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Abstract

Resource scheduling plays a vital role in High-Performance Computing (HPC) systems. However,

most scheduling research in HPC has focused on only a single type of resource (e.g., comput-

ing cores or I/O resources). With the advancement in hardware architectures and the increase

in data-intensive HPC applications, there is a need to simultaneously embrace a diverse set of

resources (e.g., computing cores, cache, memory, I/O, and network resources) in the design of run-

time schedulers for improving the overall application performance. This thesis performs an em-

pirical evaluation of a recently proposed multi-resource scheduling algorithm for minimizing the

overall completion time (or makespan) of computational workflows comprised of moldable paral-

lel jobs. Moldable parallel jobs allow the scheduler to select the resource allocations at launch time

and thus can adapt to the available system resources (as compared to rigid jobs) while staying easy

to design and implement (as compared to malleable jobs). The algorithm was proven to have a

worst-case approximation ratio that grows linearly with the number of resource types for moldable

workflows. In this thesis, a comprehensive set of simulations is conducted to empirically evaluate

the performance of the algorithm using synthetic workflows generated by DAGGEN and moldable

jobs that exhibit different speedup profiles. The results show that the algorithm fares better than the

theoretical bound predicts, and it consistently outperforms two baseline heuristics under a variety

of parameter settings, illustrating its robust practical performance.
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Chapter 1

Introduction

Complex scientific workflows running in today’s High-Performance Computing (HPC) systems

are typically modeled as Directed Acyclic Graphs (DAGs). The DAGs’ nodes correspond to the

jobs in the workflows, while their edges represent the dependencies (or precedence constraints)

between the jobs. Improving the performance of scientific applications requires effective work-

flow scheduling. The majority of current dynamic runtime schedulers [16, 3, 6] which guaran-

tee effective execution of workflows focus on only one type of resource (e.g., computing cores

or I/O resources). However, with the advancement in hardware architectures and the increase

in data-intensive HPC applications, there is a need to simultaneously consider multiple types of

resources (e.g., computing cores, cache, memory, I/O, and network resources) in the design of run-

time schedulers. In fact, contemporary HPC systems come with more memory/storage levels (such

as NVRAMs, SSDs, and burst buffers), all of which can be scheduled among the system’s concur-

rently executing jobs. Advancements in architectural and software features (e.g., high-bandwidth

memory [32], cache partitioning [35], bandwidth reservation [7]) can also be leveraged to facilitate

efficient multi-resource scheduling for enhancing the overall performance of the application and/or

system.

This thesis performs an empirical evaluation of multi-resource scheduling that schedules mul-

tiple types of resources to minimize the workflow’s overall completion time, or makespan. The

workflows are comprised of a set of parallel jobs with DAG-based precedence constraints. We

concentrate on parallel jobs that are moldable [13], which allows the scheduler to select a variable

set of resources for a job, but the resource allocations cannot be modified once the job begins its

execution. This contrasts with rigid jobs, whose resource allocations are fixed and static, and with
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malleable jobs, whose resource allocations can change dynamically while the job is running. As a

result, moldable jobs can readily adapt to the different amounts of available resources while staying

easy to design and implement.

We focus on evaluating a recently proposed approximation algorithm [28] for the multi-resource

scheduling problem, which is strongly NP-complete by containing the single-resource scheduling

problem as a special case [11]. The algorithm, called MRSA (Multi-Resource Scheduling Al-

gorithm), adopts a two-phase approach that is widely used for scheduling moldable jobs [34].

Specifically, the first phase computes a resource allocation for all jobs on different resource types,

and the second phase applies an extended list scheduling scheme to schedule the jobs. MRSA has

been proven to have an approximation ratio that grows linearly with the number of resource types

[28].

To empirically evaluate the performance of MRSA, we conducted a comprehensive set of sim-

ulations using synthetic workflows generated by DAGGEN [1], which is a task graph generator

capable of generating DAGs of different structures. We also generated moldable parallel jobs that

exhibit different runtime characteristics on multiple resource types by extending common speedup

profiles that follow Amdahl’s law [2] and power law [29] models. Our simulation results show,

under a variety of parameter settings, that:

• MRSA has an average-case performance that is much better than the worst-case theoretical

bound predicts;

• MRSA consistently outperforms two baseline heuristics, namely, minTime and minArea,

which allocate resources to minimize the execution time and the area of each job, respec-

tively.

The empirical study reported in this thesis nicely complements the theoretical result proven in

[28], which together illustrate the robust practical performance of MRSA for the multi-resource

scheduling of moldable workflows.

The rest of this thesis is organized as follows. Chapter 2 reviews some related work on multi-
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resource scheduling. Chapter 3 formally introduces the scheduling model and problem statement.

