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Abstract

This thesis focuses on the generation of a new grass fire aerial image dataset and

development of novel methods for near-infrared (NIR) imagery-based fire front iden-

tification and fire depth estimation using small unmanned aircraft systems (sUAS).

The procedure for collection and creation of the Grass Fire Front and near-Infrared

(NIR) and Thermal Imagery (GRAFFITI) dataset is introduced first including two

levels of data: synced raw thermal and red, green and near-infrared (RGNIR) image

pairs and processed image pairs of the same overlapping field-of-view. A novel NIR

imagery-based fire detection and fire front identification algorithm is then proposed

and validated against manually labeled ground truth, using the GRAFFITI dataset. A

comparative study is further performed on the problem of grass fire front location and

flame depth estimation using thermal and NIR imagery. Finally, recommendations are

made to future researchers who are interested in wildland fire sensing using thermal or

NIR imagery.
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Chapter 1

Introduction

1.1 Motivation and Background

Wildfire detection, monitoring, and prediction are critical to fire fighting operations that attempt

to mitigate and prevent damage to forests, residential areas, sensitive wildlife habitats and other

ecosystems. Traditional remote sensing solutions for wildfire detection and monitoring can be

grouped into ground-based, aircraft-based and satellite-based systems [3, 4]. Ground-based sys-

tems can measure high resolution flame characteristics in the camera field of view, but has a lim-

ited range. Satellites can provide quick detection of wildfires using a wide range of spectra, but

image fires at a low spatial and temporal resolution. Manned aircraft provide a middle point be-

tween satellites and ground-based systems but are expensive and can put a pilot’s life in danger

due to the hazardous conditions present. Small unmanned aerial systems (sUAS) have recently

gained interests as a low-cost solution for wildfire monitoring and detection. With minimal human

intervention, wide and adjustable viewpoints, and fast deployment, sUAS can offer an accessible

platform for superfine spatial and temporal resolution mapping of wildfires.

One of the most important steps for sUAS-based wildfire sensing is fire pixel identification

within the image frame. Challenges for aerial fire identification include smoke occlusion, differing

fire conditions, changing environmental colors and illuminations, etc. Thermal cameras are widely

used for fire detection since heat radiation can be measured through smoke or at night; however,

thermal solutions are very expensive. This motivates the use of low-cost cameras that image visi-

ble and non-visible spectral bands, such as near-infrared (NIR) cameras which improve upon the

contrast between fire and the background environment [5]. Although ground-based NIR imagery
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has been used for fire pixel detection and comparison with RGB cameras, few have performed

UAS-based fire detection [2].

Another critical factor for validation of fire spread models and analysis on wildfire metrics

measurement is the creation of benchmark datasets of wildland fires. Ground cameras have been

used to generate datasets comparing the representation of fires in different spectral bands, however

the ground-view perspective obfuscates other sections of the fire [5, 6]. Aerial images can provide

a top view of fire evolution, but existing wildfire aerial datasets do not provide the same view of

the fire in different spectra. To ensure accurate fire metric measurement and real-time fire front

detection, multispectral datasets with the same field of view of the fire need to be created and

analyzed for future wildfire fighting.

1.2 Contributions

This thesis focuses on the creation of a new fire imagery dataset taken from a fixed-wing sUAS

flying at low altitudes and development of novel fire metrics measurement algorithms. The primary

contributions of this thesis can be summarized as follows:

1. Developed a procedure to rectify, align, and register uncalibrated NIR and thermal images

from an sUAS over a wildland grass fire;

2. Generated the GRAFFITI dataset: a new sUAS fire dataset which includes both airborne

NIR and thermal imagery sharing the same field of view during a grassland fire;

3. Proposed a novel NIR imagery-based fire identification and fire front detection algorithm for

grass fires;

4. Performed a comparative study between NIR and thermal aerial images for grass fire front

detection and flame depth estimation.
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1.3 Thesis Organization

The thesis is organized as the following: the thesis motivation, background and contributions were

discussed in Chapter 1. Chapter 2 details the creation and initial analysis of the GRAFFITI dataset.

A rule-based fire detection and fire front identification algorithm using the NIR imagery is pre-

sented in Chapter 3. Chapter 4 discusses the difference between the thermal and RGNIR images

for estimation of grass fire front location and flame depth. Finally, future work and conclusion are

summarized in Chapter 5.
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Chapter 2

GRAFFITI: GRAss Fire Front near-Infrared and Thermal

Imagery Dataset

2.1 Chapter Introduction

This chapter focuses on the creation of the GRAss Fire Front near-Infrared and Thermal Imagery

(GRAFFITI) dataset, which consists of red, green and near-infrared (RGNIR) imagery paired with

thermal IR images over grass fire fronts collected by a small UAS (sUAS). The objective for

creating this dataset is to support flame and wildland fire characteristic analysis. Researchers have

used different imaging techniques to determine fire behavior metrics like rate of spread (ROS),

residence time, and spread direction [7]. While satellite and manned aircraft have been frequently

used in the past to gather wildfire and grass fire data, sUAS have recently emerged as a low-

cost and safe wildfire sensing platform due to the spatial and temporal resolution improvements.

Additionally, the nadir view directly above fires from sUAS reduces challenges from registration

and geometric correction of fire imagery, compared with ground-based solutions [8].

