most common methods of data 

normalization is to scale all the data between 1 and -1 using Equation 1 (Demuth, H., et al., 2007).  

𝑋𝑖
′ = 2(

𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

) − 1 
Eq. 2.15 

where Xi is the original value of the given parameter, Xi’ is the normalized value of Xi while Xmin and Xmax are the 

minimum and the maximum values of Xi, respectively.  

Another important step is the calculation of the optimum number of hidden layers and the cumulative neurons 

in each hidden layer. The first part is achieved through an iteration process while the second part is usually done either 

through total average absolute deviation or through the mean square of the error process. That means, starting with a 

single neuron and keeping that number increasing until reached the lowest stabilized error. Finally, the training 

function is chosen to minimize the error. A few examples of commonly used training functions include variable 

learning rate backpropagation, resilient backpropagation, scaled conjugate gradient, etc. (Demuth, H., et al., 2007). In 

general, Equation 2 (Huang, Y.F., et al., 2003) explains the entire DNN working process i.e., the calculation of an 

output based on a neural ‘j’ defined in layer ‘k’. 

𝑢𝑗𝑘 = 𝐹𝑘 ( ∑  𝑤𝑖𝑗𝑘  𝑢𝑖(𝑘−1) + 𝑏𝑗𝑘

𝑁𝑘−1

𝑖=1

) Eq. 2.16 

where ‘wijk’ and ‘bjk’ are the defined connection weight and anti-weight of the network that works as the fitting 

parameters of the respective model.  

The generalized objective is to obtain a relationship from the given multidirectional input parameters to an 

output. The goal is to obtain the difference between the predicted and the actual sample values in the output vector 

with the least possible error. Here comes the role of fitting parameters that keep on modifying automatically over each 

iteration until an error criterion between the input and the output is satisfied based on the geometric characteristics of 
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a DNN and its defined learning strategy. Whereas the linked weights are defined as the learning process based on the 

DNN input/output training and the testing process.  

2.7.2. Application of DNN in Reservoir Engineering 

In recent years, the DNNs have been used to solve several complicated problems in the oil industry, not only in 

the reservoir but also in exploration, and drilling engineering domains. Several success stories of DNN applications 

have been published in the literature. In reservoir engineering, lots of work has been done in recent years, especially 

for reservoir characterization (Zabihi, R., et al., 2011), reservoir fluid and rock properties (Yang, H.S. and Kim, N.S., 

1996, Alcocer, Y. and Rodrigues, P., 2001), reservoir monitoring (Denney, D., 2001), well testing (Denney, D., 2003), 

formation damage determination (Saeedi, A., et l., 2007), and hydrocarbon resources estimation (Armstrong, R.T., et 

al., 2015).  Also, a few studies are conducted on EOR applications including SCAL, relative permeability 

interpolation, low salinity chemical flooding (Dang, C., et al., 2018), steam-assisted gravity drainage (Najeh, A., et 

al., 2010), and CO2 injection for naturally fractured reservoirs (Hamam, H. and Ertekin, T., 2018, Syed, F.I., et al., 

2021d, Sprunger, C., et al., 2021).  

2.8. Discussion 

Tight reservoirs are well-known hydrocarbon-bearing formations that have recently been under focus for 

unconventional oil and gas exploration in several countries. Specifically, tight oil is a liquid hydrocarbon resource 

found in ultra-low porosity and permeability rocks such as shale, siltstone, sandstone, and carbonate, which are mostly 

considered the source rock. TORs are usually found in the depressions and slopes of basins, close to extensive, mature, 

and organic-rich source rocks. These are considerably large-scale reservoirs with nanoscale pore networks and the 

local sweet spots with easier oil production regions. The sweet spots in tight reservoirs are mainly recognized with the 

key features including the source type, lithology, reservoir quality, rock brittleness i.e., related to Young's modulus 

and Poisson's ratio, oil-bearing property, and the stress anisotropy. The United States is having the world’s second-

largest technically recoverable shale oil resources. Among seven different regions of the U.S., the Southwest region 

is having most of the tight oil resources. The main reservoirs in this region include the Permian and Fort Worth Basins. 

Eagle Ford, Bakken, Wolf-Camp, and Niobrara are also major and well-known shale oil plays that are situated in 

South Texas, Montana and North Dakota, Midland Basin, and Denver, Colorado.  
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The tricky part while developing TORs is sustainable hydrocarbon production that barely lasts from a few months 

to a couple of years without any external support because of their complex geology. Oil wells in almost all major tight 

oil plays including Eagle Ford, Bakken, Niobrara, etc. face the same problem of rapid production decline within the 

first year of their production life. On average, the daily production rate declines to half within a year, therefore EOR 

application along with the massive stimulation (hydraulic fracturing) on individual well bores is nowadays considered 

a compulsory factor for its development. In addition, because of limited inter-pore connectivity, TORs are mostly 

developed through an independent huff-n-puff process. In most of the numerical simulation and laboratory cases, it is 

observed in the literature that even though the ultimate oil recovery does not improve but the recovery significantly 

accelerates. It is important to note that even a single percent increase in EUR could result in extra million barrels of 

oil; therefore, even a single percent increase is significant while developing TORs.   

For the huff-n-puff process, there are various factors to keep under consideration including the well and the 

hydraulic fracture design, selection of the injection solvent type, slug size, the soaking time, etc. Hydraulic fracture 

design parameters mainly include fracture half-length, height, and the number of stages as well as the number of 

clusters per stage. The fracture stress shadow is another important factor to keep in mind, especially while designing 

a hydraulic fracture numerically because it is unlikely to have all fractures operational in the actual field. Hydraulic 

fracture design optimization depends on the rock quality, its brittleness and rock stresses, etc. Usually, in TORs, the 

individual wells are designed with multiple stages and clusters depending on the targeted area of interest, the lateral 

length of the drilled horizontal well, and the neighboring wells. As far as the injection solvent type is concerned, CO2 

and the produced hydrocarbon gas are the most common choices because of the poor injectivity response from most 

of the tight reservoirs. Due to the ultra-low permeability of the formation rock, only highly volatile fluids i.e., gases 

can easily be injected, CO2 is a greenhouse, and the critical gas with lower minimum miscibility pressure is an ideal 

candidate that mainly depends on its economical availability. Figure 2.23 presents the maximum availability of CO2 

and the multiple sources currently available in different regions of the United States. While the cost of CO2 from 

natural sources is tied to the crude oil price while for the industrial sources of CO2, the overall expenses cover the 

capturing, compressing, and transportation costs. Table 2.14 summarizes the average overall cost of CO2 per million 

cubic feet taken from different industrial sources.  
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Table 2.14 Overall average cost of CO2 capture, compression, and transportation from various industrial sources (EIA 2017) 

CO2 Industrial Source Average Overall $/Million Cubic Feet of CO2 

Hydrogen plants 7.8 – 22.2 

Ammonia Plants 2.9 – 3.0 

Ethanol Plants 2.3 – 5.4 

Cement Plants 6.5 – 15.7 

Natural Gas Processing 2.1 – 4.0 

 

Figure 2.23 Maximum availability and the sources of CO2 from different regions of the United State as of March 2022 

There are several laboratory and field-scale EOR applications reported in the literature that were conducted 

with different injection solvents including miscible and immiscible gases, chemicals, low-salinity water, carbonated 

and silk water, etc. Gas injection mainly helps to improve oil recovery through molecular diffusion, capillary pressure, 

wettability, in-situ fluid density, and viscosity reduction while chemical flooding targets the interfacial tension 

reduction and the wettability alteration. The low salinity water flooding improves oil recovery through clay swelling, 

shale mineral cracking, and wettability alteration. Similarly, the carbonated and silk water flooding aids oil recovery 

through in-situ oil swelling and the reduction in reservoir oil viscosity and interfacial tension.  

Most of the laboratory-scale research was conducted on core samples collected from the U.S. reservoirs including 

Eagle Ford, Mancos, Bakken, and Barnett through CO2 injection under miscible and immiscible conditions. While the 

actual field EOR pilots were conducted with CO2 and produced hydrocarbon gas in Bakken and Eagle Ford formations. 

The initial EOR pilots conducted in the Bakken formation with CO2 huff-n-puff showed limited oil recovery 

improvement while the later pilot in the same formation with water flooding followed by produced hydrocarbon gas 

injection wasn’t found successful due to poor injectivity and early gas breakthrough in the neighboring well. Whereas 
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the pilots conducted in Eagle Ford with produced hydrocarbon gas injection showed limited recovery improvement 

with both gas flooding and cyclic gas injection. 

2.9. Summary  

In closing, the lessons learned from all the experiences discussed from lab to field-scale unconventional EOR 

studies are summarized below; 

• Apart from hydraulically induced artificial hydraulic fracture networks, the EOR application is a must thing 

to develop an unconventional reservoir for fast-paced economical oil recovery.  

• Depending on the original oil in place, a single percent increment in oil recovery through a single or multiple 

EOR applications on a tight oil reservoir could add up to several extra billion barrels of oil.  

• CO2 and produced hydrocarbon injection are proven successful EOR applications for decades in TORs 

however, its success in unconventional reservoirs is so far inconclusive due to limited information availability 

of the actual field pilots.  

• However, from the available field pilots, laboratory experiments, and numerical studies, CO2 and produced 

HC gas with huff-n-puff operation managed to provide an extra couple of percent of incremental oil recovery. 

• Along with EOR applications in TORs, hydraulic fracturing and re-fracking operation in multiple stages 

could further improve oil recovery. 

• Based on individual well operation, the huff-n-puff cycling EOR technique has also provided limited yet 

promising results in the field to improve oil recovery. 

• There is a high risk in UEOR due to a lack of long-term production. In addition, the UEOR mostly does not 

increase the overall recovery but accelerates the production significantly. 

Exploring all the possible options to develop a tight reservoir requires huge computational run time and manpower 

that leads to an uneconomical situation for any operating company. This work would help operators to save a lot of 

their time and finances. I understand that this work would have some marginal error in results accuracy depending on 

the actual reservoir heterogeneity, fluid types, and the hydraulic fracture design, but still, this workflow and the tool 

introduced in this dissertation would narrow down the screening process for the reservoir development to save millions 

of dollars and the project timeline. 



 
 

 

 

 

3 
RESERVOIR NUMERICAL MODEL 

DEVELOPMENT  

In this chapter, a numerical mechanistic compositional reservoir simulation model is developed using the 

typical tight oil reservoir rock and fluid characteristics for the physics-based database development. The 

model is purposely made simple enough to save computational run time and is computationally detailed 

enough to capture all possible technical aspects. A thorough physical understanding of multiple factors is 

developed through sensitivity analysis for different reservoir rock and fluid properties, hydraulic fracture 

design parameters, and multiple EOR operational designs. 
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3.1. Introduction  

In this chapter, multiple aspects are discussed including typical tight oil reservoir rock, fluid and geophysical 

data collection, a mechanistic compositional reservoir simulation model generation, and its tuning and validation 

through its fluid flow response comparison with a few publicly available tight oil wells performance data. The 

reference tight oil wells data are taken from the Society of Petroleum Engineers (SPE) data repository that is referred 

to as SPE wells in the dissertation. For the physical understanding, multiple scenarios are studied, and their responses 

are discussed in detail for different reservoir initial pressure, rock properties, and hydraulic fracture design parameters 

for multiple reservoir fluid compositions. Finally, a systematic procedure of generating a huge database using a 

physics-guided design of experiments (PG-DOE) is presented that is mainly used to train an AI-based data-driven 

model to generate proxy models. Following Figure 3.1 presents an integrated workflow for the based model 

development, its quality check, and the database development using the physic-guided design of the experiment. 

 

Figure 3.1 An integrated workflow of a base numerical reservoir simulation model and the database development 

3.2. Reservoir Simulation Model Development 

The significance of the entire study depends on the database used to train a data-driven model that is used as an 

engine to generate thousands of proxy models representing multiple scenarios based on the combination of different 
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reservoir rock and fluid properties as well as the hydraulic fracture design parameters. Therefore, no compromise was 

made on the accuracy of the base simulation model. Due to no availability of history matched or a verified model 

authenticated by an oil operator to use as a reference model for this work, therefore, typical unconventional tight oil 

reservoir rock and fluid properties are gathered and a 3D mechanistic reservoir simulation model was built from 

scratch using a commercial reservoir simulator, CMG–GEM. Following are the flow governing equations used to 

model the total mass balance in oil and gas phases; 

𝜕

𝜕𝑡
(∅ ∑ 𝜌𝑥𝑆𝑥𝑤𝑖𝑥

𝑁𝑝

𝑥=1

) + ∇⃗⃗ . (∑ 𝜌𝑥𝑤𝑖𝑥𝑢𝑥 −

𝑛𝑝

𝑥=1

∅𝜌𝑥𝑆𝑥 𝐾𝑖𝑥∇𝑤𝑖𝑥)−𝑟𝑖 = 0            ∀∶    𝑖 = 1, … , 𝑁𝑐  𝐸𝑞. 3.1 

where; ∅ is the formation porosity, 𝜌𝑥 & 𝑆𝑥 represent density and saturation of phase 𝑥 , respectively. Whereas 𝑟𝑖 are 

the injection or the production mass rate and the negative sign shows the sink as a fluid flow source. Also, 𝑁𝑐 and 𝑁𝑝 

in the above flow, the equation represents the number of components and the phases, respectively. 𝑤𝑖𝑥 and 𝐾𝑖𝑥 

represents the mass fraction and the dispersivity coefficient of the 𝑖𝑡ℎ the component in 𝑥 phase per unit volume, 

respectively. Lastly, 𝑢𝑥 represents Darcy’s flow velocity, which is expressed as; 

𝑢𝑥 = −
�̿�

𝜇𝑥

(∇̅𝑝𝑥 − 𝜌𝑥�̅�) 𝐸𝑞. 3.2 

where; �̿� represents the formation of rock permeability in a tensor format, 𝜇𝑥 is the fluid viscosity for the 𝑥 phase. The 

dispersivity coefficient 𝐾𝑖𝑥is mathematically expressed as; 

𝐾𝑖𝑥 =
�̿�𝑖𝑥

𝜏
+

𝛼𝑥̅̅ ̅ |𝑢𝑥̅̅ ̅|

∅𝑆𝑥

𝐸𝑞. 3.3 

where; 𝛼𝑥̅̅ ̅ are the dispersivity coefficient of phase 𝑥 in the longitudinal direction and two transverse directions, 𝜏 is 

the tortuosity, �̿�𝑖𝑥 is the diffusion coefficient of the 𝑖𝑡ℎ the component in phase 𝑥. The Sigmund correlation is used to 

measure the diffusion coefficients of CO2 in the oil and gas phases in this study.  

Conventional fractured reservoirs can typically be modeled using dual porosity/dual permeability standards, 

however, tight reservoirs have extremely low permeability and slow pressure transients, making it impossible to 

adequately simulate fluid flow using these methods. To address this issue, hydraulic fractures are specially treated in 

tight reservoir numerical models by explicitly modeling the flow behavior. Using CMG-Builder, hydraulic fractures 

are designed in the model using the planer fracture template that defines hydraulic fractures with logarithmically 

spaced, locally refined, dual-permeability distribution. A fine-gridded layer(s) of the matrix is essentially defined to 
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correctly capture the fluid flow and the pressure transient effect around the fractures to avoid sudden shock to the 

reservoir fluid while flowing from ultra-tight matrix to high permeability fractures, directly. The logarithmic 

refinement solves the issue of having more refinement closer to the centerline of the fracture where it is needed and 

less refinement far away from the fracture.  

3.2.1. Data Collection – Typical Tight Oil Reservoir Properties 

To initiate this study, it was the most critical step to gather as much data as possible with accuracy in the data 

quality. Most of the data, listed in Table 3.1, are collected from published literature and EIA reports.  

Table 3.1 Model Initialization data used for the base case and the typical range found in tight oil reservoirs 

Property Typical Range in TORs Data Used in Base Model 

Initial Res. Pressure (Pi) 5000 – 10000 Psi 7000 Psi 

Matrix Porosity (Øm) 2 – 12% 5 % 

Matrix Permeability (Km)   1E-5–0.1 mD 0.001 mD 

Fracture Porosity (Øf) - 2 % 

Fracture Permeability (Kf) 5-50 mD 30 mD 

Permeability of None Fractured Zone (Knfz) - 0.1 mD 

Reservoir Formation Top 2000-14000 ft 8200 ft. 

Formation Thickness (h) 100-1000 ft 180 ft 

Oil Water Contact (OWC) - 12000 ft. 

Free Gas  - None 

Initial Water Saturation (Swi) 20-50% 35 % 

Rock Compressibility (Ct) - 1E-5 Psi-1 

Total Clusters per Fracture 5-15 3 

Fracture Half Length (Xf) 100-300 ft 250 ft 

Fracture Width (Wf) - 0.33 ft 

Fracture Height (hf) 50-200 130 ft 

Fracture Conductivity (FC) 5-50 ft. mD 30 

Fracture Orientation  - J Direction 

Spacing between two adjacent fractures (Sf) 25-100 ft 50 ft 

Perforations per cluster in each fracture - 5 

Reservoir Fluid Compositions Light to Medium Oil Fluid Type 4 (Ref. Figure 3.10) 

Reservoir Fluid API Gravity 25 – 50o 40 

Reservoir Fluid Initial GOR 500 – 1800 scf/stb 575 scf/stb 

Matrix Grid Blocks - 23 × 50 × 18 

Model Dimensions - 230ft × 1000ft × 180ft 

Fracture Grid Blocks  - 5 × 3 × 1 

Fracture Gridding Style - Logarithmic LGR 

The typical ranges of reservoir matrix & fluid properties and the hydraulic fracture design parameters are 

listed in the following table, also model initialization data is included in the same table. The most important realization 

of this study is the reservoir fluid composition which is the most dynamic property that varies significantly within a 
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reservoir aerially and vertically, and the fluid properties that vary significantly over time with the alteration in reservoir 

pressure. As discussed in the prior chapter, the poor connectivity of reservoir pores in tight oil reservoirs, the reservoir 

pressure support is quite minimal that causing a rapid decline in near-wellbore reservoir pressure. For any strategy-

based reservoir development planning it is important to address all the possible static and dynamic reservoir matrix 

and fluid properties, therefore, multiple reservoir fluid compositions are taken under consideration to generate the 

entire database. The details on all the considered ranges of individual parameters are discussed in the following section. 

3.2.2. Base Reservoir Model Description  

For this study, a 3D Cartesian grid small-scaled mechanistic model is built, consisting of 23 grids in X, 50 in 

Y, and 18 in the Z-direction. In total, the model is consisting of 20,700 grid blocks and the reservoir dimensions of 

the model are 230ft.×1000ft.×180ft. which represents the width, length, and thickness, respectively. For our objectives, 

only a single horizontal well is placed in the x-direction with a lateral length of 110ft. Using logarithmic local grid 

refinement (LGR), a single staged planer fracture with triple clusters is introduced into the model as shown in Figure 

3.2. The specifics of the reservoir and hydraulic fracture design parameters used for the model initialization are listed 

in Table 3.1.  

