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Abstract

Dimensionless Type curves have been developed and used in the Oil and Gas industry for primary
production performance evaluation. To Date, there is no physics-based dimensionless performance type
curve developed for Enhanced Oil Recovery (EOR) of even conventional hydrocarbon-producing
reservoirs. Predicting the production performance of unconventional and tight hydrocarbon reservoirs is
challenging. Each unconventional well drilling and completion normally cost a company $ 6-12 Million.
Unconventional EOR (UEOR) is the next step in unlocking untapped unconventional and tight hydrocarbon
reservoirs' full potential and helps in minimizing environmental footprints by targeting the remaining

hydrocarbon left behind and consequently avoiding unnecessary drilling and minimizing carbon emission.

To conduct a successful UEOR project, oil and gas companies perform comprehensive simulation
studies to screen and select candidate wells (pilot) for UEOR, predict their response to the UEOR methods
and agents, and forecast the performance of wells’ ongoing UEOR. This requires running thousands of
simulation cases that might take several months to complete comprehensive techno-economic assessment
and evaluation. Al-empowered Dimensionless Type Curves that honor physical laws can offer fast-track

screening and accurate solutions.

In this dissertation, Smart Physics-Inspired Compositional Dimensionless Type Curves (SPiC TCp)
for UEOR are presented that aim to address the above-mentioned problem and save millions of dollars by
optimizing the UEOR practice and consequently reducing the carbon emission and environmental footprints
and using subsurface resources in an environmentally beneficial way, which is the current portfolio of the
oil and gas industry.

SPiC TCp respond to operators’ W3H questions (Where to inject, When to inject, What to inject,
and How to inject an EOR solvent) while performing comprehensive field screening and designing
unconventional EOR pilot(s). W3H methodology provides fast-track Al-aided physics-inspired solutions

based on historical wells' performance with existing subsurface reservoir and fluid descriptions and



hydraulic fracture geometries and flow properties. This technique enables operators to make quick decisions
on unconventional EOR pilot candidates’ selection and design to optimize design criteria such as the choice
of injection solvent type and volume estimation, the optimum start of injection and soaking time as well as

the frequency of this cyclic process and estimation and the soaking duration for the optimum oil recovery.

To generate Smart Physics-Inspired Compositional Dimensionless Type Curves, a manageable
number of numerical simulation cases are defined through the Physics-Guided Design of Experiment
workflow. The workflow covers a wide range of operational design parameters pertaining to WsH criteria,
reservoir rock and fluid properties, hydraulic fracture design, and their corresponding flow-related
parameters such as fracture conductivity, fracture half-length, fracture height, fracture spacing, and the

number of hydraulic fracture clusters per stage.

Conventional design of experiment workflows fails in case of dealing with a system that operates
based on known governing physical laws. This affects the accuracy of the proxy models and probabilistic
modeling. Therefore, a detailed workflow is developed which is a physics quality control module to
evaluate the response of the generated cases using the design of experiment techniques. It ensures the
generated multidimensional distribution of the input parameters creates physically meaningful responses
when solving the fluid flow equations. The next step is to train a family of machine-learning algorithms.
Deep neural network algorithms are employed to build the proxy models for Smart UEOR dimensionless
type curve generation. Upon completion of the training, the physics-based blind hindcasting and model
response evaluation according to the physical laws are conducted. The generated physics-based Al proxy
models are capable of generating thousands of cases based on the different reservoir and fluid descriptions
as well as hydraulic fracture properties and W3H operational design criteria within an hour instead of
months. It enables fast and accurate decision-making for optimal UEOR practice in unconventional and

tight oil reservoirs.
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INTRODUCTION

Tight reservoirs are hydrocarbon-bearing formations with ultra-low permeability, often found in shale and
tight sandstone. Economically, these formations are tough to develop due to tight matrix permeability and
poor inter-pore connectivity. Such reservoirs are commonly developed with a large number of independent
horizontal producers aided by a complex hydraulic fracture network to provide maximum reservoir contact.
In addition to long horizontal wells and hydraulic fractures, early EOR application may improve and
sustain the oil recovery from tight oil reservoirs. Unlike conventional reservoirs, the key performance
indicators for the EOR pilot selection criteria in unconventional tight reservoirs are not well established
yet. In this thesis, a detailed workflow is presented for quick screening based on the prior production
history, reservoir characteristics, and the hydraulic fracture design parameters through Smart Physics
Inspired Compositional Dimensionless Type Curves (SPiC TCp). In this chapter, a detailed stepwise
workflow is presented to generate SPiC TCp and their application to answer operators’ WiH questions i.e.
Where to inject, When to inject, What to inject, and How to inject an EOR solvent for the enhanced oil

recovery from tight oil reservoirs.



1.1. Background

Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs, especially in the
US. However, the dilemma is their ultra-tight permeability and an uneconomically short-lived primary
recovery factor. Therefore, the application of EOR in the early reservoir development phase is considered
effective for fast-paced and economical tight oil recovery. To achieve these objectives, it is imperative to
determine the optimum EOR potential and the best-suited EOR application for every individual tight oil
reservoir to maximize its ultimate recovery factor. Since most of the tight oil reservoirs are found in wide
spatial source rock with complex and compacted pores and poor geophysical properties, they hold high
saturation of good quality oil, and therefore, every single percent increase in oil recovery from such huge

reservoirs potentially provides an additional million barrels of oil.

Due to poor rock quality, the common practice to develop tight reservoirs is to drill long horizontal
wells to provide maximum reservoir contact and the wellbores are further subjected to massive multi-stage
hydraulic fracturing to provide extensive support to the reservoir fluid to flow through artificial flow
channels. However, with all such artificial support, the natural energy consumption, i.e., in-situ reservoir
pressure, declines too rapidly during natural depletion which results in rapid oil production decline.
Generally, more than half of the original well productivity diminishes within the first year of the well

production life which results in poor reservoir fluid recovery.

To overcome the highlighted issue, an easy solution to uplift the recovery factor is to provide effective
energy support. Water and different gases are the most studied injectants at both laboratory and numerical
simulation scales. In addition, a few actual field pilots are also performed in the United States with CO-,
associated & lean hydrocarbon gas injection through huff and puff, and water flooding. Water did not show
any appreciated response to improve the oil recovery; however, CO, and hydrocarbon injection presented
mixed results that are subjected to further investigation. The detailed observations on numerical simulation,

laboratory, and field pilot tests are presented in the following chapter.



From the above context, it can be concluded that the EOR application in tight oil reservoirs is quite
essential to boost the oil recovery at an early stage, and it would help individual well productivity to sustain
for a longer period to improve the recovery factor. However, the process of selecting the best-suited
injection solvent and designing an EOR operation in such complex reservoirs is not straightforward. Unlike
conventional reservoirs, due to only a few actual field pilot studies, there is limited field data available that
is inconclusive to generalize field development planning for a tight oil reservoir. The physical
understanding of EOR applications in different circumstances from laboratory to field scale is the key to
success and similarly, the fundamental physical concepts of fluid flow dynamics under non-unique

confinement conditions play an important role.

The precise selection of a particular EOR application type based on the reservoir rock, fluid, and
petrophysical characteristics as well as the heterogeneity distribution are the pillar points to conducting a
successful EOR application for optimum incremental hydrocarbon recovery. In addition, the prior
production history, and the pre-existing hydraulic fracture design (if exist) are equally important for the
EOR operational design and field implementation planning. After having the entire list of contributing
factors in hand, the next and most critical step is to perform techno-economical evaluations to determine

the most optimal EOR solution.

It is always risky and expensive to implement a full field EOR application at once especially when the
available data has some uncertainty and/or does not have sufficient data to build numerical models with
enough confidence. The best solution to cope with this issue is to conduct multiple actual field pilots in
different regions to understand the reservoir response with various EOR planning strategies for optimum

oil recovery.

There are multiple steps to conduct an actual field pilot as listed below.



e Representative region selection based on the common reservoir properties, fluid saturation
distribution, and the production history that could represent the entire or at least a major portion of
the field.

e (Candidate wells selection mainly based on their location and the production/ injection history

e Mechanistic or fine-scale numerical model development and history matching

o EOR process identification

e Running hundreds of simulation cases to determine the most effective EOR plan to answer W3H
questions i.e. Where, When, What, and How to implement an EOR pilot.

e Collect all possible surface and sub-surface data from multiple pilots and update the numerical

model, such that to prepare a full field EOR development plan.

As mentioned earlier, it is time-consuming and computationally expensive work to do even in
conventional reservoirs. For unconventional reservoirs, the process is more complicated because of multiple
additional limitations. Therefore, in this thesis, a physics-based, automated, and quick workflow and an
automated tool are introduced that can easily perform the entire job in no time. The only requirement for
this tool is to have the primary flow performance data that would be used as a reference to provide multiple
physics-based techno-economical EOR options to provide W3H answers. The automated data-driven tool
“W;3H” is developed using a huge data set, generated using a commercial compositional numerical

simulator ‘CMG-GEM”.

1.2.Problem Statement and Dissertation Contribution

Since the classical ages of the oil and gas industry, the reservoir characterization, development
planning, and flow performance monitoring of the conventional reservoirs are being done through a well-
testing approach normally using pressure transient analysis (PTA). The working procedure is to match the
bottom hole flowing pressure response with multiple type curves to determine the reservoir and the near-
wellbore approximated formation properties. The only problem with this approach is the subjectivity of the

well test and due to multiple possibilities of type curve matches, the accuracy is always been an issue even

4



for the conventional reservoirs. For the unconventional reservoirs, this approach is technically not possible
due to poor rock type and isolated in-situ pressure support system that would take years to show any
pressure build-up response on shutting in a producer and that is not economical at all. Therefore, pressure
transient analysis is not an option for tight reservoirs, and it is practically not easy to completely alter the
engineering operational practice therefore, the petroleum engineers came up with a similar approach to
evaluate tight reservoirs through rate transient analysis (RTA) using the similar correlations and the

equations. The only difference in this approach is to use the production rate along with the pressure data.

The RTA application on tight wells is not straightforward like PTA on conventional reservoirs that are
usually completed with vertical, slanted, or horizontal wells with shorter horizontal sections as compared
to the tight reservoirs. Tight reservoirs are normally completed with long horizontal sections and massive
multiple-staged hydraulic fractures and hence have a huge well surface area that makes the analysis
complicated. In such hydraulically fractured long horizontal wells, the transient response is the combination
of multiple factors including, reservoir matrix properties, reservoir fluid composition, and their PVT
properties as well as the hydraulic fracture properties such as fracture half-length, fracture height, fracture

conductivity, etc.

However, most of the operators are using the RTA approach, though it's not accurate but economical,
easy, and not much time-consuming. On contrary, the latest advancement in numerous reservoir
simulations, laboratory, and actual field data made it possible to understand the physics and the possible
response of in-situ hydrocarbons in different circumstances. Using those limited but reliable data, numerical
simulation model development would be a more accurate solution but not economical at all. It would require
a lot of computational and human effort and operational time. Since most of the tight reservoirs especially
in the U.S. developed so quickly in the last couple of decades with thousands of hydraulically fractured
long horizontal wells that later or sooner must be subjected to EOR to boost up the production as the

economical primary recovery from such wells hardly last from few months to a couple of years.



As far as the EOR application is concerned in tight oil reservoirs, it requires detailed physics-based
investigation based on individual wells’ historical performance. Though multiple operators invested a lot
of their R&D time and finances to build numerical simulation models subjected to their reservoirs to
determine the most suitable candidate for EOR pilot out of thousands of their pre-existing producers. But
still, no generalized and robust tool is available that would provide quick and physics-based reliable
solutions for not only EOR pilot candidate selection but also provide a complete EOR operational design
for the given reservoir rock and fluid properties as well as the pre-existing hydraulic fracture design.
Detailed reservoir simulation is an ideal technique to investigate physics-based analysis with numerical
accuracy and come up with a plan but it’s not computationally economical to run thousands of simulation

cases that would take years to explore all possible techno-economic options.

Therefore, a quick and robust solution is required for designing an EOR application. EOR candidate
selection and its operational planning is a critical procedure that is based on several aspects. Typically, the

following are the key W3H factors that are required to be addressed.

a. WHERE to inject — best-suited EOR pilot/development well selection based on the primary

recovery performance and the oil saturation in place.

b. WHEN to inject — to decide the suitable EOR timeline after primary production.

c. WHAT to inject — the selection of an EOR solvent based on the reservoir rock and fluid properties.

d. HOW to inject — EOR application design including the injection solvent volume and the soaking

time.

The motivation of this work is to address all the above-listed factors and in this dissertation, I introduce
an automated and smart tool that provides quick Physics-Inspired Compositional Dimensionless Type
Curves (SPiC TCp) to address W3H factors. Based on the said motivations, the smart tool is named ‘W3;H
— Smart Unconventional EOR Solutions’. The working phenomenon of this tool is inspired by Rate
Transient Analysis (RTA) type curve matching technique. It provides a quick, physics-based solution for

selecting the most suitable EOR pilot candidate among thousands of wells having different operational



histories as well as, drilled in different regions of a reservoir with different rock and fluid properties. It also
provides multiple techno-economic options to an engineer to come up with an estimated additional oil
recovery subjected to the EOR operational design. Table 1.1 presents a quick timeline comparison using
the conventional ways that most of the operators use versus W3H and the workflow presented in this
dissertation.

Table 1.1 A quick comparison of a tight oil reservoir development conventional vs. smart W3H timeline

Field Development Workflow Conventional Timeline Smart W3H Timeline

Data Gathering & Analysis Days to weeks Less than an hour

Numerical Model Generation Weeks to months -

History Matching for Model validation Weeks to months Less than an hour

EOR forecasting using different solvent slug sizes & soaking time Weeks to months Less than an hour
The entire project — An estimated timeline to explore all possible Few hours to a couple

) . Months to year
techno-economic options of days

The entire study is performed in several steps; however, the major phases of this work are presented
in a detailed workflow shown in Figure 1.1.

Initially, a detailed literature review is performed to collect the most representative data to develop
meaningful ranges of reservoir rock, fluid, and hydraulic fracture design parameters. Secondly, using
typical tight oil reservoir rock and fluid properties and the commonly adopted hydraulic fracture design
parameters, a numerical simulation model is generated using a compositional commercial reservoir
simulator ‘CMG-GEM’. Categorically, the generated reservoir model is tuned and validated using the time-
based typical tight oil well flow responses observed in multiple wells performance data publicly available

at the Society of Petroleum Engineers (SPE) data repository.

For different circumstances, a thorough physical understanding is developed from the generated
reservoir model followed by thousands of physics-based numerical simulation cases generation using
different reservoir rock and fluid properties as well as the hydraulic fracture design parameters. The EOR
operational design parameters are also utilized as one of the key sets of parameters to generate simulation

cases. The entire reservoir matrix, fluid, and hydraulic fracture-related parameters were randomly



distributed to cover the entire possible range found in the literature using the Latin Hypercube Sampling

(LHS) technique as a Physics-Guided Design of Experiment (PG-DOE).

Range Collection of Typical Unconventional Reservoir Physical Properties
Reservoir Rock and Fluid Compositions, Hydraulic Fracture and Operational Design

/ AY
| |
| Numerical Model Generation . Developing Physics Based Model Response |
| Using typical Tight Oil Reservoir Matrix, Fluid, and Typical recovery responses of multiple PVTs, reservoir. | |
: Hydraulic Fracture Properties and hydraulic fracture properties l
|
l\ Numerical Model Generation and Physics based Validation /
_________________________ 1_________________________/
Data Sampling - Using Latin Hypercube Sampling
Reservoir Rock, Fluid and Hydraulic Fracture and Engineering Operational Data Sampling
A — D ata Sources Following Physical Laws — M
| |
| . . Numerical Simulation __ | Quality Control for Typical Range Coverage |
| Actual Field Data — As Much Available + | Thousands of non-unique simulation casesto | ___| Postsimulation recovery response distribution |
I (Physics already incorporated in the data) train Physics based proxy models for non-unique fluid & rock types :
\ o
K Physics Informed Design of Experiment (PI-DOE) /
T R S &
| |
| ANN Model Training Lo Quality Control |
| Model Training with Physics based Physics based Blind Testing & Sensitivity |
: Parameters in both input & output Analysis for model’s response trend analysis l
| |

\ Supervised Machine Learning for Reservoir Performance Proxy Models Generation J
~ -~

Dimensionless Type Curves generation using flow performance data generated

Smart Dimensionless Type Curves
through Pre-Trained Proxy Models for Tight Oil Reservoirs Development

l

‘W3H - Smart Unconventional EOR Solutions”

Integration of Dimensionless Type Curves in an automated smart tool “W;H’

Figure 1.1 Complete study workflow

In the next step, a data-driven machine-learning approach is applied to train an automated model for
the generation of uncounted proxy models for the numerous combinations of reservoir rock and fluid as
well as hydraulic fracture design parameters. Lastly, an automated graphical user-interface-based
application ‘W3H’ is generated that is a plug-n-play type of application for quick EOR solutions to develop

tight oil reservoirs.



1.3. Dissertation Organization

This dissertation is comprised of a total of seven chapters that are organized as below:

Chapter 1: Introduction
In this chapter, a brief overview of tight oil reservoirs, their strategic development planning, and
their unique characteristics are presented that support EOR application to accelerate and boost the overall

oil recovery process. In addition, a detailed project workflow is presented in this chapter.

Chapter 2: Literature Review

This chapter presents a comprehensive literature review on tight oil reservoirs and their multi-
dimensional characteristics. In addition, the observations and reservoir simulation, laboratory, and EOR
field pilots-based performance evaluation are presented such that to collect all necessary reservoir rock and
fluid information, hydraulic fracture design parameters ranges, and the possible EOR operational design

limits to develop a comprehensive numerical simulation-based database to train proxy models.

Chapter 3: Reservoir Numerical Model Development

In this chapter, a numerical mechanistic compositional reservoir simulation model is created for
the physics-based database utilizing the usual tight oil reservoir rock and fluid properties. Through
consideration of various reservoir rock and fluid characteristics, hydraulic fracture design parameters, and
various EOR operating designs, sensitivity analysis is used to generate a full physical knowledge of several
aspects.
Chapter 4: Spatio-Temporal Database Development

Using the history-matched compositional mechanistic paradigm, this chapter discusses the creation
of spatiotemporal databases. The reservoir rock and fluid characteristics, hydraulic fracture design
parameters, and the operational design for EOR are all considered while creating a database. To account
for a wide range of individual parameters, random sampling is carried out using an experimental design
that enables the creation of a database for the full magnitude range of each parameter using a small number

of simulation cases with randomly chosen combinations of various parameters.



Chapter 5: Smart Physics-Inspired Compositional Dimensionless Type Curves

In this chapter, novel Physics-Inspired Smart Compositional Dimensionless Type Curves are
introduced. Additionally, a generalized end-user poster is assembled in this chapter to cover all potential
scenarios with various reservoir rock properties, in-situ fluid types, hydraulic fracture designs, and EOR
operational designs for a quick and efficient primary and UEOR performance match as well as incremental
hydrocarbon recovery predictions.
Chapter 6: Smart Physics-Inspired Proxy Models Development

In this chapter, a methodical approach and steps are discussed for creating random samples for a
numerical simulation-based comprehensive data library, using a Physics Guided Design of Experiment,
followed by the Deep Neural Network structure considered for the smart physics-inspired proxy models

development.

Chapter 7: Physics-Inspired Proxy Models Quality Check & Case Studies
This chapter presents the prediction performance of the proxy models using both training and non-
training datasets. Several actual case studies are then presented and analyzed to show how the proxy models

respond to the techno-economic unconventional EOR pilot screening.

Chapter 8: W3H — User Manual

This chapter introduces W3H, a physics-based alternative to computationally expensive numerical
simulation tools that provides results in a matter of hours, helping to reduce the number of prospective
UEOR pilot wells that need to be thoroughly studied. W;H is a straightforward and user-friendly tool that
imports historical well performance data, information on the rock and fluid quality of the reservoir, and
hydraulic fracture design parameters. After matching the primary recovery performance with the W;H
dimensionless type curves, the smart tool offers multiple EOR options with the optimum incremental oil

recovery.
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LITERATURE REVIEW

This chapter presents a comprehensive literature review on tight oil reservoirs and their multi-dimensional
characteristics. In addition, the observations and reservoir simulation, laboratory, and EOR field pilot-
based performance evaluation are presented. Also, the significance of micro to the macro-scale assessment
of tight oil reservoirs is presented in comparison to a conventional reservoir for the full field development
planning and the EOR applicability. The fluid flow mechanisms and the physical laws are also included in
the chapter that controls the in-situ fluid flow through nano-confined pore spaces. The typical ranges of
tight oil reservoir rock and fluid properties are also listed in the chapter which is the most important part

of this dissertation that is used to develop the entire dataset.
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2.1. Introduction

Crude oil from tight oil reservoirs (TOR) is the fastest-growing hydrocarbon resource worldwide and these
reservoirs are being developed usually through horizontal drilling and multistage hydraulic fracturing. According to
Energy Information Administration (EIA), the technically recoverable shale hydrocarbon resources are summed up to
more than 350 billion barrels, globally. These reserves are present in shale formations laying under different
international territories which is almost 10% of the total known fossil oil in the world. The estimated amount of
technically recoverable top 10 shale oil reserves are listed in Table 2.1. Among the top 10 countries with maximum
shale oil reserves, the United States falls in 2" place after Russia with approximately 17% of the total global shale oil.
China, Argentina, and Libya are the next biggest shale oil holders (EIA, 2013). The regional estimate of the technically
recoverable shale oil share to the world is shown in Figure 1.1. This distribution is based on 46 countries across the
world with North America having the highest technically recoverable share due to competitive technical advancement

(EIA, 2017).

Table 2.1 Top 10 countries with technically recoverable shale oil resources; data collected and summarized from multiple sources
(EIA, 2013, 2021a, 2021b)

Rank Country Shale Oil Global Shale Oil Reserves

(Billion bbl.) (%)
1 Russia 75 21.7
2 USA 58 16.8
3 China 32 9.8
4 Argentina 27 7.8
5 Libya 26 7.5
6 Australia 18 52
7 Venezuela 13 3.7
8 Mexico 13 3.7
9 Pakistan 9 2.6
10 Canada 9 2.6

Total 345

Figure 2.2 presents the significance of the U.S. shale oil production that is contributing to more than half of
the whole U.S. oil production as of 2022. Among seven different regions of the U.S., the Permian basin located in the
Southwest region alone contributed the most to the total U.S. shale crude oil production. It can be noticed in Figure
2.2 that the overall shale U.S. crude oil production jumped from 5 to 8 MMbbl per day just in a couple of years i.c.,

from 2018 to 2020 and the progressive trend of the U.S. shale reservoirs’ rapid development can be noticed in the
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same figure. In early 2020, due to the global pandemic situation, oil production was significantly cut down, globally,
which is getting back on the same trend as pre-pandemic in 2022. Table 2.2 summarizes the reserves distribution based

on individual basins and/or reservoirs (EIA, 2017; Long, 2022).
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Figure 1.1 Regionally technically recoverable shale oil Figure 2.2 U.S. tight oil recovery performance and the tight
reserves (Data collected and summarized from EIA, 2013, oil reservoirs development through rig counts

2021a, 2021b; Syed et al., 2022)

Based on the experiences shared in this chapter from laboratory to field scale, a fact is established that the
process of finding the most effective way to develop a shale reservoir is critical and time-consuming because of
multiple factors including extremely small pore size, low and dual porosity distribution, and most importantly the
ultra-tight permeability distribution (Du et al., 2019). In the last decade, considerable advancement is done to finally
acknowledge a couple of techniques including horizontal well drilling and multistage massive hydraulic fracturing in
tight formations as the most successful ones to develop TORs more effectively. A rapid increase in total oil production
using these techniques is evidence of their success that could be noticed that resulted in a boost in total oil production
to almost double since 2010 (EIA, 2021b). Figure 2.3 is presenting the production history and the projection of the
U.S. shale oil production that is expected to hit the peak of 12 million barrels per day by the end of this decade using
the current technology. However, these anticipated numbers would increase with further advancements in technology
over time. In Figure. 2.3, it is notable that tight oil is even today contributing around 70% to the total oil production
(Syed et al., 2021a; 2021b; 2022; Usman Ahmed, 2016). EIA also reported that only 15% of the total crude oil in the
U.S. used to be produced through horizontal wells which jumped to 96% of the entire oil production by the end of
2018 through optimized horizontal drilling mainly in TORs. However, in parallel about 88,000 pre-existing vertical

wells are also producing but to a very minor contribution towards the total volume and are considered to keep
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producing until they become uneconomic. Figure 2.4 shows the status of the total vertical and horizontal well count

in the major unconventional plays of the U.S. as of 2019 (EIA 2019; Kurtoglu, et al., 2013a; Perrin, 2019).

Table 2.2 Technically recoverable shale oil resources in the U.S. per basin/ reservoir as of January 2020 (EIA, 2017)

Technically Recoverable Shale Oil per Region

Region Basin/ Reservoir
(Billion bbl.)

Appalachian

East Illinois 44

Michigan
Black Warrior
Gulf Coast TX-LA-MS Salt 31
Western Gulf (Eagle Ford)
Anadarko

Midcontinent Arkoma 2.6
Black Warrior
Fort Worth

Southwest . 112.6
Permian

Denver

Grater Green River

Paradox

Rocky Mountain/ Powder River 251

Dakotas San Juan

Southwestern Wyoming

Uinta Piceance

Wind River

Montana Thrust Belt

Northern Great North Central Montana 189

Plains Powder River

Williston (Bakken)

Columbia
West Coast . 0.4
San Joaquin/Los Angeles

Apart from tight hydrocarbon (oil and gas) reservoirs, deep natural gas, geo-pressurized zones, coalbed
methane, and methane hydrate reservoirs are also commonly referred to as unconventional reservoirs. For such
complex reservoirs, a horizontal well provides comparatively greater contact to the reservoir and enhances the
wellbore exposure to produce plenty of additional hydrocarbons that is why horizontal wells are also known as
Maximum Reservoir Contact (MRC) wells, and their drilling process is called Extended Reached Drilling (ERD)
(Syed, et al., 2016). However, MRC wells and hydraulic fractures make a great combination to generate greater
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exposure of the hydrocarbon to flow from the matrix to the fractures through primary depletion with a higher
differential pressure across the wellbore that results in an incredible increase in production (Butler, et al., 2021;
Muther, et al., 2020a; Sprunger, et al., 2021; Syed, et al., 2021). Nevertheless, it has been a common observation in
almost all the TORs that the resulting increased oil production does not sustain for long and comes to a rapid decline
after some time that ranges between a few months to a couple of years (Syed et al., 2021¢; Khan, et al., 2016; Todd
and Evans, 2016). A schematic of a horizontal well with induced hydraulic fractures deep into the matrix is shown in

Figure 2.5 concerning a vertical well.
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Figure 2.5 Horizontal well schematic with stimulated hydraulic fractures and the vertical well for reference.

2.2. Major Shale Oil Plays
Bakken play is one of the most producing U.S. shale oil plays that is aerially lying over Montana and North

Dakota in north-central America and a part of it lying in south-central Canada. This play is relatively thin layering in
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the central part and quite deep at the Williston Basin and it includes both conventional as well as unconventional
reservoirs. The entire Bakken formation is consisting of three major parts, lower, middle, and upper Bakken, out of
which, middle Bakken is the primary production zone. The original oil in place is estimated at approximately 300 to
900 billion barrels while the technically recoverable reserves based on today’s technology are approximately 5 to 25

billion barrels (Li, et al., 2018; Wang, et al., 2020)

Eagle Ford is the second highest producing play that is lying in south Texas with approximately 5 to 30 billion
barrels of original oil in place. It mainly consists of higher carbonate shale percentage i.e., around 70% mainly in south
Texas with Kerogen Type Il while possessing higher shale content in the northwest region. The higher carbonate
content makes it more brittle and hence it becomes more conducive for hydraulic fracture operations. Currently, Eagle
Ford is contributing under 1 million barrels of oil production per day (DiStefano, et al., 2019; Liang and Zhao, 2019;

Zhao, et al., 2020)

Another major shale oil play in the U.S. is Wolfcamp which is lying in the midland basin, which is a major oil
resource of the Permian Basin. It is having approximately 30 billion barrels of original oil in place. The Kerogen type
for this play is found to be varying in the overall region between Type II and Type III. It is one of the most developed
shale oil resources with more than 6500 producers and over 200 active rig counts (Casey, et al., 2018; Gherabati, et

al., 2020; Smye, et al., 2020).

The next is the Niobrara shale formation that is lying northeast of Denver, Colorado, with the presence of both
conventional and unconventional oil resources. The Niobrara is consisting of three isolated zones i.e., Niobrara A, B,
and C which are sitting on the top of Codell and Greenhorn formations. It is one of the deepest shale formations in the
U.S. with approximately 7000 ft vertical depth with the formation thickness ranging between 150 to 300 ft (Heart

Energy 2020; McCormack, et al., 2021; Yue, et al., 2021).