Besides the sensing platforms, the spectral band of the camera is also a critical factor for the ob-

servations of fire. Thermal infrared (TIR or IR) cameras are widely used for visualizing fire as the

high radiation output from wildfires are highly sensitive in the TIR spectrum [7, 9, 10]. However,

most thermal cameras are expensive (>$4,000) and have a relatively low spatial resolution when

compared to a traditional visual spectrum camera, which offers high pixel resolution but suffers

from smoke occlusion. Near infrared (NIR) is another spectral band with improved radiance obser-

vation of fire compared with RGB cameras. Commonly used in vegetation observation [11], NIR
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imagery improves the visual spectrum observation of fire by having reduced smoke occlusion and

an increased visual contrast between active flaming regions and the background environment [5].

Former researchers have generated fire datasets and mostly focused on fire detection using a

single spectrum or spectrum comparisons on fire identification. The FLAME dataset [12] was col-

lected using quadcopters over prescribed slash pile burns in the thermal and RGB spectrums. How-

ever, the dataset was more suited for fire segmentation and detection, not for fire metric analysis

given the oblique perspective and missing spatiotemporal information. Additionally, the thermal

and RGB images were taken during different flights or at different times during flight over differ-

ent sections of the controlled burn. Burnett [5] offers a comparison of RGB and NIR detection of

burn piles from a ground perspective. While verifying that fire pixels are easier to identify in the

NIR imagery and are less sensitive to smoke occlusion compared with RGB images, the perspec-

tive of this dataset does not allow for georeferencing or fire metrics derivation. The Corsian Fire

dataset [6] has over 500 images of RGB and NIR images of fire with a ground truth mask, but also

only provides a ground perspective.

Most existing grass fire or wildfire image sets are taken at a low pixel resolution or used pri-

marily for fire detection. The GRAFFITI dataset offers 20 pairs of IR and RGNIR nadir imagery

that observes the same sections of a grass fire during the fire evolution. Additionally, the collected

image pairs are manually registered with respect to each other for the same fire scene observation

at different spectral bands.

This chapter is organized as the following. Section 2.2 provides an overview of the KHawk-

55T sUAS and the prescribed fire experiment. Section 2.3 focuses on the procedure to generate

the GRAFFITI dataset, including synchronization, distortion rectification, manual registration, and

preliminary analysis on the homography estimation accuracy.
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2.2 KHawk-55T sUAS & Grass Fire Experiment

2.2.1 KHawk-55T sUAS

The KHawk-55T aircraft was used for the raw GRAFFITI data collection, which was created

by Cooperative Unmanned Systems Lab (CUSL) researchers for remote sensing and cooperative

control missions. The KHawk-55T sUAS is a ZII Wing model shown in Fig. 2.1 [13]. It has a

wingspan of 55 inches and a 20-30 minute endurance. The KHawk-55T sUAS can support manual

and autonomous flights through the onboard Pixhawk Cube autopilot and a Ublox Neo-M8N GPS

which has a horizontal position accuracy of 2.5 m circular error probable (CEP) [14].

Figure 2.1: KHawk-55T fixed-wing sUAS.

The KHawk-55T is also equipped with two cameras for multispectral remote sensing: the FLIR

Vue Pro R and the PeauPro82 NDVI GoPro, shown in Fig. 2.2. The camera specifications are pro-

vided in Table 2.1. Both cameras are light-weight and were specifically chosen for remote sensing

of wildland fires as the red, green, NIR and thermal bands collected by the cameras can assist in

capturing the difference in burned and unburned areas, the presence of smoke, and ground temper-

ature gradients. Both cameras were secured in the KHawk-55T using foam blocks. While ensuring

the viewpoint of the cameras were unobstructed during flight, this mounting method allowed for

small movements of both cameras which generated challenges for later image registration.

The FLIR Vue Pro R thermal camera is specifically designed for sUAS-based temperature

measurements, with the ability to generate geo-tagged images through communication with the

Pixhawk autopilot. The Vue Pro R has two range settings for capturing temperature data using
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Table 2.1: KHawk-55T camera specifications.

Specification PeauPro82 Modified NDVI FLIR Vue Pro R
[1] [15]

Weight 90 g 142 g
Spectral Response 630-900 nm 7.5-13.5 µm

Update Rate 29.97 Hz up to 30 Hz
Resolution 1920 × 1080 pix 640 × 512 pix

Field of View 74◦ × 45◦ 69◦ × 56◦

Figure 2.2: FLIR Vue Pro R (left) and PeauPro82 NDVI GoPro Hero 4 Black (right).

14-bit TIFF images: low-gain (-25/+550 ◦C) with a pixel sensitivity of 0.04 ◦C and high-gain

(-25/+135 ◦C) with a pixel sensitivity of 0.4 ◦C [16].

The PeauPro82 is a modified GoPro Hero 4 that replaces the blue channel of the visible spec-

trum sensor with an NIR band, which has been used for plant growth quantification [17]. In this

thesis, data from the inexpensive GoPro camera is used mainly for the NIR channel (Fig. 2.3).

Compared to the response of fire in the visible spectrum, flame signatures in the NIR spectrum are

stronger and more reliable for fire detection and monitoring [8]. Additionally, a combination of

the NIR and visual bands can help determine the fire front and depth more accurately than a single

spectral band.

2.2.2 Prescribed Grass Fire Experiment & Raw Aerial Imagery

On October 8th, 2019, a prescribed fire was performed between 11:38 AM and 12:25 PM CDT at

the Anderson County Prairie Preserve, which is managed by the Kansas Biological Survey (KBS).