Tight oil reservoirs are usually found with huge variations in their rock and fluid properties aerially and 

vertically. The typical matrix permeability and porosity ranges reported in the literature are found as 0.00001 to 0.1 

mD and 2 to 12 %, respectively. Similarly, a huge variety of fluid types are found in different U.S. tight oil reservoirs 

including condensate, volatile, and high to medium-quality in-situ oil. For this study total of seven fluid templates are 

generated representing the entire range of U.S. tight oil reservoirs’ fluid types based on their critical properties and 

the phase envelopes, to generate the database library that was later used to train data-driven proxy models. Figures 3.3 

and 3.4 are showing the reservoir fluid composition and its corresponding phase envelope for one of the reservoir fluid 

types that are used to develop the base model. The same model is used for the model validation by comparing its flow 

performance with the typical flow performances of the SPE wells. Similarly, Figures 3.5 and 3.6 are presenting the 

relative permeability curves for the reservoir matrix and the hydraulic fractures. While the critical reservoir fluid 

properties and the binary interaction coefficients used for the equation of state (EoS) development are listed in Table 

3.2 and 3.3, respectively that are used to generate the compositional base reservoir model.  
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Figure 3.2 Cross-sectional views of the model highlighting the fractures and the perforations connected with individual clusters 

Table 3.2 Reservoir fluid pseudo components and the critical properties used to generate a compositional model 

Component Mol. Wt. (g/gmol) Tc (K) Pc (Psi) Acentric Factor 

N2-H2S 37.37 222.09 815.56 0.148 

CO2 44.01 304.20 1069.86 0.225 

C1 16.04 193.19 667.19 0.008 

C2-C3 35.31 331.15 673.27 0.118 

iC4-C6 68.58 455.25 513.09 0.224 

C7-C17 139.81 610.40 292.58 0.615 

C18-C21 267.58 798.87 253.20 0.799 

C22-C27 326.94 879.47 197.94 0.944 

C28+ 515.41 935.33 141.24 1.301 

Table 3.3 Binary interaction coefficients used to generate a compositional model 

Component N2-H2S CO2 C1 C2-C3 iC4-C6 C7-C17 C18-C21 C22-C27 C28+ 

N2-H2S - - - - - - - - - 

CO2 0.0000 - - - - - - - - 

C1 0.0718 0.1300 - - - - - - - 

C2-C3 0.0915 0.1300 0.0019 - - - - - - 

iC4-C6 0.1098 0.1300 0.0076 0.0020 - - - - - 

C7-C17 0.1129 0.1300 0.0185 0.0089 0.0025 - - - - 

C18-C21 0.1129 0.1300 0.0339 0.0205 0.0099 0.0025 - - - 

C22-C27 0.1129 0.1300 0.0391 0.0247 0.0130 0.0042 0.0002 - - 

C28+ 0.0214 0.1300 0.0547 0.0378 0.0231 0.0107 0.0029 0.0015 - 

For the model performance characterization, firstly, the reservoir fluid type is selected based on the typical 

light hydrocarbon content i.e., C1-C3, to represent one of the SPE well that is reported in the SPE data repository to be 
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taken from the Eagle ford reservoir. The typical initial GOR and the API gravity are the key parameters used to select 

fluid type for the base model’s performance validation. The second most critical parameter for the model initialization 

is to select the representative relative permeability (Kr) curves. The Kr. curves shown in Figures 3.4 and 3.5 are built 

for the matrix and the hydraulic fractures separately through repeated trial and error procedures using CMOST, which 

is an automated tool of CMG. It is important to notice the shapes and the endpoints of the Kr curves to characterize 

the in-situ fluid flow performance. The matrix Kr curves are representing a mixed to an oil-wet system that is most 

likely the scenario in tight oil/ shale oil reservoirs. While the endpoints of the matrix Kr curves show highly restricted 

flow from the reservoir matrix in comparison to the hydraulic fracture’s Kr curves that provide highly conductive fluid 

flow channels between the reservoir matrix and the wellbore. 

 
Figure 3.3 Reservoir fluid composition for the based model 

 
Figure 3.4 Reservoir fluid phase envelop for the base case 

 
Figure 3.5 Reservoir matrix – Relative permeability cures 

 
Figure 3.6 Hydraulic fractures – Relative permeability cures 
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3.3. Base Simulation Model Performance and Validation 

As discussed in the prior section that the validation performance of the base simulation model is the most critical 

step that defines the creditability of the entire study. Unfortunately, due to having no history-matched model or verified 

from the O&G operator using the actual field case, a trial and error-based work was performed to match the model’s 

flow performance in comparison to the publicly available tight oil SPE wells. Figure 3.6 is presenting the comparison 

of the base model’s bottom-hole flowing pressure (BHFP) profile with the typical tight oil SPE wells' performance 

having similar reservoir rock and fluid properties as well as the hydraulic fracture design including fracture half-length 

and fracture conductivity, etc. Keep in mind that the SPE wells performance shown below is normalized for a single-

stage hydraulic fracture design same as the base case (refer to Figure 3.2) for an apple-to-apple comparison and the 

SPE wells datasets presented below are also cleaned from all the operational effects and extrapolated using the 

logarithmic slope trends. Notably, the subject SPE well is having the closest BHFP match. Therefore, the base model’s 

flow profiles are compared with the same well (i.e., SPE Well 6) for the further model’s performance validation as 

shown in Figure 3.8. While Figures 3.9 and 3.10 are presenting reservoir pressure and saturation distribution profiles 

over time through 3D model cross-sections.  

 
Figure 3.7 BHFP performance of base model vs. typical tight 

oil wells (using SPE well7 as a ref. well) 

 
Figure 3.8 Oil flow performance of base model vs. typical 

tight oil well (using SPE well7 as a ref. well) 

It can be noticed from the following figures that the in-situ reservoir fluid saturation alters quickly in the 

hydraulic fractures and the reservoir matrix region associated with the fractures due to rapid pressure drawdown in 

the subject regions. This effect of rapid pressure drop is because of a couple of reasons including the existence of 

highly conductive fractured fluid flow channels with super-increased permeability and the limited to no pressure 

support from the matrix due to ultra-tight permeability contrast of the reservoir matrix formation in comparison. It is 
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important to keep in mind that the flow performance in the following figures is shown for a primary recovery 

mechanism-based scenario i.e., reservoir fluid flow with no external pressure support.  
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 Figure 3.9 Base model’s reservoir pressure distribution 

contrast in reservoir matrix & hydraulic fractures 
Figure 3.10 Base model’s oil saturation distribution contrast 

in reservoir matrix & hydraulic fractures 
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As the objective of this piece of study is to develop a physical understanding concerning the fluid flow 

response as the function of the different reservoir and hydraulic fracture design properties, therefore, the model is 

purposely designed as simply as possible. However, no reservoirs are found with homogenous reservoir properties 

distribution, and no O&G operator drills a horizontal well with single-stage hydraulic fractures. Typically, to develop 

a tight reservoir, the horizontal wells are drilled with multiple thousand feet of horizontal section aided with multiple 

staged hydraulic fractures with a variable number of clusters in each stage.  

Due to limited pressure support and rapid in-situ fluid flow decline, it would be effective to consider external 

pressure support through early EOR application by injecting low viscous fluids, due to poor injectivity, to boost up 

the overall recovery factor and it would help in recovery acceleration. Among different injection solvents, produced 

hydrocarbon gas and CO2 are the most effective options due to lower minimum miscibility pressure (MMP). 

3.4. Reservoir Simulation Model Flow Response – Developing Physical Understanding  

After having a reasonable base model flow performance match with one of the typical tight oil wells (SPE well 

6), numerous simulation cases using the base model are generated to develop a physical understanding of the model 

with different parameters for a given model initialization dataset. This is an integrated step for the data-driven model 

validation and more importantly, the learnings are used to develop the physics-guided design of experiments (PG-

DoE) to make sure that the dataset is not just developed based on random sampling but has a physical meaning. For 

the PG-DoE, the Latin Hypercube sampling method is utilized which is discussed in detail in the following section.  

As we know that the quality of a data-driven/ artificial neural network (ANN) model depends on the dataset 

quality, and it is unlikely to have any physics involved in the ANN model training or prediction. Therefore, it is 

important to evaluate the proxy ANN model through blind-physics-based sensitivity analysis. Thus, in this step, 

around 200 simulation/physics-based sensitivities are developed that are used in the later step for the data-driven ANN 

model testing and its validation for physics compliance and explainability. 

As stated in the prior section that the reservoir fluid composition is a sensitive parameter that significantly varies 

aerially and vertically in reservoir formations, also its properties dramatically alter over time as a function of pressure. 

Therefore, reservoir fluid compositions are considered the compulsory parameter for the said analysis. In addition, 

reservoir porosity, fracture half-length, and fracture conductivity are also used for the blind-physics-based sensitivity 

analysis. The range of all the considered sensitivity parameters is listed in Table 3.4. 
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Table 3.4 Parameters range for blind physics-based sensitivity analysis 

Sensitivity Parameter Range 

Reservoir Fluid Types 7 Fluid Compositions 

Reservoir Matrix Porosity (%) 4, 6, & 8 

Fracture Half Length (ft) 100, 200, & 300 

Fracture Conductivity (mD. Ft) 10, 20, & 30 

3.4.1. Reservoir Fluid Types  

From the literature, multiple fluid types are found from different U.S. tight oil reservoirs that show significant 

variation in their fluid composition and the phase envelops as shown in Figure 3.11. It is notable from the figure that 

all the phase envelopes are non-unique because of having a huge variation in their compositions representing 

condensate, volatile, and high to medium-quality in-situ oils. The API gravities of the subject oil compositions range 

between 25 to 50o while the saturation pressure contrasts between 2500 to 3500 Psi and the oil viscosity is found 

below 4.2 cP. The typical initial gas-oil ratio (GOR) for all fluid types ranges between 500 to 1800 scf/stb.  

To capture the entire range of different reservoir fluid types found in most of the U.S. tight oil reservoirs (as 

found from the literature), a total of seven standard fluid compositions are designed synthetically as shown in Figure 

3.9 overlapping most of the phase envelops representing the typical US tight oil reservoirs fluid types. The 

corresponding standard fluid compositions are shown in Figure 3.12. The reason for generating these standard fluid 

types is to use them as one of the parameters to develop a numerical database. As discussed earlier, the numerical 

database is generated as the function of multiple parameters including reservoir rock, fluid (fluid types), and hydraulic 

fracture properties such that to capture the reservoir recovery response under all possible scenarios representing the 

U.S. reservoirs. The saturation pressure and the CO2 MMP values are shown in Figure 3.13; these thermodynamic 

calculations are performed using CMG-WinProp. The utilization of the saturation and the miscibility pressure values 

are discussed in the later section while discussing the enhanced oil recovery (EOR) performance with CO2 and 

hydrocarbon gas injection. 
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Figure 3.11 Phase envelops (PT Diagram) of U.S. reservoir 

fluids and the fluid templates 

 
Figure 3.12 Fluid composition of all seven templates used to 

generate the database 

 
Figure 3.13 Saturation & minimum miscibility pressures of all seven reservoir fluid templates 

3.5. Physics-Based Model Flow Response using Blind Sensitivities 

The objective covered in this step is to generate benchmark responses of a physics-based numerical reservoir 

simulation model as the function of different reservoir flow performance controlling parameters including reservoir 

fluid type, reservoir matrix, as well as the hydraulic fracture design properties. This piece of work provided a detailed 

physical understanding as a reference that was used for the validation of the ANN proxy models for their physics 

compliance and explainability.  

3.5.1. Effect of Reservoir Matrix Porosity 

The model’s physics compliance, oil flow rate, gas-oil ratio (GOR), and cumulative flow performance 

profiles are used in this section as the dynamic key performance indicators for all the considered scenarios. Initially, 

the effect of reservoir matrix porosity is presented in Figure 3.14. Keeping in mind that all the other parameters except 

matrix porosity are kept constant such that to observe the effect of porosity on the flow profiles, alone. It is clear from 
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the flow profiles that incremental formation porosity provides additional reservoir fluid volume that helps to sustain 

the formation fluid to flow for a longer period.  

  

  
Figure 3.14 Base model flow responses as the function of matrix porosity (A) Oil flow rate, (B) Cumulative oil, (C) GOR, & 

(D) Cumulative GOR 

Therefore, it can be observed from the instantaneous and cumulative oil flow profiles that the higher the 

porosity, the higher will be the produced fluid volume due to a couple of reasons i.e., comparatively, additional fluid 

volume to flow and the additional pressure support. On the other hand, for the same draw-down/bottom-hole flowing 

pressure profiles over time, lower GOR and cumulative GOR profiles are observed for the incremental formation 

porosity numbers. These GOR responses are logical i.e., the higher the porosity, the higher will be the pressure support 

due to additional formation fluid volume that would cause a delay in attaining the saturation pressure that directly 

causes to increase in the GOR. Therefore, the conclusions from this exercise are, at a certain time-step, the oil flow 

rate and the cumulative oil volume are directly proportional to the reservoir matrix porosity while inversely 

proportional to the GOR and the cumulative GOR. 
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3.5.2. Effect of Hydraulic Fracture Conductivity 

Hydraulic fracturing is a process of initiation of and propagation of a heavy load of an external fluid 

composition that generates artificial flow into the tight hydrocarbon formations to create highly conductive flow 

channels for the in-situ reservoir fluid to flow from the reservoir matrix to the wellbore. The process of fracturing 

mainly consists of a couple of steps. In the first step, the hydraulic fracturing fluid is injected into the formation at an 

elevated injection rate and pressure than exceeds the formation's least principal stress to create fractures in the 

formation next to the wellbore. With the continuation of injection at the higher injection rates, these fractures propagate 

and grow deeper into the formation. While in the second step, the slurry i.e., the combination of fracturing fluid and 

proppant injected into the fractures keep the fractures open and avoid them from collapsing. 

The hydraulic fractures are generated perpendicular to the least principal stress. Usually, the hydraulic 

fractures are induced vertically in most of the tighter and the deeper formations depending on the formation rock 

mechanics i.e., their geomechanical properties, which are also the key players that define the hydraulic fracture design 

geometry. In addition, the fracturing operation including the fracturing fluid and the proppant injection design plays 

an important role to define the fracture design parameters.  

The key design parameters of a hydraulic fracture include fracture half-length (Xf), fracture height (Hf), and 

fracture width (Wf). Typically, Xf and Hf are found great in magnitude i.e., hundreds of feet, while Wf typically ranges 

between less than an inch to a couple of inches. The combination of these parameters describes the fracture 

conductivity or fracture flow capacity (FC) i.e., the efficiency of a fracture to transmit fluid efficiently from the 

reservoir formation to the wellbore. Mathematically, FC is the product of fracture permeability and the propped Wf as 

shown in the following equation; 

𝐹𝐶 = 𝐾𝑓 × 𝑊𝑓 𝐸𝑞. 3.4 

where FC is the fracture conductivity, Kf is the effective fracture permeability, and Wf is the effective/ propped fracture 

width.  

Fracture conductivity is usually reported in ‘mD.ft’ and the correlation is defined as, the higher the fracture 

conductivity, the greater will be the fluid flow through the fracture, therefore, FC can be used as the measure of success 

for the hydraulic fracturing treatment. From the fluid flow type perspective, higher FC represents an infinite fracture 

flow response on the derivatives and leads to linear fracture flow while lower FC represents a finite fracture flow 
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response and typically shows a bilinear flow. The bilinear flow consists of the initial linear flow from the matrix to 

the fractures and the second linear flow represents the fluid flow from the fracture to the wellbore. A typical hydraulic 

fracture schematic is shown in Figure 3.15. 

 
Figure 3.15 Typical hydraulic fracture schematic 

There is another important correlation called dimensionless fracture conductivity (FcD) that mathematically 

describes the combined effect of fluid flow response from the formation to the fracture and from fracture to the 

wellbore. The mathematical expression of FcD is shown below; 

𝐹𝐶𝐷 =  
𝐾𝑓 × 𝑊𝑓

𝐾𝑚 × 𝑋𝑓

𝐸𝑞. 3.5 

where; FcD is the dimensionless fracture conductivity, Kf is the effective fracture permeability, Wf is the effective/ 

propped fracture width, Km is the formation matrix permeability, and Xf is the fracture half-length.  

Based on different numerical and experimental studies, it is concluded that the FcD greater than 10 is 

sufficient for the optimum in-situ fluid productivity from both matrix and the hydraulic fractures, and it is assumed 

that the FcD greater than 50 shows no incremental effect on productivity. Figure 3.16 evident this theory of having a 

significant incremental effect on productivity with the increase in fracture conductivity, however, no considerable 

increment in cumulative oil production is found in the simulation cases with FcD greater than 50. Figure 3.13 shows 

the formation fluid flow response i.e., oil rate, gas oil ratio, and their cumulative for multiple cases with fracture 

conductivity ranges between 0.1 to 50 mD.ft and their corresponding FcD ranges between 0.2 to 100.   
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The overall productivity of the model with the lowest fracture conductivity could be noticed from the 

following figures is comparatively lower due to the insufficient flow ability of the fluid from the matrix to the fractures 

due to ultra-tight matrix permeability and the same restricted flow from fractures to the wellbore due to comparatively 

lower fracture conductivity. While the opposite flow behavior can be noticed in the reservoir model with the higher 

FC. 

  

  
Figure 3.16 Base model flow responses as the function of hydraulic fracture conductivity (A) Oil flow rate, (B) Cumulative 

oil, (C) GOR, & (D) Cumulative GOR 

3.5.3. Effect of Hydraulic Fracture Half-Length and Reservoir Fluid Types 

Hydraulic fracture design parameters including fracture half-length, fracture height, and fracture width are 

practically the most uncertain parameters that are difficult to characterize with accuracy after having an actual field 

stimulation treatment. However, while designing a hydraulic fracture based on the formation properties, fracture half-

length is usually on the top of the priority list as it plays the most critical role to boost the oil recovery from the tight 

oil reservoirs through the greater surface contact area. The typical range of fracture half-lengths found in the literature 

ranges between 100 to 300ft.  