The Utica shale is another important shale oil play in the U.S. that is a stacked play, that includes both the Utica
formation and the underlying Point Pleasant formation of the Late Ordovician age. The formation extends in the
subsurface from New York State in the north to northeastern Kentucky and Tennessee in the south. The typical depth
of the formation varies from 2000 to 14000 ft and a wide range of thicknesses covers 70 to 750 ft (Heart Energy 2020;
Gittings and Roach, 2020; Goodman, et al., 2019). Figure 2.6 is presenting the boundaries, structure (elevation of the

opt contours), and isopachs (thickness contours) of all five plays discussed above. While Table 2.3 summarizes the
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overall characteristics of all five plays. Multiple oil & gas companies are operating simultaneously on every individual

play.
Table 2.3 Summary of U.S. tight oil plays characteristics
U.S. Plays Bakken Utica Shale  Eagle Ford Wolfcamp Niobrara
Late Devonian & Middle Early )
Geological Age Permian Late Cretaceous
Early Mississippian Ordovician Cretaceous
Maverick
Basin Williston Basin Appalachian ) Permian Denver-Julesburg
Basin
North Dakota & Eastern South West Texas & NE Kansas, NE Colorado, SW
Geographic location ) )
Montana United States Texas SE New Mexico Nebraska & SE Wyoming
Average depth, ft 6000 5000 — 11000 7000 10000 — 12000 3000 — 14000
Average thickness, ft 22 100 — 400 200 1200 — 2000 450
Average porosity, % 8 2-8 9 5-9 6-9
TOC, % 5-8 4.25 2-5 3
L NEW MAXICO
CANADA TEXAS ’
MONTANA U1 <M
NORTH DAKOTA g %
A B - C TEXAS

"REW YORKE

WYOMING T

D o : COLORADO Elo FENRESSER" ..is NORTH CAROLINA

Figure 2.6 Boundary, structure (elevation of the top contours), and isopachs (thickness contours) of (A) Bakken (B) Eagle Ford
(C) Wolfcamp (D) Niobrara (E) Utica Shale (Maps gathered from EIA 2022)

Apart from the U.S., Russia, and China are having the largest shale oil resources with approximately 75 and
32 billion barrels of technically recoverable oil. Globally, shale oil resources are facing the same issue of short
production life and very low ultimate oil recovery that typically ranges between 3% to 10%. Figure 2.7 presents an
image of a typical well’s average annual production rate decline percentile for the first year of production from

different major shale oil plays in the U.S. It can be observed that oil production decreases rapidly as high as 50% of
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the initial flow rate. Therefore, to increase the oil recovery factor and the reservoir’s overall potential,
secondary/tertiary oil recovery must be considered from day one of the field development. Due to ultra-tight
permeability, gas injection is the only best-suited option that has been tested in a few pilots and found considerable

results, especially with CO; injection.
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Figure 2.7 First-year annual oil production rate decline percentile (Data collected and summarized from Barree, et al., 2009)

2.3. Field Development Planning

Conventional reservoirs with good permeability distribution are more likely to be developed with natural
depletion drive. Whereas water flooding is the most economical secondary drive mechanism that aids oil recovery
improvement, usually followed by Enhanced Oil Recovery (EOR)/tertiary recovery applications. The most common
EOR applications include HC and non-HC gas injection for miscible and immiscible gas flooding, etc. The EOR
processes are those that improve recovery from the injection of non-native fluid or energy deep into the reservoir.
Chemical and thermal EOR methods are also very commonly adopted to develop and/or to re-develop conventional
oil reservoirs (Syed, et al., 2011; 2016; 2019). But unlikely, the unconventional oil reservoirs do not give any response
to natural depletion or water injection due to very low water injectivity because of ultra-tight permeability and the
poor rock pores and pore throat size distribution that keep the oil isolated and trapped droplets (Sheng and Chen, 2014;
Sheng, 2015). The contribution of rock structures and their mineralogy cannot be neglected either which is responsible
for creating such ubiquitous matrix nature. For example, Figure 2.8 presents a schematic of pore throat size, structure,
and types for unconventional reservoirs concerning conventional reservoirs. The hydrocarbon accumulation in
conventional reservoir rock usually possesses a pore throat diameter of 1 micrometer that causes reservoir fluid

accumulation and migration based on buoyancy factors. On contrary, unconventional reservoirs usually own pore
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throats with lesser than 1-micrometer diameter, and fluid migration and accumulation happen by different mechanisms

including overpressure, buoyancy, stable temperature, and pressure.
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Figure 2.8 Type, size, and structures of pore throats in conventional and unconventional reservoirs (modified from Hoteit and
Firouzabadi, 2006)

Considering the facts discussed above, EOR projects are capitally intensive, time-consuming, and highly
uncertain processes that commercially require careful and systematic evaluation for successful unconventional field
development planning. A well-defined staged evaluation process for field development mainly relies on consistent
comparison of processes and the involvement of updated available and applicable technology. The maximum chances
of success depend on the process of minimizing efforts spent on inappropriate scenarios and the communication with
multi-disciplinary teams as well as commercial stakeholders. To present the complex nature of unconventional

reservoirs, multiple formation rock & fluid characteristics, and rock mineralogy are summarized in Table 2.4.

The unconventional resources tend to be laterally extensive but only developed through diffusion-based
processes since the unconventional hydrocarbons are not found within the discrete closures. That is why the presence
of huge but inherent heterogeneities requires hundreds of wells to target sweet spots for commercial-scale field
development. Table 2.5 enlists all the major reservoir specifications and the field development considerations usually

considered while developing two different types of reservoirs.
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Table 2.4 Typical rock/ formation and fluid properties of shale oil reservoirs

Reservoir Formation, Rock and Fluid

Typical Range

References

Properties (Collected from Literature)
Permeability 1E-5-0.1 mD
Porosity 2%—-18%
Reservoir temperature 200-240 °F

Formation pressure

3000-8000 Psi

Saturation pressure

2500-3500 Psi

Ney pay thickness

8 2600 ft.

Formation depth

2000-14000 ft.

Drive mechanism

Poor sweep and low-pressure connectivity

Initial water saturation

25%-50%

Pressure gradient

0.42-0.7 psi/ft

Rock type

Mixed-silt, limestone, sand & shale

Thermal maturity (Ro)

0.6%—1.8%

Wettability Mixed to oil-wet
Contact angle 80°-145°
Oil-water interfacial tension (IFT) 17-34 mN/m
Natural fracture intensity 0-32 per ft

Clay content 7%-30%

Total organic content 0.1%—12%

Bulk density 2.3-2.5 g/em3
Grain density 2.5-2.7 g/lem3

Rock grain size

Below 62.5 um

Average pore radius 0.01-0.03 um
Oil viscosity Below 4.2 cP
Oil API gravity 25 to 50°

Gas oil ratio (GOR)

500-1800 scf/stb

Oil polarity

More towards paraftinic

Fluid PH

Acidic

Total acid number

0.02-0.36 mg KOH/g

Total base number

0.12-1.16 mg KOH/g

Brine specific gravity

Heavy

Brine salinity

High

Brine total dissolved solids (TDS)

228500-285000

Alvarez and Schechter, 2016;
Alfarge, et al., 2017a, 2017b;
Alvarez, et al., 2017;
Alharthy, et al., 2018a, 2018b;
Adel, et al, 2018;

Aziz, et al, 2021;
Biresselioglu, 2016;

Caineng, et al., 2013;

Cho, et al., 2016;

Dawson, et al., 2015;
Fragoso, et al., 2018;

Jin, et al., 2016;

Kurtoglu, et al., 2013b;
Kurtoglu, et al., 2014;

Karimi, et al., 2019;

Kerr, et al., 2020;

Li, L., etal., 2019;

Morsy, et al., 2013;

Morsy and Sheng, 2014;

Pu and Li, 2016;

Rassenfoss, 2017, 2014;
Sanaei, et al., 2018;

Valluri, et al., 2016;

Wang, D, et al., 2016, 2014, 2012,
2011;

Wang, D, et al., 2016;

Yu and Sheng, 2016;

Yu, etal., 2014,

Yin, et al., 2017;

Zhang, et al., 2013b; Zhang, 2016
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Table 2.5 Reservoir specifications and field development differences between conventional & unconventional

Conventional Reservoirs

Unconventional Reservoirs

Reservoir Specifications

Found in localized structural traps

Found in aerially continuous thin formation deposits

Relatively smaller original oil in place

Relatively larger original oil in place

Higher to moderate porosity

Moderate to lower porosity

Possesses inter-granular porosity

Other/ Complex Porosity Types

Permeability ranges > 0.1mD

Permeability ranges << 0.1mD

A strong relationship between porosity &
permeability

Generally, permeability increases with porosity but no
strong relationship

Follow traditional phase behavior

Mostly works on complex PVT behavior

API may vary from 7° to 50°

API varies greatly within the range of 25° -50°

Primary recovery ranges between 15% - 35%

Primary recovery ranges between 2% - 8%

Field Development Planning

Shows sustainable Production & Injection
operations

Rapidly declines production and shows poor injectivity

Few wells are reliable enough for
commerciality

Several wells are required for commercial field
development

Field development assessments before
development drilling

Field development assessments during development
drilling and the development plan keep on updating based
on the regional flow performance

Field development uncertainty/ risk factor
ranges from Low to medium

Always high uncertainty and the field development risk
factor

Both vertical and horizontal wells work with
hydraulic fractures

Horizontal wells are necessarily required with hydraulic
fractures to maximize reservoir contact

Follow the natural depletion process

Artificial / manufacturing process

Hard to find — Easy to produce

Easy to find — Hard to produce

Whereas Table 2.6 lists the summary of typical well properties drilled in different U.S. TORs to give an idea

about the estimated cost for individual well drilling operations and the expected estimated ultimate oil recovery for
the net profit approximation.

Table 2.6 Typical wells information from major U.S. shale oil plays. (Heart Energy, 2020)

First Well Cost ($MM)  EUR (Million  Well Spacing Avg. Well Lateral (ft.)
Production bbl.) (ft.)

Bakken 2008 Approx. 8.5 -9 700 160 8500 — 10000
Eagle Ford 2006 Approx. 6 -9 600 40— 80 6000 — 7000
Wolfcamp 2011 Approx. 7—8 650 —750 80 4500 — 6700

Niobrara 2006 Approx.3-35.5 250 -450 160 4000 — 5100
Utica 2011 Approx.6 — 8 3.6-54 160 500 —900

2.3.1. Field Development Stages and Planning Strategy
It is a common practice to develop TORs in multiple stages and each stage could take several years to

complete, therefore, the development of such reservoirs is comparatively expansive and becomes a mega-multibillion-
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dollar project. In the initial stage, the exploration has performed confirmation of the existence of the technically
recoverable hydrocarbons. The geological investigation of the existing wells in the neighboring areas could be an easy
start to have clear signs of hydrocarbons in the targeted area. On positive signs, detailed preliminary geological and
geophysical surveys have performed the confirmation of the hydrocarbon's existence. During the same stage, the land
acquisition and the drilling permits are obtained from the local and federal authorities (if needed), which could take a
year. The second stage involves the seismic survey, its evaluation, and its characterization. The major objectives of
this survey include the overall formation extent determination to define formation boundaries, a rough reserves

estimation, and the most favorable exploratory well drilling spot determination.

For exploration purposes, initially, a vertical well is drilled to obtain multiple well logs and core samples for
the actual reservoir formation and in-situ fluid characterization. While developing unconventional reservoirs,
comprehensive Rock-Eval pyrolysis is performed to determine basic properties including total organic carbon (TOC),
thermal maturity (Tmax), hydrogen index (HI), etc. In addition, the geochemical properties such as rock traceability
and the brittleness index are also measured in this step which is compulsorily needed for the optimum sweet spot
determination while hydraulic fracturing the well. This entire exploration process approximately takes more than a
year which is usually followed by drilling a few horizontal wells aided with multi-stage hydraulic fracturing networks
for the early stage, usually single well based, hydrocarbon productivity estimation. Usually, micro-seismic surveys
are also conducted to evaluate the hydraulic fracturing treatments and completion techniques optimization. In the
development of tight hydrocarbon reservoirs, the application of massive and multi-staged hydraulic fractures is a
common practice to provide optimum reservoir contact and flow channels for the in-situ fluid that does not flow easily

from tight matrix pores.

The next stage is comprised of hydrocarbon production potential analysis, analytically and numerically. After
having enough confidence in the collected data and their analysis, a commercial field development plan is prepared.
As a part of a commercial development plan, full-field drilling permits, pipelining, and facility construction permits
are acquired from the concerned authorities. Finally, after having all the legal permits, the entire field is developed on
a commercial scale that might include drilling smaller spaced a few hundred to more than a thousand horizontal wells.

Not only primary production but also EOR application could be part of the full field development planning.
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Due to ultra-tight permeably, usually, TORs are developed regionally through the individual well-based huff-
n-puff mechanism that is also known as a cyclic solvent injection (CSI). Apart from the well completion design, the
hydraulic fracture design plays an important role to improve the EUR, however, a detailed sensitivity analysis on
every individual well is necessarily required to determine the optimum well design and the hydraulic fracture design
as well as the EOR operational design (Muther, et al., 2020a; 2020b; Syed, et al., 2022b). A detailed numerical
simulation study is performed to evaluate the effects of multiple cluster count as presented in Figure 2.9, as well as
the effects of fracture half-length, fracture spacing, and fracture effective permeability (Muther, et al., 2021b; 2022b;
Syed, et al., 2021b; 2022b; 2020c¢). A few results of the numerical simulation-based study are presented in Figure 2.10
which clearly illustrates that the increasing number of clusters per fracture helps to improve the oil recovery, but the
stimulated reservoir volume (SRV) is the limiting factor that determines the optimum number of clusters required in
each scenario. In addition, the effect of incremental fracture half-length, spacing, and the effective permeability or

fracture conductivity positively improves the recovery factor significantly.

Figure 2.9 3D Numerical model representation of (a) a single, (b) dual, and (c) triple clusters per fracture

In addition to the hydraulic fracture design, the huff-n-puff operational scheme is also an important factor to
consider with any injection solvent for the development of an unconventional oil reservoir. Considering CO, as an
example, the incremental number of huff-n-puff injection and soaking cycles play an effective role to improve the oil
recovery significantly as presented in Figure 2.11. It can be noticed from the first figure that the ultimate oil recovery
significantly improved with an incremental number of huff-n-puff cycles. However, the recovery/fluid-flow response
deteriorates because of every individual cycle in a row due to reducing residual oil saturation near the wellbore and

near the fractured zone (Syed, et al., 2022b).
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Figure 2.10 Recovery response for (a) cluster count per fracture, (b) fracture half-length, (c) fracture spacing, and (d) effective
fracture permeability as presented by Syed, et al. (2022b)
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Figure 2.11 Effect of multiple huff-n-puff cycles on (a) ultimate oil recovery, and (b) individual fluid-flow and recovery response
after each huff-n-puff cycle as presented by Syed, et al. (2022b)

2.3.2. Conventional Vs. Unconventional EOR

In the bigger picture, the exploration and development of tight reservoirs require early integration of
geoscience and engineering skills. In addition, the early development decisions for the TORs must be made without
the benefit of local well production data because over large areas, the unconventional/tight hydrocarbon accumulations
can contain extremely large in-place volumes (Balasubramanian, et al., 2018). Horizontal wells and infill drilling is
one of the commonly applied short-term practices to increase rapid production, the maximum reservoir contact and

the spacing between the wells vary based on the rock and the stimulated reservoir volume as well as the fluid quality
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(Al-Farsi, et al., 2012). Lower the quality of oil and the rock permeability; closer will be the infill wells with extended
lateral lengths (Syed, et al., 2021; 2022b). Before getting into more details about the EOR applications applicable in
the TORs, let us look at the major differences between the conventional and the unconventional EOR schemes as

briefly listed in Table 2.7.

Table 2.7 Conventional vs. unconventional EOR mechanisms and development strategies

Conventional EOR

Unconventional EOR

Long-term increase in EUR

Only short-term production restoration

Considerable recovery enhancement

Quick hydrocarbon production acceleration

Sustained injection of external fluids

Unable to sustain injection/limited external fluid injectivity

The fluid flow mechanism observed through the

matrix

Complex fluid flow through natural fractures and nano-pores

Fluid flow physics is relatively well understood

Fluid flow physics & chemical processes are still not completely

explainable

IFT, wettability, and miscibility improvements are the

key parameters to improving oil recovery

The effects of these parameters are still not completely understood

Targets in-place reservoir volume

Only near-wellbore/ locally fractured areas (SRV) are the goal

Development plans based on multiple productions &

injection wells

Usually, individual well (huff-n-puff) development plans work

more efficiently

It’s a mid to late life-cycle application

Early life-cycle application

Shows low to medium uncertainty and risk factor

Mostly uncertain applications with a high-risk factor

2.3.4. From Laboratory to Field Scale — Lessons Learned

Because of the complicated nature of TORs, the EOR applications in conjunction with horizontal drilling are
getting significant attention and motivation as discussed earlier. However, due to a poor understanding of geological
constraints and the fluid flow performance in a TOR, the proper selection of an optimal EOR application, hydraulic
fracture design, and the planned operational strategy is still a big challenge (Syed, et al., 2021; 2022b). There has been
a lot of development research conducted over the years regarding the implementation of EOR in different U.S. TORs.
A summarized evaluation of different EOR techniques based on laboratory analysis, numerical simulation, and field
implementation is provided in Table 2.8. Whereas several experimental research projects are conducted on a laboratory

scale is summarized in Table 2.9.

Based on the collective learnings from the experimental core scale and the numerical field-scale simulation

studies, several pilots were historically planned and conducted in the U.S. Some of them presented impressive
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recoveries because of CO, EOR, while a few of them ended up with no success but left lots of learning for better
assessment and implementation in the future. A typical description of different US field development pilot projects

for unconventional reservoirs is summarized in Table 2.10.

2.4. Potential Unconventional EOR Techniques & Recovery Mechanisms

As discussed in Table 2.6, the EOR applications in TORs are quite different in comparison to conventional
reservoirs due to complex reservoir rock mineralogy and flow behavior. Due to the rapid production decline of
unconventional tight hydrocarbon wells and low EUR, IOR/EOR techniques are essentially required to improve and
sustain the production profile, economically. The only viable unconventional EOR technique so far is gas (CO»,
enriched/associated hydrocarbon) injection. In recent years, numerous studies have been conducted on various types
of EOR applications in TORs and a large volume of material has been presented in technical literature by academia

and industry researchers (Alfarge, et al., 2017a; 2017b; Syed, et al., 2021; 2022b).

Gas injection and most importantly the combination of the huff-n-puff process is the more frequently adopted
technique to develop shale reservoirs in the U.S. since 2010, and most of the recent wells are drilled as MRC wells.
The multi-stage fracturing is another factor that adds value to the process with either continuous gas injection in
closed-spacing infill wells or huff-n-puff on widely spaced individual wells (Hoffman, 2018b; Thomas, et al., 2016;
Todd and Evans, 2016). It was found from the literature that most of the recent research on U.S. TORs is conducted
on Eagle Ford, Bakken, and Barnett formations to understand the applicability of different EOR techniques (Alfarge,
et al., 2017a). From the IOR and EOR standpoint, several applications have been successfully tested in conventional
fields but unfortunately, due to different reservoir rock architecture, mineralogy and the fluid flow performance in
ultra-tight pores and the pore throats make it almost impossible to adopt any of the conventional applications at least
without any modifications. There are hundreds of studies found to be very impressive in literature with improved
recovery but at the same time, many other studies strongly contradict their findings (Alvarez, et al., 2014; Dawson, et

al., 2015; Sanchez-Rivera, et al., 2015; Shuler, et al., 2011; Wang, et al., 2011; 2012;).

The recovery mechanisms are not the same for the unconventional tight reservoirs as the conventional reservoirs
due to different rock properties and heterogeneity distribution, fluid phase behavior as well as fluid flow mechanism,
and mass transfer mechanism (Dawson, et al., 2015; Syed, et al., 2022a). The most expected mechanisms during gas

(CO; or HC) injection through the huff-n-puff processes include molecular diffusion in nano-pores, single-way mass
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transfer, or gaseous phase evolution/expansion (Luo, et al., 2018). In addition, the cyclic pressurization and the
resultant phenomenon of near wellbore/fracture oil swelling, viscosity reduction, and vaporizing gas drive are the
expected mechanisms. With the above discussion, the EOR potential in major U.S. plays is listed in Figure 2.12 and
consequently, a huge number of studies are conducted from laboratory scale to field pilot scale. The distribution in
percentage is shown in Figure 2.13 for both, studies conducted on various scales and the major U.S. plays for which

these studies are conducted.
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Figure 2.12 EOR potential in the U.S. reservoirs as of 2020 Figure 2.13 Formations & the tools (lab to field scale) used
for the EOR applications on tight oil reservoirs of the United
States

Table 2.8 Working phenomenon and lab/ simulation/ field tests of different EOR techniques in tight oil reservoirs

EOR Base Phenomenon Observations & Learnings References
e Tested in almost all the U.S. reported TORs including

Eagle Ford and Upper, Middle, and Lower Bakken

e Molecular diffusion formations.
e Capillary pressure, e Most importantly, reservoir pressure maintenance and oil
wettability, fluid swelling were the dominant factors to provide a Chen, et al, 2016
. . . . Hawthorne, et al., 2019;
density, and viscosity considerable recovery factor.
i Hoffman, 2012, 2018a;
reduction o Huff-n-puff proved to be an important player with cyclic

Kurtoglu and Salman,
o High compressibility to miscible (CO2, HC gas) as well as immiscible (N2) gas 5(; 5

push the oil toward the injection in field pilots. Li, etal., 2015;

producer e CO2 is being tested more often in both the field and the Sheng, 2015;

Sheng and Chen, 2014;
Song and Yang, 2017,
Syed, et al., 2020a, 2020b;
Todd, et al., 2017;

Tovar, et al., 2018;

e Pressure maintenance lab tests.
¢ Oil swelling e Apart from field tests, there are several simulation and

e Combination of all or lab tests reported in the literature.

Miscible & immiscible gas injection
(CO,, HC, lean natural gas, and N)

some of the working ¢ In lab and numerical studies, the gas molecular diffusion
mechanisms listed phenomenon is found to be more important to make a
above remarkable recovery in comparison.

e Also, huff-n-puff gas injection is found to be considered

successful in most of the simulation studies.
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Chemical flooding
(Alkaline, surfactant & polymers)

e Oil-water interfacial

tension reduction

o Wettability alteration

A couple of field pilots were tested but no conclusive
recovery performance review 1is presented in the
literature.

In the lab, surfactants showed considerable results.

Also, anionic, and non-ionic surfactants are tested in the
lab.

Most of the lab experiments are performed on the core
samples taken from the Bakken formations.
Additionally, on a field scale, simulation studies are

conducted that present promising results.

Akbar, et al., 2021;
Dawson, et al., 2015;
Karadkar, et al., 2019;
Nguyen, et al., 2014;
Sanchez-Rivera, et al.,
2015;

Shuler, et al., 2011;
Wang, et al., 2012; 2011;
Zhang, et al., 2018

Low salinity water flooding

Clay swelling

Shale mineral cracking
Wettability alteration
Water imbibition

Osmotic Effect

No field trials are found in the literature

However, several experimental studies are conducted
Most of the studies in the lab are conducted on a core
scale
Remarkable recovery performance is observed,
noticeably due to shale cracking by clay swelling

But not conclusively understood to apply in the field.
Most probably due to clay swelling that might play a
negative role to make the permeability worse.

Also, poor sweep and conformance control is expected.

Morsy and Sheng, 2014;
Morsy, et al., 2013;
Valluri, et al., 2016;
Wang, et al., 2011, 2014;
Zhang, J., et al., 2013b (?)

Carbonated water flooding

Oil viscosity reduction
Oil swelling — increase
in oil saturation and the
relative permeability
Reduction in oil-water

interfacial tension

Lab experiments are performed, and remarkable results
are found to reduce residual oil saturation to as low as
15% under reservoir operating conditions.

Also, water alternate gas with COz is tested in the lab and
found good results

Requires limited modifications on surface water flooding
facilities to implement in fields.

Comparatively more suitable in certain environments
such as places with a limited supply of CO2 & difficult to
build a recycling plant to capture or recycle COo.

Dong and Hoffman, 2013;
Li, S., etal., 2019;
Zou, etal., 2018

Carbonated silk water

Used for hydraulic
fracturing and post-
fracturing EOR

Near wellbore & fracture.

Oil viscosity reduction
Oil swelling — increase
in oil saturation and the
relative permeability
Reduction in oil-water

IFT

During lab experiments, fractures induced by pure CO2
are much more complex with larger surface areas
compared to fractures induced by water.

A significant reduction in viscosity as a function of shear
rate is observed with silk water in comparison to water or

foamed water under reservoir operating conditions.

Ribeiro, et al., 2017;
Wan, et al., 2015;
Yin, et al., 2017;
Zhang, et al., 2017
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Table 2.9 Experimental research conducted on the U.S. shale reservoir rock and fluid samples.

Core

Porosity,

Recovery

Oil Recovery

Permeability, s
Samples mD % Injection Gas Mechanism Factor, % Reference
<0.001 44 . 17.94
Flooding
0.004 13.1 N 19.88 Sheng and Chen,
<0.001 4.4 ? - 22.52 2014
<0.001 13.1 wHpy 24.13
0.0024 7.8 CO» Huff-n-puff 56.8 LiL.,etal,2019
7-hour soaking
S CO2 Huff-n-puff 31
s Miscible 5 cycles
(]
ED CO2 Huff-n-puff 41 Alvarez, et al.,
= Above miscible 3 cycles 2017,
CO2 Huff-n-puff Hawthorne, et al.,
- 49 2019
Way above miscible 6 cycles
CO2 Huff-n-puff
. 0.9
Immiscible 2 cycles
0.005 5 N2 14.23-39.66 Zhu, et al., 2021
- 7.7 co Cyclic gas injection 20-71 Todd and Evans,
- 5 ? 10-63 2016
Cyclic gas injection
. 13.5
é = ll-_day so_alflngt;-
g i i yclic gas injection i L2019
S N2 2-day soaking 16.96 in, et al.,
Cyclic gas 1n]§ct10n 19.59
3-day soaking
Near miscible
Huff-n-puff 63
40-hour soaking
18.6 Miscible Syed, et al., 2020a;
0.27 - 0.83 ' CO» Huff-n-puff 61 yed etal, 20202;
= 23.1 . Wang, et al., 2010
% 60-hour soaking
2 Immiscible
Huff-n-puff 42.8
60-hour Soaking
189 — Dong and
0.29 -0.44 : Water + CO» CO2 WAG 80.1-88.1 Hoffiman, 2013;
23.6
Yang, et al., 2015
Upper
- - h 201
Bakken CO2 1043 Sheng, 2015
Ci >90
o g C2 ~100
S % 0081-1.03 44-54 Ci-sso - Ca-15% >90
Z a CO» . . >90
Oil extraction
N2 26 Sheng & Chen, 2014
Ci ~18
o = CZ "'27
o g 0.081-1.03 44-54
z % Ci-5% - Ca-15% ~32
— m <10
CO2
- - 848 Sheng & Chen, 2014
Barnett - - N Cyclic gas injection 6.5-17.79  Sheng & Chen, 2014

1-day soaking
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Table 2.10 Observations and learnings collected from the field pilots conducted on unconventional shale reservoirs of the U.S.

Res. Year Injectant EOR Observations & Learnings References
Reported a successful injectivity test with no incremental oil
recovery because of injection. The injectivity was successful due
2008
to 1-2 miles of horizontal well and a massive hydraulic fracturing
CO
’ network. Sheng and Chen,
2014
Found a successful injectivity test with a minor increase in oil rate
2009
L‘cg and recovery. The minor increase is likely caused by frac-hits.
&
‘E Successful injectivity test with water but almost no incremental Adel, etal,
:5 2018;
recovery. After multiple huff-n-puff cycles, observed an  Kurtogly, etal.,
2012 2013b;
incremental oil response possibly due to the late reach of CO2  Songand Yang,
2017;
deeper into the formation. Sheng & Chen,
Water 2014
Limited success in waterflood conductivity test with no
e incremental oil recovery and early water breakthrough (within a
2012 3
o § month). The oil rates were reduced because of the large amount of
2 [
a2 . .
2 water restricting oil flow.
o Reported unsuccessful experience because of CO2 breakthrough at
1<)
2014 CO, i an offset well on the same day with a huge CO2 content possibly
g
é due to a connected thief zone among the two wells.
Successful water flooding injectivity test with no incremental oil
2014 Water recovery due to early water breakthrough and its rapid increase ~ Sheng and Chen,
2014
= (within a week) in one of the offset wells.
%
£ After an unsuccessful experience with water flooding in 2012,
produced HC gas with around 90% of Ci and Cz mixture injected
2014 Produced for a couple of months that partially resulted in improved oil
HC gas recovery from the offset wells. But, due to some major stimulation

events and high GOR in offset neighboring wells made this

experience quite complicated to call a success story.
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However, the provided operational data including GOR trends

seems unrealistic (GOR was found to be low during the HC gas

Produced &g
& . . Hoffman, 2018b
2012 lean HC 0 injection) but still, the overall recovery performance was found Thomas. ot al
= 20 f6 )
gas =z good with a cyclic trend of improved oil rates after every injection
and soaking cycle of 4 to 6 weeks.
2015 Produced o
8 Based on the decline curve analysis, both pilots showed a
HC gas ‘g
2015 Produced :g considerable incremental recovery with natural gas injection.
<
E HC gas &)
%0 Like previous experience, also this pilot showed promising results
<
o
2015 Produced with an incremental oil recovery because of hydrocarbon gas
HC gas
injection.
Hoffman, 2018b
2015 Produced f: It is quite difficult to conclude results for these pilots due to the
———— r1ichHC o R
2015 e unavailability of enough performance data.
gas =
jan)
It is a huge huff-n-puff, multiple wells-based field-scale pilots
2016 Produced started in mid-2016 that showed impressive results with notable
HC gas

incremental oil recovery.

