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Abstract 

Communities are complex systems defined by the interaction of social, economic, 

environmental, and physical systems. Increasing rates and intensities of climatic natural hazards, 

coupled with rising urbanization and an increase in quality-of-life dependency on social and 

economic systems, underlines the importance of improving the resilience of buildings and 

infrastructure systems that play a key role in ensuring the functionality of the community's social 

and economic systems. Building codes are principal regulatory documents that aid in achieving 

this goal. However, building codes historically set their design-level performance goal with a 

primary focus on avoiding loss of life with limited considerations on how a building is actually 

used by its occupants or the broader community. To move towards resilience, the next generation 

of building codes should modify their design philosophy and extend their design goals to 

incorporate functionality-related performance goals into the design process, where functionality 

goals must include social, economic, and physical aspects of buildings and infrastructure. 

This study posits that organizations are the key lynchpin connecting buildings and 

infrastructure systems to social and economic systems. Utilizing the Community Capitals 

framework, we propose a novel framework for assessing the implications of disruptions in the 

accessibility and functionality of organizations contributing to the resilience of a community’s 

social and economic systems. The framework exemplifies the deliberate incorporation of 

organization-level functionality into community resilience and bridges the gap between the 

community’s social and economic characteristics with conventional engineering-focused 

community resilience frameworks through including the concept of accessibility. 

To identify components contributing to the functionality of an organization and define 

organizational functionality states, fault tree models were employed. In addition to conventional 
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physical components and utilities, staff and supply chain are introduced as critical non-physical 

components contributing to the availability, acceptability, and adequacy of products offered by 

organizations. Defining accessibility as the use of available products by community members with 

reasonable effort and cost to meet an essential need, two novel metrics for measuring accessibility 

are developed. The metrics consider access from the perspective of both service users and 

providers and reconcile accessibility with organizational functionality by incorporating proximity, 

availability, acceptability, and adequacy dimensions in measuring accessibility to both tangible 

products and intangible services. 

To demonstrate the application of the framework the research used the Lumberton virtual 

community resilience testbed. Virtual testbeds are an effective tool to test, verify, and validate 

community resilience models and advance the state of knowledge on community resilience. The 

application of virtual testbeds is increasing as quantitative hazard research aims to move from 

component- and building-level modeling into the interdisciplinary space of community-level 

modeling for resilience. However, the characteristic of testbeds, their components, and 

development procedures was something embedded in published works, and somewhat ambiguous. 

Thus, we leveraged the current momentum on using virtual testbeds for community resilience 

analysis and performed a systematic literature review and an expert survey to dissect what testbeds 

are in practice. We, finally, defined testbeds as a virtual environment with enough supporting 

architecture and metadata to be representative of one or more systems such that the testbed can be 

used to (a) design experiments, (b) examine model or system integration, and (c) test theories. 

From the literature review, it was illuminated that the lack of a standardized and systematic 

approach for testbed development, testbed publication, or testbed reuse virtual testbeds is a 

significant issue that needs to be addressed. Thus, a systematic schema for testbed development is 
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also proposed. The workflow facilitates testbed creations by introducing a generic structure 

defining minimum requirements for initiating a testbed and by defining a step-by-step 

development procedure. The application of the proposed workflow has been demonstrated by 

establishing a testbed based on Onslow County, NC using publicly available data in the United 

States. The testbed is shared using the DesignSafe-CI for reusing by other researchers. 

The other significant challenge in developing virtual community resilience testbeds is 

incorporating social systems and phenomena into testbeds. Social vulnerability indices are a 

convenient way to account for differential experiences and starting conditions of the population in 

resilience assessments. This dissertation proposes a scalable index, termed Social Vulnerability 

Score (SVS), to serve the purpose of testbed development. The SVS overcomes two important 

limitations of existing indices: it is constructed using an approach that does not decrease in validity 

with changing spatial resolution, and it only needs to be calculated for the geographic area of 

interest, instead of for the entire county thereby significantly reducing computational effort for 

testbed developers and users. The proposed SVS aggregates the ratio of a set of demographics 

from U.S. Census datasets at the desired location against their national average values. The 

resulting scores are mapped into five levels, called zones, ranging from very low vulnerability 

(zone 1) to very high (zone 5). The SVS model is incorporated into the Interdependent Networked 

Community Resilience Modeling Environment (IN-CORE). 

Lastly, to exemplify the application of social vulnerability in the proposed framework, 

inequities in accessibility to schools after 2016 Hurricane Matthew were assessed across the 

different socially vulnerable populations in the Lumberton Testbed. 
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Chapter 1: Introduction 

The increasing intensity and frequency of climatic hazards, such as hurricanes, floods, 

severe storms, freezes, droughts, and wildfires are the evident consequences of climate change 

(Bell et al., 2018; Trenberth, 2018). These hazards annually cause billions of dollars in losses and 

casualties all around the globe, but their impacts are not limited to such physical destruction and 

direct human losses. These physical damages coupled with the consequent disruptions in a 

community’s social and economic systems are intensifying the impacts of such events on 

communities, changing the community’s long-term recovery trajectories, particularly for socially 

vulnerable communities, causing billions of dollars in direct and indirect losses every year, and 

severely degrading quality of life for disaster victims. Thus, to lower disaster costs and preserve 

quality of life, local-, state-, and federal governments must take actions to improve the resilience 

of buildings and infrastructure systems that play a key role in ensuring the functionality of the 

social and economic systems of communities. Building codes are considered key regulatory 

documents supporting resilient communities. However, building codes historically set their 

design-level performance goals to only ensure occupant safety for the majority of buildings and 

thus do not provide resilience. The exception in performance is for a small group of buildings such 

as nuclear facilities, hospitals, police, and fire stations, that are considered vital and are designed 

to remain functional during and after disasters. Importantly, there are many other buildings vital 

for continued functionality of communities and preserving quality of life. To move towards 

resilience, the next generation of building codes should modify their current design philosophy 

and extend their design goals to incorporate functionality-related performance goals into the design 

process, where functionality goals must include more than the physical aspects of buildings and 

infrastructure.  
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Transforming resilience concepts into practice remains a work in progress and requires 

more research. This study contributes to this need by proposing a novel framework for assessing 

the implications of disruptions in the accessibility and functionality of organizations that provide 

community members with essential services, including sheltering, healthcare, education, and 

sustenance, among others. The framework exemplifies the deliberate incorporation of 

organization-level functionality into community resilience. The target audiences of the developed 

framework are community resilience researchers, structural engineering standards developers, and 

disaster management policy- and decision-makers. This dissertation, eventual journal papers, and 

conference presentations will be the primary method of communicating the findings of this 

research. Although continued research is required, outcomes of this dissertation can be used as the 

preliminary basis for developing a Risk Category-equivalent scale in a new community resilience 

standard for communities, where this new scale directly incorporates how organizations are 

connected and used in order to support a functioning community in the prioritization of design-

level performance goals for buildings and other structures. In addition, this research provides novel 

contribution to Interdependent Networked Community Resilience Modeling Environment (IN-

CORE), which is a platform for running resilience analyses, to measure the socio-technical impact 

of natural hazards on communities. 

The remainder of the Introduction Chapter presents the necessary background on the well-

established and adopted community capitals framework (section 1.1) which serves as the backbone 

to the overarching framework proposed for this research (introduced in section 1.2) with a clear 

accounting of which aspects are completed within the dissertation and which aspects are 

recommended as future work (section 1.3).  
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1.1 Community Capitals Framework 

The Community Capitals (CC) framework was developed by social scientists to better 

articulate the various dimensions and components of a community (Flora et al., 2005). The CC 

framework assesses a community’s functionality by its stock of seven capitals including natural, 

cultural, human, social, financial, political, and built capital. These seven capitals, as described 

below, are in fact a community’s assets and dynamically interact with one another at different 

spatio-temporal scales to build, foster, and improve the community’s response to any disruption 

(Emery & Flora, 2006). 

(1) Natural Capitals are assets tied to the location: weather, wildlife, natural resources, and 

beauty; quality of air, land, water, level of biodiversity, and scenery are all examples (Emery & 

Flora, 2006; Flora, 2015). 

(2) Cultural Capitals are the traditions, language, and social creativity that emerge in an 

area. This can include inherent social values, the way attitudes are nurtured, and what heritage(s) 

is recognized and celebrated in a community (Flora, 2015; Mattos, 2015).  

(3) Human Capital is the skills and abilities of people in a given area and contributes to 

community building, knowledge sharing, and innovation. This can include educational attainment, 

technical skills, health and vitality, creativity, and diversity of the population (Flora, 2015). Human 

capital relates to leadership’s ability to focus on assets, be proactive in the future, and access 

outside resources to improve practices (Mattos, 2015).  

(4) Social Capital is the network of social connections amongst people that 1) build 

cohesion through bonding; 2) bridge together loose social ties; and 3) link community members to 

those in power. This can be measured through network structures, group membership, common 

goals, diversity, and trust in a community (Flora, 2015). 
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(5) Political Capital is the access to resources, including services, information, and power, 

such as officials to influence standards and rules; the level to which a community organizes to 

interact with the government or leverage a collective voice (Flora, 2015; Mattos, 2015). 

(6) Financial Capitals are the resources to spur community development through business, 

civic, and social entrepreneurship (Mattos, 2015). This can include state and federal tax monies, 

investments, loans, grants, and poverty rates (Flora, 2015). 

(7) Built Capitals are the infrastructure that supports many aforementioned activities, and 

often become a focus of community development. This can include the building stock, 

transportation infrastructure, utilities, technology, tools, and machinery (Flora, 2015). 

Daniel et al. (2022) performed a concise yet comprehensive literature review on each of 

the community capitals, their intersections, and how they can be distinctively generated in each 

community. For example, financial capital in a community is partly dependent on knowledge and 

skills possessed by the population (human capital), the networks of people in and outside of the 

community (social capital), and their influence on the distribution of resources within and outside 

the community (political capital), and being influenced by natural resources (natural capital) in the 

community, such as beachfront property, mountain views, port access, or coal mines. As discussed 

by Daniel et al. (2022), these seven community capitals are not self-governing and oftentimes 

overlap. For example, built capital will be higher in communities with higher human, political, and 

financial capitals. Similarly, communities with greater social and human capitals tend to have more 

political capital through intentional resilience planning whereby stakeholders unite around 

common goals and risks with a sense of trust, they share ideas that can drive innovation and 

increase resilience (National Academies, 2019). From their literature review, Daniel et al. (2022) 

concluded that different building occupancy types, through their organizations, generate different 
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community capitals. For example, religious organizations and museums generate cultural capital 

through the programming they offer. Additionally, religious organizations and physical fitness 

centers generate social capital through their membership functions and events. Schools and 

healthcare facilities generate human capital through increasing the knowledge and health of 

community members. Retail shops and restaurants facilitate financial capital through offering 

places of employment and providing a means for local commerce. These relationships, albeit proxy 

measures of the community capitals, were discussed for a selection of organization types and used 

to develop a framework for measuring community resilience. The framework used a counting 

mechanism to capture the number of ways a given organization promotes the different elements 

described in the definition of each community capital.  

Daniel et al.’s framework focused on buildings, and how said portion of the built capital 

supports the other six capitals. Furthermore, different organizations can mobilize community 

capitals, particularly human and social capitals, in a community (Choi et al., 2019). For example, 

after Hurricane Katrina, the Mary Queen of Vietnam Catholic Church used its members’ social 

networks to relay critical developing information during the disaster (human and cultural capital), 

provide shelter for those who could not evacuate (built capital), and build community morale and 

structure in recovery (financial, political, and human capital). In this case, a faith-based 

organization filled critical gaps in community recovery and contributed to the Versailles Parish 

coming back quickly and more robustly than nearly all of its neighboring parishes (Aldrich, 2012; 

Rivera & Nickels, 2014). Daniel et al. (2022) illustrated their quantitative framework using the 

Centerville testbed effectively demonstrating how damage to different building types, and thereby 

different organizations, can disproportionately decrease community capitals and thereby 

community resilience. 
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1.2 Problem Statement and Proposed Framework 

Relating the seven community capitals to organizations enables community resilience 

researchers to extend their models beyond the community’s physical infrastructure systems to 

include social, economic, and environmental dimensions. Therefore, we reframe the CC 

framework by Flora et al. (2005) by setting a unique role for the built capital in supporting the 

other six capitals, where all seven capitals are essential and their details are distinctive to each 

community. An overview of the proposed concept is illustrated in Figure 1. 

 

Figure 1. Dissecting the Community Capitals in terms of Community Functionality 

Different components of the built capital work together to enable organizations through a 

complex network of interacting capitals. Organizations inherently rely on the built capital through 

either the building they occupy or the benefit they derive from infrastructure networks; 

organizations also contribute to a community’s human, social, political, financial, natural, and 

cultural capitals through their services, users (including consumers and employees), and supply 

chains. Hence, as illustrated in Figure 1, organizations are the lynchpin connecting the built capital 
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to the other capitals. Multi-colored arrows projecting out of the organization layer in Figure 1 

depict how organizations (generally) support one or more of the community capitals, where the 

colors of the arrows correspond to the various capitals. Large arrows on the right side of Figure 1 

capture the well-established dependencies within the built capital, specifically between buildings 

and infrastructure network layers. 

With the relationships in Figure 1 in mind, the conceptual framework shown in Figure 2 is 

proposed for assessing the role of organizations in community disaster resilience. In the first step, 

the community should establish their desired resilience goals and determine the recovery objective 

for each community capital based on the established goals.  These goals can be different for 

different neighborhoods with different levels of social vulnerability within the target community. 

Then, as shown in Figure 2, after assessing the built environment under the hazard(s) that the 

community is susceptible to, the post-disaster functionality of existing organizations will be 

estimated while considering the interdependency among organizations, buildings, and 

infrastructure. In the third step, the contribution of each organization to generating or mobilizing 

every community capital needs to be investigated to measure the capital levels at the intended 

times after the disaster and compare the results with the recovery objectives that are defined in 

step 1. In the last step, after implementing various resilience strategies based on different 

organizational recovery scenarios, steps 2 and 3 should be repeated to determine the most effective 

strategy. The organizational recovery scenario corresponding to the selected strategy will provide 

a preliminary basis for the prioritization of design-level performance goals for associated buildings 

and structures. 
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Figure 2. Proposed Conceptual Framework for Incorporating Organization Functionality into Community 
Resilience 

1.3 Dissertation Scope and Outline 

The purpose of the framework shown in Figure 2 is to implement the framework and 

organizational functionality into community resilience practice in a real community. The actual 

implementation is beyond the scope of this research. Steps on what must be done to be able to use 

the framework include: 

Task 1 (a) Determine the recovery objective for each CC in the target community; (b) 

quantify interdependencies and relationships among existing organizations; (c) develop a set of 

quantifiable proxies to measure CCs; (d) identify and select the primary organizations that 

contribute to generating and mobilizing each CC based on the community’s priorities and needs. 

Task 2 (a) Develop a community-level model (e.g., testbed) of the target study area 

including the physical, social, and economic systems of the community as well as the natural 

hazards that the community is susceptible to; (b) establish a procedure for estimating the pre- and 

post-disaster functionality of the selected organization considering their primary and secondary 

products. 
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Task 3 (a) quantify the CCs considering the estimated post-disaster products of every 

identified organization generating each respective CC and aggregate across organizations; (b) 

measure each CC in the target community and compare the estimate with the predefined objective 

and resilience goals. 

Task 4 (a) Verify and validate the proposed framework’s components, including models, 

equations, and algorithms before and after being stitched together and integrated; (b) develop a 

cost-benefit algorithm based on the community preferences to aid with decision making. 

All tasks are required for a community to implement the framework; however, task 1 parts 

a, b, and d, task 3 part b, and task 4 are out of the scope of this dissertation and remain for future 

research. The manner in which organizations contribute to a community’s cultural character, built 

environment, social networks, human ability, and economic engine is complicated. A wealth of 

services is offered through organizations in a community, from basic goods such as clean water 

and food, to specialized services, such as healthcare and education. Each service creates a small, 

critical link to community functionality through its connection to the community capitals, creating 

an interdependency between community and organization, and from organization to organization. 

Given that communities consist of many organizations, task 1 parts a, b, and d, task 3 part b and 

task 4 require data collection and conducting a comprehensive survey in different parts of the 

country, go beyond this dissertation timeline, and remain for the author’s future work. 

In this dissertation, a small selection of organizations is investigated including gas stations, 

banks, and schools, in the organizational functionality definition paper (Chapter 2), and schools 

and pharmacies in the accessibility paper (Chapter 5). These organizations, although not an 

exhaustive list, are selected here because of their significant role in community functionality and 

contribution to a community’s Human and Political Capitals, assigned risk category in ASCE 7-
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16 (Risk Categories II and III), dependency relationship with a physical building for operation, 

and assigned post-disaster recovery priority (not critical infrastructure according to the United 

States Department of Homeland Security). Thus, for tasks 2 and 3, this dissertation focuses on the 

selected organizations although the developed approaches, models, and equations can be adapted 

for other organizations and CCs. 

In addition to the Introduction, this dissertation is composed of five chapters consisting of 

five individual seminal journal articles (either published papers or submitted manuscripts) in 

chapters 2 through 5. With Enderami as the first author, each paper details different elements of 

the framework introduced in Chapter 1 according to the dissertation scope. Thus, the dissertation 

is organized as follows: 

Chapter 2 investigates how different organizations contribute to community resilience and 

how to model and quantify functionality by introducing the concept of organizational 

functionality; Chapter 3 dissects the major components and characteristics of virtual community 

resilience testbeds through a systematic literature review and proposes a schema for initiating 

community resilience testbeds; Chapter 4 establishes the Social Vulnerability Score (SVS), a 

scalable index representing the social vulnerability of community members and serves the purpose 

of virtual testbed development; Chapter 5 develops two novel accessibility metrics for measuring 

how access to different organizations changes across the disaster timeline, ties the concepts 

described in chapters 2, 3, and 4 together, and evaluates how accessibility metrics alter inequitably 

among community members, using the Lumberton virtual testbed; Chapter 6 concludes the 

dissertation, summarizes the contributions of this thesis and makes recommendations for future 

continued research for using this framework. 



11 
 

 

Chapter 21: Defining Organizational Functionality for Evaluation of Post-
Disaster Community Resilience 

Communities are complex systems defined by the interaction of social, economic, 

environmental, and physical systems. The dynamic response and recovery of a community to a 

disaster is often tied to the response and recovery of its organizations. This paper employs the 

Community Capitals framework to understand how organizations contribute to community 

resilience. The organization-level functionality is defined as the capability of an organization to 

be used for its intended purposes. Organizations are not solely physical objects, staff and supply 

chain are identified as critical non-physical components contributing to organizational 

functionality alongside conventional physical components. Fault trees and a probabilistic 

framework are developed to measure organizational functionality failure. A fault tree is presented 

in detail for three organizations, namely, banks, gas stations, and schools, to illustrate the different 

components necessary for functionality of different organizations. Lastly, a framework for 

evaluation of community resilience based on organizational functionality is proposed. 

2.1 Introduction 

As the years of research on community disaster resilience continues, more is understood 

about what immediate disaster impacts are, how to prevent immediate impacts through mitigation 

and response, and what services and critical infrastructure need to be prioritized in the immediate 

aftermath. While long-term recovery has always been articulated as part of the disaster lifecycle, 

less attention has been spent on understanding how long-term recovery takes place, and what 

                                                 

1 This chapter is based on a published journal paper with this dissertation's author as the first author: 

Enderami, S. A., Sutley, E. J., & Hofmeyer, S. L. (2021). Defining organizational functionality for evaluation of 
post-disaster community resilience. Sustainable and Resilient Infrastructure, 1-18. 
https://doi.org/10.1080/23789689.2021.1980300  © 2021 Taylor & Francis. 
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factors or interventions increase or decrease recovery times and change recovery trajectories. This 

latter statement is true for communities, as well as the long-term recovery of community 

components, such as businesses, schools, housing, and households (Sutley & Hamideh, 2020). In 

addition to causing casualties and damage to physical infrastructure, disasters disrupt the 

availability of social services critical for a community’s long-term recovery. As a result, different 

dimensions of community resilience (e.g., population, ecosystem, government services, etc.) are 

affected (Cimellaro et al., 2016). 

Historically, building codes consider occupancy of the building during the design process 

but do not consider how the building is otherwise part of a larger system, i.e., a community.  The 

building code design goals, for most buildings, are to provide functionality during routine events 

and to maintain occupant safety during disasters; the exception is for nuclear facilities and a small 

group of emergency buildings (e.g., hospitals, police stations, fire stations, etc.) that are considered 

vital during and after disasters. The significant decrease in the number of collapsed buildings and 

casualties caused by recent disasters, relative to other countries, proves that code-based designs 

have been largely successful in meeting their design objectives. For example, no shaking-related 

fatalities were reported during the July 4th and 5th, 2019 Ridgecrest California M 6.4 and M 7.1 

earthquakes. Similarly, apart from very vulnerable building types, such as unreinforced masonry 

structures, very little structural damage was observed in San Bernardino County and the city of 

Ridgecrest, the most heavily impacted areas. However, nonstructural damage and discontinued 

services continue to be prevalent after disasters and very costly, causing an estimated $1 billion in 

losses after the 2019 earthquake (Osalam, 2019). 

This continued disruption and billions of dollars in losses every year by disasters are not 

representative of resilience. To move towards resilience, next-generation building codes should 
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extend their design goals to incorporate functionality goals into the design process (McAllister, 

2016) where functionality goals must include more than the physical aspects of infrastructure. 

Designing with functionality goals in mind does not necessarily mean a significant increase in 

construction costs. Applying the FEMA P-58 methodology, Haselton (2018) demonstrated that it 

is possible to design new buildings with considerably improved performance and a significant drop 

in repair cost and time with very small additional initial investment. Even still, research is needed 

to understand how to incorporate functionality goals into codes and standards, including 

understanding which buildings should be prioritized. The present work begins to chip away at this 

latter need by examining how different organizations contribute to community resilience, and how 

to model functionality and functionality loss of organizations. Organizations create an important 

extension, given that it is the people who work and utilize buildings and infrastructure that will 

enable higher level resilience goals to be achieved, including innovation, adaptability, and 

transformation. This work distinguishes organizations from social institutions and businesses, 

although there is overlap, and both have been the focus of other research. Social institutions 

integrate the norms and values of a community to meet its members’ social needs such as 

education, family, healthcare, and religion. However, they do not encapsulate other necessary 

products and services, offered by organizations such as grocery stores, needed for communities to 

function and recover after a disaster. The term businesses focuses on the commerce aspect of 

organizations, as opposed to the product or service offered, and how said service supports a 

community beyond economics. Thus, here we define organizations as any entity that is designed 

to provide products and services to a community in an effort to meet the community members’ 

needs from various perspectives. 
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Over the past decade, several community resilience studies have begun to develop 

conceptual models of resilience in terms of functionality and assess the impacts of the functional 

built environment on community recovery following disasters. Lin and Wang (Lin & Wang, 

2017a) developed a stochastic functionality restoration model for the physical recovery processes 

of buildings. The model predicts post-disaster functionality recovery time and trajectory for a 

community’s building portfolio using two metrics: (1) the portfolio recovery index and (2) the 

portfolio recovery time. Cimellaro et al. (2010) developed a building-centric framework to 

quantitively evaluate the resilience of healthcare facilities subjected to earthquakes. The evaluation 

was based on the dimensionless analytical functions associated with variation in post-disaster 

functionality of system during the recovery period. Nevill and Lombardo (Nevill & Lombardo, 

2020) distinguished structural functionality (defined as the ability to safely provide shelter) from 

total functionality of a building (which includes the functionality of nonstructural components, 

such as electric power, water, and transportation access), and proposed a scale to measure 

structural functionality of light-framed wood buildings. The scale was presented through: (1) a set 

of structural functionality indicators for windstorm damage, and (2) a set of guidelines to extend 

the indicators to other hazards. Burton et al. (2016) presented a framework for incorporating 

probabilistic building performance limit states in the assessment of community resilience to 

earthquakes. They proposed building-level recovery functions considering uncertainties in the 

recovery path to a limit state and employed a probabilistic approach to evaluate functionality 

restoration for buildings. The application of the proposed procedure to model post-earthquake 

community-level recovery functions was demonstrated using a case study. Davis (Davis, 2013; 

Davis, 2014) illustrated the relationship between community resilience and post-earthquake 

functionality of water systems using a case study of the Los Angeles Water System. After making 
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a clear distinction between functionality and operability of water systems, the work demonstrated 

how functional water systems that are able to provide post-earthquake services to other lifelines 

and emergency operations, help to improve community resilience. 

The previously reviewed works adopted adopted an infrastructure-centric (mostly 

buildings) definition for functionality and neglected the effects of non-physical components. 

However, there are a few studies that have recognized the role of buildings in supporting society 

and offered more holistic functionality models for community resilience assessment. For example, 

by assessment of the observational data on the performance of the hospitals in past earthquakes, 

Yavari et al. (2010) traced four interacting components (structural, non-structural, lifelines, and 

personnel) influencing a hospital’s functionality and used them to develop a predictive model of 

hospital functionality in the event of an earthquake.  Later, Jacques et al. (2014) studied the 

functionality of the Canterbury healthcare system after the 2011 Christchurch earthquake. 

Adopting a multidisciplinary approach, Jacques et al. (2014) identified that the functionality of 

crucial hospital services primarily depends on the availability of three factors: structure, staff, and 

stuff.  

Then, Mieler and Mitrani-Reiser (2018) performed a comprehensive review of the state of 

the art in assessing earthquake-induced loss of functionality in buildings. The review commented 

on how functionality loss within individual buildings and infrastructure can affect a community at 

different spatio-temporal levels. After identifying incidents that commonly cause loss of 

functionality in a building, a fault tree model was applied to capture and relate these incidents to 

the building’s functionality. Then, to demonstrate how the availability of such incidents affects 

post-earthquake building functionality recovery, the conceptual functionality-restoration curves 

were presented. It is concluded that existing analytical models for assessing loss of building 
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functionality need to be refined to include all components that contribute to functionality, 

including non-physical components like staff availability. Finally, Choi et al. (2019) moved 

beyond healthcare systems and introduced an interdisciplinary platform for planning community 

post-disaster recovery within the framework of seven layers of critical infrastructures (i.e. civil, 

civic, financial, environmental, educational, and cyber). Their framework articulates 

interdependencies within and between functional physical infrastructure and structure-based 

systems (civil layer), and the other layers that are important to sustain the functionality of a 

community during post-disaster recovery.  

Collectively, these studies provide a strong foundation necessary for advancing the state of 

knowledge on the concept of functional recovery for communities and their components. This 

paper advances these lines of inquiry by introducing and defining the concept of organizational 

functionality as it relates to community resilience. A conceptual framework for linking 

organizations to community functionality is proposed using the Community Capitals framework. 

The paper closes with a probabilistic approach to evaluate organizational functionality failure used 

to guide the development of a procedure for the practical assessment of a community’s disaster 

resilience. 

2.2 The Role of Organizations in Community Resilience  

A community is a complex system of systems comprised of dynamically interacting non-

homogeneous built, natural, and human infrastructure (Bozza et al., 2015). Resilience is also a 

multidimensional concept, particularly when applied at the community level; community 

resilience cuts across different stressors (natural, man-made, biological), scales (state, regional, 

local), and community dimensions (physical, natural, social, financial, political) (Koliou et al., 

2018). Community disaster resilience is measured based on a community’s ability to prepare and 
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mitigate a hazard (natural and/or human-caused), respond dynamically to reduce consequences of 

any functionality loss when disasters do occur, and carry out recovery actions that minimize 

recovery time and future vulnerabilities in an equitable manner (S. L. Cutter et al., 2013; PPD-21, 

2013; Risk Steering Committee, 2008; SDR, 2005; United Nations, 2011). Preventing 

functionality loss is the first part of assessing resilience, where functionality is a scale of how well 

a system operates to deliver its products or meets its intended purposes (Mieler & Mitrani-Reiser, 

2018). Functionality, including community functionality, building functionality, and 

organizational functionality, varies across the disaster timeline. Figure 3, adapted from the NIST 

Community Resilience Planning Guide (CRPG) (NIST, 2016), illustrates the temporal variability 

of functionality following a disruptive event. The period between the time of the disruptive event 

(te) and the time of target functionality restoration (tf) is defined as the Time to Recover 

Functionality (TRF). TRF is a measure of how long it takes before a system becomes functional 

after a disruption. In Figure 3, the pre-event functionality is normalized for deterioration or 

improvement effects during normal operation and the post-event target level is set as the pre-event 

level. However, true resilience must also incorporate building back better such that pre-event 

vulnerabilities are not re-established during recovery. This is referred to as service equilibrium 

shift by Davis (Davis, 2014), and is outside of the scope for this paper. 
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Figure 3. Resilience definition in terms of functionality and the time to recover functionality (adapted from 
(NIST, 2016)) 

The dynamic response and recovery of a community to a disaster is directly tied to the 

response and recovery of its organizations. Past research has illustrated the undeniable connection 

between community resilience and the functionality of its organizations (Dalziell & McManus, 

2004; Lee et al., 2013); thus, understanding and modeling such relationships will provide critical 

insight into a community’s resilience. Therefore, in line with the community definition, in seeking 

resilience, a community’s primary objectives should be minimizing (1) the amount of lost 

functionality after a disruptive event, and (2) critical organizations’ TRF to an acceptable level. 

Here, two important metrics are introduced towards these objectives: (1) the Minimum Acceptable 

Level of Functionality (MALF) which limits the value of lost functionality and provides a lower 

threshold for the system’s post-event target functionality; and (2) the Maximum Tolerable Period 

of Disruption (MTPD) which represents the maximum allowable time that a system can be non-

functional before its impact is deemed unacceptable. These metrics are revisited later for the 

evaluation of organizational functionality failure. 
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2.2.1 Organizations and the Community Capitals Framework 

To better articulate different capacities and components in a community, social scientists 

have developed the Community Capitals (CC) Framework (Flora et al., 2005). The CC framework 

assesses the stock of seven capitals, the types of capital that are invested in a community, and the 

interaction of these capitals (Emery & Flora, 2006). Ultimately, these seven capitals, or community 

assets, interact and build upon one another at different spatio-temporal scales, creating and 

enhancing a collective (community) response toward disruptions. A community’s functionality is 

defined by its stock of the following assets: 

(1) Natural capital, or assets tied to the location: weather, wildlife, natural resources, and beauty; 

quality of air, land, water, level of biodiversity, and scenery are all examples (Emery & Flora, 

2006; Flora, 2015). 

(2) Cultural capital, or the traditions, language, and social creativity that emerge in an area. This 

can include inherent social values, the way attitudes are nurtured, and what heritage is 

recognized and celebrated in a community (Flora, 2015; Mattos, 2015).  

(3) Human capital, or the skills and abilities of people in a given area, which contributes to 

community building, knowledge sharing, and innovation. This can include educational 

attainment, technical skills, health and vitality, creativity, and diversity of the population 

(Flora, 2015). Human capital relates to leadership’s ability to focus on assets, be proactive to 

the future, and access outside resources to improve practices (Mattos, 2015).  

