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Abstract 

Cyanotoxins and taste-and-odor (T&O) compounds are produced by cyanobacteria, 

including benthic varieties that grow on the bed of freshwater streams. Cyanotoxins, such as 

microcystin, anatoxin-a, and saxitoxin, can poison or even cause death if consumed in high 

quantities, while T&O compounds, such as geosmin and 2-Methylisoborneol (MIB), can cause a 

noxious taste and smell in drinking water. The negative effects of cyanotoxins and T&O 

compounds have the potential to worsen as the effects of climate change and urbanization add 

additional pressures to already sensitive stream ecosystems. Understanding how urbanization 

impacts the production of cyanotoxins and T&O compounds is crucial to lowering the impact these 

metabolites have on our health, safety, and environmental well-being. To understand this 

relationship, we surveyed three streams in the rapidly urbanizing Johnson County, KS, which 

range from highly rural to highly urban. A total of nine benthic algae mats were sampled repeatedly 

over the summer and early fall of 2021. Benthic algae mat locations were analyzed using a 

combination of in situ sensors and laboratory testing to assess the production of cyanotoxins and 

T&O compounds as well as the potential physicochemical and biological drivers of this 

production. Water quality parameters, including temperature, pH, specific conductivity, and 

nutrients, were measured during field visits as were benthic algae parameters, including 

cyanobacterial concentration, taxonomic make-up, stable isotopes, toxin analysis, and genetic 

analysis. To explain the drivers of toxin and T&O production, we develop predictive linear 

regression and random forest models. The results of our field sampling showed widespread 

prevalence of cyanotoxins and T&O compounds, irrespective of upstream land use to a benthic 

mat. Microcystin and geosmin were detected in every benthic algae sample we collected, whereas 

anatoxin-a, saxitoxin, and MIB were found in 65%, 26%, and 84% of samples, respectively. 
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Results of the linear regression and random forest models generally indicate that toxin gene 

abundance, cyanobacteria abundance, temperature, and specific conductivity are the dominant 

predictors of microcystin, anatoxin-a, and saxitoxin production, and that cyanobacteria abundance, 

temperature, and specific conductivity are the dominant predictors of geosmin and MIB 

production. In summary, our results show that any human-derived environmental impact, whether 

it be urbanization or ruralization, can lead to the occurrence of microcystin, anatoxin-a, saxitoxin, 

geosmin, or MIB within freshwater benthic cyanobacteria. Cyanotoxin and T&O compound 

forming benthic algae appear to be a common feature of human-disturbed environments and our 

results can assist with informing water utility and municipality managers with cyanobacterial 

monitoring strategies and remediation.  
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Chapter 1: Introduction 

Freshwater benthic cyanobacteria provide many benefits to their surrounding freshwater 

ecosystem, including nitrogen fixation and primary production, however these same benthic 

cyanobacteria can have widespread and costly impacts on water quality as well as health and safety 

(Bauer et al., 2020; Dunlap et al., 2015; Scott and Marcarelli, 2012). Benthic cyanobacteria are a 

portion of the phylum of cyanobacteria that grow attached to substrates in water systems. They 

typically grow in colonies of many different algae and bacteria in what is referred to as a mat which 

describes the entire structure of the benthic community. Benthic mats include extracellular 

material, sometimes called the matrix, that helps bind the algal colonies together and provides 

other benefits for the algal community, including acting as a carbon source and sink (Stuart et al., 

2016). Some cyanobacteria in benthic communities are capable of making secondary metabolites 

that are toxic to many creatures (Kaloudis et al., 2022). Death from the consumption of the benthic 

mat material has been linked to the toxic metabolites within the benthic cyanobacteria (Bauer et 

al., 2020; Kaloudis et al., 2022; Mez et al., 1997; Wood et al., 2010). These toxins include a 

hepatotoxin, microcystin, which can cause lesions in the liver, and two neurotoxins, anatoxin-a 

and saxitoxin, which cause respiratory tract paralysis and paralytic shellfish poisoning, 

respectively (Sivonen and Jones, 1999). There are more cyanotoxins, including nodularin, 

cylindrospermopsin, and others, but they were not analyzed as part of this study. In addition to 

toxins, cyanobacteria can also produce nuisance T&O compounds like geosmin and 2-

Methylisoborneol (MIB) (Jüttner and Watson, 2007). These compounds are detectable at very 

small concentrations (near 10 ng/L) (Watson et al., 2008), and, if left untreated in drinking water, 

can impart an earthy or musty smell and noxious taste that nearly all humans can detect. While 

these effects are primarily undesirable rather than dangerous, they have the potential to cause 



2 

 

distrust in the local drinking water treatment and raise concerns for public services around water. 

Therefore, drinking water treatment plants spend considerable funds on filtration and treatment 

processes to remove geosmin and MIB (Dietrich, 2006; Dunlap et al., 2015). Most research has 

focused on the harmful cyanobacteria blooms of the floating planktonic variety in larger bodies of 

water like oceans, lakes, and large rivers (Wood et al., 2020). However, benthic varieties of 

cyanobacteria are still capable of producing these harmful metabolites and are relatively 

understudied. 

Benthic cyanobacteria are primary producers, so like many other photosynthetic bacteria 

and algae, there are many physicochemical and biological drivers that impact the growth and 

spread of the biomass. Cyanobacteria have been known to thrive in a huge variety of climates, 

including polar streams or downstream of geothermal vents (Scott and Marcarelli, 2012). As 

photosynthesizing organisms require light, turbidity and dissolved solids in the water have been 

known to reduce total biomass, however, cyanobacteria are particularly adept at low-light and can 

dominate in these environments (Scott and Marcarelli, 2012). Also, while nutrients such as 

nitrogen and phosphorus have been shown to have correlations with benthic cyanobacteria biomass 

(Busse et al., 2006), there are nitrogen-fixing species of cyanobacteria that can dominate in low 

nitrogen environments as well (Howarth et al., 1988). Cyanobacteria mats can detach from the 

substrate once a sufficient accumulation of oxygen has been captured in the mat matrix and the 

buoyant force detaches the biomass from the substrate (Bouma-Gregson et al., 2017), further 

increasing their chance of being eaten if the buoyant mat accumulates on the shore. While 

connections have been made between cyanobacteria and various physicochemical and biological 

drivers in previous studies, there is considerable uncertainty in how these drivers promote the 

production of specific cyanotoxins and T&O compounds within benthic cyanobacterial mats. 
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Understanding how the many drivers impact benthic algae and their production of these 

cyanotoxins and T&O compounds in freshwater stream systems, including those with 

anthropogenic sources, will be important to our present and future water security. 

Human-caused impacts on freshwater streams can be seen and measured in many ways, 

particularly in urban environments. Urban streams tend to widen due to increased bank erosion 

from flashy events and reduced vegetation, and a widened stream will have shallower flows 

resulting in greater light penetration to the substrates as well as more riffle and run sections (Brown 

et al., 2009). Due to impervious surfaces, runoff from a much wider area will make its way to the 

stream, and it will carry nutrients, sediment, and other chemicals such as insecticides (Brown et 

al., 2009; Zarnaghsh and Husic, 2021). Finally, water treatment and wastewater treatment facilities 

with discharges into the streams can release water into the stream with higher nutrient loads and 

higher temperatures (Carey and Migliaccio, 2009; Kinouchi et al., 2007). The combination of 

increased light exposure, better flow stability, higher temperatures, and increased nutrients all lead 

to environments that allow benthic cyanobacteria to flourish. On top of this, climate change is 

bringing about warmer waters as well as increased nutrient loads which both will lead to increased 

cyanobacteria biomass and bloom occurrence (Paerl and Paul, 2012; Paerl and Barnard, 2020). 

Numerous methods and approaches for quantifying and understanding cyanotoxins and 

T&O compounds have been developed in recent decades. Recently, a portable in situ fluorometer 

device, called the BenthoTorch (bbe Moldaenke GmbH, Schwentinental, Germany), was 

developed to measure three types of benthic algal groups (cyanobacteria, green algae, and diatoms) 

within seconds in the field. The BenthoTorch has been used to varying degrees of success to 

measure cyanobacteria concentrations on both natural and artificial substrates in streams, and it 

has shown promising correlations with both laboratory chlorophyll-a (chl-a) concentrations and 
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taxonomic analyses (Echenique-Subiabre et al., 2016; Harris and Graham, 2015; Rosero-López et 

al., 2021). Taxonomic identification processes utilize microscopy to visually identify algae and 

bacteria species from a sample, and based on the counts of each species, sample concentrations 

can be determined. Enzyme linked immunosorbent assays (ELISA) are used to measure 

concentrations in water-based samples for the specific cyanotoxin. For benthic cyanobacteria 

samples, this usually involves lysing the cells to expose the intracellular cyanotoxins for easier 

quantification. Another breakthrough process is quantitative polymerase chain reaction (qPCR) 

analysis which can be used to find specific gene sequences that have been found to be genetic code 

for a certain step in the production of the toxin or T&O compound in question. By dividing the 

ELISA toxin concentration result by the qPCR genetic concentration, a toxin quota can be 

determined (Thomson-Laing et al., 2020). From this, one can not only calculate the quantity of 

cyanotoxins or T&O compounds released by a cyanobacteria sample, but also how many 

cyanobacteria cells have the genetic code to create them in the first place. This metric indicates 

whether the available cyanobacteria are producing cyanotoxins in large or small quantities given 

the relative abundance of a gene copy. This discrepancy can provide further depth and analysis 

into the relationships between the physicochemical and biological drivers being studied and the 

response of the cyanobacteria. Finally, predictive multivariate statistical models, like linear 

regression models, random forest models, cubist models, and generalized additive mixed modeling 

(GAMMs) can clarify the understanding of which environmental drivers are the most impactful to 

cyanobacteria assemblages, cyanotoxins, and T&O compounds (Harris and Graham, 2017; 

McAllister et al., 2018). While the aforementioned methods have seen considerable disparate use 

in the benthic algae mat literature, we find no studies that combine in situ sensing, taxonomic 

identification and enumeration, toxin analysis, stable isotope analysis, genomic analysis, land use 
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characteristics, and predictive modeling under a single framework for understanding the drivers of 

toxin and T&O compound production.  

 The main objective of this research was to identify the drivers of cyanotoxin and T&O 

compound production within the benthic algae mats of human-disturbed rivers. We hypothesized 

that – because urbanization results in higher nutrient concentrations, less riparian canopy, and 

shallower flow depths – urban rivers would be characterized by 1) greater proliferation of benthic 

algae mats, 2) larger concentrations of benthic cyanotoxins and taste-and-odor compounds, and 3) 

increased density of toxin producing genes within mat matrices. We tested these hypotheses by 

sampling benthic material from nine stream reaches, across a steep rural-to-urban land use 

gradient, on a weekly basis over the course of three months. Thereafter, we conducted 

physicochemical, isotopic, taxonomic, toxicological, and genomic analyses on sampled mat 

material. Lastly, we developed predictive linear regression and random forest models to quantify 

the relative importance of the environmental factors driving harmful and nuisance compound 

production within benthic algae mats.  
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Chapter 2: Study Site 

This study was performed across three streams in Johnson County, Kansas, which lies 

directly southwest of Kansas City, Missouri, a rapidly expanding metropolitan area (Figure 1). The 

streams are Indian Creek (168 km2), Mill Creek (150 km2), and Blue River (170 km2). Indian Creek 

is the most urban watershed with 93% of the basin area characterized as urban (MRLC, 2019). 

Further, approximately 47% of the Indian Creek watershed is classified as impervious (Rasmussen 

and Gatotho, 2014). Mill Creek is a mixed-use watershed and shows a combination of urban (68%) 

and rural (32%) features (Figure 1). Finally, Blue River is the rural watershed with 30% urban 

land-use and 55% pasture and cropland. Indian Creek and Mill Creek receive waste-water 

treatment facility discharge, with the Mill Creek facility processing 3 MGD, and the two Indian 

Creek facilities processing a combined 22 MGD. The climate and soil types across each watershed 

are similar due to their proximity to each other, so they present a unique opportunity to study 

differences in water quality based on anthropogenic disturbances and activities. Individual sites 

were of similar sizes, but some exhibited varying characteristics nearby, such as bridges, 

streambank stabilization, or were mostly untouched (Figure 2). 

In summer 2020, a longitudinal inventory of algae mats was conducted by surveying each 

stream and visually identifying mat material (Figure 3). In total, we walked approximately 30 km 

of stream length, 10 km per river. We found a total of 83 stream reaches with benthic algae mats: 

Indian Creek had 47, Mill Creek had 31, and Blue River had 5. While the urban sites ostensibly 

have a greater density of benthic mats, the aim of this longitudinal assessment was not to enumerate 

every mat in the streams, but rather to get an inventory of potential mat locations where we could 

perform a greater in-depth analysis at a later time. The true number and density of mats is likely 

greater than what we report, particularly for rural Blue River. This is because turbid water, deeper 
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flow depths, and riparian brush in Blue River made it more difficult to perform rapid visual 

assessment of mats than in the more-urban streams.  