Most of the studies found in the literature concluded that the incremental fracture half-length is more 

favorable for enhanced oil recovery through the single well-based huff-n-puff process in comparison to the primary 
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recovery. The impact of longer half-length is more prominent for the EOR application because of more contact area 

with the reservoir that results in surplus CO2 diffusion in a larger portion of the reservoir that results in a higher 

recovery factor. Almost all the studies reported in the literature focused on the impact of different hydraulic fracture 

design parameters for a single fluid type. However, it is important to consider the effect of reservoir fluid types because 

it significantly affects the overall instantaneous in-situ fluid flow behavior and its flow profile over time. This work 

comprehensively focuses on the impact of different reservoir fluid types as well as the hydraulic fracture design 

parameters. Figure 3.17 is presenting the primary recovery performances of various scenarios highlighting the effect 

of hydraulic fracture half-lengths (i.e., 50ft, 100ft, 150ft, & 200ft) individually for seven different fluid types (Figure 

3.17 A to G) and the combined flow performance comparison with different fluid types in Figure 3.17.H.  

Fluid types 1 to 7 are representing lighter to a heavier oil with C1-3 ranging from 85% to 55%. For an apple-

to-apple comparison, all the reservoir and hydraulic fracture design parameters, except the fracture half-length, were 

kept the same in all the cases. In addition, all the cases were simulated using the same bottom-hole flowing pressure 

(BHFP) profile. As we know, the reservoir fluid flow profiles including oil rate and gas-oil ratio (GOR), are the 

function of pressure. The GOR abruptly changes as soon as the saturation pressure is achieved, that’s why it was 

important to use the same BHFP profile for all the cases for a fair comparison. It can be noticed in Figure 3.17, for all 

fluid types, the instantaneous initial oil flow rate is higher for the larger fracture half-length in comparison. A 

simultaneous effect of pressure drawdown and the fracture half-length size can be noticed i.e., larger fracture half-

length results in faster in-situ fluid withdrawal due to rapid pressure drawdown and the simultaneous effect is of the 

attainment of the saturation pressure. As the same BHFP profiles are used in all the cases, the saturation pressure of 

each fluid type is achieved at different periods such that the saturation pressure of the lighter fluid type is achieved 

earlier than the heavier fluid type. Thus, it can be noticed that the flip over of the performance profiles from fluid type 

1 to 7 was delayed which also impacted the cumulative oil recoveries in comparison as shown in Figure 3.18. Ideally, 

fluid type 7 shows the most reported flow behavior in the literature as the function of fracture half-length that shows 

more oil production over time with a larger fracture half-length and less production with a smaller half-length. 

Similarly, the cumulative GOR profiles are shown for the same cases with different fracture half-lengths and reservoir 

fluid types in Figure 3.19. The effect of fracture half-lengths is prominent on the cumulative GOR profiles such that, 

the larger the half-length, the more will be the cumulative GOR due to comparatively faster pressure drawdown and 

the rapid in-situ fluid withdrawal.  
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Figure 3.17 Blind physics-based sensitivities on the oil flow behavior as the function of hydraulic fracture half-length and the 

reservoir fluid types. Individual plots are showing the effect of fracture half-lengths for multiple fluid types i.e. (A) Fluid Type 

1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. (H) The 

combined effect of all fluid types for overall comparison 
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Figure 3.18 Blind physics-based sensitivities on cumulative oil production as the function of hydraulic fracture half-length and 

the reservoir fluid types. Individual plots are showing the effect of fracture half-lengths for multiple fluid types i.e. (A) Fluid 

Type 1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. (H) 

The combined effect of all fluid types for overall comparison 
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Figure 3.19 Blind physics-based sensitivities on cumulative GOR as the function of hydraulic fracture half-length and the 

reservoir fluid types. Individual plots are showing the effect of fracture half-lengths for multiple fluid types i.e. (A) Fluid Type 

1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. (H) The 

combined effect of all fluid types for overall comparison 
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It is concluded from the above discussion that it is critical to perform a detailed hydraulic fracture design 

optimization based on the reservoir fluid type, reservoir pressure, and the operational design that defines the BHFP 

profile or the drawdown pressure over time. This extensive exercise is performed to develop a physical understanding 

of the reservoir model used in this study such that to expect a similar response from the data-driven proxy models. 

While generating proxy models, it is important to have physics compliance and explainability. Data-driven proxy 

models’ generation and their physics compliance tests are discussed in detail in the next chapter. 

3.6. Unconventional Enhanced Oil Recovery Response 

Performing an EOR operation in tight oil reservoirs is not as simple as in conventional reservoirs. First, not all 

EOR techniques are applicable in tight reservoirs due to ultra-low matrix permeability and hence the poor injectivity. 

Therefore, CO2 and hydrocarbon gas injection-based EOR techniques are more favorable to the tight system. 

Secondly, due to poor inter-pore connectivity, individual well-based EOR techniques are considered more effective 

to perform EOR through the huff-n-puff process. Lastly, as explained in the prior sections, hydraulic fractures are 

considered a mandatory application to develop tight reservoirs therefore, the hydraulic fracture design is extremely 

critical for an optimum unconventional EOR application. In this section, the numerically simulated results are 

discussed in a couple of steps including, the effect of EOR operational design and the optimum hydraulic fracture 

design on EOR recovery. Secondly, the potential CO2 storage is also discussed as the byproduct of CO2 injection for 

EOR through a single staged huff-n-puff technique. 

The objective of this section is to develop a physics-based understanding of the reference EOR response under 

different situations. In addition, it is important to highlight that for all the EOR cases, we considered an additional 

case without any solvent injection, while the well/producer kept close for the same duration as the solvent injection 

and soaking period is considered in the EOR cases. It is strongly recommended to perform this step for all the EOR 

field development practices to understand the usefulness of the EOR process in a way to differentiate the effect of 

EOR simply from pressure buildup if there will be any. However, it is almost impossible but just in case, if the recovery 

performance of the two cases i.e., EOR and the shut-in case are comparable with a minimal difference then there is 

no significant need for such a huge investment in an EOR application. 
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3.6.1. EOR Operational Design 

The general perception these days for the EOR application in a conventional reservoir system is not a difficult 

task anymore because of several EOR field applications in similar systems. The EOR selection mainly depends on the 

architecture, geophysics, and geochemistry of a reservoir formation, as well as the reservoir fluid characteristics. 

However, the situation is not that simple for unconventional reservoirs because of limited field applications and lack 

of field data availability. The unconventional reservoir properties are not well defined and most of the literature is 

based on the best-guessed data.  

It is a great deal to make the unconventional tight oil flow from tiny matrix pores to the wellbore through the 

conductive hydraulic fractures. Among the limited EOR solvent selection, CO2 and produced hydrocarbon (HC) gas 

are the commonly adopted EOR solvents for UEOR applications and thus in this section, the physical understanding 

is developed through numerical trend analyses for different scenarios through a couple of EOR options in comparison 

to being used as a reference for the EOR. 

First, for an EOR application, it is strongly recommended to compare EOR performance with the base cases 

i.e., primary production with continuous fluid flow and a similar case with a shut-in period. The shut-in period must 

be equivalent to cover the entire EOR application timing including the injection and the soaking periods. This 

comparison is techno-economically important to eliminate the effect of wellbore storage and to encounter the pressure 

buildup and the wellbore storage effects. Therefore, before analyzing multiple EOR scenarios, no-injection base cases 

with different time duration of shut-in are compared as presented in Figure 3.20. The results with different shut-in 

time duration i.e., 8:8 (16 weeks), 4:4 (8 weeks), and 8:4/4:8 (12 weeks) are compared, and no significant differences 

are found.  Infect, on a closer look, it is observed that the shut-in negatively affected the recovery performance and 

because of ultra-tight permeability, no pressure support is gained from the deeper reservoir. It can be concluded that 

the unconventional reservoirs locally behave as an independent part of the reservoir that reflects no pressure and fluid 

transient communication into the formation. As observed, no near-wellbore pressure build-up is observed at least for 

a shorter period of a well shut-in that would be more economical for the operators. There might be a different effect 

of longer shut-in but of course, that will not be an economical approach for any operator to shut in their producers for 

a longer period. 
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In addition, to the EOR technique and the hydraulic fracture design, the reservoir formation fluid type is also 

an important factor that plays a critical role in a successful EOR application. After developing our physics-based 

understanding of the multiple reservoirs and hydraulic fracture characteristics using a single type of reservoir fluid, 

the EOR response to different reservoir fluid types is discussed in the last section of this chapter.  

 

Figure 3.20 Reference cases with shut-in for the same period as EOR solvent injection and soaking duration 

3.6.1.1. Effects of Solvent Injection Volume & Soaking Period 

Figure 3.21 shows the EOR recovery performance comparison with CO2 and the produced HC gas injection. 

Both solvents are injected at the same injection rate and the injection pore volume is controlled through the injection 

time duration. It can be noticed that CO2 significantly improved the oil recovery in comparison to HC gas. The 

observed EOR responses from both solvents make perfect sense as the CO2 being a supercritical fluid is more effective 

than the other injectants because of its lower minimum miscibility pressure and higher solubility that helps the trapped 

reservoir fluid to flow from tiny matrix pores into the main flow stream. 

Figure 3.21 Recovery performance comparison with different EOR injection solvents
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A detailed sensitivity analysis is performed with different injection and soaking time durations, with a fixed 

injection rate, using CO2 as the most efficient EOR solvent for a significant EOR response. Figure 3.22A is presenting 

four different scenarios with 8:8, 4:4.8:4, and 4:8 weeks of injection and soaking.  An interesting response was noticed 

that the two cases with higher CO2 injection volume (i.e., 8:8 and 8:4 weeks) showed comparatively higher recovery. 

However, larger soaking time shows a considerable increment in the other couple of cases with approximately four 

weeks of CO2 injection at a constant injection rate, however, the effect is not as significant as the CO2 injection volume 

showed in comparison. It is also important to keep in mind that the longer soaking period might improve the overall 

recovery because of oil swelling, viscosity reduction, diffusion, and pressure buildup but the longer shut-in would 

affect the project economics, negatively. A similar observation was made with the lean HC gas injection as shown in 

Figure 3.22B.  

  

Figure 3.22 EOR Recovery performance comparison for different injection and soaking periods with (A) CO2 and (B) HC 

3.6.1.2. Effects of Huff-n-Puff Cycles Initiation 

Along with the EOR solvent type, its injection volume, and the soaking period, the EOR initiation timings 

and the duration of every individual huff-n-puff cycle are equally important that significantly affect the ultimate oil 

recovery from tight oil reservoirs. Figure 3.23 is presenting the recovery performance comparison of four different 

scenarios with three huff-n-puff cycles in each case with different huff-n-puff duration. The first case shows 

significantly higher recovery in comparison, which initially applies EOR after 6 months of primary production and is 

followed by the 2nd and 3rd cycle after every 6 months of production. In the second, third, and fourth cases, the EOR 

initiated after 12, 18, and 24 months of primary production, respectively, followed by the next cycles after the same 

duration each time. A couple of conclusions can be drawn from the recovery performance, the oil recovery from a 
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tight reservoir is sensitive to EOR start timing after primary production and secondly, the timings for individual huff-

n-puff application on the same well is also critically important to recovery response. Therefore, it is strongly 

recommended to design a cyclic huff-n-puff EOR application with smaller periods to achieve optimal oil recovery. 

 

Figure 3.23 Recovery performance comparison for multiple Huff-n-Puff cycles injection after 6, 12, 18, and 24 months 

3.6.1.3. Effects of Huff-n-Puff Cycles  

As noticed from the prior discussions, solvent injection aids to boost the oil recovery significantly from tight 

oil reservoirs as an instant effect through the huff-n-puff technique. However, the oil flow rate declines rapidly because 

of the limited injectivity due to ultra-tight permeability and nano-pore throat size distribution. The injected solvent 

usually does not invade too much into the matrix but most likely into the near-fractured zones, only. The invaded 

solvent requires some time to be soaked into the matrix, therefore the well is kept close for a defined pace of time that 

allows the injected solvent and the reservoir fluid to potentially achieve multi-contact miscibility through back-n-forth 

condensation and evaporation that causes oil swelling and viscosity reduction. But this phenomenon requires longer 

well shut-in, which is not economically feasible for the operators. Therefore, the repeated cyclic huff-n-puff approach 

is more reasonable. Using this approach, an excellent sensitivity analysis is performed as shown in Figure 3.24, three 

different scenarios with single, dual, and triple huff-n-puff cycles are applied numerically. 

Approximately 16% pore volume of the total original oil in place (OOIP), CO2 is flooded into the reservoir 

in each huff-n-puff cycle that resulted in 1.2 to 3% incremental oil recovery in each cycle and cumulatively, a 5% 

increment is noticed after three continuous cycles (see Table 3.5).  In addition, the incremental oil recovery after the 

2nd and 3rd cycles reduced in a linear trend. This observation of decreased incremental oil recovery is logical i.e., with 
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every additional huff-n-puff cycle; a lesser amount of oil would remain in place to be contacted with the injected 

solvent beyond the hydraulic fractures. 

 

Figure 3.24 CO2 EOR recovery performance comparison for one, two, and three huff-n-puff cycles 

Table 3.5 CO2 injection, production, and trapping summary  

Cycles CO2 

Injection  

(ft3) 

CO2 

Produced 

(ft3) 

CO2 Trapped 

in Reservoir 

(%) 

Cum. CO2 

Trapped in 

Reservoir (%) 

Cum. Inc. Oil 

Recovery (%) 

Consecutive Increment  

(%)  

1st 6.90E+07 6.60E+07 4.35 4.35 2.0 2.0 (Inc. over the base case) 

2nd 7.30E+07 6.90E+07 5.48 4.93 3.8 1.8 (Inc. over the previous cycle) 

3rd 7.20E+07 6.70E+07 6.94 5.61 5.0 1.2 (Inc. over the previous cycle) 

Total 2.14E+08 2.02E+08 5.61 - - 5.0 

Nanopore confinement is another important factor that directly affects the hydrocarbon recovery factor from 

nano-pores (tight reservoir with nano-Darcy permeability), but that effect can be modeled numerically for a reservoir 

with non-uniform permeability distribution i.e., a reservoir with different pores sizes. However, its effect is minimal 

when the average reservoir pressure is considerably higher than the bubble point pressure. The bubble point 

suppression and changes in fluid properties in nanopores can be modeled through varying critical properties i.e., 

critical temperature and pressure of the fluid components. In brief, the effect of nano-pore confinement can be achieved 

numerically by varying the critical properties of the confined fluids as a function of the pore size, and for that, multiple 

correlations can be applied to shift the phase envelop at critical pore sizes based on the shale mineralogy. Numerically, 

a dual permeability model can be set up to achieve this objective with explicit modeling of the stimulated reservoir 

volume (including both hydraulic fracture and the connected natural fractures if present in the model) and the 

unstimulated reservoir volume (with unconnected natural fractures). As part of the methodology, multiple PVT regions 
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are required to be defined and associated with different pores sizes i.e., for example; nanopores with maximum shifted 

phase envelop, mesopores with partially shifted phase envelop, and macropores to be considered with the original 

PVT. These PVTs to be assigned in the model associated with the non-uniform matrix as the function of the pore size 

distribution which may perhaps be correlated with the permeability for a set maximum percentage of matrix blocks 

(based on the formation properties and the rock pore size distribution) assigned the mesopores and nanopores. Through 

this approach, the alteration in fluid properties as the function of bubble point suppression under confined nanoscale 

pores and the resultant effect on the oil recovery can be captured for different types of reservoir fluids.   

In addition, Figure 3.25 is presenting the oil recovery and the flow rate plots for each huff-n-puff cycle. 

Similarly, an increment in CO2 trapped volume is witnessed with every individual huff-n-puff cycle as shown in Figure 

3.26 in terms of total CO2 volume injected and produced back.  

 

Figure 3.25 Individual flow rates and recovery performance 

of every individual huff-n-puff cycles 

 

 

Figure 3.26 Comparison of cumulative CO2 injection and its 

backflow response for one, two, and three huff-n-puff cycles 

 
3.6.1.4. Effects of Reservoir Fluid Types  

One of the biggest constraints and the reservoir development controlling factors is the reservoir fluid 

composition. Without accurate information, no EOR and the injected solvent selection can be done properly. For the 

numerical simulation, binary interaction coefficients are necessarily required to be defined for each fluid component 

in the simulator for the condensation and vaporization mechanism that defines the diffusion and the solubility 

phenomenon. Figures 3.27 and 3.28 are presenting the CO2-EOR performance comparison through a single huff-n-

puff cycle with their reference base cases and the incremental oil recovery, respectively, for seven different fluid types 

as discussed in the prior section.  
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Figure 3.27 Reservoir flow performance comparison for 

different reservoir fluid types 

 

Figure 3.28 Incremental oil recovery comparison for different 

reservoir fluid types 

3.6.2. Hydraulic Fracture Design 

Hydraulic fractures provide considerable channels for the reservoir fluid flow and the maximum reservoir 

contact for the injected EOR solvent that helps to improve oil recovery. Multiple hydraulic fracture design parameters, 

directly and indirectly, affect the reservoir recovery performance. The most critical parameters include fracture half-

length, effective permeability (i.e., after having proppant in place), and height. Fracture width is also an important 

design parameter but since it is comparatively a much smaller number the fracture is half-length and height, therefore, 

its effect is minimal. The total clusters count per fracture, the spacing between each fracture, and the number of fracture 

stages is also imperative parameters. Since there is no rule of thumb to generate a fracture design, therefore, a similar 

approach is applied in this study as observed in a few field practices, shared in the literature.  

3.6.2.1. Clusters Count 

The total clusters in each fracture provide significant operational quality of a fracture through reservoir 

contact area improvement with the wellbore. This effect is even more prominent for the long horizontal wells that are 

completed through multiple staged hydraulic fractures. However, there are a few limitations to consider while 

designing hydraulic fractures including local oil in place (i.e., stimulated reservoir volume, SRV), reservoir rock 

quality (mainly the matrix permeability), formation fluid characteristics, and the reservoir pressure to feed the 

fractures. In this study, three distinct scenarios with single, double, and triple clusters, as shown in Figure 3.29, are 

considered to review the recovery performance with a single staged horizontal well.  
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Figure 3.29 Cross-sections of reservoir models with A. Single, B. Double, and C. Triple clusters per fracture 

The recovery comparison plots are shown in Figure 3.30 and the results make perfect sense i.e., significantly 

more oil is recovered with the triple cluster scenario as compared to the single cluster case. However, the recovery 

difference between double and triple clusters is minimal because of the limited oil in place. Hence, it can be concluded 

that it is important to determine the optimum number of clusters per fracture based on the local SRV for individual 

fractures. 

 

Figure 3.30 Comparing recovery performance with single, double, and triple clusters per fracture 

3.6.2.2. Fracture Half Length 

Another important fracture design parameter is the fracture half-length which significantly affects the oil 

recovery performance because it determines the stimulated area linked to the wellbore and provides an easy path for 

the reservoir fluid to flow. The bigger the fracture half-length on both ends of the fracture, the more will be its contact 

with the reservoir and hence more drawdown. However, it is not that easy to achieve a higher fracture half-length due 

to operational constraints, but it is important to consider the offset wells spacing while designing the half-length to 

avoid any frac-hits. Figure 3.31 is showing the oil recovery performance comparison for a single stage with triple 
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clustered fracture, and it can be concluded that fracture half-length is having a significant impact on the oil recovery. 

It is observed from the results that the half-length is directly proportional to the oil recovery; however, the incremental 

recovery trend is found to reduce with an increment in the half-length. Therefore, similar to the fracture counts, also 

the fracture half-length selection requires optimization depending on the reservoir rock quality, formation fluid 

characteristics, and most importantly the local oil in place counter in SRV.  