Chapter 4 briefly describes how MRSA works and its approximation result. Chapter 5 presents our

simulation results evaluating the algorithm under a variety of parameter settings. Finally, Chapter

6 provides the concluding remarks.
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Chapter 2

Related Works

This chapter reviews some related work on approximation algorithms designed for multi-resource

scheduling to minimize the makespan, as well as algorithms designed for alternative multi-resource

models and objectives.

2.1 Approximation Algorithms to Minimize Makespan

Scheduling parallel jobs (independent or with precedence constraints) to minimize makespan is

a strong NP-complete problem [11]. Thus, many approximation algorithms have been proposed

over the years (e.g., [34, 24, 14, 23, 21, 25, 22]). Most of these works, however, focused on only a

single resource type.

There has also been some development for multi-resource scheduling under various parallel job

models. Garey and Graham [15] considered scheduling sequential jobs on identical machines but

with d additional types of resources. Further, they adopted a rigid job scheduling model, in that,

each job has a fixed set of resource requirements from each resource type. They presented a list-

scheduling algorithm and proved that it is a (d+1)-approximation when jobs are independent and

the number of machines is not a constraining factor. When there is only one additional resource

type, i.e., d = 1, Demirci et al. [10] presented an O(logn)-approximation algorithm for jobs with

precedence constraints, where n is the number of jobs, and Niemeier and Wiese [26] presented a

(2+ ε)-approximation algorithm for independent jobs.

He et al. [20, 19] considered scheduling Direct Acyclic Graphs (DAGs) consisting of unit-size

tasks, each of which requests a single type of resource from a total of d resource types. During
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runtime, The amount of resource allocation can be dynamically changed, making it a malleable

job scheduling model. For this model, they demonstrated that list scheduling achieves (d + 1)-

approximation. Shmoys et al. [30] considered a similar model but restricted the tasks of each

DAG to be processed sequentially. They proved a polylog approximation result in the number of

machines and job length.

Sun et al. [33] considered scheduling independent moldable jobs on d types of resources. They

presented two scheduling algorithms: one based on list scheduling with a 2d-approximation and

the other based on shelf scheduling with a (2d + 1)-approximation. Additionally, they also pre-

sented a technique to transform any c-approximation algorithm for a single resource type to a

cd-approximation algorithm for d types of resources. Perotin et al. [28] applied a similar model

while considering jobs with precedence constraints. They presented a list-based algorithm and

proved that it has an approximation ratio of 1.619d + 2.545
√

d + 1. This thesis conducts an em-

pirical evaluation of the algorithm in [28] and reports its practical performance under a variety of

parameter settings.

2.2 Multi-Resource Scheduling under Alternative Models

Some prior works have also proposed multi-resource scheduling algorithms that work under alter-

native models or objectives. Beaumont et al. [5] and Eyraud-Dubois and Kumar [12] considered

scheduling sequential jobs on two alternative types of resources (CPU and GPU) to minimize the

makespan. In their model, each job can be chosen to execute on either resource type with different

processing rates. They analyzed an approximation algorithm, called HeteroPrio, for both indepen-

dent jobs and jobs with precedence constraints. The approximation ratios depend on the relative

amount of resources in the two resource types. A recent survey on this scheduling model can be

found in [4].

Additionally, Ghodsi et al. [17] focused on the objective of resource allocation fairness in a

multi-user setting. They proposed the Dominant Resource Fairness (DRF) algorithm that aims at

maximizing the minimum dominant share across all users. Grandl et al. [18] considered schedul-

5



ing malleable jobs under four specific resource types (CPU, memory, disk and network). They

designed a heuristic algorithm, called Tetris, that schedules jobs by considering the correlation

between the job’s peak resource demands and the machine’s resource availabilities, with the goal

of minimizing resource fragmentation. NoroozOliaee et al. [27] studied a similar problem but with

two resources only (CPU and memory). They showed that a simple scheduling heuristic that uses

Best Fit and Shortest Job First delivers good performance in terms of resource utilization and job

queueing delays.
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Chapter 3

Problem Statement

This chapter formally introduces the multi-resource scheduling problem for moldable workflows.

A scheduling model is first presented, followed by some assumptions made on the model. The

chapter ends with a statement on the scheduling objective.

3.1 Scheduling Model

We consider the problem of scheduling a set of n moldable jobs on d distinct types of resources

(e.g., processor, memory, cache, I/O, network). P(i) is a total amount of available resources for each

resource type i. The resource allocation p j = (p(1)j , p(2)j , · · · , p(d)j ), which specifies the amount of

resource p(i)j allocated to job j for each resource type i, determines its execution time t j(p j). We

further define the following concepts for the job.

• w(i)
j (p j)≜ p(i)j · t j(p j): work on resource type i;

• a(i)j (p j)≜
w(i)

j (p j)

P(i) : area (or normalized work) on resource type i;

• a j(p j)≜ 1
d ∑

d
i=1 a(i)j (p j): average area overall resource types.