 

 
Figure 1: Locations of sampling sites. The three watersheds are displayed here, with the Mixed Stream being Mill 

Creek, the Urban Stream being Indian Creek, and the Rural Stream being Blue River. Land use, wastewater treatment 

plants, and other benthic mats identified are on the map as well. Land use data from NLCD Land Cover (Conus) 2019 

(MRLC, 2019). 
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Figure 2: A grid of images taken from field visits of various study sites and field methods used. (A) Indian Creek 

site 1 (I1), latitude: 38.896, longitude: -94.760. (B) BenthoTorch being used on a cobble removed from Mill Creek 

site 3 (M3), latitude: 39.017, longitude: -94.815. (C) Bridge that was under construction during sampling period and 

algae bloom at Blue River site 2 (B2), latitude: 38.826, longitude: -94.723. (D) Picture taken of in process algae 

scrape sampling from cobble showing filamentous benthic algae mat growth. (E) I1 site again, but from final field 

visit to show loss of vegetation cover due to leaf fall. (F) Mill Creek site 2 (M2) with Horiba U-52 at bottom of 

image, latitude: 38.973, longitude: -94.818. (G) Blue River site 1 (B1), latitude: 38.827, longitude: -94.737. (H) 

Field table with various sampling tools used including bar-clamp sampler, various bottles, syringe, syringe filters, 

caulk gun, tool cleaning solution, and some cobbles. Not all tools are shown. (I) Blue River site 3 (B3), latitude: 

38.839, longitude: -94.616. 
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Figure 3: A grid of images taken from field visits of various cobble samples and algae mats. (A) Bubbles trapped in 

thick algae matrix (B) Sediment covered cobble (C) Long filamentous algae mat growth (D) Macroalgae growth on 

cobble (E) Dense, green algae growth near water surface (F) Non-filamentous algae growth on cobble (G) Thin film 

of algae growing with trapped bubbles (H) Example of a cobble with very thin algae growth after previous growth 

senesced (I) Thin algae mat growth with detached buoyant mats above  
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Chapter 3: Methods 

3.1 Study Sampling Design 

Between the 2021 late summer and early fall season (August 7th to November 5th), we 

conducted a field sampling campaign of 9 stream reaches across our study area (Figure 1). The 

nine study reaches were selected based on the extent of algae present at each site and a preliminary 

BenthoTorch measurement to confirm cyanobacteria presence. Among the nine sites, three were 

selected per stream with an effort to evenly space the sites longitudinally within each basin. Blue 

River site selection was most complicated due to stream access difficulties and private land 

surrounding a substantial portion of stream length. Nonetheless, the two Blue River sites that are 

close to one another have considerable local-scale differences with the middle site experiencing 

suburban bridge construction during sampling (Figure 2c) while the upstream site was adjacent to 

croplands.  

In total, we made eight field visits, on a weekly-to-biweekly basis, collecting benthic 

material and assessing field conditions at the nine sites. Due to the length of time required to visit 

all nine locations and conduct all sampling tasks, field visits were typically split into two days, 

usually covering 5 to 6 sites on day one and 3 to 4 sites on day two. Sampling visits were selected 

such that limited hydrologic activity occurred in between the two-day collection periods. The order 

in which the sites were sampled was shuffled each time to prevent time-of-day biases on 

measurements. At each sampling site, several sampling methods were used including in situ 

sensors, water grab samples, and benthic mat scrape samples (Figure 4). For benthic assessment, 

fifteen cobbles were sampled along a 100 m longitudinal transect at each reach site. Most cobbles 

were taken from water depths ranging from <1 cm to 40 cm, with rare instances of 40-60 cm 

depths. Water samples were taken from the runs just upstream of the largest riffle in the study site. 
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Field duplicates were performed on the last 4 sampling trips, where one site in each trip had every 

field and laboratory sample duplicated. 

 
Figure 4: Flow chart of sampling done in study listing sites, substrates data taken from, in situ sensors used, source of 

some data points, and lab sourced data.   

3.2 Physicochemical Drivers of Benthic CyanoHABs 

3.2.1 In Situ Sensor Sampling 

The physicochemical parameters temperature, pH, conductance, turbidity, dissolved 

oxygen (DO), and total dissolved solids (TDS) were recorded using a multi-parameter water 

quality probe (Horiba U-52, HORIBA Advanced Techno Co. Ltd., Kyoto, Japan).  The device was 

calibrated before each sampling run using Horiba calibration solution. During each sampling, the 

sensor’s probe was placed in a riffle just upstream of where cobble samples were to be taken to 

prevent excess sediment being kicked up and washed through the probe’s sampling volume (Figure 

2F). The probe was left in the water while other sampling activities were performed, providing the 

sensor components time to acclimate to field conditions. After 10 minutes or more, readings were 

recorded. The device’s KCl internal reference solution, used to calibrate pH, was past its 

recommended usage date during the first three runs, so those pH data points were removed. 

Thereafter, the internal reference solution was replaced, the device was re-calibrated, and 

subsequent samples showed no issues.  
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3.2.2 Field Sampling of Physicochemical Data 

Benthic mat thickness was taken by ruler measurements on several of the selected cobbles. 

These readings were averaged together for an aggregate mat thickness. Light penetration was 

gathered by visual estimation of shade cover of the stream and recorded as a percent value, where 

100% describes zero shade cover and 0% represents total shade. Raw stream water samples were 

taken for total suspended sediment (TSS) (500 mL plastic bottle) as well as total nitrogen and total 

phosphorus samples (125 mL plastic bottle). For water column nutrients, a filtered stream water 

sample, using a 0.45 μm Whatman syringe filter, was taken for nutrient analysis (nitrate, ammonia, 

and orthophosphate). Another filtered water sample, using a 0.45 μm Whatman syringe filter, was 

taken for dissolved organic carbon (DOC) analysis. All bottles were placed on ice in a cooler 

within 30 minutes of collection. Nitrate, ammonia, and orthophosphate samples were delivered to 

the Johnson County Water Quality Lab within 48 hours of collection. TSS and DOC samples were 

stored in the refrigerator and TN/TP samples were frozen upon returning to the lab.  

3.2.2 Laboratory Processing of Physicochemical Data 

For TSS, the volume of collected sample was first recorded and then the contents were 

filtered out using a 1 μm Whatman filter, dried in an oven at 100°C, and then weighed on a scale. 

Dissolved organic carbon was preserved with phosphoric acid, and then processed using a TOC 

combustion analyzer (TOC Torch, Teledyne Tekmar, Mason, Ohio, USA) following the EPA 

9060A methodology (USEPA, 2004). Total nitrogen and total phosphorous were processed once 

all samples had been collected, and each process was done in duplicate for each sample. For total 

phosphorus, a standard curve was created using standard dilutions of potassium phosphate (0, 15, 

50, 100, 500, and 1000 μg/L standards, R2 = 0.998). Phosphorus in each sample was digested by 

adding potassium persulfate and autoclaving using the liquid setting for 45 minutes. After adding 
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the mixed reagent, the TP readings were measured using a spectrometer at 885 nm (UV160, 

Shimadzu, Kyoto, Japan). TN was processed similarly, except using appropriate standard solutions 

(0, 0.5, 1.0, 1.5, 2.0, 5.0, 10.0, and 20.0 mg/L standards, R2 = 0.799), digestion solutions, and 

reagents, and it was read at 220, 225, and 230 nm. A second derivative calculation was done on 

the 3 results to get the absorbance per sample. At Johnson County Water Quality Lab, Nitrate, 

Ammonia, and Orthophosphate were measured using a process derived from the EPA 353.2, EPA 

350.1, and EPA 365.1, respectively (O’Dell, 1996a, 1996b, 1996c). Detection limits for nitrate 

were 0.03 mg/L, for ammonia were 0.04 mg/L, and for orthophosphate were 0.05 mg/L.  

3.3 Cyanotoxins and Taste-and-Odor Compounds  

3.3.1 In Situ Sensor Sampling  

 At each site, 15 cobbles were collected from the stream bed at random from 1 to 3 different 

riffles or runs (Rasmussen et al., 2012). A BenthoTorch was used to collect a single benthic algae 

concentration measurement from each of these cobbles, except for the 4 sampling sites where 

duplicates were recorded on the same cobble in a different, but similar looking part of the cobble. 

The end of the BenthoTorch with the sensor and rubber seal cover are placed on the area of benthic 

material and a measurement is taken, which takes approximately 20 seconds to record as the sensor 

proceeds through its fluorometric analysis steps (Figure 2B). The BenthoTorch reports in situ 

benthic algae concentration (in μg/cm2) measurements of diatoms, cyanobacteria, and green algae. 

The BenthoTorch pulses LEDs at 470nm, 525nm, and 610nm and then read the emission 

wavelength emitted by the algae at 680nm. The last LED is used in tandem at 700nm to compensate 

for the effects of background reflection. GPS data is also recorded for each measurement by the 

BenthoTorch.  
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3.3.2 Field sampling of benthic biomass 

On the same 15 cobbles, a bar clamp sampler was used to grasp each cobble. The top of 

the bar clamp sampler has a welded ring with a rubberized gasket to press against the cobble to 

prevent any scraped sample from leaving the scrape area (Figure 5). Scraping was done with a 

clean laboratory spatula, and after each site, the spatula was cleaned with Luminox™ cleaner 

solution. The area scraped from each cobble was 13.16 cm2. Scrapings from the 15 cobbles were 

aggregated into a single opaque Nalgene bottle and placed into a cooler within 30 minutes of 

removal from the stream. The last 4 sample runs also included a smaller area (1 cm2) that was 

scraped and stored in an amber glass jar with stream water and Lugol’s Iodine to preserve for 

taxonomic analysis. All collected samples were stored on ice in a cooler until the return to the lab.  

 

 
Figure 5: Bar-clamp sampler use for holding cobble and pressing a fixed-area circle into the top of the cobble where 

the algae would be scraped from. 
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3.3.3 Laboratory Processing of Chlorophyll-a, Isotopic Data, and Taxonomic Analysis 

 Once the benthic mat scrape sample was returned to the lab, it was frozen. Frozen samples 

were then freeze-dried at around -52°C and 0.150-0.180 mBar over 2-3 days to ensure complete 

water extraction (FreeZone 6, Labconco, Kansas City, MO, USA). Freeze dried samples were then 

transferred to a Whirl-Pak bag, ground to a fine powder by pulverizing within the bag using finger 

pressure and swirling motions, and then weighed. If extra homogenization was required, several 

other techniques were used including a rubber hammer, tissue grinder, and pellet pestle tool. Once 

homogenized, the bulk dry benthic sample could be sub-sampled for the various analyses, 

including chl-a and phycocyanin pigment analysis (250 mg), carbon and nitrogen isotopic analysis 

(500 mg), cyanotoxin analysis (350 mg), and genomic analysis (250 mg). The pigment analysis 

samples were placed in 40mL amber glass vials, the isotopic subsamples were placed in 10 mL 

culture tubes, cyanotoxin subsamples were placed in 50 mL sterile centrifuge bottles, the qPCR 

subsamples were placed in sterile 5 mL culture tubes.  

The chl-a and phycocyanin subsample was extracted using a 1 μm Whatman filter. DIDO 

water was used to rinse leftover sample that stuck to the bottle’s walls when emptying into the 

filter apparatus. Once all standing water was filtered out of the sample, the filter with sample was 

removed, folded in half, placed in an aluminum tray, and folded again to seal out light from the 

sample. The folded, aluminum-enclosed samples were placed in the freezer. The WilsonLab group 

at the University of Auburn analyzed the samples for chl-a using a 24-hour 90% ethanol extraction 

process in darkness at 4 °C (Kasinak et al., 2015), measuring absorbance in a spectrophotometer 

at 665 and 750 nm wavelengths, and repeating the spectrophotometer measurements after an 

acidification process to correct for the phaeophytin readings. Phycocyanin samples were measured 

fluorometrically, extracting each sample in a 50 mM phosphate buffer also in darkness at 4 °C, 

and filtering (<0.2 mm) each sample (Kasinak et al., 2015). Note: while analysis of chl-a and 



16 

 

phycocyanin was performed, the results were not produced in time for the completion of this thesis. 

However, we plan to integrate these data into future work.  

The carbon and nitrogen isotopic analysis was performed by the University of Arkansas 

Stable Isotope Laboratory. The reported data were δ13C, δ15N, C%, and N%. Samples were prepped 

in tin capsules and then loaded in a 50 well autosampler on an isotope ratio mass spectrometer 

attachment device for the combustion and reduction steps (EA Isolink CN Flash IRMS, Thermo 

Fisher Scientific, Waltham, MA, USA). Once combusted and reduced, it then passes to the isotope 

ratio mass spectrometer (Delta V Plus IRMS, Thermo Fisher Scientific, Waltham, MA, USA). The 

results are then normalized using data from USGS 41a and USGS 8573 (Qi et al., 2016, 2003). 

For %C and %N data, chalky soil was used to normalize the results.  

Of the forty taxonomic analysis scrape samples, 24 were selected to be analyzed by 

microscopy at BSA Environmental Services (Beechwood, Ohio) for taxonomic counts, density, 

and biovolume. These samples were selected to cover a wide range of sampling dates, target and 

predictor variable quantities and some that were visually similar to cyanobacteria-dominated mats 

described in literature (Quiblier et al., 2013) in order to see what groups of benthic algae were 

being measured in Johnson County, KS, and what specific strains of cyanobacteria were present. 

These samples were all quantified on a per milliliter basis using the Utermohl method (Lund et al., 

1958) in accordance with the American Public Health Association Standard Method 10200. 

Analysis was performed at 800X and 1260X magnification (Leica DMi1, Leica, Wetzlar, 

Germany). Counts for diatoms, green algae, cyanobacteria, cryptophyta, and euglenophyta were 

all recorded, but in the analysis, the latter two will be ignored. 
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3.3.4 Laboratory Processing of Cyanotoxin and T&O Concentrations 

 To assess the intracellular content of cyanotoxins and T&O compounds, we had to lyse the 

algal mass into solution. First, the freeze-dried algae subsample was placed into a 50 mL sterile 

centrifuge bottle, which was filled with 40 mL of DIDO water. We decided against adding 0.1% 

formic acid, as others have done in the past (McAllister et al., 2018), because the formic acid 

caused some errors in the determination of T&O compounds using the GC/MS instrument in 

WaterOne’s lab. The sample was then freeze-thawed three times to lyse toxins out of the benthic 

mass. The process included freezing at -20°C for 2-3 hours, thawing in an ultrasonic water bath at 

25°C for 30 minutes (OZL-6A, ONEZILI, Guangzhou, China), and re-freezing. Once thawed the 

third time, we added anatoxin/saxitoxin diluent at a ratio of 10:1 to the DIDO water, as suggested 

by the cyanotoxin kit manufacturer (Eurofins Abraxis). After adding the diluent, the centrifuge 

tubes were centrifugated at 5,900 x g for 20 minutes (Sorvall Legend XFR Centrifuge, Thermo 

Fisher Scientific, Waltham, MA, USA). The supernatant was then poured into a sterile 60 mL 

syringe, and then two subsamples were pushed through a 0.45 μg glass syringe filter. One 

subsample of the supernatant was around 35-40 mL, which was used for T&O compound analysis. 