2.5. UEOR Physics & Fluid Flow Mechanism at Nano-Pore Scale

As discussed in earlier sections hydraulic fractures are compulsorily generated to develop unconventional
reservoirs but proper dealing with the interaction between the matrix and the hydraulically induced fractures is very
important. Hydraulic fractures are usually in macro size as compared to the natural fractures that are found in micro
size; therefore, hydraulic fractures help to enhance the economical fluid flow through improved flow channels for the
hydrocarbons from matrix nano-pores. As a part of post-fracture operations, the micro seismic data is gathered to
understand the effectiveness of hydraulic fractures and the subsequent development of the fracture network (Barree,
etal., 2015; Shuler, et al., 2011; Xie, et al., 2015). Due to tight permeability and poor injectivity as well as productivity,
the huff-n-puff is the most preferred gas injection/EOR mechanism that is applied in TORs. The huff-n-puff operation
is performed in three steps as explained on a micro/ pore-scale level in Figure 2.14. During huff-n-puff, CO, is injected
into the reservoir through the fractures while the concentration gradient pushes CO; to invade the matrix in the first
step. During the second step, the well is shut in which allows CO» to interact with the formation of oil resulting in oil

swelling and oil viscosity reduction. Finally, in step 3, the miscible or immiscible oil and CO, migrate out of the pores
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towards the fracture by diffusion, injected CO» equalizes pressure inside the rock pores, and the excess CO; plus the

heavy hydrocarbons stay back into the rock pores.

Pore Throat

Conventional Reservair

-

por.e LHC - Light Hydrocarbons

Unconventional Reservair

STEP 1 STEP 2 STEP 3
CO, injection: CO, flows Based on concentration Oil migrates and CO, pressure
rapidly through the gradient, CO, starts to equalize inside the rock pores
fractures into the pore permeate into the rock to and stays back. Light HCs more
space work in dual ways. readily flows out of the
1.CO2 pushes oil to flow formation pores while leaving
2.C0O2 swelling pushes the heavier HCs and CO,

oil to flow l_

Figure 2.14 Stages of CO2 huff-n-puff in fractured oil reservoir on a micro/ pore level in comparison to continuous gas injection

in conventional oil reservoirs (Syed, et al., 2022b)

It is foremost important to study the dynamic fluid flow properties under nano-confinement. However, it is
not easy, time-consuming, and expensive to capture physics through experimental studies at a nano-pore scale
therefore dynamic molecular simulation has become a powerful tool to analyze the molecular structure and their
dynamic behavior. There are two commonly used simulation methods in molecular modeling including Monte Carlo
(Alder and Wainwright, 1959) and molecular dynamics (Alder and Wainwright, 1957; EIA 2021a). There are several
studies recently conducted on different EOR/fluid-fluid and fluid-nano-pore interaction mechanisms. Most
importantly, each EOR mechanism behaves differently to target different fluid-fluid and fluid-nanopore interaction
properties. Table 2.11 presents a summary of a few UEOR physics-based dynamic molecular simulation studies for

different injection solvents.
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Table 2.11 UEOR physics-dynamic molecular simulation studies

EOR Fluid-Fluid & Fluid-Nano-Pore

. . . References
Mechanism Interaction Mechanisms

Li, C., etal., 2019a;
Oil Swelling Liu, et al. 2016;
Muther, et al., 2021a
Muther, et al., 2021a;
Zhao, et al., 2015
de Lara, et al., 2012;
Oil/water interfacial tension (IFT) Makimura, et al., 2013;

Viscosity reduction

CO injection

Zhang, et al., 2013a
Li, et al., 2020;
Muther, et al., 2021a;
Syed, et al., 2012; 2021a
Syed, 2012
Chun, et al., 2015;
Peng, et al., 2018
Cai, et al., 2018;
Jalili and Akhavan, 2009;
Ruiz-Morales & Romero-Martinez, 2018;
Tang, et al., 2014
Memon, et al., 2020; 2021;
Surface adsorption Muther, et al., 2021a; 2022a; 2022c¢;
Qu, etal., 2016
Chen and Xu, 2013;

Oil/water interfacial tension (IFT)

Nz, CH4 & CzH(,
1njection

Minimum miscibility pressure (MMP)

Self-assembly structure

Temperature sensitivity Sammalkorpi, et al., 2007

Li, C., etal., 2019b;
Salt resistance Sammalkorpi, et al., 2007,

Yan, et al., 2010

Surfactant—chemical EOR

Effect of surfactant or Metropolis and Ulam, 1949;

surfactant/nanoparticles on oil/water IFT Vu and Papavassiliou, 2019

CO; or any other solvent injection process into the reservoir matrix through fractures, at first helps to maintain
the reservoir pressure, and secondly, the miscibility between the oil and the gas is expected to be achieved after
multiple contacts. Molecular diffusion mainly determines the rate and the maturity of the miscibility between oil and
the injected gas. Figure 2.15 presents a three-step miscibility development from the lower to higher pressure in a visual
PVT cell for an oil sample taken from one of the U.S. unconventional reservoirs. In the first step i.e., the swelling
pressure range, the CO; dissolves into the oil phase that causing the oil volume to increase (oil swelling). While it can

be observed in the transition from the 2™ to 3" step, with further increase in pressure, the oil volume decreased and
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the gas color on the top changed that indicating that oil got extracted into the gas phase where the pressure point exists
before the pressure reaches MMP. The discussed example leads to the conclusion that unidirectional diffusion can be
considered for the low-pressure gas injection and production process but mostly, the reservoir pressure is well above
the MMP, especially for the TORs. Therefore, careful binary interaction and multicomponent diffusion coefficient
selection is the key to performing realistic physics-based numerical simulation, and the upscaling process from lab to

field scale will be more meaningful with the correct diffusion parameters selection.

1.4
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Figure 2.15 Interactions (swelling and solubility) between CO2 and crude oil under different pressure conditions (Tsau, 2011).

It is a well-understood fact that gravity drainage, physical diffusion, viscous flow, and capillary forces are
the driving forces for fluid flow in porous media. However, one force is usually found more dominating over others
depending on the reservoir rock and fluid properties as well as on the operating conditions. In unconventional
reservoirs with ultra-low matrix permeability, gravity drainage is considered inefficient; molecular diffusion plays an
important role in fluid flow. Molecular diffusion is defined as the molecular movement caused by Brownian motion
or fluid composition gradient in a mixture of fluids (Yu, et al. 2014). As discussed previously, most of the TORs are
developed through EOR application, either continuous injection or the huff-n-puff technique, which is mainly led by
the molecular—diffusion mechanisms. The correct identification of molecular diffusion is necessarily important in the
numerical simulation process that defines the miscibility process between the injected gas and the formation. In
literature, a dimensionless number called Peclet number (Pe) is widely used to measure the relative importance of

molecular diffusion flow to the convention flow. The Pe is expressed as shown below;
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2
Diffusion time _ L /D

e = - - =

Convection time L/,
where; v is the bulk velocity, L is a characteristic length, and D is the molecular diffusion coefficient. Mathematically,
Pe below unity defines the molecular diffusion-based fluid flow and the dispersion flow is considered when the Pe

ranged between unity to 50 and above 50, convection is considered the dominant flow in the porous media

(Mohebbinia and Wong, 2017).

2.5.1. Molecular Diffusion

Hawthorne et al. (2013) extensively investigated the CO, diffusion-mechanism on a laboratory scale using
core samples gathered from the Bakken formation and conceptually concluded that the injected solvent (CO») flows
into and through the fractures and it floods the rock driven by the pressure differential across the injection and the
outlet points. It is also concluded that the oil migrates from nano-pores to bulk fractures via swelling and reduced
viscosity on mixing with the injected solvent, and as the pressure gradient reduces, the oil production process gradually
shifts from pressure gradient to concentration-gradient diffusion from pores into the fractures (Alfarge, et al., 2017c;

Hawthorne, et al., 2013; Sigmund, 1976).

Generally, a couple of empirical correlations driven by Sigmund (Holm and Josendal, 1980; Sigmund, 1976),
and Wilke & Chang (1955) are used in commercial simulators, such as CMG GEM, for the diffusion coefficient
estimation in the bulk phase. In Sigmund correlation, the binary interaction coefficient (Dj) between two components

is given by;

ODO
D, = % (0.99589 + 0.096016py, — 0.22035 pZ, + 0.032874 p2.) Eq.22

where pﬁD?j is the zero-pressure limit of the density-diffusion coefficient product in phase k; py and py, are the molar
density and reduced molar density of the diffusion mixture, respectively. Also, pﬁD?j and py, are mathematically

defined as;

1 1,
omo _ 00018583 T /2 /1 1
— Eq. 2.3

Pk Y O'izj?,i]'R Mi M]

5/
Y VikV,,
Pra = pr A Eq. 2.4

¢
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where M; is the molecular weight of component i; oy; is the collision diameter; ¢;; is the collision integral of the
Lennard-Jones potential; y;i is the mole fraction of component i in phase k; v, is the critical volume of component i.

Whereas, the components o;; and g;; are calculated using the following expressions;

_ Oj + Gj
0jj = 2 Eq.2.5
Tci 1/3
o; = (2.3551 — 0.087w;) (P—) Eq. 2.6
ci
L06036 0.193 L, 103587 17674
E.. —
VTSt exp(0.47635Ty;)  exp(1.52996T;;)  exp(3.89411T;) Eq.2.7

where w is the acentric factor; T; and P are the critical temperature and pressure, respectively. Finally, the diffusion

coefficient of component i in a multicomponent mixture of phase k is calculated by;

Dy = 1;}%
Zisi(/y,) Eq.2.8

Similarly, Wilke-Chang proposed a diffusion coefficient based on a series of laboratory measurements for various
hydrocarbon solvents and other systems in the literature (Christiansen and Haines, 1987). The mathematical

expression is given below;

7.4 x1078(M}) 2T

N Eq.2.9
‘ e 1
M. = Yi=i YikM;
71—y Eq. 2.10

where Mj) is the molecular weight of the solvent; . is the viscosity of phase k; and vy; is the partial molar volume of

component i at the boiling point.

2.5.2. Minimum Miscibility Pressure

Minimum miscibility pressure (MMP) is the lowest pressure at which the interfacial tension (IFT) between
the two fluids (oil and injected solvent) vanishes completely after multiple contacts and both fluids become miscible.
MMP is usually measured in the lab through multiple techniques including the sand-packed slim tube method (Rao,
1997), the rising bubble method (Stalkup, 1987), and the vanishing IFT method (Zick, 1986). The presence of porous
media is not a compulsory factor for the measurement of MMP and that is fine for the conventional reservoirs where
the large pores phase behavior is not affected by confinement. However, measuring MMP with real confinement for

the unconventional tight formation is a significant challenge and practically it is not yet well defined. Therefore, MMP
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measurement with good accuracy can be determined numerically through fluid-flow and thermodynamic phase-

equilibrium principles.

Numerically, there are multiple approaches to calculating MMP including 1D compositional gas-oil fluid-
flow slim tube simulation (Wang and Orr Jr, 1997), no-flow predetermined mixing technique using single or multiple
connecting cells (Teklu, et al., 2014), and the method of characteristics (Muther, et al., 2022¢). Teklu, et al., (2014)
investigated MMP for Bakken oil samples with CO, as the effects of capillary pressure, the change in critical-property
on phase behavior, and the IFT in the thermodynamics in nano-pores. Table 2.12 presents the unconventional Bakken
reservoir oil composition, gas composition, and other reservoir and fluid properties that were invested in the study.
Figure 2.16 presents the MMP results of 100% CO: gas injection in the Bakken oil sample for the pore radii of 4 and

20 nm with the reference of no confinement case.

Compared with the unconfined case, the MMP for the Bakken oil was reduced approximately by 130 psi for
the 4 nm case in comparison to the unconfined case. As far as the 20 nm case is concerned, a similar MMP is noticed
in the unconfined case (Muther, et al., 2022a). Another study suggests that Ethane is a strong EOR solvent (MMP —
1343 psi) as compared to CO» (2523 psi) at 100 °C for the Bakken oil. Whereas methane and nitrogen are having

considerably high MMPs of 4510 and 14706 psi, respectively (O'Bryan and Bourgoyne, 1990).

Table 2.12 Bakken oil composition and EOS parameters — Tres= 241 °F (Teklu, et al., 2014)

Binary Interaction Coefficients

Components QOil Te, °F Pe, psi [

CO2 Ci C

CO2 - 87.60 1071 0.225 - - -

Ci 0.367 -124.66 655.02 0.010 0.100 - -

C 0.148 89.97 721.99 0.102 0.130 0.0050 -
Cs 0.093 205.97 615.76 0.152 0.135 0.0035 0.0031
Cs 0.057 299.208 546.46 0.189 0.130 0.0035 0.0031
Cs-6 0.064 415.479 461.29 0.268 0.125 0.0037 0.0031
Cr12 0.158 593.25 363.34 0.429 0.120 0.0033 0.0026
Ciza 0.073 872.10 249.61 0.720 0.120 0.0033 0.0026
Ca2-30 0.037 1384.5 190.12 1.015 0.120 0.0033 0.0026
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Figure 2.16 The f(Ki, p") vs. pressure for Bakken oil & 100% CO: inj. at different pore radii (modified from Teklu, et al., 2014)

Eq.2.11

where K is the equilibrium constant; P represents pressure, and N, is the number of components in the above

expression.

2.5.3. Solubility

Solubility is defined as the ability of a solvent to dissolve in oil that directly influences oil recovery. Higher
solubility factor causes oil swelling and oil viscosity reduction, and both help the oil to migrate from nano-pores to
wellbores via fractures. The pressure-composition experiments are evident that CO, is the most likely soluble solvent
in oil (Williams, et al., 2004). However, methane and CO, both show high solubility, but CO, achieves a certain
number solubility level at a much lesser pressure than methane needs to achieve (Li and Luo, 2017). This effect can
also be defined through the gas-oil ratio (GOR) for the oil saturated with CO; as a function of pressure. Figure 2.17
is a good example of measured GOR of live oil with different high-pressure solvents (Habibi, et al., 2017b). It is
noticeable that natural gas and enriched natural gas showed reasonable solubility and adding CO; into the system

improved the solubility significantly at lower saturation pressure.

2.5.4. Oil Swelling

Oil swelling due to dissolved high-pressure injection solvents is another important factor to highlight that
generates a localized pressure gradient, which causes oil to migrate from pores to fractures. Therefore, solvents that

cause more swelling of the reservoir oil are good candidates for the EOR. An excellent visual example of crude oil
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swelling due to the dissolution of high-pressure CO, and Nitrogen injection is presented in Figure 2.18 (Habibi, et al.,
2017a, Pereira, et al., 2016). The oil volume increased significantly with CO» in comparison to nitrogen at the same

elevated pressure observed after the same period.
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Figure 2.17 Measured gas/oil ratios of live oil with different high-pressure gases (modified from Habibi, et al., 2017b)

CO, Injection

N, Injection

Figure 2.28 Oil interface with CO; and N, injection at elevated pressure. (a) Only crude oil, (b) oil with injection

solvents at elevated pressure, (¢) oil with injection solvents at elevated pressure after 5 hr (Habibi, et al., 2017a)
2.5.5. Oil Viscosity
Another important interaction parameter is the reduced oil viscosity as the result of high-pressure solvent
dissolution into the crude oil. The reduced oil viscosity aids the oil in its displacement from the pores to fractures.

This effect of viscosity reduction is more prevalent with CO, as compared to any other solvents. Figure 2.19 is an
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excellent example of the effect of dissolved CO, and other solvents on the viscosity of a live oil sample taken from
the Bakken formation (Zhao, et al., 2015). It is clear from the figure that, as the saturation pressure increases, the

viscosity of the crude oil and CO, mixture rapidly declines in comparison to other solvents.
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Figure 2.19 Measured viscosities of live oil with different elevated pressure solvents (modified from Habibi, et al.,
2017b).
2.5.6. Interfacial Tension (IFT)

Interfacial tension (IFT) reduction due to the dissolution of elevated pressure solvents into crude oil is a
critical parameter that helps to improve oil recovery. The IFT reduction with increasing pressure is the most dramatic
in the gas phase. Focusing on CO; injection, as the pressure increases, CO; invades into a less compressible liquid
phase causing a decrease in IFT with an increase in pressure. However, the IFT plays a major role in conventional

reservoirs but not in the TORs where the CO; is pushed into the pores primarily by diffusion processes (EIA 2022).

2.5.7. Adsorption & Desorption — Solvent Trapping Mechanism

The adsorption and desorption of the injected solvents on the nanopores surfaces are important especially
while dealing with the tight formation for the solvent injection process efficiency. The overall system's efficiency
mainly depends on the total organic content (TOC). The adsorption of CO; can significantly reduce the gas saturation
in the rock pores. It is considered the second-order mechanism or the by-product of CO, miscibility into the formation
liquid and the effect of adsorption would be more substantial in the formations with higher TOC. Table 2.13 shows a

comparative study conducted on major U.S. tight formations for the maximum absolute adsorption capacity.
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Table 2.13 Maximum absolute adsorption capacities for different U.S. tight reservoirs (Heller, R. and Zoback, M., 2014)

Major U.S Total Organic Content Maximum Absolute Adsorption Capacity at
Tight Formations (%) 2000 Psi and 104 oF (Scf/ton)
Barnett and Montney 53 151
Marcellus 1.2 64
Eagle Ford 1.8 33

The phenomenon of CO, adsorption into the nano-pores and on the pore surfaces aids CO, molecular
diffusivity into the tight reservoirs and the effect is more prominent with the higher TOC and the combination of these
phenomena theoretically justifies the essential CO; trapping mechanism. The trapped CO> can be a large fraction of
the total injected solvent volume into liquid-rich shale plays that mainly depends on the TOC content and the CO»
diffusion coefficient. In this study, the Langmuir multicomponent isotherm model is utilized that was initially
established for the coal formations (Arri, L.E., et al., 1992, Hall, F.E., et al., 1994), the mathematical expression is
given below:

yi6ip
1 +p21,filyk5k Eq.2.12

Vi = Vmax,i
where y;and ¥4, are the moles of adsorbed component and the Langmuir maximum morels of adsorbed component
i per unit mass of rock (gmol/lb.), respectively. §; represents the Langmuir constant (Psi"), p and y; denotes the gas
phase pressure and the mole fraction of the adsorbed component i in the gas phase, respectively. Whereas N¢
characterizes the total number of components that contribute to adsorption.

It is important to note that the adsorption and desorption interlink with the pressure paths. Therefore, in the
huff-n-puff process, in which a single well contributes to injection and production, both phenomena actively
participate i.e., adsorption of solvent occurs during injection and desorption during production. It is also worth noticing
that the adsorption and desorption paths for CO; are not similar and they showed a hysteresis effect under moderate
pressure conditions (Culp, J.T., et al., 2008). Figure 2.20 is showing a schematic of injected solvent desorption as the
function of the initial pressure point that appears to be pressure path dependent. During gas injection, the formation
pressure increases that causing adsorption followed by pressure depletion due to production from different pressure
points showing dissimilar desorption paths. This phenomenon is similar to the capillary pressure and relative
permeability hysteresis effect that works based on the wetting phase saturation as the common scale for multiple

phases, whereas the adsorption and the desorption are the single-phase phenomenon.
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Figure 2.20 Schematic of Injected solvent (COz2) adsorption and desorption paths during the huff-n-puft process at different
pressures. The phenomenon is explained by Jesson et al. (2008) for a fixed temperature and TOC.

2.6. Smart Physics Inspired Compositional Dimensionless Type Curves — SPiC TCp

Generally, reservoir rock & fluid characterization and hydrocarbon production forecasting is performed based on
historical production performance and there are not many techniques being used classically. For example, pressure
transient analysis is a ‘high frequency/ high resolution’ data analysis technique that depends on historical production
performance data and for which, he data quality is the key. The most adopted technique for production forecasting
was introduced almost a century back based on the empirical analysis of the historical production performance, the
technique is called ‘Decline Curve’ analysis (DCA). It is important to note that the objective of introducing DCA was
economic analysis, not technical (Cutler, W.W., 1924). Later with time, multiple techniques were introduced that were
presented in different representations such as Cartesian, log-log, and semi-log scale plots. In 1944, Arps introduced
exponential and hyperbolic families of decline curves (Arps, J.J., 1944) that were transformed into log-log type curves
by Fetkovich (Fetkovich, M.J., 1973), however, this technique provides an empirical solution but seems to work as a

general tool, is that more of a coincidence or theory...found no answer in the literature.

Moving further down the road, a promising analytical solution was introduced by van Everdingen and Hust in
1949, which was re-plotted by Fetkovich (Fetkovich, M.J., 1973). Fetkovich further extended the work and introduced
composite decline-type curves that were generated on multiple assumptions including; a single well based on constant
bottom hole flowing pressure and the radial flow in a finite radial reservoir system. The analysis based on this

technique is theoretically simple and practical to be performed using dimensionless type curves that can use the field
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data, but it has a drawback i.e., limited by the solution model as well as the data quality (Whitson, C.H. and Sognesand,

S., 1990).

In this dissertation, initially, the numerical physics-based huge dataset is developed using multiple
realizations with the combinations of different reservoir rock and fluid properties, including multiple
reservoir fluid compositions representing different fluid types, as well as the hydraulic fracture design
parameters. Secondly, the dimensionless type curves are generated for the entire dataset to be matched with
the reservoir flow performance data in log-log format. The well flow performance library and the
dimensionless numerical type curves are then used to train and develop an Al-assisted neural network model
for the generation of numerous proxy models and smart dimensionless semi-empirical compositional type

curves.

For hydraulically fractured horizontal wells, the dimensionless types are usually plotted on a log-
log plot, having a dimensionless flow rate ‘qp’ on the y-axis against the dimensionless time ‘tpxs’” on the x-
axis. The equations of both parameters are reported in the literature by multiple authors (Gringarten, A.C.,
etal., 1974; 1975; Chukwu, L.F., 1989; Cox, D.O., et al., 1996; Chen, C.C. and Raghvan, R., 1997) as given

below;

] ] 141.2qBu Eq.2.13
Dimensionless flow rate = qp = ————
k h (P;— Pyr)
. . . 0.0063 k t Eq.2.14
Dimensionless time = tpyy = —————
D pcoexf

where; q is the liquid flow rate, and B and p are the liquid formation volume factor and viscosity,
respectively. k, @, and h are the permeability and the matrix porosity, and the formation thickness,
respectively. Similarly, Pi and Pwf are the initial reservoir pressure and the bottom hole flowing pressures,

respectively. ¢ is the total compressibility, X represents the hydraulic fracture half-length, and t is time.
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2.7. Artificial Neural Network — Proxy Reservoir Performance Modeling

The concept of the neural network was introduced long back in the mid-20th century (McCulloch, W.S. and Pitts,
W., 1943) and was studied by several scientists and researchers based on their needs on the applicability in different
industries. The artificial neural network (ANN) is introduced as an information-processing technique that has worked
with a particular set of performance characteristics like the biological neural networks found in human brains
(Mohaghegh, S., 2000). In other words, as in a biological system, all organisms are composed of cells and neurons
that form a complex nervous system that mainly comprises a cell body, an axon, and dendrites as shown in Figure
2.21. Multiple types of ANNs have been implemented by several users based on the nature of the data. Deep Neural
Networks (DNN), Convolutional Neural Networks (CNN), Graphical Neural Networks (GNN), and Physics Inspired

Neural Networks (PINN) are a few commonly applied and reported ANNS in the literature (Zou, J., et al., 2008).

The working phenomenon of ANN is inspired by the biological neuron system, as shown in Figure 2.21, that
works directionally by passing a piece of information into a cell body that enters through the input terminals called
dendrites that generate an output response which travels through myelin sheat towards the axon terminal that works
as an output terminal as well as an input receiving end for another neuron. In the case of the connected neuron, the
generated response from the first neuron acts as input information for the second neuron and this process similarly
goes on. Typically, a human brain contains around 10 to 500 billion neurons (McClelland, J.L. and Rumelhart, D.E.,
1989) that are characteristically divided into different sections and each section consists of about a further 500 neurons
(Stubbs, D.F., 1988). Biologists estimated that each neuron network consists of more than 100,000 neurons that
connect (Mohaghegh, S., 2000). The actual neuron system is very complex that cannot be mimicked 100% therefore,
for the mathematical calculations; ANNs are developed based on a few assumptions including; the information that

passes through elements called neurons, and each connection that links up the neurons have its weightage.

In this work, DNNs are utilized to generate reservoir performance and proxy models. DNN consists of several
hidden layers and each layer consists of several neurons. These networks are capable of processing complex data and
algorithms. A typical DNN works on the phenomenon explained in the schematics shown in Figure 2.22.

The provided input information multiplies by the connection links weightage and the resultant product, enters
a neuron where all the inputs are summed up and the defined activation function of the neuron is applied that leads to

an output. Thus, a neuron typically has multiple inputs and only a single output. The typical DNN consists of a single
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input layer and one or multiple hidden layers that result in a single output layer. The input and output layers determine
the input and the outputs of the given problem while the hidden layers are responsible for the extraction features from
the provided dataset. The training of any type of ANNs requires huge datasets, however, a huge amount of data requires
exceptional computing power. Data preprocessing is an essential step that mainly controls the quality of the dataset as
well as the training quality of the ANN model. It is a fact that any neural network is only as good as the quality of the

input data that is used to train the model (Parmar, 2018).
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Figure 2.21 Typical biological neuron system - Two Figure 2.22 Schematic of Artificial Neuron Network (ANN)
Bipolar Neurons (Conte, E., et al., 2006) working phenomenon (Syed, et al., 2022a)

2.7.1. Working Phenomenon of Deep Neural Network (DNN) Application

Like any other engineering application, usually, the supervised DNNs are applied for reservoir engineering
as well as the EOR problems. The basic steps include representative input data collection and their characterization to
be used for the training, testing, and verification process. Data normalization is an important step to perform for the
balanced weightage distribution that is being done while providing the input data. Lastly, the optimized number of
hidden layers and the training function is defined. Once the model is set, data testing and training are performed,
followed by data de-normalization for the confidence-building before using the prediction model for any future
operation (Abdullah, M., et al., 2019, Khamidy, N.I., et al., 2019, Moosavi, S.R., et al., 2019, Sun, Q. and Ertekin, T.,
2020).

The input data for each DNN model is considered different depending on the application. The selected data
could be a collection of experimental testing, numerical simulation, or actual field operational data, etc. Practically,
most of the reservoir engineering operations are supervised, therefore; both input and outputs are required to be
provided while defining the sample data in the first step. Typically, the provided data set is divided into three sections
including training, testing, and verification. The training data I used to develop the DNN model while the provided
output data set helps to determine the weights of each input. The weight calibration is performed through the
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feedforward backpropagation algorithm that is being done through error backpropagation in the network. While the
testing dataset is used to measure the network generalization and it is a continuous process that keeps running until
the generalization stops improving. Finally, the remaining dataset i.e., the verification dataset is utilized for the
evaluation of the overall network performance. Keeping in mind that the verification dataset is not used in any step of

network building or testing (Demuth, H., et al., 2007).

One of the most important factors to highlight in this section is the data normalization that is necessarily done
on the dataset especially when the magnitude of input or the output data are too different, therefore, scaling of the data
is required to be performed (Saeedi, A., et 1., 2007, Zabihi, R., et al., 2011). One of the most common methods of data
normalization is to scale all the data between 1 and -1 using Equation 1 (Demuth, H., et al., 2007).

X;ZZ(M>_1
in

Xmax — Xm Eq. 2.15

where X; is the original value of the given parameter, X;’ is the normalized value of X; while X, and X,y are the
minimum and the maximum values of X;, respectively.

Another important step is the calculation of the optimum number of hidden layers and the cumulative neurons
in each hidden layer. The first part is achieved through an iteration process while the second part is usually done either
through total average absolute deviation or through the mean square of the error process. That means, starting with a
single neuron and keeping that number increasing until reached the lowest stabilized error. Finally, the training
function is chosen to minimize the error. A few examples of commonly used training functions include variable
learning rate backpropagation, resilient backpropagation, scaled conjugate gradient, etc. (Demuth, H., et al., 2007). In
general, Equation 2 (Huang, Y.F., et al., 2003) explains the entire DNN working process i.e., the calculation of an

output based on a neural ‘j’ defined in layer ‘.