(4) Social capital, or the network connections amongst people that 1) build cohesion through 

bonding; 2) bridge together loose social ties; and 3) link community members to those in 

power. This can be measured through network structures, group membership, common goals, 

diversity, and trust in a community (Flora, 2015). 
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(5) Political capital, or the access to resources and officials in order to influence standards and 

rules.  The level to which a community organizes to interact with the government or leverage 

a collective voice is an important metric of this capital (Flora, 2015; Mattos, 2015). 

(6) Financial capital, or the resources to spur community development through business, civic, and 

social entrepreneurship (Mattos, 2015). This can include state and federal tax monies, 

investments, loans, grants, and poverty rates (Flora, 2015). 

(7) Built capital, or the infrastructure that supports many aforementioned activities, often 

becoming a focus of community development. This can include housing stock, transportation 

infrastructure, telecommunications, utilities, and hardware (Flora, 2015). 

All seven capitals are essential, and their details are distinctive to each specific community; 

however, here it is proposed that built capital has a unique role in supporting the other six capitals. 

Different components of the built capital work together to enable organizations through a complex 

network of interacting capitals. An overview of this concept is illustrated in Figure 4. Disaster 

resilience is often studied as infrastructure resilience, where multi-layer network models connect 

the various physical infrastructure systems (lifelines). To study community resilience, the analysis 

must extend beyond physical infrastructure systems to social, economic, and environmental 

dimensions. Relating the seven community capitals to organizations enables this extension. 
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Figure 4. Dissecting the Community Capitals in terms of Community Functionality  

Organizations inherently rely on the built capital through either the building they occupy 

or the benefit they derive from infrastructure networks; organizations also contribute to a 

community’s human, social, political, financial, natural, and cultural capitals through their 

services, users (including consumers and employees), and supply chains. Hence, as illustrated in 

Figure 4, organizations are the lynchpin connecting the built capital to the other capitals. Multi-

colored arrows projecting out of the organization layer in Figure 4 depict how organizations 

(generally) support one or more of the community capitals, where the colors of the arrows 

correspond to the various capitals. Large arrows on the right capture the well-established 

dependencies within the built capital, specifically between buildings and infrastructure network 

layers.  

As discussed in Daniel et al. (2022), oftentimes community capitals will overlap. For 

example, communities with greater social and human capitals tend to have more intentional 
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resilience planning whereby stakeholders unite around common goals and risks with a sense of 

trust, they share ideas which can drive innovation and increase resilience (National Academies, 

2019). Different organizations can mobilize community capitals, particularly human and social 

capitals (Choi et al., 2019). For example, after Hurricane Katrina, the Mary Queen of Vietnam 

Catholic Church used its members’ social networks to relay critical developing information during 

the disaster (human and cultural capital), provide shelter for those who could not evacuate (built 

capital), and build community morale and structure in recovery (financial, political, and human 

capital). In this case, a faith-based organization filled critical gaps in community recovery and 

contributed to the Versailles Parish coming back quickly and more robustly than nearly all of its 

neighboring parishes (Aldrich, 2012; Rivera & Nickels, 2014).  

Organizations play an important role in community resilience before, during, and after the 

recovery phase. Community resilience requires a certain type and number of organizations to 

maintain a minimum acceptable level of functionality after disruptive events. Communities need 

to ensure that their organizations can be recovered within a specified period to support their short, 

intermediate, and long-term recovery goals. The manner in which organizations contribute to a 

community’s cultural character, built environment, social and human ability, and economic engine 

is complicated. A wealth of services are offered through organizations in a community, from basic 

goods such as clean water and food, to specialized services, such as healthcare and education. Each 

service creates a small, critical link to community functionality through its connection to the 

community capitals, creating an interdependency between community and organization, and from 

organization to organization. Consequently, the functionality of the buildings these organizations 

occupy, as well as their inner organizational constraints, requires further investigation. For 

organizations to fully contribute to community functionality and resilience during a disaster, 
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resilience scholars and planners must understand the inner mechanisms of how organizations 

function. This paper connects these internal organizational components in order to analyze the 

functionality of organizations. 

2.2.2 Defining Organizational Functionality 

This paper proposes the following definition of organizational functionality; 

organizational functionality is the quality in performance of an organization and its ability to be 

used for its intended purposes. Organizations provide various products for the community. Here, 

a product is any good or service, either tangible or intangible, that can be offered by an organization 

to satisfy a want or need. Primary products are the main objective and intended purpose of an 

organization; any other offered product(s) are denoted as secondary products. For example, a gas 

station is a facility that sells fuel and lubricants for motor vehicles (primary products). However, 

many gas stations have convenience stores or tunnel carwash (secondary products).  To 

characterize organizational functionality, it is necessary to understand the type, quality, and 

quantity of primary and secondary products provided under normal operations, to then define 

organizational functionality states. Organizational functionality states are used for step-wise 

modeling of functional recovery trajectories. Here, considering several similar studies available in 

the literature on building functionality (NIST, 2016; Cimellaro et al., 2010; Davis, 2019; Lin & 

Wang, 2017a; McDaniels et al., 2008; Mieler & Mitrani-Reiser, 2018; Nevill & Lombardo, 2020), 

five discrete functionality states for an organization are defined: 

Out of Service Organization: Either internal or both internal and external essential 

components of organizational functionality are disrupted; consequently, the organization is NOT 

working  
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Intrinsically Operable Organization: The essential internal components of organizational 

functionality are maintained, or restored; however, the organization is NOT working yet since at 

least one essential external component of organizational functionality has not been recovered. 

Fully Operable Organization: Both internal and external essential components of 

organizational functionality are maintained, or restored so that the organization is working but 

NOT at an admissible level; some or more secondary products may be completely interrupted, 

however, primary products are available albeit at an unacceptable capacity or quality, or in an 

unsustainable fashion. 

MALF Organization: The organization is working at an admissible level of functionality; 

some or more secondary products may be completely interrupted, but primary products are 

available albeit at an acceptable reduced capacity and quality, and potentially in an unsustainable 

fashion. 

Fully Functional Organization: The organization is working properly and providing all 

primary and secondary products at the intended level of quality and quantity in a sustainable 

fashion. 
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Figure 5. Post-disaster functionality states of an organization 

Figure 5 transforms the functional recovery trajectory of an organization into an equivalent step 

function using the defined post-disaster functionality states. The percent of functionality is 100% for the 

Fully Functional state, measured relative to the pre-event level, and 0% for Out of Service State. The percent 

of functionality associated with Intrinsically Operable (L1), Fully Operable (L2), and MALF (L3) states are 

organization-specific and can be determined empirically, through engineering judgment, or through input 

from the owner or manager of the organization being analyzed. However, a systematic approach to 

estimating the L1 is proposed later in this paper. The key concept for the MALF state is that the admissible 

intended functions of an organization are often something less than a Fully Functional state. Various reasons 

can cause the MALF state; for example, using a temporary power supply instead of a permanent one in a 

hospital (e.g. a back-up generator being used because electricity is out) may increase the waiting time to 

receive a particular healthcare service but the service is available at a reduced capacity. The organization 

will work at the MALF state if the available reduced capacity is equal or greater than the admissible 
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capacity, otherwise, the available capacity will be ignored and the organization will be considered at the 

Fully Operable state. 

As shown in Figure 5, when a disruptive event occurs, an organization’s functionality shifts 

to the Out of Service State for a period T0. Similar to the time lapses for mobilizing resources and 

decision-making discussed in previous works (Comerio, 2006; Comerio & Blecher, 2010), T0 

represents a delay time that accounts for the amount of time where that organization must contact 

employees, survey and assess physical assets, such as the building, equipment, and inventory, and 

perform any other assessments before the organization can potentially move into a functionality 

state. T3, and T4 denote the time spent in the Out of Service, Intrinsically Operable, Fully Operable, 

and MALF states, respectively. The TRF is the sum of the time spent in each state previous to the 

MALF state, including T0.  

Although the organizational functionality states are shown sequentially in Figure 5, the 

organization can move directly into any of the other states after time T0.  Furthermore, since the 

Intrinsically Operable state is based on the outage of an external component, it and the Fully 

Operable state do not necessarily happen successively, although they can. 

Organizational functionality can be related to a community’s functionality through the 

networked relationship shown in Figure 6. Applying fundamental concepts from Graph Theory 

(Trudeau, 1993) to visualize the bi-directional relationship, wherein a node represents (a) a 

community, (b) an organization, (c) a building, or (d) an infrastructure network. The relationships 

between nodes are represented by edges, which can manifest as their communication, interaction, 

or supply chain connections (Li et al., 2019). Each infrastructure (blue) node (built capital, e.g., 

water network) is a set of interconnected components (e.g., storage tanks, pipe networks, valves, 

pumps, etc.) that work together to provide a service to the organizations (red nodes). Organization 
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nodes interact to support the functionality of the community (green) nodes. Each community node 

consists of sub-clusters of the other six community capitals, as shown on the right side of Figure 

6. Thus, as shown by the red-dashed outline marked (a), organizations are supported by 

infrastructure services, and as shown by the green-dashed outline marked (b), communities are 

supported by organizations. 

 

Figure 6. Relating organizations to the community capitals: a) organizations are supported by infrastructure 
services (built capital), b) communities are supported by organizations. 

The following section describes the relationships, dependencies, and other internal 

components that cause organizational functionality loss in a quantitative framework. 

2.3 Measuring Organizational Functionality 

2.3.1 Defining Failure through Fault Tree Analysis 

Fault tree analysis (FTA) is a simple analytical technique that has been widely used for 

quantitative reliability and safety analysis. FTA can be used for any system which is composed of 

discrete components with independent probabilities of failure. The fault tree (FT) itself is a 

qualitative and graphical model that combines a series of parallel and sequential failure events 

which will lead to the occurrence of a predefined undesired event in the system. This predefined 

undesired event is the top event of the FT. A FT applies logic gates to combine the basic events 
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and connect them to intermediate events that lead to the top event (Ruijters & Stoelinga, 2015; 

Vesely et al., 1981). FTA is executed using two primary techniques: (1) qualitative vulnerability 

detection through a logical expression of the top event in terms of the basic events; (2) quantitative 

measurement of the probability of occurrence of the top event obtained through combining the 

failure probabilities of the basic events (Durga Rao et al., 2009).  

In a quantitative FTA, logic gates, more specifically AND gates and OR gates, combine 

the probabilities of connected events using basic probability rules. In engineering risk assessment 

using FTA, the combined failure probability of a system (S) which consists of n components (s1, 

s2, …., sn) that are connected with AND and OR gates, can be calculated as (Porter & Ramer, 

2012): 
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where P(S) is the failure probability of the system, P(si) is the failure probability of the ith 

component connected to that gate, and Π denotes the product. The AND gate represents a parallel 

system in which a system will not fail unless all of its components fail, whereas the OR gate depicts 

a system in series in which the failure of any component leads to system failure.  

2.3.2  Causes of Organizational Functionality Loss 

Disasters, small and large, can damage buildings, cause lifeline service outages, disrupt 

supply chains, and displace people (employees and customers), all leading to organizational 

functionality loss. If the amount of the loss exceeds the predefined lower threshold (the MALF) 

and organizational functionality does not restore to the MALF before the MTDP, the 

organizational functionality will fail. Then, the availability of an organization’s primary products 
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is a key factor in modeling the organizational functionality failure. Building off of the work by 

Yavari et al. (2010) and Jacques et al. (2014) on healthcare facilities, Figure 7 presents a generic 

fault tree for organizations, setting organization functionally failure as the top event. Beneath the 

top event is the first tier of intermediate events: the organization’s primary products being 

compromised, where three primary products are arbitrarily shown in Figure 7 and the tree is 

developed for the second product as an example. The Tier 1 events are connected to the top event 

through an OR gate, meaning that if any Tier 1 event occurs, the organization will lose some of its 

functionality. Tier 2 consists of five intermediate events that are similarly connected to the Tier 1 

event through an OR gate, including physical space compromised, staff unavailable, physical 

access compromised, supporting external utilities compromised, and supply chain compromised. 

Tiers 3 and 4 further break down failure events into greater detail, where more tiers are possible 

but cannot be generalized; further detailed failure events will require input from the specific 

organization being modeled. The structure of the FT in Figure 7 is such that the occurrence of any 

of the events (basic or intermediate) in the first three tiers will cause some functionality loss and 

may lead to the top event, showing the wide range of events contributing to organizational 

functionality. Each event is associated with different recovery costs, recovery times, and 

consequences which lead to different values of TRF for the organization.   
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As shown in Figure 7, damage to both structural and non-structural components of a 

building can endanger the functionality of the organization; main non-structural components that 

may be available in organizations are classified into (1) architectural features (such as doors, 

windows, stairs, ceilings, partitions, etc.), (2) building service facilities (including HVAC, lighting 

systems, fire detection and suppression systems, elevators, etc.), and (3) furnishing equipment 

(e.g., shelving, desks, furniture, computer stuff, etc.). Even if the building is structurally sound, 

disruption to physical accessibility may also threaten the organization’s functionality. The 

disruption can be due to temporary road closures, restricted site access, or the destruction of an 

adjacent building. If employees and customers cannot access the organization, then it cannot 

function as intended. Sometimes, rather than physical access, access through a loss of 

telecommunication network can cause functionality loss. Other lifeline service disruptions can 

similarly cause failure in organizational functionality. For example, restaurants cannot operate 

without a clean water supply. In general, damage to external lifeline systems, including water and 

wastewater, energy, and telecommunication, can cause organizational functionality loss. 

Adapting the concept of defining rational and irrational components of downtime for 

buildings (Comerio, 2006) to this study, causes of organizational functionality loss are comprised 

of both rational and irrational situation-specific components. Substantial research has produced 

reliable measures of rational components, such as physical space, access, and external utilities 

being compromised; whereas less research has been spent quantifying the probability of 

occurrence and recovery times for irrational components. Measuring irrational component failures 

is complicated and highly variable given the dependence on social, political, and financial factors 

(Krawinkler & Miranda, 2004). The FT in Figure 7 highlights the irrational components associated 

with the functionality of an organization, including staff and supply chains. Failure of irrational 
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components will result in some organizational functionality loss even if the rational components 

are functioning. For example, the COVID-19 pandemic has shown how many organizations can 

operate remotely without their traditional physical space, as long as their staff and 

telecommunication services are available. This example also showcases how it is ultimately the 

people (staff, suppliers, users) who differentiate an organization from a building, and the people 

who enable higher levels of resilience to be achieved, including innovations, adaptability, and 

transformation, like moving traditional in-person services to online. The required staff is 

organization-specific and may include managers, licensed or key personnel, and other employees. 

Supply chain disruptions are another type of irrational component which can occur in inter- or 

intra-organizational supply chain, or both. Inter-organizational supply chains are external or 

between two or more different organizations, such as the relationship between a grocery store and 

food supplier. Intra-organizational is within an organization and refers to any process within the 

organization, such as e-mail that connects different branches of the organization. While modeling 

irrational components is important for understanding and predicting organizational functionality 

loss, doing such complicates the modeling process, particularly given data limitations. 

Furthermore, components contributing to organizational functionality can be classified as 

internal and external essential components. In the FT in Figure 7, physical space-related events are 

internal essential components; any other events including those related to physical access, staff, 

supporting utilities, and supply chain are external essential components. The ratio of the number 

of internal components to the total number of components on Tier 2 of an organization-specific 

FT (1:5 for generic FT in Figure 7) can be used as a rough estimate of the organizational 

functionality percentage associated with the Intrinsically Operable state (L1) in Figure 5. 
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2.3.3  Quantifying Organizational Functionality Failure 

This section provides a formulation for quantifying organizational functionality failure 

using FTA. Looking back to Figure 5, the probability of organizational functionality failure can 

be interpreted as the probability that the TRF exceeds the MTPD (P[TRF>MTPD]), where the 

value of the MTDP for each organization may be determined using predefined quantities (e.g., 

NITS CRPG (NIST, 2016)), modeling tools (e.g., Critical Path Method (Lavelle et al., 2020)), 

and/or through input from the organization owner/manager. 

To estimate the probability of organizational functionality failure, (1) the probability of 

occurrence for each basic event must be known, and (2) the combination of all basic events must 

be estimated. The latter is done using Equations (1) and (2) based on the logic gates connecting 

each basic event across tiers. The former is estimated as P(e,t), the probability of the basic 

component being in the non-functional state at time t subject to a demand parameter e. P(e,t) must 

be based on disruption levels for each component, which classify component disruption into 

increments. For rational components, such as structural damage, disruption levels are the same as 

conventional damage states (e.g., none, slight, moderate, extensive, and complete (FEMA, 2003)). 

Damage states are widely used by researchers in the development of fragility functions with 

criticality that their definitions are quantitative and not subjective. However, for irrational 

components, as well as for some non-structural components such as building service facilities and 

equipment, a consensus formal definition of disruption levels does not currently exist in the 

literature and requires further research.  

As such, P(e,t) is determined based on (1) G(e), the probability of that component, subject 

to demand parameter e, being disrupted, and (2) Ŕ(t), the probability of the disrupted component 

being unrestored before time t. Since the component’s disruption and restoration time are 
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statistically dependent through disruption levels, the failure probability of the ith component in a 

FT model with n basic events can be estimated using 

( )( )( ) () )

1

( 1 1 ( ) ( )( , )
DLn

i i
DL DL

DL

iP e t G e Ŕ t
=

 − − = ∏     (3) 

where P(i)(e,t) is the probability of component i being in a non-functional state before time 

t subject to demand parameter e, Π denotes the product, DL represents disruption levels (assuming 

n levels of disruption for the component, nDL), and GDL(e) and ŔDL(t) are cumulative probabilities of 

disruption and restoration time, respectively, for a given disruption level. For rational components, 

G(e) and Ŕ(t) can be specified using existing (or new) fragility and restoration functions (Prabhu 

et al., 2020). However, functions for irrational components cannot (or should not) be modeled 

using similar fragility functions due to their more complex nature with dependencies extending 

externally. 

Once the probability of occurrence of each basic event is estimated, a Monte Carlo 

simulation can be applied to determine the probability of occurrence of the FT top event, F(top)(t,e) 

for a range of values of e and t. F(top)(t,e) gives the probability that the organizational functionality 

is not recovered before time t subjected to demand e. Employing probability theory and setting t 

equal to MTPD, the failure probability of organizational functionality and the expected value of 

the TRF (mean TRF) for a given demand e, can be predicted as 

( ) ( ) ( , )topP TRF MTPD e F MTPD e> =     (4)  

( ) ( )( , ) 1 ( , )topQ t e P TRF t e F t e= ≤ = −     (5)  

( ) ( )
0

E TRF e t q t e dt
∞

= ⋅∫      (6)  

where P(TRF>MTPD│e) is the probability of organizational functionality failure, and 

E(TRF│e) is the organization’s mean TRF, given the demand e. Q(t,e) is the cumulative 
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distribution function for the probability of non-exceedance of the TRF, and q(t│e) is its associated 

probability density function which provides the probability that the organization is functional at 

time t for demand e. Figure 8 shows a conceptual illustration of Q(t,e) and the organization’s mean 

TRF for a range of hypothetical demand values sorted in ascending order by the 

intensity/magnitude value (e1, e2, ...., en). 

(a) 

 

(b) 

 

Figure 8. Conceptual illustration of: a) cumulative distribution function for probability of non-exceedance of 
TRF, Q(t,e); b) organization’s mean TRF for a range of hypothetical demand intensity 

The curves in Figure 8a illustrate the time required to restore organizational functionality 

to the MALF (horizontal axis), and the probability that the TRF takes a value less than or equal to 
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that time (vertical axis). For instance, the probability that the organization’s TRF is less than or 

equal to tc for demand e1 is 1.0, which means there is a 100% chance the organizational 

functionality restores to the MALF before this time. Figure 8b fits a curve to values calculated 

using Equation (6) with varying demand (e1, e2, ...., en) to illustrate the mean TRF. The colors and 

symbols in Figure 8a correspond to the same scenarios in Figure 8b. 

The main goal of defining organizational functionality, modeling, and quantification of its 

failure probability in this paper, is to develop a framework for the assessment of a community’s 

post-disaster resilience objectives through measuring the stock of community capitals. The 

purpose of this framework is to help community decision-makers to develop more informed 

disaster risk mitigation and long-term recovery plans. In the next sections, to clarify the framework 

previously formulated, first, fault tree models of organizational functionality for three specific 

organizations: banks, gas stations, and schools are developed and discussed. Then, a step-by-step 

procedure for evaluating community resilience using this concept is presented. 

2.4 Application of the Proposed Fault Tree Model for Various Organizations 

Although generalized in Figure 7, physical space, access, staff, supporting services, and 

supply chain differ significantly across organizations. These details must be known in order to 

prioritize components and begin to understand what is necessary for the minimum acceptable level 

of functionality (MALF) for a given organization. The application of the generalized fault tree in 

Figure 7 will differ amongst organization types, and even within a type, depending on size, 

structure, resource dependencies, and other larger contextual variables. Influential variables are 

extensive, so this tool must be used in conjunction with accurate data, relevant stakeholders, and 

simulations, where possible, for an organization (Jacques et al., 2014). Still, the proposed generic 

fault tree can be adapted to pinpoint vulnerabilities for a given organization, as is done here. To 
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describe key differences across different types of organizations, this section develops fault trees 

for three specific organizations: banks, gas stations, and schools, where a specific model for 

healthcare facilities can be found in Jacques et al. (2014). The three organizations are selected here 

based on their different organizational structures, functionality dependencies, and product 

diversity with respect to each other; they also contribute differently to the community capitals. 

These organizations do not reach the highest risk category under the current approaches in ASCE7-

16; thus, they are not required to be functional following a design-level hazard event though 

research has shown all three are important for maintaining and restoring community’s functionality 

after a disruptive event (NIST, 2016). Banks, or financial institutions, primarily contribute to 

financial and social capitals and are less dependent on the physical space they occupy compared 

to their staff and supply chains. Gas stations, on the other hand, depend on their physical space, 

access, and supply chain more than their staff. Schools primarily generate social and human 

capitals, can substantially change their product during a disaster, and overall have a wider range 

of undesired events that threaten their functionality compared to banks and gas stations. Each is 

described in detail in the following subsections. 

2.4.1 Banks 

Banks vary in structure to include central banks, retail banks, commercial banks, 

investment banks, private banks, and credit unions. These organizations serve different consumer 

bases to include community members (individuals), businesses, and larger commercial entities. 

They also differ in the structure; members take ownership in a credit union, whereas larger banks 

rely on a top-down structure. This aside, primary products remain the same: (a) loan services (car, 

home mortgage, credit lines), (b) transactional accounts (checking and savings) and their 

maintenance through withdrawal services, and (c) debit, credit, and Certificate of Deposit (CD) 
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services. Common supplemental services occurring often include investment consulting, wealth 

management, and safety deposit boxes as secondary products (Shekhar & Lekshmy, 2013). Taking 

the primary products into consideration, the generic fault tree from Figure 7 is adapted for banks 

in Figure 9. A functional bank is able to provide its primary products: transactional accounts 

services, loan services, and debit, credit, and CD services. For brevity, the branch corresponding 

to debit, credit, and CD services is not shown here, as it is essentially identical to the FT branch 

for loan services.  
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The FT in Figure 9 only specifies events that are critical for the bank’s functionality in the 

aftermath of a disaster. The FT excludes events associated with the compromising of physical 

space and physical access as non-critical fault events. This is directly tied to the advent and 

extensive use of online banking services and the popularity of ATMs for withdrawals. In this 

respect, the value of L1 would be zero which means the Intrinsically Operable state will be omitted 

from the post-disaster functionality states of a bank.  The events beneath supporting external 

utilities are modified in Tier 3 and Tier 4; the events of water, wastewater, and gas unavailability 

are excluded since they are connected to the physical space and thus not critical for the bank’s 

functionality. Electricity and telecommunications are still included for the use of the Electronic 

Payment Network. The Tier 2 event of staff unavailability remains unchanged, highlighting the 

significance of financial managers, customer service and tellers, and loan officers to the service 

delivery and functionality of banks. Also, both intra-organizational and inter-organizational supply 

chains are considered critical for a bank’s functionality. Any disruption in the replenishment of 

ATM cash, ATM maintenance, or cash upkeep as the intra-organizational supply chain can 

compromise the availability of withdrawal services. Similarly, inter-organizational supply chains 

are required for credit checks or inter-bank communication. Nonetheless, it is important to note 

the physical structure and external utilities are still required for a typical bank to be fully functional. 

Staff needs a physical space for long-term work, and a neutral meeting point for in-person services 

such as wealth management, investment consulting, and safety deposit boxes is undeniable.  

Banks can also temporarily change their primary products. For example, after a disaster, a 

bank might still service existing customers whilst shifting to disburse Small Business 

Administration loans for recovery needs. This change in primary products is important for 
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understanding the role financial institutions play in community functionality in short and 

intermediate-term, dynamic financial capital. 

2.4.2 Gas Stations 

The products of a gas station include the provision of automotive fuels (such as gasoline, 

diesel, gasohol), motor vehicle parts (e.g., lubricants, filters, etc.), restroom services, and some 

groceries, oftentimes drinks and snacks (BLS, 2020). Although gas stations might be a primary 

grocery supplier in some communities, the primary products of gas stations are the retail sale of 

fuel and lubricant for motor vehicles. Gas stations are often small employee-based organizations 

that do not require staff with technical degrees and almost always offer self-service and a pay-at-

the-pump system. On the other hand, gas stations’ procurement and distribution of fuel ties them 

to a physical space, and make them a supply chain-reliant organization. Thus, physical space, 

access, supporting external utilities, and supply chain, due to their interdependence, are critical 

components of a functional gas station, as shown in Figure 10. In this example, 25% is an 

appropriate estimate of the organizational functionality percentage associated with the Intrinsically 

Operable state (L1) of a gas station.  
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The FT in Figure 10 solely considers the events that are essential for the delivery of the 

primary products of a functional gas station. The FT includes all events associated with the 

compromising of physical space, physical access, and supply chain as they are critical fault events. 

Any type of structural damage to filling stations or non-structural damage to self-service facilities 

(such as failure of payment systems, oil suction systems, and gas pumps) can seriously 

compromise the physical space. The supply chain can be disrupted through failure in either 

external supply resources of fuel and lubricants or intra-organizational distribution systems. The 

functioning of pumps and pay-at-the-pump systems also depend on supporting external utilities of 

electricity and telecommunications; these events are included in the FT in Figure 10. 

2.4.3 Schools 

Schools are considered as a third and final example organization. Schools (K-12 and higher 

education) contain the most intra-archetype variation of the three organizations covered here. 

Schools vary considerably in size, organizational structure, and physical space. For example, 

smaller elementary schools can sometimes exist in one building, while larger campuses contain 

several buildings and many levels of staff and faculty to coordinate hierarchy within (Ungar et al., 

2019). Figure 11 provides the fault tree for the functionality loss of a mid-sized K-12 school. 

Schools exist to provide students with products of education, food, and recreation. Schools 

are highly staff-reliant, with generalized and specialized teachers being the main implementer of 

the products. Specialized teachers refer to those that require additional training and licensure, such 

as teachers who assist in teaching students with learning disabilities or technical coursework. 

Principal and superintendent availability becomes crucial to decision-making, advancement for the 

district, and any disciplinary action. Supporting staff are also vital to student well-being through 

food delivery, health services, and administration. So, too, is the supply chain to keep education 
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products, food, and health items in stock at the school’s location. In this case, the FT gives an 

estimate of 20% for the value of L1 in schools.  

While the physical space, physical access, and external utilities are essential for a school’s 

functionality, the basic objective of education can occur online, as exemplified through the 

COVID-19 pandemic and subsequent online-based education. Still, the quality of educational 

product delivery and schools’ (and students’) capacity to move online become serious limitations.  

This underscores a school’s reliance on physical space while recognizing the flexibility and 

importance of at-home back-up space when the school’s physical space is compromised. Also, 

when planning for community resilience, it is important to consider how the products of an 

organization may change during a disaster. For example, in addition to providing educational 

services, school buildings serve another primary role after disasters: the role of emergency shelters 

(McArdle, 2014; Mutch, 2014). In this second case, the physical space is extremely important, as 

well as physical access and supporting utilities.



45
 

  

 

Fi
gu

re
 1

1.
 F

au
lt 

tr
ee

 o
f f

un
ct

io
na

lit
y 

lo
ss

 o
f a

 m
id

-s
iz

e 
K

-1
2 

sc
ho

ol
 

 
 

 



46 
 

 

2.5 Step-by-Step Procedure for Community Resilience Evaluation 

Summarized below are the basic steps of a proposed practical framework to evaluate the 

post-disaster resilience of a community using the organizational functionality and community 

capitals concepts. 

1. Define a set of quantifiable metrics for each community capital (except built capital) 

regarding the existing organizations’ products. For example, one scale for measuring social 

capital, particularly when it comes to organizations, is the community housing capacity 

which can be offered by single and multi-family dwellings, shelters, and hotels following 

a disaster. 

2. Calculate the expected capacity of individual organizations contributing to the desired 

community capitals at the time t after the event using the relevant metrics defined in step 

1, as: 

[ ] 3 2

2

( ) ( , ) ( )
100
L LET c t e Q t e c t e

L
 −

   =      − 
    (7)  

(8) where ET[c(t)│e] is the expected capacity of the individual organization concerning metric k 

at time t after given disruptive event with demand e; [Q(t,e)] denotes the probability of that 

organization becomes functional before time t which can be calculated by Equation (5); 

[c(t)│ē] is the capacity of the individual organization concerning metric k at time t if the 

disruptive event does not happen; L2 and L3 are the percentage of functionality determined for 

Fully Operable and MALF organizations, respectively. 

3. Calculate the expected capacity of each metric at the community-level by aggregating the 

expected capacity of the individual organizations computed in step 2, as 

( )
1

( ) ( )
n

j j

C c t e ET c t e
=

   =   ∑     j=1, 2, ….,n   (8)  



47 
 

 

(9) where C[c(t)│e] is the expected capacity at the community-level concerning metric k at time t 

for the given disruptive event with demand e and is aggregated for n organizations that 

contribute to that metric capacity; all other parameters were previously defined. 

4. Compare the expected capacity at the community-level considering metric k with 

community resilience and recovery plans and use the results to make more informed 

decisions that minimize the long-term recovery time of the community. Several approaches 

exist in the literature for community resilience planning and risk-informed decision-

making (e.g.,(United Nations, 2016)), but this is outside of the scope of this paper. 

2.6 Conclusion 

The need to rethink design goals in U.S. building codes to include functional recovery 

targets has gained significant traction in recent years. Designing for functional recovery should 

consider limit states for both safety and functional recovery time. Buildings are should not be 

considered as isolated structure, but as part of a community. As such, it is imperative to understand, 

measure, and evaluate how that building supports or otherwise contributes to various community 

functions and related capitals. This relationship can be understood through (1) the organization(s) 

residing in the building, and (2) how the products of the organization(s) support the community 

measured through the community capitals.  

Organizations work as a lynchpin connecting the built capital to the other capitals. 

Communities need to ensure that their organizations will be recovered within an acceptable period 

to support short, intermediate, and long-term functional recovery goals. Therefore, the availability 

of a decision variable which links the community resilience objectives to the built environment 

functional recovery goals will result in more informed disaster risk mitigation and long-term 

recovery plans at the community level.  