 

Figure 3.31 Comparing recovery performance for different fracture half-lengths  

3.6.2.3. Fracture Spacing 

The fracture spacing is also a critical parameter while designing an overall well completion plan that depends 

on the reservoir rock characterization and the sweet spot distribution in a tight reservoir. Generally, hydraulic fractures 

and individual cluster placement are defined in a model based on the matrix permeability distribution between the two 

consequent fractures, locally oil in place, and the pressure distribution. Theoretically, the same phenomenon of infill 

drilling is applied here in this scenario, which defines the wells' placements depending on the remaining oil saturation 

in place, locally and it is a fact that closer the fracture, provides more oil recovery until there is some transient 

interference with the other fractures. Therefore, a denser fracture network with closer fracture placement would be 

more considerable for optimum oil recovery. In addition, it is important to keep in mind while designing a fracture 

network, there will be an optimized fracture spacing and half-length for each scenario for a given set of reservoir 

characteristics. Figure 3.32 is showing the recovery performance comparison for three cases with 30, 50, and 70 feet 
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of fracture spacing, while keeping all the other reservoir and fracture specifications, fixed. A similar performance 

trend as fracture half-length is observed in this case i.e., more fracture spacing results in comparatively higher oil 

recovery. While the incremental oil recovery reduced with higher spacing because of limited oil in place. Therefore, 

it is worth concluding that the two parameters, fracture half-length, and spacing show a simultaneous impact on oil 

recovery performance as shown in a contour plot shown in Figure 3.33. 

 

Figure 3.32 Comparing recovery performance for different 

fracture spacing 

 

Figure 3.33 Simulation-based contour plot for the simultaneous 

effects of Fracture half-length and fracture spacing 

3.6.2.4. Fracture Permeability  

Fracture effective permeability is included in this study as the last sensitivity and one of the most important 

hydraulic fracture parameters that significantly determine the fluid flow from the tight reservoir. In general, the higher 

the fracture permeability, the higher will be the fracture conductivity and that will ultimately result in higher fluid 

flow and so the oil recovery. The dimensionless Fracture conductivity (FcD) is given by the following correlation 

between fracture and reservoir matrix properties. 

𝐹𝑐𝐷 = 
𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑊𝑖𝑑𝑡ℎ

𝑀𝑎𝑡𝑟𝑖𝑥 𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑡𝑖𝑦 × 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐻𝑎𝑙𝑓 𝐿𝑒𝑛𝑔𝑡ℎ
𝐸𝑞. 3.6 

Figure 3.34 is showing the recovery performance comparison for three different fracture permeability values 

i.e., 30, 50, and 100 mD. Though the differences are not much but still there is an increasing trend that can be noticed 

such that to have higher recovery with the higher fracture effective permeability. 

In addition, the simultaneous effect of fracture permeability and half-length is shown in Figure 3.35, as expected the 

increase in both parameters results in considerable improvement in the oil recovery. The figure is presenting 
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directional results for the given set of parameters; however, a similar trend should be expected from any other set of 

reservoir and fluid properties while developing a tight oil reservoir.  

 
Figure 3.34 Comparing recovery performance for different 

fracture permeability and fracture conductivity 

 

 
Figure 3.35 Simulation-based contour plot for the simultaneous 

effects of Fracture half-length and fracture permeability 

3.6.3. Sub-Surface Injected Solvent Storage 

CO2 injection into the tight oil reservoirs not only plays an important role to improve oil recovery from the 

tight oil reservoirs but also helps to achieve the net carbon zero objectives through CO2 footprint reduction from the 

planet earth. During the huff-n-puff process, a significant amount of injected CO2 is usually produced back to the 

surface that is recycled into the reservoir to further improve the oil recovery. However, a significant amount of CO2 

stays back into the formation replaces oil, and gets trapped in the nanopore spaces. The CO2 trapping mechanism is 

explained in the prior section i.e., through adsorption, desorption, and capillary force hysteresis. The combined effect 

of CO2 adsorption, desorption, capillary force hysteresis, as well as the solubility of CO2 into the formation oil, 

became the reason for its trapping/ storage in the reservoir. The solubility of the injectant solvent causes swelling and 

the oil viscosity reduction that eventually helps to improve the oil recovery and along with the residual oil saturation, 

the additional amount of the solvent becomes trapped into the nanopores. It is observed in different studies that the 

phenomenon of CO2 trapping is more pronounced when the solvent is injected at a pressure below its minimum 

miscibility pressure under reservoir conditions. A simple method to measure the total amount of CO2 trapped in the 

formation is through retention factor that is defined as; 

𝑅𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
𝐶𝑂2 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑉𝑜𝑙𝑢𝑚𝑒
× 100 𝐸𝑞. 3.7 

Reservoir temperature and pressure are critical parameters for the CO2 trapping mechanism. Usually, the concept 

of retention is considered for the tertiary recovery (EOR) and higher retention is considerably obtained when the CO2 
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is injected into a reservoir at or above MMP. Under such conditions, the injected CO2 drives out the oil from the 

nanopores through dissolution into the oil which causes oil swelling and reduction in viscosity and interfacial tension. 

In this study, refer to Figure 3.22, there are the following facts to notice; 

i. In each huff-n-puff cycle, not the complete amount of the injected CO2 is produced back because of its 

trapping into the formation. 

ii. The amount of trapped CO2 increases for each ascending huff-n-puff cycle. 

Using the limited statistics obtained from this study, a contour plot is prepared as shown in Figure 3.36 for an 

approximation of CO2 trapping percentage as the function of injected CO2 pore volume and the number of huff-n-puff 

cycles. It is obvious from the plot that both the parameters directionally improve the CO2 trapping phenomenon. 

Multiple other parameters are also usually considered critical for the trapping mechanism such as reservoir geology, 

average reservoir pressure, injection pressure, soaking time, and the presence of aquifer or the formation brine, etc.  

 
Figure 3.36 Simulation-based contour plot for the simultaneous effects of Fracture half-length and fracture permeability 

3.7. Summary  

A numerical simulation study is conducted to compare the recovery response from a tight oil reservoir for different 

injection solvents, operating conditions, and hydraulic fracture designs using the huff-n-puff technique. Purposely, 

this study is performed on a uniform reservoir model to eliminate the effects of heterogeneity such that to understand 

the physics at both micro and macro scales. The results are found marginally optimistic due to reservoir homogeneity 

and the size of the mechanistic model in comparison to the stimulated reservoir volume, however, the directional 

trends with the actual reservoir properties would remain the same. Following are a few conclusions that can be drawn;  
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1. Early application of EOR significantly improves oil recovery and based on the sensitivity analysis, CO2 and 

the carbonated water injection significantly improve oil recovery from tight oil reservoirs. 

2. Both, the injection solvent volume, and the additional number of huff-n-puff cycles significantly improve the 

oil recovery. The performance further improves from the reservoirs with lighter components.  

3. The soaking time is critical for EOR, though, it helps to provide more time for diffusion and solubility, but 

the longer shut-in directly affects the economics.  

4. Cluster count, fracture spacing, half-length, and fracture effective permeability are critically important 

parameters that are directly proportional to the recovery performance from a tight oil reservoir. 

Huff-n-puff is an excellent technique that not only improves oil recovery significantly but also helps to achieve net 

carbon zero objectives through CO2 trapping into unconventional reservoirs. 



 
 

 

 

 

4 
SPATIO-TEMPORAL DATABASE DEVELOPMENT  

In this chapter, spatio-temporal database development is discussed using the history-matched 

compositional mechanistic model. For database development, multi-dimensional aspects are considered 

including reservoir rock and fluid properties, hydraulic fracture design parameters, and the EOR 

operational design. To accommodate a wide range of individual parameters, random sampling is 

performed using a design of experiment such that to develop a database for an entire range of magnitudes 

of each parameter using a limited number of simulation cases having random combinations of different 

parameters.  
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4.1. Introduction  

The spatio-temporal database generation is the first and foremost important step towards the data-driven proxy 

model development. However, deciding the extent of the database representation for the reservoir matrix and fluid 

properties, hydraulic fracture design parameters, and the reservoir operational design limits for both primary as well 

as EOR is challenging. Therefore, it is recommended not to avoid any of these parameters to generate a meaningful 

and representative database that covers the entire possible range of multi-dimensional properties.  

Usually, a database for a dynamic flow system includes the pairs of input and output datasets for the proxy model 

training process. For a dynamic system such as a reservoir simulation scenario, typically the static data is considered 

as the inputs such as reservoir and hydraulic fracture characteristics, initialization parameters, operational constraints, 

etc. while the outputs generally consist of the production data. However, in this study, not only the primary but also 

the EOR production is trained and that requires multiple additional parameters such as EOR agent/ injection fluid 

type, injection duration, soaking period, etc. which are also considered as the supplementary dynamic input 

parameters.  

In addition, there are multiple assumptions and model limitations are kept under consideration for the simulation 

cases development as listed below; 

1. A mechanistic homogeneous, isotropic, and isothermal reservoir model with a single distribution is designed. 

2. The model is having a uniform reservoir thickness and consists of a single layer with 18 grid blocks in the z-

direction. 

3. The overall reservoir model dimensions are kept the same in all simulations i.e., L:230ft×W:1000ft×H:180ft. 

4. A single horizontal well is placed at the center of the model with a single staged triple planner fracture 

perpendicular to the horizontal section of the well. 

5. All three fractures are equally spaced along the horizontal section of the well. 

6. All individual fractures are having the same design and characteristics for every individual simulation case; 

however, the fracture design varies for each simulation. The fracture properties include fracture conductivity, 

fracture half-length, fracture height, and fracture effective permeability. 

7. Both, finite and infinite fracture conductivity values are assumed in different simulations to develop a variety 

of hydraulic fracture-driven flow behaviors. From the database development experience, the fracture 
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conductivity greater than 20 ft. mD produce optimum in-situ fluid recovery and the fractures are found to 

have infinite conductivity. A similar response for the dimensionless fracture conductivity (FcD) is observed 

when its value is 50. 

8. Wellbore storage and skin effects are not considered in the model. 

9. For each simulation, the formation fluid is single-phase and slightly compressible with fixed PVT and 

rheological properties. However, for the database development, seven different reservoir fluid types are used 

representing most of the reservoir fluid compositions present in US unconventional tight oil reservoirs 

ranging between light and volatile to slightly heavier oils. 

10. Depending on the reservoir and the hydraulic fracture design, linear and bilinear flow are observed during 

the early time region, while radial and compound linear flow are observed in the middle time region. 

Similarly, the late radial and boundary dominant flow regions are observed in the late time region. From the 

flow type perspective, in both formation and fractures, the laminar flow type is considered. 

It is also important to understand that a petroleum reservoir is a pressure-driven system i.e., the production 

response (for both primary and EOR) is directly linked with the reservoir/ bottom hole flowing pressure and that is a 

dynamic property. Thus, in this study, input training parameters have not only included static but also dynamic 

properties are included. It is also important to make sure that the generated proxy models honor the physical laws and 

for that, its validation through blind sensitivities is essential. 

The concept of Design of Experiment (DoE) is usually adopted to cover the entire possible range of multiple 

static and dynamic parameters such that to generate a meaningful database. However, for a dynamic system that works 

on physical law, is not necessary that the considered DoE would cover the entire range of the output response. 

Therefore, it is also significantly important to perform a quality check for the input parameters distribution as well as 

the output response of the system. For that purpose, a concept of a Physics guided Design of Experiment (PG-DoE) 

is introduced in this study that is focused on the output responses for the dynamic systems that follow the physical 

laws. 

Figure 4.1 presents a schematic of a conventional DoE that shows the random distribution of the samples across 

the given range but for a physics-defined system, not necessarily; the simulated dynamic outputs cover the entire 

range. As shown in the following figure, the first output is a typical example of cumulative production while the 
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second output represents the instantaneous production rates over time with multiple missed spaces. Therefore, a DoE 

should be smart enough to generate data samples such that to cover the output response range more importantly than 

the input samples. In addition, the samples should be distributed in a way to avoid duplication of the output responses. 

Figure 4.2 presents an ideal output response that covers the entire range that also shows no overlapping of the output 

responses. 

 
Figure 4.1 Schematic of a typical conventional Design of Experiment (DoE) 

 
Figure 4.2 Schematic of an ideal Physics Guided Design of Experiment (PG-DoE) 

4.2. Design of Experiment 

The concept of DoE was introduced in the early 20th century to investigate the probabilistic behavior of static 

systems. DoE gained a lot of attention and become a normal practice in engineering that help engineers to reduce the 

computational cost, significantly. The samples of a given DoE are generated using a couple of approaches including 

domain-based (or non-adaptive or model-free) and the response-based (or adaptive or model-based or sequential) 

approaches. Multiple types of DoEs are mainly distributed in three types classical sampling (i.e., deterministic and 

space-filling), random sampling, and Quasi-random sampling. Figure 3 is showing a detailed distribution of different 

types of DoEs. 

4.3. Samples Distribution & Quality Control 

In this study, the sampling distribution is performed using Latin Hypercube (LHS) DoE. It is one of the most 

widely used random sampling techniques for the proxy modeling approach that evenly distributes samples over a 

given sampling space. The samples generated using the LHS technique are known as controlled random samples that 

are often applied in Monte Carlo uncertainty quantification analysis because it can dramatically reduce the number of 
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simulations that need to achieve accurate results. Similarly, for a huge database development using a deterministic 

simulation approach, LHS help to reduce the sampling points significantly. In this study, initially through a factorial 

approach, thousands of organized samples were generated because of a wide range of every individual parameter that 

was reduced to around eight hundred samples through the LHS sampling technique that was used to generate the 

numerical simulation database.  

 
Figure 4.3 Different types of design of experiments for data sampling 

As explained in the prior sections, multiple parameters control the fluid flow response from a tight oil reservoir. 

Therefore, the database for this work is developed using a random distribution of the major reservoir parameters 

including reservoir pressure, matrix porosity & matrix permeability and hydraulic fracture design, fracture half-length, 

fracture height, and fracture conductivity, etc. which mainly play the most critical role in flow dynamics. The 

following figures are presenting the cumulative probability and the probability mass distribution of the subject 

parameters in both Y-axes and their sampling range on the X-axis. The actual samples found from the literature are 

also included in all the figures that are overlaying the cumulative probability distribution plot for a quick sampling 

distribution comparison. 
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For both primary and enhanced oil recoveries from tight formations, apart from the reservoir and the hydraulic 

fracture characteristics, the reservoir fluid type and the reservoir pressure play a critical role in the reservoir fluid 

recovery. Therefore, a wide range of reservoir pressure is considered in this study ranging between 4000 to 12000 Psi. 

Figure 4.4 is presenting the normal/ Gaussian distribution of reservoir pressure values for the given range. It is 

important to note that the actual reservoir pressure values are found more towards the lower end which lies between 

the P50 to P90 range of the distribution of the sample. But still, there are a few reservoir pressure points found at the 

upper bound which is why an extended pressure range is taken under consideration for the database generation. 

 
Figure 4.4 Random sampling distribution – Reservoir Pressure 

Similarly, Figures 4.5 and 4.6 are presenting the sampling distribution for the reservoir matrix porosity and 

permeability. Most of the tight oil reservoirs in the United States are found with a variety of matrix porosity that was 

typically found between 4 to 12% and it is noticeable in the following figure that the porosity values are uniformly 

distributed across the entire considered range. While the reservoir matrix permeability is found to be very tight i.e., 

mostly ranging between 0.0001 to 0.05mD. 

Similar considerations are applied to generate random sampling data-point distribution for the hydraulic 

fracture design parameters. Figure 4.7 through Figure 4.10 are presenting the random data sampling distribution and 

their cumulative mass distribution for fracture permeability, fracture conductivity, fracture half-length, and fracture 

height, respectively. 
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Figure 4.5 Random sampling distribution – Matrix Porosity 

 
Figure 4.6 Random sampling distribution – Matrix Permeability 

 
Figure 4.7 Random sampling distribution – HF Permeability 

 
Figure 4.8 Random sampling distribution – HF Conductivity 

  

 
Figure 4.9 Random sampling distribution – HF Half-Length 

 
Figure 4.10 Random sampling distribution – HF Height 

4.3.1. Sampling Quality Control 

The data sampling quality control is performed in two major steps i.e., Pre and Post simulations sampling 

quality control. 

Step 1: As the reservoir fluid types are the basic and the most important factor of the generated database, therefore the 

pre – simulation quality control is performed initially on the distribution of the random sample through visual 

inspection for every individual parameter corresponding to each fluid type to make sure that the samples are 
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randomly distributed all over the sampling space. In addition, it is to make sure that cumulatively all the 

samples are randomly distributed majority of the sampling space with no major blank area in the sampling 

space.  

Step 2: The post-simulation quality control step explains the physics-based design of the experiment such that to have 

simulation response of the entire database is evenly distributed as discussed in the prior section. 

Figures 4.11 and 4.12 are schematically presenting the pre- and post-random data sample distribution quality 

checks. In the first figure, different parameters are represented through dissimilar colors that are distributed with the 

correspondence of multiple fluid types such that to have random distribution to cover the entire sampling space without 

any major overlapping of the samples. Similarly, the second figure shows the simulation response of multiple output 

responses. The number of output responses may vary in different cases; however, the simulation response mainly 

signifies the sample distribution qualitatively and quantitatively.  

 
Figure 4.11 Pre-simulation random data sampling quality 

check through visual samples distribution 

 
Figure 4.12 Post-simulation random data sampling quality 

check through dynamic simulation response 

4.3.2. Pre and Post Simulation Sampling Quality Check 

Using the discussed approach, initially, all the data samples were randomly distributed using the LHS 

sampling technique without distinguishing or dominating any reservoir/ hydraulic fracture parameter or the fluid types 

followed by a manual sampling distribution check for all parameters with different reservoir fluid types. A few of the 

considered parameters are shown below in Figure 4.13. 
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Fluid 

Type 

Initial Reservoir 

Pressure (Psi) 

Matrix 

Porosity (%) 

Fracture Conductivity 

(mD.ft.) 

Fracture 

Half-Length (ft) 

 

1 

    

2 

    

3 

    

4 

    

5 

    

6 

    

7 

    

Figure 4.13 Pre-simulation random data samples distribution corresponding to different reservoir fluid types 
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Fluid Types 
Oil Flow Rate 

(bbl./month) 

Cumulative Oil Recovery 

(bbl.) 

   

   

   

   

   

   

   
Figure 4.14 Post-simulation responses (oil flow rate & cum. Oil production) corresponding to different reservoir fluid types 
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4.4. Discussion 

In the prior sections of this chapter, the steps and the quality of spatial-temporal database 

development are discussed. In addition, it is highlighted that not only the random distribution of 

the input parameters is important, but the simulation response/ outputs are more important to 

developing a physics-inspired database generation for the proxy models development.  

In this section, another approach is adopted for the database quality check through reservoir 

recovery responses that are established as the resultant factor for the combination of the different 

reservoir and hydraulic fracture parameters. The objective is to develop a physical understanding 

of the subject parameters with the reservoir recovery response and to make sure that the recovery 

responses are unbiased towards any specific reservoir or hydraulic fracture property.  

Following is the list of parameters and their distribution ranges used for the recovery 

responses. It is important to note that, the recoveries shown in Figure 4.15 are the result of the 

combination of the reservoir and hydraulic fracture parameters. While the incremental oil recovery 

is the response of not only the reservoir and hydraulic fracture parameters but also the EOR 

operational design including the EOR solvent injection volume and the injected solvent soaking 

period. 