Furthermore, a set of precedence constraints is defined, which when combined with the jobs,

creates a workflow or a Directed Acyclic Graph (DAG), denoted as G = (V,E). In the workflow,

each node j ∈V denotes a job and a directed edge ( j1→ j2) ∈ E specifies that job j2 cannot start

executing until job j1 is completed. Thus, j1 is called an immediate predecessor of j2, and j2 is

called an immediate successor of j1.
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3.2 Assumptions

The following reasonable assumptions on the resource allocation and execution time of the jobs

are made.

Assumption 1 (Integral Resources) All resource allocations p(i)j ’s for the jobs and the total amount

of resources P(i)’s for all resource types are non-negative integers.

This assumption aligns with the common practice where resource types, such as memory or

cache, are also typically allocated in discrete chunks (e.g., memory blocks, cache lines).

Assumption 2 (Known Execution Times) For each job j, its execution time function t j(p j) is

known for every possible resource allocation p j.

Techniques such as application modeling or profiling, performance prediction, or interpola-

tion from historic data can be employed to determine the execution time of an application, thus

validating this assumption.

Assumption 3 (Monotonic Jobs) Given two resource allocations p j and q j for a job j, p j is at

most q j, denoted by p j ⪯ q j, if p(i)j ≤ q(i)j for all 1 ≤ i ≤ d. The execution times of the job under

these two allocations satisfy:

t j(q j)≤ t j(p j)≤
(

max
i=1...d

q(i)j /p(i)j

)
· t j(q j) .

The first inequality implies that a job cannot be executed longer by providing more resources

(that is non-increasing) and the second inequality implies that the speedup of a job must be non-

superlinear with respect to any resource type due to scheduling overheads. This also generalizes

the monotonic job assumption under a single resource type [23, 25]. Further, both properties have

been observed for many real-world applications.
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3.3 Scheduling Objective

The objective is to determine a valid schedule for the jobs such that the maximum completion time

or makespan of the workflow is minimized. The following two decisions define a schedule:

• Resource allocation decision: p = (p1, p2, . . . , pn);

• Starting time decision: s = (s1,s2, . . . ,sn).

The completion time of a job j is defined as c j = s j + t j(p j). The makespan of the workflow is

given by T = max j c j. A valid schedule respects the following constraints:

• For each resource type i, the amount of resource utilized by all running jobs at any time does

not exceed the total amount P(i) of available resource;

• Let j1 be an immediate predecessor of j2, i.e., j1→ j2, then the completion time of j1 should

not be later than the starting time of j2, i.e., c j1 ≤ s j2 .

The above multi-resource scheduling problem is an NP-complete problem, and it can be solved

by designing a polynomial-time approximation algorithm. Here, an algorithm is said to be an r-

approximation if its makespan satisfies T
TOPT
≤ r for any workflow, where TOPT denotes the optimal

makespan for the same workflow. It is shown in [28] that the total area of all jobs in the workflow

(as defined in Section 3) as well as the total execution times of the jobs along the critical path of

the workflow can both be used as lower bounds on the optimal makespan. These lower bounds can

then be conveniently explored to prove the approximation ratio of an algorithm.
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Chapter 4

Scheduling Algorithm

This chapter describes MRSA (Multi-Resource Scheduling Algorithm) proposed in [28], which

will be empirically evaluated in this thesis. MRSA adopts a two-phase approach that has been

widely used for scheduling moldable jobs on a single type of resource [34, 23, 22]. The chapter

describes both phases of the algorithm and concludes with its approximation result for moldable

workflows.

4.1 Phase 1: Resource Allocation

The first phase concerns allocating resources to the jobs. For this phase, we consider a relevant

discrete time-cost tradeoff problem [9], which has been well-studied in the literature on project

management.

Definition 1 (Discrete Time-Cost Tradeoff (DTCT)) Suppose a project consists of n precedence-

constrained tasks. Each task j can be executed using several different alternatives and each alter-

native i takes time t j,i and has cost c j,i. Further, for any two alternatives i1 and i2, if i1 is faster

than i2, then i1 is more costly than i2, i.e.,

t j,i1 ≤ t j,i2 ⇒ c j,i1 ≥ c j,i2 . (4.1)

Given a project realization σ that specifies which alternative is chosen for each task, the total

project duration D(σ) is defined as the sum of times of the tasks along the critical path, and the

total cost B(σ) is defined as the sum of costs of all tasks. The objective is to find a realization σ∗
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that minimizes the total project duration D(σ∗) and the total cost B(σ∗).

The above DTCT problem is obviously bi-criteria, and a tradeoff exists between the total

project duration and the total cost. The problem has been shown to be NP-complete when op-

timizing any one objective subject to a constraint on the other [8]. Skutella [31] presented a

polynomial-time algorithm, which, given any feasible duration-cost pair (D,B) and any ρ ∈ (0,1),

finds a realization σ for the project that satisfies:

D(σ)≤ D
ρ

,

B(σ)≤ B
1−ρ

.