48 
 

 

The concept advances research on community resilience planning and functional recovery 

design, and can be applied by researchers, practitioners, and policymakers. Importantly, 

organizations require physical and non-physical, or rational and irrational, components to function; 

the details of which are organization-specific. To validate organization-specific fault trees and 

quantify the contribution of organizations to the community, further research and data collection 

are required, which should include working directly with organizations. More research is needed 

to define explicit measures for the MALF and MDTP of an organization, and to develop a 

comprehensive library of fragility and restoration functions for the components of organization 

functionality.
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Chapter 31: Community Resilience Testbeds 

3.1 Virtual Testbeds for Community Resilience Analysis: State of the Art Review, 
Consensus Study, and Recommendations 

As the quantitative hazard research, particularly stemming from the engineering fields, 

aims to move from component- and building-level modeling into the interdisciplinary space of 

community-level modeling for resilience, the need to test, verify, and validate community 

resilience algorithms becomes a critical challenge; virtual testbeds are an effective tool for such 

purposes. We define a virtual testbed as an environment with enough supporting architecture and 

metadata to be representative of one or more systems such that the testbed can be used to design 

experiments, examine model or system integration, and test theories. Testbeds enable researchers 

to assess multidisciplinary integrated community resilience models thereby helping decision-

makers to make better community hazard mitigation plans and recovery decisions. This paper 

leverages the current momentum on using virtual testbeds for community resilience analysis to 

dissect what testbeds are in practice. To obtain consensus on the above-presented definition of a 

testbed, the paper conducted a virtual survey with testbed experts. The survey primarily explored 

how testbeds have been used across different disciplines, how testbeds differ from case studies, 

and what are the minimum requirements for a testbed. The paper, then, presents findings from a 

systematic literature review on 22 identified existing community resilience testbeds and 103 

                                                 

1 This chapter is based on two journal papers, one published and one manuscript, in both this dissertation's author is 
the first author: 

Enderami, S. A., Mazumder, R. K., Dumler, M., & Sutley, E. J. (2022). Virtual Testbeds for Community Resilience 
Analysis: State-of-the-Art Review, Consensus Study, and Recommendations. Natural Hazards Review, 23(4), 
03122001. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000582 © 2022 ASCE. 

Enderami, S. A., Sutley, E. J., Mazumder, R. K., & Dumler, M. (n.d). Virtual Testbeds for Community Resilience 
Analysis: Step-by-Step Development Procedure and Future Orientation. To be submitted to the Journal Sustainable 
and Resilient Infrastructure in January 2023. 
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associated publications. According to the literature review and survey results, community 

resilience testbeds should have both a hazard module and a community module which ideally 

includes physical, social, and economic systems. The literature review concludes with a discussion 

on the available tools for testbed development, typical challenges testbed developers encounter, 

and areas for future testbed research. The availability of existing testbeds for reuse by other 

researchers, standardization of development and publication process of new testbeds including 

obtaining, cleaning and validating the required data, and verification of numerical algorithms are 

the main detected issues that need to be addressed in future research. 

3.1.1 Introduction  

Virtual testbeds are being developed and used across the community resilience literature 

to serve the purpose of verification and validation (V&V) (Attary et al., 2019; Ellingwood, Cutler, 

et al., 2016; Fereshtehnejad et al., 2021; Loggins et al., 2019; Noori et al., 2017; Park et al., 2019; 

Shang et al., 2020). Testbeds were first termed in the Nuclear Power (NP) industry to be used as a 

means for NP plant process validation (OHara & Wachtel, 1995). However, the idea of developing 

virtual testbeds at the community level dates back to the 1980s when water distribution network 

designers were striving to optimally size water distribution pipes although those published works 

might have been imprecisely termed as a test case or case study (Walski et al., 1987). Testbeds are 

an essential part of the development and testing of community resilience algorithms and serve the 

needs of training and educational purposes as well. Testbeds enable multidisciplinary teams to 

design, test, integrate, verify, and validate community resilience algorithms and numerical models 

at different scales and resolutions, which is critical when interdependencies across systems are of 

interest. Verification and validation of numerical models is an important step in model 

development enabled by testbeds (Sargent, 2010). Validation is the process of determining if a 
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mathematical or computational model of an event represents the actual event with sufficient 

accuracy. Whereas, verification is the process of determining that model’s implementation 

accurately represents the developer's conceptual description and specifications of the model 

(CFDC, 1998). As discussed herein, the development and application of virtual testbeds: (1) 

enables researchers to test their models that predict the performance of interdependent physical, 

social, and economic systems and their immediate and long-term impacts in an integrated 

community resilience assessment; and (2) better support risk-informed decision-making by 

communities to optimize public and private investments. 

This paper presents findings from a virtual survey administered to testbed experts and a 

systematic literature review on community resilience testbeds. The survey results provide insight 

on the minimum requirements for a testbed, how testbeds differ from case studies, and obtain 

consensus on the definition of a testbed. Findings from the literature review include metadata for 

how the identified testbeds have been developed and used. Of note, this paper does not intend to 

criticize existing testbeds, point out their shortcomings, or rate them, but rather synthesize their 

existence given that testbeds are almost always indirectly presented in papers.  Finally, the 

available tools for testbed development, typical challenges testbed developers encounter, and areas 

of future testbed research are discussed. This review can be used to aid interdisciplinary teams of 

hazards and disasters researchers in working together on testbeds and in understanding where the 

state of knowledge is on testbed development. 

3.1.2 Testbeds as Real and Imaginary Communities 

Communities are defined as places, such as towns, cities, or counties, designated by 

geopolitical boundaries (NITS, 2016). As such, communities are complex systems comprised of 

interconnected social, economic, and physical systems and processes (S Amin Enderami et al., 
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2022; Enderami et al., 2021), and can be very difficult to accurately model. Testbeds can be 

designed to represent communities, including imaginary or real communities. Being real versus 

imaginary is different from being virtual or physical. Virtual and physical refer to whether the 

testbed itself is digitally simulated on a computer network or has a material existence, whereas real 

and imaginary are terms used to indicate whether the testbed is a representation of a real or 

hypothetical community. As physical testbeds for community resilience are neither feasible nor 

ethical, this paper only discusses virtual testbeds. Imaginary testbeds can be entirely fabricated, 

including all required data. For example, Gotham City was modeled after the fictitious city from 

the comic Batman to be used for verifying community resilience models (Mahmoud & Chulahwat, 

2018). Imaginary testbeds may be based on some sort of reality whilst still not being a perfect 

representative and accurate model of an existing location. The Centerville testbed is an example 

of such an imaginary community, which models a typical mid-size community using average 

statistics of several communities in the Midwest United States (Ellingwood, Cutler, et al., 2016).  

Imaginary testbeds are often used when there are significant data limitations, or when the 

research is intended to be highly generalizable for geographic areas with similar topology, 

population, and infrastructure (Ellingwood, Cutler, et al., 2016). Imaginary testbeds are also 

particularly useful when a team is attempting to understand how their algorithms fit together given 

that an imaginary testbed can be modified for convenience and simplicity. For example, instead of 

chaining numerical models for hundreds of thousands of nodes and links in a given network with 

hundreds of thousands of end-users, a simplified and smaller version of the models which use 

dozens of nodes, links, and end-users, can be tested and verified before scaling up. Imaginary 

testbeds enable simplified analysis and verification. Imaginary testbeds are helpful as well when 

security is of the utmost importance, such as identifying the location of key infrastructure, as well 
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as when sensitivity of the results is important, such as simulating terrorist attacks so as not to scare 

people living in an actual community. Thus, security and sensitivity concerns could arise from the 

nature of the data or analytical results, as well as from the potential trauma and alarm that could 

be garnered from the publication of the simulation results.  

Nonetheless, testbeds are not limited to imaginary communities but can model a real-world 

community too. How well the testbed models the real community (e.g., the level of detail captured 

in the testbed) varies depending on the availability and type of data, as well as the analytical needs. 

For the latter, a testbed may need to model a community on a building-level basis, or on a larger 

scale such as a census block basis. Some testbeds model real communities with high-resolution 

details. Take Harris County testbed for example, which was constructed using data from Harris 

County, Texas. The Harris County testbed modeled power, gas, healthcare, and transportation 

networks along with the regional topology to simulate and measure the risk of flood hazard 

scenarios (Dong, Yu, et al., 2020). This was done to mirror the real conditions of the county in the 

testbed as best as possible. Upkeep of data can be a pressing concern and is needed for testbeds 

modeling real communities. On the other hand, some testbeds, such as pseudo-Norman, roughly 

model an existing community using only a few of its attributes. The pseudo-Norman testbed is a 

coarse replica of the city of Norman, Oklahoma. Since the testbed includes only some aspects of 

Norman and is not an exact representation of Norman, the originating authors named it pseudo-

Norman  (Masoomi & van de Lindt, 2017). 

As evident here, testbeds come in a variety of shapes and sizes. To understand what it 

means to be a testbed, we designed and virtually administered an expert survey, and coupled these 

findings with our synthesis from a systemic literature review.  
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3.1.3 Expert Survey 

An expert survey was developed in Qualtrics, a powerful online survey tool, to obtain a 

consensus definition for the term testbed; the survey data and report are published on DesignSafe-

CI (Enderami & Sutley, 2021; E. Sutley et al., 2021). A link to the survey was emailed to 267 

experts, where 90 responses were received for a response rate of 34%. This human subject research 

was approved by the University of Kansas Institutional Review Board (STUDY00147164). 

Experts were identified through one of two ways. First, 153 experts were identified as an author 

on one or more of the testbed publications reviewed in the systematic literature review 

(inclusion/exclusion criteria for the literature review are described later). Although there are more 

authors than 153 on the papers included in the literature review, the email addresses could be 

obtained online for only 153. Second, based on our team’s experience and professional network, 

we were aware of other ongoing projects that were developing or using testbeds; from that, we 

came up with a list of 114 additional experts. This totaled 267 experts; however, in the recruitment 

email, respondents were asked to share the link with any collaborators they considered as testbed 

experts. No personally identifiable information was collected from respondents, so we do not know 

how many people the survey was shared with outside of the 267 experts we directly emailed. We 

suspect this number is quite low, and that the overall response rate is very near the calculated 

response rate of 34%. 

The survey consisted of a series of questions to categorize respondents, including position, 

disciplinary expertise, and whether the respondent had used a testbed before or not. If the 

respondent had used a testbed before, they were asked which testbed(s) they had experience with, 

which hazards and types of systems they had examined in their use of a testbed, where they 

obtained data or architecture for the testbed(s), and any validation performed by them or otherwise 
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on the testbed(s). The remainder of the survey consisted of a series of questions intended to define 

what a testbed is with explicit differentiation from a case study. Results from selected questions 

are presented and discussed herein. 

Figure 12 provides responses from the first two survey questions on the primary discipline 

and position of the 90 respondents. As shown in Figure 12(a), nearly two-thirds of respondents’ 

primary discipline is the same as this paper’s authors, civil engineering. However, the remaining 

one-third span diverse disciplines in engineering, social and physical sciences. Similarly, as shown 

in Figure 12(b) nearly 75% of respondents identified their position as academic-based, whether 

faculty, retired faculty, post-doc, or student. However, 15% of respondents work in government 

positions, and 7% in industry. Of the 90 completed surveys, 58 respondents indicated that they 

personally had used a testbed before. Although we are not sure the exact reasons behind the 32 

identified experts who indicated they had not personally used a testbed, we are anecdotally aware 

of many cases where teams of people work together on a project and some team members work 

directly with computational algorithms and testbeds, and other team members provide feedback, 

discussion, idea generation, and the like. Thus, the latter category of team members is very familiar 

with testbeds even if they personally had not used one before. 
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(a) 

 

(b) 

 

Figure 12. Primary (a) discipline and (b) position of survey respondents (n=90) 

3.1.3.1 Defining a Testbed 

The term testbed has been used across many disciplines to test scientific theories, 

computational tools, and new technologies. Meriam-Webster (https://www.merriam-

webster.com/) defines the word “testbed” as “any device, facility, or means for testing something 

in development”. This definition does not fully align with how testbeds have been applied in the 

https://www.merriam-webster.com/
https://www.merriam-webster.com/
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literature and it is insufficient in capturing the specific needs for community resilience analysis. 

We believe a testbed is more than a device or facility; so, we included two open-ended questions 

in the survey to facilitate consensus on the definition of a testbed. The questions provided our 

proposed definitions of a testbed and a case study and requested the respondent for any comments 

to refine the definitions. Based on the 96 comments received from these two questions, along with 

comments recorded from other open-ended questions, we made the required revisions to form the 

following consensus definition for a testbed: 

A testbed is an environment with enough supporting architecture and metadata to be 

representative of one or more systems such that the testbed can be used to (a) design experiments, 

(b) examine model or system integration, and (c) test theories.  

The concept of virtual community resilience overlaps with some existing commercial 

catastrophe modeling software, publicly available tools for hazard mitigation and preparedness 

planning (e.g., HAZUS), or other modern high-tech simulation tools such as a Digital Twin. But 

these tools do not fit into the proposed definition of the testbeds although they might be effective 

tools in community resilience research. For example, existing risk assessment tools do not provide 

the required architecture for designing experiments, examining models that include social and 

economic aspects of a community, and integrating them into the other components. For example, 

a Digital Twin of a community is a virtual environment that represents the physical aspects of a 

community and does not simulate the other dimensions of a community. In the survey, a 

complementary open-ended question was also asked, “What, if any, minimum requirements are 

necessary for something to be considered a testbed?”. Sixty-six responses were received. 

Qualitative analysis revealed three categories of comments: (a) applicability of the testbed to be 

applied to research questions; (b) requirements of what must be modeled (e.g., systems, hazards); 
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and (c) the accessibility and documentation of the testbed for the research community. The first 

category was coded into two themes. These two themes were that the testbed must (1) represent 

reality, and (2) be a real community. The second category was coded into three themes, that the 

testbed must include models of (1) multiple hazard options (e.g., type, level); (2) multiple systems; 

and (3) must have humans. The third category was coded into eight themes, including that the 

testbed must: (1) be developed and useable from a multi-disciplinary team or perspective; (2) have 

broad applicability for examining different community resilience algorithms to answer a broad 

range of research questions relevant for the community at hand; (3) have a defined purpose; (4) be 

accessible to other users outside the original developers; (5) well-documented; (6) replicable or 

reliable; (7) scalable; and (8) open-source or modifiable. Finally, there were two other themes that 

were not categorized: (1) that there are no minimum requirements for something to be defined as 

a testbed; and (2) other, which included comments not captured by the other 14 themes. The 

number of responses classified into each of the 15 themes is depicted in Figure 13. The most 

common response was that at a minimum, a testbed should represent reality (n=21). Three of the 

21 comments distinguished that the testbed must indeed be real, as opposed to only a representation 

of reality. The second most common response was that a testbed should be broadly applicable 

(n=20); whereas 9 responses indicated a testbed must have a defined, specific purpose. 
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Figure 13. Expert-Identified Minimum Requirements for a Testbed 

3.1.3.2 Distinguishing a Testbed from a Case Study  

Although distinct concepts and not synonymous terms, the words testbed and case study 

are often used interchangeably (particularly in community resilience studies) which has the 

potential to be misleading. Both case studies and testbeds can be utilized at the community level, 

but testbed is not a term frequently used in conjunction with a study of a specific past event or 

single system. Here, we define a case study as research performed to glean new insight from the 

analysis of a specific situation or demonstrate analysis results. This definition received consensus 

from the expert survey. A distinguishing feature between a testbed and a case study is that in a 

testbed, the researchers have some level of control in the design of a testbed and can project a 
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range of scenarios or events, whereas this is not true with a case study. To better illustrate ways to 

distinguish a testbed from a case study, two examples are provided from the literature. 

Galveston, TX is a community with a long history of hurricanes and has been studied by 

many hazards and disasters researchers. Hamideh and Rongerude (2018) studied the impacts of 

community members’ social vulnerability in their participation in disaster recovery decisions using 

Galveston’s public housing after Hurricane Ike as a case study. In another study, Fereshtehnejad 

et al. (2021) developed a Galveston testbed for studying the cumulative impact of hurricane-

induced damages to civil infrastructure and evacuation decisions of the population. The former 

was a specific study documenting what happened to a specific group of people following Hurricane 

Ike. The latter consisted of multiple models chained together capable of simulating and assessing 

a range of hazard scenarios and subsequent impacts for Galveston. 

Similarly, after Lumberton, NC was flooded following 2016 Hurricane Matthew, a team 

of researchers began a longitudinal field study to collect cross-disciplinary data on impact and 

recovery (van de Lindt et al., 2018). Many analyses use this data taking the form of case studies 

[see (Aghababaei et al., 2019)]. However, the larger research team is also building a virtual testbed 

of Lumberton for model validation purposes. Nofal and van de Lindt used the Lumberton testbed 

as both a case study to look at the specific one-time scenario of the 2016 flooding (Nofal & van de 

Lindt, 2020c) and a testbed to evaluate the vulnerability to flooding and the effectiveness of 

different mitigation strategies (Nofal & van de Lindt, 2020a, 2020b). This has become common to 

develop testbeds of communities that are rich in case studies. 

The expert survey asked respondents one open-ended question to help distinguish a case 

study from a testbed. Sixty-nine responses were received to the question, “How do you describe 

the differences between a testbed and a case study?” Responses pointed to differences in the scale 
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of the analysis, being able to simulate predictions and interventions with testbeds, and broader use 

of testbeds. Whereas case studies must be real, apply a pre-designed methodology by the 

researcher(s), and be limited to a particular study objective. 

Five prompts followed which requested respondents to categorize each prompt as 

describing a testbed, a case study, both, or neither. The prompts were based on statements 

identified during the literature review describing testbeds or case studies, as well as through 

informal conversations with colleagues about testbeds and case studies. The five prompts read as 

follows: 

i. A zipped folder containing geospatial data of building footprints, road networks, hazard 

probability, and population demographics all for a particular community. 

ii. A zipped folder containing geospatial data of building footprints, road networks, hazard 

probability, population demographics all for a particular community, along with the 

algorithm script for simulating hazard occurrence, physical damage, and restoration 

processes. 

iii. The script file and results from a regression analysis performed on damage and disruption 

data collected in the field using survey methods after a specific hurricane. 

iv. A paper presenting a “proof of concept” test for risk assessment involving 1. Assessment 

of seismic hazard and ground motions for City-A; 2. Definition of the inventory for 

buildings, bridges, and utility lines in City-A; 3. Development of vulnerability curves for 

buildings and bridges in the area; 4. Evaluation of economic impact on property owners 

and businesses, disruption of social services, and factors influencing local decision making; 

5. Recommendation of mitigation measures for improved seismic safety; 6. Creation of 

decision support tools for comparing solutions for seismic mitigation. 
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v. On-the-ground investigation into the failure sequence of a particular building damaged 

during a tornado. 

Figure 14 provides the classifications from these five prompts, where each prompt was 

classified in multiple categories by different respondents. Prompt ii received 70 responses, whereas 

the other four prompts all received 71 responses. As evident in Figure 14, there was fair variability 

across the five prompts, where prompt v got the most consistent responses (86% categorizing as a 

case study). Of note, 18 of the 70 and 19 of the 71 were from respondents who indicated they had 

not used a testbed before, there was still proportional variability in classification from respondents 

who had used a testbed before. An open-ended question followed the five prompts requesting 

respondents to share any comments about the classification; 19 responses were recorded. 

Comments were mostly in line with our team’s intention in the ill-defined prompts in that prompt 

i is considered data and would be classified as other, prompt ii is essentially a testbed, prompt iii 

describes the components of an analysis that is likely enabled because of a case study and would 

be classified as other, prompt iv is a paper presenting an analysis and would be classified as other, 

and prompt v is a field-based case study. As shown in Figure 14, the highest agreement between 

our team and the respondents were with classifying prompt ii as a testbed (63% of respondents), 

and  prompt v as a case study (86% of respondents). Prompt ii is a good example of a real testbed 

(since it is for a particular community) that provides metadata (i.e.; geospatial data of building 

footprints, road networks, population demographics, hazard probability) and supporting 

architecture (i.e. algorithm script for simulating hazard occurrence, physical damage, and 

restoration processes). The testbed can be used to design and examine various community 

resilience models to answer a broad range of research questions such as assessing physical 

vulnerability, post-disaster accessibility, and social service disruptions. 
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Furthermore, despite many respondents also identifying prompt iv as a testbed, the open-

ended responses following these prompts indicated that most respondents overlooked the fact that 

testbeds are inherently virtual environments, while prompt iv is limited to just a paper. A soft copy 

(e-version) of the script defined in prompt iv would be essentially a testbed, a virtual environment 

with enough supporting architecture and metadata that it can be applied to examine different 

community resilience algorithms to answer a broad range of research questions regarding City-A. 

This means despite the agreement between researchers on the definition of the testbed and case 

study, there are still some discrepancies in how these terms are distinguished and used in practice. 

(i) (ii) (iii) (iv) (v)
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Figure 14. Classifying five descriptions as a testbed, case study, both, or other 

3.1.4 Existing Virtual Testbeds 

This section presents findings from a systematic literature review on testbeds used for 

community resilience analysis. Papers were identified using specific keywords, including 

“testbed”, “test bed”, “case study”, “test case”, “virtual city”, and “benchmark city”. Three 

inclusion/exclusion criteria were used for categorizing identified papers in the literature review. 
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First, the paper had to use the testbed for studying the impact of hazards on the community. Even 

though some of the testbeds included in our review were initiated for purposes other than 

community resilience research, they are included here if they otherwise fit the consensus definition 

of a testbed and have been extended later by incorporating a hazard module or social and economic 

systems into the testbed. As an example, Mazumder et al. (2020) added a hazard module to the 

Anytown testbed (Walski et al., 1987), which had not been used previously for community 

resilience analysis. Of note, the application of virtual testbeds for community-level analyses has 

been popularized among researchers from different disciplines such as environmental science, 

meteorology, engineering, sociology, urban planning, and disaster science. The NOAA 

Hydrometeorology Testbed (HMT) was developed by the Office of Oceanic and Atmospheric 

Research and National Weather Service to improve and advance extreme precipitation and 

hydrologic predictions (Schneider et al., 2010). Although HMT represents a novel and important 

testbed, associated publications were excluded from this review since HMT does not meet the first 

inclusion criteria for a community resilience testbed. 

Second, the paper had to develop or use a testbed, as opposed to a case study; the criteria 

for this are fully described above in the expert survey sections of this paper. As a rule of thumb, in 

a case study, the researcher examines the impacts of the specific event(s) on the intended 

community. Whereas, the goal of developing a testbed is to provide an environment with the 

potential of being used for evaluating different community resilience algorithms and models under 

different events. Third, the paper had to otherwise align with the proposed definition of a testbed. 

Papers utilizing the ASCE Structural Control Benchmarks (Dyke et al., 2003), Virtual Supervisory 

Control and Data Acquisition (Dayal et al., 2015), and Southern California Planning Model 
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(Richardon & Davis, 1998) testbeds were excluded from this review given that they do not have 

enough components to be used for the specified purposes in the testbed definition. 

Considering the aforementioned criteria, 22 testbeds including 12 imaginary and 10 real 

communities are identified and incorporated into this review. Table 1 provides a comprehensive 

list of the 22 testbeds reviewed, including a short description of their development timeline and 

identified publication inventory. Although the identified testbeds differ in terms of development 

level, all of them meet the designated inclusion/exclusion criteria. The testbeds in Table 1 are 

introduced through their hazard module, building and infrastructure inventory, and socioeconomic 

systems, if any. Also, Table 1 provides a summary of each testbed’s V&V process (if any), 

introduces the testbed’s data resources (if known), and explains how to access the testbed’s data 

(if available).  The sections that follow describe commonalities, gaps, and other observations on 

hazard modules and community modules across testbeds with comparisons to the expert survey 

responses where possible. 
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3.1.4.1 Inclusion of Hazard Module in Community Resilience Testbeds 

The hazard module in the majority of the reviewed testbeds comprises natural hazard 

scenarios such as earthquake, hurricane-induced flood and wind, tornado, and tsunami. However, 

man-made hazards including contamination, cyber-physical attack, and urban fire are modeled in 

Micropolis, Mesopolis, and C-Town testbeds. CLARC is the only testbed with a hazard module 

including both natural and man-made hazard models together. Little et al. (2021) employed the 

CLARC testbed to investigate the effects of a global pandemic on a community recovery time 

following a hurricane. A few of the reviewed testbeds such as Harris County, CLARC, Galveston, 

Centerville, Seaside, and Atlantic County employ a hazard module with multi-hazard models and 

provide the opportunity to assess the cumulative impacts of the cascading hazards. The hurricane 

models in CLARC, Galveston, and Atlantic County testbeds enable researchers to study the 

consequences of both flood- and wind-induced disruptions together. The hazard module of the 

Seaside testbed consists of a tsunamigenic earthquake model that considers both earthquake 

shakings and tsunami inundation (Fereshtehnejad et al., 2021; Little et al., 2020; McKenna et al., 

2021; Park et al., 2019). Other than Galveston, Mesopolis, and Seaside testbeds that benefit from 

probabilistic approaches to simulate the future events and predict their impacts; the other reviewed 

testbeds employ scenario events (either one single event or a suite of synthetic scenarios that 

happened in the past) in their hazard modules (Fereshtehnejad et al., 2021; Park et al., 2019; Torres 

et al., 2009). Figure 15 compares the number of testbeds with a particular hazard module across 

different hazard types with the number of identified publications applying those hazard modules 

and the number of survey respondents who indicated they personally had examined such hazard 

type in a testbed. In Figure 15, the number of testbeds with earthquake hazard models is 

significantly higher than that of other hazard types. On the other hand, tsunami hazard is rarely 
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included in testbeds. Of note, the Seaside testbed that models tsunami hazard has been used in nine 

different studies (González et al., 2009; Kameshwar et al., 2019; Mostafizi et al., 2017; Park et al., 

2019; Park & Cox, 2016; Park et al., 2017; Priest et al., 2015; Wang et al., 2016; Wiebe & Cox, 

2014). Anytown, C-Town, and unnamed water network were initiated without a hazard module; 

however, Anytown, unnamed water network, and C-Town were supplemented later by appending 

a hazard module (Ram K. Mazumder et al., 2021; Mazumder et al., 2020; Nikolopoulos et al., 

2020; Taormina et al., 2016). As evident in Figure 15, there is a direct relationship between the 

number of existing testbeds and identified publications across every hazard type except hurricane-

induced floods with the number of respondents who indicated they had examined that hazard type 

to a testbed. The greater number of respondents who have personal experience of applying flood 

hazards to a testbed compared to the other types of hazards may result in a slight bias in the survey 

results, however, there is still fair variability in the experience of the respondents. 

 

Figure 15. Dispersion of different hazard types in the reviewed testbeds 
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3.1.4.2 Inclusion of Community Module in Resilience Testbeds 

The community module of a testbed is a geospatial model of one or preferably more 

interconnected physical, social and economic systems; however, including either of the three 

systems is adequate to initiate the community module of a testbed. As identified in the literature 

review, most papers to date have focused initially on modeling physical systems, whereas in a 

community resilience study it is important to also capture the community’s social and economic 

systems and cascading effects of their failure. Also, in the existing testbeds, researchers have 

resorted to simplifying their physical system models to reduced order physical models (such as 

Turin Virtual City) or fragility-based statistical models. However, along with advances in 

computational science and technologies classical finite element models and data-driven machine 

learning models are likely to be applied in future testbeds. 

Physical System: The physical system of the existing testbeds includes the community’s 

building inventory and/or infrastructures-asset inventory such as water, electric power, gas, 

transportation, communication, wastewater, and drainage networks. Of note, all of these 

infrastructures are not modeled for every existing testbed; only 6 out of the 22 reviewed testbeds 

(namely Shelby County, Benchmark City, CLARC, Gotham City, Centerville, and Seaside) 

include more than three infrastructure types besides their building inventory. The physical system 

in four testbeds, including Anytown, C-Town, the unnamed water network, and Mesopolis consists 

of water networks only (Alvisi et al., 2012; Alvisi & Franchini, 2011; Islam et al., 2011; Johnston, 

2008; Walski et al., 1987). Turin Virtual City, Atlantic County, and Lumberton solely included 

the community’s building inventory to create their physical system (McKenna et al., 2021; Noori 

et al., 2017; van de Lindt et al., 2020). The physical systems in UW Power Systems Test Case 

Archive only consider electrical power networks (Didier et al., 2015). Of the testbeds that do 
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incorporate more than one type of infrastructure, many remain uncoupled and are presented in 

independent analyses in separate publications since they are modeled by more than one team of 

researchers, as is the case for Shelby County (Adachi & Ellingwood, 2009; Chang & Shinozuka, 

2004; Dueñas-Osorio et al., 2007; Hwang et al., 2000; Shinozuka et al., 1998), Harris County 

(Dong, Esmalian, et al., 2020; Fan et al., 2020; Ouyang & Duenas-Osorio, 2012, 2014; Ouyang & 

Dueñas-Osorio, 2011; Ouyang et al., 2012; Ouyang & Wang, 2015), Micropolis (Bagchi, 2009; 

Brumbelow et al., 2007), and San Francisco Bay Area (Elhaddad et al., 2019; Kiremidjian et al., 

2007). Figure 16 compares the number of testbeds modeling a particular physical system 

component with the number of identified publications applying that component and the number of 

survey respondents who indicated they personally had examined such components in a testbed. As 

shown in Figure 16, the building inventory and water network are the most common components 

included in the modeling of the existing testbed’s physical system, followed by power and 

transportation networks. The number of publications for testbeds with an incorporated water 

network is more than that of testbeds with building inventory. However, the number of expert 

survey respondents with personal experience of modeling a testbed’s physical system using a 

building inventory is greater than the water network; which shows a slight chance of bias in the 

survey results. It is also remarkable that the Harris County testbed and UW Power Systems Test 

Case Archive are the only two testbeds that have not included either building portfolio or water 

networks in modeling the testbed’s physical systems. On the other hand, the communication 

network is modeled in Gotham City only (Mahmoud & Chulahwat, 2018). 
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Figure 16. Dispersion of different physical systems in the reviewed testbeds 

Social and Economic Systems: Physical systems are only useful if they serve people. Thus, 

it is critically important to include the social and economic systems in community resilience 

analyses. Few testbeds incorporate predictive simulation models for social and economic systems, 

as opposed to static estimates of demographics, social vulnerability, or post-disaster economic 

impacts. The social system captured in existing testbeds includes one or more social models such 

as population evacuation (Wang et al., 2016), population dislocation (Roohi et al., 2021; Van De 

Lindt et al., 2019), housing unit allocation (Gardoni et al., 2018), and housing recovery model 

(Sutley & Hamideh, 2020). The economic system of the reviewed testbeds comprises either classic 

input-output impact models (Shinozuka et al., 1998), Computable General Equilibrium (CGE) 

models (Chen & Rose, 2018; Cutler et al., 2016; Roohi et al., 2021), or business interruption and 

recovery models (Aghababaei, Koliou, Watson, et al., 2020; Attary et al., 2019; Watson et al., 

2020; Yang et al., 2016). However, as identified in our review, most testbeds limit social and 

economic system consideration to socioeconomic indicators. The indicators are either a composite 
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indicator such as the social vulnerability index (Little et al., 2020; Mahmoud & Chulahwat, 2018) 

or a set of census data including age, race, ethnicity, housing vacancy rates, population density, 

the number of households, household mean annual income, owner or renter status, and the number 

of students and employees  (Masoomi & van de Lindt, 2017; S Nozhati et al., 2018; Shang et al., 

2020). The degree of social and economic data and resolution of such models in a testbed, either 

imaginary or real, depends on the data available, and the skillset of the researchers involved with 

the testbed. The availability of high-resolution social and economic data is difficult to obtain, and 

cannot be made publicly available due to ethical and security-related issues in real testbeds.   