The controlled burn consisted primarily of tallgrasses within the approximately 530 m × 250 m

rectangular area. A side view of the fire is shown in Fig. 2.4, taken by a DJI quadcopter. Two
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Figure 2.3: PeauPro82 NDVI camera spectral response [1].

teams from KBS set up the prescribed fire by starting at the midpoint of the Northern boundary

and moved in opposite directions. The average wind velocity during the burn was 6.26 m
s from

the south based on measurements from a Campbell Scientific CSAT3B wind anemometer installed

about 1.9 m above the ground [2]. From 12:06:05 PM to 12:17:47 PM, the KHawk-55T sUAS

with the thermal and RGNIR imaging payload flied over the controlled burn at an altitude of about

120 m above ground level.

Images from different flyovers of the same corner of the fire front from the onboard cameras

are shown in Fig. 2.5. The histogram of the thermal images shown in this paper have been adjusted

for an improved view of the background. Raw thermal images are dark except for high temperature

areas like fire. For visualizing overlapped features to support later stitching and rectification, the

thermal images were taken in the high-gain setting. This allowed for the surrounding environment

to be clearer in thermal images after histogram adjustments; the low-gain setting would provide

a finer resolution of the fire temperature, but the objects around the fire would be difficult to de-

termine for further analysis such as generating orthomosaic maps [2] or the feature identification

used later in this chapter.
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Figure 2.4: Anderson County fire field [2].

2.3 GRAFFITI Dataset

This section provides details on the process of acquiring, syncing, and distortion removal neces-

sary to create a dataset that observes a controlled burn from the thermal and RGNIR spectrums.

The GRAFFITI dataset includes two levels of data. The level 1 dataset consists of 20 RGNIR and

thermal image pairs that are synchronized after both spectral images are tagged with a GPS posi-

tion and corresponding camera orientation. The GRAFFITI level 2 dataset includes 15 processed

RGNIR and thermal image overlays, which share the same field of view. The process of generating

the GRAFFITI dataset is shown in Fig. 2.6. Beginning with raw thermal images (1 Hz), RGNIR

video (29.97 Hz) and Pixhawk telemetry (5 Hz GPS and 25 Hz attitude), the RGNIR images are

geo-tagged and the thermal image distortion is rectified. After pairing all thermal images with

corresponding RGNIR frames, the pairs are down selected to create the GRAFFITI level 1 dataset.

After manual feature matching, the homography between the selected 15 image pairs is estimated

and used to create the GRAFFITI level 2 dataset of thermal and RGNIR overlays. Analysis is

performed on the accuracy of feature matching and the overlap produced when transforming the
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Figure 2.5: Example KHawk-55T image pairs of the same area from two different times in RGNIR
(left) and histogram-adjusted thermal (right) bands.

RGNIR images into the thermal image space.

2.3.1 GRAFFITI Image Pair Synchronization

The fire data acquisition from both RGNIR and thermal bands present the opportunity for a unique

dataset where multiple spectral bands can be observed and analyzed at a relatively high resolution

for fire front observation applications. For a fair comparison between different spectral bands, it

is desirable that the PeauPro82 and the FLIR Vue Pro R share the same nadir view of the fire.

However, while the FLIR Vue Pro R has automatic geotagging built into the camera that can pro-

vide the geolocation information of the camera, the PeauPro82 does not have the same capability.

Manual synchronization can be used instead to align each RGNIR image with the corresponding

GPS and camera orientation information from the Pixhawk datalog. As the RGNIR video has a

high frame rate of 29.97 Hz, along with 25 Hz orientation estimates and a 4 Hz GPS, the time of
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Figure 2.6: Flow diagram for generating the GRAFFITI dataset.

takeoff can be easily determined based on acceleration measurements during the bungee takeoff.

In the ideal case, each pair of RGNIR and thermal images would be aligned for comparison after

the synchronization process. However, as discussed in the next two sections, further fine tuning is

sometimes needed to find the matched RGNIR and thermal image pairs both for synchronization

and overlap comparisons before a full comparison can be performed.
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2.3.2 Distortion Removal for Thermal Imagery

As shown in the left image of Fig. 2.7, the raw thermal image from the FLIR Vue Pro R has

nontrivial distortions that present the straight edges of the road and sides of the fire area as having

slight curvature. Before comparing the thermal images to the respective RGNIR image pairs, the

distortion present in the Vue Pro R needs to be rectified (Fig. 2.7).

Figure 2.7: Raw (left) and zero-padded undistorted (right) thermal images.

The primary distortion models used on the thermal images were radial and tangential distor-

tion, which are the lens distortion phenomenon when representing a real camera from a simplified

ideal pinhole camera model. Radial distortion, also known as pincushion or barrel distortion, bends

light near the edges of the lens at a greater angle than at the optical center of a camera. Equations

2.1 and 2.2 present the definitions of radial distortion where xr,distorted and yr,distorted are the radi-

ally distorted point locations, x and y are the undistorted pixel locations, k1, k2, and k3 are radial

distortion coefficients of the lens and r is the Euclidean distance from the image coordinate center

(r2 = x2 + y2).

xr,distorted = x(1+ k1r2 + k2r4 + k3r6) (2.1)

yr,distorted = y(1+ k1r2 + k2r4 + k3r6) (2.2)
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Tangential distortion occurs when the lens of a camera and the image sensor are not parallel,

the relative distance between objects at difference edges of the frame can be perceived larger than

in reality. The equations describing the relation between the tangentially distorted pixel locations