The multi-resource allocation problem can be transformed into the DTCT problem and solved

using the above approximation result in [31]. A task j is created for each job j in the graph. The

set of alternatives for the task corresponds to the set of resource allocations for the job. Similarly,

the execution time t j,i of task j with alternative i is then defined as the execution time t j(p j) of

job j with the corresponding resource allocation p j, and the cost c j,i is defined as the average area

a j(p j).

Let S be the set of all Q=∏
d
i=1 P(i) possible resource allocations for a job and in order to meet

the condition (4.1) in Definition 1, for each job j, the subset D j ⊂S of dominated allocations are

ignored, which is defined as:

D j={p j | ∃q j, t j(q j)< t j(p j) and a j(q j)< a j(p j)} , (4.2)

and only the remaining set of non-dominated allocations, denoted by N j = S \D j, is used to

specify the alternatives of the task. Thus, a realization σ for the project, the total project duration

D(σ) and the total cost B(σ) correspond to a resource allocation decision, the total execution time

of the jobs along the critical path, and the total average area of all jobs in the workflow, respectively.

By adapting the algorithm in [31] for the DTCT problem, we can find an initial resource allo-
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Algorithm 1: Resource Allocation (Phase 1)
Input: For each job j, execution time t j(p j) and average area a j(p j) under all possible resource

allocations, given values for parameters ρ and µ .
Output: Resource allocation p=(p1, p2, . . . , pn) for all jobs.
begin

(Step 1): For each job j, discard the subset D j ⊂S of dominated resource allocations as
defined in Equation (4.2);

(Step 2): Transform the resource allocation problem into the DTCT problem and adapt the
algorithm in [31] to obtain an initial resource allocation p′;

(Step 3): For each job j and each resource type i, adjust the initial resource allocation in p′
based on Equation (4.3) to obtain a final resource allocation p.

end

cation p′ for the jobs, for any parameter ρ ∈ (0,1). This initial allocation is subsequently adjusted

to get the final resource allocation p, with the aim of limiting the maximum resource usage of any

job under any resource type, enabling more effective scheduling in the algorithm’s second phase.

Adopting the strategy for scheduling under a single type of resource [23, 22], the final resource

allocation for each job j on each resource type i is obtained as follows:

p(i)j =


⌈µP(i)⌉, if p′(i)j > ⌈µP(i)⌉

p′(i)j , otherwise
(4.3)

where p′(i)j is the corresponding resource allocation in p′ and µ ∈ (0,0.5) is used to regulate the

job’s maximum resource usage.

Algorithm 1 summarizes the steps involved in this first phase of the multi-resource scheduling

algorithm.

4.2 Phase 2: List Scheduling

Given the resource allocation decision p from the first phase, the second phase schedules the jobs

by making a starting time decision s. The well-known list scheduling strategy (shown in Algo-

rithm 2), which is extended to work with multiple types of resources is implemented to determine

the starting times and finally schedule the jobs.
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Algorithm 2: List Scheduling (Phase 2)
Input: Resource allocation p=(p1, p2, . . . , pn) for all jobs, and their precedence constraints.
Output: A list schedule for the jobs with starting time s=(s1,s2, . . . ,sn).
begin

insert all ready jobs into a queue Q;

P(i)
avail ← P(i),∀i;

when at time 0 or a job k completes execution do
curr_time← getCurrentTime();

P(i)
avail ← P(i)

avail + p(i)k ,∀i;
for each job k′ that becomes ready do

insert job k′ into queue Q;
end
for each job j ∈Q do

if P(i)
avail ≥ p(i)j ,∀i then
s j← curr_time and execute job j now;

P(i)
avail ← P(i)

avail− p(i)j ,∀i;
remove job j from queue Q;

end
end

end
end

When all of a job’s immediate predecessors in the workflow have finished or it has no immedi-

ate predecessor, the job is said to be ready. Initially, all the ready jobs are added to the queue Q (in

any order). The algorithm inserts any new job k′ that becomes ready as a result of the completion

of job k at time 0 or anytime a running job k completes. Then, the Q is checked for ready jobs that

can be executed at the current time and a ready job j is executed, provided the resource allocation

p j is at most the total amount of available resources across all resource types.

4.3 Approximation Result

MRSA combines the resource allocation phase (Algorithm 1) and the list scheduling phase (Al-

gorithm 2). It was proven in [28] to have a worst-case approximation ratio that grows linearly

with the number d of resource types for any moldable workflow. The following theorem shows the

approximation result. The proof can be found in [28].
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Theorem 1 For any d ≥ 1 and if Pmin ≜ mini=1...d P(i) ≥ 7, the makespan of MRSA for any mold-

able workflow satisfies:

T
TOPT

≤ φd +2
√

φd +1≤ 1.619d +2.545
√

d +1 ,

where φ = 1+
√

5
2 is the golden ratio. The result is achieved by setting µ∗ = 1− 1

φ
≈ 0.382 and

ρ∗ = 1√
φd+1

≈ 1
1.272

√
d+1

.