Table 4.1 Reservoir and hydraulic fracture parameters range distribution for model’s recovery response representation 

Parameter Low Range Medium Range High Range 

Reservoir Fluid Types (Ref. Figure 3.11) 1 – 2 3 – 4 5 – 7 

Initial Reservoir Pressure (Psi) 4000 – 6000 6000 – 9000 9000 – 12000 

Hydraulic Fracture Half-Length (ft.) 25 – 100  100 – 200  200 – 300 

Hydraulic Fracture Conductivity (ft. mD) 0.02 – 1 1 – 10  10 – 50 

Hydraulic Fracture Height (ft.) 10 – 30  30 – 60  60 – 110 

Matrix to Fracture Permeability Ratio <1×10-6 1×10-6 - 1×10-5
 > 1×10-5  

It can be noticed from the following figures that reservoir fluid type is influencing both primary 

and incremental oil recoveries i.e., comparatively higher oil recovery from heavier reservoir fluid 



96 
 

type. Partially the same effect of fracture conductivity is observed such that, higher fracture 

conductivity produces more oil from the reservoir. Rest all other parameters show no major 

influence on oil recovery.  

  

  

  

Figure 4.15 Primary and enhanced oil recovery cross-plots as the function of (A) Reservoir Fluid Type (B) Initial Reservoir 

Pressure (C) Matrix to Fracture Permeability Ratio (D) Hydraulic Fracture Half Length (E) Hydraulic Fracture Conductivity 

(F) Hydraulic Fracture Height 



 
 

 

 

 

5 
SMART PHYSICS-INFORMED COMPOSITIONAL 

DIMENSIONLESS TYPE CURVES 

Smart Physics Inspired Compositional Dimensionless Type Curves (SPiC TCD) is a novel technique for the 

Unconventional Enhanced Oil Recovery (UEOR) pilot designing and its performance analysis that are 

developed using a huge compositional numerical simulation-based database. The dimensionless type 

curves for the UEOR are developed as an extension to the primary recovery using modified Fetkovich RTA 

for a multi-fractured horizontal well in tight permeability formations. In this chapter, the development and 

interpretation of the SPiC TCD are discussed. Also, a generalized end-user poster is compiled in this chapter 

discussing all possible scenarios with different reservoir rock properties, in-situ fluid types, hydraulic 

fracture design, and the EOR operational designs for a quick and effective primary and UEOR performance 

match and incremental hydrocarbon recovery predictions. 
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5.1. Introduction  

Unconventional tight oil reservoirs are found with a fine pore network structure, poor interpore-

connectivity, and limited pressure support. Therefore, the development of such reservoirs is only considered 

economical through long horizontal wells aided with massive mechanical stimulation i.e., an artificially 

induced hydraulic fracture network that provides easy fluid flow channels deep into the reservoir matrix for 

the sub-surface reservoir hydrocarbons to produce from the tight matrix and nano-pores (Syed, F.I., et al., 

2022).  

An unsaid rule of thumb for a healthy and economical reservoir development is to perform reservoir 

diagnostics locally on every individual producer to understand the reservoir fluid flow signatures (Lin, M., 

et al., 2015). These signatures are found in the form of fluid flow responses that not only distinguish 

different reservoir and wellbore characteristics but also characterize hydraulic fracture design parameters. 

The common approach for such diagnostics is through pressure-time relationships (commonly called 

Pressure Transient Analysis or PTA) that provide comparatively better and focused reservoir 

characterization due to high-resolution pressure data. While another approach is based on a rate-time 

relationship (commonly called Rate Transient Analysis or RTA). RTA is performed using low-resolution 

pressure data that lumps up the entire production life of a well into the analysis (Jiang, R., et al., 2014).  

The biggest drawback of PTA is the loss of hydrocarbon production because the high-resolution 

pressure data is normally collected in response to a producer shut in. On the other hand, RTA is performed 

with the production rate data (hence no need to shut in a producer) while the reservoir and the wellbore 

flowing pressures are embedded in the dimensionless flow rate and time equations. The working 

phenomenon of RTA is based on the combination of Darcy’s law for fluid flow in porous media with the 

equation of state (EoS), and the Material Balance Equation (MBE). The same analysis could be performed 

analytically through Partial Differential Equations (PDEs). However, RTA is performed through a rate-

time relationship but still, it incorporates pressure into the flow performance diagnostics. Therefore, for 

tight reservoirs, RTA is the only suitable option because the wells drilled in such reservoirs with limited 
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pressure support show rapid pressure decline locally due to poor interpore connectivity and do not provide 

enough high-resolution pressure data. 

It is important to highlight that there are several well-performance behaviors can be observed for 

horizontal wells drilled in a reservoir depending on reservoir characteristics, including both reservoir fluid 

and rock properties, and the stimulated hydraulic fracture designs. The main hydraulic fracture design 

parameters include but are not limited to fracture half-length, fracture height, fracture effective 

permeability, fracture conductivity, etc. (Syed, F.I., et al., 2022). In this chapter, initially, the conceptual 

numerical compositional simulation model is presented for a combination of reservoir characteristics and a 

single staged – triple clustered hydraulic fracture. In the following step, a detailed understanding is 

developed through several simulation cases for all possible flow responses resulting from a reservoir model 

with the combination of different reservoir fluid & rock types and hydraulic fracture designs. The exact 

range of the model’s parameters is the same as discussed in the prior chapter to generate a numerical 

simulation database using a random sampling technique called Latin Hypercube Sampling.  

The impacts of multiple combinations are studied through multiple sequences of flow regimes that 

could be obtained from a tight oil reservoir. Lastly, novel and advanced flow responses for an additional 

factor of EOR application in tight oil reservoirs are presented. The EOR application showed interesting 

flow responses that are significant for an unconventional tight oil reservoir development and due to the 

rapid production decline, it is wisely suggested to develop tight oil reservoirs with early-life EOR 

applications. However, due to the complex and locally isolated nature of tight reservoirs, huff-n-puff is the 

most suitable option and due to poor injectivity because of the tight nature of the matrix, not many EOR 

options are recommended except CO2 and hydrocarbon gas injection. 

These physics-informed flow responses are presented in the form of dimensionless type curves in log-

log plots that generalizes the effects of reservoir fluid types, reservoir rock properties, hydraulic fracture 

design, EOR type, and the EOR operational design for any tight oil reservoir. For the first time in the oil 

industry, a detailed set of smart physics-informed compositional dimensionless type curves for 
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unconventional EOR applications are presented, and lastly, a generalized set of dimensionless type curves 

diagnostics are presented for easy and quick understanding of the reservoir fluid flow response based on 

any possible combination of the reservoir, hydraulic fracture, and EOR operational characteristics. 

5.2. Typical Flow Regimes 

As discussed earlier, the proper identification and interpretation of the sequence of flow regimes are 

very important to determine the most possible flow event. The flow regimes sequence is always found 

critical for multi-fractured horizontal wells because the interpreted flow response could be because of single 

or multiple factors including reservoir characteristics or the hydraulic fracture design. In addition, the effect 

of EOR operation could also be another factor resulting in a flow response. Therefore, proper interpretation 

of each flow response is necessary. Figure 5.1 is presenting the typical flow regimes encounter from the 

hydraulically multi-fractured horizontal wells plotted on a log-log scale.  

 
Figure 5.1 Schematic of typical flow regimes sequence encounter for a hydraulically multi-fractured horizontal well in a 

homogeneous reservoir 

The early fracture boundary dominant flow (unit slope on a log-log plot) may occur for the light 

and volatile reservoir fluid types with high compressibility to represent the early pseudo-steady state flow. 

This effect is noticed when the flow transient reaches the hydraulic fracture boundaries that act as a no-

flow boundary. Similarly, early bilinear fracture flow is a common observation with the quarter slope on a 
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log-log scale for hydraulic fractures with greater fracture half-length than the fracture height. The flow is 

called bilinear because two linear flow behaviors occur simultaneously i.e., a linear flow from matrix to 

fracture and the linear flow from fracture to a wellbore.  

Similarly, an early linear flow with a half slope may occur for the infinite fractures with higher 

effective fracture permeability and fracture conductivity such that the pressure distribution in the entire 

fracture is theoretically found equal. During the early time flow region, after early linear flow, early radial 

flow is another flow regime that could be observed with zero slopes on the same scale only when the 

hydraulic fractures are far apart. Early radial flow occurs right after the early linear flow, and it ends as 

soon as the flow interference between two consequent fractures starts.  

During the middle time region, the compound linear flow with a half slope may be observed 

representing the interference of fluid flow from multiple fractures. This flow type is only possible with 

larger well spacing in the same flow region and it lasts as soon as the flow transients from different wells 

interfere with each other.  

Lastly, zero and unit slopes are possibly observed representing the late radial and boundary 

dominant flow regimes, respectively. The late radial flow can only be observed in an undeveloped field or 

a field with wells drilled very far apart because this flow regime requires an extremely long time to develop 

without any pressure transient interference. While the boundary dominant flow occurs due to pseudo-steady 

state flow in the late time region when the pressure transient hits any type of no-flow boundary including 

sealing fault, or the no-flow caused due to nearby producing wells. Further details on the discussed 

observations are listed in Table 5.1. 
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Table 5.1 Flow regimes for multi-fractured horizontal wells 

Flow Regime Slopes Event 

Early Fracture 

Boundary Dominant 

Flow 

Unit Slope 

Early pseudo-steady state flow occurs, with lighter/ volatile reservoir fluid 

type having high compressibility when the flow transient reaches the 

fracture boundaries that act as no-flow boundaries. This effect is only 

dominant in early time with higher hydraulic fracture conductivity and 

fractures size causing hydraulic fractures to behave as a tank and that causes 

pressure in the SRV region to decrease at the same. 

Early Bilinear 

Fracture Flow 

Quarter 

Slope 

Bilinear fracture flow occurs in hydraulically fractured horizontal wells 

with finite fracture conductivity and when Xf > Hf. In this flow regime, two 

types of linear flow occur one from the matrix to the fracture and one from 

the fracture to the wellbore. 

Early Linear Flow Half Slope 

Linear fracture flow occurs in hydraulically fractured wells when the 

conductivity of the fracture is infinite. In this situation, the permeability of 

the fracture is so high that the pressure throughout the fracture is constant. 

Early Radial Flow 
Zero 

Slope 

It would be observed after the end of the Early Linear Flow i.e., linear flow 

from matrix to fractures, but before the fractures start interfering with each 

other. It is only seen if the fractures are far apart and are not likely to be 

observed with the close fracture spacing. 

Compound Linear 

Flow 
Half Slope 

Once the fractures have interfered with each other, compound linear flow 

may be observed. It is defined by the flow from an outer zone towards the 

region stimulated by the fractures. This can be observed in fields where well 

spacing is sparse. However, with close well spacing, it will not be observed 

before interference from adjacent producing wells occurs. 

Late Radial Flow 
Zero 

Slope 

This flow regime will only be observed if the well exists all alone, in an 

undeveloped field, and would require an extremely long time and area to 

develop in tight unconventional formations. As such, it is unlikely to be 

observed in practice. 

Boundary Dominant 

Flow 
Unit Slope 

Pseudo-steady state (PSS) flow occurs during the late time region when the 

outer boundaries of the reservoir are all no-flow boundaries. This includes 

not only the case when the reservoir boundaries are sealing faults, but also 

when nearby producing wells cause no-flow boundaries to arise. During the 

PSS flow regime, the reservoir behaves as a tank. The pressure throughout 

the reservoir decreases at the same, constant rate 

  

https://www.ihsenergy.ca/support/documentation_ca/WellTest/content/html_files/reference_materials/general_concepts/permeability.htm
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5.3. Smart Physics Informed Dimensionless Type Curves for Primary Recovery 

Starting with J.J. Arps’s empirical Decline Curve theory explained in the 1940s, a comprehensive set 

of equations was introduced defining the exponential, hyperbolic, and harmonic declines (Arps, J.J., 1945). 

The concept was further investigated by multiple researchers for their specific needs and defined 

circumstances. Brons and Miller in the early 1960s (Brons, F. and Miller, W.C., 1961) Fetkovich in the late 

1980s (Fetkovich, M.J., et al., 1987) applied constant pressure solution to the diffusivity equation and after 

several realizations, claimed that the exponential decline curve successfully represents the single phase, 

incompressible fluid flow from a closed/ finite system. It was a breakthrough moment for the industry to 

find out that decline curve analysis (DCA) is more than an empirical curve fitting method. Fetkovich further 

extended his work and introduced dimensionless type curves to enhance the application of DCA that is 

conventionally being used for the near-well bore reservoir permeability and the wellbore skin measurements 

analytically. Fetkovich’s methodology provides a combined solution for the early-time region and the late-

time region that represent the transient flow and the boundary-dominated flow, respectively, that were 

originally introduced by Arps in his decline curve theory.  

The Fetkovich type curve presenting the early-time region characterizes an infinite-acting reservoir that 

provides a constant-pressure analytical solution of transient flow equations, while the late-time data is 

determined through Arps’s decline curves using boundary-dominated flow equations based on empirical 

exponential, hyperbolic, and harmonic decline curve solutions (Fetkovich, M.J. 1973). During the mid-

1990s, Doublet and Blasingame introduced a theoretical basis for combining transient and boundary-

dominated fluid flow for the pressure transient solution to the diffusivity equation (Doublet, L.E. and 

Blasingame, T.A. 1995). After several advancements, the dimensionless type curves become a routine 

practice for reservoir characterization through reservoir fluid flow behavior analysis. 

For a horizontal well with multiple fractures, the dimensionless type curves are represented on a log-

log scale as dimensionless flow rate (qD) versus dimensionless time (tDxf) (Gringarten et al., 1974; Chen and 

Raghavan, 1997). The equations for dimensionless liquid rate and time are shown below; 
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𝑞𝐷𝑜 =
141.2 𝑞 𝐵 𝜇

𝑘𝑆𝑅𝑉  ℎ (𝑃𝑖 − 𝑃𝑤𝑓)
𝐸𝑞. 5.1 

𝑡𝐷𝑥𝑓 =
0.00633 𝑘𝑆𝑅𝑉 𝑡

∅ 𝜇 𝐶𝑡 𝑥𝑓
2 𝐸𝑞. 5.2 

Similarly, the dimensionless gas rate and time equations are given below; 

𝑞𝐷𝑔 =
1.417 × 106 𝑞 𝑇

𝑘𝑆𝑅𝑉  ℎ (𝑃𝑝𝑖
∗ − 𝑃𝑝𝑤𝑓

∗ )
𝐸𝑞. 5.3 

𝑡𝐷𝑥𝑓 =
0.00633 𝑘𝑆𝑅𝑉  𝑡𝑎

∗

∅ 𝜇 𝐶𝑡 𝑥𝑓
2 𝐸𝑞. 5.4 

where; q is the reservoir fluid flow rate, B is the formation volume factor, µ is the produced fluid viscosity, 

kSRV is the permeability of the stimulated reservoir volume, h is the net pay thickness, T is the reservoir 

temperature, Pi and Pwf are the initial and bottom hole flowing pressure, respectively, t represents time, ta 

is the modified pseudo-time to account for slippage effect for the gas production, similarly P*
pi and P*

wf 

represent the modified pseudo-pressure considering the slippage effect while gas production at initial 

conditions and the wellbore flowing pressure, respectively. Lastly, Ø is the formation porosity while Ct and 

xf represent total compressibility and the fracture half-length, respectively.  

A huge database is generated using numerical simulation (as discussed in chapter 04) for the 

physics-informed dimensionless type curves database development. The subject database is developed 

using an isothermal and homogeneous mechanistic reservoir model equipped with a single horizontal well 

aided with a single staged, triple clustered planer hydraulic fracture. The database is developed using 

multiple simulation scenarios considering a defined range of reservoir fluid types, reservoir matrix 

characteristics, hydraulic fracture design parameters, and multiple operational designs. 

Figure 5.2 to 5.4 are presenting the combination of dimensionless type curves for different reservoir 

fluid types, namely FT1 to FT7 representing lighter to heavier fluid types, respectively (further details on 

fluid types are provided in chapter 3). It is noticeable that the type curves become leaner as the fluid type 



105 
 

becomes heavier and from the positioning perspective, the curves vertically shift upward as the reservoir 

fluid becomes heavier. Apart from the reservoir fluid types, the effect of different reservoir matrix porosity 

is also prominent in Figure 5.2 such that the type curves shift horizontally towards the left for increasing 

reservoir matrix porosity. The similar effects of hydraulic fracture half-length are shown in Figure 5.4. The 

overall effect of porosity and fracture half-length is similar on type curves shape and their placement as 

both provide near wellbore and near hydraulic fracture reserves to produce.  

 
Figure 5.2 Typical dimensionless type curves for a multi-fractured horizontal well showcasing the effect of different reservoir 

fluid types and reservoir matrix porosity. 

For all scenarios, early-time linear flow is a common observation represented by ½ slope that 

depicts the in-situ fluid flow from the reservoir matrix to the hydraulic fractures. Also, the bilinear flow, 

representing fluid flow from matrix to fracture and the flow from fractures to the wellbore, is a common 

observation for long horizontal wells with large hydraulic fractures. The impact of fluid flow from fractures 

would not be significant for the smaller fractures. Similarly, late-time boundary dominant flow represented 

through unit slope is another common observation regardless of the reservoir characteristics and the 

hydraulic fracture design as well as the fluid type. In addition to the prior observations, Figure 5.3 and 

Figure 5.4 represent the effects of hydraulic fracture half-length and conductivity on the dimensionless type 
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curves shape and their shifts both vertically and horizontally. A detailed discussion on the slopes of every 

individual flow region according to the reservoir formation and hydraulic fracture characteristics is 

presented in the later section. 

 

Figure 5.3 Typical dimensionless type curves for a multi-fractured horizontal well showcasing the effect of different reservoir 

fluid types and hydraulic fracture half-length. 

 

Figure 5.4 Typical dimensionless type curves for a multi-fractured horizontal well showcasing the effect of different reservoir 

fluid types and hydraulic fracture conductivity. 
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5.4. Unconventional Enhanced Oil Recovery – Fluid Flow Response 

Starting from the primary recovery fluid flow behavior and their possible responses for the closed 

boundary reservoir system with a horizontal well aided with multiple fractures, the next step is to apply 

EOR application such that to improve the oil recovery. Figure 5.5 represents the operational design 

schematic that initiates with primary recovery followed by injection and soaking. Finally, the producer is 

kept in production for the enhanced oil recovery until the set economic limits. Every operator follows a 

different operational design such that after a certain level of primary recovery based on the well flow 

performance or the economic limits, the EOR application is initiated that starting with the EOR solvent 

injection. The injection period is a critical step that depends on the injection fluid volume, injection rate, 

and maximum injection pressure. The injection pressure typically ranges between 75 to 85% of the initial 

or the current average reservoir pressure such that to avoid hitting the formation fracture pressure. 