(xt,distorted, yt,distorted) and the undistorted pixel locations (x, y) are shown below where p1 and p2

are tangential distortion coefficients of the lens.

xt,distorted = x+[2p1xy+ p2(r2 +2x2)] (2.3)

yt,distorted = y+[p1(r2 +2y2)+2p2xy] (2.4)

Agisoft Photoscan software was used to generate thermal orthomosaic map using thermal im-

ages from the same flight used in this thesis, as discussed in [2]. Through the process of stitching

and generating a fire map, the Agisoft software also produced an estimation for the intrinsic char-

acteristics of the FLIR Vue Pro R used in the KHawk-55T, including the radial and tangential

coefficients described above. The values used to remove distortion from the thermal images in

the GRAFFITI dataset (Table 2.2) were generated by Agisoft Photoscan using an orthomosaic that

produced a total error of 4.44 m over a total of 118 aerial images.

Table 2.2: KHawk-55T camera distortion coefficients.

Camera k1 k2 k3 p1 p2
FLIR Vue Pro R -0.379 0.226 -0.084 -0.0004 0.0005

PeauPro82 GoPro 0.085 -0.098 0.020 -0.0001 -0.0001

An example image pair before and after the distortion removal is shown in Fig. 2.7. It can be

observed that the gravel road appeared to be curved in the raw thermal image but not in the rectified

image. For use in the GRAFFITI dataset, the portions of the image that include the zero-padding

are removed, creating a 640 × 512 pixel image that represents the undistorted thermal image. The

PeauPro82 has negligible lens distortion (Table 2.2) when using the same estimation method as the

Vue Pro R, therefore the raw RGNIR images were directly used for registration.
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2.3.3 NIR to FLIR Manual Image Registration

With rectified thermal images, initial comparison between the synced RGNIR and thermal images

were performed. Due to the GPS error, the initial synced image pairs may be off by an offset,

which is time variant probably caused by the small movements of the cameras. By observing

attitude changes in the NIR and thermal image sequence as well as comparing the similarities of

the fire coverage, the image pairs were manually adjusted to provide an NIR image that closely

resembled the thermal image than the initial NIR sync. Fig. 2.8 presents an example image pair

from the GRAFFITI dataset.

Figure 2.8: Example synchronized thermal (a) and RGNIR (b) image pair (12:10:35 PM).

After the manual final synchronization process, all thermal images from the Anderson County

prescribed fire flight have a matching RGNIR image. The purpose of the GRAFFITI dataset is

to find the synced thermal and RGNIR observation of the grass fire front to support fire metrics

measurement analysis. Therefore, finding a match between an RGNIR pixel and a thermal pixel is

required for observation and comparison. Using the pinhole camera model to represent the thermal

(T ) and RGNIR (NIR) images, a point in the world coordinate system (X ,Y,Z) with the aircraft

center of gravity as the origin, seen in both the thermal and RGNIR image coordinate systems are

shown in Equations 2.5 and 2.6, respectively. The intrinsic matrix (K) for both equations represent
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the internal characteristics of the cameras: the focal lengths ( fx, fy) and optical center (cx, cy) in

pixels. Table 2.3 presents the intrinsic values for the PeauPro82 and the FLIR Vue Pro R.
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Table 2.3: KHawk-55T camera intrinsics.

Camera Focal Length Optical Center
( fx, fy) [pix] (cx, cy) [pix]

PeauPro82 GoPro (1197.17, 1197.17) (7.55, 15.89)
FLIR Vue Pro R (555.57, 555,57) (-7.54, -4.37)

Since the same points show up in both the RGNIR and thermal images, both equations above

can be used to describe a transformation between a point found in the RGNIR frame to the pixel

location in thermal space (Eqn. 2.7). However, this representation is simplified as it does not take

into account rotational differences in the camera mount and assumes the optical centers of both

the camera are aligned. A generalized form of Eqn. 2.7 is given in Eqn. 2.8 where the rotational

(RT
NIR) and the translation alignment errors between the camera optical centers (TT

NIR) are included.
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In an ideal mounting scenario, the translation and rotation alignment between the two cameras

can be calibrated beforehand and remain constant during flight. Assuming the physical restraint of

the cameras remain the same, and the cameras have confident intrinsic calibrations, Eqn. 2.8 can

be used to determine the accuracy of a given image synchronization.

The KHawk-55T cameras are stabilized by foam blocks in the 2019 fire flight. In addition,

the strong wind during the flight (∼12-15 mph) and reactionary adjustment from the sUAS caused

the cameras to move slightly mid-flight, which then changed the viewing angle of the thermal

and RGNIR images multiple times. During straight legs of the flight path, the PeauPro82 GoPro

would maintain a constant viewpoint. During periods of turbulence or high roll turns, the camera

would jostle in the payload bay. While coverage of the ground would be about the same, the

slight movement would change the alignment between the PeauPro82 and the FLIR Vue Pro R.

A significant amount of turbulence occurred midway through the flight, causing the PeauPro82 to

pitch down. As shown in Fig. 2.8a, the RGNIR image was already "behind" the thermal image

(Fig. 2.8b) as the fire in the center of the thermal image is at the top of the RGNIR image. After

the midway point of the flight, the overlap between the PeauPro82 and the thermal image was only

a few pixels and fire coverage in the overlap was minimal. Therefore, a single estimate of the

rotation matrix between the PeauPro82 and the FLIR Vue Pro R would not work for this dataset.