It is important to note that for the majority of resource types (e.g., processors, memory blocks,

cache lines), Pmin ≥ 7 reflects a reasonable condition on the amount of resources.
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Chapter 5

Simulation Results

This chapter presents the experimental results conducted by using simulations for evaluating the

performance of MRSA and comparing it against two heuristic algorithms. The chapter starts by

describing the simulation setup and then shows the simulation results under various parameter

settings.

5.1 Simulation Setup

Workflow Generation. A workflow consisting of moldable jobs with precedence constraints is

modeled as a Directed Acyclic Graph (DAG), whose nodes and edges represent the jobs and their

dependencies, respectively. We generate workflows using DAGGEN [1], a synthetic task graph

generator capable of generating DAGs of different structures. The graphs generated by DAGGEN

have their tasks organized in layers, and important parameters that influence the structure of the

graphs are described below.

• fat: controls the width of the DAG, i.e., the maximum number of jobs that can be executed

concurrently;

• density: determines the number of dependencies between jobs of two consecutive layers of

the DAG;

• regular: specifies the regularity of the distribution of jobs between different layers of the

DAG;

• jump: controls the maximum number of layers that can be spanned by the edges of the DAG.
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Figure 5.1: A graph consisting of 100 jobs generated by DAGGEN with fat = 0.5, density = 0.5,
regular = 0.5, and jump = 1.

The range of possible values for fat, density, and regular is between 0 and 1, and jump can take

any integer value of at least 1. In our default simulation setting, we will choose fat = 0.5, density

= 0.5, regular = 0.5, and jump = 1. In Section 5.4, we will also vary these values to evaluate their

impacts on the performance of the algorithms. Figure 5.1 shows a graph consisting of 100 jobs

generated by DAGGEN under the default setting.

Job Speedup Models. We extend some common speedup models to define how resources of

different types interact and contribute to the overall speedup of a moldable job. In particular, we

consider the following four execution time functions for the jobs that extend the classical Amdahl’s
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law [2] and power law [29] speedup models.

• Amdahl-Sum: t(p) =W
(

s0 +∑
d
i=1

si
p(i)

)
;

• Amdahl-Max: t(p) =W
(

s0 +maxi=1..d
si

p(i)

)
;

• Power-Sum: t(p) =W
(

∑
d
i=1

si

(p(i))
αi

)
;

• Power-Max: t(p) =W
(

maxi=1..d
si

(p(i))
αi

)
.

In all the models above, W denotes the total amount of work to be completed by the job, and

si denotes the fraction of work for the resource type i. For the two Amdahl models, s0 denotes the

sequential fraction that is not affected by the resource allocations. For the two power models, αi

denotes the efficiency factor for the utilization of the resource type i.

In our simulations, the sequential fraction s0 is uniformly generated in (0,0.2], and the frac-

tion si for each resource type i is uniformly generated in (0,1] and then normalized such that

∑
d
i=1 si = 1− s0. The efficiency factor αi is uniformly generated in [0.3,1). Finally, the total work

W is uniformly generated in (0,1]. In Section 5.5, we will also vary the ranges for the sequential

fraction s0 and the efficiency factor αi to evaluate their impacts on the performance of the evaluated

algorithms.

We note that all the speedup models considered above satisfy the monotonic job assumption

stated in Chapter 3.

Comparing Algorithms. The multi-resource scheduling algorithm MRSA is evaluated and com-

pared against the following two baseline heuristics.

• minTime: allocates resources to minimize the execution time of each job;

• minArea: allocates resources to minimize the average area of each job.

Both heuristics also use list scheduling to schedule the jobs (in Phase 2). Thus, they only differ

from MRSA in how resources are allocated (in Phase 1). For all the algorithms, we use the LPT
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(Longest Processing Time) priority rule to order the jobs in the list schedule, which is known to

work well for reducing the makespan. Thus, if the waiting queue contains more than one job, these

jobs will be ordered by non-increasing order of execution time given their resource allocations.

While minTime and minArea could efficiently compute the resource allocations for a job in

O(1) time1, MRSA would take O(Πd
i=1P(i)) time by examining all possible resource allocations.

When the total amount of available resources in the system is large, the complexity of MRSA is

quite high, making simulations feasible only for small problem instances. Thus, to speed up the

simulations, we consider only the power-of-2 choices (i.e., 1, 2, 4, 8, ...) when computing MRSA’s

resource allocation for each resource type. Although this leads to a factor of 2 increase in the

approximation ratio of the algorithm in the worst case, it drastically reduces the complexity of the

algorithm to O(Πd
i=1 lgP(i)), thus allowing us to simulate larger problem instances in a reasonable

amount of time.