Approximately 1.5 to 1.8 mL were subsampled into a 2 mL glass vial for cyanotoxin analysis. The 

T&O vials were refrigerated until they were transported to the WaterOne water quality laboratory 

for analysis, typically within 48 hours of extraction. The cyanotoxin vials were frozen until 

analysis.  

 Cyanotoxin analysis was done using enzyme-linked immunosorbent assays for 

microcystin-ADDA, anatoxin-a, and saxitoxin (ELISA (96-test), Eurofins Abraxis, Warminster, 

PA, USA). The ELISA kits have all of the necessary components to perform the analysis following 

the EPA 546 method for microcystin analysis (USEPA, 2016), and manufacturer instructions were 

followed for all analyses (Figure 6). Individual samples were distributed in the wells of the 
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microplate, with duplicates for every sample. Microplates were read on a microplate reader (Eon 

Microplate Spectrophotometer, BioTek, Santa Clara, California, USA). within the recommended 

timeframe. Toxin results are fitted to the standard curve determined by the kit’s standard solutions, 

and any toxin samples resulting in concentrations outside of the standards’ range are diluted and 

rerun. The ELISA procedure was run in batches, with samples being frozen between sampling runs 

until the batched ELISA analysis was performed. The ELISA procedure was run twice with the 

first 4 sampling runs distributed in the first tray and the last 4 sampling runs distributed in the 

second tray. Resulting concentrations are calculated to μg/L. However, all cyanotoxin results were 

normalized in three ways for future analysis: microgram of toxin per gram dry-weight of freeze-

dried subsampled algae (μg/g), microgram of toxin per gram dry-weight of freeze-dried 

subsampled algae multiplied by percent carbon of algae sample (μg/gC), and microgram of toxin 

per area of scrape sample from cobble (μg/cm2).  

 
Figure 6: In process image of ELISA processing using Abraxis kits for Microcystin analysis in samples. 
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T&O compounds, geosmin and MIB, were analyzed using solid phase microextraction and 

GC-MS following a process based on the SM 6040D method at the WaterOne laboratory (Standard 

Methods Committee of the American Public Health Association, 2020). The detection limits for 

both T&O compounds are <1.0 ng/L. T&O results were normalized in similar ways as the 

cyanotoxins except the numerator is in nanograms (ng) rather than micrograms (μg). Sample run 

6 geosmin and MIB data had to be scrapped due to machine issues. With the amount of dilution 

needed, sample run 6 results for geosmin and MIB had the potential to be similar to or higher than 

sample run 7 and 8 results. With this in mind, geosmin and MIB mean values presented may be 

conservative to the potential mean values had the sample run 6 processed fully.  

In the results section, I will limit most result listings to just gram dry weight normalizations 

to reduce lengthiness of results. However, other normalizations will be discussed when their 

discrepancies from gram dry weight is worth mentioning, especially in the statistical modeling 

results. 

3.3.5 Genomic Processing of Cyanobacteria, Cyanotoxin, and T&O Sequences 

 For genomic analysis, the 250 mg subsamples of each freeze-dried algae sample were 

delivered to the University of Kansas Environmental Engineering and Genomics Laboratory. Here 

DNA was extracted from each sample using Qiagen DNeasy PowerSoil Pro DNA Isolation kit 

(Qiagen, Hilden, Germany). Extraction was performed following manufacturers protocol on a 

QIAcube Connect automated extraction system (Qiagen, Hilden, Germany). Extracted DNA was 

quantified using the Qubit HS 1X Assay on a Qubit 2.0 fluorometer (Thermo Fisher Scientific, 

Waltham, MA). Quantitative PCR (qPCR) was performed to quantify genes of Cyanobacteria, 

Phormidium, microcystin producing bacteria, saxitoxin producing bacteria, anatoxin producing 

bacteria, and geosmin producing bacteria. Target genes, sequences and annealing temperatures of 
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primers used to quantify these groups are presented in (Table 1). At the time of analysis, MIB gene 

primers for qPCR analysis were less well known and studied, and coupled with budget restraints, 

they were not analyzed in this study. qPCR reactions were prepared using Bio-Rad SsoAdvanced 

Universal SYBR Green Supermix (Bio-Rad, Hercules, CA) following manufacturer’s protocol and 

a total reaction volume of 20 µL per sample. A dilution factor of 50 was used for all sample runs, 

with a final volume in each template measuring 5 µL. Thermal cycling was carried out on a Bio-

Rad CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA). Standard curves 

for each gene of interest were generated by serial dilution of IDT gBlocks (IDT, Coralville, IA) 

matching the PCR product of the respective primers. Data Analysis of the qPCR data was 

performed using Bio-Rad CFX Maestro version 2.1 (Bio-Rad, Hercules, CA). Resulting gene 

concentrations were output in gene copies per µL, and the three normalization techniques utilized 

by the cyanotoxin concentrations were used for the qPCR gene sequence concentration results as 

well.  
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Table 1: Gene primers for the target cyanotoxins, microcystin, anatoxin, and saxitoxin as well as gene primers for the 

T&O compound, geosmin, are listed here. Also, the gene primers for Phormidium and a more widespread 

cyanobacteria identifying primer were analyzed as well. The annealing temperature is displayed here, too. 

Target 

Organism 

Target 

Gene 
Primer Name Sequence (5`-3`) 

Annealing 

Temp (°C) 
Reference 

Cyanobacteria 
16s 

rRNA 

CYAN 108F 
ACG GGT GAG TAA 

CRC GTR A 
60 

(Rinta-Kanto et 

al., 2005)  CYAN 377R 
CCA TGG CGG AAA 

ATT CCC C 

Microcystin 

synthetase gene 
mycE 

mycE127F 
AAG CAA ACT GCT 

CCC GGT ATC 
58 

(Sipari et al., 

2010) 
mycE247R 

CAA TGG GAG CAT 

AAC GAG TCA A 

Saxitoxin sxtA 

sxtF 
GGA GTG GAT TTC 

AAC ACC AGA A 
60 

(Al-Tebrineh et 

al., 2012)  
sxtR 

GTT TCC CAG ACT CGT 

TTC AGG 

Anatoxin-a 

synthetase gene 
anaC 

anaC-F 
TCT GGT ATT CAG TCC 

CCT CTA T 
58 

(Rantala-Ylinen 

et al., 2011) 
anaC-R 

CCC AAT AGC CTG TCA 

A 

Phormidium 
16s 

rRNA 

Phor-580 
GCG AAA GGG ATT 

AGA TAC CC 
56 

(Marquardt and 

Palinska, 2007) 
Phor-710 

CCG TCA ATT CCT TTG 

AGT TTC 

Geosmin A 

synthetase gene 
geoA 

geo_cya543F 
ATC GAA TAC ATY 

GAR ATG CG 
55 

(Auffret et al., 

2011; Kutovaya 

and Watson, 

2014)  
geo_cya728R 

ACT TCT CTY TGR TAG 

GA 
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3.4 Data and Statistical Analyses 

3.4.1 Linear Regression Analysis 

  We conducted multiple linear regression of the potential for our explanatory variables to 

describe microcystin concentrations in benthic algae mat samples. We developed three suites of 

explanatory variables to test the data requirements for adequate characterization. These three suites 

of variables include (1) physicochemical-only, referred to as Physicochemical, (2) biological-

only, referred to as Biological, and (3) both physicochemical and biological, referred to as All. For 

each suite of variables, we decided to include predictor variables such that the number of non-

detects or missing data points were limited within any given regression. Variables were 

abbreviated in some cases in order to fit figures and tables better (Table 2). 
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Table 2: Breakdown of model predictor variables used, the units they are in, and the abbreviations used in figure and 

table outputs from the model. 

Model Variable Unit Abbreviation 

Physicochemical 

Temperature °C Temp. 

pH - pH 

Specific conductivity mS/cm Sp. C. 

Turbidity NTU Turb. 

Dissolved oxygen mg/L DO 

Nitrate mg/L NO3
-  

Orthophosphate mg/L PO4
-2 

Total suspended solids mg/L TSS 

Dissolved organic carbon mg/L DOC 

Biological 

Concentration of cyanobacteria as measured 

by BenthoTorch 
µg/cm² BTbga 

Percent composition of cyanobacteria to 

total chl-a as measured by BenthoTorch 
% BTbga

frac 

Concentration of cyanobacteria 16S 

sequence as measured by qPCR 

copies/g; copies/gC; 

copies/cm2 
16Sbga 

Concentration of Phormidium 16S sequence 

as measured by qPCR 

copies/g; copies/gC; 

copies/cm2 
Phor. 

Concentration of toxin/T&O gene sequence 

as measured by qPCR  

or  

Concentration of toxin/T&O as measured 

by ELISA/GC-MS (if target variable is 

sequence concentration from qPCR) 

copies/g; copies/gC; 

copies/cm2 

qPCRMC (or AA, 

SX, GE) 

μg/g; μg/gC; μg/cm2 

(or ng numerator for 

T&O) 

MC (or AA, 

SX, GE) 

All 

(including all rows 

above except for TSS) 

Percent carbon % %-C 

Percent nitrogen % %-N 

Mean mat thickness mm Mat 

Mean light penetration % Light 

Percent land cover by urban land % %-Urban 

Percent land cover by cropland % %-Crop 

Percent land cover by forest % %-Forest 

Percent land cover by impervious surfaces % %-Imperv 

 

For the Physicochemical regression, temperature, pH, conductivity, turbidity, DO, nitrate, 

orthophosphate, TSS, and DOC were all selected (Table 2). Because TN and TP were only run for 

half of the samples, half of the samples have missing values for TN and TP, thus the model 

produced errors and ultimately TN and TP were not selected for regression. For the Biological 

regression, we used four outputs from the BenthoTorch measurements, chl-a concentration, qPCR 

gene counts for Cyano 16S, Phormidium 16S, and the corresponding toxin’s or geosmin’s qPCR-

based gene sequence concentration, depending on which is being modeled (Table 2). For example, 

if microcystin concentration was the target variable, the qPCR results for mycE gene counts were 
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used as a Biological regression predictor variable along with the others listed. For the Biological 

linear regression models for cyanobacteria concentrations, only the cyanobacteria 16S and 

Phormidium 16S concentrations results were used as predictor variables. The gene sequence values 

are normalized the same three ways as the cyanotoxin and T&O compounds, and so each time the 

target variable’s normalization was changed, so too was the gene sequence normalization. The 

BenthoTorch data include the cyanobacteria concentration (ug/cm2) and percent cyanobacteria 

concentration to total algae concentration (%). The last type of regression, All, includes both 

Physicochemical and Biological variables as well as a few others, including isotopic results, land-

use results, and two other physicochemical variables were used. These include δ13C, δ15N, %C, 

%N, mat average thickness, percent light penetration, percent urban land use, percent cropland, 

percent forested land, and percent impervious surface (Table 2). 

The target variables the linear regression was run for include microcystin concentrations, 

mycE genomic cell count concentrations, microcystin toxin quota, and cyanobacteria 

concentrations and % compositions. Linear regression models for anatoxin-a, saxitoxin, geosmin, 

and MIB were not able to be ran due to too many missing data points in either the toxin or T&O 

concentration field or the gene sequence concentration field. Microcystin concentrations and gene 

count concentrations were all run for the 3 normalization techniques used: μg/g, μg/gC, and 

μg/cm2. Cyanobacteria target variables include cyanobacteria concentration from the 

BenthoTorch, percent composition of cyanobacteria calculated from cyanobacteria concentration 

from the BenthoTorch, and percent composition of cyanobacteria calculated from cyanobacteria 

density from the taxonomic analysis. Finally, microcystin toxin quota was only modeled for μg 

per cell copy (μg/copy) as changing the normalization for both the numerator and denominator at 

the same time result in the same quota value. Each linear regression model that was ran also had 
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ANOVA (analysis of variance) run on the resulting model to learn the most impactful variables in 

each regression. The regression fitting and ANOVA analyses were performed using MATLAB 

2021a.  

3.4.2 Random Forest Analyses 

 Regression tree analysis was performed on the same group of predictor and target variables 

as in the linear regression analysis. Also, because missing data does not impact random forest 

modeling like it does linear regression, anatoxin-a, saxitoxin, geosmin, and MIB models were able 

to be developed and evaluated, including gene sequence and quota models for anatoxin-a (anaC 

sequence) and saxitoxin (sxtA sequence). Regression trees are particularly suited for complex 

ecological data, where non-linear relationships, high-order interactions, and missing variables may 

be present (De’Ath and Fabricius, 2000). Regression trees work by explaining the variance in a 

target variable by splitting the data into groups using a combination of categorical and/or numeric 

predictor values. Individual regression trees can be plotted graphically, which aids in an intuitive 

interpretation of results. A single regression tree can be overfit to the present data; thus, many trees 

can be constructed creating a ‘boosted ensemble’ or ‘random forest’ of predictions (Wang et al., 

2021). This random forest output takes into consideration the uncertainty associated with the data 

and regression tree branching.  