 
Figure 5.5 Typical Enhanced Oil Recovery operational design 

It is obvious from the prior discussion and the observations made in Figures 5.2 to 5.4 that the 

reservoir fluid types play an important role in reservoir fluid flow performance. Therefore, it is important 

to review the effects of EOR applications under different circumstances, most importantly with different 

reservoir fluid types. Apart from the fluid type, the hydraulic fracture design including hydraulic fracture 

half-length, height, and fracture conductivity play important roles. Figure 5.6 to 5.7 are presenting the well 

flow performance (flow rate over time) under the primary recovery mechanism and overlaid by enhanced 

oil recovery through CO2 injection after 2 years of primary recovery. There are multiple numerical 

simulation cases are presented in the figure for different reservoir fluid types. Keeping in mind that the 

presented examples are only included for the workflow demonstration with a single Huff-n-Puff cycle that 

shows limited incremental oil recovery while the multiple cycles provide a considerable trapped volume of 
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in-situ oil that moves out of their tiny pore spaces because of back-and-forth CO2 vaporization and 

condensation until multi-contact miscibility is achieved. The following results conclude that every 

individual reservoir fluid type shows a non-unique response as the phenomenon of achieving multi-contact 

miscibility is not the same with different reservoir oil compositions. In a nutshell, medium-quality oil 

comparatively shows the highest oil recovery because of the optimum effect of achieving miscibility, oil 

swelling, and viscosity reduction. However, a typical heavy oil shows minimal response because of the 

least chances of CO2 miscibility.  

 
Figure 5.6 Comparative primary and EOR oil flow 

performance for different reservoir fluid types 

 
Figure 5.7 Comparative primary and EOR cumulative oil 

recovery for different reservoir fluid types 

5.5. Compositional Dimensionless Type Curves for Unconventional EOR 

Using the same approach as discussed in the prior section for the dimensionless type curve generation 

for the primary recovery through the modified Fetkovich approach, the type curves are further extended for 

the unconventional EOR. For the EOR section, the type curves response (shape, position, and slopes) is 

found non-unique as the function of reservoir fluid type and reservoir petrophysical characteristics as well 

as the hydraulic fracture design. The EOR type curve response also includes an additional controlling factor 

i.e., EOR operational design, mainly consisting of EOR solvent type, injection volume, and the soaking 

time. In addition, EOR application initiation timing would also impact the shape and the slopes of the type 

curves. Figure 5.8 is presenting a few examples of physics based UEOR dimensionless type curves as the 

function of reservoir fluid type and the hydraulic fracture half-length. The responses for each parameter are 

found noticeably different that are generalized and discussed in the following section. 
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Figure 5.8 Compositional dimensionless type curves representing oil flow behavior as the function of hydraulic fracture half-

length, and the reservoir fluid types for both primary and EOR recovery. Individual plots are showing the effect of fracture 

half-lengths for multiple fluid types i.e. (A) Fluid Type 1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid 

Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. Fluid types 1 to 7 is characterized as lighter to heavier hydrocarbon oil. 
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5.6. Smart Physics-Informed Compositional Dimensionless Type Curves - SPiC TCD 

Using the workflow as presented in Figure 1.1, a collection of numerical simulation-based EOR 

responses for all possible circumstances are generated that are mandatory for developing an unconventional 

tight oil reservoir through a multiple-fractured horizontal well. The EOR responses are designed to be 

evaluated through Rate Transient Analysis (RTA). In this section, all-possible RTA-based Smart Physics-

Inspired Compositional Dimensionless Type Curve (SPiC TCD) are presented for the Oil production and 

the associated solution gas production in a generalized format to be used by an end-user for a quick and 

effective primary and UEOR performance match and incremental recovery predictions.  

Description of an individual set of SPiC dimensionless type curves for both enhanced oil and associated 

gas recoveries are given below. It is important to note that the ensuing examples are illustrative of SPiC 

Dimensionless Type Curves for CO2 and hydrocarbon gas EOR, however, the defined approach is not only 

limited to these types of unconventional enhanced oil recovery applications. 

Figure 5.9A: SPiC TCD for oil recovery with vertically downward shift for heavier to lighter reservoir fluid 

type. The slopes range from ½ to unit slope for the primary recovery while the EOR slopes vary between 

half slope to as high as 2 slope for different types of reservoir fluid types.  

Figure 5.9B: SPiC TCD for oil recovery with a horizontal shift towards left for increasing reservoir porosity. 

The slope remains unchanged for the primary recovery, i.e., unit slope, while the EOR slopes vary between 

unit slope, i.e., for higher matrix porosity, to as high as greater than 2 slope for the smaller porosity values.   

Figure 5.9C: SPiC TCD for oil recovery with vertically downward and horizontally towards left shift for 

increasing hydraulic fracture half-length. Slopes remain unchanged for the primary recovery, i.e., ½ slope, 

while the EOR slopes vary between unit slope, i.e., for smaller half-length, to as high as greater than 2 

slopes for the larger half-length values. Also, the TCs shape becomes leaner for increasing fracture half-

length.  
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Figure 5.9D: SPiC TCD for oil recovery with vertically downward shift for increasing hydraulic fracture 

height. The slopes range from ½ to unit slope for the primary recovery while the EOR slopes vary between 

unit slope to as high as over 2 slope for increasing hydraulic fracture height.  

Figure 5.9E: SPiC TCD for oil recovery with vertically downward shift for increasing hydraulic fracture 

conductivity. The slopes range from ½ to unit slope for the primary recovery while the EOR slopes vary 

from unit slope to as high as over 2 slope for increasing hydraulic fracture conductivity.  

Figure 6.10A: SPiC TCD for associated gas recovery with counterclockwise shift for lighter to heavier 

reservoir fluid type. The slopes range from unit to ½ slope for the primary recovery while the EOR slopes 

vary between half slope to as high as 2 slope for different types of reservoir fluid types.  

Figure 5.10B: SPiC TCD for associated gas recovery with a horizontal shift towards left for increasing 

reservoir porosity. The slope remains unchanged for the primary recovery, i.e., unit slope, while the EOR 

slopes vary between unit slope, i.e., for higher matrix porosity, to as high as greater than 2 slope for the 

smaller porosity values. 

Figure 5.10C: SPiC TCD for associated gas recovery with vertically upward and horizontally towards left 

shift for increasing hydraulic fracture half-length. The slopes range from unit to ½ slope for the primary 

recovery while the EOR slope for the associated gas recovery is found greater than 2 slope for a variety of 

hydraulic fracture half-lengths.  

Figure 5.10D: SPiC TCD for associated gas recovery with vertically downward shift for increasing hydraulic 

fracture height. The slopes range from ½ to unit slope for the primary recovery while the EOR slopes vary 

from unit slope to as high as over 2 slope for increasing hydraulic fracture height.  

Figure 5.10E: SPiC TCD for associated gas recovery with vertically downward shift for increasing hydraulic 

fracture conductivity. The slopes range from Half to Unit slope for the primary recovery while the EOR 

slopes vary from unit slope to as high as over 2 slope for increasing hydraulic fracture conductivity.   
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 SPiC TCD Placement Shift Rate Transient Analysis 

A. 

  

B. 

  

C. 

  

D. 

  

E. 

  
Figure 5.9 UEOR Smart physics-inspired compositional dimensionless type curves for oil production from tight oil reservoir 

through multi-fractured horizontal wells. Different type curves behaviors and RTA analysis are shown for the response of 

(A) Reservoir Fluid Types, (B) Reservoir matrix porosity, (C) Fracture half-length, (D) Hydraulic fracture height, (E) 

Hydraulic fracture conductivity  
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 SPiC TCD Placement Shift Rate Transient Analysis 
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Figure 5.10 UEOR Smart physics-inspired compositional dimensionless type curves for associated hydrocarbon gas 

production from tight oil reservoir through multi-fractured horizontal wells. Different type curves behaviors and RTA 

analysis are shown for the response of (A) Reservoir Fluid Types, (B) Reservoir matrix porosity, (C) Fracture half-length, 

(D) Hydraulic fracture height, (E) Hydraulic fracture conductivity 



 
 

 

 

 

6 
PHYSICS-INSPIRED PROXY MODELS 

DEVELOPMENT 

Proxy model applications are getting routine in the oil industry especially in reservoir engineering 

applications as an alternative to computationally expensive numerical reservoir simulation. However, well-

trained proxy models are a good approach to save computational run time but their accuracy as per the 

physics-informed governing laws is mandatory for billion-dollar decisions and reservoir developments. In 

this chapter, a systematic approach and steps are discussed initially to generate random samples, for a 

numerical simulation-based comprehensive data library, using a physics-inspired design of experiment and 

the post-training physics-informed performance and quality check through detailed sensitivity analysis. 
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6.1. Introduction  

Numerical modeling and simulation are established techniques that have been used in the oil industry for reservoir 

development, uncertainty analysis, and optimization of many processes in various areas such as engineering, geology, 

geophysics, and thermodynamics. Numerical modeling is a mathematical representation of physics-based complex 

problems within the defined set of limitations. However, for many grid blocks, complex processes such as 

compositional modeling, and EOR mechanisms with multiple fluid components, the numerical simulation process is 

computationally expensive. Therefore, the application of computationally efficient Proxy Models (PM) is being 

performed in recent years as a supportive and reliable alternative for the numerical simulation approach. Successful 

application of proxy models is only reasonably acceptable if the trained proxy models comply with the physics and 

the meaningful trends for different physics-based systems. Various terminologies referred to as Proxy models are 

surrogate models, meta-models, etc. (Bahrami, P., et al., 2022), as they are essentially deployed for similar purposes. 

Proxy models can be defined as an input-output relationship (formulas, equations, etc.) that is capable of 

interpolating within a range of data as an approximation. In the reservoir engineering domain, Proxy models shall be 

defined as a representative model for a comprehensive numerical simulation that can be utilized and upscaled as a 

reliable alternative for a full-field reservoir simulation model and reduce execution time (compared to the numerical 

simulation’s approach when obtaining similar solutions).  

To fit/train a PM, a decent amount of representative data for all reservoir model parameters is provided. After 

the Proxy models infer the input-output relationship within the provided range of data, it is ready to be deployed as a 

reliable alternative to the specific numerical simulation settings/contexts for the prediction of the output. The most 

important benefit of using proxy models is their execution speed after inferring the input-output relationships. Proxy 

models in reservoir engineering are used for: sensitivity analysis of uncertain reservoir static/dynamic parameters, 

history matching and probabilistic forecasting for field development/evaluation, and full field development planning 

with less time for decision-making. 

For most representative ranges of critical parameters in almost all reservoir engineering processes and to 

ensure interference between them, Proxy models’ input-output relationship is commonly inferred through random data 

sampling using design-of-experiment techniques (such as Latin Hypercube Sampling) to cover the most possible 

sampling ranges utilizing a reasonable number of sample size. 
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6.2. Proxy Models Quality  

The quality of any Proxy model depends on several factors including the selection of input parameters, selection 

of algorithms for the proxy models, data quality used for the model training, training techniques and efficiency, and 

various domain-expertise interpretation requirements. 

Due to numerous uncertainties in reservoir engineering, domain expertise play an important role to define an 

initial skimming on all input parameters (this falls into both the selection of input parameters and the domain-expertise 

interpretation requirements as mentioned above).  

In this study, the input parameters are divided into two main categories: static parameters (i.e., reservoir pressure, 

porosity, permeability) and dynamic parameters (i.e., bottom hole flowing pressure, time, and numerically encoded 

case types). Within the “selection of algorithms” aspect, multiple algorithms for proxy models have been applied in 

reservoir engineering, including polynomial regression, surrogate models, statistical models, and machine learning/ 

deep learning models. In this study, deep-learning models as ANNs are implied, trained, validated, and deployed using 

the static and dynamic parameters as aforementioned. 

Within the training techniques and efficiency aspect, the following quality controls are applied in this study to 

make sure the Proxy models comply with the pre-defined and presumable physical conditions in the numerical 

simulation settings. They are listed below: 

i. Train a portion of the prepared dataset (i.e., train set) until an acceptable R2 and Mean Absolute Error 

(MAE) are obtained. Different combinations of layers and weights-bias initializations are tested. 

ii. Validate and calibrate the Proxy models’ prediction performance using the validation set. It is common 

to execute training and validation (i.e., i and ii) simultaneously.  

iii. Monitor and record the optimal proxy models along the training and validation processes.  

iv. Test the proxy models' prediction performance using the test set (i.e., simulation cases that do not exist 

in the training and validation sets, commonly referred to as a blind-test set). 

v. Conduct sensitivity analyses for multiple reservoirs and hydraulic fracture parameters to establish 

meaningful trends following physical laws (physical compliance, referred to the domain-expertise 

interpretation requirements). 
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6.3. Deep Neural Network Architecture & Proxy Model Generation  

Neural network development is a sophisticated process with multiple steps. A schematic of a typical Deep Neural 

Network (DNN) architecture and the proxy model generation workflow is previewed in Figure 6.1. In this study, a 

supervised machine learning technique using DNN architecture. DNNs can recognize and construct complex non-

linear patterns via their layers’ weights and biases via the feed-forward procedure. Learning and inferring from data 

inside DNNs are conducted by a backpropagation procedure. The backpropagation procedure in DNN is executed 

during the training and validation to minimize the pre-set error/loss metrics. One critical component inside the 

backpropagation procedure is gradient descent which iterates to obtain the optimal values of weights and biases in the 

layers, from which the DNN produces the minimum values of the loss metric(s). (Ahmad, F., et al., 2010; Wang, J., 

et al., 2017). 

 

Figure 6.1 Deep neural network architecture and model generation workflow 

6.3.1. Data Sensitivity, Characterization, & Preparation 

The initial step adopted in this process is the selection of the most impactful reservoir parameters that control the 

reservoir fluid in-flow performance including reservoir pressure, matrix porosity, and permeability. Secondly, the 

hydraulic fracture parameters are short-listed that support the reservoir fluid in-flow performance including hydraulic 

fracture design parameters such as fracture half-length, effective permeability, fracture height, and width, etc. Fracture 
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conductivity is another important parameter that extensively defines the fluid intake from the reservoir and out-flow 

towards the wellbore. The dynamic operational parameters including bottom-hole flowing pressure and the injection 

of an EOR solvent (for the EOR cases) are also important parameters that are used in this study. Table 6.1 summarizes 

all the parameters and their ranges applied in this study to generate proxy models. Apart from the meaningful 

parameters representing reservoir characteristics, hydraulic fracture, and the operational design parameters, a few 

pseudo-encoded parameters are also included that helped the ANN to distinguish the different characteristics of the 

processes. Essentially, the proxy models are generated for a couple of categories representing natural drive 

mechanisms and the EOR. Each category is further divided, as listed in Figure 6.2. Generating the oil and gas flow 

rate well-trained proxy models overall cover the entire flow performance in multiple ways, such as GOR, cumulative 

oil production, incremental oil recovery, etc.  

 

Figure 6.2 DNN-trained proxy model categories 

Table 6.1 Parameters and their ranges used for the DNN training and proxy models development 

Parameters 
Parameters Used for 

Range 
Primary Recovery Models EOR Models 

Initial Reservoir Pressure   4000 – 12000 Psi 

Reservoir Porosity   2 – 15 % 

Reservoir Permeability   0.0001 – 0.1 mD 

Reservoir Fluid Type   Light to Medium Quality 

Fracture Conductivity   0.02 – 50 mD.ft 

Fracture Half-Length   25 – 300 ft. 

Fracture Height   10 – 120 ft. 

Solvent Injection Volume   0.2 – 910 MMScf 

Soaking Time   2 – 30 Days 

Bottom Hole Flowing Pressure    

Time    

Case Type (Pseudo Parameter)    

EOR Type (Pseudo Parameter)    

Oil Flow Rate    

Gas Flow Rate    

CO2 Flow Rate    
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For each of these parameters, a field-derived practical variation is considered to generate a database that shall 

cover all possible scenarios for the field applications. For the models training fixed reservoir property value is used as 

the localized mechanistic simulation model is used for the entire dataset development. Therefore, an end-user would 

have to come average-out / scale up the actual reservoir property to be used in the proxy model for closed possible 

prediction. A few most adopted averaging methods are harmonic, geometric, arithmetic, and quadratic averaging 

methods (Ahmed U., et al., 2016; Jarvie, D.M., et al., 2007). The mathematic representation of these averaging 

techniques is given below: 

   𝑥𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = [
1

𝑛
∑

1

𝑥𝑖

𝑛

𝑖=1
]
−1

𝐸𝑞. 6.1 

𝑥𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐    = [∑𝑥𝑖

𝑛

𝑖=1

]

1
𝑛

𝐸𝑞. 6.2 

𝑥𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐   = 
1

𝑛
∑

1

𝑥𝑖

𝑛

𝑖=1
𝐸𝑞. 6.3 

𝑥𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐  = [
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
]

1
2

𝐸𝑞. 6.4 

where xi is the value of the subject parameter at the ith reference location in a reservoir. 

It is important that the physical meaning of each of the considered input parameters are unique and important, and the 

magnitude of one input parameter in the dataset is drastically different from the others. Therefore, data normalization 

is performed to ensure proper weightage distribution on all input parameters according to their scope in the proxy 

models during training/validation processes. There are several normalization techniques such as Min-Max 

normalization, z-score normalization, decimal scaling normalization, etc. In this study, the Min-Max normalization 

technique is adopted (Al Shalabi, L. and Shaaban, Z., 2006; Mohamad, I.B. and Usman, D., 2013; Saranya, C. and 

Manikandan, G., 2013). The mathematical expression of the technique is shown below: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝐸𝑞. 6.5 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 × (𝑚𝑎𝑥 − 𝑚𝑖𝑛) + 𝑚𝑖𝑛 𝐸𝑞. 6.6 
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 × (𝑚𝑎𝑥 − 𝑚𝑖𝑛) + 𝑚𝑖𝑛 𝐸𝑞. 6.7 

Where x is the absolute value of the subject parameter while xmin and xmax are the minima and the maximum 

values of the subject parameter used in the dataset for the model preparation, respectively. For scaling, the min and 

max are normalized to values between these limits. In this study, 0 and 1 are the min and the max limits. 

6.3.2. Feature Importance Analysis 

Feature Importance Analysis refers to the characterization of all perspective features that control the performance 

of the output parameter. One step further, this study provides the physical meaning of the important features that 

control the fluid flow from a reservoir in a defined reservoir and a hydraulic fractured system.  

In this work, Feature Importance Analysis is conducted end-to-end within the modeling workflow, i.e., during 

both pre-processing and post-training steps. During pre-training, Feature Importance Analysis is determined using 

single variate statistics and R2 correlation to determine correlations between the output and all individual input 

parameters. Based on the single variate statistics, all prospective features are scanned, and profound features are 

extracted (presumably that the impact of the input features on the output is mutually independent). During post-

training, feature importance is determined through SHapley Additive exPlanations (abbreviated as SHAP). SHAP, a 

model explain-ability technique, is designed based on the game theoretic approach. It explains machine learning/ deep 

learning models according to the optimal allocation from local explanations of the input features, given a sufficient 

sample of data and the corresponding pre-proxy machine learning/deep learning model. Consequently, SHAP is 

initiated and executed to leverage the use of available proxy modeling techniques and, because of its optimal allocation 

nature, to interpret the interference between the impact of input features to the output. The benefits of SHAP for post-

training Feature Importance Analysis mitigates the presumptions during the pre-processing Feature Importance 

Analysis and allows domain expertise to reflect the physical meaning of the important features.  