The scatter plots in Figure 5.2 show the makespans of MRSA for 50 workflows with n = 30

jobs, d = 3 resource types, and P(i) = 64 for each resource type under the four speedup models.

In the plots, each point represents a workflow, the x-axis represents the makespan when MRSA

considers all resource allocations, and the y-axis represents the corresponding makespan when

MRSA uses only power-of-2 allocations. In terms of the running time, it took more than 10 hours

to complete the simulation for each speedup model when considering all allocations, while the

simulation took only a few seconds when considering power-of-2 allocations. In terms of the

makespan, from the figure, we can see a generally strong and positive correlation between the two

allocation schemes for the Amdhal-Sum and Power-Sum models. In the case of Amdahl-Max and

Power-Max models, the makespans obtained when using power-of-2 allocations are even smaller

than those obtained when using all allocations for most workflows2. Given these results and to

enable faster simulations, we will use power-of-2 allocations for MRSA in all the experiments.

1Given the monotonic job assumption, minTime could allocate all the available resources to a job, i.e., p =
(P(1),P(2), . . . ,P(d)), for minimizing its execution time, while minArea typically allocates only one unit of resource in
each resource type, i.e., p = (1,1, . . . ,1), for minimizing the job’s area.

2This is possibly because power-of-2 allocations potentially allow the ready jobs to be better packed/scheduled in
the second phase of the algorithm.
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.2: Scatter plots showing the makespans of MRSA for 50 workflows with n = 30 jobs, d =
3 resource types, and P(i) = 64 for each resource type under the four speedup models. Each point
represents a workflow, the x-axis represents the makespan when considering all possible resource
allocations, and the y-axis represents the corresponding makespan when using only power-of-2
allocations.

5.2 Performance Comparison of Algorithms

We first evaluate and compare the performance of the three algorithms (MRSA, minTime and

minArea) for workflows that contain n = 100 jobs using d = 3 types of resources. Each resource

type i has up to P = 1024 amount of available resources, and we consider the following two

scenarios.

• Uniform P: the total amount of available resources across all resource types is the same. In
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this experiment, we set P(i) = 256 for all 1≤ i≤ d.

• Non-uniform P: the total amount of available resources may differ among different resource

types. Specifically, for each resource type i, the value of P(i) is randomly selected from

{32,64,128,256,512,1024}.

Other parameters (e.g., for generating graphs and job execution times) are set as their default

values/ranges as described in Section 5.1. In the experiments, we randomly generated 50 work-

flows and obtained, for each workflow, the makespans of the three algorithms by simulation. We

then normalize the obtained makespans by the lower bound [28] for that workflow and finally

report the statistics on the normalized makespans across the 50 workflows.

The boxplots in Figure 5.3 show the simulation results for the three algorithms in the uniform P

scenario under the four speedup models. We can see that MRSA outperforms the other two heuris-

tics significantly in all cases. In terms of the makespan distribution, even MRSA’s worst makespan

for the 50 workflows is better than the best makespan obtained by the other two heuristics. When

comparing the median/mean makespan across the 50 workflows, MRSA is almost six times faster

than at least one of the two heuristics.

Figure 5.4 shows the corresponding results in the non-uniform P scenario. The results are quite

similar to those in the uniform scenario, and MRSA again significantly outperforms the other two

heuristics in terms of the makespan distribution, as well as the mean and median values. In contrast

to the uniform P scenario, MRSA’s makespans now exhibit a slightly more skewed distribution

and a larger range of variation, due to the non-uniformity in the amount of available resources of

different types. But in both scenarios, we can observe that MRSA’s performance is much better

than the theoretical analysis predicts, which under this setting has an approximation ratio of 10.26

according to Theorem 1, while the normalized makespan of MRSA is at most 7 in our simulation.

Thanks to the similarity of the results in the uniform P and non-uniform P scenarios, we will use

the uniform case for all subsequent experiments, which evaluate the impacts of different parameters

from the default setting considered in this section.
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.3: Boxplots showing the normalized makespans of the three algorithms for 50 workflows
with n = 100 jobs, d = 3 resource types, and uniform P (= 256) under the four speedup models.

5.3 Impact of System Parameters

This section presents the results of simulations that focus on evaluating the impacts of different

system parameters on the performance of the algorithms. In particular, we consider three parame-

ters: the number of jobs in a workflow (n), the amount of available resources (P), and the number

of resource types (d). In the experiments, only the evaluated parameter is varied and all other

parameters are set at their default values as in Section 5.2. We again generate 50 workflows and

compute the normalized makespans of the three algorithms for each workflow. The results are then

reported by averaging the normalized makespans across the 50 workflows for each algorithm.
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.4: Boxplots showing the normalized makespans of the three algorithms for 50 workflows
with n = 100 jobs, d = 3 resource types, and non-uniform P (up to 1024) under the four speedup
models.