 Both single tree and random forest regressions were run using built in functions in 

MATLAB, ‘fitrtree’ and ‘TreeBagger’ respectively. Single tree regressions have 3 branches to 

reduce opportunity of overfitting. For the random forest regression, 2000 trees were run, also with 

only 3 branches. Shapley values, which are model-agnostic (i.e., they are unaffected by underlying 

model structure) and describe the most influential predictor variables in each regression tree (Wang 

et al., 2021), were identified for both the single tree regression and random forest model for each 
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run. Shapely values were chosen only from the 30 best performing models within the 2000 total 

trees run for the random forest. Linear regressions were then run with the single tree and random 

forest model outputs to find the R2 performance of each model type. The model performance of 

the random forest regression was then compared to the observed data and 95% prediction bounds 

were estimated to see where along the observed value range the model was strongest or weakest.  
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Chapter 4: Results  

As listed in the site characteristics section, Indian Creek had the most benthic algae mats 

identified over the survey periods, at 47 total sites. Mill Creek had 31 sites identified, and Blue 

River had 5 sites identified. While individual mat proliferation area was not measured, this equates 

to the most urban stream having the greatest spread of benthic algae mats and the mixed stream 

having slightly fewer mats. However, both of those streams have substantially more identified 

algae mats than the most rural stream.  

4.1 Physicochemical Drivers of Benthic CyanoHABs 

4.1.1 In Situ Sensor Results 

Water temperature showed little spatial variability between our nine sampling sites (Figure 

7), but we observed considerable temporal variability from the early-summer to mid-fall. The first 

three sampling runs (of eight total) were during the summer period and experienced an average 

temperature of 27.5°C across all sites. As fall began, the mean temperature of the next three 

sampling runs dropped to 22.1°C. The mean temperature dropped further to 15.4°C in the 7th 

sampling run and 11.5°C in the final sampling run. Water temperature peaked at 34.1°C in site M2 

during the first sampling run and reached a low of 9.6°C in site I1 during the last sampling run. 

The average pH readings across for the watersheds ranged from 7.76 to 8.2 (Figure 7), with 

individual readings ranging from 7.52 to 8.34 across all samples. Specific conductivity varied 

considerably between sites, from 0.30 mS/cm to 1.35 mS/cm (Figure 7), with the rural sites (B1, 

B2, and B3) having relatively low concentration of ions, and the more-urban sites (M1, M2, M3, 

I1, I2, and I3) having a higher specific conductivity, like as a result from a greater concentration 

of salts due to wastewater effluent. Mean turbidity varied from 5.28 NTU to 43.3 NTU, with the 
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rural sites having significantly higher average turbidity (Figure 7), except for site I3, which was 

directly downstream of the largest wastewater treatment plant within the study site area (Figure 1).  

The average DO for all sampling runs was 9.09 mg/L (Figure 7) with region-wide mean 

low DO levels of 6.18 mg/L and 5.42 mg/L, observed during the sampling runs 5 and 6, 

respectively. Increased phytoplankton productivity in the stream water column might suggest the 

drop in DO during the two aforementioned sampling runs, as the water was visibly discolored 

during these sampling runs (brown: Figure 2A; clear: Figure 2E both are the same site, just looking 

different directions). Light penetration ranged from no overhead shading vegetation (100% light 

penetration) to only 10% of the sky being open (10% light penetration) (Figure 7). The last 

sampling run occurred after most leaves had fallen, and light penetration increased by 20%. 

Benthic algae mat thickness averaged around 2.86 mm, except for sampling run 2, which occurred 

not long after a significant storm event and had an averaged mat thickness of 0.84 mm (Figure 7). 
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Figure 7: In situ physicochemical data box plots for each study site. This includes the in situ sensor data points from 

the multiparameter water quality device, the mean periphyton biomass thickness, and the amount of light penetration. 

Green box plots indicate Blue River sites, yellow box plots indicate Mill Creek sites, and purple box plots indicate 

Indian Creek. Note different y-axes. 
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4.1.2 Physicochemical and Nutrient data results 

Dissolved organic carbon readings averaged from 5.61 ppm to 9.72 ppm across the 

sampling runs (Figure 8). Duplicate DOC samples (n = 4) had an error of 3.2%. The average total 

suspended sediment ranged from 5.05 to 13.5 mg/L (Figure 8). Duplicate TSS samples (n = 4) 

showed an error of 63%; however, this error is somewhat exaggerated as mean TSS magnitudes 

were small (< 4 mg/L) at half of the sites, such that minor changes of 1 or 2 mg/L 

disproportionately impact percent difference between duplicates without having much physical 

impact to how the data can be interpreted.  

 Of the 72 ammonia samples, only 12 recorded a detection, with the average of the 12 

samples being 0.315 mg/L. Nitrate recorded much more detections, with a mean range of 0.39 

mg/L to 10.7 mg/L (Figure 8). The rural stream regularly recorded significantly lower nitrate than 

the other two more urban streams (p < 0.05). The sample run mean range for orthophosphate 

ranged from 0.055 mg/L to 0.85 mg/L (Figure 8). A significant difference exists between 

orthophosphate in the most rural and the most urban watersheds (p < 0.05), but not in the 

intermediate-urban watershed. The mean error from duplicates (n = 4) measured at the Johnson 

County Water Quality Lab was 4.82%. Total nitrogen and total phosphorus results were similar to 

the nitrate and orthophosphate results (Figure 8), but we only collected this data on four sample 

runs (out of eight), thus their interpretability is more limited. However, all of the nutrient results 

suggest that the benthic nutrient availability is not a limiting factor, as nutrient values in the 

samples across all watersheds are all well above levels found for at sites of toxic benthic 

Phormidium growth (McAllister et al., 2018).   In fact, the high nutrients may pose a negative 

effect known as the subsidy-stress concept, with possible levels indicating the start of this concept 

as DIN > 0.2 mg/L and DRP > 0.0014 mg/L (McAllister et al., 2018).   
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Figure 8: Nutrient and physicochemical data box plots for each study site gathered from post sampling laboratory 

processes. Green box plots indicate Blue River sites, yellow box plots indicate Mill Creek sites, and purple box plots 

indicate Indian Creek. Note different y-axes. 
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4.2 Cyanotoxins and Taste-and-Odor Compounds 

4.2.1 BenthoTorch results  

In all three streams, BenthoTorch readings suggest that diatoms were the most common 

periphyton measured and green algae were the least common (Figure 9) and that cyanobacteria 

were present at all locations. Benthic cyanobacteria concentrations measured from the 

BenthoTorch ranged from 0.318 μg/cm2 to 3.20 μg/cm2 (Figure 9). Mean cyanobacteria 

concentrations did not significantly change throughout the sampling period, with a mean 

cyanobacteria concentration of 1.44 μg/cm2. Watershed variations in cyanobacteria concentrations 

were also not significantly different, except for site B1, which had a mean cyanobacteria 

concentration of 0.688 μg/cm2 across all sampling runs, compared to 1.54 μg/cm2 at the other sites. 

Mean cyanobacteria percent composition, as a ratio of total algae measured by the BenthoTorch, 

was 38.1% (Figure 9), with diatoms usually making up the majority and green algae making up 

less than cyanobacteria. Duplicate field BenthoTorch measurements (n = 60) were not significantly 

different (p = 0.47). The coefficient of variation for BenthoTorch readings per site ranged from 

20% to 115%, with most coefficients of variation being above 30%. The considerable variation in 

measurements may be attributable to the 15 different cobbles that are used to determine a 

composite site-average BenthoTorch composition. Each of the 15 cobbles were selected without 

knowledge of their composition, thus some may be dominated by diatoms while other are 

dominated by cyanobacteria.  
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Figure 9: In situ algae data box plots for each study site, specifically from the BenthoTorch. Green box plots indicate 

Blue River sites, yellow box plots indicate Mill Creek sites, and purple box plots indicate Indian Creek. Note different 

y-axes. The top right plot is the calculated percent composition of cyanobacteria in the sampled periphyton based on 

the measured cyanobacteria and total algae concentrations 
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4.2.2 Benthic biomass results 

Unfortunately, chl-a laboratory results were not fully processed in time for inclusion in this 

study. The mean chl-a measurement from the BenthoTorch was 3.82 μg/cm2. When comparing 

individual site sample results for both BenthoTorch total chl-a and the laboratory chl-a 

measurements, a linear relationship is usually seen with R2 values around 0.47 to 0.85 (Harris and 

Graham, 2015; Rosero-López et al., 2021). However, preliminary results of our chl-a samples were 

2 orders of magnitude higher than our BenthoTorch results, which is not what other studies have 

found, so there seems to be an error in either the storage or processing of the chl-a samples in this 

study. Therefore, the chl-a data, even the preliminary data, will not be in this study. 

The mean carbon and nitrogen percentages of the algae samples were 10.1% and 0.91%, 

respectively, while the carbon isotope (δ13C) and nitrogen isotope (δ15N) means were -22.7‰ and 

8.66‰, respectively (Figure 10). The δ15N values in our study are more than 1 standard deviation 

greater than the mean δ15N value reported on a global dataset of benthic algae values (Ishikawa et 

al., 2018). On the other hand, the δ13C values are within 1 standard deviation of the same global 

dataset (Ishikawa et al., 2018). These variations could be attributable to nutrient availability, as the 

mean nitrate concentration in the study areas from the Ishikawa study was 0.045 mg/L, much lower 

than our study’s nitrate range. 

The taxonomic identification and enumeration analysis indicated that diatoms were the 

dominant periphyton group, broadly agreeing with BenthoTorch results (Figure 11). The mean 

percent cyanobacteria composition (11.6%) (Figure 10) was relatively low in taxonomic 

microscopy results compared to the BenthoTorch results (38.1%) (Figure 9). Phormidium percent 

composition was only 3.4% (Figure 10) and was detected in 46% of the samples that had 

cyanobacteria in them. We found several notable cyanobacteria that have been shown to produce 
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the target cyanotoxins and T&O compounds in the taxonomic results (Wood et al., 2020), 

including Phormidium animale, Leptolyngbya sp., and Chroococcus sp.  

 

 
Figure 10: Laboratory analyses on benthic biomass sample box plots for each study site. The top two plots are from 

taxonomic analysis, and the data is converted into a percent composition amount. The bottom 4 plots are from the 

isotopic analysis. Green box plots indicate Blue River sites, yellow box plots indicate Mill Creek sites, and purple box 

plots indicate Indian Creek. Note different y-axes. 
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Figure 11: Taxonomic microscopy cell density results from 24 taxonomic samples spread across all sites plotted for 

each genus identified. In the cyanobacteria group, Cylindrospermopsis was the genus listed to us by the laboratory 

that did the taxonomic analysis, but this genus is also referred to as Raphidiopsis. Note the logarithmic scale on the x-

axis. 
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4.2.3 Cyanotoxin and T&O Concentrations 

Microcystin was present in every sample regardless of watershed land-use (Figure 12). 

Microcystin amounts increased slightly in the cooler weather with the greatest sample run mean 

occurring on the last sample run. Site I2 had a considerably higher mean microcystin (0.217 μg/g) 

than the other sites (0.063 μg/g). Thirty-five percent of samples registered non-detect for anatoxin-

a with the remaining samples having a mean of 0.060 μg/g (Figure 12). Saxitoxin had a greater 

fraction of non-detects (74%) with the detectable samples having a mean of 0.0041 μg/g (Figure 

12). Over the course of the sampling run, anatoxin-a and saxitoxin appeared to have a relative 

handoff in production with more anatoxin-a being produced after late September and early October 

and saxitoxin decreasing in relative abundance at the same time (Figure 13). Similar to 

microcystin, the T&O compound geosmin was present in many samples across all watersheds. 

Mean geosmin was 4.14 ng/g across all results (Figure 12). MIB was present in higher amounts 

(8.03 ng/g) than geosmin when detected but had around 16% non-detects (Figure 12). Notably, the 

last and coldest sampling run in November had a considerable jump in MIB concentration (mean 

of 41.1 ng/g).  
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Figure 12: Cyanotoxin and T&O concentration data box plots for each study site from ELISA results. All results are 

normalized to dry weight of original algae scrape sample. Green box plots indicate Blue River sites, yellow box plots 

indicate Mill Creek sites, and purple box plots indicate Indian Creek. Note different y-axes. 
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Figure 13: All detected Anatoxin-a and saxitoxin concentrations over time plotted on the same figure with separate y-

axes to show relative abundance. All dates shown are in 2021 when the sampling period took place. The changeover 

appears to occur in mid to late September 2021, with more saxitoxin present in dates earlier than Sept 21st, and more 

anatoxin-a present around the same date. 
 

 

4.2.4 Genomic Cyanobacteria, Cyanotoxin, and T&O results 

Gene sequences for Cyano 16S and Phormidium 16S were detected in all samples (Figure 

14). Both results were normalized to the dry weight algae sample mass. Mean Cyano 16S 

concentrations were 8.44 × 108 gene copies/g. Mean Phormidium 16S concentrations were 3.00 × 

109 copies/g. Both 16S gene primers were detected in greater concentrations in the rural and mixed 

streams than the urban stream. As mentioned earlier, there is occasional disagreement in whether 

cyanobacteria and/or Phormidium are present in the samples, as some taxonomic results indicate 

no presence whereas the BenthoTorch and gene sequence data indicate the presence of 

cyanobacteria. This could arise due to potential sampling bias, as the sampled quantity of algal 

mat for taxonomic analysis was typically less than 15% of total algal mass and was scraped from 
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a spot next to the main sample scrape area, thus may not be entirely representative of the composite 

sample used in genomic analysis.  