Ng-1

W = Fy Z Wijk Wik-1) T bjk Eq.2.16

i=1

where ‘wyi” and ‘b’ are the defined connection weight and anti-weight of the network that works as the fitting
parameters of the respective model.

The generalized objective is to obtain a relationship from the given multidirectional input parameters to an
output. The goal is to obtain the difference between the predicted and the actual sample values in the output vector
with the least possible error. Here comes the role of fitting parameters that keep on modifying automatically over each
iteration until an error criterion between the input and the output is satisfied based on the geometric characteristics of
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a DNN and its defined learning strategy. Whereas the linked weights are defined as the learning process based on the

DNN input/output training and the testing process.

2.7.2.  Application of DNN in Reservoir Engineering

In recent years, the DNNs have been used to solve several complicated problems in the oil industry, not only in
the reservoir but also in exploration, and drilling engineering domains. Several success stories of DNN applications
have been published in the literature. In reservoir engineering, lots of work has been done in recent years, especially
for reservoir characterization (Zabihi, R., et al., 2011), reservoir fluid and rock properties (Yang, H.S. and Kim, N.S.,
1996, Alcocer, Y. and Rodrigues, P., 2001), reservoir monitoring (Denney, D., 2001), well testing (Denney, D., 2003),
formation damage determination (Saeedi, A., et 1., 2007), and hydrocarbon resources estimation (Armstrong, R.T., et
al., 2015). Also, a few studies are conducted on EOR applications including SCAL, relative permeability
interpolation, low salinity chemical flooding (Dang, C., et al., 2018), steam-assisted gravity drainage (Najeh, A., et
al., 2010), and CO2 injection for naturally fractured reservoirs (Hamam, H. and Ertekin, T., 2018, Syed, F.I, et al.,

2021d, Sprunger, C., et al., 2021).

2.8. Discussion

Tight reservoirs are well-known hydrocarbon-bearing formations that have recently been under focus for
unconventional oil and gas exploration in several countries. Specifically, tight oil is a liquid hydrocarbon resource
found in ultra-low porosity and permeability rocks such as shale, siltstone, sandstone, and carbonate, which are mostly
considered the source rock. TORs are usually found in the depressions and slopes of basins, close to extensive, mature,
and organic-rich source rocks. These are considerably large-scale reservoirs with nanoscale pore networks and the
local sweet spots with easier oil production regions. The sweet spots in tight reservoirs are mainly recognized with the
key features including the source type, lithology, reservoir quality, rock brittleness i.e., related to Young's modulus
and Poisson's ratio, oil-bearing property, and the stress anisotropy. The United States is having the world’s second-
largest technically recoverable shale oil resources. Among seven different regions of the U.S., the Southwest region
is having most of the tight oil resources. The main reservoirs in this region include the Permian and Fort Worth Basins.
Eagle Ford, Bakken, Wolf-Camp, and Niobrara are also major and well-known shale oil plays that are situated in

South Texas, Montana and North Dakota, Midland Basin, and Denver, Colorado.
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The tricky part while developing TORs is sustainable hydrocarbon production that barely lasts from a few months
to a couple of years without any external support because of their complex geology. Oil wells in almost all major tight
oil plays including Eagle Ford, Bakken, Niobrara, etc. face the same problem of rapid production decline within the
first year of their production life. On average, the daily production rate declines to half within a year, therefore EOR
application along with the massive stimulation (hydraulic fracturing) on individual well bores is nowadays considered
a compulsory factor for its development. In addition, because of limited inter-pore connectivity, TORs are mostly
developed through an independent huff-n-puff process. In most of the numerical simulation and laboratory cases, it is
observed in the literature that even though the ultimate oil recovery does not improve but the recovery significantly
accelerates. It is important to note that even a single percent increase in EUR could result in extra million barrels of

oil; therefore, even a single percent increase is significant while developing TORs.

For the huff-n-puff process, there are various factors to keep under consideration including the well and the
hydraulic fracture design, selection of the injection solvent type, slug size, the soaking time, etc. Hydraulic fracture
design parameters mainly include fracture half-length, height, and the number of stages as well as the number of
clusters per stage. The fracture stress shadow is another important factor to keep in mind, especially while designing
a hydraulic fracture numerically because it is unlikely to have all fractures operational in the actual field. Hydraulic
fracture design optimization depends on the rock quality, its brittleness and rock stresses, etc. Usually, in TORs, the
individual wells are designed with multiple stages and clusters depending on the targeted area of interest, the lateral
length of the drilled horizontal well, and the neighboring wells. As far as the injection solvent type is concerned, CO»
and the produced hydrocarbon gas are the most common choices because of the poor injectivity response from most
of the tight reservoirs. Due to the ultra-low permeability of the formation rock, only highly volatile fluids i.e., gases
can easily be injected, CO, is a greenhouse, and the critical gas with lower minimum miscibility pressure is an ideal
candidate that mainly depends on its economical availability. Figure 2.23 presents the maximum availability of CO»
and the multiple sources currently available in different regions of the United States. While the cost of CO, from
natural sources is tied to the crude oil price while for the industrial sources of CO,, the overall expenses cover the
capturing, compressing, and transportation costs. Table 2.14 summarizes the average overall cost of CO; per million

cubic feet taken from different industrial sources.
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Table 2.14 Overall average cost of COz capture, compression, and transportation from various industrial sources (EIA 2017)

CO: Industrial Source Average Overall $/Million Cubic Feet of CO2
Hydrogen plants 7.8-22.2
Ammonia Plants 29-3.0
Ethanol Plants 23-54
Cement Plants 6.5-15.7
Natural Gas Processing 2.1-4.0

West Coast u Hydrogen Plants m Natural
= Ammonia Plants BN Gas Processing

North Great Plains = Cement Plants Ethanol Plants

Rock Mountain

Soutwest

Midcontinent

Guld Coast

East

100 200 300 100 500 600 700

Maximum Available CO2 Volume (billion cubic feet)

Figure 2.23 Maximum availability and the sources of CO2 from different regions of the United State as of March 2022

There are several laboratory and field-scale EOR applications reported in the literature that were conducted
with different injection solvents including miscible and immiscible gases, chemicals, low-salinity water, carbonated
and silk water, etc. Gas injection mainly helps to improve oil recovery through molecular diffusion, capillary pressure,
wettability, in-situ fluid density, and viscosity reduction while chemical flooding targets the interfacial tension
reduction and the wettability alteration. The low salinity water flooding improves oil recovery through clay swelling,
shale mineral cracking, and wettability alteration. Similarly, the carbonated and silk water flooding aids oil recovery

through in-situ oil swelling and the reduction in reservoir oil viscosity and interfacial tension.

Most of the laboratory-scale research was conducted on core samples collected from the U.S. reservoirs including
Eagle Ford, Mancos, Bakken, and Barnett through CO> injection under miscible and immiscible conditions. While the
actual field EOR pilots were conducted with CO; and produced hydrocarbon gas in Bakken and Eagle Ford formations.
The initial EOR pilots conducted in the Bakken formation with CO; huff-n-puff showed limited oil recovery
improvement while the later pilot in the same formation with water flooding followed by produced hydrocarbon gas

injection wasn’t found successful due to poor injectivity and early gas breakthrough in the neighboring well. Whereas
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the pilots conducted in Eagle Ford with produced hydrocarbon gas injection showed limited recovery improvement

with both gas flooding and cyclic gas injection.

2.9. Summary

In closing, the lessons learned from all the experiences discussed from lab to field-scale unconventional EOR

studies are summarized below;

Apart from hydraulically induced artificial hydraulic fracture networks, the EOR application is a must thing
to develop an unconventional reservoir for fast-paced economical oil recovery.

Depending on the original oil in place, a single percent increment in oil recovery through a single or multiple
EOR applications on a tight oil reservoir could add up to several extra billion barrels of oil.

CO; and produced hydrocarbon injection are proven successful EOR applications for decades in TORs
however, its success in unconventional reservoirs is so far inconclusive due to limited information availability
of the actual field pilots.

However, from the available field pilots, laboratory experiments, and numerical studies, CO, and produced
HC gas with huff-n-puff operation managed to provide an extra couple of percent of incremental oil recovery.
Along with EOR applications in TORs, hydraulic fracturing and re-fracking operation in multiple stages
could further improve oil recovery.

Based on individual well operation, the huff-n-puff cycling EOR technique has also provided limited yet
promising results in the field to improve oil recovery.

There is a high risk in UEOR due to a lack of long-term production. In addition, the UEOR mostly does not

increase the overall recovery but accelerates the production significantly.

Exploring all the possible options to develop a tight reservoir requires huge computational run time and manpower

that leads to an uneconomical situation for any operating company. This work would help operators to save a lot of

their time and finances. I understand that this work would have some marginal error in results accuracy depending on

the actual reservoir heterogeneity, fluid types, and the hydraulic fracture design, but still, this work flow and the tool

introduced in this dissertation would narrow down the screening process for the reservoir development to save millions

of dollars and the project timeline.
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RESERVOIR NUMERICAL MODEL
DEVELOPMENT

In this chapter, a numerical mechanistic compositional reservoir simulation model is developed using the
typical tight oil reservoir rock and fluid characteristics for the physics-based database development. The
model is purposely made simple enough to save computational run time and is computationally detailed
enough to capture all possible technical aspects. A thorough physical understanding of multiple factors is
developed through sensitivity analysis for different reservoir rock and fluid properties, hydraulic fracture

design parameters, and multiple EOR operational designs.



3.1. Introduction

In this chapter, multiple aspects are discussed including typical tight oil reservoir rock, fluid and geophysical
data collection, a mechanistic compositional reservoir simulation model generation, and its tuning and validation
through its fluid flow response comparison with a few publicly available tight oil wells performance data. The
reference tight oil wells data are taken from the Society of Petroleum Engineers (SPE) data repository that is referred
to as SPE wells in the dissertation. For the physical understanding, multiple scenarios are studied, and their responses
are discussed in detail for different reservoir initial pressure, rock properties, and hydraulic fracture design parameters
for multiple reservoir fluid compositions. Finally, a systematic procedure of generating a huge database using a
physics-guided design of experiments (PG-DOE) is presented that is mainly used to train an Al-based data-driven
model to generate proxy models. Following Figure 3.1 presents an integrated workflow for the based model

development, its quality check, and the database development using the physic-guided design of the experiment.

Data Collection from Literature
Reservoir Rock, Fluid, Petrophysics, Hydraulic Fracture, and
Primary & EOR Operational Design

/ Base Mechanistic Numerical Simulation Model Development N\

Base Tank Model Model Tuning
A Mechanistic model with single stage triple Kr Curves, Rock Compaction Factor, HF
clustered Hydraulic Factures Design, Diff. and Sorption Coefficients, efc.

C Fail
Quality Control Q

Primary production response comparison with
publically available SPE tight oil wells

—_——— e —— e — — —

- . _ . . _ | _

Simulation for EOR Applications & Database Development using
Physics guided Design of Experiments (PG-DOE)

Figure 3.1 An integrated workflow of a base numerical reservoir simulation model and the database development

3.2. Reservoir Simulation Model Development
The significance of the entire study depends on the database used to train a data-driven model that is used as an
engine to generate thousands of proxy models representing multiple scenarios based on the combination of different
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reservoir rock and fluid properties as well as the hydraulic fracture design parameters. Therefore, no compromise was
made on the accuracy of the base simulation model. Due to no availability of history matched or a verified model
authenticated by an oil operator to use as a reference model for this work, therefore, typical unconventional tight oil
reservoir rock and fluid properties are gathered and a 3D mechanistic reservoir simulation model was built from
scratch using a commercial reservoir simulator, CMG—-GEM. Following are the flow governing equations used to

model the total mass balance in oil and gas phases;

P Np Mp
3 Q)Z PxSeWiy | + V. Z PeWixlly — Dy Sy Kix VWi | =17 =0 v: i=1,..,N, Eq.3.1
x=1 x=1

where; @ is the formation porosity, p, & S, represent density and saturation of phase x , respectively. Whereas r; are

the injection or the production mass rate and the negative sign shows the sink as a fluid flow source. Also, N, and N,,

in the above flow, the equation represents the number of components and the phases, respectively. w, and K,
represents the mass fraction and the dispersivity coefficient of the i*" the component in x phase per unit volume,

respectively. Lastly, u, represents Darcy’s flow velocity, which is expressed as;

k _
Uy = —— (Vpx — px9) Eq.3.2
Hyx
where; k represents the formation of rock permeability in a tensor format, ., is the fluid viscosity for the x phase. The

dispersivity coefficient I?ixis mathematically expressed as;

K,=—24+2 % Eq.3.3

_ Dy %%l
T @S,

where; o, are the dispersivity coefficient of phase x in the longitudinal direction and two transverse directions, T is
the tortuosity, D;, is the diffusion coefficient of the i** the component in phase x. The Sigmund correlation is used to
measure the diffusion coefficients of CO; in the oil and gas phases in this study.

Conventional fractured reservoirs can typically be modeled using dual porosity/dual permeability standards,
however, tight reservoirs have extremely low permeability and slow pressure transients, making it impossible to
adequately simulate fluid flow using these methods. To address this issue, hydraulic fractures are specially treated in
tight reservoir numerical models by explicitly modeling the flow behavior. Using CMG-Builder, hydraulic fractures

are designed in the model using the planer fracture template that defines hydraulic fractures with logarithmically

spaced, locally refined, dual-permeability distribution. A fine-gridded layer(s) of the matrix is essentially defined to
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correctly capture the fluid flow and the pressure transient effect around the fractures to avoid sudden shock to the

reservoir fluid while flowing from ultra-tight matrix to high permeability fractures, directly. The logarithmic

refinement solves the issue of having more refinement closer to the centerline of the fracture where it is needed and

less refinement far away from the fracture.

3.2.1. Data Collection — Typical Tight Oil Reservoir Properties

To initiate this study, it was the most critical step to gather as much data as possible with accuracy in the data

quality. Most of the data, listed in Table 3.1, are collected from published literature and EIA reports.

Table 3.1 Model Initialization data used for the base case and the typical range found in tight oil reservoirs

Property Typical Range in TORs Data Used in Base Model
Initial Res. Pressure (P;) 5000 — 10000 Psi 7000 Psi
Matrix Porosity (Om) 2-12% 5%
Matrix Permeability (Km) 1E-5-0.1 mD 0.001 mD
Fracture Porosity () - 2%
Fracture Permeability (Kr) 5-50 mD 30 mD
Permeability of None Fractured Zone (Kas,) - 0.1 mD
Reservoir Formation Top 2000-14000 ft 8200 ft.
Formation Thickness (h) 100-1000 ft 180 ft
Oil Water Contact (OWC) - 12000 ft.
Free Gas - None
Initial Water Saturation (Swi) 20-50% 35%
Rock Compressibility (Cy) - 1E-5 Psi’!
Total Clusters per Fracture 5-15 3
Fracture Half Length (Xr) 100-300 ft 250 ft
Fracture Width (Wy) - 0.33 ft
Fracture Height (hy) 50-200 130 ft
Fracture Conductivity (FC) 5-50 ft. mD 30
Fracture Orientation - J Direction
Spacing between two adjacent fractures (Sr) 25-100 ft 50 ft
Perforations per cluster in each fracture - 5
Reservoir Fluid Compositions Light to Medium Oil Fluid Type 4 (Ref. Figure 3.10)
Reservoir Fluid API Gravity 25 -50° 40
Reservoir Fluid Initial GOR 500 — 1800 scf/stb 575 scf/stb
Matrix Grid Blocks - 23 x50 x 18

Model Dimensions

230ft x 10001t x 1801t

Fracture Grid Blocks

5x3x1

Fracture Gridding Style

Logarithmic LGR

The typical ranges of reservoir matrix & fluid properties and the hydraulic fracture design parameters are

listed in the following table, also model initialization data is included in the same table. The most important realization

of this study is the reservoir fluid composition which is the most dynamic property that varies significantly within a
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reservoir aerially and vertically, and the fluid properties that vary significantly over time with the alteration in reservoir
pressure. As discussed in the prior chapter, the poor connectivity of reservoir pores in tight oil reservoirs, the reservoir
pressure support is quite minimal that causing a rapid decline in near-wellbore reservoir pressure. For any strategy-
based reservoir development planning it is important to address all the possible static and dynamic reservoir matrix
and fluid properties, therefore, multiple reservoir fluid compositions are taken under consideration to generate the

entire database. The details on all the considered ranges of individual parameters are discussed in the following section.

3.2.2. Base Reservoir Model Description

For this study, a 3D Cartesian grid small-scaled mechanistic model is built, consisting of 23 grids in X, 50 in
Y, and 18 in the Z-direction. In total, the model is consisting of 20,700 grid blocks and the reservoir dimensions of
the model are 230ft.x1000ft.x 180ft. which represents the width, length, and thickness, respectively. For our objectives,
only a single horizontal well is placed in the x-direction with a lateral length of 110ft. Using logarithmic local grid
refinement (LGR), a single staged planer fracture with triple clusters is introduced into the model as shown in Figure
3.2. The specifics of the reservoir and hydraulic fracture design parameters used for the model initialization are listed
in Table 3.1.

Tight oil reservoirs are usually found with huge variations in their rock and fluid properties aerially and
vertically. The typical matrix permeability and porosity ranges reported in the literature are found as 0.00001 to 0.1
mD and 2 to 12 %, respectively. Similarly, a huge variety of fluid types are found in different U.S. tight oil reservoirs
including condensate, volatile, and high to medium-quality in-situ oil. For this study total of seven fluid templates are
generated representing the entire range of U.S. tight oil reservoirs’ fluid types based on their critical properties and
the phase envelopes, to generate the database library that was later used to train data-driven proxy models. Figures 3.3
and 3.4 are showing the reservoir fluid composition and its corresponding phase envelope for one of the reservoir fluid
types that are used to develop the base model. The same model is used for the model validation by comparing its flow
performance with the typical flow performances of the SPE wells. Similarly, Figures 3.5 and 3.6 are presenting the
relative permeability curves for the reservoir matrix and the hydraulic fractures. While the critical reservoir fluid
properties and the binary interaction coefficients used for the equation of state (EoS) development are listed in Table

3.2 and 3.3, respectively that are used to generate the compositional base reservoir model.
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Figure 3.2 Cross-sectional views of the model highlighting the fractures and the perforations connected with individual clusters

Table 3.2 Reservoir fluid pseudo components and the critical properties used to generate a compositional model

Component Mol. Wt. (g/gmol) Te (K) Pc (Psi) Acentric Factor

N>-HoS 37.37 222.09 815.56 0.148

COs 44.01 304.20 1069.86 0.225

Ci 16.04 193.19 667.19 0.008

C-G 35.31 331.15 673.27 0.118

iCs-Cs 68.58 455.25 513.09 0.224

Cr-Cyy 139.81 610.40 292.58 0.615

Cis-Car 267.58 798.87 253.20 0.799

Ca-Co7 326.94 879.47 197.94 0.944

Cos+ 515.41 935.33 141.24 1.301

Table 3.3 Binary interaction coefficients used to generate a compositional model
Component N:-H2S CO: Ci C2-Cs iCs+-Ce¢ C7-C17 Ci3-Ca1 C22-Cy7 Cas+

N:-H2S - - - - - - - - -
CO, 0.0000 - - - - - - - -
C 0.0718 0.1300 - - - - - - -
G-Gs 0.0915 0.1300 0.0019 - - - - - -
iCs-Cs 0.1098 0.1300 0.0076 0.0020 - - - - -
Cr-Cyy 0.1129 0.1300 0.0185 0.0089  0.0025 - - - -
Cis-Cax 0.1129 0.1300 0.0339 0.0205  0.0099  0.0025 - - -
Co-Cyy 0.1129 0.1300 0.0391 0.0247  0.0130  0.0042  0.0002 - -
Cos+ 0.0214 0.1300 0.0547 0.0378  0.0231 0.0107  0.0029  0.0015 -

For the model performance characterization, firstly, the reservoir fluid type is selected based on the typical

light hydrocarbon content i.e., Ci-Cs, to represent one of the SPE well that is reported in the SPE data repository to be
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taken from the Eagle ford reservoir. The typical initial GOR and the API gravity are the key parameters used to select
fluid type for the base model’s performance validation. The second most critical parameter for the model initialization
is to select the representative relative permeability (K;) curves. The Kr. curves shown in Figures 3.4 and 3.5 are built
for the matrix and the hydraulic fractures separately through repeated trial and error procedures using CMOST, which
is an automated tool of CMG. It is important to notice the shapes and the endpoints of the K, curves to characterize
the in-situ fluid flow performance. The matrix K, curves are representing a mixed to an oil-wet system that is most
likely the scenario in tight oil/ shale oil reservoirs. While the endpoints of the matrix Kr curves show highly restricted
flow from the reservoir matrix in comparison to the hydraulic fracture’s K, curves that provide highly conductive fluid

flow channels between the reservoir matrix and the wellbore.
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3.3. Base Simulation Model Performance and Validation

As discussed in the prior section that the validation performance of the base simulation model is the most critical
step that defines the creditability of the entire study. Unfortunately, due to having no history-matched model or verified
from the O&G operator using the actual field case, a trial and error-based work was performed to match the model’s
flow performance in comparison to the publicly available tight oil SPE wells. Figure 3.6 is presenting the comparison
of the base model’s bottom-hole flowing pressure (BHFP) profile with the typical tight oil SPE wells' performance
having similar reservoir rock and fluid properties as well as the hydraulic fracture design including fracture half-length
and fracture conductivity, etc. Keep in mind that the SPE wells performance shown below is normalized for a single-
stage hydraulic fracture design same as the base case (refer to Figure 3.2) for an apple-to-apple comparison and the
SPE wells datasets presented below are also cleaned from all the operational effects and extrapolated using the
logarithmic slope trends. Notably, the subject SPE well is having the closest BHFP match. Therefore, the base model’s
flow profiles are compared with the same well (i.e., SPE Well 6) for the further model’s performance validation as
shown in Figure 3.8. While Figures 3.9 and 3.10 are presenting reservoir pressure and saturation distribution profiles

over time through 3D model cross-sections.
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Figure 3.7 BHFP performance of base model vs. typical tight Figure 3.8 Oil flow performance of base model vs. typical
oil wells (using SPE well7 as a ref. well) tight oil well (using SPE well7 as a ref. well)

It can be noticed from the following figures that the in-situ reservoir fluid saturation alters quickly in the
hydraulic fractures and the reservoir matrix region associated with the fractures due to rapid pressure drawdown in
the subject regions. This effect of rapid pressure drop is because of a couple of reasons including the existence of
highly conductive fractured fluid flow channels with super-increased permeability and the limited to no pressure

support from the matrix due to ultra-tight permeability contrast of the reservoir matrix formation in comparison. It is
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important to keep in mind that the flow performance in the following figures is shown for a primary recovery

mechanism-based scenario i.e., reservoir fluid flow with no external pressure support.
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As the objective of this piece of study is to develop a physical understanding concerning the fluid flow
response as the function of the different reservoir and hydraulic fracture design properties, therefore, the model is
purposely designed as simply as possible. However, no reservoirs are found with homogenous reservoir properties
distribution, and no O&G operator drills a horizontal well with single-stage hydraulic fractures. Typically, to develop
a tight reservoir, the horizontal wells are drilled with multiple thousand feet of horizontal section aided with multiple
staged hydraulic fractures with a variable number of clusters in each stage.

Due to limited pressure support and rapid in-situ fluid flow decline, it would be effective to consider external
pressure support through early EOR application by injecting low viscous fluids, due to poor injectivity, to boost up
the overall recovery factor and it would help in recovery acceleration. Among different injection solvents, produced

hydrocarbon gas and CO; are the most effective options due to lower minimum miscibility pressure (MMP).

3.4. Reservoir Simulation Model Flow Response — Developing Physical Understanding

After having a reasonable base model flow performance match with one of the typical tight oil wells (SPE well
6), numerous simulation cases using the base model are generated to develop a physical understanding of the model
with different parameters for a given model initialization dataset. This is an integrated step for the data-driven model
validation and more importantly, the learnings are used to develop the physics-guided design of experiments (PG-
DoE) to make sure that the dataset is not just developed based on random sampling but has a physical meaning. For

the PG-DoE, the Latin Hypercube sampling method is utilized which is discussed in detail in the following section.

As we know that the quality of a data-driven/ artificial neural network (ANN) model depends on the dataset
quality, and it is unlikely to have any physics involved in the ANN model training or prediction. Therefore, it is
important to evaluate the proxy ANN model through blind-physics-based sensitivity analysis. Thus, in this step,
around 200 simulation/physics-based sensitivities are developed that are used in the later step for the data-driven ANN

model testing and its validation for physics compliance and explainability.

As stated in the prior section that the reservoir fluid composition is a sensitive parameter that significantly varies
aerially and vertically in reservoir formations, also its properties dramatically alter over time as a function of pressure.
Therefore, reservoir fluid compositions are considered the compulsory parameter for the said analysis. In addition,
reservoir porosity, fracture half-length, and fracture conductivity are also used for the blind-physics-based sensitivity
analysis. The range of all the considered sensitivity parameters is listed in Table 3.4.
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Table 3.4 Parameters range for blind physics-based sensitivity analysis

Sensitivity Parameter Range
Reservoir Fluid Types 7 Fluid Compositions
Reservoir Matrix Porosity (%) 4,6,&8
Fracture Half Length (ft) 100, 200, & 300
Fracture Conductivity (mD. Ft) 10, 20, & 30

3.4.1. Reservoir Fluid Types

From the literature, multiple fluid types are found from different U.S. tight oil reservoirs that show significant
variation in their fluid composition and the phase envelops as shown in Figure 3.11. It is notable from the figure that
all the phase envelopes are non-unique because of having a huge variation in their compositions representing
condensate, volatile, and high to medium-quality in-situ oils. The API gravities of the subject oil compositions range
between 25 to 50° while the saturation pressure contrasts between 2500 to 3500 Psi and the oil viscosity is found
below 4.2 cP. The typical initial gas-oil ratio (GOR) for all fluid types ranges between 500 to 1800 scf/stb.

To capture the entire range of different reservoir fluid types found in most of the U.S. tight oil reservoirs (as
found from the literature), a total of seven standard fluid compositions are designed synthetically as shown in Figure
3.9 overlapping most of the phase envelops representing the typical US tight oil reservoirs fluid types. The
corresponding standard fluid compositions are shown in Figure 3.12. The reason for generating these standard fluid
types is to use them as one of the parameters to develop a numerical database. As discussed earlier, the numerical
database is generated as the function of multiple parameters including reservoir rock, fluid (fluid types), and hydraulic
fracture properties such that to capture the reservoir recovery response under all possible scenarios representing the
U.S. reservoirs. The saturation pressure and the CO, MMP values are shown in Figure 3.13; these thermodynamic
calculations are performed using CMG-WinProp. The utilization of the saturation and the miscibility pressure values
are discussed in the later section while discussing the enhanced oil recovery (EOR) performance with CO, and

hydrocarbon gas injection.
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Figure 3.13 Saturation & minimum miscibility pressures of all seven reservoir fluid templates
3.5. Physics-Based Model Flow Response using Blind Sensitivities
The objective covered in this step is to generate benchmark responses of a physics-based numerical reservoir
simulation model as the function of different reservoir flow performance controlling parameters including reservoir
fluid type, reservoir matrix, as well as the hydraulic fracture design properties. This piece of work provided a detailed
physical understanding as a reference that was used for the validation of the ANN proxy models for their physics

compliance and explainability.

3.5.1. Effect of Reservoir Matrix Porosity

The model’s physics compliance, oil flow rate, gas-oil ratio (GOR), and cumulative flow performance
profiles are used in this section as the dynamic key performance indicators for all the considered scenarios. Initially,
the effect of reservoir matrix porosity is presented in Figure 3.14. Keeping in mind that all the other parameters except

matrix porosity are kept constant such that to observe the effect of porosity on the flow profiles, alone. It is clear from
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the flow profiles that incremental formation porosity provides additional reservoir fluid volume that helps to sustain

the formation fluid to flow for a longer period.
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Figure 3.14 Base model flow responses as the function of matrix porosity (A) Oil flow rate, (B) Cumulative oil, (C) GOR, &
(D) Cumulative GOR

Therefore, it can be observed from the instantaneous and cumulative oil flow profiles that the higher the
porosity, the higher will be the produced fluid volume due to a couple of reasons i.e., comparatively, additional fluid
volume to flow and the additional pressure support. On the other hand, for the same draw-down/bottom-hole flowing
pressure profiles over time, lower GOR and cumulative GOR profiles are observed for the incremental formation
porosity numbers. These GOR responses are logical i.e., the higher the porosity, the higher will be the pressure support
due to additional formation fluid volume that would cause a delay in attaining the saturation pressure that directly
causes to increase in the GOR. Therefore, the conclusions from this exercise are, at a certain time-step, the oil flow
rate and the cumulative oil volume are directly proportional to the reservoir matrix porosity while inversely

proportional to the GOR and the cumulative GOR.
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3.5.2. Effect of Hydraulic Fracture Conductivity

Hydraulic fracturing is a process of initiation of and propagation of a heavy load of an external fluid
composition that generates artificial flow into the tight hydrocarbon formations to create highly conductive flow
channels for the in-situ reservoir fluid to flow from the reservoir matrix to the wellbore. The process of fracturing
mainly consists of a couple of steps. In the first step, the hydraulic fracturing fluid is injected into the formation at an
elevated injection rate and pressure than exceeds the formation's least principal stress to create fractures in the
formation next to the wellbore. With the continuation of injection at the higher injection rates, these fractures propagate
and grow deeper into the formation. While in the second step, the slurry i.e., the combination of fracturing fluid and

proppant injected into the fractures keep the fractures open and avoid them from collapsing.