Impact of number of jobs n: Figure 5.5 shows the results when the number of jobs n is var-

ied between 10 and 200. It is evident that MRSA consistently performs well in all cases. As n

increases, its normalized makespan stays almost constant for the two Amdahl models and only

increases slightly for the two power models. In contrast, we can observe a steady increase in the

normalized makespan of minTime and a significant drop for minArea. This is because as the jobs

do not have perfectly linear speedup, minTime becomes less efficient by allocating all the resources

to each job. On the other hand, minArea allocates a small amount of resources to each job, which

enables more jobs to be executed concurrently and more efficiently when there are more jobs in a
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.5: Impact of the number of jobs n on the performance of the three algorithms under the
four speedup models.

workflow.

Impact of amount of available resources P: Figure 5.6 shows the impact of the amount of

available resources P (uniform across all resource types) when it is varied as a power-of-2 between

32 and 1024. We can see that the normalized makespan of MRSA decreases as the amount of

resources increases, demonstrating its ability to leverage the availability of more system resources

to improve performance. The only exception is for the Power-Sum model, where the normalized

makespan of MRSA appears unaffected by P. For minTime, the performance trend is similar to

that of MRSA but it remains worse than MRSA by a significant margin. For minArea, we see a
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.6: Impact of the amount of available resources P on the performance of the three algo-
rithms under the four speedup models.

general increase in normalized makespan as P increases. This is because not all resources will be

utilized in this case due to minArea’s conservative resource allocation strategy.

Impact of number of resource types d: Figure 5.7 shows the performance of the algorithms

when the number of resource types d is varied from 1 to 5. Although the approximation ratio of

MRSA as suggested by Theorem 1 grows linearly with d, its practical performance as shown in

the figure appears not much affected by the number of resource types, except for the Power-Sum

model, where the normalized makespan gradually increases with d. The performance trend for

minTime is similar to that for MRSA, and the impact on minArea varies for different speedup
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.7: Impact of the number of resource types d on the performance of the three algorithms
under the four speedup models.

models, but MRSA remains the best performer in all cases.

5.4 Impact of Graph Structure

This section evaluates the impact of workflow/graph structure on the performance of the scheduling

algorithms. As described in Section 5.1, four parameters (i.e., fat, density, regular and jump) affect

the structure of the graphs generated by DAGGEN. To evaluate their impacts, we vary fat, density,

and regular from 0 to 1 at an increment of 0.1, and vary jump from 1 to 5 at an increment of 1.

Again, all other parameters are set at their default values, and the average normalized makespans
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across 50 workflows are reported for all algorithms.

Impact of fat parameter: The fat parameter controls the width of a graph. Figure 5.8 shows that,

as the graph becomes wider, the normalized makespan of MRSA experiences only a mild increase,

whereas minTime has a sharper increase in normalized makespan. While minTime allocates all

the resources to each job and thus executes them sequentially, given a fixed number of jobs, its

makespan is likely not affected but the makespan lower bound will decrease due to increased graph

width (hence decreased graph depth and critical path length). This results in a drastic increase

in minTime’s normalized makespan. On the other hand, we see a decrease in the normalized

makespan for minArea. This is due to the fact that a larger graph width allows more jobs to be

executed concurrently by minArea, which only allocates a small amount of resources to each job.

Impact of density parameter: The density parameter controls the number of dependencies be-

tween jobs of two consecutive layers of a graph. Figure 5.9 shows that density barely affects the

performance of MRSA, and as it increases, the normalized makespans of minTime and minArea

tend to decrease. This is probably due to the increase in the critical path and hence the makespan

lower bound that has resulted from increased connectivity between layers of the graph.

Impact of regular parameter: The regular parameter controls the distribution of jobs between

different layers of a graph. Figure 5.10 shows that this parameter has little impact on the perfor-

mance of all three algorithms.

Impact of jump parameter: The jump parameter controls the maximum number of layers that

can be spanned by the edges of a graph. Figure 5.11 shows that MRSA is again not affected by this

parameter, except for the Power-Max model where its normalized makespan has a slight increase.

The performance of minArea is also not affected much by jump, except for the Power-Sum model

where its normalized makespan decreases. A larger jump potentially reduces the critical path

length of a graph and hence the makespan lower bound. This causes a uniform increase in the
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.8: Impact of the f at parameter in DAGGEN on the performance of the three algorithms
under the four speedup models.

normalized makespan for minTime, as can be seen in the figure.

5.5 Impact of Job Speedup Functions

In this section, we evaluate the impact of the jobs’ speedup functions on the performance of the

algorithms. In particular, we focus on two parameters, namely, the sequential fraction s0 (for the

Amdahl models) and the efficiency factor αi (for the power models). Both parameters control the

degree of parallelism for a job: while a larger s0 makes the job less parallelizable, a larger αi makes

the job more parallelizable. In the experiment, we choose three different ranges (small, medium
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.9: Impact of the density parameter in DAGGEN on the performance of the three algo-
rithms under the four speedup models.