Like with the microcystin concentrations gathered from the ELISA analysis, the gene 

primer mycE was detected in every sample (Figure 14). The gene sequence concentration results 

had a wide range of detections, from 1.47 × 100 copies/g to 1.21 × 106 copies/g. The mean 

microcystin gene concentration was 28,700 copies/g. The mean concentration for the anatoxin-a 

gene, anaC, chosen in this study was 16,200 copies/g (Figure 14). Primer detection for the 

anatoxin-a gene had 63% non-detects. The saxitoxin gene, with a mean concentration of 7890 

copies/g, had zero non-detects for its target gene (Figure 14), despite 74% non-detect in the toxin 

analysis. Finally, the geosmin gene, with a mean of 282,000 copies/g, had the fewest detections, 

with 89% of all samples being a non-detect (Figure 14), despite 100% detection in the toxin 

analysis.  
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Figure 14: Cyanotoxin and T&O genomic data box plots for each study site from qPCR analysis. All results are 

normalized to dry weight of original algae scrape sample. Green box plots indicate Blue River sites, yellow box plots 

indicate Mill Creek sites, and purple box plots indicate Indian Creek. Note different y-axes, and the bottom 4 plots 

have a logarithmic y-axis. 
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The toxin quota is calculated simply by dividing the measured toxin or T&O compound 

concentration gathered by the ELISA/GC-MS process by the concentration of the equivalent gene 

sequence concentration results from to get a unit mass per gene copy quota, barring both are 

normalized the same way (Thomson-Laing et a;., 2020). The higher quota means a greater amount 

of relative toxin or T&O compound production by the cyanobacteria within a sample. The mean 

microcystin toxin quota was 6.46 × 10-4 μg/copy (Figure 15). Anatoxin-a’s toxin quota mean was 

4.13 × 10-4 (Figure 15). Saxitoxin’s toxin quota mean was 5.71 × 10-5 μg/copy (Figure 15). Finally, 

for the T&O compounds, MIB’s quota couldn’t be calculated as no qPCR genetic analysis was 

performed, but for geosmin’s quota, the mean was 7.55 × 10-5 ng/copy (Figure 15).  
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Figure 15: Cyanotoxin and T&O quota data box plots for each study site. Green box plots indicate Blue River sites, 

yellow box plots indicate Mill Creek sites, and purple box plots indicate Indian Creek. Note different y-axes and the 

logarithmic y-axes. 
 

 

4.3 Data and Statistical Analyses 

4.3.1 Linear Regression Analysis 

Linear regression analyses were run for microcystin concentrations (Table 3), 

Cyanobacteria concentration and composition (Table 4), mycE gene concentrations (Table 5), and 
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microcystin toxin quota (Table 5). As stated above, the reason the same statistical analysis wasn’t 

performed on anatoxin-a, saxitoxin, geosmin, and MIB was due to the amount of non-detects and 

their impact on the regression reliability. Non-detects reduce the size of the predictor dataset with 

too small of a dataset resulting in either overfitting or lack of statistical robustness. Linear 

regressions for microcystin only worked for the Physicochemical and Biological groups. The 

group with All predictor variables had too many missing rows due either to missing data or non-

detects in the predictor variables. We tested Physicochemical versus Biological explanatory 

variables to assess which set of variables had greater explanatory strength. Further, we tested 

multiple normalization techniques to assess if the inferences gained from using one normalization 

(e.g., dry mass weight) versus another (e.g., scrape area) would change inferences regarding the 

drivers of cyanobacterial growth and toxin production.  

The Physicochemical linear regression for microcystin (normalized by gram dry weight) 

had a R2 of 0.33, and the Biological linear regression had a R2 of 0.70. Using ANOVA, 

orthophosphate and TSS explained a similar amount of variance in the prediction, but not at very 

substantial amounts. For the Biological linear regression, the mycE gene counts had the greatest 

explanatory strength and resolved 64.5% of the variance in microcystin predictions (Table 6). This 

predictor variable and other predictors whose explanation of variance (or Shapley value 

percentage) are above 30% weight in their particular model can be seen in Table 6. When 

normalized by gram dry weight of carbon (a proxy for organic material within the mat and 

sediment matrix), the linear regression R2 performance for the Physicochemical and Biological 

predictor variable groups improve to 0.39 and 0.77 respectively. This is driven by a higher variance 

explanation by both orthophosphate and TSS at over 15% for the Physicochemical group, and the 

Biological group saw a 74.9% explanation of the variance from the mycE gene. When normalized 
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by the scrape area, the Physicochemical R2 improved again to 0.47, which appeared to have been 

improved due to the increase in explanatory power of specific conductivity. However, the 

Biological R2 for the scrape area normalized microcystin concentration was the lowest of the three 

at 0.61, and mycE concentration explains 44.2% of the variance. Both the gene sequence results 

for cyanobacteria Cyano 16S and Phormidium 16S as well as the BenthoTorch results don’t play 

a large role in the linear regression, with the greatest explanatory percent being the gene for Cyano 

16S explaining only 1.89% of the variance in the gram dry weight normalization. This is an 

example of how other predictor variables may show up higher in the ranking of predictor variables 

but may only have a small explanation in the overall model. 

Table 3: Microcystin concentrations as response variables from statistical models. Three normalizations are presented 

along with the three different variable classes the model was split into, and the results from both the linear and random 

forest models. These results are broken up between the coefficient of determinations for each model and the ranking 

of the predictor variables that either explained the most variance (ANOVA from linear regression models) or had the 

highest Shapley values (random forest models). 

Response Variable 

(normalization) 
Predictor Class Model R2 Predictor Ranking 

Microcystin 

(μg/g) 

Physicochemical 
linear 0.33 PO4

-2, TSS, DO, Sp. C. 

random forest 0.72 Sp. C., NO3
- , Temp., PO4

-2 

Biological 
linear 0.7 qPCRMC, 16Sbga, BTbga, BTbga

frac 

random forest 0.9 qPCRMC, BTbga, 16Sbga, Phor. 

All 
linear N/A N/A 

random forest 0.92 qPCRMC, %-N, 16Sbga, %-C 

Microcystin 

(μg/gC) 

Physicochemical 
linear 0.39 PO4

-2, TSS, pH, Sp. C. 

random forest 0.55 Turb., Sp. C., Temp., NO3
-  

Biological 
linear 0.77 qPCRMC, 16Sbga, BTbga

frac, Phor. 

random forest 0.94 qPCRMC, 16Sbga, Phor., BTbga 

All 
linear N/A N/A 

random forest 0.94 qPCRMC, 16Sbga, DO, Temp. 

Microcystin 

(μg/cm2) 

Physicochemical 
linear 0.47 TSS, PO4

-2, Sp. C., Temp. 

random forest 0.44 Temp., DOC, TSS, pH 

Biological 
linear 0.61 qPCRMC, BTbga

frac, BTbga, Phor. 

random forest 0.75 qPCRMC, Phor., 16Sbga, BTbga
frac 

All 
linear N/A N/A 

random forest 0.75 qPCRMC, 16Sbga, Phor., BTbga
frac 
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For the linear regression results of Cyanobacteria concentrations and percent composition 

from BenthoTorch results, the Physicochemical predictor variable group had R2 results of 0.55 for 

BenthoTorch concentrations and 0.45 for BenthoTorch percent composition. For the BenthoTorch 

concentration linear regression model, pH resolved the greatest variation, explaining 39.3%. Due 

to missing data, the linear Physicochemical regression for the taxonomic percent composition isn’t 

calculated. All of the Biological linear regressions for the cyanobacteria models show poor R2 

values (<0.2). In other words, Cyanobacteria 16S and Phormidium 16S  gene concentration results 

from the qPCR process had little to no correlation with the chosen cyanobacteria target variables.  

Table 4: Cyanobacteria concentrations and percent compositions from the BenthoTorch and Taxonomic analyses as 

response variables from statistical models. Three normalizations are presented along with the three different variable 

classes the model was split into, and the results from both the linear and random forest models. These results are 

broken up between the coefficient of determinations for each model and the ranking of the predictor variables that 

either explained the most variance (ANOVA from linear regression models) or had the highest Shapley values (random 

forest models). 

Response Variable 

(normalization) 
Predictor Class Model R2 Predictor Ranking 

Cyanobacteria 

(μg/cm2) 

Physicochemical 
linear 0.55 pH, NO3

- , Turb., TSS 

random forest 0.55 Turb., NO3
- , TSS, Temp. 

Biological 
linear 0.01 16Sbga, Phor. 

random forest 0.26 Phor., 16Sbga 

All 
linear N/A N/A 

random forest 0.61 Turb, Light, %-C, %-Imperv 

Cyanobacteria 

(% from 

BenthoTorch) 

Physicochemical 
linear 0.45 DOC, TSS, Sp. C., Turb. 

random forest 0.66 TSS, Temp., DO, Sp. C. 

Biological 
linear 0.02 16Sbga, Phor. 

random forest 0.16 16Sbga, Phor. 

All 
linear N/A N/A 

random forest 0.61 Mat, Temp., Sp. C., NO3
-  

Cyanobacteria 

(% from Taxonomic 

Density) 

Physicochemical 
linear N/A N/A 

random forest 0.78 Sp. C., Temp., DOC, Turb. 

Biological 
linear 0.15 BT % Comp., 16Sbga, BTbga, Phor. 

random forest 0.78 Phor., 16Sbga, BTbga
frac, BTbga 

All 
linear N/A N/A 

random forest 0.74 Sp. C., Temp., PO4
-2, DOC 

 

The next target variable is the mycE gene and the three normalizations used previously 

(gram dry weight, gram dry weight of carbon, and scrape area). For all three normalization 
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methods, the R2 for the Physicochemical models ranged between 0.34 and 0.35. Similar to the 

microcystin Physicochemical linear regressions, orthophosphate and TSS played the largest roles 

in the explanation of variance, however no predictor had greater than 17.6% weight in the 

explanation of variance. As for the Biological models, the linear regression for the gram dry weight 

and gram dry weight times percent carbon normalizations were stronger, with R2 values of 0.69 

and 0.76 respectively and the microcystin ELISA concentration playing a large role in the 

explanation of the variance in these linear regression models. However, the linear regression for 

the scrape area normalization resulted in a very poor 0.03 linear regression. It appears the 

microcystin concentration data from the ELISA process had little to no linear relationship with the 

mycE data in this normalization. Lastly, the microcystin quota linear regression had results for 

both the Physicochemical and Biological predictor groups. The Physicochemical R2 was 0.33, 

albeit with no predictor variables having any substantial explanation of variance. The R2 for the 

Biological linear regression for the microcystin quota was even worse at only 0.05. As both the 

gene sequence and ELISA concentration results are used to calculate the toxin quota, both are 

removed from the Biological predictor variable list. All linear regressions so far for the Biological 

predictor group have relied on either mycE or microcystin concentration results to have a R2 of 

>0.3. 
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Table 5: Microcystin gene concentrations and microcystin toxin quota as response variables from statistical analysis. 

Three normalizations are presented for the gene sequence results along with the three different variable classes the 

model was split into, and the results from both the linear and random forest models. These results are broken up 

between the coefficient of determinations for each model and the ranking of the predictor variables that either 

explained the most variance (ANOVA from linear regression models) or had the highest Shapley values (random 

forest models). The cyano 16S and Phormidium 16S gene sequence results are normalized to gram dry weight for the 

microcystin quota model. 

Response Variable 

(normalization) 
Predictor Class Model R2 Predictor Ranking 

mycE 

(copies/g) 

Physicochemical 
linear 0.34 PO4

-2, TSS, pH, Sp. C. 

random forest 0.79 Turb., Temp., DOC, Sp. C. 

Biological 
linear 0.69 MC, BTbga, 16Sbga, BTbga

frac 

random forest 0.84 MC, BTbga
frac, 16Sbga, Phor. 

All 
linear N/A N/A 

random forest 0.91 MC, BTbga, %-Forest, %-Crop 

mycE 

(copies/gC) 

Physicochemical 
linear 0.35 PO4

-2, TSS, pH, Sp. C. 

random forest 0.83 Turb., Temp., Sp. C., NO3
-  

Biological 
linear 0.76 

MC, 16Sbga, BTbga, BT % 

Comp. 

random forest 0.85 MC, BTbga
frac, Phor., 16Sbga 

All 
linear N/A N/A 

random forest 0.88 MC, DOC, %-Crop, BTbga
frac 

mycE 

(copies/cm2) 

Physicochemical 
linear 0.34 PO4

-2, TSS, pH, Sp. C. 

random forest 0.74 Temp., Turb., DOC, Sp. C. 

Biological 
linear 0.03 BTbga

frac, BTbga, Phor., 16Sbga 

random forest 0.87 MC, Phor., 16Sbga, BTbga
frac 

All 

linear N/A N/A 

random forest 0.85 
MC, %-Imperv, BTbga, %-

Urban 

Microcystin Quota 

(μg/copy) 

Physicochemical 
linear 0.33 Temp., DO, PO4

-2, Sp. C. 

random forest 0.77 DOC, Turb., NO3
- , DO 

Biological 
linear 0.05 BTbga

frac, Phor., 16Sbga, BTbga 

random forest 0.78 16SbgaBTbga
frac, Phor., BTbga 

All 
linear N/A N/A 

random forest 0.84 Turb., NO3
- , DOC, BTbga

frac 
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Table 6: Predictor variables contributing 30% or more of the total predictive power from the ANOVA/Shapley Value 

groups for microcystin concentration, cyanobacteria, mycE concentration, and microcystin quota models. Displayed 

is the target response variable, the predictor class, the type of model ran (random forest = R.F.), the normalizations 

relevant to the predictor, the R2 of the whole model, the predictor variable, and the corresponding percent contribution.   