The hydraulic fractures are generated perpendicular to the least principal stress. Usually, the hydraulic
fractures are induced vertically in most of the tighter and the deeper formations depending on the formation rock
mechanics i.e., their geomechanical properties, which are also the key players that define the hydraulic fracture design
geometry. In addition, the fracturing operation including the fracturing fluid and the proppant injection design plays

an important role to define the fracture design parameters.

The key design parameters of a hydraulic fracture include fracture half-length (X), fracture height (Hy), and
fracture width (Wy). Typically, Xrand Hrare found great in magnitude i.e., hundreds of feet, while Wi typically ranges
between less than an inch to a couple of inches. The combination of these parameters describes the fracture
conductivity or fracture flow capacity (FC) i.e., the efficiency of a fracture to transmit fluid efficiently from the
reservoir formation to the wellbore. Mathematically, FC is the product of fracture permeability and the propped Wras
shown in the following equation;

FC = K x W, Eq.3.4
where FC is the fracture conductivity, Kris the effective fracture permeability, and Wris the effective/ propped fracture
width.

Fracture conductivity is usually reported in ‘mD.ft’ and the correlation is defined as, the higher the fracture
conductivity, the greater will be the fluid flow through the fracture, therefore, FC can be used as the measure of success
for the hydraulic fracturing treatment. From the fluid flow type perspective, higher FC represents an infinite fracture

flow response on the derivatives and leads to linear fracture flow while lower FC represents a finite fracture flow
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response and typically shows a bilinear flow. The bilinear flow consists of the initial linear flow from the matrix to
the fractures and the second linear flow represents the fluid flow from the fracture to the wellbore. A typical hydraulic

fracture schematic is shown in Figure 3.15.
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Figure 3.15 Typical hydraulic fracture schematic

There is another important correlation called dimensionless fracture conductivity (F.D) that mathematically
describes the combined effect of fluid flow response from the formation to the fracture and from fracture to the

wellbore. The mathematical expression of FcD is shown below;

F.D = Eq.3.5

where; F.D is the dimensionless fracture conductivity, K is the effective fracture permeability, W¢ is the effective/
propped fracture width, Ky, is the formation matrix permeability, and Xy is the fracture half-length.

Based on different numerical and experimental studies, it is concluded that the FcD greater than 10 is
sufficient for the optimum in-situ fluid productivity from both matrix and the hydraulic fractures, and it is assumed
that the FcD greater than 50 shows no incremental effect on productivity. Figure 3.16 evident this theory of having a
significant incremental effect on productivity with the increase in fracture conductivity, however, no considerable
increment in cumulative oil production is found in the simulation cases with FcD greater than 50. Figure 3.13 shows
the formation fluid flow response i.e., oil rate, gas oil ratio, and their cumulative for multiple cases with fracture

conductivity ranges between 0.1 to 50 mD.ft and their corresponding F.D ranges between 0.2 to 100.
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The overall productivity of the model with the lowest fracture conductivity could be noticed from the
following figures is comparatively lower due to the insufficient flow ability of the fluid from the matrix to the fractures
due to ultra-tight matrix permeability and the same restricted flow from fractures to the wellbore due to comparatively
lower fracture conductivity. While the opposite flow behavior can be noticed in the reservoir model with the higher
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Figure 3.16 Base model flow responses as the function of hydraulic fracture conductivity (A) Oil flow rate, (B) Cumulative
oil, (C) GOR, & (D) Cumulative GOR

3.5.3. Effect of Hydraulic Fracture Half-Length and Reservoir Fluid Types

Hydraulic fracture design parameters including fracture half-length, fracture height, and fracture width are
practically the most uncertain parameters that are difficult to characterize with accuracy after having an actual field
stimulation treatment. However, while designing a hydraulic fracture based on the formation properties, fracture half-
length is usually on the top of the priority list as it plays the most critical role to boost the oil recovery from the tight
oil reservoirs through the greater surface contact area. The typical range of fracture half-lengths found in the literature

ranges between 100 to 300ft.

Most of the studies found in the literature concluded that the incremental fracture half-length is more

favorable for enhanced oil recovery through the single well-based huff-n-puff process in comparison to the primary
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recovery. The impact of longer half-length is more prominent for the EOR application because of more contact area
with the reservoir that results in surplus CO, diffusion in a larger portion of the reservoir that results in a higher
recovery factor. Almost all the studies reported in the literature focused on the impact of different hydraulic fracture
design parameters for a single fluid type. However, it is important to consider the effect of reservoir fluid types because
it significantly affects the overall instantaneous in-situ fluid flow behavior and its flow profile over time. This work
comprehensively focuses on the impact of different reservoir fluid types as well as the hydraulic fracture design
parameters. Figure 3.17 is presenting the primary recovery performances of various scenarios highlighting the effect
of hydraulic fracture half-lengths (i.e., 50ft, 100ft, 150ft, & 200ft) individually for seven different fluid types (Figure

3.17 A to G) and the combined flow performance comparison with different fluid types in Figure 3.17.H.

Fluid types 1 to 7 are representing lighter to a heavier oil with C;_; ranging from 85% to 55%. For an apple-
to-apple comparison, all the reservoir and hydraulic fracture design parameters, except the fracture half-length, were
kept the same in all the cases. In addition, all the cases were simulated using the same bottom-hole flowing pressure
(BHFP) profile. As we know, the reservoir fluid flow profiles including oil rate and gas-oil ratio (GOR), are the
function of pressure. The GOR abruptly changes as soon as the saturation pressure is achieved, that’s why it was
important to use the same BHFP profile for all the cases for a fair comparison. It can be noticed in Figure 3.17, for all
fluid types, the instantaneous initial oil flow rate is higher for the larger fracture half-length in comparison. A
simultaneous effect of pressure drawdown and the fracture half-length size can be noticed i.e., larger fracture half-
length results in faster in-situ fluid withdrawal due to rapid pressure drawdown and the simultaneous effect is of the
attainment of the saturation pressure. As the same BHFP profiles are used in all the cases, the saturation pressure of
each fluid type is achieved at different periods such that the saturation pressure of the lighter fluid type is achieved
earlier than the heavier fluid type. Thus, it can be noticed that the flip over of the performance profiles from fluid type
1 to 7 was delayed which also impacted the cumulative oil recoveries in comparison as shown in Figure 3.18. Ideally,
fluid type 7 shows the most reported flow behavior in the literature as the function of fracture half-length that shows
more oil production over time with a larger fracture half-length and less production with a smaller half-length.
Similarly, the cumulative GOR profiles are shown for the same cases with different fracture half-lengths and reservoir
fluid types in Figure 3.19. The effect of fracture half-lengths is prominent on the cumulative GOR profiles such that,
the larger the half-length, the more will be the cumulative GOR due to comparatively faster pressure drawdown and

the rapid in-situ fluid withdrawal.
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Figure 3.17 Blind physics-based sensitivities on the oil flow behavior as the function of hydraulic fracture half-length and the

reservoir fluid types. Individual plots are showing the effect of fracture half-lengths for multiple fluid types i.e. (A) Fluid Type
1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. (H) The

combined effect of all fluid types for overall comparison
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Figure 3.18 Blind physics-based sensitivities on cumulative oil production as the function of hydraulic fracture half-length and

the reservoir fluid types. Individual plots are showing the effect of fracture half-lengths for multiple fluid types i.e. (A) Fluid
Type 1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. (H)

The combined effect of all fluid types for overall comparison
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Figure 3.19 Blind physics-based sensitivities on cumulative GOR as the function of hydraulic fracture half-length and the
reservoir fluid types. Individual plots are showing the effect of fracture half-lengths for multiple fluid types i.e. (A) Fluid Type
1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. (H) The
combined effect of all fluid types for overall comparison
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It is concluded from the above discussion that it is critical to perform a detailed hydraulic fracture design
optimization based on the reservoir fluid type, reservoir pressure, and the operational design that defines the BHFP
profile or the drawdown pressure over time. This extensive exercise is performed to develop a physical understanding
of the reservoir model used in this study such that to expect a similar response from the data-driven proxy models.
While generating proxy models, it is important to have physics compliance and explainability. Data-driven proxy

models’ generation and their physics compliance tests are discussed in detail in the next chapter.

3.6. Unconventional Enhanced Oil Recovery Response

Performing an EOR operation in tight oil reservoirs is not as simple as in conventional reservoirs. First, not all
EOR techniques are applicable in tight reservoirs due to ultra-low matrix permeability and hence the poor injectivity.
Therefore, CO, and hydrocarbon gas injection-based EOR techniques are more favorable to the tight system.
Secondly, due to poor inter-pore connectivity, individual well-based EOR techniques are considered more effective
to perform EOR through the huff-n-puff process. Lastly, as explained in the prior sections, hydraulic fractures are
considered a mandatory application to develop tight reservoirs therefore, the hydraulic fracture design is extremely
critical for an optimum unconventional EOR application. In this section, the numerically simulated results are
discussed in a couple of steps including, the effect of EOR operational design and the optimum hydraulic fracture
design on EOR recovery. Secondly, the potential CO; storage is also discussed as the byproduct of CO, injection for

EOR through a single staged huff-n-puff technique.

The objective of this section is to develop a physics-based understanding of the reference EOR response under
different situations. In addition, it is important to highlight that for all the EOR cases, we considered an additional
case without any solvent injection, while the well/producer kept close for the same duration as the solvent injection
and soaking period is considered in the EOR cases. It is strongly recommended to perform this step for all the EOR
field development practices to understand the usefulness of the EOR process in a way to differentiate the effect of
EOR simply from pressure buildup if there will be any. However, it is almost impossible but just in case, if the recovery
performance of the two cases i.e., EOR and the shut-in case are comparable with a minimal difference then there is

no significant need for such a huge investment in an EOR application.
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3.6.1. EOR Operational Design

The general perception these days for the EOR application in a conventional reservoir system is not a difficult
task anymore because of several EOR field applications in similar systems. The EOR selection mainly depends on the
architecture, geophysics, and geochemistry of a reservoir formation, as well as the reservoir fluid characteristics.
However, the situation is not that simple for unconventional reservoirs because of limited field applications and lack
of field data availability. The unconventional reservoir properties are not well defined and most of the literature is

based on the best-guessed data.

It is a great deal to make the unconventional tight oil flow from tiny matrix pores to the wellbore through the
conductive hydraulic fractures. Among the limited EOR solvent selection, CO; and produced hydrocarbon (HC) gas
are the commonly adopted EOR solvents for UEOR applications and thus in this section, the physical understanding
is developed through numerical trend analyses for different scenarios through a couple of EOR options in comparison

to being used as a reference for the EOR.

First, for an EOR application, it is strongly recommended to compare EOR performance with the base cases
i.e., primary production with continuous fluid flow and a similar case with a shut-in period. The shut-in period must
be equivalent to cover the entire EOR application timing including the injection and the soaking periods. This
comparison is techno-economically important to eliminate the effect of wellbore storage and to encounter the pressure
buildup and the wellbore storage effects. Therefore, before analyzing multiple EOR scenarios, no-injection base cases
with different time duration of shut-in are compared as presented in Figure 3.20. The results with different shut-in
time duration i.e., 8:8 (16 weeks), 4:4 (8 weeks), and 8:4/4:8 (12 weeks) are compared, and no significant differences
are found. Infect, on a closer look, it is observed that the shut-in negatively affected the recovery performance and
because of ultra-tight permeability, no pressure support is gained from the deeper reservoir. It can be concluded that
the unconventional reservoirs locally behave as an independent part of the reservoir that reflects no pressure and fluid
transient communication into the formation. As observed, no near-wellbore pressure build-up is observed at least for
a shorter period of a well shut-in that would be more economical for the operators. There might be a different effect
of longer shut-in but of course, that will not be an economical approach for any operator to shut in their producers for

a longer period.

72



In addition, to the EOR technique and the hydraulic fracture design, the reservoir formation fluid type is also
an important factor that plays a critical role in a successful EOR application. After developing our physics-based
understanding of the multiple reservoirs and hydraulic fracture characteristics using a single type of reservoir fluid,
the EOR response to different reservoir fluid types is discussed in the last section of this chapter.
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Figure 3.20 Reference cases with shut-in for the same period as EOR solvent injection and soaking duration

3.6.1.1. Effects of Solvent Injection Volume & Soaking Period

Figure 3.21 shows the EOR recovery performance comparison with CO; and the produced HC gas injection.
Both solvents are injected at the same injection rate and the injection pore volume is controlled through the injection
time duration. It can be noticed that CO; significantly improved the oil recovery in comparison to HC gas. The
observed EOR responses from both solvents make perfect sense as the CO, being a supercritical fluid is more effective
than the other injectants because of its lower minimum miscibility pressure and higher solubility that helps the trapped

reservoir fluid to flow from tiny matrix pores into the main flow stream.
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Figure 3.21 Recovery performance comparison with different EOR injection solvents
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A detailed sensitivity analysis is performed with different injection and soaking time durations, with a fixed
injection rate, using CO, as the most efficient EOR solvent for a significant EOR response. Figure 3.22A is presenting
four different scenarios with 8:8, 4:4.8:4, and 4:8 weeks of injection and soaking. An interesting response was noticed
that the two cases with higher CO; injection volume (i.e., 8:8 and 8:4 weeks) showed comparatively higher recovery.
However, larger soaking time shows a considerable increment in the other couple of cases with approximately four
weeks of CO» injection at a constant injection rate, however, the effect is not as significant as the CO, injection volume
showed in comparison. It is also important to keep in mind that the longer soaking period might improve the overall
recovery because of oil swelling, viscosity reduction, diffusion, and pressure buildup but the longer shut-in would
affect the project economics, negatively. A similar observation was made with the lean HC gas injection as shown in

Figure 3.22B.

100

il Rate (bbl/day)
B
2z
Recovery Factor (%)
0il Rate (bblday)
3
Recovery Factor (%)

0 1 2 3 4 5 6 7 8 9 10 0 1
A. Year B.
-=-=-0il CO2 8+8Wk =---0il CO2 4+4Wk - --0il CO2_8+4Wk Oil_CO2_4+8Wk == =0il_HC §+8Wk === 0il_HC_4+4Wk == =0il_ HC_8+4Wk Oil_HC_4+8Wk
——RF_CO2 84§Wk ——RF C02 444Wk ——RF_CO2 8+4Wk RF_CO2_4+8Wk ——RF_HC_8+8§Wk ——RF_HC_4+4Wk ——RF_HC_§+4Wk RF_HC 4+8Wk

Figure 3.22 EOR Recovery performance comparison for different injection and soaking periods with (A) COz and (B) HC

3.6.1.2. Effects of Huff-n-Puff Cycles Initiation

Along with the EOR solvent type, its injection volume, and the soaking period, the EOR initiation timings
and the duration of every individual huff-n-puff cycle are equally important that significantly affect the ultimate oil
recovery from tight oil reservoirs. Figure 3.23 is presenting the recovery performance comparison of four different
scenarios with three huff-n-puff cycles in each case with different huff-n-puff duration. The first case shows
significantly higher recovery in comparison, which initially applies EOR after 6 months of primary production and is
followed by the 2™ and 3" cycle after every 6 months of production. In the second, third, and fourth cases, the EOR
initiated after 12, 18, and 24 months of primary production, respectively, followed by the next cycles after the same

duration each time. A couple of conclusions can be drawn from the recovery performance, the oil recovery from a
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tight reservoir is sensitive to EOR start timing after primary production and secondly, the timings for individual huff-
n-puff application on the same well is also critically important to recovery response. Therefore, it is strongly

recommended to design a cyclic huff-n-puff EOR application with smaller periods to achieve optimal oil recovery.
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Figure 3.23 Recovery performance comparison for multiple Huff-n-Puff cycles injection after 6, 12, 18, and 24 months

3.6.1.3. Effects of Huff-n-Puff Cycles

As noticed from the prior discussions, solvent injection aids to boost the oil recovery significantly from tight
oil reservoirs as an instant effect through the huff-n-puff technique. However, the oil flow rate declines rapidly because
of the limited injectivity due to ultra-tight permeability and nano-pore throat size distribution. The injected solvent
usually does not invade too much into the matrix but most likely into the near-fractured zones, only. The invaded
solvent requires some time to be soaked into the matrix, therefore the well is kept close for a defined pace of time that
allows the injected solvent and the reservoir fluid to potentially achieve multi-contact miscibility through back-n-forth
condensation and evaporation that causes oil swelling and viscosity reduction. But this phenomenon requires longer
well shut-in, which is not economically feasible for the operators. Therefore, the repeated cyclic huff-n-puff approach
is more reasonable. Using this approach, an excellent sensitivity analysis is performed as shown in Figure 3.24, three
different scenarios with single, dual, and triple huff-n-puff cycles are applied numerically.

Approximately 16% pore volume of the total original oil in place (OOIP), CO; is flooded into the reservoir
in each huff-n-puff cycle that resulted in 1.2 to 3% incremental oil recovery in each cycle and cumulatively, a 5%
increment is noticed after three continuous cycles (see Table 3.5). In addition, the incremental oil recovery after the

2" and 3" cycles reduced in a linear trend. This observation of decreased incremental oil recovery is logical i.e., with
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every additional huff-n-puff cycle; a lesser amount of oil would remain in place to be contacted with the injected

solvent beyond the hydraulic fractures.
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Figure 3.24 CO2 EOR recovery performance comparison for one, two, and three huff-n-puff cycles

Table 3.5 COz injection, production, and trapping summary

Cycles CO; CO, CO; Trapped Cum. CO, Cum. Inc. Oil Consecutive Increment
Injection  Produced  in Reservoir Trappedin ~ Recovery (%) (%)
(ft}) (ft}) (%) Reservoir (%)
I 6.90E+07  6.60E+07 435 4.35 2.0 2.0 (Inc. over the base case)
2nd 7.30E+07  6.90E+07 5.48 4.93 3.8 1.8 (Inc. over the previous cycle)
3 7.20E+07  6.70E+07 6.94 5.61 5.0 1.2 (Inc. over the previous cycle)
Total 2.14E+08  2.02E+08 5.61 - - 5.0

Nanopore confinement is another important factor that directly affects the hydrocarbon recovery factor from

nano-pores (tight reservoir with nano-Darcy permeability), but that effect can be modeled numerically for a reservoir

with non-uniform permeability distribution i.e., a reservoir with different pores sizes. However, its effect is minimal

when the average reservoir pressure is considerably higher than the bubble point pressure. The bubble point

suppression and changes in fluid properties in nanopores can be modeled through varying critical properties i.e.,

critical temperature and pressure of the fluid components. In brief, the effect of nano-pore confinement can be achieved

numerically by varying the critical properties of the confined fluids as a function of the pore size, and for that, multiple

correlations can be applied to shift the phase envelop at critical pore sizes based on the shale mineralogy. Numerically,

a dual permeability model can be set up to achieve this objective with explicit modeling of the stimulated reservoir

volume (including both hydraulic fracture and the connected natural fractures if present in the model) and the

unstimulated reservoir volume (with unconnected natural fractures). As part of the methodology, multiple PVT regions
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are required to be defined and associated with different pores sizes i.e., for example; nanopores with maximum shifted
phase envelop, mesopores with partially shifted phase envelop, and macropores to be considered with the original
PVT. These PVTs to be assigned in the model associated with the non-uniform matrix as the function of the pore size
distribution which may perhaps be correlated with the permeability for a set maximum percentage of matrix blocks
(based on the formation properties and the rock pore size distribution) assigned the mesopores and nanopores. Through
this approach, the alteration in fluid properties as the function of bubble point suppression under confined nanoscale
pores and the resultant effect on the oil recovery can be captured for different types of reservoir fluids.

In addition, Figure 3.25 is presenting the oil recovery and the flow rate plots for each huff-n-puff cycle.
Similarly, an increment in CO» trapped volume is witnessed with every individual huff-n-puff cycle as shown in Figure

3.26 in terms of total CO; volume injected and produced back.
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Figure 3.25 Individual flow rates and recovery performance Figure 3.26 Comparison of cumulative COz injection and its
of every individual huff-n-puff cycles backflow response for one, two, and three huff-n-puff cycles

3.6.1.4. Effects of Reservoir Fluid Types

One of the biggest constraints and the reservoir development controlling factors is the reservoir fluid
composition. Without accurate information, no EOR and the injected solvent selection can be done properly. For the
numerical simulation, binary interaction coefficients are necessarily required to be defined for each fluid component
in the simulator for the condensation and vaporization mechanism that defines the diffusion and the solubility
phenomenon. Figures 3.27 and 3.28 are presenting the CO,-EOR performance comparison through a single huff-n-
puff cycle with their reference base cases and the incremental oil recovery, respectively, for seven different fluid types

as discussed in the prior section.
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3.6.2. Hydraulic Fracture Design

Hydraulic fractures provide considerable channels for the reservoir fluid flow and the maximum reservoir
contact for the injected EOR solvent that helps to improve oil recovery. Multiple hydraulic fracture design parameters,
directly and indirectly, affect the reservoir recovery performance. The most critical parameters include fracture half-
length, effective permeability (i.e., after having proppant in place), and height. Fracture width is also an important
design parameter but since it is comparatively a much smaller number the fracture is half-length and height, therefore,
its effect is minimal. The total clusters count per fracture, the spacing between each fracture, and the number of fracture
stages is also imperative parameters. Since there is no rule of thumb to generate a fracture design, therefore, a similar
approach is applied in this study as observed in a few field practices, shared in the literature.
3.6.2.1. Clusters Count

The total clusters in each fracture provide significant operational quality of a fracture through reservoir
contact area improvement with the wellbore. This effect is even more prominent for the long horizontal wells that are
completed through multiple staged hydraulic fractures. However, there are a few limitations to consider while
designing hydraulic fractures including local oil in place (i.e., stimulated reservoir volume, SRV), reservoir rock
quality (mainly the matrix permeability), formation fluid characteristics, and the reservoir pressure to feed the
fractures. In this study, three distinct scenarios with single, double, and triple clusters, as shown in Figure 3.29, are

considered to review the recovery performance with a single staged horizontal well.
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Figure 3.29 Cross-sections of reservoir models with A. Single, B. Double, and C. Triple clusters per fracture

The recovery comparison plots are shown in Figure 3.30 and the results make perfect sense i.e., significantly
more oil is recovered with the triple cluster scenario as compared to the single cluster case. However, the recovery
difference between double and triple clusters is minimal because of the limited oil in place. Hence, it can be concluded

that it is important to determine the optimum number of clusters per fracture based on the local SRV for individual

fractures.

100

90

1
1
]
)
80
L}
700
1
60 I
A}

50 v

QOil Rate (bbl/day)

40 \

Recovery Factor (%)

30
20

10

0

0 1
= = = 0il_C0O2_Single Cluster = = =0il_C0O2_Dual Cluster = = =0il_C02_Triple Cluster
——RF _CO2 Single Cluster ——RF _CO2 Dual Cluster ——RF _CO2 Tnple Cluster

Figure 3.30 Comparing recovery performance with single, double, and triple clusters per fracture

3.6.2.2. Fracture Half Length

Another important fracture design parameter is the fracture half-length which significantly affects the oil
recovery performance because it determines the stimulated area linked to the wellbore and provides an easy path for
the reservoir fluid to flow. The bigger the fracture half-length on both ends of the fracture, the more will be its contact
with the reservoir and hence more drawdown. However, it is not that easy to achieve a higher fracture half-length due
to operational constraints, but it is important to consider the offset wells spacing while designing the half-length to

avoid any frac-hits. Figure 3.31 is showing the oil recovery performance comparison for a single stage with triple
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clustered fracture, and it can be concluded that fracture half-length is having a significant impact on the oil recovery.
It is observed from the results that the half-length is directly proportional to the oil recovery; however, the incremental
recovery trend is found to reduce with an increment in the half-length. Therefore, similar to the fracture counts, also
the fracture half-length selection requires optimization depending on the reservoir rock quality, formation fluid

characteristics, and most importantly the local oil in place counter in SRV.
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Figure 3.31 Comparing recovery performance for different fracture half-lengths

3.6.2.3. Fracture Spacing

The fracture spacing is also a critical parameter while designing an overall well completion plan that depends
on the reservoir rock characterization and the sweet spot distribution in a tight reservoir. Generally, hydraulic fractures
and individual cluster placement are defined in a model based on the matrix permeability distribution between the two
consequent fractures, locally oil in place, and the pressure distribution. Theoretically, the same phenomenon of infill
drilling is applied here in this scenario, which defines the wells' placements depending on the remaining oil saturation
in place, locally and it is a fact that closer the fracture, provides more oil recovery until there is some transient
interference with the other fractures. Therefore, a denser fracture network with closer fracture placement would be
more considerable for optimum oil recovery. In addition, it is important to keep in mind while designing a fracture
network, there will be an optimized fracture spacing and half-length for each scenario for a given set of reservoir

characteristics. Figure 3.32 is showing the recovery performance comparison for three cases with 30, 50, and 70 feet
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of fracture spacing, while keeping all the other reservoir and fracture specifications, fixed. A similar performance
trend as fracture half-length is observed in this case i.e., more fracture spacing results in comparatively higher oil
recovery. While the incremental oil recovery reduced with higher spacing because of limited oil in place. Therefore,

it is worth concluding that the two parameters, fracture half-length, and spacing show a simultaneous impact on oil

recovery performance as shown in a contour plot shown in Figure 3.33.
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Figure 3.33 Simulation-based contour plot for the simultaneous
fracture spacing

effects of Fracture half-length and fracture spacing
3.6.2.4. Fracture Permeability

Fracture effective permeability is included in this study as the last sensitivity and one of the most important
hydraulic fracture parameters that significantly determine the fluid flow from the tight reservoir. In general, the higher
the fracture permeability, the higher will be the fracture conductivity and that will ultimately result in higher fluid

flow and so the oil recovery. The dimensionless Fracture conductivity (F.D) is given by the following correlation

between fracture and reservoir matrix properties.

FeD = Fracture Permeability X Fracture Width Ea 3.6
= Matrix Permeabiltiy X Fracture Half Length q->

Figure 3.34 is showing the recovery performance comparison for three different fracture permeability values
i.e., 30, 50, and 100 mD. Though the differences are not much but still there is an increasing trend that can be noticed

such that to have higher recovery with the higher fracture effective permeability.

In addition, the simultaneous effect of fracture permeability and half-length is shown in Figure 3.35, as expected the

increase in both parameters results in considerable improvement in the oil recovery. The figure is presenting
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directional results for the given set of parameters; however, a similar trend should be expected from any other set of

reservoir and fluid properties while developing a tight oil reservoir.
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3.6.3. Sub-Surface Injected Solvent Storage

CO; injection into the tight oil reservoirs not only plays an important role to improve oil recovery from the
tight oil reservoirs but also helps to achieve the net carbon zero objectives through CO; footprint reduction from the
planet earth. During the huff-n-puff process, a significant amount of injected CO; is usually produced back to the
surface that is recycled into the reservoir to further improve the oil recovery. However, a significant amount of CO»
stays back into the formation replaces oil, and gets trapped in the nanopore spaces. The CO; trapping mechanism is
explained in the prior section i.e., through adsorption, desorption, and capillary force hysteresis. The combined effect
of CO» adsorption, desorption, capillary force hysteresis, as well as the solubility of CO2 into the formation oil,
became the reason for its trapping/ storage in the reservoir. The solubility of the injectant solvent causes swelling and
the oil viscosity reduction that eventually helps to improve the oil recovery and along with the residual oil saturation,
the additional amount of the solvent becomes trapped into the nanopores. It is observed in different studies that the
phenomenon of CO, trapping is more pronounced when the solvent is injected at a pressure below its minimum
miscibility pressure under reservoir conditions. A simple method to measure the total amount of CO; trapped in the
formation is through retention factor that is defined as;

. CO, Remaining into the subsurface formation
Retention = - x 100 Eq.3.7
Total CO,Injected Volume

Reservoir temperature and pressure are critical parameters for the CO; trapping mechanism. Usually, the concept
of retention is considered for the tertiary recovery (EOR) and higher retention is considerably obtained when the CO»
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is injected into a reservoir at or above MMP. Under such conditions, the injected CO, drives out the oil from the
nanopores through dissolution into the oil which causes oil swelling and reduction in viscosity and interfacial tension.
In this study, refer to Figure 3.22, there are the following facts to notice;
i. In each huff-n-puff cycle, not the complete amount of the injected CO; is produced back because of its
trapping into the formation.

ii. The amount of trapped CO: increases for each ascending huff-n-puff cycle.