28



(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.10: Impact of the regular parameter in DAGGEN on the performance of the three algo-
rithms under the four speedup models.
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.11: Impact of the jump parameter in DAGGEN on the performance of the three algo-
rithms under the four speedup models.
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and large) for setting these two parameters.

For the sequential fraction s0, the ranges are set as follows.

• small: s0 is uniformly generated in (0,0.1];

• medium: s0 is uniformly generated in (0.2,0.3];

• large: s0 is uniformly generated in (0.4,0.5].

For the efficiency factor αi, the ranges are set as follows.

• small: αi is uniformly generated in (0.2,0.4];

• medium: αi is uniformly generated in (0.5,0.7];

• large: αi is uniformly generated in (0.8,1].

Figure 5.12 shows that MRSA is not much affected by different ranges of these two parameters

in all speedup models and it consistently performs well, illustrating its ability to adapt to variations

in the speedup functions of the jobs. For the two Amdahl models (as shown in Figure 5.12(a,b)),

we can see an increasing trend in the normalized makespan of minTime as s0 increases and a de-

creasing trend in the normalized makespan of minArea. This is because when the jobs become

less parallelizable (with an increased sequential fraction s0), the minTime algorithm that allocates

all resources to a job becomes less efficient, and it calls for a more conservative resource alloca-

tion strategy, which is what minArea does. The same can be observed and explained for the two

power models (as shown in Figure 5.12(c,d)). In particular, as αi increases, which makes the jobs

more parallelizable, minTime becomes more efficient in resource allocation, thus its normalized

makespan decreases. On the other hand, the normalized makespan of minArea increases due to its

inability to adapt to changes in job characteristics and to utilize all the available resources in the

system. Note that when αi is large (i.e., close to 1), the jobs become almost fully parallelizable,

thus allocating all resources to a job (as is done by minTime) is close to being optimal, which is

why minTime fares even better than MRSA in this case.
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.12: Impact of the sequential fraction s0 (for the two Amdahl models) and the efficiency
factor αi (for the two power models) on the performance of the three algorithms.

5.6 Impact of MRSA Parameters

Two parameters µ and ρ are used in MRSA and are involved in the derivation of the algorithm’s

approximation ratio. According to Theorem 1, their values are optimized at µ ≈ 0.382 and ρ ≈

0.312 when there are three types of resources (i.e., d = 3). In this experiment, we aim to evaluate

the impact of these two parameters on the practical performance of MRSA.

Figure 5.13 shows the normalized makespan of MRSA (averaged over 50 workflows) under the

four speedup models when µ is varied from 0.1 to 0.5 and ρ is varied from 0.1 to 0.9, both with

an increment of 0.01 each time. The red dot in each plot indicates the combination of µ and ρ that
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gives the best average performance under the respective speedup model in our simulation. We can

see that the results are not in line with the theoretical analysis: for the two Amdahl models, the best

µ is between 0.15 and 0.2 and the best ρ is close to 0.9; and for the two power models, the best µ is

around 0.3 and the best ρ is between 0.6 and 0.7. Such discrepancy is possibly due to the following

reasons: (1) the derived approximation ratio is not tight; (2) the theoretical analysis assumes the

worst-case scenario and thus may not reflect the average-case performance; and (3) the analysis is

based on a generic job execution model and does not consider specific speedup functions. Hence,

the insights gained in this experiment can be potentially explored in future work to improve the

approximation results of the algorithm, by further tuning the choices of parameters µ and ρ , and

by taking into account specific speedup models of the jobs.
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(a) Amdahl-Sum (b) Amdahl-Max

(c) Power-Sum (d) Power-Max

Figure 5.13: Impact of parameters µ and ρ on the performance (average normalized makespan) of
MRSA under the four speedup models.
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Chapter 6

Conclusion

This thesis has performed an empirical evaluation of MRSA, a multi-resource scheduling algo-

rithm for moldable workflows, with the objective of minimizing the overall completion time, or

the makespan. Due to the NP-completeness of the scheduling problem, MRSA was originally de-

signed as an approximation algorithm in [28] with an approximation ratio proven to be linear in

the number of resource types. Our simulations conducted using workflows generated by DAGGEN

and moldable jobs following different speedup models have shown that the practical performance

of MRSA is actually much better than the worst-case approximation ratio predicts. Furthermore,

MRSA outperforms two other heuristic algorithms under a variety of parameter settings, including

different system parameters, graph structures, job speedup models, etc.

The results of this thesis have provided a nice empirical complement to the theoretical results

proven in [28]. The writing of an extended paper is currently underway to combine both sets of

results for journal submission in the near future.
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