Figures 6.3 presents the feature importance ranking for all five models trained during pre-processing, and figures 

6.4 to 6.8 show the post-training feature importance interpretation post-processing. The following figures indicate 

different interpretations in terms of feature importance. Figure 6.3 merely indicates a preview and naive feature 

ranking between all modeled features and the output since no trained model and no feature interference contribute to 

the evaluation. In contrast, figures 6.4-6.8 provide a significantly detailed feature ranking, in terms of: 
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1. One feature’s value distribution  

2. One feature’s degree of impact on the output, given the changes in its value and its interference with the others  

3. One feature’s uniformity in impact on the output  

For example, the feature “Days” has the highest and less uniform impact on the output (since the range of impact 

on the output from “Days” is highly diverse when this feature’s value is low and greatly reduces when this feature’s 

value is higher). The higher the value of the feature “Days” is, the lower impact it has on the output The feature “Fluid 

type” has the 2nd highest and more uniform impact on the output (since the range of impact on the output from “Fluid 

type” is similar regardless of the low/high values of this feature). The higher the value of “Fluid type” is, the higher 

impact it has on the output. Similar explanations can be conducted for the other features in Figures 6.4-6.8 using the 

understandings 1-3 as aforementioned.   

 

Figure 6.3 Single variate feature importance for all proxy models 
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Figure 6.4 Post-training feature importance – Oil flow rate for 

the primary model 

 
Figure 6.5 Post-training feature importance – Gas flow rate 

for the primary model 

 
Figure 6.6 Post-training feature importance – Oil flow rate for 

the GOR model 

 
Figure 6.7 Post-training feature importance – Gas flow rate 

for the EOR model 

 
Figure 6.8 Post-training feature importance – CO2 flow rate for the EOR model 
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6.3.3. Data Split for Training, Testing, and Validation 

The next important step after data preparation and pre-training feature importance determination is to split the 

prepared data into training, validation, and blind-test sets. In this study, all models are trained using 75% of the 

prepared data while the remaining 25% of the data is used for validation and blind test. Since approximately a quarter 

million data points/events are prepared in this study, a slight shift in the split ratio (i.e., 80%/20%, or 70%/30%, or 

90%10%) does not heavily impact the performance of the proxy models. 

6.3.4. Neural Network Architecture  

The next step is to develop an overall ANN architecture by defining the input layer followed by multiple hidden 

layers, and an output layer. Figure 6.9 is representing a typical ANN architecture that follows the following steps: 

 

Figure 6.9 Typical neural network architecture 

Artificial neural networks can utilize multiple hidden layers; however, the selection of the hidden layers is 

problem specific. An excessive number of hidden layers may not significantly outperform a reasonable number of 

hidden layers. In addition, it is equally important to choose the proper number of nodes in the hidden layers. Multiple 

nodes are beneficial to reduce the error between the predicted and the actual values. Like the number of hidden layers, 

an excessive number of nodes may not outperform a reasonable number of nodes. Therefore, the number of hidden 

layers and nodes in an ANN shall be carefully considered. (Chen, H., et al., 2022; Shen, H., et al., 2008; Stathakis, D, 

2009). In this study, after multiple realizations through a trial-and-error process, five dense hidden layers are defined 
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for all models with various neurons for accurate computation of ANN’s performance followed by an activation 

function. The activation functions are responsible for the feed-forward procedure (de Campos, P.V., et al., 2019; 

Warner, B. and Misra, M., 1996). A variety of activation functions is used in different ANN algorithms such as 

Sigmoid, Tanh, Soft-max, Rectified Linear Unit (ReLU), and Max-out functions. In this study, the ReLU function is 

used because of its superiority in the ANN’s performance compared to the other activation function variants. 

6.3.5. Learning / Decay Rate and Model Optimization 

Over- and/or under-fitting are common issues that may happen because of the insufficient or excessive 

number of training samples, the number of nodes, and the hidden layers defined in an ANN architecture (Chen, H., et 

al., 2021). Over-fitting refers to the scenario that a machine learning/deep learning model fails to generalize the input-

output relationship due to its over-detailing into all samples in the trained set. Under-fitting means a model fails to 

infer the intrinsic complexity of training and validation sets due to its under-detailing into all samples in the trained 

set (Smith, L.N., 2008). Therefore, modifying the learning rate (i.e., referred to as the learning rate decay model) is 

required to train a neural network in this study. Modifying the learning rates is conducted to ensure the optimization 

to approach the minima and not diverge from the minima. In this study, values between 5×10-3 and 5×10-4 are taken 

as the initial learning rate and decay rate, respectively. Eventually, the model optimization step is defined as the last 

constituent step of the model architecture for an accurate ANN model prediction. Several optimization techniques can 

be selected based on the ANN architecture and the objective function. In this study, the Adam optimization technique 

is used to minimize the Mean Absolute Error (MAE). MAE loss metric determines the absolute difference between 

the actual and the predicted values taken from the dataset. The MAE function is defined in Equation 6.7.  Another 

quantitative method commonly adopted to cross-check the accuracy of the prediction is the coefficient of correlation 

(R2), shown in Equation 6.8. Table 6.2 summarizes the MAE and the R2 for all ANNs in this study. While Figures 

6.10 to 6.19 are presenting training & testing loss metrics and the ANNs’ performance cross-plots. 

𝑀𝐴𝐸 =
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 − 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒𝑖|

𝑛
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝐷𝑎𝑡𝑎 𝑃𝑜𝑖𝑛𝑡𝑠 (𝑛)
𝐸𝑞. 6.7 

𝑅2 = 1 − 
∑ (𝑍𝑖 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑍𝑖 𝐴𝑁𝑁)

2𝑛
𝑖−1

∑ (𝑍𝑖 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑍𝑖 𝑠𝑎𝑚𝑝𝑙𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2𝑛
𝑖−1

𝐸𝑞. 6.8 
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Table 6.2 Parameters and their ranges used for the DNN training and proxy models development 

 MAE Testing MAE Training R2_Testing R2_Training 

Qo – Primary Recovery 0.013 0.017 0.985 0.994 

Qg – Primary Recovery 0.016 0.021 0.987 0.994 

Qo – EOR  0.019 0.027 0.972 0.989 

Qg – EOR 0.019 0.046 0.977 0.977 

CO2 – EOR 0.017 0.046 0.955 0.973 

 

Figure 6.10 training and testing losses for Qo – primary 

recovery model 

 

Figure 6.11 DNN post-training diagnostic prediction cross-

plots for Qo – Primary recovery proxy model 

 
Figure 6.12 Training and testing losses for Qg – Primary 

recovery model 

 
Figure 6.13 DNN post-training diagnostic prediction cross-

plots for Qg – Primary recovery proxy model 

 
Figure 6.14 Training and testing losses for Qo – EOR model 

 
Figure 6.15 DNN post-training diagnostic prediction cross-

plots for Qo – EOR proxy model 
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Figure 6.16 Training and testing losses for Qg – EOR model 

 

Figure 6.17 DNN post-training diagnostic prediction cross-

plots for Qg – EOR proxy model 

 
Figure 6.18 Training and testing losses for the CO2 model 

 
Figure 6.19 DNN post-training diagnostic prediction cross-

plots for CO2 proxy model 

6.4. Limitations to Proxy Models Application  

There are a few limitations to using DNN-trained physics-informed proxy models as listed below; 

1. The DNN-trained proxy models can only be used for unconventional tight oil reservoir recovery performance. 

2. The proxy models can be used for similar geological characteristics and hydraulic fracture designs as used in 

the numerical simulation model that is used to develop the entire training dataset. 

3. All proxy models are valid to be used for the given ranges of individual reservoir rock and fluid properties, 

hydraulic fracture design, and the EOR operating design parameters. 

4. The EOR proxy models can only be applied for the CO2 and lean hydrocarbon gas injection as EOR solvents.



 
 

 

 

 

7 
PHYSICS-INFORMED PROXY MODELS QUALITY 

CHECK & CASE STUDIES 

Proxy model validation always involves certain subjectivity and is unique to the original specific problem 

and constraints applied during model training. Since the main emphasis of this study is on 

physics governing principles, it is crucial to ensure that the trained proxy models are operating and 

adhering to the physical knowledge for which they were trained. The prediction performance of the proxy 

models is presented in this chapter using both training and non-training datasets, followed by several 

actual field case studies to see how the proxy models react to the techno-economic unconventional EOR 

pilot screening. 
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7.1. Introduction 

This chapter details the most important part of the entire study. ANNs have been commonly referred to as “black 

boxes” that do not disclose explicitly the understanding of the learned correlation between the input parameters and 

the corresponding output. In this study, apart from the static input parameters, multiple dynamic parameters are also 

used that directly affect the performance of the output parameter. If the ANNs are successfully and properly trained, 

the output prediction shall comply with the physics and the governing laws because the entire data is generated using 

physics-based numerical simulation. Ideally, the relationship between the reservoir characteristics, hydraulic fracture 

design parameters, and the bottom hole flowing pressure should depict the response in the reservoir hydrocarbon flow 

rate. 

7.2. Proxy Models Prediction Performance Check Using Training Data 

Physics-based prediction performance of the trained proxy models is analyzed in multiple ways. Initially, as 

discussed earlier, a hydrocarbon reservoir is a dynamic system that is mainly been driven by the reservoir and the 

bottom hole flowing pressure (i.e., differential pressure). Before proceeding further, it is important to make sure that 

the incremental system pressure is providing meaningful and logical fluid flow response as per the physics governing 

laws. Figure 7.1 is presenting the simulated and the ANN-prediction reservoir fluid flow response as the function of 

pressure. It is important to notice that on a single pressure value, multiple fluid flow responses are obtained that 

represent the effects of the combination of different reservoir rock properties, in-situ fluid type, hydraulic fracture 

design parameters, etc. From the proxy model training perspective, the models are evaluated to be good enough to 

follow the pre-defined physics. 

To further investigate the performance of the trained proxy models as per the physics governing laws, it is 

important to first validate their performance with the training dataset to make sure the prediction is reliable with 

minimum error to further use the model for blind testing. For the training performance check, multiple sets of events 

are randomly selected from the training datasets representing different properties including but not limited to reservoir 

pressure, fluid type, reservoir matrix porosity & permeability, etc. Also, the performance validation has been done 

using the training dataset having a couple of major hydraulic fracture design parameters including fracture 

conductivity and the half-length. 
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Figure 7.1 Relationship between pressure and reservoir hydrocarbon withdrawal 

Figures 7.2 to 7.4 present the proxy models’ performance for primary recovery as a function of the reservoir and 

hydraulic fracture properties. Similarly, for the same properties, the performance plots for the EOR proxy models are 

presented in Figures 7.5 to 7.7. Using the same testing and the predicted dataset, the dimensionless type curves are 

also developed for properties as shown in Figures 7.8 to 7.10. 
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7.3. Physics-Based Proxy Models Blind Prediction Performance 

After having satisfactory predictions using the Proxy DNN models for the testing dataset, the next step is to 

perform blind tests to satisfy the proxy models' physics-based quality check using the dataset that is not used for the 

DNN models’ training or testing purposes. To satisfy the physics, multiple scenarios with different reservoir and 

hydraulic fracture parameters are considered. Figures 7.11 is presenting a systematic effect of reservoir fluid type on 

oil flow rate and the corresponding dimensionless type curves. Similarly, Figures 7.12 and 7.13 are presenting the 

effects of hydraulic fracture half-length and fracture conductivity, respectively.  

  

Figure 7.11 Blind physics-based proxy models’ performance check for reservoir fluid types  

(A) Oil flow rate (B) Dimensionless type curves 

  

Figure 7.12 Blind physics-based proxy models’ performance check for hydraulic fracture half-length  

(A) Oil flow rate (B) Dimensionless type curves 
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Figure 7.13 Blind physics-based proxy models’ performance check for hydraulic fracture conductivity  

(A) Oil flow rate (B) Dimensionless type curves 

After reviewing all the discussed performances, it is concluded that the proxy models are capable enough 

to be used for the predictions within the defined training range. As the following step of this study, the 

verified proxy models are equipped with a smart tool with a Graphical User Interface (GUI) called ‘W3H’, 

for unconventional EOR pilot screening. A detailed discussion about the smart tool, its capabilities, and a 

few case studies are presented in the following chapter. 

7.4. Case Studies 

For teaching, research, publication, and development reasons, the SPE Bleeding Edge of RTA Group 

(BERG) gathered numerous tight oil well performance data from several US-based companies; these 

datasets are now available on the SPE data repository (https://www.spe.org/en/industry/data-repository). 

Several tight oil primary recovery datasets from the subject repository are evaluated for the 'W3H' concept 

validation. Table 7.1 is a list of the subjective data for each dataset representing the individual well that 

is used in this investigation. 

The ‘W3H’ analysis tool is designed to be as simple as possible so that analysis can be performed with 

limited yet necessary reservoir and hydraulic fracture design information. The necessary reservoir 

characteristics include in-situ reservoir fluid composition, initial reservoir pressure, porosity, and average 

matrix permeability. While the primary hydraulic fracture design parameters needed for the analysis include 

https://www.spe.org/en/industry/data-repository
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fracture half-length, height, and fracture conductivity. If any of the required information is not available, 

the study would begin with the best-guess estimates using indirectly linked information.  

Table 7.1 Reservoir and hydraulic fracture information for all wells discussed in case studies 

 Well-1 Well-2 Well-3 

Field Osprey Eagle  Kite 

Formation/ Reservoir Eagle Ford Eagle Ford Eagle Ford 

Initial Res. Pressure (Psi) 5400 5000 5000 

Res. Temperature (oF) 225 235 238 

Net Pay Thickness (ft) 78 74 56.5 

Matrix Porosity (%) 6.3 6.3 5 

Water Saturation (%) 26 27 32 

Oil Saturation 74 73 68 

Oil API Gravity 37.29 35.46 43.58 

Initial GOR (Scf/Stb) 336 558 1035 

Saturation Pressure (Psi) 1211 2122 3064 

Fracture Stages  28 50 34 

Clusters per Fracture 9 9 9 

For instance, none of the datasets chosen for this study has reservoir fluid compositions available; 

nonetheless, a skilled reservoir engineer can use the API gravity as a key indicator to determine which 

reservoir fluid composition in the tool's offered fluid composition templates is the closest. Similarly, no 

information regarding the hydraulic fracture design is available except the total number of fracture stages 

and the cluster count per fracture. In this case at least one of the necessarily needed fracture design 

properties i.e., fracture height can be guessed using the formation net pay thickness as a starting point. All 

other necessary parameters that cannot be estimated using the available information will be tuned up while 

simultaneously being guessed blindly. Keeping this technique in mind, all the information needed to start 

the performance analysis is divided into three categories: information that is available, information that is 

best predicted using indirectly linked parameters, and information that is predicted blindly and tuned 

accordingly while matching the performance plots. For all case studies, the available and the required data 

for the analysis are categorically distributed as listed in Table 7.2.  
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Table 7.2 Categorical distribution of the available and the required data for the W3H analysis  

Available Certain Data 

Initial Reservoir Pressure 

Matrix Porosity 

Fracture Stages 

Clusters per Fracture 

Best Guessed Data 
Reservoir Fluid Type (Oil API Gravity) 

Fracture height (Net Pay Thickness) 

Blind Guessed Data 

(Tuning Parameters) 

Matrix Permeability 

Fracture Half-Length 

Fracture Conductivity 

7.4.1. W3H Performance Analysis  

The entire analysis is carried out primarily in three steps, starting with the collection of static and 

dynamic data followed by dynamic performance data preparation, then tuning of input parameters to get 

the closest performance match using dimensionless type curves for the primary recovery, and finally 

determining of techno-economic unconventional EOR options. The dynamic data preparation is critical; 

the correct number of fracture stages and clusters per fracture is essentially required such that to normalize 

the data as per the W3H tool’s data input format. Since there are only one stage and three clusters per 

fracture in the tool's design as explained in chapter 3 ‘Reservoir Numerical Model Development’, therefore 

the oil flow rate data must be normalized appropriately. 

7.4.2. Primary Recovery Performance Match 

Using the available well data after cleaning and normalization based on a single stage and three clusters 

per fracture, the dimensionless type-curve is matched for the primary recovery performance. Figures 7.14 

to 7.16 are showing the dimensionless type curves and the associated well performance data including Oil 

Flow Rate (Qo), and Bottom Hole Flowing Pressure (BHFP) for wells 1,2, and 3, respectively. The BHFP 

in each case is extrapolated to predict the well performance data using the W3H smart tool.  

Traditionally, using a history-matched numerical simulation model to predict well performance would 

take several hours to a few days. However, the W3H smart tool was able to make this prediction in only a 

few minutes, even with blindly guessed parameters’ tuning, and the performance match of all selected wells 
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are found to be in good agreement. Table 7.3 is presenting the complete list of input data including the 

tuned matching parameters for all three case studies. 

  

Figure 7.14 Well-1 primary recovery performance matching using the W3H Smart tool  

(A) Dimensionless type curve (B) Oil flow rate & BHFP 

  

Figure 7.15 Well-2 primary recovery performance matching using the W3H smart tool  

(A) Dimensionless type curve (B) Oil flow rate & BHFP 

  

Figure 7.16 Well-3 Primary recovery performance matching using the W3H smart tool  

(A) Dimensionless type curve (B) Oil flow rate & BHFP 
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Table 7.3 Reservoir and hydraulic fracture information for all wells discussed in case studies 

Input Parameter Well 1 Well 2 Well 3 

Initial Res. Pressure (Psi) 5400 5000 5000 

Matrix Porosity (%) 6.3 6.3 5.0 

Matrix Permeability (mD) 0.015 0.017 0.005 

Fluid Type (Ref. Figure 3.11) 4 3 1 

Fracture Half-Length (ft) 200 200 180 

Fracture Height (ft) 40 40 50 

Fracture Conductivity (mD.ft) 5 5 1 

Fracture Stages 28 50 34 

Clusters per Fracture 9 9 9 

 

7.4.3. Techno-Economic UEOR Analysis 

The next stage is to perform techno economic unconventional EOR screening by choosing a 

suitable EOR solvent and the operational design for the best oil recovery with the least amount of 

solvent injection and soaking time. The smart tool's design considered the fact that each operator 

uniquely operates their reservoir. As a result, the tool offers multiple realizations that can be tested with 

various combinations of EOR Solvent Type (available choices include CO2 or HC), EOR Solvent 

Injection Volume (available range 0.2 - 900 MMScf), and Soaking Time (available range 2 – 30 days). 

Before analyzing the selected case studies, a modified base case is created for each case study that 

is nothing more than the main recovery performance with a shut-in time, which is like the EOR solvent 

injection and soaking period, to create a fair incremental cumulative oil comparison. Before moving on 

to the EOR screening analysis, the modified base case performance for each well is compared with the 

true base case, which refers to the flow performance without well shut-in to observe the effect of 

pressure buildup. Even though there won't be much of a pressure-building impact because of the tight 

formation, limited pressure support, and isolated pressure transient effect, it would still be worthwhile 

to evaluate whether any extra barrels of oil may be produced without the use of any EOR applications. 

The primary recovery dimensionless type curves and the corresponding cumulative oil recovery 

comparisons are shown in Figures 7.17 to 7.19.  
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Figure 7.17 Well-1 Primary recovery performance with and without shutting in the producer  

(A) Dimensionless type curve (B) Cum. oil 

  

Figure 7.18 Well-2 Primary recovery performance with and without shutting in the producer  

(A) Dimensionless type curve (B) Cum. oil 

  

Figure 7.19 Well-3 Primary recovery performance with and without shutting in the producer  

(A) Dimensionless type curve (B) Cum. oil 

It can be noticed from the above figures, as expected, none of the examples demonstrate any benefit 

from shutting in the well, infect shutting the well negatively impacted the recovery performance. EOR 

application is, thus, a sensible choice to increase tight oil recovery. For instance, in this study, EOR 
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comparison is studied using CO2 as an EOR solvent. To highlight the capability of the smart tool ‘W3H’, 

multiple EOR operational designs, including the CO2 injection volume and the soaking period, are 

considered in this study as listed in Table 7.4.  