For the GRAFFITI dataset overlay comparison, each image was matched on an individual basis

by estimating the transformation between the RGNIR image to the thermal image space. At the

altitude flown, the FLIR Vue Pro R and the PeauPro82 had a spatial resolution of 0.23 m/pix and

0.094 m/pix, respectively. The PeauPro82 RGNIR images were down sampled to the thermal image

space to have the same spatial resolution for comparison.

The problem of transforming the RGNIR image to the thermal image space is defined as a

projective transformation problem in computer vision; the general equation for mapping a point on
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the same plane from two different view-points (x→ x′) is given in Eqn. 2.9 [18]. For estimating the

transformation between points found in the RGNIR image (xNIR) to the thermal space (xT ) , Eqn.

2.10 can be used. At the altitude flown (120 m AGL) and the relatively flat landscape flown over,

the shared points between the two images can be assumed to be on the same plane and therefore

can utilize existing optimization algorithms from the two-view geometry problem in literature.

x′ =


x1

x′2

x′3

=


h11 h12 h13

h21 h22 h23

h31 h32 h33
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The level 1 GRAFFITI dataset consists of 20 paired thermal and RGNIR images. The pairs

considered needed to include significant portions of the fire front as well as enough features visi-

ble in both images that can provide enough information to estimate the homography between the

RGNIR and thermal images. The full criteria for choosing an image in the GRAFFITI dataset are:

1. The fire front appears in the shared field of view of the thermal and RGNIR images;

2. Distinct features (field corners, vehicles, roads, etc.) are shared in both images;

3. Roll and pitch angles are less than 20 degrees.

The roll and pitch criteria are used to limit the image distortion when reprojecting the RGNIR

and thermal images for georeferencing. The GRAFFITI dataset is intended for fire metric analysis

from different spectral bands which may involve georeferencing. Besides yaw, when a downward

facing camera on an aircraft has an attitude angle above 20 degrees, georeferenced images require

homographies that overly distort the image and affect the georeferencing accuracy [19]. The statis-

tics for the roll and pitch angles for the GRAFFITI dataset are shown in Table 2.4 derived from the

Pixhawk IMU datalog.
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Table 2.4: Roll and pitch statistics for GRAFFITI dataset.

Attitude Range Mean Standard Deviation
Angle (deg.) (deg.) (deg.)

Roll (φ ) (-16.46 - 4.29) -6.53 11.27
Pitch (θ ) (1.71 - 10.10) 6.16 2.58

The FLIR Vue Pro R was set to high-gain mode to have the ability to provide distinct envi-

ronmental features for georeferencing, which can also be used to pair with the RGNIR images.

The manually selected features in both images include field corners, vehicle corners, ground sta-

tion features, and hay bales. Two example image pairs with defining features that include the fire

perimeter in different areas at different times are shown in Fig. 2.9. The relative size between the

images in Fig. 2.9 are resized for visualization purposes.

Figure 2.9: Resized RGNIR and thermal image pairs from the GRAFFITI dataset (Taken at
12:10:14 PM (left) and 12:13:40 (right).
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The projective transformation matrix shown in Eqn. 2.10 has eight degrees of freedom, since

the matrix is defined up to scale. Therefore, at least four features in the thermal and RGNIR images

need to be matched to estimate a homography. With four matched features, an exact solution for

Eqn. 2.10 can be determined. Correspondences with more than four points can potentially pro-

vide a more accurate representation of a projective transformation, however further optimization

is required. After manually identifying and matching features for the 20 images in the GRAFFITI

dataset, the M-estimator SAmple Consensus (MSAC) algorithm was used with a 99.9% confidence

of finding the maximum number of inliers for estimating a projective transformation. The MSAC

algorithm improves upon the RANSAC estimator by maximizing the likelihood of the homography

solution rather than the number of inliers present in a given homography [20].

Figure 2.10: Overlays from the GRAFFITI dataset examples shown in Figure 2.9.

Fig. 2.11 presents the reprojection error for the 20 images in the original GRAFFITI dataset

along with the feature point distribution in the thermal image. Reprojection error refers to the dis-

tance between a point identified in the thermal image to the RGNIR point projected in the thermal

space. The lower the projection error often represents a more accurate homography estimate. The

feature distribution within the image is also critical to the estimation accuracy. If all the matched

features within an image are tightly packed, small deviations in homography estimates may create

warped overlays even when the reprojection errors are small. Feature distribution (Eqn. 2.11) is

defined as the root-mean-square Euclidean norm of the distance between the i-th feature location

(xi) and feature centroid (µx) of an image for N features in an image.
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FD =

√
∑

N
i=1∥xi −µx∥

N
(2.11)

Figure 2.11: Reprojection error and feature distribution for the original GRAFFITI dataset homog-
raphy estimation.

As clearly shown in Fig. 2.11, image 14 of the original GRAFFITI sequence has a large re-

projection error and relatively low feature distribution (∼60 pix). The manually selected features

(yellow dots) and RGNIR reprojected points (red dots) on the thermal image are shown in the top

image of Fig. 2.12. While there are more than the required four matched features, the close prox-

imity causes the estimator to exclude two outliers (right most features). While having minimal

reprojection error, that minor deviation paired with the tight grouping causes the reprojected over-

lay to over-exaggerate the estimated homography and create an unusable overlay image, shown in

the bottom image of Fig. 2.12.