3.1.5 Next Steps in Testbed Development 

Based on our findings from the literature review, we have identified four aspects of 

community resilience testbeds that warrant additional research, including (1) data needs, data 

collections, and data security concerns; (2) testbed visualization; (3) testbed verification and 

validation; and (4) testbed availability and reuse; each is discussed herein.  

3.1.5.1 Data Needs, Data Collections, and Data Security Concerns 

In the development of virtual testbeds, a major limitation is access to data due to 

availability, security issues, and ethical considerations, particularly as it relates to accessing and 

publishing data for reuse. Researchers have often resorted to modeling major simplification of real 

communities as testbed communities, using aggregate data, a suite of archetypes to represent all 

buildings in a community, and limiting the scope of their analyses. For example, roof shape is an 

important building attribute for testbeds with wind hazard modules, but is often not provided in 

public data. In these cases, Artificial Intelligence (AI) and computer vision methods (Chaofeng 

Wang et al., 2021) can be employed to capture the required information from Google Street View 

and satellite images. For example, leveraging recent developments in AI (particularly in deep 
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learning) and computer vision techniques, Microsoft Building Footprint Database created 

nationwide building footprint maps (Microsoft, 2020) that are very useful for community resilience 

testbeds. Similarly, Chaofeng Wang et al. (2021) developed a machine learning-based framework 

for generating building inventory of a community to support regional hazard analysis; the 

framework has been applied for the development of the Atlantic County testbed (McKenna et al., 

2021). 

Private data can fill these needs, sometimes, but can be too expensive for academic 

researchers, and again, cannot be published for reuse by the research community. For example, 

insurance data is not publicly available at a household level, and even OpenFEMA data is 

aggregated to the zip code level. Without access to high-resolution social and economic data, those 

types of systems will always lag behind physical models in testbed development. 

The other challenge that testbed developers encounter is merging different datasets with 

different spatial and temporal units. For example, Building Footprint, Land Use, and Tax Parcels 

are the common public datasets that are used for compiling the building inventory of a testbed. 

However, each of these datasets uses different identifiers, including individual building, map block 

number, and parcel number, respectively. Additionally, different data sources generate their data 

differently and handle missing data differently. For example, McKenna et al. (2021) reported that 

Microsoft Footprint Database sometimes lumps the footprints of closely spaced buildings together. 

3.1.5.2 Testbed Visualization 

Any Geographic Information System (GIS) software can be used to visualize a testbed. 

The GIS provides the opportunity to integrate both the attribute and spatial data for all of the 

components in a testbed’s community module to be stored in a single database. The community 

resilience analysis outcomes can also be mapped into GIS. The ESRI ArcGIS and Q-GIS are the 
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most popular software for testbed visualization, but require other software to chain algorithms and 

simulate disasters. Open-source libraries, such as Leaflet and Folium, are also recently used widely 

to visualize testbed interactively in Python environments. 

3.1.5.3 Testbed Verification and Validation 

The process of verification and validation of testbeds is an important step to be able to 

apply results from a testbed analysis to the real world. This is a challenging process that is often 

considered but not fully discussed in publications. Such a complex computational environment 

must be validated with each component being verified as a single or integrated module or system. 

The accuracy of the data (particularly the public data) that are used for the testbed creation can 

initially be verified using online tools and comparing the mutual attributes between datasets from 

different resources. For example, in the San Francisco testbed, Elhaddad et al. (2019) verified the 

accuracy and quality of UrbanSim datasets by comparing its information on location and building 

geometry with the Microsoft Building Footprint database. After verifying the accuracy of 

integrated datasets, the testbed’s numerical simulation models should be validated to ensure that it 

results in the desired outputs. There are various existing techniques to verify and validate a testbed. 

In the CLARC testbed, the verification and validation were performed by involving stakeholders 

and local experts in comparison between the analysis results and past storm events (Loggins & 

Wallace, 2015). Attary et al. (2019) and Van De Lindt et al. (2019) used the building damage 

assessment report of the Joplin 2011 tornado as well as power outage reports by the residents after 

the tornado to validate their testbed model. Even if an individual researcher validates their model 

contributions, as testbeds grow and expand, who performs validation and how will remain an 

important challenge. 



81 
 

 

The expert survey asked, “Are you aware of, or did you perform, any validation of the 

testbed(s) you used?” and gave additional guidance that “Validation could have consisted of testing 

accuracy of assets, locations, properties, matching information to prior events, etc.” It should be 

noted that besides the importance of a testbed's V&V itself, the documentation of the V&V process 

and making the documentation of the V&V process available to testbed's users are two essential 

steps in a testbed's development process to make the testbed functional for researchers other than 

the testbed's development team.  51 responses were recorded to this question, where 32 reported 

YES and 19 reported NO, which illuminates that almost 37% of respondents neglected this 

important step. Of the 32 respondents indicating they had performed or were otherwise aware of 

validation of the testbed(s), 28 provided comments. Through the comments, 15 validated results 

using post-disaster data; 5 used expert knowledge, 8 used other secondary data comparisons, such 

as census data and google maps; 2 performed sensitivity analysis, and 3 made a comparison with 

other published work. This provides a guide for how future testbed developers and users can verify 

and validate their work.   

3.1.5.4 Testbed Availability and Reuse 

After the creation of a testbed, most testbeds are reused by the researchers who created 

them. At this point in time, testbeds are not frequently reused by other researchers, but through the 

creation of recent platforms such as DesignSafe-CI and IN-CORE, datasets can be shared and used 

by others. Data collection and validation are extensive and time-consuming processes. The sharing 

and reuse of testbeds that have already been verified and validated, push forward the progress of 

community resilience research.  
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3.1.6 Conclusions 

Virtual testbeds are being developed and used across the community resilience literature 

to serve the purpose of verification and validation. We identified 22 community resilience testbeds 

and 103 publications that use community resilience testbeds. There is no shortage of testbeds, 

however, their accessibility for use by the research community and availability of their 

development documents remains a major challenge. There is no apparent standardized process for 

testbed development, testbed publication, or testbed reuse. It is no trivial effort to develop a 

testbed, including obtaining and cleaning data, developing, validating, and chaining algorithms, 

and verifying simulation results. Such standardizations may help improve the accessibility of 

testbeds to the research community, which can have important implications towards advancing 

knowledge on community resilience analysis where every next researcher does not have to reinvent 

the wheel by developing a new testbed. A secondary outcome of this review is to aid 

interdisciplinary teams of hazards and disasters researchers in working together on testbeds and in 

understanding where the state of knowledge is on testbed development. 

Community resilience testbeds should have both a hazard module and a community 

module. Ideally, the community module in a fully-developed testbed includes one or more 

interconnected models of the desired community’s physical, social, and economic systems, 

however, only one of the three is required to initiate a testbed. The concept of virtual community 

resilience overlaps with some common classic risk assessment tools or modern high-tech 

simulation instruments such as a Digital Twin. However, these tools do not meet the proposed 

definition of the testbeds and do not provide the required architecture and ample metadata that 

testbeds are supposed to provide. 
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Aside from the fact that none of the existing testbeds are fully developed, the majority of 

them have been created with a focus on earthquake hazards and physical infrastructure systems. 

Even if a testbed intends to include social and economic systems, these models are primarily 

population-based and the other dimensions of the social and economic systems, such as social 

services and organizational preparedness, are consistently overlooked. This leads to ample 

opportunity to advance knowledge with other hazard types, and social and economic systems, 

which requires multi-, inter- and transdisciplinary collaborations.
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Virtual Testbeds for Community Resilience Analysis: Step-by-Step Development 
Procedure and Future Orientation 

Virtual community resilience testbeds enable verification and validation of emerging 

computational models and frameworks for quantitative assessment of the disaster impacts and 

recovery process of the communities and are important to advance the state of knowledge on 

community resilience. This paper illuminates the significance of establishing a standardized 

approach for developing virtual community resilience testbeds and proposes a systematic schema 

for this purpose. The workflow facilitates testbed development by defining a series of steps, 

starting with specifying the testbed simulation scope. Arguing that hazard and community modules 

are the principal components of a testbed, we present a generic structure for testbeds and introduce 

minimum requirements for initiating each module. In line with that, the workflow dissects different 

attributes of the components beneath these modules. In particular, the proposed steps outline 

relevant tools, techniques, and resources that exist for constructing a community’s building 

inventory, power, water, and road networks, as well as its social and economic systems. The paper 

also discusses possible challenges testbed developers may encounter in procuring, cleaning, and 

merging required data and offers the initiatives and potential remedies, developed either by the 

authors or other researchers, to address these issues. The workflow concludes by describing how 

the testbed will be verified and validated, visualized, published, and reused. The paper 

demonstrates the application of the proposed workflow by establishing a testbed based on Onslow 

County, NC using publicly available data in the United States. To foster sharing and reusing of 

developed testbeds by other researchers, all supporting documents, metadata, template algorithms, 

computer codes, and datasets used for developing the different modules of Onslow Testbed are 

available at the DesignSafe-CI.  
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3.2 Virtual Testbeds for Community Resilience Analysis: Step-by-Step Development 
Procedure and Future Orientation 

Virtual community resilience testbeds enable verification and validation of emerging 

computational models and frameworks for quantitative assessment of the disaster impacts and 
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are the principal components of a testbed, we present a generic structure for testbeds and introduce 

minimum requirements for initiating each module. In line with that, the workflow dissects different 

attributes of the components beneath these modules. In particular, the proposed steps outline 

relevant tools, techniques, and resources that exist for constructing a community’s building 

inventory, power, water, and road networks, as well as its social and economic systems. The paper 

also discusses possible challenges testbed developers may encounter in procuring, cleaning, and 

merging required data and offers the initiatives and potential remedies, developed either by the 

authors or other researchers, to address these issues. The workflow concludes by describing how 

the testbed will be verified and validated, visualized, published, and reused. The paper 

demonstrates the application of the proposed workflow by establishing a testbed based on Onslow 

County, NC using publicly available data in the United States. To foster sharing and reusing of 

developed testbeds by other researchers, all supporting documents, metadata, template algorithms, 

computer codes, and datasets used for developing the different modules of Onslow Testbed are 

available at the DesignSafe-CI. 
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3.2.1 Introduction 

Climate change is becoming a worldwide crisis. The increasing intensity and frequency of 

natural climatic hazards, such as hurricanes, floods, severe storms, freezes, droughts, and wildfires 

are the apparent consequences of climate change (Bell et al., 2018; Trenberth, 2018). While the 

precise prediction of the time and location of occurrence of extreme natural hazards is still an issue, 

the overall hazard risk is evidently increasing. The effects of climate change, particularly coupled 

with urbanization growth, pose destructive impacts on human lives and the built environment 

across the world every year. However, the consequences are not limited to civilian casualties, 

physical damages, and direct financial losses only and are often intensified due to possible 

disruptions in the community’s social and economic systems and result in a disaster. Thus, taking 

firm actions to tackle the intensive impacts of climate change and adopting a proactive approach 

to disasters is imperative. This issue, in some countries such as the United States, is even deemed 

a national security threat and has been put at the center of government policies (The White House, 

2021). 

The ability to estimate cascading impacts of natural hazards on a community’s physical, 

social, and economic systems and improve community resilience through reducing such social and 

economic burdens that disasters can cause is an important evolving science. Community resilience 

researchers have been developing numerical models that can predict the performance of 

interdependent physical, social, and economic systems and assess their integrated impacts. 

Verification and validation (V&V) of the developed numerical models is an important step 

(Sargent, 2010) and remains a critical challenge. To perform V&V on community resilience 

algorithms, many researchers have turned to developing and using virtual testbeds (Attary et al., 

2019; Ellingwood, Cutler, et al., 2016; Fereshtehnejad et al., 2021; Loggins et al., 2019; Ram K 
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Mazumder et al., 2021; Noori et al., 2017; Park et al., 2019; Shang et al., 2020). A virtual testbed 

is an environment with enough supporting architecture and metadata to be representative of one or 

more systems such that the testbed can be used to (a) design experiments, (b) examine model or 

system integration, and (c) test theories (S. Amin Enderami, Ram K. Mazumder, et al., 2022). 

Virtual community resilience testbeds enable researchers to test, verify, and validate their 

multidisciplinary community resilience algorithms at different scales and spatial resolutions. 

Virtual testbeds also are being used to serve the needs of training and educational purposes as well 

as provide better support for risk-informed decision-making by communities to optimize public 

and private investments. 

Interest in the development and application of virtual community resilience testbeds has 

gained momentum along with rapid advances in computational science, tools, and technologies 

over the past few years. However, a systematic literature review of 22 identified existing 

community resilience testbeds and a total of 103 publications that have applied these testbeds 

revealed that there are several crucial gaps in testbed development knowledge (S. Amin Enderami, 

Ram K. Mazumder, et al., 2022). For example, there is no apparent standardized workflow for 

testbed development and publication in the literature which has caused major challenges in reusing 

testbeds. The availability of existing testbeds for use by the research community has profound 

implications for advancing community resilience knowledge since each next researcher will not 

have to develop a new testbed from scratch. Developing a community resilience testbed, even at a 

town or city scale, is too demanding and expensive for most research teams. In addition to 

collecting valid and verified data, building a community resilience testbed requires developing, 

validating, and chaining cross-disciplinary community resilience models and algorithms. This 

latter step is possible only if there are sufficient post-disaster longitudinal field studies on the 
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impact and recovery in the desired community or if the community is rich in case studies. Of note, 

there are only a limited number of community resilience-focused longitudinal investigations that 

have documented the impacts and post-disaster recovery processes following an extreme event in 

communities (Helgeson et al., 2021; E. J. Sutley et al., 2021; van de Lindt et al., 2018; van de 

Lindt et al., 2020).  

On the other hand, the lack of a standard testbed development guideline that provides 

consistent instructions for testbed creation, validation, and publication, resulted in an uneven 

distribution of testbeds with different hazard and system types. The vast majority of existing 

testbeds focus on seismic-related hazards and physical infrastructure systems exclusively and 

overlook modeling other hazard types and a community’s social and economic systems. This paper 

develops a systematic schema for initiating community resilience testbeds. It begins by introducing 

a standard structure for community resilience testbeds and introducing the minimum components 

needed to initiate a testbed based on findings from a systematic literature review. The paper, then, 

proposes a workflow for developing virtual testbeds. The workflow begins with determining the 

testbed simulation scope and ends with testbed publication for reuse. Existing approaches and data 

sources for implementing the workflow and modeling testbed components are described alongside 

possible challenges developers may encounter. The application of this workflow is demonstrated 

by establishing a testbed based on Onslow County, NC using publicly available data in the United 

States. The paper concludes with a discussion of potential remedies for addressing challenges in 

establishing a virtual community resilience testbed and areas for future testbed research. 

3.2.2 Generic Structure of Community Resilience Testbeds 

In line with the testbed definition stated in Section 3.7, we proposed a generic structure for 

community resilience testbeds, illustrated in Figure 17. Logical gates are borrowed from event-
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tree modeling to demonstrate the minimum components and hierarchy required for developing a 

testbed. The “AND” gate is used to show that the output component exists only if all input 

components are available; conversely, the output of an “OR” gate develops even if only one input 

component exists. As evident in Figure 17, community resilience testbeds must have both a hazard 

module and a community module. Ideally, the community module includes physical, social, and 

economic systems, however, only one of the three is sufficient to initiate a testbed. The proposed 

structure in Figure 17 is such that the availability of either of the community’s infrastructure assets 

or building inventory is adequate to establish the physical system of the community module. The 

community's social and economic systems can be simulated using social and economic models or 

closely resembled by indices representing their capacity. A hazard module consists of one or more 

probabilistic or deterministic hazard numerical models. The details of the systems and subsystems 

beneath community and hazard modules depend on the testbed's purpose and the availability of 

needed data; such details are discussed in the next sections. 
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Figure 17. Generic structure of a community resilience testbed 

The proposed generic structure was applied to the 22 community resilience testbeds 

identified by the authors in the review study (S. Amin Enderami, Ram K. Mazumder, et al., 2022) 

for validation. Table 2 presents a summary of the main features of the reviewed testbeds’ systems 

and subsystems; the structure proposed in Figure 17 is completely compatible with the structure 

of the identified testbeds. 
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Table 2. Summary of main features and components of the existing testbeds 
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CLARC ● ● ● ● ● ●  ● ●   ● ●     ●  
Centerville ● ● ● ●  ●   ● ● ● ●  ●      
Benchmark City 
(China) ● ● ● ● ● ●  ●   ●         

Shelby County  ● ● ● ● ●   ● ● ●         
Seaside  ● ● ●  ●   ●  ●    ●     
Galveston  ●  ●  ●   ●   ● ●       
Gotham City ● ● ● ●  ● ●  ● ●          
Harris County    ● ● ●      ● ●       
Gilroy  ● ●   ●   ●  ●         
psuedo-Norman  ● ● ●     ●     ●      
Joplin  ●  ●     ● ●    ●      
ASCE First 
Generation 
Testbed 

● ● ●        ●         

Lumberton  ●       ●    ●       
Atlantic County  ●          ● ●       
San Francisco 
Bay Area 

 ●    ●     ●         

Micropolis ●  ● ●            ●   ● 
Turin Virtual  
City 

 ●         ●         

Anytown ●  ●        ●         
The unnamed 
Water Network ●  ●        ●         

UW Power 
Systems Test 
Case Archive 

   ●       ●         

C-Town ●  ●              ●   
Mesopolis ●  ●                ● 
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3.2.3 Testbed Development Methodology 

This section presents the methodology and workflow we established for developing a 

community resilience testbed. A community resilience testbed can represent either an imaginary 

or a real community (S. Amin Enderami, Ram K. Mazumder, et al., 2022). The methodology 

elaborated herein can be applied to both imaginary and real testbeds; however, there are certain 

details on data collection and processing that perhaps are only applicable to testbeds that represent 

real-world communities. 

3.2.3.1 Testbed Simulation Scope 

Defining the simulation and modeling scope is an overarching step in the development of 

a community resilience testbed. Ideally, a fully developed testbed consists of all components 

demonstrated in Figure 17; however, in practice, testbeds evolve gradually alongside the testbed 

users' needs. Thus, to establish a community resilience testbed, it is essential that developers 

determine the scope of their simulation at the outset. The simulation scope must be aligned with 

the model chaining and integration questions to be asked, and the theories to be tested. Defining 

the testbed simulation scope includes specifying components of the hazard and community 

modules, their types, modeling approaches, and spatial scale. Data availability and the skillset of 

the researchers involved in developing the testbed are the other determining factors that may 

govern the simulation scope. Thus, to determine the simulation scope, in addition to considering 

the testbed users' needs, it is also necessary to consider the simulation possibilities based on the 

available and accessible data. 

3.2.3.2 Hazard Module 

The hazard module of a testbed can include characteristics of either natural or man-made 

(e.g., contamination, cyber-physical attacks, urban fires, and disease pandemics) hazards or both. 
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Natural hazards are classified under two primary categories, 1) geologic hazards (which cover 

strong ground motions, liquefaction, tsunamis, landslides, and volcanic eruptions); and 2) climatic 

hazards (which include floods, hurricanes, storm surges, tornados, drought, and wildfire). The 

hazard module aims to quantify the hazard and provide an estimate of its severity at the location 

of interest. Several methods and multiple software programs and tools can be found in the literature 

regarding hazard intensity estimation and simulation (Beven, Almeida, et al., 2018; Beven, 

Aspinall, et al., 2018; Bulti & Abebe, 2020; Cui et al., 2021; Falcone et al., 2020; Marras & Mandli, 

2021; Parisien et al., 2019; Pasquali, 2020; Soltanpour et al., 2021; Sugawara, 2021; Toja-Silva et 

al., 2018). The "State of the Art in Computational Simulation for Natural Hazards Engineering" 

report (Gregory G. Deierlein, 2021) comprehensively reviewed simulation methods, data sources, 

and software tools that are typically used in engineering disciplines to characterize earthquake, 

hurricane, and tsunami hazards. As hazard modeling is much further along in development than 

the community module of testbeds, it is outside the scope of this paper to discuss various hazard 

modeling techniques and tools. Instead, this section discusses the significant principles of hazard 

modeling methods and common challenges in building hazard modules and refers readers to other 

studies that have provided detailed reviews of the modeling processes. 

To simulate a testbed’s hazard module, both probabilistic and deterministic approaches are 

plausible and can be used based on the testbed's application. Probabilistic approaches consider all 

possible event scenarios with their likelihood of occurrence, whereas deterministic methods model 

a specific example of a scenario event, often the most adverse one, and do not have a probabilistic 

basis. The probabilistic approach typically applies ensemble modeling to account for uncertainties 

in event intensity, location, and time of occurrence. The output of a probabilistic approach is the 

exceedance probability of the hazard intensity that may be observed at the desired location in a 
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given period. Natural hazards (particularly climatic hazards) are often complex adaptive 

phenomena and their characteristics change significantly with any variations in the current 

condition. This means with unavoidable errors in data measuring, it is impossible to precisely 

predict a future event using deterministic approaches (Patt & Dessai, 2005). Therefore, 

probabilistic methods can better estimate the characteristics of future natural events (especially 

climatic hazards), as climate change is concurrently happening. A major challenge with using 

probabilistic approaches is the presence of significant uncertainties in all components of the hazard 

model (Beven, Almeida, et al., 2018). Uncertainty is commonly divided into epistemic and 

aleatory uncertainty (Patt & Dessai, 2005). Epistemic uncertainty originates from incomplete 

knowledge of a phenomenon or process that influences the event. Aleatory uncertainty derives 

from the inherent variations in a random event and the chaotic nature of natural hazards. Aleatory 

uncertainty cannot be reduced with new knowledge (Hemmati et al., 2020). The aleatory 

uncertainty can be captured through multiple runs of the synthetic models with slight changes in 

initial and boundary conditions. Epistemic uncertainties are often quantified by employing 

statistical models (e.g., Monte Carlo simulation) and ensemble modeling, but ensemble models 

may not capture all possible future scenarios (Cremen et al., 2022). 

Nevertheless, for the purpose of verification and validation of community resilience 

algorithms, testbed developers often use deterministic models of past events to develop the hazard 

module. The application of scenario-based analyses is relatively straightforward and their results, 

compared to probabilistic-based assessments, are easier to interpret for decision-makers (Adachi 

& Ellingwood, 2010; Adhikari et al., 2021; Krinitzsky, 1998). The National Institute of Standards 

and Technology (NIST) Community Resilience Planning Guide (National Institute of Standards 
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and Technology (NIST), 2016) also recommends establishing scenario analyses for more general 

resilience plans or when the hazard levels are not defined by code. 

3.2.3.3 Community Module 

The community module of a fully-developed testbed is ideally a geospatial complex model 

of multiple interconnected social, economic, and physical systems, although developing only one 

of these three systems might suffice to start establishing the testbed. In general, it is very difficult 

to precisely model a community because of its complexity. On the other hand, developing either 

of the three systems requires substantial effort and resources for collecting, cleaning, and 

integrating data. The inherent complexity of community modeling and data restrictions, when 

coupled with other concerns such as security issues and ethical considerations, often persuade 

testbed developers to simplify their community models according to the specified simulation scope 

for the testbed. In this section, in addition to introducing the available data sources and modeling 

techniques, we discuss several common challenges in modeling each system of the community 

module and present conducive recommendations to address such challenges. 

3.2.3.3.1 Physical System: Building Inventory 

As evident in Figure 17, a testbed’s physical system comprises the building and 

infrastructure inventories of the corresponding community. The building inventory typically 

consists of multiple datasets that include information about the main attributes of the existing 

buildings, along with corresponding damage functions and/or functionality models. Table 3 

presents a set of the most common building characteristics that were used for building inventory 

development in the community resilience literature (Attary et al., 2019; Czajkowski et al., 2013; 

Ellingwood, Cutler, et al., 2016; Little et al., 2020; Loggins et al., 2019; McKenna et al., 2021; 

Nofal & van de Lindt, 2020a; Noori et al., 2017; Park et al., 2017; Pilkington, Curtis, et al., 2020; 
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Roohi et al., 2021; Wiebe & Cox, 2014; Zhang et al., 2018). The identified features are categorized 

into five overarching attributes, namely general, geotechnical, structural, architectural, and 

property-level, as shown in Table 3. Of note, to initiate developing a testbed, the building 

inventory's characteristics details and resolution level should be determined based on the defined 

simulation scope for the testbed. 

Table 3. Most applicable characteristics of buildings in community resilience models 
Attribute Characteristics 
1   General • Location 

• Height 
• Year built 

• Building boundary 
• Square footage 
• Land-use class 

2   Geotechnical  • Soil type • Foundation type 

3    Structural  • Vertical load system 
• Lateral load system 

• Structural Integrity 
• Vertical and lateral irregularity 

4   Architectural  • Roof system 
• Floor system 

• Exterior walls 
• External components (chimney, 

parapets, roof overhang, etc.) 
5   Property-level • Value (building/content) 

• Ownership structure (private/public) 
• Occupancy 
• Tenure 

It is becoming increasingly common for local and county governments to store a great deal 

of information about the buildings within their jurisdiction in digital repositories that are accessible 

to the public or that can be obtained upon reasonable request. This information typically includes 

the building's location, area, boundary, land-use class, year built, structural system material, 

building and contents value, occupancy, ownership, and tenure status. However, this data does not 

suffice for common community resilience models, and more building or property-level 

information is needed to estimate damage and loss at the community level. Private data may 

somewhat address such data needs, at least sometimes. ReferenceUSA (Data Axle, 2020), 

ATTOM (ATTOM Data Solutions, 2020), and Microsoft Building Footprint (Microsoft, 2020), to 

name only a few, are private databases that provide detailed building and property-level data in 

the United States. 
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Private data can be too expensive for academic researchers, and often cannot be published 

to be reused by the research community due to copyrights. More importantly, private data do not 

necessarily provide all essential information. For example, existing datasets often do not include 

information about a building's first-floor elevation and roof shape, whereas, both of which are 

important for estimating flood- and wind-induced damage, respectively. An alternative solution to 

fill this type of data gap is employing Artificial Intelligence (AI) techniques and computer vision 

algorithms to extract such visible attributes by processing the images. Chaofeng Wang et al. (2021) 

have developed an AI-enabled tool, termed BRAILS1, for creating community-level building 

inventory. BRAILS is an open-source framework comprised of individual applications that are 

stitched together and use machine learning, particularly deep learning algorithms, to gather and 

process data from online resources such as Open Street Maps (OSM), Google Maps, Google 

satellite images, and street views. Although BRAILS was designed primarily for creating new 

building inventories in urban areas and has been used for this purpose since its inception (Deierlein 

et al., 2020; McKenna et al., 2021; McKenna et al., 2022), its modules can also be used individually 

to fill in gaps in an existing building inventory, as the authors did in Section 3.10.3.1 of the present 

paper. Although using private data and AI tools may fill some of the gaps in public data, there are 

still more details (e.g., lateral load system, foundation type, etc.) that should be included for 

community-level damage and loss analysis. In such cases, it is possible to simplify the building 

inventory based on some rational assumptions and use a suite of archetypes to represent all 

buildings in a community (Nofal & van de Lindt, 2020a). 

                                                 

1 Building Recognition using Artificial Intelligence at Large Scale 
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Merging multiple datasets with different spatial and temporal resolutions is a common 

challenge in the testbed development process. Different datasets use dissimilar identifiers and 

diverse geographical reference units (e.g., individual building, map block number, parcel number, 

etc.), and deal with any missing data differently. For example, McKenna et al. (2021) reported that 

Microsoft Footprint Database sometimes lumps the footprints of closely spaced buildings together. 

Thus, it is required to verify the accuracy of data being used for the development of the testbed's 

components, particularly secondary data assembled by someone outside of the research team. A 

practical way to perform data verification is cross-referencing and comparing the mutual attributes 

across datasets from different resources. Due to using various sources for data procurement, 

various datasets may contain uneven or even contrary information. To address such probable 

conflicts, the testbed developer should apply a set of solid and transparent principles based on their 

judgment. 

3.2.3.3.2 Physical System: Infrastructure Asset Inventory 

Infrastructure inventories typically include information about water, electric power, 

transportation, gas and oil transmission, communication, wastewater, and drainage networks. As 

evident from Table 1, the first three types of aforementioned infrastructure have been of greater 

interest to testbed developers, whereas communication infrastructure has received the least 

attention from developers, despite being very common in reality. As the autonomous vehicle 

market is growing significantly and Internet of Things products (Madakam et al., 2015) are 

becoming common, the data transfer and communications infrastructure should be appended to the 

testbeds' infrastructure inventories in the future. 

Security concerns often prevent detailed information about a community's infrastructure 

assets from being made public. Restricted access to infrastructure data is often a common 
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worldwide challenge among testbed developers that have been reported by several researchers 

from other fields as well (Little et al., 2020; Nan & Eusgeld, 2011; Ouyang, 2014; Ouyang & 

Dueñas-Osorio, 2011; Svegrup & Johansson, 2015; Zhang & Peeta, 2011). This issue has been 

slightly resolved in the United States after establishing Homeland Infrastructure Foundation-Level 

Data (HIFLD) platform (DHS, 2022). The HIFLD data inventory comprised three categories of 

geospatial datasets, namely HIFLD Open, HIFLD Secure, and HIFLD Licensed Data. The HIFLD 

Open Data category contains national foundation-level geospatial critical infrastructure data within 

the public domain that are provided to support community preparedness, response, recovery, and 

resilience research. The HIFLD Secure data category, formerly known as Homeland Security 

Infrastructure Program (HSIP) Gold, is a for-official-use-only compilation of over 125 data layers 

characterizing domestic infrastructure and base map features. The HIFLD Licensed data is 

commodity data that is available upon a request in compliance with a set of predefined 

requirements (DHS, 2022). Even still, publishing that piece of the testbed for reuse by others may 

not be permitted. In these cases, testbed developers resort to publishing a coarse replica of the 

community’s infrastructure network(s) containing only a few key aspects of the real system; e.g., 

pseudo-Norman testbed by Masoomi and van de Lindt (2017). We, herein, present our findings on 

a few existing resources that provide conducive data for simulating road, power, and water 

networks in testbed development. 

Road networks are the backbone of a community’s transportation network. Some road 

network attributes, such as route footprint, speed limit, and traffic direction, are often publicly 

accessible and can be procured from OpenSteetMaps (OSM, 2015) or the local government’s 

Department of Transportation (DOT). Other attributes of road networks such as real-time traffic 

data might be obtainable from private companies that provide location-based data in the testbed’s 
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geographic scope such as Google Maps, INIRIX1, Waze2, Uber3, etc. Additionally, Boeing (2022) 

developed a code for modeling road networks for every urban area in the world using OSMnx4, an 

open-source Python tool. The code is available for public reuse at (https://github.com/

gboeing/street-network-models). 