Table 7.4 EOR scenarios for different CO2 injection volume and soaking periods 

Scenarios Injection Volume (MMScf) 
Soaking Period 

(Days) 

1 250 

15 2 500 

3 750 

4 250 

30 5 500 

6 750 

The EOR dimensionless type curves and the cumulative oil recovery comparisons are shown in 

Figures 7.20 to 7.22 for all wells considered in this study. For the performance comparisons, it is very 

important to consider both, long-term, and short-term benefits. For instance, the EOR application in Well 

1 is not providing any extra barrels of oil, infect it is hurting the overall recovery in most of the scenarios 

with 15 days soaking period on a long-term comparison. However, on a short-term basis, the EOR 

application significantly boosted the oil recovery. Therefore, it can be concluded that an operator can benefit 

from the EOR application depending on its objectives based on the production timeline. There is another 

fact to keep in mind that all the presented performances are generated based on a single Huff-n-Puff cycle 

purposely to demonstrate the capabilities of the technique introduced in this work and the smart tool 

developed for the operators.  

Despite having identical recovery performance, scenarios 5 and 6 perform better when compared. 

Well 2's recovery capabilities are virtually identical to those of Well 1. However, well 3; the strongest 

candidate—shows a large increase in oil recovery across all scenarios. Therefore, depending on the 

availability of CO2 volume and the operator's flexibility for how long a well may be left idol in operation 

to give an adequate soaking period, any method could be chosen. From this study, it can be inferred that 

more CO2 injection does not always result in increased oil recovery; there is always a threshold, but 



147 
 

increased CO2 volume would aim for more in situ oil recovery. Like this, a longer soaking time would 

help the CO2 to disperse more oil. 

  
Figure 7.20 Well-1 UEOR SPiC TCD and the cumulative oil recovery comparisons using the W3H smart tool 

  
Figure 7.21 Well-2 UEOR SPiC TCD and the cumulative oil recovery comparisons using the W3H smart tool 

  
Figure 7.22 Well-3 UEOR SPiC TCD and the cumulative oil recovery comparisons using the W3H smart tool 
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7.4.4. Discussion 

It is significant to note from the analysis above that the flow performances of the subject wells 

differ from one another while being produced from the same reservoir (Eagle Ford), despite exploiting 

different formations. According to the W3H analysis, the reservoir matrix characteristics, such as matrix 

porosity and permeability, are roughly identical for the formations adjacent to the wells, but the reservoir 

fluid types are significantly different. Additionally, all wells' hydraulic fracture designs are found to be 

similar, for example, wells 1 and 2 are having the same fracture half-length, fracture height, and fracture 

conductivity. While well 3 is found to have a lower fracture conductivity but a little greater half-length and 

height. All three wells have noticeably different fracture stages, but because the production performance 

study compares normalized production based on a single-stage fracture, the fracture stage differences are 

not considered. 

The incremental oil recovery responses observed in all three wells are interesting when considering 

the reservoir and hydraulic fracture design parameters, and most notably, the reservoir fluid type. The fluid 

type is the key player among other factors. As we know, CO2 is more active for the EOR in lighter oil in 

comparison and that is why a comparatively much-improved response is observed in well 3 with the lightest 

reservoir fluid type, followed by well 2. Tables 7.5 through 7.7 summarize the incremental oil recovery 

observations, distributed in short- and long-term recovery responses. 

It is essential to keep in mind that incremental oil recovery is a time-dependent event, making the 

comparative sustainability of the incremental recovery a critical issue that must be considered when 

planning huff-and-puff-based EOR projects. Therefore, in any case, an immediate recovery boost is 

possible, but the long-term ultimate incremental recovery is not guaranteed. For instance, scenarios 1 

through 4 are viable choices for short-term recoveries, but as time passes, the ultimate oil recovery through 

EOR offers no advantages over the primary recovery. A similar behavior could be observed in well 2, while 

well 3 is far better in comparison, therefore, a single huff-n-puff cycle with any considered scenario would 
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work, however, for the other two wells, as soon as the incremental recovery performance flattens, another 

huff-n-puff cycle should be considered for long term incremental oil recovery benefits. 

Table 7.5 Short and long-term EOR incremental oil recovery comparison for Well 1  

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Short-Term 

Recovery (%) 

 

1 Month 2.56 3.06 2.51 3.30 3.62 4.13 

6 Month 6.64 7.87 6.51 8.50 9.23 10.26 

1 Year 9.43 11.11 9.35 12.20 13.23 14.45 

Long-Term 

Recovery (%) 

 

3 Years 10.91 13.66 15.03 18.81 21.98 22.34 

6 Years -9.76 -6.12 -0.83 3.47 12.08 12.21 

10 Years -19.35 -14.64 -9.93 -5.24 4.20 4.34 

Table 7.6 Short and long-term EOR incremental oil recovery comparison for Well 2 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Short-Term 

Recovery (%)  

1 Month 1.43 1.34 1.38 1.63 1.59 1.74 

6 Month 3.83 3.68 3.77 4.48 4.34 4.79 

1 Year 5.70 5.60 5.81 6.89 6.65 7.35 

Long-Term 

Recovery (%)  

3 Years 5.26 8.74 15.24 18.02 19.42 21.01 

6 Years -4.95 -0.49 8.31 11.53 18.30 20.54 

10 Years -10.85 -5.30 3.14 6.70 14.04 16.58 

Table 7.7 Short and long-term EOR incremental oil recovery comparison for Well 3 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Short-Term 

Recovery (%) 

1 Month 3.84 4.92 6.57 7.51 7.93 8.09 

6 Month 9.73 12.31 16.75 18.77 19.63 19.95 

1 Year 14.02 17.26 24.16 26.78 27.87 28.27 

Long-Term 

Recovery (%) 

3 Years 22.83 26.38 47.70 50.79 56.84 57.25 

6 Years 17.82 22.09 45.65 49.21 58.10 58.76 

10 Years 15.95 20.31 44.97 48.62 57.63 58.44 

 

 



 
 

 

 

 

8 
W3H ‘Software Package’ – USER MANUAL 

The Where, When, What, and How of injecting EOR solvent for the best techno-economic incremental oil 

recovery are typical issues that are addressed by the smart tool ‘W3H’, which was created for the 

unconventional tight oil EOR pilot selection. W3H is a Physics-based alternative to computationally 

expensive numerical simulation tools that provide answers in a few hours instead of months to narrow 

down the list of potential UEOR pilot wells, to be further investigated in detail, based on the wells 

performance history, regional formation maturity, hydraulic fracture design, and the availability of the 

EOR agents such as CO2 and produced hydrocarbon gas. W3H is simple and easy to use those imports 

historical well performance data (primary recovery) along with reservoir rock and fluid quality information 

& hydraulic fracture design parameters and provides multiple EOR options with optimum incremental oil 

recovery after matching the primary recovery performance with the W3H dimensionless type curves. 
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8.1. Introduction  

W3H is a smart plug & play tool developed using Python coding language, capable of analyzing single 

well-based tight oil production data and providing the suitable EOR options based on the most suited EOR 

agent selection (i.e., CO2 or HC), the injection solvent volume, and followed by the soaking period for the 

optimum incremental oil recovery. Not necessarily, this tool has to be used for the pre-drilled well with 

prior production history; also, it can be used to design a new well from scratch using the typical reservoir 

formation and the hydraulic design parameters data. W3H tool is empowered with Deep Neural Network 

(DNN) based proxy models and as discussed in the prior chapters the proxy models are developed using a 

huge compositional numerical simulation-based database. In addition, a Physics-Guided Design of 

Experiment (PG-DoE) is applied to generate enough random data samples to cover the entire possible 

sampling space. 

8.2. A Quick W3H Overlook 

W3H is a sophisticated yet simple application with a single interface as shown below in Figure 8.1. 

Also, all major operational and visualization components of the interface are shown in the same figure 

which include the W3H Design Bar, W3H Toolbox, and multiple data entry and visualization tab windows. 

The user entry tab window intakes all the necessary reservoir rock and fluid properties, hydraulic fracture 

design parameters along with the historical (primary recovery) well performance data. Visualization tab 

windows are used to preview historical performance plots as well as the W3H performance plots including 

the SPiC dimensionless type curves in the Type Curve tab window. W3H designer bar is used to modify 

reservoir and hydraulic fracture properties to match the primary recovery plots and finally, the EOR 

operational design properties, including EOR solvent volume and the soaking time, are modified in the 

W3H designer bar to perform the Unconventional EOR analysis. Similarly, the W3H Toolbox is used to 

visualize the reservoir fluid composition templates and the toolbox contains multiple functional buttons for 

data handling and plotting. 
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Figure 8.1 W3H – Smart tool interface with operational and visualization components 

8.3. W3H Operational Analysis Steps 

There are following six major steps to perform W3H analysis as listed in Figure 8.2 while the detailed 

steps are discussed below as shown in Figure 8.3.  

 
Figure 8.2 W3H – Major operational steps 
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Figure 8.3 Steps for user data entry and visualization steps 

Step 1:  Press the Start New Analysis button to start a new analysis window. Multiple tabs can be opened 

in the same window by simply pressing the same button for parallel analysis. 

Step 2: Upload the historical well data (primary production) in a specific data format using the ‘.csv, .xls, 

.xlm, or .xlsx’ file using the Load Well Data button. The data format is required to be in the same sequence 

as shown in Figure 8.4. In case of having no data for the gas flow rate, leave it black. 

 
Figure 8.4 User data format for uploading in the application 
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Step 3:  Populate reservoir and hydraulic fracture properties in User Entry Portal on the User Data Entry 

tab window. 

Step 4: Press ‘Plot Well Data’ to plot well performance data including bottom hole flowing pressure, oil 

flow rate, gas oil ratio, and the associated dimensionless type curve. It is important to keep in mind that a 

type curve depends on the reservoir rock and fluid properties as well as hydraulic fracture design 

charecterstics therefore data quality is important. 

Step 5: Next step is to visualize the well flow performance using the bottom hole flowing pressure (Pwf), 

oil flow rate (Qo), & gas oil ratio (GOR) tabs and the dimensionless type curve (SPiC TCD) in their 

respective visualization tab windows.  

Step 6 & 7: After uploading the user data, the next step is to match the given well’s flow performance with 

the W3H flow performance curves mainly for the flow rate and the SPiC TCD. GOR could be a useful tool 

for the performance match but is not mandatorily required. In this step, an appropriate reservoir fluid type 

selection is critical which directly affects the flow performance and the type curve shape and its slops for 

different time regions. There are multiple fluid composition templates are provided in the application, such 

that, the closest possible reservoir fluid type can be selected representing the reservoir in-situ reservoir fluid 

composition. There are two ways to choose the fluid type including based on the fluid compositions listed 

in ‘W3H Toolbox’, a drop-down window ‘Fluid Templates’ would provide different fluid type options, or 

through phase envelop diagrams associated with different fluid compositions that can be visualized in the 

‘Phase Envelop Tab’ window as shown in Figure 8.5. For flow performance matching, the closest reservoir 

fluid type selection is very important for an accurate prediction and further EOR screening.  

Other reservoir properties including reservoir pressure and the matrix porosity are also important. Similarly, 

the hydraulic fracture design parameters are critical to select. It is recommended to refer Dimensionless 

Type Curves user guide provided in Chapter 5 (Figure 5.10) for quick SPiC TCD matching. An excellent 

example of user entered tight oil well performance data visualization is presented in following fgures. 

Figure 8.6 is presenting the user entered well’s bottom hole flowing pressure.  



155 
 

In Figures 8.7 through 8.9,  the cross dot plots are presentation the user well performance data while slid 

lines in each plot represent the W3H prediction plots for oil flow rate, gas oil ratio and SPiC dimensionless 

type curves, respectively, generated through physics based tight oil well performance proxy models.  

 
Figure 8.5 Reservoir fluid type selection window through fluid composition or phase envelop 

It is very important to have a closest possible performance match, especially for the dimensionless type 

curve before moving towards the UEOR techno-economic analysis. It is recommended to follow steps listed 

below for quick and effective performance match. 

1. Start with the most certain reservoir and hydraulic fracture design properties in the W3H design bar. 

Reservoir fluid type is crucial and a sensitive parameter therefore one has to be careful when selecting 

the reservoir fluid type.  

2. Use all possible available date to guess the missing data, however that can be improved through trial 

and error process. 

3. For the missing data that can not be guessed using the available data at all, use engineering 

understanding and the experience to start with the possible range of each parameters. 
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Figure 8.6 User data visualization – Bottom Hole Flowing Pressure 

 
Figure 8.7 User data visualization – Oil flow rate 
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Figure 8.8 User data visualization – Gas Oil Ratio 

 
Figure 8.9 User data visualization – Smart Physics-inspired Compositional Dimensionless Type Curve 
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Step 8: Finally, after having a satisfactory type curve match as shown in Figure 8.9, it's time to move on to 

UEOR options. The EOR option are listed in the drop-down window as shown in Figure 8.10. There are a 

couple of options for both primary recovery as well as for EOR. For the primary recovery, there is a 

‘Primary Recovery – No Shutin’ option that makes the well flow without any interruption that is used for 

the primary well performance matching, while the other option, i.e., ‘Primary Recovery with Shut-in’, is 

included as a reference analysis for the EOR options. In this case, the well is kept shut-in for the same 

duration as the EOR operation is conducted (injection and soaking period) to visualize the effect of pressure 

build-up (if any). While the EOR, CO2, and hydrocarbon gas injection options are currently included in the 

application. 

 
Figure 8.10 Primary recovery and EOR options available to select for the W3H analysis 

Step 9: In this step, the EOR operational design is selected through the EOR solvent injection volume and 

the soaking period selection.  

Step 10 & 11: Operationally, the last step is to hit the ‘W3H’ button, located in the W3H Toolbox, to 

visualize the UEOR proxy model’s results through SPiC dimensionless type curve and the corresponding 

oil flow rate versus time and the incremental oil recovery. Every time, after changing the EOR operational 

design or making any changes in any of the listed options, the W3H button is required to be pressed to 

update the proxy model’s results according to the selected EOR operational design options.  
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Figure 8.11 is showing the oil flow performance for both primary recovery through scatter plot (as a 

reference) while the solid line is presenting the W3H proxy model response for the selected UEOR 

operational design. For example, in this case, 100 MMScf of CO2 is injected as a single huff-n-puff cycle 

followed by 15 days of soaking period. The correspoinding SPiC dimensionless type curve is shown in 

Figure 8.12 and it is obvious from the figure that the UEOR SPiC TCD show quite different response in 

comparison of the primary recovery. The SPiC TCD use guide is provided in Chapter 5 (Figure 5.10) for 

individual flow regions analysis.Figure 8.13 is presenting the resultant incremental oil recovery. It is 

important to keep in mind that the incremental oil recovery is based on single stage huff-n-puff cycle and 

also most of the incremental oil recovery is assumed to be obtained mainly from the stimulated reservoir 

volume (SRV). 

Step 12: Finally, the entire analysis could be saved through pressing the ‘Save Analysis’ button.   

 
Figure 8.11 Oil flow rate visualization for primary recovery and the UEOR flow performance 
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Figure 8.12 Primary and UEOR SPiC Dimensionless Type Curves 

 
Figure 8.13 Incremental Oil recovery as the result of UEOR application 



 
 

 

 

 

9 
SUMMARY, CONCLUSIONS, & 

RECOMMENDATIONS 
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9.1. Summary & Conclusions 

Typically, tight oil reservoirs are distinguished by their extremely low inter-pore connectivity and ultra-

tight matrix permeability. For such reservoirs to produce profitably, extra measures are traditionally 

considered, such as long horizontal wells and a significant hydraulic fracture network that can maximize 

reservoir contact. Even with these specialized and expensive treatments, tight oil wells are observed hardly 

ever deliver more than 10% of the oil in place.  

EOR is therefore believed to be helpful for fast-paced and economical oil recovery when used in the 

early reservoir development phase. However, to optimize oil recovery through EOR application, it is 

essential to identify each tight oil reservoir's unique EOR potential and the most effective EOR application 

design. To do such, a numerical simulation approach is applied that is computationally expensive and time-

consuming. 

The Smart Physics-Inspired Compositional Dimensionless Type Curves for Unconventional Tight Oil 

Reservoir EOR are introduced in this dissertation as a substitute to optimize UEOR practice and save 

millions of dollars and computational run time. These type curves are intended to answer the W3H issues 

for operators (i.e., Where to inject, When to inject, What to inject, and How to inject an EOR solvent) while 

conducting thorough field screening and developing novel EOR pilot projects. In parallel, a user-friendly, 

plug-and-play application with a Graphical User Interface (GUI) is developed that can suggest optimal 

UEOR operational design following physics governing laws based on the prior production history, reservoir 

characteristics, in-situ fluid type, and the pre-existing hydraulic fracture network design. The choice of 

EOR solvent type, its injection volume, and the soaking time are the primary components of the operational 

design for EOR. 

The smart tool is developed using a Physics-Inspired Design of Experiment (PI-DoE) based on a large 

number of compositional numerical simulation cases generated through a commercial simulator. PI-DoE 

covered a wide range of individual reservoir rock and fluid properties, hydraulic fracture design parameters, 

and the EOR operational design constraints. Deep neural network algorithms are used to train proxy models 

so that they can reproduce fluid flow performance from a tight oil reservoir in every conceivable 
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combination of reservoir rock and fluid characteristics as well as the hydraulic fracture and the operational 

design parameters. The performance of the proxy models is successfully assessed utilizing several physics-

based sensitivity analyses, cross-checked using numerical simulation, and a few actual field case studies. 

As a result of this study, many EOR design possibilities are also examined. 

9.2. Recommendations 

Due to time restrictions, several limitations and assumptions are considered in this study, therefore, it 

is highly recommended to extend this study to address the following facts to make this application more 

robust. 

• The database used for proxy model training should be further enhanced with actual field data to 

such that to consider more robustness of the data and the effect of real field heterogeneity. 

• More simulation cases with horizontal well placement at various places should be provided to 

capture additional boundary dominant flow prospects; currently, in all simulation cases, the well is 

considered in the middle of the reservoir model. 

• To further improve the quality, more examples with varied numbers of clusters and stages as well 

as non-unique fracture spacing should be taken into consideration. The existing database only has 

a single-stage hydraulic fracture design with equally spaced three clusters per fracture. 

• In future work, multiple huff-n-puff cycles with non-unique cycle durations should be considered 

to provide additional EOR design options to the end user, the current model is based on a single 

huff-n-puff cycle.  

• Additional cases with wellbore storage and skin factor should be considered to provide an operator 

more flexibility to match its well performance.  

• The training dataset currently uses seven reservoir fluid templates; however, additional fluid 

compositions might assist to improve the dataset's quality.
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