Target Predictor Class Model Normalization R2 Predictor % Weight 

Microcystin Physico R.F. g 0.72 Sp. C. 38.2 

Microcystin Physico R.F. gC 0.55 Turb. 39.0 

Microcystin Physico R.F. cm2 0.44 Temp. 49.1 

Microcystin Bio Linear g, gC, cm2 0.7, 0.77, 0.61 qPCRMC 64.5, 74.8, 44.2 

Microcystin Bio R.F. g, gC, cm2 0.9, 0.94, 0.75 qPCRMC 67.5, 74.0, 46.3 

Microcystin All R.F. g, gC, cm2 0.92, 0.94, 0.75 qPCRMC 59.6, 73.6, 41.8 

Cyanobacteria Physico Linear BTbga 0.55 pH 39.3 

Cyanobacteria Physico R.F. BTbga 0.55 Turb. 40.6 

Cyanobacteria Physico R.F. BTbga 0.55 NO3
-  31.1 

Cyanobacteria Physico R.F. TAXbga
frac 0.78 Sp. C. 62.9 

Cyanobacteria Bio R.F. BTbga, TAXbga
frac 0.26, 0.78 Phor. 77.3, 57.6 

Cyanobacteria Bio R.F. BTbga
frac 0.16 16Sbga 100 

Cyanobacteria All R.F. BTbga 0.61 Turb. 37.7 

Cyanobacteria All R.F. BTbga
frac 0.61 Mat 32.3 

Cyanobacteria All R.F. TAXbga
frac 0.74 Sp. C. 60.5 

mycE qPCR Physico R.F. g, gC, cm2 0.79, 0.83, 0.74 Turb. 32.5, 32.9, 31.9 

mycE qPCR Physico R.F. cm2 0.74 Temp. 32.0 

mycE qPCR Bio Linear g, gC 0.69, 0.76 MC 65.8, 75.1 

mycE qPCR Bio R.F. g, gC, cm2 0.84, 0.85, 0.87 MC 86.1, 88.6, 72.8 

mycE qPCR All R.F. g, gC, cm2 0.91, 0.88, 0.85 MC 58.2, 75.4, 61.6 

MC Toxin Quota Physico R.F. N/A 0.77 DOC 45.2 

MC Toxin Quota Bio R.F. N/A 0.69 16Sbga 58.3 
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4.3.2 Random Forest Analyses 

As the random forest can determine relationships outside of just linear, is not impacted by 

missing data, and is a composition of thousands of variations of single regression tree models 

(Figure 16), the random forest regression analysis can determine predictor/target variable 

relationships with greater reliability. Random forest models were run for all of the same variables 

as the linear regression models (Table 3; Table 4; Table 5), and because missing data doesn’t 

impact random forest models in the same way linear regression models are affected, models for 

anatoxin-a concentration, saxitoxin concentration, geosmin concentration, and MIB 

concentrations were also developed and evaluated. In this study, Shapley values are converted to 

a percent to show how much of the model they describe. Except for the microcystin concentration 

model normalized to scrape area models, random forest models outperformed linear regression 

models of similar target and predictor variables. Mean R2 improved from 0.39 to 0.73 for linear to 

random forest modeling among the models that have both linear and random forest models 

(microcystin concentrations, cyanobacteria, mycE concentrations, and microcystin quota). 

For microcystin concentration normalized to gram dry weight, specific conductivity had a 

Shapley value percent weight of 38.2%, when normalized to gram dry weight carbon turbidity had 

a Shapley value percent weight of 39.0%, and when normalized to scrape area, temperature had a 

Shapley value percentage of 42.6%. The best R2 for the Physicochemical random forest models 

was 0.72 for the gram dry weight normalization of microcystin concentration random forest 

models. The best model for the Biological random forest models for microcystin concentrations 

was also the gram dry weight of carbon normalization, with a R2 of 0.94. This correlation is strong 

due to the high Shapley value percent weight of the mycE result, which makes up 74.0%. In the 

All model, R2 values are similarly high to the Biological model, and the mycE concentration makes 

up a very large Shapley value percent portion as well (Figure 17).  
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Figure 16: An example of a regression tree with good performance for predicting microcystin (left) and geosmin 

(right), utilizing All possible predictor values. 
 

 

Cyanobacteria models in the random forest regression have the lower R2 values relative to 

other target variables, with a R2 range between 0.16 and 0.78, mostly impacted by the low 

coefficient of determinations for the Biological models for BenthoTorch concentration and percent 

composition. Turbidity, nitrate, specific conductivity, and TSS are strong predictors of 

Cyanobacteria from the Physicochemical predictor variable list. Turbidity had a Shapley value 

percent of 40.6% when modeling for Cyanobacteria concentration from BenthoTorch results in the 

Physicochemical model and was also still the top predictor in the All predictor variables model. 

Specific conductivity was the top predictor for the cyanobacteria percent composition from 

taxonomic analysis, with Shapley value percentages of 62.9% for the Physicochemical analysis 

and 60.5% for the All predictors analysis. From the Biological predictor variable list, Phormidium 

was the top predictor for the taxonomic model that was favorable (R2 = 0.78), but the BenthoTorch-
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related cyanobacteria analyses (concentration from BenthoTorch and cyanobacteria percent 

composition from BenthoTorch) had poor model performance. 

R2 values are strong at over 0.8 for all three normalization types. In the Physicochemical 

models, Turbidity was a powerful predictor, with all three Shapley value percent weight for the 

three normalizations being over 30%, which is being used as a significant predictor threshold for 

individual predictor variables. Temperature also was a powerful predictor in the scrape area 

normalization model. As with the microcystin concentration random forest models having high 

predictive strength from the qPCR results, the flip is seen when running the Biological predictor 

variables for the qPCR random forest models. The microcystin concentration is by far the strongest 

predictor, with Shapley value percentages from 72.8% to 88.6%. The predictive strength of 

microcystin concentrations carries over to the All predictor variable random forest model of mycE.  

Next, the random forest regression model was run for the microcystin toxin quota target 

variable. Interestingly, Dissolved Organic Carbon (Shapley value percentage of 45.2%) was the 

top physicochemical predictor variable for the Physicochemical model (R2 = 0.77). Similar to 

other models so far, qPCR data, in this case Cyano 16S concentration, is the top biological 

predictor variable in the Biological model (R2 = 0.78). Finally, in the All predictor variable model 

(R2 = 0.92), turbidity was the strongest predictor, but did not have a Shapley value percent weight 

above 30% (28.0 %). 

Anatoxin-a did not have a linear regression model result as there were too many missing 

rows of data, which would have resulted in an error making the linear regression model or a 

potential over-fitted model due to too few predictor variables. The same happened for saxitoxin, 

geosmin, and MIB. Anatoxin-a had the best random forest model result from the gram dry weight 

normalization (Table 7). In both the Physicochemical and All predictor variable groups, 
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temperature had the top predictor weight (R2 = 0.69 and R2 = 0.67, respectively) (Table 9). The 

qPCR results for the Cyano and Phormidium 16S also had strong predictability in the Biological 

model with 100% of the Shapley weight coming from both the Cyano 16S and Phormidium 16S 

results combined (R2 = 0.44) (Table 9). A random forest model was also developed and evaluated 

for the qPCR concentration results for anaC (Table 8), which found that it shared three of the four 

top Shapley values as the anatoxin-a concentration model, temperature in the Physicochemical 

model (R2 = 0.71), and cyano and Phormidium 16S concentrations in the Biological model (R2 = 

0.57) (Table 9). In the anatoxin-a quota model, TSS and Cyano 16S concentrations made up the 

bulk of the Shapley value percent weights, with TSS making up 85.9% of the Physicochemical 

model.  

For saxitoxin, the gram dry weight times percent carbon was the best normalization method 

(Table 7). While the Physicochemical random forest model had the best correlation (R2 = 0.89), 

none of the predictors stood out as a strong weight in the Shapley values. Data from the 

BenthoTorch led the Biological model as well as the All model, with the cyanobacteria 

concentration by BenthoTorch predictor variables at 91.4% Shapley value weight in the Biological 

model (R2 = 0.82 and R2 = 0.84, respectively) (Table 9). Like, the anatoxin-a concentration model 

and anaC model, the sxtA model did share similar highly effective predictors to the saxitoxin 

concentration model, but only in the Biological model (cyanobacteria concentration from the 

BenthoTorch had a Shapley value percent weight of 0.6) (Table 8). In the Physicochemical model, 

turbidity was the top Shapley value (R2 = 0.56), and in the All model, percent carbon was the top 

Shapley value (R2 = 0.76). For the saxitoxin quota model, temperature was the top Shapley value, 

with percent weights of 72.7% and 59.7% in the Physicochemical (R2 = 0.64) and All (R2 = 0.63) 
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models, respectively (Table 8). Also, in the Biological model, Phormidium had a huge impact on 

the model, with a 92% Shapley value percent weight (R2 = 0.67) (Table 9). 

Like saxitoxin, geosmin also favored the normalization to gram dry weight times percent 

carbon. Specific conductivity led the Physicochemical predictor class model with 50.6% Shapley 

value weight (R2 = 0.83) (Table 7). Also similar to the saxitoxin model, BenthoTorch data provided 

substantial Shapley value weight to both the Biological model and the All predictor class model 

(R2 = 0.70 and R2 = 0.79, respectively) (Table 9). Unfortunately, no random forest models could 

be run for geoA concentration or geosmin quota due to too many missing variables in the geoA 

dataset from non-detects. 

Finally, MIB concentration had the best model results from the gram dry weight 

normalization (Table 7). Temperature was a strong predictor for MIB in both the Physicochemical 

and All predictor class models, with over 70% weight in both Shapley value breakdowns (R2 = 

0.82 and R2 = 0.75, respectively) (Table 9). BenthoTorch percent composition of cyanobacteria 

data was the only substantial Shapley value percentage in the Biological model for MIB (R2 = 

0.73).  
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Table 7: Random Forest model for anatoxin concentration, saxitoxin concentration, geosmin concentration, and MIB 

Concentration. The best normalization was chosen to display for each target variable based on the average R2 

Coefficient. The top 4 Shapely values for each model are displayed, along with the person make-up of any Shapley 

value of substantial weight. 

Response Variable 

(normalization) 
Predictor Class R2 Predictor Ranking 

Anatoxin 

(μg/g) 

Physicochemical 0.69 Temp., DO, DOC, Turb. 

Biological 0.44 16Sbga, Phor., BTbga
frac, qPCRAA 

All 0.67 Temp., DO, DOC, pH 

Saxitoxin 

(μg/gC) 

Physicochemical 0.85 Turb., DO, DOC, TSS 

Biological 0.82 BTbga, qPCRSX, Phor., BTbga
frac 

All 0.84 BTbga, %-N, DO, DOC 

Geosmin 

(μg/gC) 

Physicochemical 0.83 Sp. C., Turb., DOC, DO 

Biological 0.7 BTbga, BTbga
frac, Phor., 16Sbga 

All 0.79 BTbga, Sp. C., DOC, Light 

MIB 

(μg/g) 

Physicochemical 0.82 Temp., Sp. C., DOC, DO 

Biological 0.73 BTbga
frac, 16Sbga, Phor., BTbga 

All 0.75 Temp., Sp. C., Light, DO 
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Table 8: Random Forest model for anatoxin’s qPCR sequencing, anaC, saxitoxin concentration, geosmin 

concentration, and MIB Concentration. The best normalization was chosen to display for each target variable based 

on the average R2 Coefficient. The top 4 Shapely values for each model are displayed, along with the person make-

up of any Shapley value of substantial weight. 

Response Variable 

(normalization) 
Predictor Class R2 Predictor Ranking 

anaC 

(μg/g) 

Physicochemical 0.71 Temp., Turb., TSS, NO3
-  

Biological 0.57 16Sbga, Phor., BTbga, AA 

All 0.85 16Sbga, Phor., Turb., Light 

sxtA 

(μg/gC 

Physicochemical 0.56 Turb., Temp., DO, DOC 

Biological 0.6 BTbga, BTbga
frac, 16Sbga, Phor. 

All 0.76 %-C, %-N, BTbga, Light 

Anatoxin quota 

(μg/copy) 

Physicochemical 0.8 TSS, Turb., Temp., Sp. C. 

Biological 0.54 16Sbga, Phor., BTbga
frac, BTbga 

All 0.6 16Sbga, Turb., DO, %-Forest 

Saxitoxin quota 

(μg/copy) 

Physicochemical 0.64 Temp., Turb., TSS, DOC 

Biological 0.67 Phor., 16Sbga, BTbga
frac, BTbga 

All 0.63 Temp., Phor., %-Crop, Mat 
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Table 9: Predictor variables contributing 30% or more of the total predictive power from the ANOVA/Shapley Value 

groups for the anatoxin-a concentration, saxitoxin concentration, geosmin concentration, MIB concentration, anaC 

concentration, sxtA concentration, anatoxin-a quota, and saxitoxin quota. Displayed is the target response variable, 

the predictor class, the normalizations relevant to the predictor, the R2 of the whole model, and the predictor with 

corresponding percent contribution. All models were random forest models. 

Target Predictor Class Normalization R2 Predictor % Weight 

Anatoxin Physico g 0.69 Temp. 52 

Anatoxin Bio g 0.44 16Sbga 56.2 

Anatoxin Bio g 0.44 Phor. 43.8 

Anatoxin All g 0.67 Temp. 62.8 

Saxitoxin Bio gC 0.82 BTbga 91.4 

Saxitoxin All gC 0.84 BTbga 62.4 

Geosmin Physico gC 0.83 Sp. C. 50.6 

Geosmin Bio gC 0.7 BTbga 59.1 

Geosmin All gC 0.79 BTbga 32.4 

MIB Physico g 0.82 Temp. 75.5 

MIB Bio g 0.73 BTbga
frac 58 

MIB All g 0.75 Temp. 73.4 

anaC qPCR Physico g 0.71 Temp. 32.2 

anaC qPCR Bio g 0.57 16Sbga 46.8 

anaC qPCR Bio g 0.57 Phor. 31.8 

sxtA qPCR Physico gC 0.56 Turb. 51.4 

sxtA qPCR Bio gC 0.6 BTbga 57.7 

sxtA qPCR All gC 0.76 %-C 42.6 

AA Toxin Quota Physico N/A 0.8 TSS 85.9 

AA Toxin Quota Bio N/A 0.54 16Sbga 75.9 

AA Toxin Quota All N/A 0.6 16Sbga 66.7 

SX Toxin Quota Physico N/A 0.64 Temp. 72.7 

SX Toxin Quota Bio N/A 0.67 Phor. 92 

SX Toxin Quota All N/A 0.63 Temp. 59.7 
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Figure 17: Shapley variable predictor percent weight for (a) Physicochemical, (b) Biological, and (c) All variable 

random forest models for microcystin concentrations normalized to gram dry weight carbon. 
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4.3.3 Model Selection: Linear Regression vs Random Forest 

The performance comparison of linear and random forest models can be seen clearly 

when the random forest model is presented as a linear correlation plot rather than tree plot 

(Figure 18; Figure 19; Figure 20). Both the random forest model and linear regression models 

output interesting results for modeling of the dynamics for cyanotoxin and taste and odor 

compounds, cyanobacterial concentrations, genetic copy concentrations, and cyanotoxin quota. 