An electric power network, in general, consists of three major components: (1) power 

stations to generate electricity, (2) a transmission system to carry the generated electricity to 

substations, and (3) a distribution system to provide end-users with power. The UW Power System 

Test Case Archive (https://labs.ece.uw.edu/pstca/)  is a website that provides required datasets for 

modeling common 1960s power distribution systems in the Midwestern US. Also, the researchers 

at Texas A&M University have launched a repository named Texas A&M University Electric Grid 

Datasets (https://electricgrids.engr.tamu.edu/) that contains a collection of electric grid datasets. 

The S&P Global Commodity Insights, also known as Platts, is a private company that provides 

data on the global energy and commodities markets and offers spatial data on electric power, 

natural gas, and oil transmission network features in North America and Europe 

(https://www.spglobal.com/commodity-insights/en). 

Water distribution systems typically consist of a water main, distribution pipelines, 

elevated water tanks, reservoirs, valves, pumps, and pumping stations. In the united states, 

Kentucky Water Resources Research Institute developed a database 

(http://www.uky.edu/WDST/database.html) that provides a collection of datasets for 40 different 

water distribution networks. The datasets consist of information on the networks' physical layout, 

                                                 

1 https://inrix.com/ 
2 https://www.waze.com 
3 https://www.uber.com/ 
4 https://osmnx.readthedocs.org 

https://github.com/%E2%80%8Cgboeing/street-network-models
https://github.com/%E2%80%8Cgboeing/street-network-models
https://labs.ece.uw.edu/pstca/
https://electricgrids.engr.tamu.edu/
https://www.spglobal.com/commodity-insights/en
http://www.uky.edu/WDST/database.html
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geometry data, GIS maps, hydraulic models, and water demands (Kentucky Water Resources 

Research Institute, 2013). 

3.2.3.3.3 Social and Economic Systems 

Social and economic systems are more often discussed within case studies and theoretical 

works and incorporating such systems and phenomena into virtual community resilience testbeds 

is uncommon, as can be observed in Table 2. These two systems are, therefore, discussed together 

here, but not to symbolize any less importance relative to physical systems.  

Ideally, social and economic systems in a community include multiple interconnected 

predictive models. However, in practice, it is pretty unlikely to simply obtain the high-resolution 

data needed for the validation of such interdependent models. For example, insurance data is not 

publicly available at a household level, and even publicly accessible OpenFEMA data is 

aggregated to the zip code level or higher. Thus, some testbed developers have resorted to using 

static indices to characterize a community's social and economic capacity. The ease of application 

and interpretation for non-experts is another benefit of making social and economic indices a 

popular tool among researchers and testbed developers with engineering backgrounds (Enderami 

& Sutley, n.d.). Gotham City and CLARC are two examples of testbeds from Table 2 using place-

based social vulnerability indices to represent the social capacity of their target communities (Little 

et al., 2020; Mahmoud & Chulahwat, 2018). 

Although most of the testbeds in Table 2 are created by developers mainly housed in 

engineering disciplines, a few include predictive social science and economic models. Population 

evacuation (Wang et al., 2016), population dislocation (Roohi et al., 2021; Van De Lindt et al., 

2019), housing unit allocation (Gardoni et al., 2018), household housing recovery (Sutley & 

Hamideh, 2020) are a few examples of such social models, albeit they focus only on the population, 
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ignoring other aspects of the social system, including social services, culture, education, and 

health. Computable General Equilibrium (CGE) modeling is, currently, the preferred tool for 

assessing the regional impact of natural hazards on a community’s economy (Chen & Rose, 2018; 

Cutler et al., 2016; Roohi et al., 2021). The existing literature on testbed development also includes 

models for business interruption and recovery, which have been applied to community resilience 

analysis (Aghababaei, Koliou, Watson, et al., 2020; Attary et al., 2019; Watson et al., 2020; Yang 

et al., 2016). As interdisciplinary collaborations increase and more community resilience testbeds 

are being developed and reused, social and economic models are becoming more important. Thus, 

the next generation of testbeds should incorporate a more comprehensive simulation of a 

community's economic and social systems. 

3.2.3.4 Testbed Verification and Validation 

Testbeds are primarily used for verification and validation (V&V) of community resilience 

algorithms. Testbeds themselves must also go through V&V processes to be able to apply results 

from a testbed analysis to the real world. The process of testbed V&V is a crucial and challenging 

step that is accomplished in two phases. First, the accuracy of datasets used for testbed 

development must be verified. See section 3.9.3.1 for more information about how to do this first 

phase. Second, chained models, and integrated modules and systems must be validated after they 

are stitched together to ensure the reliability of the whole environment. To validate a complex 

computational environment of connected models and data, such as a community resilience testbed, 

post-disaster data collection and longitudinal studies are needed. As a result, it has become 

common to develop testbeds of communities that are rich in case studies and post-disaster data. 

Joplin and Lumberton are two examples of testbeds from Table 2 that are been validated using the 

post-disaster data. To validate the Joplin testbed, estimates obtained from the processing of 
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collected data and reviewing existing government documentation, archived literature, and case 

studies on Joplin after the EF-5 tornado on May 22, 2011, were used (Attary et al., 2019). 

Lumberton Testbed was validated using post-event data from an ongoing longitudinal research 

study after the 2016 catastrophic flooding in the city of Lumberton, North Carolina due to 

Hurricane Matthew (van de Lindt et al., 2018). 

A few years after a disaster, the population, demographic texture, built environment, and 

economy of the harmed community are likely to change significantly. Hence, for the V&V of a 

testbed, the datasets need to be modified to resemble the community at the time of the event. This 

modification will be very challenging if the event occurred before the digital age. If so, connecting 

results to existing theories, ground truthing, using expert panels, and comparing the results with 

other published research in the testbed scope are the alternative techniques for the second phase of 

testbed V&V (Sargent, 2010; Thacker et al., 2004). While no approach will provide a perfect 

validation check, the ones described here fairly verify the reliability of systems and modules, either 

separately or together. 

3.2.3.5 Testbed Visualization, Publication, and Reuse 

In addition to facilitating testbed reuse, testbed visualization can be remarkably effective 

when discussing analysis results with the decision- and policy-makers. Any geographic 

information system (GIS) software can be used for this purpose. The GIS environment not only 

provides the opportunity to integrate both the attribute and spatial data for all of the components 

in a testbed’s community module to be stored in a single database but also can be applied to map 

the community resilience analysis results. ESRI ArcGIS and Q-GIS are conducive software for 

testbed visualization, however, require additional software to chain algorithms and simulate 
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disasters. Open-source libraries, such as Leaflet and Folium, are also available to visualize testbed 

interactively in the Python environment. 

Testbed publishing is another imperative step in the testbed development process that 

cannot be skipped. The creation and validation of testbeds require a great deal of time and effort. 

Thus, it is not trivial to share a verified and validated testbed to be reused by researchers other than 

those who created them. Publishing a testbed involves more than sharing the datasets and 

algorithms that form the testbed components. Documentation of data sources, data cleaning, and 

merging procedures, modeling assumptions, verification and validation process, and contact 

information for the developer (team) are also required to be published along with testbed 

components. Platforms such as DesignSafe-CI and IN-CORE are appropriate environments for 

publishing testbeds. 

Figure 18 presents the step-by-step workflow of the methodology described in section 3.9. 
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Figure 18. Testbed development workflow 

3.2.4 Step-by-Step Example to Initiate a Testbed 

To demonstrate the implementation of the workflow shown in Figure 18, the authors 

developed a testbed based on Onslow County, NC using publicly available data in the United 

States. All testbed documents, datasets, and algorithms (Python scripts and Jupyter notebooks) 

used for the creation of the testbed’s modules are open source and are available on DesignSafe-CI 

(S. Amin Enderami, Elaina Sutley, et al., 2022) to support an interdisciplinary collaboration for 

establishing a fully-developed testbed using the proposed workflow. 
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Onslow County is a coastal community in the State of North Carolina in the United States 

with a history of experiencing major hurricanes. The county comprises the City of Jacksonville, 

which is the County seat, and multiple towns. As of the American Community Survey (ACS) 

2015-2020, 198,377 people including 66,131 households with a median income of $69,717 resided 

in the county. In terms of age, over two-thirds of the total population are between 18 and 65 years 

old. The racial composition of the county is 74.72% White, 13.99% African American, 0.55% 

Native American, 2.16% Asian, 0.15% Pacific Islander, 1.46% from other races, and 6.98% from 

two or more races. About 12.58% of the population is Hispanic or Latino of any race (U.S. Census, 

2022). As a hurricane-prone area with a demographic similar to the national average, Onslow 

County is of interest to community resilience researchers. Onslow County has been used multiple 

times as a case study in the community resilience literature (Docekala et al., 2020; S Amin 

Enderami et al., 2022; Lyles, 2013, 2015; Mazumder et al., n.d; Ram K Mazumder et al., 2021; 

Mazumder et al., 2022; Monitz, 2011; Pamukçu et al., 2019) which makes it a proper community 

for developing a virtual testbed. The following subsections describe the testbed simulation scope 

and apply the proposed workflow step by step to develop its components. 

3.2.4.1 Onslow Testbed Simulation Scope 

To determine the simulation scope, we assumed that the Onslow Testbed is going to be 

used to generate community-level hurricane-induced wind risk maps for residential buildings. 

These maps are supposed to integrate the existing risk due to the social vulnerability of occupants 

into the physical vulnerability of residential buildings within the community of Onslow County. 

Additionally, the testbed will examine how households with different social vulnerability levels in 

Onslow experience changing access to the grocery after a 500-year flood. Thus, the simulation 

scope of the Onslow Testbed was defined as: (1) a hurricane-induced wind model and a 500-year 
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flood map will be incorporated into the hazard module, (2) the community module consists of 

physical and social systems only, (3) residential buildings, grocery stores, and the County’s road 

network will be included as the testbed’s physical system, and (4) the community’s social capacity 

will be represented using a place-based index. Figure 19 shows the Onslow Testbed structure, 

which is a modified revision of the generic testbed structure proposed in Figure 17. 

 

Figure 19. The structure of the Onslow Testbed 

3.2.4.2 Onslow Testbed Hazard Module 

According to the National Oceanic and Atmospheric Administration (NOAA, 2020) 

historical hurricane tracks database, Onslow County has never been hit by a Category 5 hurricane, 

but three Category 4 hurricanes, including Helene (1958), Diana (1984), and Hazel (1954), were 

recorded within 100 km of the county between 1857 and 2020. To simulate hurricane-induced 

winds, Hurricane Helene (1958), the most powerful one of those three Category 4 hurricanes, was 

chosen as the scenario event (Ram K Mazumder et al., 2021). The data needed for simulating the 

 



108 
 

 

intended scenario event including information on its track, maximum wind speed, and the central 

pressure of the hurricane eye were retrieved from the Atlantic hurricane database (AOML 2020). 

The following wind field model, proposed by Holland (1980), was employed to estimate the 

maximum gradient wind speed at the location of interest. Despite its simple form, the model is 

highly efficient computationally and has been widely used in the literature for this purpose (e.g., 

Guo & Lindt, 2019; Salman & Li, 2018; Vickery et al., 2000; Vickery & Wadhera, 2008; Cao 

Wang et al., 2021): 
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where Rmax is the radius of the maximum wind, r indicates the distance from the hurricane 

eye to the desired location, B is the pressure profile parameter, f is the Coriolis parameter, ∆p is the 

difference between the central pressure of the hurricane eye and atmospheric pressure, and ρ is the 

air density. The values of Rmax, B, and f were determined using Equations (2), (3), and (4), 

respectively. 

Rmax = 2.556− 0.000050255 ∆p2 + 0.042243032 𝜓𝜓  (2) 
(FEMA, 

2012) 

𝐵𝐵 = 1.881− 0.00557Rmax − 0.01097𝜓𝜓  (3) 
(Powell et al., 

1998) 

𝑓𝑓 = 2Ω ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    (4) 
(Xu & 

Brown, 2008) 

where φ is the local latitude and Ω represents the average angular velocity of the earth. In 

the end, Gradient wind speed (VG) is converted into 3-s gust wind speed using conversion factors 

to yield the surface wind value at the location of interest (Salman & Li, 2018; Vickery et al., 2000; 

Xu & Brown, 2008). A Python script, executable on Jupyter Notebook and other computing 
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platforms, is developed for simulating the wind field model and is publicly available on 

DesignSafe-CI (S. Amin Enderami, Elaina Sutley, et al., 2022). 

The National Flood Insurance Program (NFIP) is a federal-level program managed by 

Federal Emergency Management Agency (FEMA), that enables homeowners, business owners, 

and renters in participating communities in the United States to purchase federally-backed flood 

insurance. NFIP publicly offers a wide range of digital resources for free download. The National 

Flood Hazard Layer (NFHL) database is one of those digital resources that provides geospatial 

data for floods with a 0.2% annual risk (FEMA, 2022b). For Onslow Testbed, NFHL data for 

Onslow County in a GIS file format and incorporated into the hazard module (FEMA, 2022a). 

Figure 20 shows a screenshot of the hazard maps included in the hazard module of Onslow 

Testbed.  

  

Figure 20. Onslow Testbed hazard module: a) Hurricane Helene (1958)-induced 3-s gust wind speeds (km/h); 
b)500-year flood map  

a b 
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3.2.4.3 Onslow Testbed Community Module 

3.2.4.3.1 Physical System: Building Inventory 

The building inventory in this example consists of geospatial data on physical 

characteristics, market values, and associated fragility-based vulnerability functions of intended 

buildings within the testbed area. This information was mostly obtained from the open-to-public 

datasets provided by Onslow County’s government1. The tax records were used to identify each 

building’s occupancy and dwelling type, the number of stories, exterior wall material, year built, 

square footage, and market value. The information retrieved from tax records is then spatially 

joined with the building footprint dataset to establish the testbed’s base map. Microsoft Building 

Footprint data was used for cleaning and V&V of the building footprint dataset. The accuracy of 

the tax records data was verified through cross-referencing and comparing the mutual attributes 

with ReferenceUSA datasets. In addition to providing information on businesses in the United 

States, ReferenceUSA has a “U.S. New Movers/ Homeowners” dataset that includes proper data 

about single and multi-family dwellings. To determine the buildings’ roof shapes, we used 

“RoofTypeClassifier” module of BRAILS (Charles Wang et al., 2021) and Google satellite 

images. Approximately one percent of the buildings in the testbed inventory were randomly 

selected, and the predicted shape for their roofs was visually validated using OSM and Google 

street views and images. Table 4 summarizes the features included in the building inventory of 

Onslow Testbed besides their data sources and verification procedures. 

                                                 

1 https://onslowcountync.gov/ 
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Table 4. Onslow Testbed building inventory features 

Building Attribute Data Source 

Location and footprint info The building's location and footprint information were obtained from the 
building footprint dataset of the local government and were verified using 
the Microsoft Building Footprint data. This geospatial data was used to 
create the testbed’s base map. 

Occupancy and Dwelling type The building occupancy and dwelling type was obtained from the local 
government’s tax records and validated using the U.S. Homeowners and 
U.S. Business datasets, publicly available on ReferenceUSA. 

Number of stories The number of stories for each building was achieved from the local 
government’s tax record database and was visually validated for a group 
of randomly selected buildings. 

Exterior wall type The information on the exterior walls of the buildings was obtained from 
the local government’s tax record database. 

Roof shape The building roof shapes were determined using the BRAILS 
RoofTypeClassifier module and Google satellite images and were visually 
validated for a group of randomly selected buildings. 

Market value The market value of the buildings was fetched from the local 
government’s tax records and was verified using the U.S. Homeowners 
and U.S. Business datasets, publicly available on ReferenceUSA. 

To lower computation costs, we would rather use reduced-order vulnerability functions for 

developing the testbed's building inventory. An appropriate Hazus hurricane fragility model 

(FEMA, 2012) was assigned to each building in the inventory using the concept of the building 

portfolio. A building portfolio is a collection of building archetypes with different attributes that 

represent a community’s building stock (Nofal & van de Lindt, 2020a). The building inventory 

was simplified to 22 archetypes, including one commercial archetype and 21 residential. 

An F.16 Hazus damage model was assigned to all grocery stores within the testbed area. 

Residential buildings were mapped using the algorithm shown in Table 5. The mapping algorithm, 

first, categorizes residential buildings based on their dwelling type into four groups as defined in 

Table 5. Next, the algorithm determines the corresponding archetype for each building based on 

the (1) type of external wall, the number of stories, and roof shape for buildings in groups I and II; 

or (2) construction year for buildings in group III; or (3) number of stories for buildings in group 
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IV. Then, the algorithm maps associated Hazus fragility functions to the buildings. As can be seen 

in Table 5, more than one fragility function can be assigned to most of the residential archetypes. 

This is due to the fact that to assign the exact corresponding Hazus fragility function more data is 

needed, including information on the buildings’ roof cover, sheathing, roof-wall connection type, 

window shutters, glazing coverage, missile environment, and terrain surface roughness. Procuring 

such types of data is almost impossible, even for a mid-size community such as Onslow County. 

In this example, a “0.35 m” terrain surface roughness and “A” missile environment are assumed 

according to Onslow County’s topography. For roof cover, window shutters, and glazing coverage, 

the mapping algorithm randomly assigns possible options with equal likelihood to each building. 

For example, it is presumably as likely for an Archetype-1 building to have window shutters or 

not. To allocate roof-wall connection and sheathing type, the mapping algorithm applies the 

binomial probability rule, illustrated in Figure 21. The criteria in Figure 21 were selected due to 

the significant evolution in building codes in those periods such that more recent building codes 

comply with more strict requirements. For instance, the probability of using a strap for connecting 

the building's roof and wall increases from 20% to 50%, and 80%  as the year built changes from 

periods before, between, and after 1950 and 2000. The Python script developed for executing the 

applied mapping algorithm is available on DesignSafe-CI (S. Amin Enderami, Elaina Sutley, et 

al., 2022). 
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Figure 21. Algorithm for assigning roof-wall connection and sheathing type in Onslow Testbed 

3.2.4.3.2 Physical System: Road Network 

The Onslow road network model includes geospatial data about the speed limit, traffic 

direction, and routes footprint within the testbed area. These data were taken from OSM and the 

North Carolina Department of Transportation (NCDOT) open data. We used Graph theory for the 

mathematical simulation of the road network (Trudeau, 1993). Graphs are collections of nodes 

connected by edges. The nodes represent the locations where route footprints intersect, while the 

edges depict the routes that connect these intersections. Other attributes of the road network 

including streets’ name, type, speed, and traffic data were assigned to the edges. The free-flow 

speed was estimated for streets located in urban areas by using Google Maps data and added to the 
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road network dataset. Free-flow speed is the term used to describe the average speed that a motorist 

would travel if there were no congestion or other adverse conditions (such as bad weather). Finally, 

the developed datasets based on the road network were spatially merged and incorporated into the 

testbed’s base map. Figure 22 illustrates the main physical components incorporated into the 

community module of Onslow Testbed. 

  
(a) (b) 

Figure 22. Physical components of Onslow Testbed: a) road network; b) residential buildings and grocery 
stores spatial distribution 

In summary, to replicate a similar physical system for another testbed, the testbed 

developer should go through the following procedure step-by-step:  

Step 1 Fetch the most updated geospatial data of building footprints from the local 

government and Microsoft Building Footprint databases; clean and cross-check the retrieved data. 

Step 2 Download the tax record information from the local government’s website; clean 

the data, keep the required attributes including occupancy, dwelling type, number of stories, 

exterior wall material, year built, and square footage, and delete the extra information; verify the 
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information using the U.S. Homeowners and U.S. Business datasets, publicly available on 

ReferenceUSA. 

Step 3 Merge the datasets resulting from Steps 1 and 2; keep an eye out for differences 

between the spatial units of the building footprint and the tax record dataset. For example, a 

condominium that often contains multiple individually owned apartments is represented by one 

single footprint record that is associated with multiple tax parcels. In such cases, aggregate the 

information of tax parcels into a single record. 

Step 4 Determine the building roof shape using the “RoofTypeClassifier” module of 

BRAILS and Google satellite images and add it to the building attribute dataset. BRAILS is an 

open-source Python package that has multiple modules with different capabilities and was 

developed by SimCenter to populate the building inventory of a community (Charles Wang et al., 

2021). In this example, we modified BRAILS to fetch the footprint data locally, from the clean 

and verified dataset created in step 1. By default, BRAILS read the footprint data from OSM and 

Microsoft Building Footprint databases. 

Step 5 Use expert knowledge and engineering judgment to develop a proper mapping 

algorithm for assigning Hazus fragility functions to their corresponding buildings in the inventory. 

Step 6 Obtain data on the speed limit, traffic direction, and routes footprint from OSM and 

the State DOT; estimate the free-flow speed of urban streets using Google Maps data; create a 

graph model of the road network; assign the attributes of each street to the corresponding edge; 

Step 7 Spatially join the road network model with the base map from Step 3.  

3.2.4.3.3 Social System 

The community’s social capacity in Onslow Testbed is represented using the Social 

Vulnerability Score (SVS) developed by S. A. Enderami and E. J. Sutley (2022) to serve the 
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purpose of testbed development. The SVS is a scalable composite index that overcomes two 

important limitations of existing place-based social vulnerability indices: it is constructed using an 

approach that does not decrease in validity with changing spatial resolution, and it only needs to 

be calculated for the geographic area of interest, instead of for the entire county thereby 

significantly reducing computational effort for testbed developers and users. The SVS synthesizes 

a set of demographics from the U.S. Census database at the desired location and yields a number, 

called a score, that represents the relative social vulnerability with respect to its national average. 

The resulting scores are mapped into five zones, ranging from very low vulnerability (zone 1) to 

very high (zone 5). Details on SVS development and verification can be found at (S. A. Enderami 

& E. J. Sutley, 2022). The open-source code published by S. A. Enderami and E. Sutley (2022), 

was used to map the social vulnerability of census block groups in the testbed area using ACS 

2015-2020 data (U.S. Census, 2022), as its results are shown in Figure 23. As a point of note, the 

households are evenly distributed among census blocks, and a larger census block does not 

necessarily indicate a larger population. 



118 
 

 

 

Figure 23. Mapped SVS zones at the census block group level in Onslow Testbed 

3.2.4.4 Onslow Testbed Verification and Validation 

The wind model in the hazard module was validated by comparing the estimated peak gust 

wind speed with data recorded during Hurricane Helene. For example, the peak gust wind speed 

recorded during Hurricane Helen was identical to the value estimated by the incorporated wind 

model, almost 240 km/h. No further V&V for using the FEMA flood hazard map is needed since 

we only use the simulation results of a validated flood model in the hazard module. The validity 

of data used for developing the testbed’s physical system was verified, as explained in Section 

3.10.3.1. Similar to the FEMA flood hazard maps, using the SVS to represent the testbed’s social 

capacity does not need any additional V&V. A detailed description of evaluating the external 

validity and internal robustness of the SVS can be found in S. A. Enderami and E. J. Sutley (2022). 

To V&V the testbed as an integrated system, we require damage survey results after 

Hurricane Helene, which we were not able to find. Importantly, the building inventory and 
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population data used in testbed development are modern, while hurricane Helen is 70 years old. 

Thus, even if this historical data were available, it could not validate damage analysis outcomes 

since the population and building inventory are totally different now than then. Thus, In this 

example, the reliability of each testbed's components was independently verified by comparing the 

outcomes to published similar research results and relying on the authors' engineering judgment. 

3.2.4.5 Onslow Testbed Visualization and Publication 

In the end, all testbed components, including the Python scripts, Jupyter Notebooks, GIS 

files, hazard models, inventory datasets, and geographical data files were integrated into a package 

to constitute the Onslow Testbed. The package and the testbed's supporting documents (e.g. data 

cleaning process) are available on DesignSafe-CI for re-use and further development. 

Figure 24 illustrates an overview of how the proposed testbed development workflow was 

implemented to establish the Onslow Testbed. 
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Figure 24. Onslow Testbed development workflow 
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3.2.5 Conclusions 

Virtual testbeds are being developed and used across the community resilience literature 

to serve the purpose of V&V. As computational technologies advance, the interest in developing 

and using virtual community resilience testbeds is rapidly growing among researchers, however, 

there is no apparent standardized procedure for establishing virtual community resilience testbeds. 

The guideline proposed in this paper systematizes the development of virtual testbeds and 

facilitates the reuse of a testbed by researchers other than those who primarily established it. It is 

critical that the research community reuses existing testbeds in their research to advance the state 

of the knowledge on community resilience. To resue a testbed, only access to the testbed’s datasets 

and chaining algorithms is not enough. The testbed users should also be aware of data procurement 

and processing procedures, modeling assumptions in testbed creation, approaches applied for 

testbed verification and validation, and the results of this phase. The testbed development 

procedure introduced in this paper fairly addresses this issue as well. 

Community resilience cuts across different stressors (natural, man-made), scales (national, 

state, local), and community dimensions (physical, natural, cultural, human, social, financial, 

political), and a community resilience testbed should be aligned with all these considerations. Our 

proposed testbed development practice only discusses civil infrastructure networks and 

population-focused social and economic systems, leaving out other critical systems such as 

education, public safety, and healthcare. However, the introduced approach boosts multi-, inter-, 

and transdisciplinary collaborations on community resilience research and provides ample 

opportunity to incorporate more fitting social and economic phenomena and theories into testbeds. 

This contribution leads to developing more balanced testbeds with more evenly-evolved 
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community modules which are needed to accommodate next-generation numerical models of 

community resilience. 

Aside from introducing the current data resources to testbed developers, a secondary 

outcome of this study is to aid researchers in understanding the existing shortages of high-

resolution data on social, economic, and infrastructure systems and identifying research needs and 

future direction in this field. As is showcased in the paper, developing machine learning-based 

predictive models to fill in the data gaps in the testbed development process is an evolving research 

area. In addition, more longitudinal studies are needed to establish diverse testbeds representing a 

variety of communities under different circumstances and hazards. This also leads to the 

opportunity of developing a uniform community-level taxonomy for data collection for post-

disaster reconnaissance and advances current practices.
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Chapter 41: Social Vulnerability Score: a Scalable Index for Representing 
Social Vulnerability in Virtual Community Resilience Testbeds 

Incorporating social systems and phenomena into virtual community resilience testbeds is 

uncommon but becoming increasingly important. Social vulnerability indices are a convenient way 

to account for differential experiences and starting conditions of the population in resilience 

assessments. This paper proposes a scalable index, termed Social Vulnerability Score (SVS), to 

serve the purpose of testbed development. The SVS overcomes two important limitations of 

existing indices: it is constructed using an approach that does not decrease in validity with 

changing spatial resolution, and it only needs to be calculated for the geographic area of interest, 

instead of for the entire county thereby significantly reducing computational effort for testbed 

developers and users. The proposed SVS aggregates the ratio of a set of demographics from U.S. 

Census datasets at the desired location against their national average values. The resulting scores 

are mapped into five levels, called zones, ranging from very low vulnerability (zone 1) to very 

high (zone 5). The validity of the SVS was investigated through a regression analysis of flood 

outcomes in Lumberton, North Carolina caused by Hurricane Matthew in 2016. The resulting 

correlations between the SVS zones and post-disaster outcomes of household dislocation and home 

repair times match the social vulnerability theory. The paper concludes with a comparison between 

the SVS and two existing social vulnerability indices at the census tract level for the State of 

Kansas. 

                                                 

1 This chapter is based on a manuscript in review with this dissertation's author as the first author: 

Enderami, S. A., & Sutley, E. J. (2022). Social Vulnerability Score: a Scalable Index for Representing Social 
Vulnerability in Virtual Community Resilience Testbeds. Natural Hazards, PREPRINT (Version 1) available at 
Research Square. https://doi.org/10.21203/rs.3.rs-2113725/v1 © 2022 Springer 
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4.1 Introduction 

Disasters occur at the intersection of hazard exposure and vulnerability, where that 

vulnerability can be physical or social, but is the product of society (Mileti, 1999; Tierney, 2014). 

A well-documented and fundamental canon to disaster research is that there is no such thing as a 

natural disaster (Squires & Hartman, 2006). Rather, disasters are the direct result of society-made 

vulnerabilities, such as poor structural design and poor land-use planning, as well as a long history 

of policies distilling social inequalities, such as systemic racism. Social vulnerability is defined as 

“the characteristics of a person or group and their situation that influence their capacity to 

anticipate, cope with, resist and recover from the impacts of a natural hazard” (Blaikie et al., 2003). 

Social vulnerability thus implies an increased susceptibility to harm or negative outcomes which 

is based on pre-existing social characteristics stemming from race, ethnicity, income, education, 

disability, tenure, and their intersection. 

Decades of disaster research have demonstrated that disasters do not affect all members of 

society equally (Fothergill & Peek, 2004; Sutley & Hamideh, 2020). Important social, physical, 

economic, cultural, and political factors drive people, households, and communities to be more or 

less vulnerable (Cutter, 1996). Fothergill and Peek (2004) illustrate how people with different 

socioeconomic status (1) perceive, prepare for, and respond to natural hazard risks, (2) have been 

differentially impacted physically and psychologically, and (3) are differentially affected by the 

social class during different stages along the disaster timeline. The vulnerability of poor people in 

the U.S. is exacerbated by the place and type of residence, building construction, and social 

exclusion, providing important implications for social equity and policy. Existing disaster recovery 

policies have further exacerbated social inequalities after disasters by setting qualifying criteria 

that exclude socially vulnerable people, including renters, the poor, and some cultures, from 
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accessing recovery resources (Kamel & Loukaitou-Sideris, 2004; Sutley & Hamideh, 2018; Van 

Zandt, 2019). As Peacock et al. (2005) point out, women and ethnic minorities and individuals of 

low income and little education have higher perceptions of risk from natural hazards. A common 

theme explaining the increased risk perception is attributed to the lack of power and resources 

often available to people within these groups. A lack of power and resources leads to less ability 

to make one’s own choices, less trust in institutions, and reduced likelihood to be in positions of 

relative power and control, altogether attributing to a higher social vulnerability. Hamideh and 

Rongerude (2018) point out how these very dynamics make public housing residents some of the 

most socially vulnerable members of communities given their lack of social and political capital. 

For a recent review of disaster and policy impacts on socially vulnerable populations, see Van 

Zandt (2019).  

Historically, the focus of most hazard research resilience studies, particularly those 

stemming from engineering fields, has been on the built environment and reducing physical 

vulnerabilities; however, when communities set their resilience goals, it is imperative to consider 

community-specific social, human, and cultural systems, and assess social vulnerabilities along 

with physical vulnerability in striving for resilience. For social vulnerability and its influence on 

resistance and recovery to be incorporated into community resilience analysis, there must be robust 

tools for quantitatively measuring social vulnerability. There is a long history of the social sciences 

documenting and measuring which factors, and to what extent those factors contribute to social 

vulnerability. Place-based social vulnerability indices are simplified powerful tools for measuring 

social vulnerability and are often presented via mapping. This simplification has been commonly 

adopted in the literature to progress the state of knowledge on social vulnerability in some ways 

while waiting for more robust studies on the intersectionality of social vulnerability to develop. 
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These indices serve as proxies for a community's social vulnerability status and their mapping is 

sufficient for identifying geographic areas that are quite different in abilities to respond to a natural 

hazard and bounce back from its impacts. The basic logic of social vulnerability mapping is to 

identify concentrations of populations with particular social vulnerability characteristics to identify 

areas within a community that will likely require special attention, planning efforts, and external 

support in responding to and recovering from hazards and disasters. The strength of social 

vulnerability indices to properly capture a community’s social status, combined with their ease of 

application and interpretation for non-experts, have made them a popular tool among researchers 

from engineering disciplines.  