Using the limited statistics obtained from this study, a contour plot is prepared as shown in Figure 3.36 for an
approximation of CO; trapping percentage as the function of injected CO; pore volume and the number of huff-n-puff
cycles. It is obvious from the plot that both the parameters directionally improve the CO; trapping phenomenon.
Multiple other parameters are also usually considered critical for the trapping mechanism such as reservoir geology,

average reservoir pressure, injection pressure, soaking time, and the presence of aquifer or the formation brine, etc.
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Figure 3.36 Simulation-based contour plot for the simultaneous effects of Fracture half-length and fracture permeability
3.7. Summary

A numerical simulation study is conducted to compare the recovery response from a tight oil reservoir for different
injection solvents, operating conditions, and hydraulic fracture designs using the huff-n-puff technique. Purposely,
this study is performed on a uniform reservoir model to eliminate the effects of heterogeneity such that to understand
the physics at both micro and macro scales. The results are found marginally optimistic due to reservoir homogeneity
and the size of the mechanistic model in comparison to the stimulated reservoir volume, however, the directional

trends with the actual reservoir properties would remain the same. Following are a few conclusions that can be drawn;
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1. Early application of EOR significantly improves oil recovery and based on the sensitivity analysis, CO and
the carbonated water injection significantly improve oil recovery from tight oil reservoirs.

2. Both, the injection solvent volume, and the additional number of huff-n-puff cycles significantly improve the
oil recovery. The performance further improves from the reservoirs with lighter components.

3. The soaking time is critical for EOR, though, it helps to provide more time for diffusion and solubility, but
the longer shut-in directly affects the economics.

4. Cluster count, fracture spacing, half-length, and fracture effective permeability are critically important

parameters that are directly proportional to the recovery performance from a tight oil reservoir.

Huff-n-puff is an excellent technique that not only improves oil recovery significantly but also helps to achieve net

carbon zero objectives through CO; trapping into unconventional reservoirs.
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SPATIO-TEMPORAL DATABASE DEVELOPMENT

In this chapter, spatio-temporal database development is discussed using the history-matched
compositional mechanistic model. For database development, multi-dimensional aspects are considered
including reservoir rock and fluid properties, hydraulic fracture design parameters, and the EOR
operational design. To accommodate a wide range of individual parameters, random sampling is
performed using a design of experiment such that to develop a database for an entire range of magnitudes

of each parameter using a limited number of simulation cases having random combinations of different

parameters.



4.1. Introduction

The spatio-temporal database generation is the first and foremost important step towards the data-driven proxy
model development. However, deciding the extent of the database representation for the reservoir matrix and fluid
properties, hydraulic fracture design parameters, and the reservoir operational design limits for both primary as well
as EOR is challenging. Therefore, it is recommended not to avoid any of these parameters to generate a meaningful

and representative database that covers the entire possible range of multi-dimensional properties.

Usually, a database for a dynamic flow system includes the pairs of input and output datasets for the proxy model
training process. For a dynamic system such as a reservoir simulation scenario, typically the static data is considered
as the inputs such as reservoir and hydraulic fracture characteristics, initialization parameters, operational constraints,
etc. while the outputs generally consist of the production data. However, in this study, not only the primary but also
the EOR production is trained and that requires multiple additional parameters such as EOR agent/ injection fluid
type, injection duration, soaking period, etc. which are also considered as the supplementary dynamic input

parameters.

In addition, there are multiple assumptions and model limitations are kept under consideration for the simulation

cases development as listed below;

1. A mechanistic homogeneous, isotropic, and isothermal reservoir model with a single distribution is designed.

2. The model is having a uniform reservoir thickness and consists of a single layer with 18 grid blocks in the z-
direction.

3. The overall reservoir model dimensions are kept the same in all simulations i.e., L:230ftxW:1000ftxH:180ft.

4. A single horizontal well is placed at the center of the model with a single staged triple planner fracture
perpendicular to the horizontal section of the well.

5. All three fractures are equally spaced along the horizontal section of the well.

6. All individual fractures are having the same design and characteristics for every individual simulation case;
however, the fracture design varies for each simulation. The fracture properties include fracture conductivity,
fracture half-length, fracture height, and fracture effective permeability.

7. Both, finite and infinite fracture conductivity values are assumed in different simulations to develop a variety

of hydraulic fracture-driven flow behaviors. From the database development experience, the fracture
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conductivity greater than 20 ft. mD produce optimum in-situ fluid recovery and the fractures are found to
have infinite conductivity. A similar response for the dimensionless fracture conductivity (Fcp) is observed
when its value is 50.

8.  Wellbore storage and skin effects are not considered in the model.

9. For each simulation, the formation fluid is single-phase and slightly compressible with fixed PVT and
rheological properties. However, for the database development, seven different reservoir fluid types are used
representing most of the reservoir fluid compositions present in US unconventional tight oil reservoirs
ranging between light and volatile to slightly heavier oils.

10. Depending on the reservoir and the hydraulic fracture design, linear and bilinear flow are observed during
the early time region, while radial and compound linear flow are observed in the middle time region.
Similarly, the late radial and boundary dominant flow regions are observed in the late time region. From the

flow type perspective, in both formation and fractures, the laminar flow type is considered.

It is also important to understand that a petroleum reservoir is a pressure-driven system i.e., the production
response (for both primary and EOR) is directly linked with the reservoir/ bottom hole flowing pressure and that is a
dynamic property. Thus, in this study, input training parameters have not only included static but also dynamic
properties are included. It is also important to make sure that the generated proxy models honor the physical laws and

for that, its validation through blind sensitivities is essential.

The concept of Design of Experiment (DoE) is usually adopted to cover the entire possible range of multiple
static and dynamic parameters such that to generate a meaningful database. However, for a dynamic system that works
on physical law, is not necessary that the considered DoE would cover the entire range of the output response.
Therefore, it is also significantly important to perform a quality check for the input parameters distribution as well as
the output response of the system. For that purpose, a concept of a Physics guided Design of Experiment (PG-DoE)
is introduced in this study that is focused on the output responses for the dynamic systems that follow the physical

laws.

Figure 4.1 presents a schematic of a conventional DoE that shows the random distribution of the samples across
the given range but for a physics-defined system, not necessarily; the simulated dynamic outputs cover the entire

range. As shown in the following figure, the first output is a typical example of cumulative production while the
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second output represents the instantaneous production rates over time with multiple missed spaces. Therefore, a DoE
should be smart enough to generate data samples such that to cover the output response range more importantly than
the input samples. In addition, the samples should be distributed in a way to avoid duplication of the output responses.

Figure 4.2 presents an ideal output response that covers the entire range that also shows no overlapping of the output

responses.
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Figure 4.1 Schematic of a typical conventional Design of Experiment (DoE)
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Figure 4.2 Schematic of an ideal Physics Guided Design of Experiment (PG-DoE)

4.2. Design of Experiment

The concept of DoE was introduced in the early 20" century to investigate the probabilistic behavior of static
systems. DoE gained a lot of attention and become a normal practice in engineering that help engineers to reduce the
computational cost, significantly. The samples of a given DoE are generated using a couple of approaches including
domain-based (or non-adaptive or model-free) and the response-based (or adaptive or model-based or sequential)
approaches. Multiple types of DoEs are mainly distributed in three types classical sampling (i.e., deterministic and
space-filling), random sampling, and Quasi-random sampling. Figure 3 is showing a detailed distribution of different

types of DoEs.
4.3. Samples Distribution & Quality Control

In this study, the sampling distribution is performed using Latin Hypercube (LHS) DoE. It is one of the most
widely used random sampling techniques for the proxy modeling approach that evenly distributes samples over a
given sampling space. The samples generated using the LHS technique are known as controlled random samples that

are often applied in Monte Carlo uncertainty quantification analysis because it can dramatically reduce the number of
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simulations that need to achieve accurate results. Similarly, for a huge database development using a deterministic
simulation approach, LHS help to reduce the sampling points significantly. In this study, initially through a factorial
approach, thousands of organized samples were generated because of a wide range of every individual parameter that

was reduced to around eight hundred samples through the LHS sampling technique that was used to generate the

numerical simulation database.
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Figure 4.3 Different types of design of experiments for data sampling

As explained in the prior sections, multiple parameters control the fluid flow response from a tight oil reservoir.
Therefore, the database for this work is developed using a random distribution of the major reservoir parameters
including reservoir pressure, matrix porosity & matrix permeability and hydraulic fracture design, fracture half-length,
fracture height, and fracture conductivity, etc. which mainly play the most critical role in flow dynamics. The
following figures are presenting the cumulative probability and the probability mass distribution of the subject
parameters in both Y-axes and their sampling range on the X-axis. The actual samples found from the literature are

also included in all the figures that are overlaying the cumulative probability distribution plot for a quick sampling

distribution comparison.
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For both primary and enhanced oil recoveries from tight formations, apart from the reservoir and the hydraulic
fracture characteristics, the reservoir fluid type and the reservoir pressure play a critical role in the reservoir fluid
recovery. Therefore, a wide range of reservoir pressure is considered in this study ranging between 4000 to 12000 Psi.
Figure 4.4 is presenting the normal/ Gaussian distribution of reservoir pressure values for the given range. It is
important to note that the actual reservoir pressure values are found more towards the lower end which lies between
the P50 to P90 range of the distribution of the sample. But still, there are a few reservoir pressure points found at the

upper bound which is why an extended pressure range is taken under consideration for the database generation.
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Figure 4.4 Random sampling distribution — Reservoir Pressure
Similarly, Figures 4.5 and 4.6 are presenting the sampling distribution for the reservoir matrix porosity and
permeability. Most of the tight oil reservoirs in the United States are found with a variety of matrix porosity that was
typically found between 4 to 12% and it is noticeable in the following figure that the porosity values are uniformly
distributed across the entire considered range. While the reservoir matrix permeability is found to be very tight i.e.,

mostly ranging between 0.0001 to 0.05mD.

Similar considerations are applied to generate random sampling data-point distribution for the hydraulic
fracture design parameters. Figure 4.7 through Figure 4.10 are presenting the random data sampling distribution and
their cumulative mass distribution for fracture permeability, fracture conductivity, fracture half-length, and fracture

height, respectively.
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4.3.1. Sampling Quality Control
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The data sampling quality control is performed in two major steps i.e., Pre and Post simulations sampling

quality control.

Step 1: As the reservoir fluid types are the basic and the most important factor of the generated database, therefore the

pre — simulation quality control is performed initially on the distribution of the random sample through visual

inspection for every individual parameter corresponding to each fluid type to make sure that the samples are
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randomly distributed all over the sampling space. In addition, it is to make sure that cumulatively all the
samples are randomly distributed majority of the sampling space with no major blank area in the sampling

space.

Step 2: The post-simulation quality control step explains the physics-based design of the experiment such that to have

simulation response of the entire database is evenly distributed as discussed in the prior section.

Figures 4.11 and 4.12 are schematically presenting the pre- and post-random data sample distribution quality
checks. In the first figure, different parameters are represented through dissimilar colors that are distributed with the
correspondence of multiple fluid types such that to have random distribution to cover the entire sampling space without
any major overlapping of the samples. Similarly, the second figure shows the simulation response of multiple output
responses. The number of output responses may vary in different cases; however, the simulation response mainly

signifies the sample distribution qualitatively and quantitatively.
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4.3.2. Pre and Post Simulation Sampling Quality Check

Using the discussed approach, initially, all the data samples were randomly distributed using the LHS
sampling technique without distinguishing or dominating any reservoir/ hydraulic fracture parameter or the fluid types
followed by a manual sampling distribution check for all parameters with different reservoir fluid types. A few of the

considered parameters are shown below in Figure 4.13.
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Figure 4.14 Post-simulation responses (o0il flow rate & cum. Oil production) corresponding to different reservoir fluid types



4.4. Discussion

In the prior sections of this chapter, the steps and the quality of spatial-temporal database
development are discussed. In addition, it is highlighted that not only the random distribution of
the input parameters is important, but the simulation response/ outputs are more important to
developing a physics-inspired database generation for the proxy models development.

In this section, another approach is adopted for the database quality check through reservoir
recovery responses that are established as the resultant factor for the combination of the different
reservoir and hydraulic fracture parameters. The objective is to develop a physical understanding
of the subject parameters with the reservoir recovery response and to make sure that the recovery

responses are unbiased towards any specific reservoir or hydraulic fracture property.

Following is the list of parameters and their distribution ranges used for the recovery
responses. It is important to note that, the recoveries shown in Figure 4.15 are the result of the
combination of the reservoir and hydraulic fracture parameters. While the incremental oil recovery
is the response of not only the reservoir and hydraulic fracture parameters but also the EOR
operational design including the EOR solvent injection volume and the injected solvent soaking

period.

Table 4.1 Reservoir and hydraulic fracture parameters range distribution for model’s recovery response representation

Parameter Low Range Medium Range High Range
Reservoir Fluid Types (Ref. Figure 3.11) 1-2 3-4 5-17
Initial Reservoir Pressure (Psi) 4000 — 6000 6000 — 9000 9000 — 12000
Hydraulic Fracture Half-Length (ft.) 25-100 100 — 200 200 —300
Hydraulic Fracture Conductivity (ft. mD) 0.02-1 1-10 10-50
Hydraulic Fracture Height (ft.) 10-30 30-60 60—-110
Matrix to Fracture Permeability Ratio <1x10°® 1x10- 1x107 > 1x107

It can be noticed from the following figures that reservoir fluid type is influencing both primary

and incremental oil recoveries i.e., comparatively higher oil recovery from heavier reservoir fluid
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type. Partially the same effect of fracture conductivity is observed such that, higher fracture
conductivity produces more oil from the reservoir. Rest all other parameters show no major

influence on oil recovery.
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SMART PHYSICS-INFORMED COMPOSITIONAL
DIMENSIONLESS TYPE CURVES

Smart Physics Inspired Compositional Dimensionless Type Curves (SPiC TCp) is a novel technique for the
Unconventional Enhanced Oil Recovery (UEOR) pilot designing and its performance analysis that are
developed using a huge compositional numerical simulation-based database. The dimensionless type
curves for the UEOR are developed as an extension to the primary recovery using modified Fetkovich RTA
for a multi-fractured horizontal well in tight permeability formations. In this chapter, the development and
interpretation of the SPiC TCp are discussed. Also, a generalized end-user poster is compiled in this chapter
discussing all possible scenarios with different reservoir rock properties, in-situ fluid types, hydraulic
fracture design, and the EOR operational designs for a quick and effective primary and UEOR performance

match and incremental hydrocarbon recovery predictions.



5.1. Introduction

Unconventional tight oil reservoirs are found with a fine pore network structure, poor interpore-
connectivity, and limited pressure support. Therefore, the development of such reservoirs is only considered
economical through long horizontal wells aided with massive mechanical stimulation i.e., an artificially
induced hydraulic fracture network that provides easy fluid flow channels deep into the reservoir matrix for
the sub-surface reservoir hydrocarbons to produce from the tight matrix and nano-pores (Syed, F.L, et al.,

2022).

An unsaid rule of thumb for a healthy and economical reservoir development is to perform reservoir
diagnostics locally on every individual producer to understand the reservoir fluid flow signatures (Lin, M.,
et al., 2015). These signatures are found in the form of fluid flow responses that not only distinguish
different reservoir and wellbore characteristics but also characterize hydraulic fracture design parameters.
The common approach for such diagnostics is through pressure-time relationships (commonly called
Pressure Transient Analysis or PTA) that provide comparatively better and focused reservoir
characterization due to high-resolution pressure data. While another approach is based on a rate-time
relationship (commonly called Rate Transient Analysis or RTA). RTA is performed using low-resolution

pressure data that lumps up the entire production life of a well into the analysis (Jiang, R., ef al., 2014).

The biggest drawback of PTA is the loss of hydrocarbon production because the high-resolution
pressure data is normally collected in response to a producer shut in. On the other hand, RTA is performed
with the production rate data (hence no need to shut in a producer) while the reservoir and the wellbore
flowing pressures are embedded in the dimensionless flow rate and time equations. The working
phenomenon of RTA is based on the combination of Darcy’s law for fluid flow in porous media with the
equation of state (EoS), and the Material Balance Equation (MBE). The same analysis could be performed
analytically through Partial Differential Equations (PDEs). However, RTA is performed through a rate-
time relationship but still, it incorporates pressure into the flow performance diagnostics. Therefore, for

tight reservoirs, RTA is the only suitable option because the wells drilled in such reservoirs with limited
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pressure support show rapid pressure decline locally due to poor interpore connectivity and do not provide

enough high-resolution pressure data.

It is important to highlight that there are several well-performance behaviors can be observed for
horizontal wells drilled in a reservoir depending on reservoir characteristics, including both reservoir fluid
and rock properties, and the stimulated hydraulic fracture designs. The main hydraulic fracture design
parameters include but are not limited to fracture half-length, fracture height, fracture effective
permeability, fracture conductivity, etc. (Syed, F.I., ef al., 2022). In this chapter, initially, the conceptual
numerical compositional simulation model is presented for a combination of reservoir characteristics and a
single staged — triple clustered hydraulic fracture. In the following step, a detailed understanding is
developed through several simulation cases for all possible flow responses resulting from a reservoir model
with the combination of different reservoir fluid & rock types and hydraulic fracture designs. The exact
range of the model’s parameters is the same as discussed in the prior chapter to generate a numerical

simulation database using a random sampling technique called Latin Hypercube Sampling.

The impacts of multiple combinations are studied through multiple sequences of flow regimes that
could be obtained from a tight oil reservoir. Lastly, novel and advanced flow responses for an additional
factor of EOR application in tight oil reservoirs are presented. The EOR application showed interesting
flow responses that are significant for an unconventional tight oil reservoir development and due to the
rapid production decline, it is wisely suggested to develop tight oil reservoirs with early-life EOR
applications. However, due to the complex and locally isolated nature of tight reservoirs, huff-n-puff is the
most suitable option and due to poor injectivity because of the tight nature of the matrix, not many EOR

options are recommended except CO, and hydrocarbon gas injection.

These physics-informed flow responses are presented in the form of dimensionless type curves in log-
log plots that generalizes the effects of reservoir fluid types, reservoir rock properties, hydraulic fracture
design, EOR type, and the EOR operational design for any tight oil reservoir. For the first time in the oil
industry, a detailed set of smart physics-informed compositional dimensionless type curves for
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unconventional EOR applications are presented, and lastly, a generalized set of dimensionless type curves
diagnostics are presented for easy and quick understanding of the reservoir fluid flow response based on

any possible combination of the reservoir, hydraulic fracture, and EOR operational characteristics.

5.2. Typical Flow Regimes

As discussed earlier, the proper identification and interpretation of the sequence of flow regimes are
very important to determine the most possible flow event. The flow regimes sequence is always found
critical for multi-fractured horizontal wells because the interpreted flow response could be because of single
or multiple factors including reservoir characteristics or the hydraulic fracture design. In addition, the effect
of EOR operation could also be another factor resulting in a flow response. Therefore, proper interpretation
of each flow response is necessary. Figure 5.1 is presenting the typical flow regimes encounter from the

hydraulically multi-fractured horizontal wells plotted on a log-log scale.
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Figure 5.1 Schematic of typical flow regimes sequence encounter for a hydraulically multi-fractured horizontal well in a
homogeneous reservoir

The early fracture boundary dominant flow (unit slope on a log-log plot) may occur for the light
and volatile reservoir fluid types with high compressibility to represent the early pseudo-steady state flow.
This effect is noticed when the flow transient reaches the hydraulic fracture boundaries that act as a no-

flow boundary. Similarly, early bilinear fracture flow is a common observation with the quarter slope on a
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log-log scale for hydraulic fractures with greater fracture half-length than the fracture height. The flow is
called bilinear because two linear flow behaviors occur simultaneously i.e., a linear flow from matrix to

fracture and the linear flow from fracture to a wellbore.

Similarly, an early linear flow with a half slope may occur for the infinite fractures with higher
effective fracture permeability and fracture conductivity such that the pressure distribution in the entire
fracture is theoretically found equal. During the early time flow region, after early linear flow, early radial
flow is another flow regime that could be observed with zero slopes on the same scale only when the
hydraulic fractures are far apart. Early radial flow occurs right after the early linear flow, and it ends as

soon as the flow interference between two consequent fractures starts.

During the middle time region, the compound linear flow with a half slope may be observed
representing the interference of fluid flow from multiple fractures. This flow type is only possible with
larger well spacing in the same flow region and it lasts as soon as the flow transients from different wells

interfere with each other.

Lastly, zero and unit slopes are possibly observed representing the late radial and boundary
dominant flow regimes, respectively. The late radial flow can only be observed in an undeveloped field or
a field with wells drilled very far apart because this flow regime requires an extremely long time to develop
without any pressure transient interference. While the boundary dominant flow occurs due to pseudo-steady
state flow in the late time region when the pressure transient hits any type of no-flow boundary including
sealing fault, or the no-flow caused due to nearby producing wells. Further details on the discussed

observations are listed in Table 5.1.
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Table 5.1 Flow regimes for multi-fractured horizontal wells

Flow Regime Slopes Event

Early pseudo-steady state flow occurs, with lighter/ volatile reservoir fluid

type having high compressibility when the flow transient reaches the
Early Fracture
fracture boundaries that act as no-flow boundaries. This effect is only
Boundary Dominant | Unit Slope
dominant in early time with higher hydraulic fracture conductivity and

Flow fractures size causing hydraulic fractures to behave as a tank and that causes
pressure in the SRV region to decrease at the same.

Bilinear fracture flow occurs in hydraulically fractured horizontal wells

Early Bilinear Quarter | with finite fracture conductivity and when X¢ > Hy. In this flow regime, two

Fracture Flow Slope types of linear flow occur one from the matrix to the fracture and one from

the fracture to the wellbore.

Linear fracture flow occurs in hydraulically fractured wells when the
Early Linear Flow | Half Slope | conductivity of the fracture is infinite. In this situation, the permeability of

the fracture is so high that the pressure throughout the fracture is constant.

It would be observed after the end of the Early Linear Flow i.e., linear flow
) Zero from matrix to fractures, but before the fractures start interfering with each
Early Radial Flow ) ) i
Slope other. It is only seen if the fractures are far apart and are not likely to be

observed with the close fracture spacing.

Once the fractures have interfered with each other, compound linear flow

) may be observed. It is defined by the flow from an outer zone towards the
Compound Linear i ) ) ]
- Half Slope | region stimulated by the fractures. This can be observed in fields where well

ow
spacing is sparse. However, with close well spacing, it will not be observed

before interference from adjacent producing wells occurs.

This flow regime will only be observed if the well exists all alone, in an
) Zero undeveloped field, and would require an extremely long time and area to
Late Radial Flow o ) ) o )
Slope develop in tight unconventional formations. As such, it is unlikely to be

observed in practice.

Pseudo-steady state (PSS) flow occurs during the late time region when the
outer boundaries of the reservoir are all no-flow boundaries. This includes
Boundary Dominant ) not only the case when the reservoir boundaries are sealing faults, but also
Flow Unit Slope when nearby producing wells cause no-flow boundaries to arise. During the
PSS flow regime, the reservoir behaves as a tank. The pressure throughout

the reservoir decreases at the same, constant rate
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5.3. Smart Physics Informed Dimensionless Type Curves for Primary Recovery

Starting with J.J. Arps’s empirical Decline Curve theory explained in the 1940s, a comprehensive set
of equations was introduced defining the exponential, hyperbolic, and harmonic declines (Arps, J.J., 1945).
The concept was further investigated by multiple researchers for their specific needs and defined
circumstances. Brons and Miller in the early 1960s (Brons, F. and Miller, W.C., 1961) Fetkovich in the late
1980s (Fetkovich, M.J., et al., 1987) applied constant pressure solution to the diffusivity equation and after
several realizations, claimed that the exponential decline curve successfully represents the single phase,
incompressible fluid flow from a closed/ finite system. It was a breakthrough moment for the industry to
find out that decline curve analysis (DCA) is more than an empirical curve fitting method. Fetkovich further
extended his work and introduced dimensionless type curves to enhance the application of DCA that is
conventionally being used for the near-well bore reservoir permeability and the wellbore skin measurements
analytically. Fetkovich’s methodology provides a combined solution for the early-time region and the late-
time region that represent the transient flow and the boundary-dominated flow, respectively, that were

originally introduced by Arps in his decline curve theory.

The Fetkovich type curve presenting the early-time region characterizes an infinite-acting reservoir that
provides a constant-pressure analytical solution of transient flow equations, while the late-time data is
determined through Arps’s decline curves using boundary-dominated flow equations based on empirical
exponential, hyperbolic, and harmonic decline curve solutions (Fetkovich, M.J. 1973). During the mid-
1990s, Doublet and Blasingame introduced a theoretical basis for combining transient and boundary-
dominated fluid flow for the pressure transient solution to the diffusivity equation (Doublet, L.E. and
Blasingame, T.A. 1995). After several advancements, the dimensionless type curves become a routine

practice for reservoir characterization through reservoir fluid flow behavior analysis.

For a horizontal well with multiple fractures, the dimensionless type curves are represented on a log-
log scale as dimensionless flow rate (qp) versus dimensionless time (tpxr) (Gringarten et al., 1974; Chen and

Raghavan, 1997). The equations for dimensionless liquid rate and time are shown below;
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141.2qBpu

po = Eq.5.1
P07 kspy b (Pi — Pyy)
0.00633 kgpy t
tpxf = ——————— Eq.5.2
Similarly, the dimensionless gas rate and time equations are given below;
1.417 x10°q T £a.5.3
dpg = ; N q.o.
7 ksgy h (P3i = Pyyr)
0.00633 kggy tg
tpxs = SRV a Eq.5.4

@ uCe xf

where; q is the reservoir fluid flow rate, B is the formation volume factor, p is the produced fluid viscosity,
ksrv is the permeability of the stimulated reservoir volume, h is the net pay thickness, T is the reservoir
temperature, Pi and Pwf are the initial and bottom hole flowing pressure, respectively, t represents time, ta
is the modified pseudo-time to account for slippage effect for the gas production, similarly P, and P*y¢
represent the modified pseudo-pressure considering the slippage effect while gas production at initial
conditions and the wellbore flowing pressure, respectively. Lastly, @ is the formation porosity while C; and

xr represent total compressibility and the fracture half-length, respectively.

A huge database is generated using numerical simulation (as discussed in chapter 04) for the
physics-informed dimensionless type curves database development. The subject database is developed
using an isothermal and homogeneous mechanistic reservoir model equipped with a single horizontal well
aided with a single staged, triple clustered planer hydraulic fracture. The database is developed using
multiple simulation scenarios considering a defined range of reservoir fluid types, reservoir matrix

characteristics, hydraulic fracture design parameters, and multiple operational designs.

Figure 5.2 to 5.4 are presenting the combination of dimensionless type curves for different reservoir
fluid types, namely FT1 to FT7 representing lighter to heavier fluid types, respectively (further details on

fluid types are provided in chapter 3). It is noticeable that the type curves become leaner as the fluid type
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becomes heavier and from the positioning perspective, the curves vertically shift upward as the reservoir
fluid becomes heavier. Apart from the reservoir fluid types, the effect of different reservoir matrix porosity
is also prominent in Figure 5.2 such that the type curves shift horizontally towards the left for increasing
reservoir matrix porosity. The similar effects of hydraulic fracture half-length are shown in Figure 5.4. The
overall effect of porosity and fracture half-length is similar on type curves shape and their placement as

both provide near wellbore and near hydraulic fracture reserves to produce.
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Figure 5.2 Typical dimensionless type curves for a multi-fractured horizontal well showcasing the effect of different reservoir
fluid types and reservoir matrix porosity.

For all scenarios, early-time linear flow is a common observation represented by %2 slope that
depicts the in-situ fluid flow from the reservoir matrix to the hydraulic fractures. Also, the bilinear flow,
representing fluid flow from matrix to fracture and the flow from fractures to the wellbore, is a common
observation for long horizontal wells with large hydraulic fractures. The impact of fluid flow from fractures
would not be significant for the smaller fractures. Similarly, late-time boundary dominant flow represented
through unit slope is another common observation regardless of the reservoir characteristics and the
hydraulic fracture design as well as the fluid type. In addition to the prior observations, Figure 5.3 and

Figure 5.4 represent the effects of hydraulic fracture half-length and conductivity on the dimensionless type

105



curves shape and their shifts both vertically and horizontally. A detailed discussion on the slopes of every
individual flow region according to the reservoir formation and hydraulic fracture characteristics is

presented in the later section.
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Figure 5.3 Typical dimensionless type curves for a multi-fractured horizontal well showcasing the effect of different reservoir
fluid types and hydraulic fracture half-length.
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Figure 5.4 Typical dimensionless type curves for a multi-fractured horizontal well showcasing the effect of different reservoir
fluid types and hydraulic fracture conductivity.
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5.4. Unconventional Enhanced Oil Recovery — Fluid Flow Response

Starting from the primary recovery fluid flow behavior and their possible responses for the closed
boundary reservoir system with a horizontal well aided with multiple fractures, the next step is to apply
EOR application such that to improve the oil recovery. Figure 5.5 represents the operational design
schematic that initiates with primary recovery followed by injection and soaking. Finally, the producer is
kept in production for the enhanced oil recovery until the set economic limits. Every operator follows a
different operational design such that after a certain level of primary recovery based on the well flow
performance or the economic limits, the EOR application is initiated that starting with the EOR solvent
injection. The injection period is a critical step that depends on the injection fluid volume, injection rate,
and maximum injection pressure. The injection pressure typically ranges between 75 to 85% of the initial
or the current average reservoir pressure such that to avoid hitting the formation fracture pressure.