Images from the GRAFFITI dataset that produce accurate overlay comparisons would consist

of a wide distribution of features with a low reprojection error. Using the results from Fig. 2.11,

Table 2.5, and visual inspection, 15 images from the original 20 were determined to have accept-

able homography estimates based on an RMS reprojection error less than five pixels and a feature
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Figure 2.12: Tightly packed identified features (yellow) with respective reprojections (red) on the
thermal image (top) with the estimated homography overlay (bottom).

distribution greater than 80 pixels. Statistics of the chosen 15 image dataset are shown in Table

2.5. The final level 2 GRAFFITI dataset has a reduced average reprojection error by a pixel and

half the original standard deviation when compared to level 1. The feature distribution is more

favorable with an average 10 pixels higher and less spread than the original 20 image dataset.

Table 2.5: Reprojection error and feature distribution statistics of the original and trimmed GRAF-
FITI dataset.

Reprojection Feature Reprojection Feature
Parameter Error Distribution Error Distribution

[Original] [Original] [Trimmed] [Trimmed]
Mean (pix) 3.09 108.89 2.17 121.28

Standard Deviation (pix) 2.72 40.47 1.26 33.53
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Although this is a relatively small dataset, the RGNIR and thermal image overlays from the

nadir perspective of a low altitude sUAS are unique in the existing literature of wildland fire obser-

vation. This high resolution 15 image dataset provides not only raw RGNIR and thermal images of

a controlled grass fire front, but overlays of both images that can be potentially used for further fire

metrics measurements (fire front detection and localization, rate of spread, fire front delineation,

flame zone depth analysis) between the two spectrum representations.

The GRAFFITI dataset consists of 70 images in total: 20 thermal and RGNIR image pairs (level

1) as well as 15 overlays between selected image pairs (level 2). A majority of the image processing

performed in this section relied upon manual oversight and adjustment. Future implementations

of the KHawk-55T and other sUAS carrying similar imaging payload would require rigid camera

mounting that can maintain the same alignment across multiple flights. This would allow for a

single calibration process to be performed that would be consistent and repeatable.

2.4 Conclusions

This chapter described the acquisition and development of the GRAFFITI dataset which includes a

total of 20 level 1 RGNIR and thermal image pairs over typical tall-grass Fall fires in Kansas. Im-

ages were chosen based on low attitude angles, pertinent features in frames and good representation

of fires. The GRAFFITI dataset also consists of a selection of 15 overlays (level 2) with a repro-

jection error of 1.26 pixels (roughly 10 cm) with a feature distribution of 121 pixels. GRAFFITI

provides fire front imagery in the RGNIR and thermal spectrum to support further comparison

of grass fires in different spectrums. Later chapters will use the dataset for fire behavior metric

measurements. For future sUAS imaging data collection, a hard-mounted payload configuration is

highly recommended for a consistent transformation estimate between different cameras to create

larger image sets over multiple flights.
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Chapter 3

Rule-based Grass Fire Front Identification Using sUAS NIR

Imagery

3.1 Chapter Introduction

This chapter focuses on the development of a new grass fire front identification method using sUAS

NIR aerial imagery. Existing fire detection methods generally use rule-based image processing

algorithms in different color spaces including RGB [21, 22], YUV [23], YCbCr [24] and combi-

nations of other spaces [25]. Additionally, most methods use imagery taken from the ground [26],

staring at cross-section of the fire, or from angled aerial views, obscuring sections of the fire

perimeter [27]. These visible spectrum-based methods may not work well in nadir conditions

when omitting smoke impact or in situations with minimal contrast between a background that is

bright and produces a high intensity region that is not fire (i.e. sky and smoke). Accurate airborne

assessments of wildland fires require higher resolution imaging than most free satellite datasets

offer, therefore this task would rely on nadir images taken from an sUAS that can capture a wider

view of fire areas [28]. This chapter proposes a novel fire detection and fire front identification al-

gorithm using sUAS nadir imagery taken in the red, green and near-infrared (NIR) spectrum. Fire

detection using the NIR spectrum has been done using satellite images, but are designed for large

land areas that produce results at a spatial resolution in the hundreds or thousands of kilometers per

pixel [29, 30].The NIR imagery used in this chapter has a higher spatial resolution than the ones

used in literature, which have not been fully tested in airborne and nadir situations.
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3.2 Existing Rule-based Methods for Fire Detection

A supervised learning-based algorithm is proposed for fire detection using a 3-channel RGB his-

togram to determine fire pixels [21]. To increase the probability of fire pixel detection, a Gaussian-

based approach is used after an initial learning process. Using the 256 × 256 × 256 pixel histogram

of the output image, a Gaussian filter is applied to the image. When pixels are determined as a

“correct” fire pixel (a mask location with a binary value of “1”), a Gaussian distribution is added

to the color histogram. If the pixel was not determined to be fire, a small negative Gaussian distri-

bution is applied. This method attempts to mitigate color invariances due to burning material and

environment variance. However, the algorithm will not perform well if similar colors appear in

the back and foreground, since this method relies on color response by thresholding a Gaussian-

smoothed color histogram. The smoothing aspect does alleviate the motion component of the fire

when against backgrounds of a similar color.