As stated in the methodology section, linear regression models are impacted by missing data. 

Due to non-detects, field errors, laboratory limitation, etc., the linear regression is more limited 

to data that is not complete or full. Since some analyses in this study, especially any analysis 

using the predictor class All variables, had missing data, linear regression models were impacted 

by this. A limit on how much missing data was acceptable was set at one third of the amount of 

data rows in the target variable dataset. Due to this limiter, data from All variable linear 

regression models were usually discarded. Linear regression models are simple to run and 

understand and benefit greatly from variable that share linear relationships. While ecological 

data usually consists of very complex and non-linear relationships, running linear regression 

models is simple and useful for comparisons to non-linear multi-variate models. Random forest 

models on the other hand are very powerful in comparing non-linear complex sets of variables 

such as water-quality modeling (Wang et al., 2021). Our random forest models almost always 

outperformed the linear regression models of similar target and predictor variables. While the 

random forest model worked well in our system to draw relationships between predictor and 

target variables, there are some model limitations that make comparing other study sites and 

other data sets more difficult. Random forest models cannot extrapolate data beyond the upper 

and lower bounds of the given dataset, as it is constructed by regression trees which use given 

data ranges to create branches in the tree. Sample data from another site may have a range 
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outside of the range our study has, and therefore wouldn’t get much use out of our random forest 

model. At the extremes, it would only output the max or min seen in this study, whereas that 

other site could have microcystin concentrations well below or above our sites.  

 
Figure 18: Comparison of best linear regression (left) and random forest (right) using only Physicochemical values. 

Both are normalized to gram dry weight carbon. 
 

 

 
Figure 19: Comparison of best linear regression (left) and random forest (right) using only Biological values. Both 

are normalized to gram dry weight carbon. 
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Figure 20: Plot of random forest model using All variables. The linear regression for the All predictor model had too 

many missing rows of data to make an accurate linear regression model, so it wasn’t run. Both are normalized to gram 

dry weight carbon. 
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Chapter 5: Discussion 

Using a wide combination of variables from in situ sensors, physicochemical field and 

laboratory measurements, toxin concentration analysis, genetic qPCR analysis, taxonomic 

identification and enumeration, isotopic analysis, and land-use characteristics, we had the goal to 

explain the drivers of cyanotoxin and T&O compound abundance in benthic mat samples in 

varying human-disturbed streams. We hypothesized that urbanized basins would experience 

higher cyanotoxin and T&O compound concentrations because of increasing nutrients, Shallower 

flow depths, and more light penetration through limited tree canopy cover. Qualitatively, there 

were more algae mats in the urban stream, and fewer in the rural stream. However, our results lead 

us to reject this original hypothesis. Instead, it appears for our basins that all anthropogenic 

disturbances, whether urban or rural in nature, create an environment where certain cyanotoxins 

and T&O compounds can be produced in detectable quantities across physicochemical and 

biological conditions, irrespective of the type of human disturbance.  

5.1 Presence and drivers of cyanotoxin production 

Several studies have attempted to link certain drivers to cyanobacteria abundance, 

cyanotoxin and T&O compound presence, and the gene sequences that have been found to be 

connected to these toxins and T&O compounds. Lower flow rates, nutrient availability, higher 

specific conductivity, have all been linked to greater proliferations of cyanobacteria benthic 

cyanobacteria mats in freshwater environments (Busse et al., 2006; Graham et al., 2018; 

McAllister et al., 2018; Vadeboncoeur et al., 2021). Low flow rates, shallow flow depths, and 

nitrogen and phosphorus being present, but not in excess, leads to cyanobacteria dominating 

benthic assemblages (Scott and Marcarelli, 2012). While flow rates and depths were not actively 

measured in this study, nutrient levels were. Nitrogen and phosphorus levels in all three streams 
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were at levels much higher than other benthic algae studies measured, for example, Biggs et al 

finding soluble inorganic nitrogen and soluble reactive phosphorus levels two-to-three magnitudes 

lower in concentration than in the streams in this study (Biggs et al., 2000). Interestingly, chl-a 

levels in the Biggs et al study were at or above what were measured in the streams in this study, 

despite lower nutrient presence. Taxonomically, in studies that take place in streams with lower 

nutrient levels (Biggs et al., 2000; McAllister et al., 2018) there are more often mats dominated by 

cyanobacteria, further promoting the subsidy-stress concept. In other words, higher flow rates 

and/or higher nutrient concentrations promote certain types of filamentous benthic algae while 

non-filamentous cyanobacteria, especially well-known toxin producing varieties like Phormidium, 

get outcompeted. While our taxonomic results suggest relatively low cyanobacterial biovolume 

concentrations (13% on average), the BenthoTorch readings (38% on average) and detections of 

cyanotoxins (100% detect for microcystin) from both ELISA and qPCR methods suggest 

cyanobacteria are still present in large quantities across our study duration and extent.  

One possible reason the taxonomic counts and cyanobacteria biovolumes are lower than 

the BenthoTorch measurement is the presence of pico-scale cyanobacteria (Harris and Graham, 

2015). These cyanobacteria could be difficult or nearly impossible to detect with a microscope, 

but still contribute to toxin production. However, as the BenthoTorch measures a fluorometric 

response from the entire 1 cm2 it is measuring, fluorometric responses by pico-scale cyanobacteria 

would still be detectable. Another point of note on the BenthoTorch measurement reliability is the 

spread of results gathered from each cobble at a site that are then combined to create a single 

composite measurement. The coefficient of variation for BenthoTorch readings per site ranged 

from 20% to 115%, with most coefficients of variation being above 30%. The BenthoTorch 

accuracy has come into question in several other studies before, often pointing out that it 
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underestimates chl-a. Harris and Graham found the BenthoTorch underestimated cyanobacteria 

when the concentrations measured by the BenthoTorch were greater than 4 μg/cm2 (Harris and 

Graham, 2015). Also, a different study found the BenthoTorch underestimated cyanobacteria on 

natural substrates (Echenique-Subiabre et al., 2016). The uncertainties tied to the BenthoTorch do 

suggest requiring more analysis on it in future studies, but there are other studies that show high 

correlations with laboratory chl-a analysis (Rosero-López et al., 2021). Our outstanding chl-a 

samples are still waiting to be processed, but once they are finished, we can understand if the same 

relationship holds true for our data. 

Taxonomic results were also different from the qPCR results, specifically the Cyano 16S 

and Phormidium genetic concentrations. One reason could be that the scrape site the taxonomic 

samples were taken from had slightly different benthic species make-up. Some cobbles collected 

may have only had a small area that had benthic growth on it, and while cobbles were only selected 

if they had enough growth for both samples, the scrape areas could sometimes be several 

centimeters away from each other. Another reason qPCR could have estimated high values of 

cyanobacteria and Phormidium rRNA is due to extracellular rRNA being caught in the mat matrix 

that came from upstream and not necessarily from within the mat itself, resulting in an 

overestimation of cyanobacteria and Phormidium qPCR counts (Ellegaard et al., 2020). 

Specific conductivity is another variable that has been known to correlate with 

cyanobacteria concentrations (Drerup and Vadeboncoeur, 2016; Monteagudo and Moreno, 2016). 

In general, our random forest models performed better and had no impact from missing data like 

the linear regression models, and therefore are referenced more in the proceeding discussion. From 

the random forest models of this study, specific conductivity was found to have substantial 

influence in the models ran for cyanobacteria concentrations using Physicochemical variables, and 
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even had 61% of the Shapley value make-up for the taxonomic data-based cyanobacteria 

concentration using All available variables (R2 = 0.74). In multi-city analyses on urbanization’s 

impact on several physicochemical variables, a significant connection of conductivity to 

urbanization was found (Potapova et al., 2005). With urbanization causing an increase in specific 

conductivity in stream waters, and with specific conductivity being a substantial predictor in our 

models, there is good reason to more specifically look at the link between urbanization’s particular 

impact on specific conductivity and if the particular chemical(s) being increased (and therefore 

driving a higher specific conductivity) is a driver of potentially harmful benthic cyanobacteria 

proliferations. 

Microcystin was the most commonly found cyanotoxin, with a detection in every sample 

we collected (n = 72). Microcystin is the one of the most commonly detected cyanobacteria 

worldwide (Salmaso et al., 2016), and it has been detected in planktonic cyanobacteria studies near 

Eastern Kansas already (Graham et al., 2018; Harris and Graham, 2017). For microcystin, specific 

conductivity made up 38.2% of the Shapley value percent weight for the Physicochemical variable 

only random forest model of microcystin concentrations normalized to gram dry weight (R2 = 

0.72). The same comparison of urbanization drivers to specific conductivity and that downstream 

impact on cyanobacteria should be applied to microcystin release in future research as well. 

Temperature was another Physicochemical predictor variable with a greater than 30% Shapley 

value percent weight (42.6%, R2 = 0.61). A study on the relationship between temperature and 

freshwater planktonic cyanobacteria found that the prime microcystin forming temperatures were 

from 20°C to 25°C (Walls et al., 2018). However, in our study, the direct relationship of 

temperature and microcystin has very poor correlation, with the higher concentration values in our 

dataset being found from 10°C to 23°C. With there being overlap in the ranges of peak microcystin 
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production, and a difference of planktonic and benthic algae, the difference could be due to species 

preferences, as there are many species of cyanobacteria that can produce microcystin (Ibelings et 

al., 2021). Another slight discrepancy in our random forest model’s response to factors other 

studies have found to relate to microcystin are nutrients. In a study analyzing microcystin 

production from both lab-grown cultures and phytoplankton lake blooms, higher nitrate levels 

(16.1 mg/L in the culture test, and above 0.2 mg/L in the lake) were found to correlate with higher 

microcystin production (Wagner et al., 2021). While, in our study, nitrate does not have a positive 

correlation with microcystin concentrations. Nitrate and phosphate do show up as predictors with 

Shapely value percent weights between 8% and 19% for microcystin concentration and mycE 

concentration models, but these aren’t significant correlators and only go to show they are involved 

in microcystin and mycE presence. 

Based on the statistical modeling, the gene count results for mycE provided by qPCR 

analysis provided the strongest correlation to microcystin concentrations determined through 

ELISA. For example, mycE gene counts provided as much marginal contribution to the estimation 

of microcystin concentrations as the next 20 predictive variables combined (Figure 10c). Thus, 

qPCR analysis alone would be enough to make statistically backed judgements on microcystin 

presence. Zupančič and team found the same results through their linear regression models with a 

Pearson correlation coefficient of r = 0.8375 (Zupančič et al., 2021). Table 6 shows qPCR had 

significant contributions to both linear regression and random forest models when it was a 

predictive variable for microcystin concentrations, contributing between 42 and 75 percent of the 

predictive strength of the models, which had corresponding R2 values between 0.61 and 0.94. 

However, the drawback of using a predictive model that requires gene counts as predictive 
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variables is that qPCR analysis is highly involved and requires specialized lab equipment and 

software to conduct.  

Anatoxin-a was found to have high influence from temperature according to the Shapley 

value percent breakdown of the random forest model run (Table 9). This could be due to the 

temperature impact on the forms of anatoxin and which are produced (Aráoz et al., 2005). That 

study suggests anatoxin-a is preferentially created when temperatures are cooler, around 22 °C, 

while homoanatoxin-a is more common in warmer temperatures, around 25 °C. This is consistent 

with our study’s concentrations of anatoxin-a (Figure 13). This suggests that the relationship 

between saxitoxin and anatoxin-a isn’t as prominent as it seems, and instead the “hand-off” is 

potentially between homoanatoxin-a (which wasn’t measured in this study) and anatoxin-a. The 

gene sequence measured for anatoxin-a in the study, anaC, also saw a relationship from 

temperature in the random forest model (R2 = 0.71; Table 9). The anaC sequence has been linked 

to both anatoxin and homoanatoxin producers (Rantala-Ylinen et al., 2011), however the 

relationship with temperature on the possible “hand-off” between homoanatoxin and anatoxin 

cannot be elucidated with the anaC sequence qPCR results. The anatoxin quota Physicochemical 

random forest model showed TSS having a large impact on the prediction of the anatoxin quota, 

with a Shapley value percent weight over 80% (R2 = 0.8). In other studies, low nutrients correlated 

with low anatoxin quota (Heath et al., 2016), but with the higher nutrient levels in this study, that 

impact was possibly avoided here. Lower TSS is favorable for cyanobacterial growth and has been 

found to be linked to microcystin production (Graham et al., 2018; Xue et al., 2020). It could be a 

similar connection with the anatoxin quota, as the Biological model having cyanobacteria 16S 

strain concentration as its highest Shapley value by percent weight shows cyanobacteria abundance 

and the drivers of that abundance both predict anatoxin quota in our model.   
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Saxitoxin, along with geosmin, showed the most promise for ease of analysis at reduced 

costs. This is because most of the predictor variables that showed the highest percent weight in 

their Shapley value breakdowns were from the in-situ sensors: DO, turbidity, conductivity, and 

BenthoTorch measurements. Besides qPCR, the other predictor variables, TSS and DOC, are 

relatively easy analyses for land managers to complete. Only qPCR is relatively specialized and 

requires expensive lab equipment. As far as the authors are aware, this may be one of the only 

analyses performed on saxitoxin with BenthoTorch data, and the high Shapley value weight of the 

BenthoTorch data certainly suggest further investigation might be worth it to see if the 