Primary

Injection Soaking Enhanced Oil Recovery ————
Recovery
Time varies base
on mjection
~ 2 Years volume and rate 2 —30 Days Production until economic limits .

Producer ‘OFF’
&
Injector ‘ON*

Producer
‘0N9

Injector Producer Producer
‘OFF’ ‘ON? ‘OFF’

Figure 5.5 Typical Enhanced Oil Recovery operational design

It is obvious from the prior discussion and the observations made in Figures 5.2 to 5.4 that the
reservoir fluid types play an important role in reservoir fluid flow performance. Therefore, it is important
to review the effects of EOR applications under different circumstances, most importantly with different
reservoir fluid types. Apart from the fluid type, the hydraulic fracture design including hydraulic fracture
half-length, height, and fracture conductivity play important roles. Figure 5.6 to 5.7 are presenting the well
flow performance (flow rate over time) under the primary recovery mechanism and overlaid by enhanced
oil recovery through CO2 injection after 2 years of primary recovery. There are multiple numerical
simulation cases are presented in the figure for different reservoir fluid types. Keeping in mind that the
presented examples are only included for the workflow demonstration with a single Huff-n-Puff cycle that

shows limited incremental oil recovery while the multiple cycles provide a considerable trapped volume of
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in-situ oil that moves out of their tiny pore spaces because of back-and-forth CO, vaporization and
condensation until multi-contact miscibility is achieved. The following results conclude that every
individual reservoir fluid type shows a non-unique response as the phenomenon of achieving multi-contact
miscibility is not the same with different reservoir oil compositions. In a nutshell, medium-quality oil
comparatively shows the highest oil recovery because of the optimum effect of achieving miscibility, oil
swelling, and viscosity reduction. However, a typical heavy oil shows minimal response because of the

least chances of CO» miscibility.
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Figure 5.6 Comparative primary and EOR oil flow Figure 5.7 Comparative primary and EOR cumulative oil
performance for different reservoir fluid types recovery for different reservoir fluid types

5.5. Compositional Dimensionless Type Curves for Unconventional EOR

Using the same approach as discussed in the prior section for the dimensionless type curve generation
for the primary recovery through the modified Fetkovich approach, the type curves are further extended for
the unconventional EOR. For the EOR section, the type curves response (shape, position, and slopes) is
found non-unique as the function of reservoir fluid type and reservoir petrophysical characteristics as well
as the hydraulic fracture design. The EOR type curve response also includes an additional controlling factor
i.e., EOR operational design, mainly consisting of EOR solvent type, injection volume, and the soaking
time. In addition, EOR application initiation timing would also impact the shape and the slopes of the type
curves. Figure 5.8 is presenting a few examples of physics based UEOR dimensionless type curves as the
function of reservoir fluid type and the hydraulic fracture half-length. The responses for each parameter are

found noticeably different that are generalized and discussed in the following section.
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Figure 5.8 Compositional dimensionless type curves representing oil flow behavior as the function of hydraulic fracture half-

length, and the reservoir fluid types for both primary and EOR recovery. Individual plots are showing the effect of fracture
half-lengths for multiple fluid types i.e. (A) Fluid Type 1, (B) Fluid Type 2, (C) Fluid Type 3, (D) Fluid Type 4, (E) Fluid

Type 5, (F) Fluid Type 6, and (G) Fluid Type 7. Fluid types 1 to 7 is characterized as lighter to heavier hydrocarbon oil.
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5.6. Smart Physics-Informed Compositional Dimensionless Type Curves - SPiC TCp

Using the workflow as presented in Figure 1.1, a collection of numerical simulation-based EOR
responses for all possible circumstances are generated that are mandatory for developing an unconventional
tight oil reservoir through a multiple-fractured horizontal well. The EOR responses are designed to be
evaluated through Rate Transient Analysis (RTA). In this section, all-possible RTA-based Smart Physics-
Inspired Compositional Dimensionless Type Curve (SPiC TCp) are presented for the Oil production and
the associated solution gas production in a generalized format to be used by an end-user for a quick and

effective primary and UEOR performance match and incremental recovery predictions.

Description of an individual set of SPiC dimensionless type curves for both enhanced oil and associated
gas recoveries are given below. It is important to note that the ensuing examples are illustrative of SPiC
Dimensionless Type Curves for CO, and hydrocarbon gas EOR, however, the defined approach is not only

limited to these types of unconventional enhanced oil recovery applications.

Figure 5.9A: SPiC TCp for oil recovery with vertically downward shift for heavier to lighter reservoir fluid
type. The slopes range from 2 to unit slope for the primary recovery while the EOR slopes vary between

half slope to as high as 2 slope for different types of reservoir fluid types.

Figure 5.9B: SPiC TCp for oil recovery with a horizontal shift towards left for increasing reservoir porosity.
The slope remains unchanged for the primary recovery, i.e., unit slope, while the EOR slopes vary between

unit slope, i.e., for higher matrix porosity, to as high as greater than 2 slope for the smaller porosity values.

Figure 5.9C: SPiC TCp for oil recovery with vertically downward and horizontally towards left shift for
increasing hydraulic fracture half-length. Slopes remain unchanged for the primary recovery, i.e., %2 slope,
while the EOR slopes vary between unit slope, i.e., for smaller half-length, to as high as greater than 2
slopes for the larger half-length values. Also, the TCs shape becomes leaner for increasing fracture half-

length.
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Figure 5.9D: SPiC TCp for oil recovery with vertically downward shift for increasing hydraulic fracture
height. The slopes range from 2 to unit slope for the primary recovery while the EOR slopes vary between

unit slope to as high as over 2 slope for increasing hydraulic fracture height.

Figure 5.9E: SPiC TCp for oil recovery with vertically downward shift for increasing hydraulic fracture
conductivity. The slopes range from 2 to unit slope for the primary recovery while the EOR slopes vary

from unit slope to as high as over 2 slope for increasing hydraulic fracture conductivity.

Figure 6.10A: SPiC TCp for associated gas recovery with counterclockwise shift for lighter to heavier
reservoir fluid type. The slopes range from unit to Y4 slope for the primary recovery while the EOR slopes

vary between half slope to as high as 2 slope for different types of reservoir fluid types.

Figure 5.10B: SPiC TCp for associated gas recovery with a horizontal shift towards left for increasing
reservoir porosity. The slope remains unchanged for the primary recovery, i.e., unit slope, while the EOR
slopes vary between unit slope, i.e., for higher matrix porosity, to as high as greater than 2 slope for the

smaller porosity values.

Figure 5.10C: SPiC TCp for associated gas recovery with vertically upward and horizontally towards left
shift for increasing hydraulic fracture half-length. The slopes range from unit to % slope for the primary
recovery while the EOR slope for the associated gas recovery is found greater than 2 slope for a variety of

hydraulic fracture half-lengths.

Figure 5.10D: SPiC TCp for associated gas recovery with vertically downward shift for increasing hydraulic
fracture height. The slopes range from Y to unit slope for the primary recovery while the EOR slopes vary

from unit slope to as high as over 2 slope for increasing hydraulic fracture height.

Figure 5.10E: SPiC TCp for associated gas recovery with vertically downward shift for increasing hydraulic
fracture conductivity. The slopes range from Half to Unit slope for the primary recovery while the EOR

slopes vary from unit slope to as high as over 2 slope for increasing hydraulic fracture conductivity.
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Figure 5.9 UEOR Smart physics-inspired compositional dimensionless type curves for oil production from tight oil reservoi
through multi-fractured horizontal wells. Different type curves behaviors and RTA analysis are shown for the response of
(A) Reservoir Fluid Types, (B) Reservoir matrix porosity, (C) Fracture half-length, (D) Hydraulic fracture height, (E)
Hydraulic fracture conductivity
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Figure 5.10 UEOR Smart physics-inspired compositional dimensionless type curves for associated hydrocarbon gas
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PHYSICS-INSPIRED PROXY MODELS
DEVELOPMENT

Proxy model applications are getting routine in the oil industry especially in reservoir engineering
applications as an alternative to computationally expensive numerical reservoir simulation. However, well-
trained proxy models are a good approach to save computational run time but their accuracy as per the
physics-informed governing laws is mandatory for billion-dollar decisions and reservoir developments. In
this chapter, a systematic approach and steps are discussed initially to generate random samples, for a
numerical simulation-based comprehensive data library, using a physics-inspired design of experiment and

the post-training physics-informed performance and quality check through detailed sensitivity analysis.



6.1. Introduction

Numerical modeling and simulation are established techniques that have been used in the oil industry for reservoir
development, uncertainty analysis, and optimization of many processes in various areas such as engineering, geology,
geophysics, and thermodynamics. Numerical modeling is a mathematical representation of physics-based complex
problems within the defined set of limitations. However, for many grid blocks, complex processes such as
compositional modeling, and EOR mechanisms with multiple fluid components, the numerical simulation process is
computationally expensive. Therefore, the application of computationally efficient Proxy Models (PM) is being
performed in recent years as a supportive and reliable alternative for the numerical simulation approach. Successful
application of proxy models is only reasonably acceptable if the trained proxy models comply with the physics and
the meaningful trends for different physics-based systems. Various terminologies referred to as Proxy models are

surrogate models, meta-models, etc. (Bahrami, P., et al., 2022), as they are essentially deployed for similar purposes.

Proxy models can be defined as an input-output relationship (formulas, equations, etc.) that is capable of
interpolating within a range of data as an approximation. In the reservoir engineering domain, Proxy models shall be
defined as a representative model for a comprehensive numerical simulation that can be utilized and upscaled as a
reliable alternative for a full-field reservoir simulation model and reduce execution time (compared to the numerical

simulation’s approach when obtaining similar solutions).

To fit/train a PM, a decent amount of representative data for all reservoir model parameters is provided. After
the Proxy models infer the input-output relationship within the provided range of data, it is ready to be deployed as a
reliable alternative to the specific numerical simulation settings/contexts for the prediction of the output. The most
important benefit of using proxy models is their execution speed after inferring the input-output relationships. Proxy
models in reservoir engineering are used for: sensitivity analysis of uncertain reservoir static/dynamic parameters,
history matching and probabilistic forecasting for field development/evaluation, and full field development planning

with less time for decision-making.

For most representative ranges of critical parameters in almost all reservoir engineering processes and to
ensure interference between them, Proxy models’ input-output relationship is commonly inferred through random data
sampling using design-of-experiment techniques (such as Latin Hypercube Sampling) to cover the most possible

sampling ranges utilizing a reasonable number of sample size.
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6.2. Proxy Models Quality
The quality of any Proxy model depends on several factors including the selection of input parameters, selection
of algorithms for the proxy models, data quality used for the model training, training techniques and efficiency, and

various domain-expertise interpretation requirements.

Due to numerous uncertainties in reservoir engineering, domain expertise play an important role to define an
initial skimming on all input parameters (this falls into both the selection of input parameters and the domain-expertise

interpretation requirements as mentioned above).

In this study, the input parameters are divided into two main categories: static parameters (i.e., reservoir pressure,
porosity, permeability) and dynamic parameters (i.e., bottom hole flowing pressure, time, and numerically encoded
case types). Within the “selection of algorithms™ aspect, multiple algorithms for proxy models have been applied in
reservoir engineering, including polynomial regression, surrogate models, statistical models, and machine learning/
deep learning models. In this study, deep-learning models as ANNs are implied, trained, validated, and deployed using

the static and dynamic parameters as aforementioned.

Within the training techniques and efficiency aspect, the following quality controls are applied in this study to
make sure the Proxy models comply with the pre-defined and presumable physical conditions in the numerical

simulation settings. They are listed below:

i Train a portion of the prepared dataset (i.e., train set) until an acceptable R? and Mean Absolute Error
(MAE) are obtained. Different combinations of layers and weights-bias initializations are tested.

il. Validate and calibrate the Proxy models’ prediction performance using the validation set. It is common
to execute training and validation (i.e., i and ii) simultaneously.

iil. Monitor and record the optimal proxy models along the training and validation processes.

iv. Test the proxy models' prediction performance using the test set (i.e., simulation cases that do not exist
in the training and validation sets, commonly referred to as a blind-test set).

v. Conduct sensitivity analyses for multiple reservoirs and hydraulic fracture parameters to establish
meaningful trends following physical laws (physical compliance, referred to the domain-expertise

interpretation requirements).
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6.3. Deep Neural Network Architecture & Proxy Model Generation

Neural network development is a sophisticated process with multiple steps. A schematic of a typical Deep Neural
Network (DNN) architecture and the proxy model generation workflow is previewed in Figure 6.1. In this study, a
supervised machine learning technique using DNN architecture. DNNs can recognize and construct complex non-
linear patterns via their layers’ weights and biases via the feed-forward procedure. Learning and inferring from data
inside DNNs are conducted by a backpropagation procedure. The backpropagation procedure in DNN is executed
during the training and validation to minimize the pre-set error/loss metrics. One critical component inside the
backpropagation procedure is gradient descent which iterates to obtain the optimal values of weights and biases in the
layers, from which the DNN produces the minimum values of the loss metric(s). (Ahmad, F., et al., 2010; Wang, J.,

et al., 2017).

Defining ANN Activation Function

Defining DNN Main Architecture /. ~ ) ]
including Multiple Hidden 7 Defining Learning

Layers & neurons / & Decay Rate

Data Split for Training,
Testing, and Validation

Model Optimization for
Accurate Prediction

DNN

Architecture &
Pre-Trained
Model

Effective Input Parameters/ Generation

Prediction
Feature Importance

®-e

\

Data Samples Selection 2
& Normalization

/.

Cross Validation with Physics
based Numerical Simulation
~ Performance & Sensitivities

Data Preparation & Import

Figure 6.1 Deep neural network architecture and model generation workflow
6.3.1. Data Sensitivity, Characterization, & Preparation

The initial step adopted in this process is the selection of the most impactful reservoir parameters that control the
reservoir fluid in-flow performance including reservoir pressure, matrix porosity, and permeability. Secondly, the
hydraulic fracture parameters are short-listed that support the reservoir fluid in-flow performance including hydraulic

fracture design parameters such as fracture half-length, effective permeability, fracture height, and width, etc. Fracture
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conductivity is another important parameter that extensively defines the fluid intake from the reservoir and out-flow
towards the wellbore. The dynamic operational parameters including bottom-hole flowing pressure and the injection
of an EOR solvent (for the EOR cases) are also important parameters that are used in this study. Table 6.1 summarizes
all the parameters and their ranges applied in this study to generate proxy models. Apart from the meaningful
parameters representing reservoir characteristics, hydraulic fracture, and the operational design parameters, a few
pseudo-encoded parameters are also included that helped the ANN to distinguish the different characteristics of the
processes. Essentially, the proxy models are generated for a couple of categories representing natural drive
mechanisms and the EOR. Each category is further divided, as listed in Figure 6.2. Generating the oil and gas flow
rate well-trained proxy models overall cover the entire flow performance in multiple ways, such as GOR, cumulative
oil production, incremental oil recovery, etc.

Proxy Models Categories

Natural Drive - Primary Recovery Enhanced Oil Recovery
(A) Without Shut-in (B) With Shut-in (A)CO, (B)HC

Proxy Model for Qo Proxy Model for Qg Proxy Model for Qo Proxy Model for Qg
Proxy Model for CO,

Figure 6.2 DNN-trained proxy model categories

Table 6.1 Parameters and their ranges used for the DNN training and proxy models development

Parameters Parameters Used for Range
Primary Recovery Models EOR Models g

Initial Reservoir Pressure v v 4000 — 12000 Psi
Reservoir Porosity v v 2-15%
Reservoir Permeability v v 0.0001 — 0.1 mD
Reservoir Fluid Type v v Light to Medium Quality
Fracture Conductivity v v 0.02 — 50 mD.ft
Fracture Half-Length v v 25 —300 ft.
Fracture Height v v 10 — 120 ft.
Solvent Injection Volume v 0.2 —910 MMScf
Soaking Time v 2 —30 Days
Bottom Hole Flowing Pressure v v
Time v v
Case Type (Pseudo Parameter) v v
EOR Type (Pseudo Parameter) v
Oil Flow Rate v v
Gas Flow Rate v v
CO> Flow Rate v
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For each of these parameters, a field-derived practical variation is considered to generate a database that shall
cover all possible scenarios for the field applications. For the models training fixed reservoir property value is used as
the localized mechanistic simulation model is used for the entire dataset development. Therefore, an end-user would
have to come average-out / scale up the actual reservoir property to be used in the proxy model for closed possible
prediction. A few most adopted averaging methods are harmonic, geometric, arithmetic, and quadratic averaging
methods (Ahmed U., et al., 2016; Jarvie, D.M., et al., 2007). The mathematic representation of these averaging

techniques is given below:

I 177t
XHarmonic = [Ez 1X_] Eq.6.1
i=1X{

n n
XGeometric = szil Eq.6.2
i=1
1 n 1
Xarithmetic = EZ 1; Eq.6.3
i=1X{
1
x o= BT ) Eq.6.4
Quadratic — n i:1xi q.6.

where x; is the value of the subject parameter at the i reference location in a reservoir.

It is important that the physical meaning of each of the considered input parameters are unique and important, and the
magnitude of one input parameter in the dataset is drastically different from the others. Therefore, data normalization
is performed to ensure proper weightage distribution on all input parameters according to their scope in the proxy
models during training/validation processes. There are several normalization techniques such as Min-Max
normalization, z-score normalization, decimal scaling normalization, etc. In this study, the Min-Max normalization
technique is adopted (Al Shalabi, L. and Shaaban, Z., 2006; Mohamad, I.B. and Usman, D., 2013; Saranya, C. and

Manikandan, G., 2013). The mathematical expression of the technique is shown below:

X = Xmin
Xnormalized = — Eq.6.5
Xmax ~ Xmin

Xscaled = Xnormalizea X (Max —min) + min Eq.6.6
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Xscaled = Xnormatizea X (Max —min) + min Eq.6.7

Where x is the absolute value of the subject parameter while Xmin and Xmax are the minima and the maximum
values of the subject parameter used in the dataset for the model preparation, respectively. For scaling, the min and

max are normalized to values between these limits. In this study, 0 and | are the min and the max limits.

6.3.2. Feature Importance Analysis

Feature Importance Analysis refers to the characterization of all perspective features that control the performance
of the output parameter. One step further, this study provides the physical meaning of the important features that

control the fluid flow from a reservoir in a defined reservoir and a hydraulic fractured system.

In this work, Feature Importance Analysis is conducted end-to-end within the modeling workflow, i.e., during
both pre-processing and post-training steps. During pre-training, Feature Importance Analysis is determined using
single variate statistics and R, correlation to determine correlations between the output and all individual input
parameters. Based on the single variate statistics, all prospective features are scanned, and profound features are
extracted (presumably that the impact of the input features on the output is mutually independent). During post-
training, feature importance is determined through SHapley Additive exPlanations (abbreviated as SHAP). SHAP, a
model explain-ability technique, is designed based on the game theoretic approach. It explains machine learning/ deep
learning models according to the optimal allocation from local explanations of the input features, given a sufficient
sample of data and the corresponding pre-proxy machine learning/deep learning model. Consequently, SHAP is
initiated and executed to leverage the use of available proxy modeling techniques and, because of its optimal allocation
nature, to interpret the interference between the impact of input features to the output. The benefits of SHAP for post-
training Feature Importance Analysis mitigates the presumptions during the pre-processing Feature Importance

Analysis and allows domain expertise to reflect the physical meaning of the important features.

Figures 6.3 presents the feature importance ranking for all five models trained during pre-processing, and figures
6.4 to 6.8 show the post-training feature importance interpretation post-processing. The following figures indicate
different interpretations in terms of feature importance. Figure 6.3 merely indicates a preview and naive feature
ranking between all modeled features and the output since no trained model and no feature interference contribute to

the evaluation. In contrast, figures 6.4-6.8 provide a significantly detailed feature ranking, in terms of:
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1. One feature’s value distribution

2. One feature’s degree of impact on the output, given the changes in its value and its interference with the others

3. One feature’s uniformity in impact on the output

For example, the feature “Days” has the highest and less uniform impact on the output (since the range of impact
on the output from “Days” is highly diverse when this feature’s value is low and greatly reduces when this feature’s
value is higher). The higher the value of the feature “Days” is, the lower impact it has on the output The feature “Fluid
type” has the 2" highest and more uniform impact on the output (since the range of impact on the output from “Fluid
type” is similar regardless of the low/high values of this feature). The higher the value of “Fluid type” is, the higher

impact it has on the output. Similar explanations can be conducted for the other features in Figures 6.4-6.8 using the

understandings 1-3 as aforementioned.
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Figure 6.3 Single variate feature importance for all proxy models
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6.3.3. Data Split for Training, Testing, and Validation

The next important step after data preparation and pre-training feature importance determination is to split the
prepared data into training, validation, and blind-test sets. In this study, all models are trained using 75% of the
prepared data while the remaining 25% of the data is used for validation and blind test. Since approximately a quarter
million data points/events are prepared in this study, a slight shift in the split ratio (i.e., 80%/20%, or 70%/30%, or

90%10%) does not heavily impact the performance of the proxy models.
6.3.4. Neural Network Architecture

The next step is to develop an overall ANN architecture by defining the input layer followed by multiple hidden

layers, and an output layer. Figure 6.9 is representing a typical ANN architecture that follows the following steps:

Input Layer i 1* Hidden Layer 214 Hidden Layer R o ---n Hidden Layer Qutput Layer

Figure 6.9 Typical neural network architecture

Artificial neural networks can utilize multiple hidden layers; however, the selection of the hidden layers is
problem specific. An excessive number of hidden layers may not significantly outperform a reasonable number of
hidden layers. In addition, it is equally important to choose the proper number of nodes in the hidden layers. Multiple
nodes are beneficial to reduce the error between the predicted and the actual values. Like the number of hidden layers,
an excessive number of nodes may not outperform a reasonable number of nodes. Therefore, the number of hidden
layers and nodes in an ANN shall be carefully considered. (Chen, H., et al., 2022; Shen, H., et al., 2008; Stathakis, D,
2009). In this study, after multiple realizations through a trial-and-error process, five dense hidden layers are defined
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for all models with various neurons for accurate computation of ANN’s performance followed by an activation
function. The activation functions are responsible for the feed-forward procedure (de Campos, P.V., et al., 2019;
Warner, B. and Misra, M., 1996). A variety of activation functions is used in different ANN algorithms such as
Sigmoid, Tanh, Soft-max, Rectified Linear Unit (ReLU), and Max-out functions. In this study, the ReLU function is

used because of its superiority in the ANN’s performance compared to the other activation function variants.
6.3.5. Learning / Decay Rate and Model Optimization

Over- and/or under-fitting are common issues that may happen because of the insufficient or excessive
number of training samples, the number of nodes, and the hidden layers defined in an ANN architecture (Chen, H., et
al., 2021). Over-fitting refers to the scenario that a machine learning/deep learning model fails to generalize the input-
output relationship due to its over-detailing into all samples in the trained set. Under-fitting means a model fails to
infer the intrinsic complexity of training and validation sets due to its under-detailing into all samples in the trained
set (Smith, L.N., 2008). Therefore, modifying the learning rate (i.e., referred to as the learning rate decay model) is
required to train a neural network in this study. Modifying the learning rates is conducted to ensure the optimization
to approach the minima and not diverge from the minima. In this study, values between 5x10-3 and 5x10 are taken
as the initial learning rate and decay rate, respectively. Eventually, the model optimization step is defined as the last
constituent step of the model architecture for an accurate ANN model prediction. Several optimization techniques can
be selected based on the ANN architecture and the objective function. In this study, the Adam optimization technique
is used to minimize the Mean Absolute Error (MAE). MAE loss metric determines the absolute difference between
the actual and the predicted values taken from the dataset. The MAE function is defined in Equation 6.7. Another
quantitative method commonly adopted to cross-check the accuracy of the prediction is the coefficient of correlation
(R?), shown in Equation 6.8. Table 6.2 summarizes the MAE and the R? for all ANNs in this study. While Figures
6.10 to 6.19 are presenting training & testing loss metrics and the ANNs’ performance cross-plots.

Y |Prediction; — True Value;|
MAE =222 _
Total No. of Data Points (n)

Eq.6.7

2
R2 —1_ Z?—l(zi sample — ZiANN) Eq.6.8

2

n [
i—1(Zi sample — Zl sample)
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Table 6.2 Parameters and their ranges used for the DNN training and proxy models development

MAE Testing ~ MAE Training R2_Testing R2 Training

Qo — Primary Recovery 0.013 0.017 0.985 0.994

Qg — Primary Recovery 0.016 0.021 0.987 0.994

Qo -EOR 0.019 0.027 0.972 0.989

Qg - EOR 0.019 0.046 0.977 0.977

CO2-EOR 0.017 0.046 0.955 0.973
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Figure 6.10 training and testing losses for Qo — primary
recovery model

1.00
® Training_Qg_Primary

@ Testing_Qg_Primary

\
.‘\c
001

0 20 40 60 80 100
Epochs

Figure 6.12 Training and testing losses for Qg — Primary
recovery model
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Figure 6.14 Training and testing losses for Qo — EOR model
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Figure 6.15 DNN post-training diagnostic prediction cross-
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6.4. Limitations to Proxy Models Application
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Figure 6.17 DNN post-training diagnostic prediction cross-
plots for Qg — EOR proxy model
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Figure 6.19 DNN post-training diagnostic prediction cross-
plots for COz proxy model

There are a few limitations to using DNN-trained physics-informed proxy models as listed below;

1. The DNN-trained proxy models can only be used for unconventional tight oil reservoir recovery performance.

2. The proxy models can be used for similar geological characteristics and hydraulic fracture designs as used in

the numerical simulation model that is used to develop the entire training dataset.

3. All proxy models are valid to be used for the given ranges of individual reservoir rock and fluid properties,

hydraulic fracture design, and the EOR operating design parameters.

4. The EOR proxy models can only be applied for the CO, and lean hydrocarbon gas injection as EOR solvents.
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PHYSICS-INFORMED PROXY MODELS QUALITY
CHECK & CASE STUDIES

Proxy model validation always involves certain subjectivity and is unique to the original specific problem
and constraints applied during model training. Since the main emphasis of this study is on
physics governing principles, it is crucial to ensure that the trained proxy models are operating and
adhering to the physical knowledge for which they were trained. The prediction performance of the proxy
models is presented in this chapter using both training and non-training datasets, followed by several

actual field case studies to see how the proxy models react to the techno-economic unconventional EOR

pilot screening.



7.1. Introduction

This chapter details the most important part of the entire study. ANNs have been commonly referred to as “black
boxes” that do not disclose explicitly the understanding of the learned correlation between the input parameters and
the corresponding output. In this study, apart from the static input parameters, multiple dynamic parameters are also
used that directly affect the performance of the output parameter. If the ANNs are successfully and properly trained,
the output prediction shall comply with the physics and the governing laws because the entire data is generated using
physics-based numerical simulation. Ideally, the relationship between the reservoir characteristics, hydraulic fracture
design parameters, and the bottom hole flowing pressure should depict the response in the reservoir hydrocarbon flow

rate.

7.2. Proxy Models Prediction Performance Check Using Training Data

Physics-based prediction performance of the trained proxy models is analyzed in multiple ways. Initially, as
discussed earlier, a hydrocarbon reservoir is a dynamic system that is mainly been driven by the reservoir and the
bottom hole flowing pressure (i.e., differential pressure). Before proceeding further, it is important to make sure that
the incremental system pressure is providing meaningful and logical fluid flow response as per the physics governing
laws. Figure 7.1 is presenting the simulated and the ANN-prediction reservoir fluid flow response as the function of
pressure. It is important to notice that on a single pressure value, multiple fluid flow responses are obtained that
represent the effects of the combination of different reservoir rock properties, in-situ fluid type, hydraulic fracture
design parameters, etc. From the proxy model training perspective, the models are evaluated to be good enough to

follow the pre-defined physics.