The tendency to use place-based social vulnerability indices increased as the development 

and application of virtual testbeds for community resilience studies gained momentum. A 

community resilience testbed is a virtual “environment with enough supporting architecture and 

metadata to be representative of one or more systems such that the testbed can be used to (a) design 

experiments, (b) examine model or system integration, and (c) test theories” (S. Amin Enderami, 

Ram K. Mazumder, et al., 2022, p. 031220013). As natural hazards engineering research is shifting 

from component- and building-level modeling into the interdisciplinary space of community-level, 

the application of virtual community resilience testbed is growing. Virtual testbeds enable 

researchers to test, verify, and validate their community resilience algorithms at different scales 

and spatial resolutions. For this purpose, a community’s physical, social, and economic systems 

should be properly modeled and embedded in the associated testbed. Testbeds, however, lag 

behind in their ability to precisely model social and economic systems and have mainly focused 

on modeling buildings and physical infrastructure within a community (S. Amin Enderami, Ram 

K. Mazumder, et al., 2022). The community’s social and economic systems can be represented 
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using either a predictive model or a static indicator such as a place-based social vulnerability index. 

However, due to the complexities in modeling social systems, the use of place-based social 

vulnerability indices for characterizing a community's social capacity is more common among 

testbed developers, particularly those with engineering backgrounds. For instance, the Gotham 

City (Mahmoud & Chulahwat, 2018) and CLARC (Little et al., 2020) testbeds use place-based 

social vulnerability indices to represent the social capacity of their target communities. 

Despite the advantages of existing social vulnerability indices, there are limitations 

regarding their application with changes in spatial resolution and geographic territory, which are 

common needs for testbed development and use. Testbeds must be capable of being scaled into 

different levels (such as counties, census tracts, census block groups, etc.) and jurisdictions (for 

example towns, cities, and metropolitan areas) to meet the requirements of the desired resilience 

assessment. Often, the higher the spatial resolution, the more meaningful the results can be to 

inform decision-makers. The current most widely used social vulnerability indices use scale-

sensitive algorithms and were initially established at a county or census tract level (S. Cutter et al., 

2013; Cutter et al., 2003; Flanagan et al., 2011). Most testbeds are developed at a county or city-

scale, and thus only being able to evaluate social vulnerability once for the entire study area does 

not enable investigations of how differences in social vulnerability across the geographic area of 

interest may influence disaster impacts and outcomes.  Downscaling existing social vulnerability 

indices to a geographic unit finer than their original scale, regardless of challenges in obtaining 

high-resolution data, may lead to results that are inconsistent with their original-scale estimates 

(Rufat et al., 2019, 2021; Spielman et al., 2020; Tate, 2012). Furthermore, any change in spatial 

scale, geographic domain, or temporal change often requires a full national-level analysis of the 

social vulnerability index  (Spielman et al., 2020) creating extending the computational effort 
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required to use the index. To serve the purpose of testbed development purposes, a social 

vulnerability index that is not scale-sensitive and is capable of applying to other geographic 

territories and spatial resolutions (particularly finer than a county) is needed. 

The objective of this paper is to address this gap, by developing a scalable social 

vulnerability index to serve the purpose of community resilience testbed development. The paper 

begins with reviewing the state of knowledge in social vulnerability drivers and measuring social 

vulnerability to disasters through assessing a selection of key studies in the literature grounded on 

the household and housing experience. The paper continues by introducing the Social 

Vulnerability Score (SVS), a scalable social vulnerability index, and describing its construction 

methodology and validation process. The validity of the SVS is investigated using the disaster 

outcomes measured following the 2016 catastrophic flooding in the city of Lumberton, North 

Carolina due to Hurricane Matthew. The paper concludes with a discussion on the SVS estimates 

and comparing them with two well-known existing social vulnerability indices. 

4.2 Background on Social Vulnerability 

Over the past two decades, social science studies have identified social and institutional 

norms that contribute to social vulnerability. These studies altogether have provided a solid 

foundation for developing social vulnerability assessment tools and methods. In this section, a 

brief review of the current state of knowledge regarding social vulnerability drivers and 

quantitative models for measuring social vulnerability are presented. 

4.2.1 Social Vulnerability Drivers 

Previous studies have shown community members with certain social characteristics are 

more likely to experience more severe consequences of exposure to natural hazards (Bergstrand et 

al., 2015; Birkmann, 2013; Burton et al., 2018; Burton, 2010; Cutter et al., 2003; Daniel et al., 
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2022; Dintwa et al., 2019; Drakes et al., 2021; Dunning & Durden, 2011; Flanagan et al., 2011; 

Guillard-Gonçalves & Zêzere, 2018; Laska & Morrow, 2006; Liu & Li, 2015; Myers et al., 2008; 

National Research Council, 2006; Oliver-Smith, 2009; Van Zandt et al., 2012; Zahran et al., 2008). 

A summary of the most common social vulnerability drivers, namely households' race, ethnicity, 

tenure status, income, size, educational attainment, age, and disability, and the rationale for each 

driver are discussed herein. 

Race and ethnicity have often been considered social vulnerability drivers due to long-

standing systemic discrimination and racism leading to limited access to resources of all kinds, as 

well as lower income, and cultural and language barriers. Minority groups are more likely to 

occupy houses that are located in hazardous locations, and less likely to have connections to 

decision-makers and political capital (Cutter et al., 2003; Dunning & Durden, 2011; Flanagan et 

al., 2011; Laska & Morrow, 2006; Myers et al., 2008; National Research Council, 2006). However, 

different racial and ethnic identities among minority populations may even differently experience 

exposure to disasters. For example,  African Americans and Hispanics are more likely to live in 

areas at high risk of flooding from natural disasters than Asian people (Bakkensen & Ma, 2020). 

Renters tend to be more socially vulnerable than those who own their homes. Commonly 

referenced causes for greater social vulnerability for renters include having trouble finding shelter 

after a disaster, accessing or knowing about recovery financial aid programs, and having limited 

control over property-level hazard mitigation actions. Renters are also more likely to dislocate 

after a disaster with limited control over if, when, and for how long they dislocate, making them 

more susceptible to permanent dislocation. (S. Cutter et al., 2013; Cutter et al., 2003; Dunning & 

Durden, 2011) 
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Household income is directly associated with the number of financial resources that are 

available for households' risk mitigation and disaster recovery actions. Poor people are less likely 

to have savings, insurance, or social capital networks with strong financial capital to help them 

absorb losses and recover or political capital to lobby on their behalf for assistance. Low and very 

low income households have historically been excluded from accessing federal recovery resources 

as a result of overlooking policies that require them to demonstrate that damage is in no part due 

to deferred maintenance (Daniel et al., 2022; Hamideh & Rongerude, 2018). Low and very low 

income households are also more likely to live in substandard housing in a higher-risk location 

and may lack resources such as having a vehicle to evacuate in an emergency (Cutter et al., 2003; 

Dunning & Durden, 2011; Flanagan et al., 2011). In addition, the risk of post-disaster 

unemployment is greater for lower-wage workers (Laska & Morrow, 2006).  

Household size has been attributed to social vulnerability due to imposing a financial 

burden. Also, larger households are less likely to evacuate in an emergency because of difficulty 

in coordination, often being multigenerational with young children and elderly members, and 

difficulty in finding adequate shelter (Dintwa et al., 2019; Liu & Li, 2015). 

Educational Attainment is associated with the household’s social, financial, human, and 

political capitals (Daniel et al., 2022). Higher education is associated with higher salaries, easier 

access to public resources for hazard preparation and recovery, and more powerful networks with 

local authorities. On the contrary, for low-educated people, besides lower incomes, practical and 

bureaucratic obstacles can make it difficult for low-educated individuals to cope with and recover 

from disasters (Cutter et al., 2003; Flanagan et al., 2011). 

The elderly and very young are very likely to pose evacuation challenges, this is true for 

those with special medical needs and who live in nursing homes or hospitals, as well as for those 
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who live in their own homes (Dunning & Durden, 2011; Myers et al., 2008). Elderly people are 

more often on fixed incomes and may lack access to financial resources to help them prepare for 

and recover from a disaster. Elderly homeowners are more likely to have paid off any mortgage 

on their home and thus are less likely to opt into purchasing flood insurance. On the other hand, 

children also present important challenges with disasters, including evacuation decisions, and post-

disaster childcare (Dunning & Durden, 2011; Laska & Morrow, 2006) 

Disabled people face important challenges surrounding disasters, including evacuation 

challenges depending on the nature of their disability, as well as having access to information, 

potentially needing a dependent to assist in decision-making around preparedness, evacuation, and 

recovery, and also more likely being on a fixed income with limited resources at their disposal 

(Dunning & Durden, 2011; Laska & Morrow, 2006). Literature has also shown that disabled 

people are more likely to live in manufactured housing. Manufactured housing has its own set of 

limitations that contribute to the resident’s vulnerability, including being physically vulnerable to 

natural hazards, less likely that the resident carries insurance, and often complicated tenancy 

situations where the resident may own the home but rent the land and thus not be in control over 

dislocation and return decisions (Al-Rousan et al., 2015).  

The factors reviewed in this section are the ones adopted into the proposed SVS, and are 

described from the U.S. perspective. Importantly, there are many other factors that contribute to a 

household’s social vulnerability in the U.S., such as being a non-native English speaker, household 

size, and being a female-headed household, among others. Outside of the U.S., many of these 

factors still contribute to social vulnerability but potentially in different ways alongside other 

factors. Only considering the above six factors has three other important limitations. First, within 

the six factors described above are other factors that contribute to social vulnerability, such as not 
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owning a vehicle when someone is also low income. Second, these six factors are not necessarily 

independent in their influence on social vulnerability. For example, renters, those with limited 

education, and with disabilities are more likely to be lower income. Third, people have more than 

one characteristic that defines them; the influence of the intersectionality of factors on social 

vulnerability is poorly understood. Even when a specific factor, like income, is well-covered in 

the literature, quantifying its influence on social vulnerability and disaster impacts and outcomes, 

has important limitations. Social vulnerability itself is a qualitative concept. This paper takes the 

perspective that quantifying social vulnerability is important for its inclusion in community 

resilience analysis, but that it must be done with a thorough understanding of the limitations in 

doing such. The next section reviews the quantitative research on social vulnerability. 

4.2.2 Social Vulnerability Measurement 

Models serve an important role in understanding the intersection of humans, disasters, and 

the built environment. Social vulnerability is an important dynamic at this intersection that is 

difficult to model and validate given its multidimensional nature and inability to be directly 

observed and measured (Tate, 2012). Although social vulnerability is complex, situational, and 

dynamic, past research has made incredible strides forward in measuring social vulnerability 

during and after disasters. Qualitative disaster studies have widely recognized that multiple 

dimensions of diversity can have a profound effect on pre-disaster vulnerability and preparation 

measures, disaster impacts, and post-disaster recovery experiences (Tierney & Oliver‐Smith, 

2012). However, the intersection of these dimensions is poorly understood, and has not been 

systematically and quantitatively measured in the past. From our literature review, we found there 

are three types of quantitative studies on social vulnerability, those that quantify indicators, 

indices, and influencers. Indicators are quantitative variables intended to represent a characteristic 
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of a system of interest, e.g., the percent of African Americans in a community. Indicators can be 

composed of single or multiple variables, e.g., the percentage of minorities in a community. 

Alternatively, multiple indicators can be combined to construct composite indices, which attempt 

to distill the complexity of an entire system to a single measure. Lastly, influencer studies measure 

or model the influence that various social vulnerability indicators or composite indices have on 

specific dependent variables or outcomes. Different studies use different types of data to model 

social vulnerability, including (a) publicly accessible data, such as census data and tax assessment 

data; (b) primary data collected in the field before, during, or after a disaster; and (c) social media 

data. The data may be collected at different spatial scales and resolutions (e.g., state-, county-, 

census tract-, block group-, neighborhood-, and individual-levels). Given the focus of the present 

article, only examples of social vulnerability indices that use various types of data at different 

scales and resolutions are reviewed here. 

The social vulnerability index (SoVI) developed by Cutter et al. (2003) is perhaps the most 

frequently cited place-based social vulnerability index. The effort started with 250 variables and 

was reduced to 85 variables after testing for multicollinearity, but finally, 42 independent variables 

were used in the factor analysis. Through their principal component factor analysis, the 42 

indicators were reduced to 11 independent factors accounting for 76.4% of the variance in social 

vulnerability across all counties examined. The 11 independent factors included per capita income, 

median age, number of commercial establishments per square mile, the percent of the population 

employed in extractive industries, percent of housing units that are mobile homes, percent of the 

population that is African American, percent of the population that is Hispanic, percent of the 

population that is Native American, percent of the population that is Asian, percent of the 

population employed in service occupations, and percent of the population employed in 
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transportation, communication, and public utilities. The factor scores were incorporated into an 

additive model producing the social vulnerability index. The SoVI formulation has evolved over 

time in response to changes in the knowledge of vulnerability assessment and data collection 

methods. The SoVI was initiated using the U.S. 1990 decennial Census data, however, its most 

recent version (SoVI 2010–14) synthesizes data on 29 variables from the American Community 

Survey (ACS) 5-year survey (Cutter & Morath, 2013). The SoVI 2010-14 was computed and 

mapped for all 3,141 counties and its value ranges from 9.6 (lowest) to 49.51 (highest) across the 

counties. The values were classified into five qualitative categories, from “Very Low” to “Very 

High,” using a mean and standard deviation. 

The SVI/CDC is another common place-based social vulnerability index and is developed 

by the U.S. Center for Disease Control and Prevention (Flanagan et al., 2011). Public health 

officials use the SVI/CDC to identify and map community members most likely to need support 

before, during, and after hazardous events. The index is composed of 15 equally weighted variables 

at the census tract that are classified into four overarching themes with the same level of 

importance. The 15 variables include below poverty, unemployed, income, no high school 

diploma, aged 65 or older, aged 17 or younger, civilian with a disability, single-parent households, 

minority, aged 5 or older who speaks English less than well, multi-unit structures, mobile homes, 

crowding, no vehicle, and group quarters. The four themes include (1) socioeconomic status, (2) 

household composition and disability, (3) minority status and language, and (4) housing type and 

transportation, where each theme represents an underlying dimension of social vulnerability. A 

percentile rank is calculated for each census tract over each of 15 variables. The percentile rank of 

variables is summed into each theme to produce a theme score. In the next step, the scores are 

summed, then the census tracts are ordered based on their summed scores to calculate the overall 
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percentile ranking. Lastly, a quartile classification system is used to classify the ranked census 

tracts, where the highest and lowest quartiles represent the highest and lowest socially vulnerable 

tracts, respectively. The CDC published social vulnerability maps and index values for the entire 

United States for the years 2000, 2010, 2014, 2016, and 2018. 

There are examples of using other social vulnerability indices in the literature. For example, 

Van Zandt et al. (2012) built a place-based social vulnerability index on the basis of the SoVI to 

be used for census block-level community-based planning. At this smaller scale, only 17 out of 29 

SoVI variables were available from public data sources. Through an unarticulated weighting 

system, each variable value was normalized to range from 0 to 1. These normalized indicators 

were then split into groups to form several composite indices of second-order social vulnerability 

measures (e.g., child care needs, transportation needs), and finally, all 17 normalized indicators 

were combined into a third-order hotspot index and mapped across Galveston, TX. 

In another study, Collins et al. (2009) developed a social vulnerability index to combine 

with physical vulnerability and map the risk of natural hazards in a metropolis that straddles the 

Mexico-United States border. The model measures social vulnerability by assessing four related 

elements including population, access to resources, socioeconomic status, and institutional 

capacity. Each of these elements is represented by a set of sociodemographic and economic 

variables with a value ranging from 0 to 1. Once all variables are computed, their average is 

calculated to create the index. The index values are then divided into quintiles and mapped. 

Wu et al. (2002) employed a modified version of the methodology adopted by Cutter et al. 

(2000) and calculated a vulnerability index using only 9 demographic variables taken from the 

1990 US Census block statistics. The list of variables includes total population, housing units; the 

number of females, non-white residents, people under 18, people over 60, female-headed single-
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parent households, renter-occupied housing units, and median house value. The model calculates 

the ratio of each variable’s value in each census block against the maximum value for the variable 

in the county. The ratios range from 0 to 1; higher index values represent higher vulnerability. The 

arithmetic mean of these 9 variables for each census block was defined as the social vulnerability 

index. Then, the values were divided into quartiles, labeled respectively as low, moderate, high, 

and very high social vulnerability regions. 

Montz and Evans (2001) developed a new means of measuring social vulnerability based 

on the existing indices. According to Montz and Evans (2001), social vulnerability can be 

measured sufficiently by using only five socioeconomic characteristics, namely population under 

15, population over 65, a single female head of household, median household income, and 

population density. These variables were estimated for each census block in the study area and 

then aggregated by three different models to produce the index. The first model assumes that each 

variable contributes equally to differentiating vulnerability. The second model, inversely, was built 

on the assumption that different variables contribute differently to determining social vulnerability, 

and weights are assigned to each variable, based on their relative contribution. The third model 

includes a scaling scheme in addition to weighting the variables. The social vulnerability maps 

were created individually based on each model. Montz and Evans (2001) concluded that their first 

two models map social vulnerability similarly, but they may overestimate vulnerability in flood 

plains compared to the third model. 

Of the indices reviewed above, the SoVI and SVI/CDC are the most widely applied, 

however, they are not easily executable for testbed development purposes because (1) both the 

SoVI and SVI/CDC synthesize needed data from the ACS five-year surveys, which do not provide 

reliable data finer than the census tract level for the demographic variables they use (Coggins & 
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Jarmin, 2021); (2) multiple SoVI-based measurements of the vulnerability of the same place can 

yield significantly different results using the same data (Spielman et al., 2020); (3) SoVI and 

SVI/CDC are sensitive to their initial model’s spatial scale and any changes in their spatial 

resolution may result in estimates that are inconsistent with their original-scale estimates (Rufat et 

al., 2019). Similar limitations exist for other available social vulnerability indices which constrain 

their usage for testbed development purposes. Tate (2012) examined the configurations of 

available social vulnerability indices to determine how each stage of the index construction process 

contributes to its overall reliability and internal validation. The present study leverages Tate's 

(2012) findings and recommendations about improving the stability of the social vulnerability 

indices to fill an important niche in the literature: to develop an internally robust scalable social 

vulnerability index for the purpose of adoption in community resilience testbeds. 

4.3 Social Vulnerability Score Development  

This section introduces our methodology for developing the Social Vulnerability Score 

(SVS) and describes our rationale for its configuration. Although there is no standard procedure 

for developing social vulnerability indices, previous indices mostly have employed a similar multi-

stage process. The process typically starts with determining the index construction method, 

followed by specifying the intended social vulnerability indicators, their measurement units, 

weights, and aggregation approach. Each of these stages involves choices between multiple 

plausible alternatives whose differences distinguish various social vulnerability indices. In this 

study, the choices have been made based on Tate's (2012) research results to produce an internally 

robust index. 
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4.3.1 Construction Method 

The index construction method is an overarching stage in building social vulnerability 

indices that determines the index configuration (Tate, 2012). There are three common approaches 

in the literature for the construction of a composite social vulnerability index, namely deductive, 

hierarchical, and inductive approaches (Collins et al., 2009; Cutter et al., 2003; Cutter et al., 2000; 

Flanagan et al., 2011; Montz & Evans, 2001; Wu et al., 2002). 

Deductive approaches linearly combine designated indicators (often less than ten) to build 

the composite indicator. The hierarchical approach consists of dividing the designated indicators 

into subsets that share a common dimension of vulnerability and assigning a specific normalized 

weight for each indicator and subset based on the experts' knowledge. After the weighted indicators 

are aggregated in each subset, the subset scores are then combined to create the desired index. The 

SVI/CDC is the most renowned social vulnerability index with a hierarchical structure. However, 

the index technically follows the deductive approach since the themes are mathematically ignored 

in the aggregation phase by considering equal weight for all subsets and indicators (Rufat et al., 

2019). The inductive approach typically starts with a set of more than twenty indicators; these 

indicators are then reduced to a smaller set of latent factors by the means of statistical methods 

such as Factor Analysis or Principal Component Analysis. The intended indicator is constructed 

by combining these factors. The SoVI is perhaps the most common index that is constructed based 

on the inductive approach. 

Tate (2012), Rufat et al. (2019), and Burton et al. (2018) studies illuminate that each 

construction approach has its specific pros and cons and none of them can be argued to be 

inherently better or worse than the others. Evaluating the strength of the index depends on the 

specific situation in which it is being used. For example, the inductive approach is highly 
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dependent on its model spatial resolution (Tate, 2012), which makes it an inappropriate method 

for constructing a testbed-specific social vulnerability index. The deductive and hierarchical 

approaches are most sensitive to selected indicators’ measurement units and weights, respectively 

(Tate, 2012). Thus, the deductive approach is used for constructing the SVS as it is more feasible 

to define an appropriate measuring unit for selected indicators than to determine each indicator’s 

contribution to social vulnerability and assign weights accordingly.  

4.3.2 Indicators and their measurement units 

The indicators are generally selected based on the factors such as identified social 

vulnerability drivers and data availability. The primary motivation for introducing the SVS is to 

use it for developing community resilience testbeds. Given that testbeds are intended to be used 

for years or decades’ worth of research (S. Amin Enderami, Ram K. Mazumder, et al., 2022), the 

SVS will be grounded on the ACS five-year demographic estimates. On the other hand, ACS five-

year surveys do not provide reliable data at scales finer than the census block group (Coggins & 

Jarmin, 2021). Thus, according to common social vulnerability drivers, and constrained by the 

information that is available in the ACS five-year datasets, the SVS employs the set of social 

vulnerability indicators in Table 6. 
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Table 6. Social vulnerability indicators used for SVS development 

Social 
Characteristic  Social Vulnerability Indicator  Notation 

Race and Ethnicity Ratio of the percentage of white alone (not Hispanic or 
Latino) population at the intended location against its 
national average percentage 

R1  

Housing Tenure Ratio of owner-occupied housing unit rate at the 
intended location against its national average 
percentage 

R2  

Poverty Level Ratio of the percentage of population earning greater 
than official poverty threshold at the intended location 
against its national average percentage 

R3 

Education Level Ratio of the percentage of persons over age 25 with a 
high school diploma or higher education at the intended 
location against its national average percentage 

R4  

Age Ratio of the percentage of the population between 18 
and 65 years old without disability at the intended 
location against its national average percentage 

R5 Disability Status 

The indicators defined in Table 6 encapsulate all common social vulnerability drivers 

reviewed in Section 4.2.1 but capture them by five inverse compound variables such that a higher 

value indicates a lower level of social vulnerability. For example, the consequences of race and 

ethnicity were mixed so that all races and ethnicities, except those who identify themselves as 

white (non-Hispanic or Latino), are considered as a minority; then, the proportion of non-

minorities, who are indeed less vulnerable members, in the intended location is computed. As a 

result of using compound variables, a fewer number of variables are included in the SVS model, 

which reduces the possibility of data collection errors and uncertainty of the mean value, 

particularly for smaller sample sizes (Tate, 2012). The use of compound variables, however, may 

lead to undesirable implicit assumptions. For instance, by taking the compound variable ‘non-

Hispanic White’, the SVS inherently assumes that all minority races and ethnicities, such as Black, 

Native American, Asian, Hispanic, Latinx, etc, have the same influence on social vulnerability, 

which is not true. However, the specific differences are only partially understood, and quantifying 
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each racial and ethnic identity individually also has its limitations by inherently assuming more is 

understood than what is actually known. Furthermore, the SVS uses the poverty level that takes 

both household size and income into account together. Less than high school education, for those 

25 and older, is taken as the cut-off for educational attainment in the SVS model since many jobs 

require at least a diploma or GED to qualify. The very young was defined as age 18 and younger 

according to the United Nations Convention on the Rights of the Child (Peek, 2008). 

The measuring unit characterizes how each indicator is represented in the model. The most 

common data presentation formats are numbers, percentages, and densities. Given that 

vulnerability is inherently a relative concept, SVS calculates each indicator as the ratio between 

the non-vulnerable population percentage at the desired location and the corresponding national 

average percentage. The percentage of the non-vulnerable population ranges from 0 to 100, with 

0 representing complete vulnerability and 100 indicating no vulnerability. Measuring a social 

characteristic at the desired location with respect to its national average enables analysis of relative 

vulnerability across the U.S. 

4.3.3 Weighting and aggregation 

The indicators are in terms of unitless ratios, so there is no need to normalize before the 

weighting and aggregation stages; regardless, deductive models are insensitive to weighting and 

aggregation approaches (Tate, 2012). Thus, the indicators are aggregated while equally weighted, 

which implies that their relative importance is the same. The SVS calculates the arithmetic mean 

of the indicator values at the location of interest, expressed as 

SVS = 
1
5
�Ri

5

i=1

 (1) 
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The resulting values can be used directly to compare the relative social vulnerability of 

different communities. Of note, a higher value of SVS indicates a lower level of vulnerability given 

that the indicators used in the SVS development process are inversely related to social 

vulnerability. 

 For ease of interpretation, the SVS was mapped to five discrete vulnerability categories, 

named zones using a standard deviation classification. The zones range from very low 

vulnerability (zone 1) to very high vulnerability (zone 5). The zones and the criteria used to define 

them are shown in Table 7. 

Table 7. Social vulnerability zones 

 Vulnerability Description Criteria 
zone 1 Low  SVS > 1+ 1.5(std.) 

zone 2 Medium to Low 1+ 0.5(std.) < SVS < 1+ 1.5(std.) 

zone 3 Medium 1- 0.5(std.) < SVS < 1+ 0.5(std.) 

zone 4 Medium to High 1- 1.5(std.) < SVS < 1- 0.5(std.) 

zone 5 High SVS < 1- 1.5(std.) 

In Table 7, (std.) represents the standard deviation of the SVS values for the entire country. 

Since 99.7% of values following a normal distribution lie within 3 standard deviations of the mean 

(Ang & Tang, 2007), (std.) value can be estimated as: 

std. = 
(𝑆𝑆𝑆𝑆𝑆𝑆)𝑚𝑚𝑚𝑚𝑚𝑚 − 1

3  (2) 

where (SVS)max is the maximum possible, and one represents the mean of SVS values for 

the entire country. Equation (1) gives the maximum of the SVS if the percentage of the non-

vulnerable population at the desired location equals 100 for all indicators in Table 6. Therefore, 

only the average of the reciprocal values of national average percentages of indicators in Table 6 

is required for calculating the (std) values. 
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For the convenience of testbed developers, the SVS calculation is automated using a 

Python script. The code is open source and published on DesignSafe-CI (S. A. Enderami & E. 

Sutley, 2022) for being used by other researchers to facilitate advances in current practice. The 

code takes the name of the intended state and county, desired spatial resolution (census tract or 

block group), and year as the input data. The output includes a geospatial data file (.csv) containing 

the SVS values and a choropleth map (.png) of the predicted social vulnerability zones. The code 

is only written for the spatial scales of census tract and block group given the lack of reliability in 

census data at higher resolutions. The SVS is capable of being applied to testbeds that require 

higher resolutions than the block group, including the block- and household-level, as will be 

demonstrated in Section 4.4.2.  

4.4 Validation of Social Vulnerability Score 

Validation is a major challenge with community resilience analysis given that simulations 

cannot be performed in real life, having the appropriate data is nearly impossible, and many of the 

concepts (e.g., social vulnerability) are immeasurable. Social vulnerability is a multidimensional 

qualitative concept that is not directly observable or measurable. Researchers have resorted to the 

use of outcome, socio-economic and demographic data collected from post-disaster household 

surveys as proxies to validate their social vulnerability models (Schneiderbauer & Ehrlich, 2006). 

These proxies range from physical damage and economic loss to population impacts such as 

mortality, dislocation, and mail delivery (Burton, 2010; Finch et al., 2010; Flanagan et al., 2011; 

Gall, 2007; Myers et al., 2008; Schmidtlein et al., 2011). In addition to such external validation 

efforts, which have been fairly successful, Tate (2012) explored the internal validity of common 

social vulnerability indices. 
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To externally validate how well the proposed SVS represents the social vulnerability of 

community members, we employed post-disaster household-level survey results on household 

dislocation, physical damage, and repair time of residential dwellings. The field data used in this 

paper are from the second wave of an ongoing longitudinal research project following the 2016 

hurricane-induced riverine flooding in the city of Lumberton, NC (E. J. Sutley et al., 2021). To 

internally validate the SVS, Tate’s (2012) findings were integrated into the SVS development to 

ensure internal robustness and stability, as described in Section 4.3. 

4.4.1 Background on Lumberton Longitudinal Field Study  

Lumberton is an inland city holding the county seat in predominantly rural Robeson 

County, North Carolina. Lumberton was one of the communities most impacted by Hurricanes 

Matthew (2016) and Florence (2018) due to the historic flooding of the Lumber River. The impacts 

of Hurricanes Matthew and Florence were exacerbated in the areas that were deprived in terms of 

health, wealth, and infrastructure. The community has significant racial diversity of black/African-

American, Native American, and white populations, with a median annual income well below the 

national average, and a poverty rate nearly 2.5 times as high as the national poverty rate (see Table 

8 for Lumberton demographics). To illustrate the community’s socio-demographic makeup prior 

to the Hurricane Matthew flooding in comparison to the national averages, the U.S. Census 2016 

ACS 5-year estimates were used, as presented in Table 8. 
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Table 8. Comparison of demographics between Lumberton and U.S. based on 2016 ACS 5-year census data 

Demographics  Lumberton United States 
Population (count)  21,646 318,558,162 

Race 

White (%) 38.4 73.4 
Black/African American (%) 37.5 12.6 
Native American/ American Indian (%) 12.8 0.8 
Two or more races (%) 8.8 10.1 
Other (%) 2.5 3.1 

Ethnicity Not Hispanic or Latino (%) 90.6 82.7 
Hispanic or Latino (%) 9.4 17.3 

Tenure Owner occupied (%) 63.6 45.5 
Renter occupied (%) 36.4 54.5 

Education 

Less than high school (%) 23.0 13.0 
High school (%) 30.9 27.5 
Some college (%) 20.1 21.0 
Associate's (%) 8.4 8.2 
Bachelor's (%) 11.1 18.8 
Master's or higher (%) 6.5 11.5 

Income Median annual (USD) 31,126 55,322 

 Below poverty (%) 15.1 35.1 

 Above poverty (%) 84.8 64.9 

Age Under 18 years (%) 26.2 23.1 

 18 to 64 years (%) 59.6 62.4 

 64 years and over (%) 14.2 14.5 

Disability With at least one type of disability 15.1 12.5 
No disability 84.9 87.5 

In October 2016, Lumberton was catastrophically flooded due to an intensive period of 

seasonal rain followed by rains by Hurricane Matthew. Many areas of Lumberton were inundated 

for several days, which resulted in disruption in businesses, power, communication, water, and 

transportation networks as well as significant building damage and lasting social impacts (van de 

Lindt et al., 2020). 