A widely used fire detection procedure was proposed utilizing the RGB and saturation (S) color

spaces [22]. The efficiency and speed of this method comes from its easy detection of fire in the

red to yellow spectrum of color. For fires, the red channel response is higher than the green channel

response, and respectively the same for the green to blue channel. Finally, since fire essentially acts

as a lighting source, the red channel values can be easily detected using a customized threshold.

These methods are shown below where IR, IG, IB are the red, blue and green channel intensities at

the pixel location (u,v). A pixel is determined to be fire if the r1, [22], r2, [22], and r3, [22] are all

greater than zero.

r1, [22](u,v) = IR(u,v)− IG(u,v) (3.1)

r2, [22](u,v) = IR(u,v)− IB(u,v) (3.2)

r3, [22](u,v) = IR(u,v)− τR (3.3)

The proposed rule set includes the saturation channel (IS) to remove regions of an image that

have high background illumination. With the rule given below, the two tunable thresholds on the
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red and saturation channel, τR and τS respectively, will change based on the color profile of the fire

image dataset.

r4, [22](u,v) = IS(u,v)− (255− IR(u,v))
τS

τR
(3.4)

Another RGB image-based method is proposed in [24] similar to [22] in using the same red,

blue and green channel comparisons. Instead of using a threshold on the red channel, the mean red

channel response of the image, IR,mean, is selected as an indicator of fire:

r1, [24](u,v) = IR(u,v)− IR,mean (3.5)

Other fire detection methods use the YCbCr (luma, blue chrominance and red chrominance)

color space for the separation between intensity and chrominance of fire is more distinguishable.

Similar rules are provided for the YCbCr (luma, blue chrominance and red chrominance) color

space [24], implying that the luminance and red chrominance are greater than the blue chrominance

for fire pixels. This is a more robust approach to represent fire pixels as the chrominance is used in

modeling color instead of intensity, which caused illumination issues in the RGB color space.

r2, [24](u,v) = IY (u,v)− ICb(u,v) (3.6)

r3, [24](u,v) = ICr(u,v)− ICb(u,v) (3.7)

To further segment the image in YCbCr space, since the fire region of an image will usually

be the brightest in an image, the mean values for each channel intensity were used. For fire,

Celik determined that the Y channel will be greater than the average luminance, while the blue

chrominance channel will be smaller than the mean. And since the red channel for fire is saturated,

the red chrominance will be greater than the average. These rules are shown below in Equations

3.8 - 3.10.

r4, [24](u,v) = IY (u,v)− IY,mean (3.8)
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r5, [24](u,v) = ICb,mean − ICb(u,v) (3.9)

r6, [24](u,v) = ICr(u,v)− ICr,mean (3.10)

Another method for detecting fire is using a probabilistic approach [31]. Each channel of the

RGB color space is modeled using a Gaussian distribution of probability (Eqn. 3.11). This method

attempts to mitigate the use of multiple empirical thresholds, which can fail when the combusted

material or the background environment changes.

pC(IC(u,v)) =
1√

2πσ2
C

exp(−(IC(u,v)−µC)
2

2σ2
C

) (3.11)

where c ∈ [R,G,B] and µ, σ2 are the corresponding mean intensity and variance for each channel,

respectively. The overall probability for a pixel distribution within an image can be estimated using

Eqn. 3.12. The determination of a fire pixel can be finished using a threshold, τK , on the overall

probability (Eqn. 3.13).

pr(I(u,v)) = ∏
c∈[R,G,B]

pC(IC(u,v)) (3.12)

r(u,v) = pr(I(u,v))− τK (3.13)

The methods and rules described section 3.2 are mostly designed for ground-level fire detection.

For the application of fire detection from sUAS aerial imagery, the relative size of the fire can be

drastically smaller and dependent on the pixel resolution of the image, where thin portions of a

fire line can be imperceptible. The test images used in the above detectors contain large portions

of fire, therefore application of these methods to sUAS imagery of a grassland fire will not detect

thinner fire fronts from a nadir perspective. Additionally, the above methods do not consider

occlusion from smoke, which often is between the fire and nadir sUAS imagery. Attempting to

mitigate these issues, a new methodology for fire detection using the intrinsic properties of the

NIR spectrum is proposed in this chapter.
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3.3 NIR Response to Fire

Near infrared cameras can detect radiating bodies (such as fire) with an improved sensitivity when

compared to RGB solutions. Simulations have shown that the radiance response from high temper-

ature areas are more detectable in the NIR range than a human eye or a visual spectrum camera can

sense [5]. Figure 3.1 presents an example RGNIR image from the Anderson County prescribed

fire, along with the red, green and NIR single channel images. Fire pixels can be easier observed

in the NIR imagery than typical visible spectrum cameras due to the improved contrast between

the background and fire, and reduced occlusion effect due to smoke. It can be observed in the

red (Fig. 3.1b) and NIR (Fig. 3.1d) image channels that fire produces a high intensity response,

while the smoke visible between the images is less in the NIR image. The fire front at the left of

the image has hot spots clearly visible in the NIR channel, but the red channel image introduces

a smoke response which obscures and covers the thin fire region. It is also noted that the green

channel image (Fig. 3.1c) also shows the leftmost fire front hot spots.