To further investigate the performance of the trained proxy models as per the physics governing laws, it is
important to first validate their performance with the training dataset to make sure the prediction is reliable with
minimum error to further use the model for blind testing. For the training performance check, multiple sets of events
are randomly selected from the training datasets representing different properties including but not limited to reservoir
pressure, fluid type, reservoir matrix porosity & permeability, etc. Also, the performance validation has been done
using the training dataset having a couple of major hydraulic fracture design parameters including fracture

conductivity and the half-length.
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Figure 7.1 Relationship between pressure and reservoir hydrocarbon withdrawal

Figures 7.2 to 7.4 present the proxy models’ performance for primary recovery as a function of the reservoir and
hydraulic fracture properties. Similarly, for the same properties, the performance plots for the EOR proxy models are
presented in Figures 7.5 to 7.7. Using the same testing and the predicted dataset, the dimensionless type curves are

also developed for properties as shown in Figures 7.8 to 7.10.
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7.3. Physics-Based Proxy Models Blind Prediction Performance

After having satisfactory predictions using the Proxy DNN models for the testing dataset, the next step is to

perform blind tests to satisfy the proxy models' physics-based quality check using the dataset that is not used for the

DNN models’ training or testing purposes. To satisfy the physics, multiple scenarios with different reservoir and

hydraulic fracture parameters are considered. Figures 7.11 is presenting a systematic effect of reservoir fluid type on

oil flow rate and the corresponding dimensionless type curves. Similarly, Figures 7.12 and 7.13 are presenting the

effects of hydraulic fracture half-length and fracture conductivity, respectively.
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Figure 7.11 Blind physics-based proxy models’ performance check for reservoir fluid types
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Figure 7.12 Blind physics-based proxy models’ performance check for hydraulic fracture half-length
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Figure 7.13 Blind physics-based proxy models’ performance check for hydraulic fracture conductivity
(A) Oil flow rate (B) Dimensionless type curves

After reviewing all the discussed performances, it is concluded that the proxy models are capable enough
to be used for the predictions within the defined training range. As the following step of this study, the
verified proxy models are equipped with a smart tool with a Graphical User Interface (GUI) called ‘“W3H’,
for unconventional EOR pilot screening. A detailed discussion about the smart tool, its capabilities, and a

few case studies are presented in the following chapter.

7.4.Case Studies
For teaching, research, publication, and development reasons, the SPE Bleeding Edge of RTA Group
(BERG) gathered numerous tight oil well performance data from several US-based companies; these

datasets are now available on the SPE data repository (https://www.spe.org/en/industry/data-repository).

Several tight oil primary recovery datasets from the subject repository are evaluated for the "W3H' concept
validation. Table 7.1 is a list of the subjective data for each dataset representing the individual well that

is used in this investigation.

The “W3H’ analysis tool is designed to be as simple as possible so that analysis can be performed with
limited yet necessary reservoir and hydraulic fracture design information. The necessary reservoir
characteristics include in-situ reservoir fluid composition, initial reservoir pressure, porosity, and average

matrix permeability. While the primary hydraulic fracture design parameters needed for the analysis include
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fracture half-length, height, and fracture conductivity. If any of the required information is not available,

the study would begin with the best-guess estimates using indirectly linked information.

Table 7.1 Reservoir and hydraulic fracture information for all wells discussed in case studies

Well-1 Well-2 Well-3
Field Osprey Eagle Kite
Formation/ Reservoir Eagle Ford Eagle Ford Eagle Ford
Initial Res. Pressure (Psi) 5400 5000 5000
Res. Temperature (°F) 225 235 238
Net Pay Thickness (ft) 78 74 56.5
Matrix Porosity (%) 6.3 6.3 5
Water Saturation (%) 26 27 32
Oil Saturation 74 73 68
Oil API Gravity 37.29 35.46 43.58
Initial GOR (Scf/Stb) 336 558 1035
Saturation Pressure (Psi) 1211 2122 3064
Fracture Stages 28 50 34
Clusters per Fracture 9 9 9

For instance, none of the datasets chosen for this study has reservoir fluid compositions available;
nonetheless, a skilled reservoir engineer can use the API gravity as a key indicator to determine which
reservoir fluid composition in the tool's offered fluid composition templates is the closest. Similarly, no
information regarding the hydraulic fracture design is available except the total number of fracture stages
and the cluster count per fracture. In this case at least one of the necessarily needed fracture design
properties i.e., fracture height can be guessed using the formation net pay thickness as a starting point. All
other necessary parameters that cannot be estimated using the available information will be tuned up while
simultaneously being guessed blindly. Keeping this technique in mind, all the information needed to start
the performance analysis is divided into three categories: information that is available, information that is
best predicted using indirectly linked parameters, and information that is predicted blindly and tuned
accordingly while matching the performance plots. For all case studies, the available and the required data

for the analysis are categorically distributed as listed in Table 7.2.
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Table 7.2 Categorical distribution of the available and the required data for the W3H analysis

Initial Reservoir Pressure

Matrix Porosity
Fracture Stages

Clusters per Fracture

Reservoir Fluid Type (Oil API Gravity)
Fracture height (Net Pay Thickness)

Matrix Permeability

Fracture Half-Length

Fracture Conductivity

Available Certain Data

Best Guessed Data

Blind Guessed Data
(Tuning Parameters)

7.4.1. W;H Performance Analysis

The entire analysis is carried out primarily in three steps, starting with the collection of static and
dynamic data followed by dynamic performance data preparation, then tuning of input parameters to get
the closest performance match using dimensionless type curves for the primary recovery, and finally
determining of techno-economic unconventional EOR options. The dynamic data preparation is critical;
the correct number of fracture stages and clusters per fracture is essentially required such that to normalize
the data as per the W3H tool’s data input format. Since there are only one stage and three clusters per
fracture in the tool's design as explained in chapter 3 ‘Reservoir Numerical Model Development’, therefore

the oil flow rate data must be normalized appropriately.

7.4.2. Primary Recovery Performance Match

Using the available well data after cleaning and normalization based on a single stage and three clusters
per fracture, the dimensionless type-curve is matched for the primary recovery performance. Figures 7.14
to 7.16 are showing the dimensionless type curves and the associated well performance data including Oil
Flow Rate (Q,), and Bottom Hole Flowing Pressure (BHFP) for wells 1,2, and 3, respectively. The BHFP

in each case is extrapolated to predict the well performance data using the W3H smart tool.

Traditionally, using a history-matched numerical simulation model to predict well performance would
take several hours to a few days. However, the W3H smart tool was able to make this prediction in only a

few minutes, even with blindly guessed parameters’ tuning, and the performance match of all selected wells
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are found to be in good agreement. Table 7.3 is presenting the complete list of input data including the

tuned matching parameters for all three case studies.
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Figure 7.14 Well-1 primary recovery performance matching using the W3H Smart tool
(A) Dimensionless type curve (B) Oil flow rate & BHFP
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Figure 7.15 Well-2 primary recovery performance matching using the W3H smart tool
(A) Dimensionless type curve (B) Oil flow rate & BHFP
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Figure 7.16 Well-3 Primary recovery performance matching using the W3H smart tool
(A) Dimensionless type curve (B) Oil flow rate & BHFP
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Table 7.3 Reservoir and hydraulic fracture information for all wells discussed in case studies

Input Parameter Well 1 Well 2 Well 3
Initial Res. Pressure (Psi) 5400 5000 5000
Matrix Porosity (%) 6.3 6.3 5.0
Matrix Permeability (mD) 0.015 0.017 0.005
Fluid Type (Ref. Figure 3.11) 4 3 1
Fracture Half-Length (ft) 200 200 180
Fracture Height (ft) 40 40 50
Fracture Conductivity (mD.ft) 5 5 1
Fracture Stages 28 50 34
Clusters per Fracture 9 9 9

7.4.3. Techno-Economic UEOR Analysis
The next stage is to perform techno economic unconventional EOR screening by choosing a
suitable EOR solvent and the operational design for the best oil recovery with the least amount of
solvent injection and soaking time. The smart tool's design considered the fact that each operator
uniquely operates their reservoir. As a result, the tool offers multiple realizations that can be tested with
various combinations of EOR Solvent Type (available choices include CO, or HC), EOR Solvent

Injection Volume (available range 0.2 - 900 MMScf), and Soaking Time (available range 2 — 30 days).

Before analyzing the selected case studies, a modified base case is created for each case study that
is nothing more than the main recovery performance with a shut-in time, which is like the EOR solvent
injection and soaking period, to create a fair incremental cumulative oil comparison. Before moving on
to the EOR screening analysis, the modified base case performance for each well is compared with the
true base case, which refers to the flow performance without well shut-in to observe the effect of
pressure buildup. Even though there won't be much of a pressure-building impact because of the tight
formation, limited pressure support, and isolated pressure transient effect, it would still be worthwhile
to evaluate whether any extra barrels of oil may be produced without the use of any EOR applications.
The primary recovery dimensionless type curves and the corresponding cumulative oil recovery

comparisons are shown in Figures 7.17 to 7.19.
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Figure 7.17 Well-1 Primary recovery performance with and without shutting in the producer
(A) Dimensionless type curve (B) Cum. oil
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Figure 7.18 Well-2 Primary recovery performance with and without shutting in the producer
(A) Dimensionless type curve (B) Cum. oil
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Figure 7.19 Well-3 Primary recovery performance with and without shutting in the producer
(A) Dimensionless type curve (B) Cum. oil

It can be noticed from the above figures, as expected, none of the examples demonstrate any benefit
from shutting in the well, infect shutting the well negatively impacted the recovery performance. EOR

application is, thus, a sensible choice to increase tight oil recovery. For instance, in this study, EOR

145



comparison is studied using CO; as an EOR solvent. To highlight the capability of the smart tool ‘W3H’,
multiple EOR operational designs, including the CO, injection volume and the soaking period, are

considered in this study as listed in Table 7.4.

Table 7.4 EOR scenarios for different COz2 injection volume and soaking periods

. L. Soaking Period
Scenarios Injection Volume (MMScf) (Days)
1 250
2 500 15
3 750
4 250
5 500 30
6 750

The EOR dimensionless type curves and the cumulative oil recovery comparisons are shown in
Figures 7.20 to 7.22 for all wells considered in this study. For the performance comparisons, it is very
important to consider both, long-term, and short-term benefits. For instance, the EOR application in Well
1 is not providing any extra barrels of oil, infect it is hurting the overall recovery in most of the scenarios
with 15 days soaking period on a long-term comparison. However, on a short-term basis, the EOR
application significantly boosted the oil recovery. Therefore, it can be concluded that an operator can benefit
from the EOR application depending on its objectives based on the production timeline. There is another
fact to keep in mind that all the presented performances are generated based on a single Huff-n-Puff cycle
purposely to demonstrate the capabilities of the technique introduced in this work and the smart tool

developed for the operators.

Despite having identical recovery performance, scenarios 5 and 6 perform better when compared.
Well 2's recovery capabilities are virtually identical to those of Well 1. However, well 3; the strongest
candidate—shows a large increase in oil recovery across all scenarios. Therefore, depending on the
availability of CO, volume and the operator's flexibility for how long a well may be left idol in operation
to give an adequate soaking period, any method could be chosen. From this study, it can be inferred that

more CO» injection does not always result in increased oil recovery; there is always a threshold, but
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increased CO» volume would aim for more in situ oil recovery. Like this, a longer soaking time would

help the CO» to disperse more oil.
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Figure 7.20 Well-1 UEOR SPiC TCp and the cumulative oil recovery comparisons using the W3H smart tool
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Figure 7.22 Well-3 UEOR SPiC TCp and the cumulative oil recovery comparisons using the W3H smart tool
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7.4.4. Discussion

It is significant to note from the analysis above that the flow performances of the subject wells
differ from one another while being produced from the same reservoir (Eagle Ford), despite exploiting
different formations. According to the W3H analysis, the reservoir matrix characteristics, such as matrix
porosity and permeability, are roughly identical for the formations adjacent to the wells, but the reservoir
fluid types are significantly different. Additionally, all wells' hydraulic fracture designs are found to be
similar, for example, wells 1 and 2 are having the same fracture half-length, fracture height, and fracture
conductivity. While well 3 is found to have a lower fracture conductivity but a little greater half-length and
height. All three wells have noticeably different fracture stages, but because the production performance
study compares normalized production based on a single-stage fracture, the fracture stage differences are

not considered.

The incremental oil recovery responses observed in all three wells are interesting when considering
the reservoir and hydraulic fracture design parameters, and most notably, the reservoir fluid type. The fluid
type is the key player among other factors. As we know, CO> is more active for the EOR in lighter oil in
comparison and that is why a comparatively much-improved response is observed in well 3 with the lightest
reservoir fluid type, followed by well 2. Tables 7.5 through 7.7 summarize the incremental oil recovery

observations, distributed in short- and long-term recovery responses.

It is essential to keep in mind that incremental oil recovery is a time-dependent event, making the
comparative sustainability of the incremental recovery a critical issue that must be considered when
planning huff-and-puff-based EOR projects. Therefore, in any case, an immediate recovery boost is
possible, but the long-term ultimate incremental recovery is not guaranteed. For instance, scenarios 1
through 4 are viable choices for short-term recoveries, but as time passes, the ultimate oil recovery through
EOR offers no advantages over the primary recovery. A similar behavior could be observed in well 2, while

well 3 is far better in comparison, therefore, a single huff-n-puff cycle with any considered scenario would
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work, however, for the other two wells, as soon as the incremental recovery performance flattens, another

huff-n-puff cycle should be considered for long term incremental oil recovery benefits.

Table 7.5 Short and long-term EOR incremental oil recovery comparison for Well 1

Scenario 1 Scenario 2 Scenario 3  Scenario 4  Scenario 5  Scenario 6
Short-Term 1 Month 2.56 3.06 2.51 3.30 3.62 4.13
Recovery (%) 6 Month 6.64 7.87 6.51 8.50 9.23 10.26
1 Year 9.43 11.11 9.35 12.20 13.23 14.45
3 Years 10.91 13.66 15.03 18.81 21.98 22.34
Long-Term
Recovery (%) 6 Years -9.76 -6.12 -0.83 3.47 12.08 12.21
10 Years -19.35 -14.64 -9.93 -5.24 4.20 4.34
Table 7.6 Short and long-term EOR incremental oil recovery comparison for Well 2
Scenario 1 Scenario 2 Scenario 3  Scenario 4 Scenario 5  Scenario 6
1 Month 1.43 1.34 1.38 1.63 1.59 1.74
Short-Term 6 Month 3.83 3.68 3.77 4.48 434 479
Recovery (%)
1 Year 5.70 5.60 5.81 6.89 6.65 7.35
3 Years 5.26 8.74 15.24 18.02 19.42 21.01
Long-Term 6 Years -4.95 -0.49 8.31 11.53 18.30 20.54
Recovery (%)
10 Years -10.85 -5.30 3.14 6.70 14.04 16.58
Table 7.7 Short and long-term EOR incremental oil recovery comparison for Well 3
Scenario 1~ Scenario 2 Scenario 3  Scenario 4 Scenario 5  Scenario 6
1 Month 3.84 4.92 6.57 7.51 7.93 8.09
Short-Term 6 Month 9.73 1231 16.75 18.77 19.63 19.95
Recovery (%)
1 Year 14.02 17.26 24.16 26.78 27.87 28.27
3 Years 22.83 26.38 47.70 50.79 56.84 57.25
Long-Term 6 Years 17.82 22.09 45.65 4921 58.10 58.76
Recovery (%)
10 Years 15.95 20.31 44.97 48.62 57.63 58.44
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W3H ‘Software Package’ — USER MANUAL

The Where, When, What, and How of injecting EOR solvent for the best techno-economic incremental oil
recovery are typical issues that are addressed by the smart tool ‘W3H’, which was created for the
unconventional tight oil EOR pilot selection. W3H is a Physics-based alternative to computationally
expensive numerical simulation tools that provide answers in a few hours instead of months to narrow
down the list of potential UEOR pilot wells, to be further investigated in detail, based on the wells
performance history, regional formation maturity, hydraulic fracture design, and the availability of the
EOR agents such as CO: and produced hydrocarbon gas. W3H is simple and easy to use those imports
historical well performance data (primary recovery) along with reservoir rock and fluid quality information
& hydraulic fracture design parameters and provides multiple EOR options with optimum incremental oil

recovery after matching the primary recovery performance with the W3H dimensionless type curves.



8.1.Introduction

W;H is a smart plug & play tool developed using Python coding language, capable of analyzing single
well-based tight oil production data and providing the suitable EOR options based on the most suited EOR
agent selection (i.e., CO, or HC), the injection solvent volume, and followed by the soaking period for the
optimum incremental oil recovery. Not necessarily, this tool has to be used for the pre-drilled well with
prior production history; also, it can be used to design a new well from scratch using the typical reservoir
formation and the hydraulic design parameters data. W3H tool is empowered with Deep Neural Network
(DNN) based proxy models and as discussed in the prior chapters the proxy models are developed using a
huge compositional numerical simulation-based database. In addition, a Physics-Guided Design of
Experiment (PG-DoE) is applied to generate enough random data samples to cover the entire possible

sampling space.

8.2. A Quick W;H Overlook

W;H is a sophisticated yet simple application with a single interface as shown below in Figure 8.1.
Also, all major operational and visualization components of the interface are shown in the same figure
which include the W3H Design Bar, W3H Toolbox, and multiple data entry and visualization tab windows.
The user entry tab window intakes all the necessary reservoir rock and fluid properties, hydraulic fracture
design parameters along with the historical (primary recovery) well performance data. Visualization tab
windows are used to preview historical performance plots as well as the W3H performance plots including
the SPiC dimensionless type curves in the Type Curve tab window. W3H designer bar is used to modify
reservoir and hydraulic fracture properties to match the primary recovery plots and finally, the EOR
operational design properties, including EOR solvent volume and the soaking time, are modified in the
W3H designer bar to perform the Unconventional EOR analysis. Similarly, the W3H Toolbox is used to
visualize the reservoir fluid composition templates and the toolbox contains multiple functional buttons for

data handling and plotting.
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Figure 8.1 W3H — Smart tool interface with operational and visualization components

8.3. W3H Operational Analysis Steps

There are following six major steps to perform W3H analysis as listed in Figure 8.2 while the detailed

steps are discussed below as shown in Figure 8.3.

-
» Upload Single Well Tight Oil Production History - User Data Entry Tab
Ty
+ User Data Entry: Reservoir Characteristics- User Data Entry Tab
Ty
+ User Data Entry: Hydraulic Fracture Design Parameters - User Data Entry Tab
+ Plot Well Data: Qo, Pwf, GOR, and Type Curve — W3H Tool Box Options
+ W;H Type Curves Matching Using W;H Tool Bar Options including Reservoir
Properties & Hydraulic Fracture Design
-
* Determine the Best Techno Economical EOR Design Options for the optimum
Incremental Oil Recovery using EOR Operational Design W3H Tool Bar Options

€E€ELLELEL

Figure 8.2 W3H — Major operational steps
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Figure 8.3 Steps for user data entry and visualization steps

Step 1: Press the Start New Analysis button to start a new analysis window. Multiple tabs can be opened

in the same window by simply pressing the same button for parallel analysis.

Step 2: Upload the historical well data (primary production) in a specific data format using the ‘.csv, .xls,
xIm, or .xlIsx’ file using the Load Well Data button. The data format is required to be in the same sequence

as shown in Figure 8.4. In case of having no data for the gas flow rate, leave it black.

A B c D j

Days Pwf (Psi) Qo (bbl/day) Qo (MScf/day)

3 B82.aevy 412.628 875.358
60 745709 128.312 413.145
91 B82.744 85.015 2898.473
121 644262 57.563 232 487
152 B16.187 43.957 200.876
182 537.485 33.3M 167 267
213 h83.567 27.798 151.649
2441 57332 23.278 136.379
274 565.691 19.479 120.539

== REN - I R FUR Y
| | i | ™|

—
[=1|

Figure 8.4 User data format for uploading in the application
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Step 3: Populate reservoir and hydraulic fracture properties in User Entry Portal on the User Data Entry
tab window.

Step 4: Press ‘Plot Well Data’ to plot well performance data including bottom hole flowing pressure, oil
flow rate, gas oil ratio, and the associated dimensionless type curve. It is important to keep in mind that a
type curve depends on the reservoir rock and fluid properties as well as hydraulic fracture design

charecterstics therefore data quality is important.

Step 5: Next step is to visualize the well flow performance using the bottom hole flowing pressure (Pwf),
oil flow rate (Q,), & gas oil ratio (GOR) tabs and the dimensionless type curve (SPiC TCp) in their
respective visualization tab windows.

Step 6 & 7: After uploading the user data, the next step is to match the given well’s flow performance with
the W3H flow performance curves mainly for the flow rate and the SPiC TCp. GOR could be a useful tool
for the performance match but is not mandatorily required. In this step, an appropriate reservoir fluid type
selection is critical which directly affects the flow performance and the type curve shape and its slops for
different time regions. There are multiple fluid composition templates are provided in the application, such
that, the closest possible reservoir fluid type can be selected representing the reservoir in-situ reservoir fluid
composition. There are two ways to choose the fluid type including based on the fluid compositions listed
in “W3H Toolbox’, a drop-down window ‘Fluid Templates’ would provide different fluid type options, or
through phase envelop diagrams associated with different fluid compositions that can be visualized in the
‘Phase Envelop Tab’ window as shown in Figure 8.5. For flow performance matching, the closest reservoir

fluid type selection is very important for an accurate prediction and further EOR screening.

Other reservoir properties including reservoir pressure and the matrix porosity are also important. Similarly,
the hydraulic fracture design parameters are critical to select. It is recommended to refer Dimensionless
Type Curves user guide provided in Chapter 5 (Figure 5.10) for quick SPiC TCp matching. An excellent
example of user entered tight oil well performance data visualization is presented in following fgures.

Figure 8.6 is presenting the user entered well’s bottom hole flowing pressure.
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In Figures 8.7 through 8.9, the cross dot plots are presentation the user well performance data while slid

lines in each plot represent the W3H prediction plots for oil flow rate, gas oil ratio and SPiC dimensionless

type curves, respectively, generated through physics based tight oil well performance proxy models.
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Figure 8.5 Reservoir fluid type selection window through fluid composition or phase envelop

It is very important to have a closest possible performance match, especially for the dimensionless type

curve before moving towards the UEOR techno-economic analysis. It is recommended to follow steps listed

below for quick and effective performance match.

1.

Start with the most certain reservoir and hydraulic fracture design properties in the W3H design bar.
Reservoir fluid type is crucial and a sensitive parameter therefore one has to be careful when selecting
the reservoir fluid type.

Use all possible available date to guess the missing data, however that can be improved through trial
and error process.

For the missing data that can not be guessed using the available data at all, use engineering

understanding and the experience to start with the possible range of each parameters.
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Step 8: Finally, after having a satisfactory type curve match as shown in Figure 8.9, it's time to move on to
UEOR options. The EOR option are listed in the drop-down window as shown in Figure 8.10. There are a
couple of options for both primary recovery as well as for EOR. For the primary recovery, there is a
‘Primary Recovery — No Shutin’ option that makes the well flow without any interruption that is used for
the primary well performance matching, while the other option, i.e., ‘Primary Recovery with Shut-in’, is
included as a reference analysis for the EOR options. In this case, the well is kept shut-in for the same
duration as the EOR operation is conducted (injection and soaking period) to visualize the effect of pressure
build-up (if any). While the EOR, CO,, and hydrocarbon gas injection options are currently included in the

application.

EOR Operational Design

Inj. Fluid Vol {MMScf) Soaking Time (Days)
100 15
ECR. - CO2 A

Primary Recovery - Mo Shutin
Primary Recovery with Shutin
ECR. - HC

Figure 8.10 Primary recovery and EOR options available to select for the W3H analysis

Step 9: In this step, the EOR operational design is selected through the EOR solvent injection volume and
the soaking period selection.

Step 10 & 11: Operationally, the last step is to hit the “W3H’ button, located in the W3H Toolbox, to
visualize the UEOR proxy model’s results through SPiC dimensionless type curve and the corresponding
oil flow rate versus time and the incremental oil recovery. Every time, after changing the EOR operational
design or making any changes in any of the listed options, the W3H button is required to be pressed to

update the proxy model’s results according to the selected EOR operational design options.
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Figure 8.11 is showing the oil flow performance for both primary recovery through scatter plot (as a
reference) while the solid line is presenting the W3H proxy model response for the selected UEOR
operational design. For example, in this case, 100 MMScf of CO; is injected as a single huff-n-puff cycle
followed by 15 days of soaking period. The correspoinding SPiC dimensionless type curve is shown in
Figure 8.12 and it is obvious from the figure that the UEOR SPiC TCp show quite different response in
comparison of the primary recovery. The SPiC TCp use guide is provided in Chapter 5 (Figure 5.10) for
individual flow regions analysis.Figure 8.13 is presenting the resultant incremental oil recovery. It is
important to keep in mind that the incremental oil recovery is based on single stage huff-n-puff cycle and
also most of the incremental oil recovery is assumed to be obtained mainly from the stimulated reservoir
volume (SRV).

Step 12: Finally, the entire analysis could be saved through pressing the ‘Save Analysis’ button.

Bl W3H - Smart UEOR Solutions v1.0 - *

sic  Help

W3H - Analysis W3 - Anslysis £

Reservoir Properties Hydraulic Fracture Design EOR Operational Design
s, Pressure (Ps) | Fiid Temglate Matrix Perm, (uD) Matrix Poro, (%) Frac. Cond.(LmD) _ Frac. HalfLn () Frac. heght () Clusters per Frac Frac. Stages Try. Fad Vol (MMS<) Soaking Tme (Days)

9141 4 9.62 2 6.5 205 110 3 1 100 15

—_——
User Data Entry Phase Envelop Bottom Hole Flowing Pressure Ol Rate Gas Ol Rabo SPIC Type Curve Incremental O

Fluid Templates. 4: 70% Light

Companent W%

Load User Data
Plot User Data

Save Analysis

WP?H

Start New Analysis

Carbon Zaro Gaorargy Irealipence 978 Sumanabley (COGES), Univarsty of Kansas. USA

Figure 8.11 Oil flow rate visualization for primary recovery and the UEOR flow performance
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SUMMARY, CONCLUSIONS, &
RECOMMENDATIONS



9.1. Summary & Conclusions

Typically, tight oil reservoirs are distinguished by their extremely low inter-pore connectivity and ultra-
tight matrix permeability. For such reservoirs to produce profitably, extra measures are traditionally
considered, such as long horizontal wells and a significant hydraulic fracture network that can maximize
reservoir contact. Even with these specialized and expensive treatments, tight oil wells are observed hardly
ever deliver more than 10% of the oil in place.

EOR is therefore believed to be helpful for fast-paced and economical oil recovery when used in the
early reservoir development phase. However, to optimize oil recovery through EOR application, it is
essential to identify each tight oil reservoir's unique EOR potential and the most effective EOR application
design. To do such, a numerical simulation approach is applied that is computationally expensive and time-
consuming.

The Smart Physics-Inspired Compositional Dimensionless Type Curves for Unconventional Tight Oil
Reservoir EOR are introduced in this dissertation as a substitute to optimize UEOR practice and save
millions of dollars and computational run time. These type curves are intended to answer the WsH issues
for operators (i.e., Where to inject, When to inject, What to inject, and How to inject an EOR solvent) while
conducting thorough field screening and developing novel EOR pilot projects. In parallel, a user-friendly,
plug-and-play application with a Graphical User Interface (GUI) is developed that can suggest optimal
UEOR operational design following physics governing laws based on the prior production history, reservoir
characteristics, in-situ fluid type, and the pre-existing hydraulic fracture network design. The choice of
EOR solvent type, its injection volume, and the soaking time are the primary components of the operational
design for EOR.

The smart tool is developed using a Physics-Inspired Design of Experiment (PI-DoE) based on a large
number of compositional numerical simulation cases generated through a commercial simulator. PI-DoE
covered a wide range of individual reservoir rock and fluid properties, hydraulic fracture design parameters,
and the EOR operational design constraints. Deep neural network algorithms are used to train proxy models

so that they can reproduce fluid flow performance from a tight oil reservoir in every conceivable
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combination of reservoir rock and fluid characteristics as well as the hydraulic fracture and the operational
design parameters. The performance of the proxy models is successfully assessed utilizing several physics-
based sensitivity analyses, cross-checked using numerical simulation, and a few actual field case studies.

As a result of this study, many EOR design possibilities are also examined.

9.2. Recommendations

Due to time restrictions, several limitations and assumptions are considered in this study, therefore, it
is highly recommended to extend this study to address the following facts to make this application more
robust.

e The database used for proxy model training should be further enhanced with actual field data to

such that to consider more robustness of the data and the effect of real field heterogeneity.

e More simulation cases with horizontal well placement at various places should be provided to
capture additional boundary dominant flow prospects; currently, in all simulation cases, the well is
considered in the middle of the reservoir model.

e To further improve the quality, more examples with varied numbers of clusters and stages as well
as non-unique fracture spacing should be taken into consideration. The existing database only has
a single-stage hydraulic fracture design with equally spaced three clusters per fracture.

e In future work, multiple huff-n-puff cycles with non-unique cycle durations should be considered
to provide additional EOR design options to the end user, the current model is based on a single
huff-n-puff cycle.

e Additional cases with wellbore storage and skin factor should be considered to provide an operator
more flexibility to match its well performance.

e The training dataset currently uses seven reservoir fluid templates; however, additional fluid

compositions might assist to improve the dataset's quality.
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