In November 2016, a team of researchers from the Center of Excellence for Risk-Based 

Community Resilience Planning, alongside researchers at the National Institute of Standards and 

Technology’s Community Resilience Group, launched a longitudinal study on the impacts and 

recovery of Lumberton. At the time of this writing, five waves of systematic data collection have 
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been completed in Lumberton, each with its own goals and objectives, and the study continues. 

The first field study, denoted as Wave 1, was performed in November 2016, and collected 

household and housing data on initial damage and dislocation. The household and housing data 

were collected through door-to-door surveys across a random sample of 568 housing units (van de 

Lindt et al., 2018). A probability proportion-to-size random sampling procedure selected census 

blocks located in high probability flooding areas over those in low probability flooding areas at a 

3-to-1 weight. Eight housing units were then randomly selected from each census block, along 

with two alternate housing units per block in case a unit needed replacing; ultimately, 568 housing 

units were visited to implement the survey. 

The second field study, denoted as Wave 2 and performed in January 2018, conducted 

systematic surveys of the same housing units as in Wave 1 with the overall intention to document 

recovery progress (E. J. Sutley et al., 2021). This paper uses post-disaster outcome data collected 

from household surveys during Wave 2. The data collection has continued, including a systematic 

survey immediately after Hurricane Florence in September 2018, a recovery follow-up in April 

2019 (Helgeson et al., 2021), a virtual data collection during the COVID-19 pandemic in Spring 

2021 (Watson et al., forthcoming), and recovery follow-up in June 2022. 

4.4.2 Measurement of Social Vulnerability Score 

The SVS values were calculated for each census block group within the city of Lumberton 

using 2016 ACS 5-year census data to correspond to the timing of Hurricane Matthew. 

Corresponding social vulnerability zones were then assigned, as shown in Figure 25(a). No block 

group was assigned a low vulnerability level. There are likely individual households who fall into 

the lowest vulnerability level; however, at the block group level, these households did not represent 

a majority in a given neighborhood and thus this outcome is consistent with field study findings. 
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As shown Figure 25(b) the inundated area caused by the 2016 Lumber River flooding primarily 

overlaps with block groups with high social vulnerability, as is expected due to social vulnerability 

theory (Fothergill & Peek, 2004). 

  
Figure 25. a) Mapped SVS zones at the block group level; b) flood inundation map after 2016 Hurricane 

Matthew in Lumberton 

To utilize the Lumberton survey results for validation, a household-level estimate of social 

vulnerability is required. Thus, every household within the study area was randomly assigned a 

value based on their corresponding SVS zone and the ranges described in Table 9. To address the 

consequences of spatial clustering of sociodemographic characteristics in real-world communities, 

each zone is assumed to have a small percentage of households with higher or lower social 

vulnerability. For example, in zone 2, the likelihood of households with values ranging between 

(0.2 to 0.4), (0 to 0.2), and (0.4 to 1.0) are 85%, 5%, and 10%, respectively. These ranges were 

established based on the authors' judgment and can be revised based on a given testbed developer's 

judgment as needed. In Table 9, the footnote describes the defined social vulnerability levels for 

households based on quantitative values. 

a b 
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Table 9. Household Social Vulnerability Values based on SVS Zone 

SVS 
Zone Range 1* Likelihood 

of Range 1 Range 2 Likelihood 
of Range 2 Range 3 Likelihood 

of Range 3 

zone 1 0.0 - 0.2 95% 0.2 - 1.0 5% - - 

zone 2 0.2 - 0.4 85% 0.0 - 0.2 5% 0.4 - 1.0 10% 

zone 3 0.4 - 0.6 80% 0.0 - 0.4 10% 0.6 - 1.0 10% 

zone 4 0.6 - 0.8 85% 0.0 - 0.6 10% 0.8 - 1.0 5% 

zone 5 0.8 - 1.0 95% 0.0 - 0.8 5% - - 

*value < 0.2 → low; 
 0.2 ≤ value< 0.4 → medium to low; 
 0.4 ≤ value <0.6 → medium; 
 0.6 ≤ value <0.8 → medium to high; 
 0.8≤ value → high; 

 

Figure 26 displays the social vulnerability level assigned to the households occupying the 568 

housing units in the study area. As can be seen, some households have been assigned a low social 

vulnerability level despite the block groups not being assigned zone 1. 

  

 

Figure 26. Household social vulnerability levels for sampled housing units in corresponding block group-level 
SVS zones 
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4.4.3 Household Dislocation 

In Wave 2, 166 (of 568) households reported information on dislocation and confirmed 

they were living in their current home at the time of Hurricane Matthew. Approximately 28% of 

these respondents indicated they did not dislocate, and 60% reported that their household 

dislocated for at least one day. The households’ self-reported dislocation time due to Hurricane 

Matthew was used to validate the SVS. Figure 27(a) illustrates household dislocation time versus 

SVS-based social vulnerability level for the 166 households that reported their dislocation 

experience. The average dislocation time for the households in each social vulnerability category 

is also shown in Figure 27(a). In total, the average dislocation time increases as social vulnerability 

increases. For instance, the average dislocation time for households with low, medium, and high 

social vulnerability is 2, 15, and 102 days, respectively. 

Figure 27(b) provides the percentage of dislocated households in each social vulnerability 

level who have been dislocated for more than one week, more than one month, and more than three 

months. A similar trend can be observed in Figure 27(b) as in Figure 27(a), where the direct 

correlation between households’ average dislocation time and social vulnerability becomes more 

significant as the dislocation time increases. As can be seen in Figure 27(b), the percentage of high 

socially vulnerable households who were dislocated for more than one week (66%) is nearly three 

times more than that of medium to low vulnerable households (24%). For households who have 

dislocated for more than one month, the corresponding percentage consistently increases from 

12% for medium to low to 15% for medium, 19% for medium to high, and 39% for high social 

vulnerability. In addition, only high and medium to high socially vulnerable households 

experienced dislocation for more than three months, at 26% and 10%, respectively. These findings 

are indicative of households who have different social and political capital, and thus different 
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dislocation experiences across social vulnerability levels (Sutley & Hamideh, 2020). The findings 

also confirm the trend detected in Figure 27(a) that households with higher social vulnerability are 

more likely to dislocate for longer periods, thereby validating the reliability of the SVS-based 

estimates. 

(a) 

 

(b) 

 

Figure 27. a) Household dislocation time versus social vulnerability level; b) Percentage of households 
dislocated for selected durations at each social vulnerability level 

4.4.4 Physical Damage and Repair Time of Residential Dwellings 

A total of 107 households reported some initial physical damage to their homes during 

Wave 2; of these, 61 respondents indicated that their homes had been completely repaired at the 

time of Wave 2. One of the 61 households reported the highest level of damage to their home; this 
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record has been deemed an outlier and thus removed from the present analysis. We also excluded 

households assigned low, medium to low, and medium levels of social vulnerability as they totaled 

six records only. This finally resulted in a dataset including 54 records. 

The least-square linear regression model was applied to resident-reported repair time, 

damage level, and social vulnerability data. The number of days to repair completion was the 

dependent variable while damage and social vulnerability levels were used as binary independent 

variables. A summary of the regression analysis results is presented in Table 10. 

Table 10. Ordinary Least Square Regression Results 

R-squared: 0.336 F-statistic: 8.449 
Adj. R-squared: 0.297 Significance (F-statistics): 0.000121 

Independent † 
Variables 

Medium to High 
Social Vul. 

High 
Social Vul. 

Minor 
Damage 

Moderate 
Damage 

Severe 
Damage 

Coefficient 86.31 * 90.97 ** -23.68 42.63 * 158.33 ** 
† dependent variable: repair time (days) 
* p-value < 0.05 
** p-value < 0.001 
 

The top two rows of Table 10 report how well the overall regression model fits the dataset 

by measuring the R-squared and the significance of the F-statistic. Almost 34% of the variance in 

repair time is accounted for by the dependent variables included in the model (R2=33.6%), which 

fairly explains the relationship between independent and dependent variables. Of note, there are 

several other rational and irrational factors that affect repair time, such as decision-making time, 

time to hire a contractor or repair crew, and time to obtain a permit, for example (Comerio, 2006; 

Comerio & Blecher, 2010). The p-value associated with the F-statistic (i.e. 0.000121) is far less 

than common significance levels (e.g., 0.01 and 0.05), meaning the independent variables in the 

model improve the fit of the model, and the regression model as a whole is statistically significant. 

The bottom row of Table 10 provides the regression coefficients and their statistical significance. 

On average it took 91 days longer to complete repairs for households with high social vulnerability. 
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Moderately and severely damaged homes took 43 and 158 days longer, respectively, to be 

completely repaired compared to homes with minor damage net of other factors. This demonstrates 

how social vulnerability alongside physical damage strongly affects repair time. These findings, 

overall, confirm the reliability of the social vulnerability index developed in this paper, at least for 

medium to highly vulnerable households. For further investigation of the SVS's capability to 

consistently interpret disaster outcomes under different circumstances, more empirical research 

and longitudinal post-disaster studies are required, considering a variety of places, hazard types, 

and temporal and spatial scales. 

4.5 Comparison of SVS with Two Well-known Social Vulnerability Indices 

The validity of the SVS was examined empirically using outcomes from a previous disaster 

in the previous section. This section discusses the performance of the SVS by comparing its 

estimated zones with those of two well-known and widely-adopted social vulnerability indices, 

namely the SoVI and SVI/CDC. For comparison sake, it is important to note that the SVI/CDC 

divides the estimated social vulnerability values into four quartiles, where the SVS and SoVI use 

the standard deviation and map vulnerability values into five zones. Thus, because of the different 

categorization criteria across indices, SVS and SoVI zones overlap with more than one 

vulnerability category defined by SVI/CDC, as illustrated in Figure 28. The SVI/CDC quartile-

based categorizing criterion imposes identical numbers of census tracts to each social vulnerability 

level, which is mathematically sound but does not necessarily align with social vulnerability 

theory. With these caveats in mind, in this section, we discuss SVS, SoVI, and SVI/CDC estimates 

through a pairwise comparison between their estimated social vulnerability zones at the census 

tract level. The National Risk Index dataset, designed and built by FEMA, provides SoVI estimates 

at the census tract level for all 50 states in the United States (Zuzak et al., 2021). The census tract-
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level estimate SVI/CDC are also publicly available (Centers for Disease Control and Prevention 

et al., 2018). The results are shown in Figure 29 for each census tract within the State of Kansas, 

where the authors are located. 

 
Figure 28. Social Vulnerability Categories 
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(a) 

SVS:  

(b) 

SoVI:  

(c) 

SVS:  
Figure 29. Paired comparison between (a) SVS to SVI/CDC, (b) CoVI to SVI/DCD, and (c) SVS to SoVI, in 

measuring social vulnerability in terms of the estimated number of census tracts in each social 
vulnerability zone in the State of Kansas 
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The SVS, SoVI, and SVI/CDC estimates are all fairly aligned in Figure 29 although they 

do not exactly match. Figure 29(a) shows the dispersion of social vulnerability estimated using 

SVI/CDC in each SVS zone in terms of the number of census tracts at different vulnerability levels.  

For zones 1, 4, and 5, the vulnerability levels estimated by SVI/CDC are aligned with the SVS 

zones. For zones 2 and 3, about 24% and 40% of the census tracts, respectively, mismatch due to 

the different categorization criteria across indices. Similar discrepancies can be seen for zones 2 

and 3 in Figure 29(b), where the dispersion of social vulnerability levels estimated using SVI/CDC 

in each SoVI zone is demonstrated. As shown in Figure 29(a) and Figure 29(b), due to the quartile-

based categorization criterion, SVI/CDC estimated exactly the same number of low, moderate to 

low, moderate to high, and high socially vulnerable census tracts for Kansas, whereas the SoVI 

and SVS capture different proportions across zones. Figure 29(c) displays the distribution of SoVI 

categories in terms of the number of census tracts in each SVS zone. None of the 46 census tracts 

in the SVS zone 5 are estimated to be in the SoVI very high category, which is inconsistent with 

the authors' lived experience in the study area and SVI/CDC estimates. For example, the five SoVI 

relatively low vulnerable census tracts in SVS Zone 5 in Figure 29(c) are estimated to be in high 

or medium to high vulnerability categories by SVI/CDC. This mismatch is aligned with Tate’s 

findings (2013) that SoVI does not provide accurate estimates of social vulnerability in census 

tracts where social vulnerability is high. 

4.6 Conclusions 

The concept of measuring social vulnerability using a single numeric index is a bold 

simplifying assumption. However, social vulnerability indices are conducive tools to advance the 

state of knowledge in community-related studies, while waiting for emerging more robust 

approaches to measure social vulnerability. Public health officials, hazard mitigation planners, 
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community resilience researchers, and testbed developers use such indices to identify differences 

in social vulnerability across a population to help understand where resources may be needed to 

better prepare for and respond to a natural hazard and bounce back from its impact. However, the 

literature review presented in this paper illuminated that experts and policy-makers should be 

cautious in the application of these indices in some circumstances particularly based on limitations 

in index construction (see Tate (2012) for more detail), and in the extreme simplification of 

capturing social vulnerability using factors conveniently found in census data. 

While the proposed SVS is still subject to some of the same limitations in simplifying a 

measurement of social vulnerability, it offers important advantages to existing indices. The SVS 

(a) does not decrease in reliability as a function of geographic scale, so long as the data is reliable; 

(b) only requires calculation for the specific area of interest; (c) measures social vulnerability as a 

relative quantity to the national context; (d) does not yield different estimates of social 

vulnerability of the same place, using the same data, with changes in the geographic scope of the 

study area; and (e) uses fewer variables which reduces uncertainty in the influence of different 

factors on social vulnerability and reduces uncertainty transferred through the data itself in the 

final estimate. Thus the SVS presented here addresses the need for a social vulnerability index that 

more consistently explains disaster outcomes, can be used at various spatial scales, and requires 

minimal data inputs and computational efforts making it particularly suitable for use in virtual 

community resilience testbeds. 

The SVS prediction was validated here using household-level disaster outcomes measured 

following the 2016 flooding in Lumberton, NC. Even still, more research is needed to understand 

how the SVS holds up to pre-disaster and other post-disaster outcomes beyond those evaluated 

here because of the dynamic nature of social vulnerability which can emerge differently depending 
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on the context and situation. Finally, comparing the SVS and SoVI measurements with SVI/CDC 

demonstrated general agreement with some discrepancies based on limitations associated with 

each index. This paper does not dwell on the question of whether the SVS estimates compared to 

other widely used social vulnerability indices provides more accurate results. Instead, the paper 

seeks to open up the discussion on the need for the construction of a scalable social vulnerability 

index and proposes the SVS as a conceptually based, yet practically useful, social vulnerability 

index to serve the purpose of community resilience testbed development. 

In addition to being scalable, the next generation of social vulnerability indices should 

account for the intersectionality of factors and explore variables outside of census data to truly 

understand what contributes to social vulnerability.
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Chapter 5: 1 Conceptualizing and Measuring Accessibility to Essential 
Services for Community Resilience 

Accessibility is an abstract phenomenon that can be influenced by the characteristics of 

both service users and service providers. For years, quick restoration of access to essential services 

has been referred to be of paramount importance in community resilience and recovery. Yet, there 

is no consensus on how access should be defined, measured, or employed. Distance-based metrics, 

although common, cannot fully proxy accessibility dimensions for community resilience purposes. 

Using the term product for any type of goods and services, this paper defines accessibility as the 

actual use of available products with a reasonable amount of effort and cost. In compliance with 

this definition, accessibility should be addressed from six different aspects, namely, proximity, 

availability, adequacy, acceptability, affordability, and awareness. We argue, among these six 

dimensions of accessibility, availability, adequacy, and acceptability are dependent on the 

functionality of the product provider. Utilizing concepts from organizational functionality, we 

propose quantitative, temporally-based metrics for accessibility. The metrics calculate the ratio of 

post-disaster access time to the intended product against its pre-disaster time and yield a unitless 

ratio between zero and one, with zero expressing a complete accessibility loss and one proxying 

no loss of accessibility. The metrics are illustrated using data collected following the 2016 flood 

in Lumberton, North Carolina after Hurricane Matthew. The metrics are also applied to 

demonstrate how accessibility to schools and education recovery alter inequitably across the 

                                                 

1 This chapter is based on manuscript of a journal paper with this dissertation's author as the first author: 

Enderami, S. A., Sutley, E. J., & Helgeson, J. (n.d). Conceptualizing and Measuring Accessibility to Essential 
Services for Community Resilience. To be submitted to the Journal Computers, Environment and Urban Systems 
in February 2023. 
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Lumberton community. The paper concludes by discussing issues and barriers related to 

developing and validating accessibility metrics, and areas for future research. 

5.1 Introduction 

Conceptualizing and measuring community members’ access to addressing their needs is 

a classic but still ongoing field of research that has been approached from multiple perspectives 

(e.g., urban planning, social justice, equity, and equality), in different contexts (e.g., education, 

public health, community resilience), and various scales (e.g., federal, state, and local) (Dempsey 

et al., 2011; Docekala et al., 2020; Dong, Esmalian, et al., 2020; Logan & Guikema, 2020; Logan 

et al., 2019; Loreti et al., 2022; Paschall et al., 2022; Penchansky & Thomas, 1981; Saurman, 2016; 

Talen, 2003; Talen & Anselin, 1998; Thomson et al., 2020; Vaughan et al., 2013; Y. Wang et al., 

2021; Williams et al., 2020). These studies, altogether, have provided the foundation necessary for 

advancing the state of knowledge on quantifying and measuring access. Even still, in the context 

of community resilience, more research is needed to advance the measurement of access beyond 

simply physical access. There is no doubt that access to goods and services such as sustenance, 

education, healthcare, and recreation, in addition to shelter and typical critical infrastructure, is 

crucial for communities to function (Dempsey et al., 2011). Lack of access to such essential 

services disrupts quality of life and may lead to permanent relocation (Contreras et al., 2017). To 

improve resilience, communities need to ensure that organizations providing essential products 

will be functional within an acceptable period after a disaster, while also ensuring that people have 

access to (i.e., are actually using) the offered products (Enderami et al., 2021). Here, the term 

product captures both goods and services, either tangible or intangible, offered by the organizations 

to community members. 
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The concept of access has not been precisely defined and is somewhat ambiguous in 

community resilience literature. Access has most often been employed as the presence of physical 

access to a functional organization and characterized from the potential product perspective, 

without including the users' characteristics (Logan & Guikema, 2020). This perception of access 

results in a bias in the frequency of functionality-focused frameworks for community resilience 

assessment in scholarly works. Additionally, distance-based indicators have been predominantly 

used to quantify accessibility. Proximity, which considers both physical access and distance, is the 

most widely applied distance-based proxy for measuring access in community resilience literature 

(Saxon, 2020). Proximity operates as a simple proxy for quantifying the ease of use in a non-

remote environment (Khan & Bhardwaj, 1994), but does not at all proxy accessibility in remote 

environments. Although proximity implicates the spatial distribution of access across the 

population, it does not capture whether the product is actually being used or the quality of that use. 

Physical access and organizational functionality are necessary components of access and represent 

the potential of use, but do not guarantee the actual use or real access (Khan & Bhardwaj, 1994) 

which is critically important for being able to evaluate and ensure equity. Real access, referred to 

herein as “accessibility”, occurs when products offered by functional organizations are being used 

by community members. 

In the context of community resilience, Logan and Guikema (2020) conducted a literature 

review on accessibility measurement methods across many disciplines and came up with six 

dimensions that have to be included for measuring accessibility to essential services in a 

community. These six dimensions are based on the five dimensions of access identified by 

Penchansky and Thomas (1981), including proximity, availability, adequacy, acceptability, and 

affordability, as well as awareness that was later appended to those five by Saurman (2016). In a 
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community resilience assessment, all six dimensions are crucial to ensure accessibility, and 

together these dimensions capture both user characteristics and intended product features. In 

practice, including these dimensions in measuring accessibility also requires a minimum suitable 

level for each dimension (Logan & Guikema, 2020). This minimum suitable level should be 

determined based on the community’s social, cultural, and financial characteristics and considering 

the intended product features. For example, vehicle ownership can affect the way the proximity 

threshold will be defined (Constas et al., 2014).  

Beyond proximity, the essence and scope of the other five dimensions depend on the 

context in which accessibility is applied. Taking Early Care and Education (ECE) as an example, 

ECE Access Guidebook (Friese et al., 2017) states that improving the quality of ECE, in addition 

to the availability of affordable ECE options near children's residences or parents’ workplaces, 

requires considering two other dimensions ECE accessibility:  (1) sufficient quality to meet the 

children’s age-appropriate needs, and (2) enough capacity to satisfy parents’ needs and preferences 

(e.g., providing care at non-traditional hours). Dimensions of accessibility may also change over 

time, before, during and after disasters, and as urbanization and technology advance. For example, 

in the case of ECE, researchers have recently added equity as another dimension for measuring 

accessibility to address disparities in the availability, affordability, and quality of ECE (Paschall 

et al., 2022; Thomson et al., 2020). 

Proximity, acceptability, adequacy, and awareness dimensions ensure that only a 

reasonable level of effort is needed for using the available product while affordability certifies that 

the product is available for use at a reasonable cost. Thus, we define accessibility to essential 

services as use of available products by community members with reasonable effort and cost to 

meet an essential need. The proposed definition bridges the gap between the community’s social, 
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cultural, and economic characteristics with conventional functionality-focused community 

resilience frameworks. The goal of this paper is to provide a means to operate aligned with our 

proposed definition of accessibility that captures the proximity, availability, acceptability, and 

adequacy dimensions of accessibility for the purpose of advancing community disaster resilience. 

As such, the remainder of this paper first elaborates on the concept of organizational functionality 

reconciling it with the dimensions of accessibility. Next, two quantitative metrics are developed 

for measuring temporally-varying, multi-dimensional accessibility. The metrics are illustrated 

considering accessibility to pharmacy and education services using the results of a longitudinal 

field study following the 2016 catastrophic flooding in the city of Lumberton, North Carolina after 

Hurricane Matthew. The paper concludes with a discussion of our findings during the development 

of accessibility metrics, potential remedies for addressing the challenges we faced, and areas for 

future research on incorporating accessibility in community resilience frameworks. 

5.2 Organizational Functionality, Accessibility, and Community Resilience 

5.2.1 Organizational Functionality 

Here, an organization is any entity in the community intended to provide products to the 

community to meet the needs of community members (Enderami et al., 2021). Social institutions 

(e.g., schools and healthcare facilities) and businesses are perhaps the most common examples of 

organizations within a community, although organization are not limited to these two categories. 

In this paper, we use the term organization for referring to social institutions and businesses within 

the community to set the focus on their users and products rather than the social and commercial 

aspects. 

Enderami et al. (2021) defined organizational functionality as “the quality of the 

performance of an organization and its ability to be used for its intended purposes”. Most, if not 
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all, organizations provide multiple products to their customers. To characterize organizational 

functionality, and its restoration after a disaster, Enderami et al. (2021) distinguished primary 

products from secondary products. Primary products are the main objective and intended purpose 

of an organization; any other offered product(s) are denoted as secondary products. For example, 

fuel may be the primary product of a gas station whereas snacks and a carwash may serve as 

secondary products of a gas station. A gas station without gas is not functional while a gas station, 

whose carwash is out of service only, is still serving its intended purpose of providing fuel. Thus, 

the availability of primary products is crucial, although not sufficient, for the functionality of the 

organization. For an organization to be considered functional, it must also operate at an acceptable 

level and provide adequate primary products even if some or all of the secondary products are still 

unavailable. 

Using a Fault Tree model, Enderami et al. (2021) identified essential components that 

contribute to the availability, acceptability, and adequacy of primary products in an organization. 

Physical space components (structural or non-structural), physical access, utilities, staff, and 

supply chain are generally crucial components for organizational functionality in non-remote 

environments. However, the COVID-19 pandemic has shown that many organizations can operate 

remotely. In a remote environment, the essential components evolve, and organizational 

functionality may no longer depend on the original physical space and physical access, yet 

accessibility is still very important. These concepts were used to define five post-disaster 

organizational functionality states, namely, Out of Service, Intrinsically Operable, Fully Operable, 

MALF, and Fully Functional, where a comprehensive description of post-disaster functionality 

states can be found in Enderami et al. (2021). By introducing the minimum acceptable level of 

functionality and maximum tolerable period of disruption time, Enderami et al. (2021) developed 
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the required equations for estimating the probability of an organization becoming functional before 

a particular time after a disaster. The expected capacity of an organization at a given time after the 

event can be calculated as 

3 2

2

( ) ( )
100

a b L LC t Q t C
L

 −
= × ×  − 

                                                    (1)  

where Ca(t) is the expected capacity of the intended organization at time t after the disaster, 

and Cb is the pre-event capacity of the organization. The other parameters in equation (1), including 

Q(t), L2, and L3 denote the probability of the organization becoming functional before the intended 

time, functionality level corresponding to a Fully Operable, and a MALF organization, 

respectively. The details for calculating Q(t), L2, and L3 can be found in Enderami et al. (2021). 

5.2.2 Reconciling Accessibility and Organizational Functionality for Community Resilience 

Three dimensions of accessibility, including availability, adequacy, and acceptability, 

directly relate to an organization’s functionality; a fourth, proximity, is indirectly related as 

follows. As the concept of organizational functionality and post-disaster functionality states were 

defined, a functional organization ensures the primary products offered by that organization are 

available at an adequate and acceptable level. So, the post-disaster functionality of an organization 

implies that the adequacy and acceptability dimensions of accessibility have already been satisfied 

from the available product perspective. Finally, availability and physical access go hand-in-hand, 

where physical access is needed to measure proximity. 

Therefore, we propose to employ equation (1) which was originally developed for 

estimating the probability of post-disaster organizational functionality to evaluate the availability, 

adequacy, and acceptability dimensions of accessibility. Given that organizational functionality 

varies across the disaster timeline, changes in these three dimensions, and consequently, a 

community’s accessibility to essential services, can be calculated before and any time after a 
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disaster. As discussed earlier, to move towards resilience, community members must have access 

to essential services within the time frame specified in the community’s recovery plan. This opens 

up the ability to use accessibility metrics as a means for assessing the resilience of that community.  

5.3 Quantitative Metrics to Measure Accessibility to Essential Services 

This section presents two novel metrics for evaluating accessibility to tangible and 

intangible products as a function of time. The metrics operate at the household level and are 

intended to be measured within and across a given community. The metrics measure the ratio of 

access time to the product at a specific time post-disaster against its pre-disaster time. This means 

we presume the pre-disaster accessibility level of every household to the desired product as the 

standard acceptable level of accessibility, and then measure post-disaster accessibility against this 

standard. To develop the metrics, we normalized the pre-disaster accessibility for any variations 

before the disruption and ignored any post-disaster service equilibrium shift (Davis, 2014), as both 

are outside of the scope of this paper. Thus, the developed metrics yield a unitless ratio between 

zero and one, with zero representing a complete accessibility loss and one indicating no loss of 

accessibility. The developed metrics are aligned with the definition of accessibility provided in the 

literature and summarize multiple dimensions of access, as far as data limitation allows. 

5.3.1 Accessibility to Tangible Products 

The first metric introduced calculates accessibility to tangible products, which include 

organizations such as gas stations which provide fuel, and grocery stores which provide groceries. 

The access time to tangible products provided by an organization is comprised of the travel time 

to where the organization is located, and the time required to receive the desired product. This 

latter time is referred to herein as response time. For each community member, accessibility to 

tangible products at the time t after the disaster can be estimated as 
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where ATmax is the maximum acceptable threshold for access time to receive the intended 

product, a
TAT t( ) represents the access time to the tangible product at time t after the disaster, and 

b
TAT  points out the access time to that tangible product during the normal period before the 

disaster. The proposed metric captures how accessibility to the intended tangible product changes 

across the disaster timeline within a community. 

The value of ATmax may vary based on the characteristics of a community. For instance, the 

usual travel time to a grocery store in a rural community may be longer than its maximum 

acceptable threshold in an urban area. Assuming that the maximum acceptable threshold for travel 

times is equal to the average of travel time to all organizations providing the intended product in 

the study area before the disaster, ATmax can be estimated using 

max ave b
trAT T RT= +                                                           (3)  

where ave
trT represents the average drive time to all organizations providing the intended 

product in the study area before the disaster and RTb is the usual response time in the target 

community before the disaster. 

To estimate the access time to the intended product during normal times and in the 

aftermath of the disaster, the travel time to the nearest MALF organization providing that product 

is used, thus, b
TAT  and a

TAT t( )  can be calculated as 

b b b
T trAT T RT= +                                                                  (4)  

( )a a a
T trAT t =T (t)+RT (t)                                                              (5)  

where b
trT  and a

trT t( ) represent the travel time to the nearest MALF organization providing 

the desired product before the disaster and at time t after the disaster, respectively, RTb indicates 

the usual pre-disaster response time in the target community, and RTa(t) is the response time at the 
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nearest MALF organization at time t after the disaster. A conceptual illustration of the parameters 

that are used to develop the metric for evaluating accessibility to tangible products within a 

community is shown in Figure 30. 

 
Figure 30. Conceptual illustration of quantifying accessibility to tangible products  

Both travel time and response time may vary across the disaster timeline and be different 

from their corresponding pre-disaster values. As the disaster occurs, the travel time to the nearest 

MALF organization providing the intended product is likely to increase due to disaster-induced 

disruption in the community road network, among other disaster-prompted supply and demand 

issues. Inside the MALF organization, the response time, RTa(t), might also be prolonged due to a 

loss of functionality (e.g., staff shortage) and/or an increase in the product demand (e.g., 

customers). As shown in Figure 30, after a disaster, it becomes very likely that newly arriving 

customers will have to wait in line. In light of the Queuing Theory (Allen, 1978), the response 

time is associated with the usual time needed for the desired product to be provided by the intended 

organization at the normal time, termed service time (ST0) in Figure 30. Thus, using the 

fundamentals of Queuing Theory, we estimated the RTa(t) as 
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( ) 0
( ) ( )exp(2.5 ) 2.55 1.55

b a a
a

b b

C C t D tRT t ST
C D

  −
= × × × −  

  
                                      (6)  

where ST0 represents the service time, Ca(t) and Da(t) are, respectively, the expected capacity 

of the intended organization and product demand at time t after the disaster, Cb is the pre-disaster 

capacity, and Db represents the pre-disaster product demand for that organization. 

The amount of Ca(t) depends on the intended organization’s functionality level and can be 

estimated using Equation (1). Then, by combining Equations (1) and (6) and plugging ST0 into the 

developed formulas, Equations (3), (4), and (6) can be rewritten as 

max
0

ave
trAT T ST= +                                                                (7)  

0
b b

T trAT T ST= +                                                                   (8)  

3 2
0

2

( )( ) ( ) exp(2.5 (1 ( ) )) 2.55 1.55
100

a
a a

T tr b

L L D tAT t T t ST Q t
L D

    −
= + × − × × × −   −    

               (9) 

All parameters are defined earlier. The metric developed in this section combines 4 (out of 

6) dimensions of accessibility including proximity, acceptability, adequacy, and availability. 

Including the travel time to the MALF organization in estimating the access time before and after 

the disaster indicates that proximity and availability dimensions are considered in assessing 

accessibility. Post-disaster response time, on the other hand, takes the probable adverse effects of 

loss of organizational functionality level (product perspective) and increases in the product 

demand (customer perspective) on adequacy and acceptability dimension into account. The metric 

can be applied to evaluate the accessibility to any tangible product at any time after the disaster. 