BenthoTorch is a worthy predictor of saxitoxin producing cyanobacteria. Temperature and 

conductivity were also found to have an impact on saxitoxin in previous studies as compiled by 

Neilan and colleagues (Neilan et al., 2013). One study showed that saxitoxin concentrations were 

higher at 28 °C, while optimal growth for the particular cyanobacteria, Aphanizomenon, was 22 

°C (Dias et al., 2002). However, this particular cyanobacterium was not detected in our taxonomic 

identification and enumeration analyses. Also, the production of toxins by various cyanobacteria 

is potentially affected by physicochemical parameters differently. For example, a different study 

found the opposite affect from temperature on saxitoxin production when analyzing Raphidiopsis 

(Cylindrospermopsis) raciborskii C10 (Castro et al., 2004). As for the sxtA gene concentration, 

our random forest Biological model had BenthoTorch concentration as the highest predictor, like 

the saxitoxin concentration model as well (Table 9). Also, with turbidity being a prominent 

Physicochemical predictor, and with temperature being the highest predictor for the saxitoxin 

quota All model, the in situ sensors can be used effectively in developing a model to assist with 

monitoring of benthic saxitoxin production.  
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Geosmin was detected in every sample we took in the study from the GC-MS analysis, 

however the qPCR results only had 4 detections across all of the samples. This might suggest that 

the geosmin primer selected was not appropriate for quantifying the geosmin-producing genes in 

our samples. However, according to one study analyzing many different geosmin primers, the 

primer used in our study was evaluated in both benthic and planktonic cyanobacteria analyses and 

is listed as one that could “successfully identify the geosmin synthase for a wide range of geosmin 

producing cyanobacteria in both laboratory and natural samples” (Devi et al., 2021). Another 

reason for the discrepancy could be that the actinomycete bacteria are capable of producing 

geosmin as well (Jüttner and Watson, 2007), and they could have been the dominant producer in 

the streams. As they were not targeted by any of our analyses, this cannot be confirmed, but is 

simply a possibility. Therefore, it is difficult to identify the exact mechanism for why geosmin 

qPCR analysis resulted in so few detections while the GC-MS results showed such strong 

concentrations. As for the geosmin concentration modeling result, as mentioned above with 

saxitoxin, many of the substantial Shapley value percent weight predictors were from the 

BenthoTorch data (cyanobacteria concentration from mass and cell count results, as the percent 

composition from both as well) as well as the physicochemical data that can be measured in situ 

(specific conductivity and turbidity) or in easy laboratory procedures (TSS and DOC).  

For MIB concentrations, the random forest model based on both the Physicochemical 

predictor class and All predictor class had temperature as the top Shapley value, both over 70% 

percent weight. Also, in the Biological model, percent composition from the BenthoTorch was the 

highest predictor, again showing the BenthoTorch is a capable device and should be incorporated 

into field-based monitoring programs for cyanotoxins and T&O compounds. In a 2014 study, 

Kakimoto and colleagues found that MIB gene expression increased at 30 °C compared to the 
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nominal 20 °C sample, and the cooler, 4 °C sample slightly increased and then decreased over a 

10-hour period (Kakimoto et al., 2014). However, gene expression does not always correlate to 

toxin and T&O compound production. Also, in our study the concentration of MIB increased as 

the water temperature became cooler, with the MIB peaks at a water temperature of 10 °C. 

Unfortunately, we did not analyze MIB through the qPCR process because we lacked access to an 

appropriate primer at project onset. However, it does appear that a qPCR primer for potential future 

analysis of MIB has been tested (Kim et al., 2020).  

Several datasets in our study showed results that seemed at odds with one another. While 

at first this may indicate contradictory results, it highlights the importance of using a multi-faceted 

approach whereby the benthic algae are assessed using a variety of robust methods. If a water 

quality stakeholder were to use just a single line of evidence, it may bias them toward an 

understanding that cyanobacteria are either present in high numbers or absent entirely. The reality 

likely falls somewhere in between these two end-members and the more data that are available, 

the more nuance can be attributed to cyanotoxin and T&O compound formation. In our study, we 

utilized multiple methods of analysis for both cyanobacteria and the secondary metabolites being 

studied, with hopes to both gain more insight on what impacts both the potential genes for these 

metabolites and the actual creation and release of them.  

5.2 Proliferation of benthic cyanotoxins in human environments 

In this study, three different cyanotoxins and two different T&O compounds were detected 

in streams across Johnson County, Kansas. One original hypothesis in the study was to compare 

the differences in land use in these three streams to the presence and concentrations of these 

secondary metabolites. However, with detections in all streams, and no clear correlation in 

concentration with land use or physicochemical variables associated with land use differences, we 
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can surmise that it isn’t the level of urbanization and impervious surfaces that correlate to drastic 

gradients in the presence or density of cyanotoxins and T&O compounds. Instead, our results show 

that, for our study site, cyanotoxins and T&O compounds are present near any human disturbed 

land, whether residential, pasture, cropland, urban, impervious, or commercial. Even when nutrient 

levels are at or higher than one would expect to find cyanobacteria dominating the benthic mats 

(Pinckney et al., 1995), there are still enough cyanotoxin producing cyanobacteria present to pose 

a risk of exposure to these chemicals.  

With the prevalence of cyanotoxins and T&O compounds sourced from benthic 

cyanobacteria mats in the waters around the world, water managers in many fields including 

utilities, municipalities, and recreation should invest in benthic cyanobacterial bloom monitoring. 

In a study on the monitoring practices and processes of utility managers around the United States, 

Canada, and Australia, it was found that only 20 percent of these monitor for benthic cyanobacteria 

(Kibuye et al., 2021). Also, the monitoring practices that are used (in either benthic or 

phytoplanktonic) are often not as effective as they should be. A tiered method is proposed by the 

Kibuye study, one which tests for biological activity in tier 1 with the cheaper and faster 

monitoring tools (visual assessment or chl-a measurements for instance). Based on our study’s 

results, we would suggest visual assessments at locations known to have high light availability, 

low flow depths, and anthropomorphic land use nearby. High frequency chl-a sensors could also 

be utilized, although a connection between water column chl-a levels and benthic activity was not 

analyzed in this study. These high frequency sensors could also measure temperature and specific 

conductivity, which based on our analysis can be used to judge when benthic productivity is higher 

and the chance of cyanotoxins and T&O compounds are present. While the activity of different 

benthic cyanobacteria may differ from the temperature and specific conductivity levels we found 
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in our study, we would suggest a visual assessment of the area, if stream temperatures range from 

10°C to 30°C and specific conductivity is higher than 750 mS/cm. Tier two is cyanobacteria 

confirmation with methods such as taxonomic microscopy confirmation. Based on our results, 

confirmation with multiple BenthoTorch measurements would be much faster and potentially 

cheaper than taxonomic analysis. However, the one benefit of the taxonomic analysis is identifying 

known toxin producing genus, such as Phormidium, which the BenthoTorch is incapable of doing. 

Cyanobacteria concentrations from the BenthoTorch of greater than 1.3 μg/cm2 can be considered 

to have high enough concentrations of cyanobacteria that cyanotoxins and T&O compounds could 

be present in detectable amounts. Finally, tier 3 would confirm the presence and concentrations of 

metabolites, such as the cyanotoxins in this study, utilizing tools such as SPATT bags, ELISA, or 

qPCR. Unless the organization investigating cyanotoxins already has a GC-MS or qPCR 

instrument, ELISA is a much cheaper method to identify cyanotoxins. ELISA for geosmin 

(Bristow et al., 2019) and MIB (Chung et al., 1990) have been developed in the past, but their 

sensitivity is sometimes questioned. Also,they are not readily available from companies like 

Eurofins, where we sourced our microcystin, anatoxin, and saxitoxin ELISA kits from. Instead, 

GC-MS would be our suggested method for identifying geosmin and MIB. SPATT bags are 

another cheap way to detect the presence of cyanotoxins in the water column and have been used 

to detect anatoxin (Bouma-Gregson et al., 2018; Wood et al., 2018), microcystin (Kudela et al., 

2011), and saxitoxin (Lane et al., 2010). SPATT Bags are not very efficient at measuring the 

quantitative concentration of toxin in the water (Wood et al., 2020), but detecting the presence of 

the toxin in the water column can add additional insight to intracellular toxin concentrations. Once 

a detection of cyanotoxin or T&O compound has been found to cross a certain threshold, actions 

should be taken to reduce public and animal exposure and to possibly eliminate the toxic 
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cyanobacterial bloom. The suggested tiered method, or any similarly robust monitoring method 

should be investigated further to determine the best way to quickly identify and act on toxic benthic 

cyanobacterial blooms. Models already developed (Otten et al., 2016), or ones developed in the 

future, that can be output as equations with a target variable of a certain cyanotoxin concentration 

or gene sequence abundance can be utilized as well such that the predicted cyanotoxin quantity 

can be output based on the input physicochemical and biological data from the utility’s own 

analysis. Finally, these methods and thresholds determined should be regulated and utilized in 

large areas (such as states, regions, or countries), so that improvements made to these common 

practices affect a much larger population and new practices spread quicker. 

However, regulatory thresholds need to be developed for benthic cyanobacteria sourced 

toxins and T&O compounds. For instance, it is difficult to link current regulatory suggestions for 

microcystin as they are usually related to concentrations in liquid water like the EPA’s suggestion 

of 1.6 μg/L in drinking water or 8 μg/L in recreational waters (USEPA, 2019, 2015). Benthic mat 

microcystin is usually presented in a mass per unit dry weight and the measured toxins are mostly 

intracellular, meaning the consumption of the algae is usually required to experience any 

significant concentration of the toxins. 

As stated in the introduction, the consumption of toxic benthic cyanobacteria biomass has 

led to animal deaths. It should be noted that concentrations of cyanotoxins found in dead animals 

that were found to have consumed cyanotoxin-rich benthic mats is many orders of magnitude 

higher than the concentrations of cyanotoxins we found in the benthic mats around Johnson County 

(Bauer et al., 2020). These concentrations were first converted to an equivalent per volume 

concentration based on the volume immediately around the mat, which the authors suggest might 

drive up the magnitude of the concentration. For example, anatoxin-a concentrations in a 1mL of 



74 

 

water simulated 68,000 μg/L. However, even the per dry weight concentrations are between 300 

and 1200 μg/g dry weight, which is 6 orders of magnitude greater than concentrations found in our 

ELISA analysis. In the concentrations detected by this study (mean of 0.08 μg/g), the chance of 

poisoning in likely very low. Wood et al. established that an anatoxin-a concentration of around 

35 mg/kg (mg/kg and μg/g are equivalent units) could kill a mouse (Wood et al., 2010). As this 

shows that toxin concentrations can reach higher concentrations in benthic cyanobacteria mats 

than our study area found, a continued analysis of physicochemical and biological drivers of 

cyanotoxins and T&O compounds should be done. Especially in these areas where very high 

concentrations have been found. As our random forest models would not be able to extrapolate to 

concentrations that high, predictive modeling should also continue to be run on the results of all 

toxic benthic cyanobacteria bloom environmental parameters. 

5.3 Future research considerations 

There are two factors that have come about through this research that were not able to be 

considered, but could make for interesting research in the future. The first would be the inclusion 

of a pristine stream, which would serve as an undisturbed end-member and provide a point of 

comparison to the existing agricultural urban and stream sites. In our analysis, the rural stream is 

still heavily impacted by human activities, including agriculture and livestock pasture. Both of 

these land use types have the potential to impart nutrients and increase sediment in the stream 

(Hoorman et al., 2008; Lenat, 1984). Adding a pristine stream in to the analysis may allow for the 

impact of land use and urbanization to be more noticeable in analyzing the drivers and dynamics 

of benthic cyanobacteria, cyanotoxins, T&O compounds, and relevant gene sequence 

concentrations. Pristine streams may have low enough nutrients to allow for nutrient-limitations 

to play a role in the analysis, and the possibly lower specific conductivity could be further analyzed 
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as a strong predictor in random forest models. The second factor is incorporating hydrological data 

such as flow rates and flow depths. These physicochemical variables have been known to impact 

cyanobacterial growth dynamics (McAllister et al., 2018; Scott and Marcarelli, 2012). Hydrologic 

variables like water residence time are also impactful on determining which taxa dominate in a 

particular benthic cyanobacteria mat (Paerl, 2008). High flow events have been found to correlate 

with densely populated areas (Brown et al., 2009), so incorporating flow data into an analysis may 

also help elucidate the impact of urbanization on these target variables.    
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Chapter 6: Conclusion 

It is shown in this study that cyanotoxins and T&O compounds in human-disturbed 

freshwater streams are prevalent no matter the level of urbanization. Direct statistical relationships 

between cyanotoxins and T&O compounds and urban land use were not found in any substantial 

form. However, there were strong random forest model connections between specific conductivity, 

temperature, turbidity, and organic carbon with all cyanotoxins and T&O compounds analyzed 

here to varying degrees. These predictor variables have been known to be affected by increased 

nearby anthropogenic influences, and thus it is really that general human disturbance could drive 

increased cyanotoxin and T&O compound production rather than specifically urban activity. As 

our system did not have a pristine freshwater stream environment to use as an “undisturbed 

benchmark”, further analysis into these conclusions is needed. Due to the complex nature in which 

human-disturbed environments impact freshwater ecosystems, it is suggested that more research 

not only be done in lab-controlled tests but also in real-world environments. The field-based 

research covers a larger array of ambient variables than can be simulated within lab-based analysis. 

On the other hand, lab-based analyses can help narrow down which specific variables impact 

cyanotoxin and T&O compound release with much better control over predictor variable 

dynamics. As climate change and urbanization are both projected to increase in the coming 

decades, the potential safety and environmental impact benthic-sourced cyanotoxins and T&O 

compounds can have will increase as well. Land managers need to create, test, and adopt benthic 

cyanobacterial monitoring programs and increase testing for cyanotoxins when blooms do occur 

to reduce instances of animal death, or to prevent human harm.  
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