5.3.2 Accessibility to Intangible Products 

The second metric introduced calculates accessibility to intangible products, which include 

organizations such as hospitals which provide inpatient services, and schools which provide 

education services. The access time to intangible products provided by an organization can be 

calculated by subtracting the travel time to where the organization is located from the time devoted 
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exclusively to the recipient of the intangible product by that organization. The latter is termed 

individual attention time (IAT). For example, doctor-to-patient and bed-to-patient ratios are often 

major factors affecting IAT for inpatient care in healthcare facilities, whereas teacher-to-student 

and desk-to-student ratios are the primary factors governing IAT for education services in schools. 

For each community member, accessibility to intangible products at the time t after the disaster 

can be estimated as 

( )a min
I

I b min
I

AT t - AT  ΔA (t)= 0
AT - AT  

≥                                                         (10)  

where a
IAT t( ) is the access time to the intangible product at time t after the disaster, b

IAT  

points out the access time to that intangible product during the normal period before the disaster, 

and ATmin represents the minimum acceptable threshold for access time to receive the intended 

product. 

The values of b
IAT  and a

IAT t( ) are calculated as 

b b b
I trAT = IAT - T      (11) 

( ) ( )a a a
I trAT t = IAT (t) - T t           (12)  

where b
trT  and a

trT t( ) represent the travel time to the nearest MALF organization providing 

the desired product before the disaster and at time t after the disaster, respectively, IATb is pre-

disaster individual attention time estimated for the organization providing the intended intangible 

product before the disaster, and IATa(t) points out post-disaster individual attention time estimated 

for the organization providing the intended intangible product at the time t after the disaster.  

Due to the same rationale outlined in developing the accessibility metric for tangible 

products, travel time to the nearest MALF organization providing the intended intangible product 

is likely to increase as a result of the disaster. On other hand, the post-disaster individual attention 

time of that MALF organization, IATa(t), might be shortened due to similar reasons that prolong 
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response time for tangible products. Thus, the individual attention time needs to be updated across 

the disaster timeline to address the effects of a probable increase in product demand and a likely 

reduction in the organization's functionality. 

To estimate the minimum acceptable threshold for access time to the intended intangible 

product, ATmin, the average of travel time to all organizations providing that product in the study 

area before the disaster is subtracted from the minimum acceptable individual attention time as 

follows 

min min ave
trAT = IAT - T                                                                (13)  

where ave
trT is the average of pre-disaster travel time to all organizations providing the 

intended intangible product in the study area before the disaster, and IATmin represents the minimum 

acceptable individual attention. 

The metric developed in this section enables the evaluation of the accessibility to intangible 

products within the community across the disaster timeline. The metric also combines 4 (out of 6) 

dimensions of accessibility. It includes the travel time to the MALF organization in estimating the 

access time, reflecting proximity and availability dimensions. Furthermore, the metric integrates 

adequacy and acceptability dimensions through post-disaster ITA that considers the adverse effects 

of loss of organizational functionality level and increases in the product demand. 

5.4 Illustrative Example using the Lumberton, North Carolina Testbed 

To highlight the application of the metrics developed in section 5.3, the metrics were used 

to evaluate the accessibility to the products offered by pharmacies and schools within the 

Lumberton Testbed following a catastrophic flooding scenario. Pharmacies and schools were 

selected here given that they exemplify two critically important types of products offered in a 

community. As a business, pharmacies provide tangible goods, including prescription and non-
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prescription medicines, and often groceries and basic household items. Schools, on the other hand, 

are a social institution satisfying intangible human and social needs through educational services 

and social development for children, and employment for staff.  

Lumberton is a small inland city in Robeson County, North Carolina, hugely impacted by 

flooding of the Lumber River following Hurricanes Matthew (2016) and Florence (2018). In 

October 2016, Lumberton was catastrophically flooded due to an intensive period of seasonal rain 

followed by rains by Hurricane Matthew. Many areas of Lumberton were inundated for several 

days, which resulted in disruption in businesses, power, communication, water, and transportation 

networks as well as significant building damage and lasting social impacts (van de Lindt et al., 

2020). The Lumberton Testbed is a virtual community resilience testbed that has been developed 

based on the results of a longitudinal field study on the impacts and recovery process of the 

community (Helgeson et al., 2021; E. J. Sutley et al., 2021; van de Lindt et al., 2018; van de Lindt 

et al., 2020). A community resilience testbed is a virtual “environment with enough supporting 

architecture and metadata to be representative of one or more systems such that the testbed can be 

used to (a) design experiments, (b) examine model or system integration, and (c) test theories” (S. 

Amin Enderami, Ram K. Mazumder, et al., 2022, p. 031220013). The field study also captured 

data on school and business functionality at different points in time, including operational status 

and customer loss, which provides information needed for calculating the accessibility metrics. 

Thus, here, we use the Lumberton Testbed to demonstrate the proposed accessibility metrics. 

5.4.1 Lumberton Post-disaster Field Studies 

In November 2016, a team of researchers from the Center of Excellence for Risk-Based 

Community Resilience Planning, alongside researchers at the National Institute of Standards and 

Technology’s Community Resilience Group, launched a longitudinal study on the impacts and 
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recovery of Lumberton. Five waves of systematic data collection, each with its own goals and 

objectives, have been completed in Lumberton by the time of drafting this manuscript, and the 

study continues. The first field study, denoted as Wave 1, was performed in November 2016 and 

documented the initial physical and socio-economic impacts of the flooding on the community, 

including for housing, households, schools, and a few public sectors. The information on the 

response of the public sectors, schools, and businesses to the flood event was collected through a 

series of 22 qualitative interviews with corresponding stakeholders including the Robson County 

school district’s representatives, infrastructure managers, and Local, State, and Federal officials 

(van de Lindt et al., 2018).  

The second field study, denoted as Wave 2 and performed in January 2018, included 

systematic surveys of the same housing units and schools as in Wave 1, a new sample of 

businesses, as well as interviews with select public officials, with the overall intention to document 

recovery progress (E. J. Sutley et al., 2021). To sample the businesses for the survey, a total of 350 

businesses out of the 2,017 records of for-profit organizations with a valid Lumberton address 

existing in the ReferenceUSA (Infogroup, 2016) database were drawn. This sample size of 350 

includes all businesses located inside a 100-meter buffer around the Hurricane Matthew inundated 

area (i.e., 218 records) and 132 additional randomly selected businesses that fell out of the 

inundated area but still were within the FEMA 100-year floodplain for Lumberton (E. J. Sutley et 

al., 2021). 

The third round of field study, denoted as Wave 3 began immediately after Hurricane 

Florence in September 2018, followed by a complementary assessment in April 2019 to document 

the recovery from Hurricanes Matthew and Florence. In Wave 3 data collection, in addition to the 

initial damage investigation, two systematic surveys on the impact and recovery process of the 
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most heavily-affected housing and businesses as well as interviews and meetings with the same 

schools and public officials as in Wave 2, were conducted (Helgeson et al., 2021). The data 

collection has continued, including a virtual data collection during the COVID-19 pandemic in 

Spring 2021 (Watson et al., forthcoming), and an in-person recovery follow-up in June 2022. 

This paper uses findings on flood impacts and recovery of businesses during Wave 2 and 

3, as well as reported findings from interviews with school stakeholders during Waves 1 and 2. 

The Wave 2 survey asked businesses (1) if their organization is dependent on its physical location, 

(2) whether they experienced any access problem such as street or sidewalk closure after Hurricane 

Matthew, (3) how much their property was physically damaged due to Hurricane Matthew, (4) 

whether their business experienced any utility loss, and, if yes, how long it took to fully recover, 

(5) if they completely ceased operating at their location immediately after the flood, (6) how long 

it took for them to resume normal operation, and (7) how much they estimate their percentage 

capacity, at the time of the survey compared to the pre-flood time (E. J. Sutley et al., 2021). During 

the Wave 3 survey, businesses responded to similar questions about the kind and severity of the 

physical damage caused by Hurricane Matthew, as well as, how much they estimate their 

percentage capacity, immediately before hurricane Florence compared to the pre-flood time 

(Helgeson et al., 2021). The responses to these questions were used to estimate the post-disaster 

capacity of pharmacies in Lumberton. In addition, we applied the summary of findings from 

qualitative interviews, as presented in the Wave 1 and 2 reports, to estimate the post-disaster 

functionality of schools within Lumberton. 

5.4.2 Lumberton Testbed Preparation 

In parallel with the field studies, an expanded research team from the Center of Excellence 

for Risk-Based Community Resilience Planning, alongside a team of experts from the National 
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Center for Supercomputing Applications (NCSA) have been developing the Lumberton virtual 

testbed using the field study data and other secondary, and incorporating the testbed into IN-CORE 

(Gardoni et al., 2018). More information about the testbed as well as details of the algorithms, 

models, and datasets that have been already appended to it can be found here. (Nofal & van de 

Lindt, 2020a, 2020b, 2020c; Omar M. Nofal & John W. van de Lindt, 2021; Nofal et al., 2020; 

Rosenheim, 2020; Rosenheim et al., 2021). This paper applies the testbed’s building inventory, 

detailed household and housing unit characteristics, and student datasets developed by Rosenheim 

(2020) to estimate the accessibility metric for pharmacy and education services. 

Furthermore, to calculate the travel time between different locations within the testbed, a 

mathematical simulation of the testbed road network is needed. This component of the Lumberton 

Testbed has not yet been incorporated into IN-CORE. Thus, here, we developed the Lumberton 

roads network model including geospatial data about the routes’ footprint, speed limit, and traffic 

direction. These data were procured from OpenSteetMaps (OSM, 2015) using the OSMnx Python 

package (Boeing, 2017) and the North Carolina Department of Transportation (NCDOT) open 

data. OSMnx applies the concept of Graph Theory (Trudeau, 1993) to the geospatial data 

downloaded from OSM and yields a mathematical simulation of real-world street networks for the 

desired region, as shown in Figure 31(a). Graphs are collections of nodes connected by edges. The 

nodes represent the locations where route footprints intersect, while the edges depict the routes 

that connect these intersections. Although the study area in this research is restricted to the 

geographical scope of the city of Lumberton, the testbed’s road network goes beyond the city's 

geographical boundaries and spans some other regions of Robeson County in the vicinity of the 

study area. This larger extent of the road network is necessary as commuters' shortest driving 

routes do not always lie within the city limits only. The free-flow speed was also estimated for 
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streets located in urban areas using Google Maps data and added to the road network dataset. Free-

flow speed is the term used to describe the average speed that a motorist would travel if there were 

no congestion or other adverse conditions (such as bad weather). As documented in the Wave 1 

report, the flood washed out some access roads in the study area and damaged transport 

infrastructure, resulting in long-term road closures. Using NCDOT's Traffic Incident Management 

System records, we determined the location and duration of such road closures within the testbed 

area. Figure 31(b) shows the spatio-temporal distribution of the long-term road closure incidents 

in Lumberton’s roads after Hurricane Matthew. 

  
(a) (b) 

Figure 31. Lumberton roads network a) mathematical model; b) long-term closures following 2016 Hurricane 
Matthew 

In addition to physical damage to transportation infrastructure, flood events may disrupt 

traffic flow in urban areas as well (Brown & Dawson, 2016). Such disruptions do not necessarily 

result in fully blocked and impassable streets and may only slow the running traffic speed for a 

while. In fact, observations from flooding events in the past have shown that inundated roads do 

not necessarily preclude people from driving along them, and to assess the disruptive impacts of 

flooding on roads, the relationship between flood depth, vehicle size, and speed should be taken 
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into account (Pregnolato et al., 2017). Thus, to assess the flood impact on the Lumberton road 

network, the flood hazard maps, including flood depth and duration, were overlaid on the 

developed road network and the routes’ traffic speeds were modified across the disaster timeline 

based on a set of rules, including (a) no changes in traffic speed if the inundation depth is not more 

than 10 cm, (b) the traffic speed will be limited to 10 km/h if the inundation depth is between 10 

and 20 cm, and (c) roads with over 20 cm of inundation depth will be assumed to be closed to 

traffic. The bounds incorporated in the applied rules are based on the safe-driving thresholds found 

for a typical average-size vehicle in the research conducted by Pregnolato et al. (2017) on the 

relationship between flood depth and vehicle speed. 

5.4.3 Quantifying accessibility to pharmacies after the 2016 Lumberton flood 

In 2016, the city of Lumberton had 29 active pharmacies with the spatial distribution shown 

in Figure 32. According to the sampling procedure used in the Lumberton field study described 

earlier, three pharmacies, including one that was located inside the inundated area and two other 

pharmacies sampled from outside the flooded area, were surveyed during Wave 2 and 3 data 

collection. 
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Figure 32. Spatial distribution of pharmacies in Lumberton and their nearby census blocks 

Although none of the surveyed pharmacies experienced significant physical damage, all 

three completely ceased operation for a few days immediately after Hurricane Matthew. Both 

pharmacies sampled from outside of the inundated area reported taking 3 days to resume their 

normal operations, while the one from within the inundated area remained closed for 6 days and 

operated at reduced capacity upon reopening. In addition to the loss of power and water that were 

reported by all three pharmacies, the pharmacy from within the inundated area reported physical 

access interruptions for six days. At the time of Wave 2 data collection, all three pharmacies were 

open but operating at different functionality levels; the pharmacy from within the inundated area 

declared that it was operating at 75% capacity compared to before Matthew, while the other two 

announced that they were almost fully recovered. These findings were used to infer information 

about the post-disaster functionality of the pharmacy population in the Lumberton community, as 

shown in Table 11. 



178 
 

 

Table 11. Post-disaster functionality level of pharmacies in Lumberton 

Location (# of pharmacies) 
Operation Capacity (percentage) 

4 days after Matthew 15 months after Matthew 

inside the inundated area (1) 0% 75% 

out of the inundated area (28) 100% 100% 

The accessibility metric for pharmacy services was calculated for every housing unit at two 

different points in time following the procedure described in Section 5.3.1, including at four days 

after floodwaters from Hurricane Matthew peaked in Lumberton, and 15 months later, as shown 

in Figure 33 Of note, a metric value of less than 0.1 is assumed to indicate a complete loss in 

accessibility to pharmacy services while one represents no loss of accessibility. 
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(a) 

 

(b) 

 
Figure 33. Household accessibility to pharmacy services in Lumberton at time of a) four days and, b) fifteen 

months after the 2016 flooding following Hurricane Matthew 
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As can be seen in the Figure 33(b) tangible accessibility metric estimates household access 

to pharmacy services will be severely impacted regarding housing units inside and around the 

inundated area. Although 28 out of 29 pharmacies in Lumberton are assumed to be fully functional 

on day 4 after the disaster, almost all housing units inside the inundated area will lose their access 

to pharmacy services for at least 4 days. This is not a surprising result since flood inundation maps 

simulated by Nofal and van de Lindt (2020a; Omar M. Nofal & John W. van de Lindt, 2021) shows 

that the streets in those census blocks will mostly remain inundated for more than 4 days. It also 

proves the importance of approaching the concept of accessibility from both product provider and 

user perspectives. In the case of Lumberton and Hurricane Matthew, the Wave 1 report (van de 

Lindt et al., 2018) also discusses the widespread, long-lasting, and disproportionate dislocation 

that occurred for Lumberton households. As such, access to pharmacy services was not needed 

within four days post-flood for most households whose home was located in the inundated area. 

However, as can be seen in Figure 33(b) the accessibility metric to pharmacy services for some 

households is still less than one. Thus, even 15 months after the flooding event, some households 

still did not have the same level of accessibility to pharmacy services as they did before the 

flooding. 

5.4.4 Quantifying accessibility to education services after the 2016 Lumberton flood 

As is explained in section 5.3.2, individual attention time, IAT, is an organization-specific 

parameter and should be determined based on the characteristics of the product and organization. 

In this paper, by considering the publicly available data about schools, we propose using the 

student-teacher ratio for determining IAT in schools. According to the Glossary of Education 

Reform, “a student-teacher ratio expresses the relationship between the number of students 

enrolled in a school, district, or education system and the number of full-time equivalent teachers 
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employed by the school, district, or system” (Great Schools Partnership et al., 2014). This ratio 

indicates the amount of individual attention any single student is likely to receive during a typical 

school day, assuming that all class sizes are the same. Thus, the IAT, here, is calculated by dividing 

the total number of hours in a typical school day (including lunch, recess, and study periods) by 

the student-teacher ratio; subsequently, the access time to educational services is calculated by 

subtracting the home-to-school travel time from individual attention time. 

The Public School of Robeson County is the school district designated for Lumberton 

students to attend. In 2016, the district had 17 public schools to serve students of Lumberton, 

including 11 elementary, 3 middle, and 3 high schools.(van de Lindt et al., 2018). According to 

National Center for Education Statistics (NCES, 2016), the attendance boundary for 8 public 

schools lies within the city limits of Lumberton. In this paper, to illustrate the application of 

accessibility metric to education, only these eight schools were used. 
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(a) (b) 

  
(c) (d) 

Figure 34. Location and attendance boundary of public a) elementary schools, b) middle schools, c) high 
schools in Lumberton, and d) and their characteristics and functionality levels after 2016 Hurricane Matthew 

As can be seen in Figure 34(a) to (c), the elementary schools in Lumberton have discrete 

attendance boundaries, whereas the attendance boundaries of the middle schools and the high 

school fully overlap the boundaries of the five elementary schools. Based on the school locations, 

the flood directly and severely impacted two elementary schools, W.H. Knuckles and West 

3 weeks 15 months

Janie C Hargrave 
Elementary

Elementary 208 11.6 90% 100%

Rowland Norment 
Elementary

Elementary 442 13.8 90% 100%

Tanglewood 
Elementary

Elementary 422 13.8 90% 100%

W H Knuckles Elementary 274 15.2 85% 100%

West Lumberton 
Elementary

Elementary 151 10.8 0% 0%

L Gilbert Carroll Middle 577 14.5 90% 100%

Lumberton Junior 
High School

Middle 588 14.0 90% 100%

Lumberton Senior 
High School

High 1380 12.5 90% 100%

Post-Disaster School 
Functionality (%)

Student-
Teacher 
Ratio 

Students 
(count)GradeSchool Name
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Lumberton Elementary, and one middle school, Lumberton Junior High School (van de Lindt et 

al., 2018, p. 25). The report also asserts that all schools, regardless of damage, were closed for at 

least three weeks due to incidents such as road closures, loss of power, and water outages, with 

many schools still needing bottled water for a while after reopening (van de Lindt et al., 2018, p. 

64). As documented in Wave 1 and 2, the W.H. Knuckles Elementary school partially reopened 

after three weeks while there were ongoing repairs during the first year. The West Lumberton 

Elementary school was closed permanently after the flood. According to these findings, we 

estimated each school’s post-disaster functionality level at three weeks and fifteen months post-

flooding, depicted in Figure 34(d). The number of students and the student-teacher ratios in Figure 

34(d) were obtained from NCES (2016) database. There were approximately 4,402 students 

enrolled in those eight schools before Hurricane Matthew in 2016, including 37% at the primary 

school level, 29% at the middle school level, and 34% at the high school level.  

To estimate the post-disaster access time to education services for students whose pre-

disaster schools do not function after the disaster, each of the students must be reassigned to a new 

school. Figure 35 presents a hypothetical algorithm for student admission and transfer. The 

algorithm takes the student's grade level, home address (or coordinates), and pre-disaster school 

as input and attempts to find a new school admission at the same grade level for every student in 

need. If the attempt succeeds, a new post-disaster school will be assigned to the student; otherwise, 

the student will not be able to attend school in Lumberton. The algorithm shown in Figure 35 

simplifies the student transfer and enrollment process by making four assumptions; 1) admission 

to a new school is solely based on the grade level of the student and the school's capacity, 2) 

prioritization of transfers is based on proximity, 3) only public schools are taken into account, so 

affordability is not a concern, and 4) free and safe transportation is always secured for all students. 
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Figure 35. Hypothetical student enrollment and transfer processing algorithm 

Transferring students involves estimating the maximum expected enrollment capacity of 

post-disaster functional schools within the school district using 

3 2
max max

2

( ) ( )
100

a b L LSC t Q t SC
L

 −
= × ×  − 

      (14) 

where a
maxSC (t)  is the maximum possible number of available student desks in a school at 

the time t after a disaster; Q(t) denotes the probability of that school becoming functional before 

time t; L2 and L3 are corresponding functionality percentages for a Fully Operable and MALF 

school, respectively; and b
maxSC  represents the maximum possible number of enrollments in the 

intended school before the disaster. The b
maxSC  can be approximated using the maximum student-
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teacher ratio for the district's public schools and presuming the number of teachers working at 

every school remains constant. 

As such, the accessibility metric to education services was calculated for all 4,042 students 

at two different points in time, 3 weeks after the flood from Hurricane Matthew in Lumberton, and 

15 months later, as shown in Figure 36. Recall, as the metric value decreases from one to zero, the 

accessibility to education services declines from full access to a complete loss. 

  
Figure 36. Household accessibility to education services in Lumberton at a) three weeks and, b) fifteen 

months after the 2016 flooding following Hurricane Matthew 

As can be seen in Figure 36(a), it is estimated that almost all students experience reduced 

access to education even after schools reopened. This accessibility loss is primarily due to the 

increase in students’ home-to-school travel time. The Wave 1 report, on the other hand, asserted 

that the schools’ transportation systems, after reopening of schools (three weeks post-disaster), 

were on a two-hour delay since they had to accommodate new and longer routes (van de Lindt et 

al., 2018, p. 64). The accessibility to education will improve significantly after 15 months, as 

shown in Figure 36(b) however, even then some students are still experiencing school accessibility 

issues. 

a b 
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5.5 Measuring Inequities in Accessibility to Schools Across the Community 

As explained in Chapter 4, disasters affect different populations within communities 

unevenly and the social impacts of natural hazards are associated with the population’s social 

vulnerability level. Community members with higher social vulnerability levels are often more 

severely impacted by natural hazards due to pre-existing socioeconomic conditions resulting from 

a long history of inequitable and race-based policies (Hendricks & Van Zandt, 2021; Rivera, 2022). 

As a result of these policies, socially vulnerable populations were forced to endure disparities in 

infrastructure maintenance, access to recreational areas, and other public goods such as hospitals 

and quality schools during normal times. On the other hand, there is ample research showing that 

current disaster recovery policies have further exacerbated social inequalities after disasters by 

setting qualifying criteria that exclude socially vulnerable populations (Kamel & Loukaitou-

Sideris, 2004; Sutley & Hamideh, 2018; Van Zandt, 2019). 

The next generation of community resilience analysis tools and approaches should be able 

to estimate how these pre-existing inequities will be exacerbated across the community and address 

them in the community’s risk reduction and recovery plans to ensure the post-disaster social, 

economic, and environmental well-being of all community members equitably. We argue that 

accessibility metrics proposed in this research, along with a place-based social vulnerability score, 

are a proper tool to serve this purpose. To demonstrate the application of the accessibility metric 

in this regard, this section employs the household-level social vulnerability estimated in Chapter 

4 and presented Figure 26, and combines it with the calculated metric in section 5.4.4 and findings 

in Figure 36 to assess inequities in school access and educational recovery across Lumberton after 

Hurricane Matthew. 
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Figure 37 presents how access to schools was restored inequitably across Lumberton 

students with households from different social vulnerability groups after the 2016 flooding 

following Hurricane Matthew. As can be seen, almost all community members, regardless of their 

social vulnerability, lost their access to schools, either partially or completely, three weeks after 

the flooding event, whereas after fifteen months, the accessibility was restored unevenly across the 

community. The percentage of students who completely regained their access to school, fifteen 

months post-disaster, is considerably higher for students from low socially vulnerable households, 

i.e., 85%. The percentage decreases as the social vulnerability of the student’s household increases. 

Also, still, fifteen months after the event, 10% of students from high social vulnerability 

households have completely lost their access to school, which is much higher than the percentage 

of students from households with other levels of social vulnerability.   
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Figure 37. Percentage of Lumberton students with a) low, b) medium to low, c) medium, d) medium to high, 
and e) high social vulnerability levels based on their access-to-school status at 3 weeks and 15 months after 

2016 flooding following Hurricane Matthew 

5.6 Discussion and Conclusions  

Accessibility of community members to essential services is an important proxy for 

assessing the resilience of a community. To measure accessibility in the context of community 

resilience, frameworks should employ metrics that (1) include dimensions other than just physical 

access and proximity, and (2) concurrently consider factors influencing the characteristics of both 

product users and product providers. Accessibility metrics developed in this paper combine 

proximity, acceptability, adequacy, and availability dimensions of accessibility. The developed 

metrics are also a function of time, which makes them suitable for evaluating a multi-dimensional 

temporally-varying concept such as accessibility. The metrics, on the other hand, employ the 
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organizational functionality of the product providers in measuring accessibility. In addition to 

these advantages, metrics operate at the household level and yield a unitless ratio between zero 

and one, which can be aggregated for that household across multiple products, if necessary. For 

instance, outpatient and impatient are two common types of patient care that can be classified 

under the healthcare product category. Accessibility to outpatient care should be measured using 

the accessibility metric for tangible products, whereas the metric developed for intangible products 

is required to measure accessibility to inpatient care. However, a household's accessibility to 

patient care can be calculated by adding together the results of each metric. 

Household displacement is a common outcome following disasters, which happened after 

the 2016 flooding event in Lumberton as well. In this paper, household displacement, and 

consequently, student and staff displacements, were overlooked due to a lack of data. As 

accessibility dimensions such as awareness, acceptability, and adequacy are not directly 

observable or measurable, validating the performance of the proposed accessibility metrics 

requires particular data to be collected during future post-disaster field studies. 

Affordability and awareness are two accessibility dimensions that were not included in 

developing the accessibility metrics proposed in this paper and can be an area for future research. 

These two dimensions may not be applicable to measuring accessibility in the example illustrated 

in this paper, but they may participate more in defining accessibility to other products. Importantly, 

affordability and awareness of service users are getting more important as new visions for 

improving the resilience of communities emerge. For instance, the COVID-19 pandemic proved 

that there is a crucial need for community resilience frameworks to go beyond “resistance and 

returning to normal” to include adaptability and transformation along with mitigation, 

preparedness, robustness, and recovery. Communities can mobilize their adaptive capacity and 
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reorganize to cope with their new situation after a disruption. Many organizations demonstrated 

such traits during the COVID-19 pandemic by transforming in-person services online. This 

adaptive capacity and transformation altered components contributing to organizational 

functionality, and consequently, reduced the risk of organizational functionality failure, which is 

a step toward resilience. However, this step will be taken only if the organization still remains 

accessible and its services are being used by community members.  A reliable internet connection 

may be difficult to afford for the socially vulnerable population, for example. In that case, 

awareness and affordability are two accessibility dimensions that are more likely to be 

compromised which may lead to exacerbating the existing inequity in access to resources in the 

communities if ignored in measuring accessibility.
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Chapter 6: Conclusions 

The Community Capitals (CC) framework is a conducive tool for assessing the disaster 

resilience of communities as it examines the community through seven different lenses, termed 

capitals, including natural, cultural, human, social, financial, political, and built capital. The stock 

of these seven capitals and their interaction provides a holistic means to evaluate the state of a 

community at a given point in time and governs a community’s ability to respond to disruption. 

This opens up the ability to employ temporal variations of the stock of community capitals as a 

means for assessing the functionality of the community across the disaster timeline.  

While all seven capitals are essential and their details are distinctive to each community, 

this dissertation posits that the built capital, including buildings and infrastructures, plays a unique 

role in supporting the other six capitals. Importantly, buildings should not be designed as isolated 

structures but as part of a community. As such, it is imperative to understand, measure, and 

evaluate how buildings support or otherwise contribute to various community functions and related 

capitals. This relationship can be understood through (1) the organization(s) residing in the 

building, and (2) how the products of the organization(s) support the community measured through 

the community capitals. Organizations work as a lynchpin connecting the built capital to the other 

capitals. Communities need to ensure that their organizations will be recovered within an 

acceptable timeframe after a disaster to contribute to restoring the community capitals to support 

the community’s short, intermediate, and long-term functional recovery goals. 

This dissertation offers a novel definition of organizational functionality, and a means for 

quantifying organizational functionality through time.  Importantly, organizations require physical 

(including space, access, and external utilities) and non-physical (including staff and supply chain) 
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components to function; the details of which are organization-specific. These non-physical 

components, in fact, connect the organizations to each other and the community. 

For community capitals to be generated or mobilized, and consequently for communities 

to achieve their recovery goals, the products offered by such functional organizations must be 

accessible to community members. This dissertation offers two novel metrics that combine 

proximity, acceptability, adequacy, and availability dimensions of accessibility to evaluate 

household-level access to tangible products and intangible services. The developed metrics are 

also a function of time, which makes them suitable for evaluating a multi-dimensional temporally-

varying concept such as accessibility. The metrics operate at the household level and are intended 

to be measured within and across a given community. The metrics, also, consider the post-disaster 

functionality level of the organization offering a product and yield unitless ratios. This unitless 

essence enables accessibility to be aggregated across different organizations that are contributing 

to generating or mobilizing each community capital. 

Based on the proposed framework, to evaluate a community’s post-disaster functionality 

at a particular point in time, every household’s accessibility to the products offered by 

organizations contributing to each community capital should be measured individually using the 

proper metric, then, aggregated across the different organizations. The resulting value for each 

community capital is the household’s accessibility to that community capital and its cumulation 

across the households within the community represents the stock of that community capital. The 

ratio of each community capital at a specific time post-disaster against its pre-disaster time can be 

used as a proxy for the community’s post-disaster functionality level . By incorporating household-

level social vulnerability, equity can be evaluated in access to essential products and services 

through time. 
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Beyond the overarching framework presented here, an approach for testbed development 

was introduced which may boost multi-, inter-, and transdisciplinary collaborations on community 

resilience. This contribution will hopefully lead to more balanced testbeds with evolved 

community modules that have strong representations of social and economic systems. The SVS 

presented in Chapter 4 can be used to identify differences in social vulnerability across a 

population which may aid in resource allocation. Social vulnerability indices are starting to be 

used by public health officials, hazard mitigation planners, community resilience researchers, and 

testbed developers. While the proposed SVS is still subject to limitations in simplifying a 

measurement of social vulnerability, it addresses the need for a social vulnerability index that more 

consistently explains disaster outcomes, can be used at various spatial scales, and requires minimal 

data inputs and computational efforts making it particularly suitable for use in virtual community 

resilience testbeds. 

This dissertation has illuminated (a) shortages of high-resolution data on social, economic, 

and infrastructure systems, (b) research needs and future orientations for pre-, and post-disaster 

data collection, (c) the necessity of more longitudinal studies to validate organization-specific fault 

trees, (d) the need for more social and economic models in community resilience testbeds, (e) the 

need for capturing dependencies and connections across organizations to further define community 

functionality, and (f) a need for developing a comprehensive library of fragility and restoration 

functions for the components of organization functionality, to name only a few. 

The proposed framework for measuring accessibility to essential services can operate as a 

decision tool that links community resilience objectives to functional recovery goals, and can be 

applied by researchers, practitioners, and policymakers to develop more risk-informed disaster 
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mitigation and long-term recovery plans at the community level. This research provides a 

foundation for future research to address the limitations that restrict its application in practice.  
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