3.4 Proposed NIR Fire Detection Method

The proposed NIR fire detection method in this section produces two separate images: the detected

fire pixels and a fire front line representation. The algorithm uses a raw RGNIR image and creates

four images: the single channel red, green and NIR images as well as a difference image between

the red and NIR channel. Using mean channel characteristics, Gaussian histogram assumptions

and thresholding, Eqn. 3.14 - 3.16 were developed and consist of the rule-based section of the

algorithm that determines initial fire pixels (Sec. 3.4.1). False positive pixels outside the fire area

are eliminated by detecting the burnt region of the image (Sec. 3.4.2). If the potential fire pixel is

near the detected dark region, it passes as a final fire pixel. To convert the fire pixel image into a

format for further analysis, a fire front representation is created through morphological processing

(Sec. 3.4.3). The full fire detection algorithm is summarized in Fig. 3.2.
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Figure 3.1: RGNIR image of a fire line (a) and the separate channel responses: red (b), green (c)
and NIR (d) (12:14:14 PM).

3.4.1 RGNIR Fire Detection Rules

A new algorithm is proposed for the detection of fire pixels in the aerial RGNIR imagery, which

is comprised of three rules. The first rule proposed for detecting candidate fire pixels is based

on a Gaussian histogram approach similar to [21, 31]. The rule shown in Eqn. 3.14 defines any

pixel above two standard deviations of the NIR channel (σNIR) mean response (INIR,mean) as a

candidate fire pixel. Based on results from [5], the rule shown in Eqn. 3.14 will theoretically catch

any unoccluded fire pixel from the high response caused by the fire’s high radiance in the NIR

spectrum. Similar to other rule-based methods, a pixel is determined to be a fire pixel candidate if

the rule provides a value above zero.

rNIR,1(u,v) = INIR − (INIR,mean +2σNIR) (3.14)
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Figure 3.2: NIR fire detection algorithm flow chart.

Due to varying levels of smoke present during wildfire situations, a majority of the fire front will

be occluded by airborne particles. For further identification of fire that does not directly maximize

the response in the NIR-band, an absolute value process was chosen similar to Eqn. 3.5 [24]. Since

fire will still have a relatively high intensity response in the NIR and red channels, subtracting the

two images will draw the fire areas towards zero. However, other occlusions or objects within the

image, which have different intensities between the NIR and red channels will be clearly seen in

the difference image. By using the mean pixel intensity of this image (Fig. 3.3) it is shown that the

areas of high red response, the gravel road and smoke in this case, are clearly seen while the fire

line is not visible. The difference image can then be used to find additional candidate fire pixels
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that were not easily found using Eqn. 3.14. The rule is summarized in the equation below.

rNIR,2(u,v) =−
∣∣IR(u,v)− INIR(u,v)

∣∣+ IR−NIR,mean (3.15)

Figure 3.3: Red and NIR channel difference image.

However, for the resulting image, areas that have similar intensities in both the NIR and red

channels will produce the same result as a fire pixel. While this includes the fire line, regions of

burnt material or consistently dark regions will also be able to pass through as a candidate pixel.

Therefore, an additional rule is proposed in Eqn. 3.16. Fire will still produce a high green channel

response, while dark areas will not. A basic thresholding method is added for its simplicity and

speed of computation [22]. For the dataset used in this paper, the threshold for the green channel

was chosen as τG = 179, roughly 70% of the maximum green channel intensity.

rNIR,2(u,v) = IG(u,v)− τG (3.16)

The result of the three above rules are shown using the test image shown in Figure 3.4 as
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a binary image where fire pixels are defined as “1” and all other pixels are “0”. Figure 3.4 was

cropped to present a less compressed version of the full image results. As shown, Figure 4 excludes

the burnt areas that were considered candidate pixels using the absolute value method (Eqn. 3.15).

Likewise, the high red channel responses of the smoke and gravel road are omitted as well.

Figure 3.4: Resulting cropped binary image fire pixels of Figure 3.1 using proposed fire detection
algorithm.

3.4.2 Dark Region Detection

Figures 3.1 and the resulting fire pixel detection image (Fig. 3.4) show an ideal fire front image.

The fire is in the center of the image and it includes some occlusion due to smoke, but there are

instances during flight where the fire is only part of the image and the landscape or other objects

are in the majority of the frame. Since the rules above rely on an intense response in the NIR, red

and green channel, a scene with few fire pixels can cause many false positives. An example of

an unideal image with fire present is shown in Figure 3.5a. While fire is present in the lower left

corner of the image, the majority of the frame includes open field, haybales and wild brush. Figure
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3.5b presents the results of the first three proposed rules when applied to the unideal image, which

indicates fire is in the frame but mislabels pixels near the gravel road as well as some sections of

the open field that produced high intensities in the red, green and NIR channels. This occurs when

a large amount of high intensity pixels are missing in the image histogram (usually caused by fire),

which allows some high intensity sections of the image to be considered as fire.

Figure 3.5: Unideal fire front image scenario (a) with initial fire candidate pixels [white] (b), dark
region identification [white] (c) and final fire candidate pixels [white] (d).

To eliminate these false positives, a basic detector for finding dark regions of the image can

be used. The outlier pixels that are mislabeled as fire are far away from the current fire front

and therefore not near the burning region or the burnt vegetation that the fire has already passed

through. Therefore, reasoning similar to the logic used in Eqn. 3.14 can be borrowed to find dark

regions within an image. The proposed burnt region detector is shown below in Equations 3.17
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and 3.18. Only the green and NIR channels are chosen as NIR will mitigate most smoke coverage

while the green channel is included to attempt and mitigate other vegetation present in the sUAS

imagery.

rdark(u,v) = (IG,mean −2σG)− IG(u,v) (3.17)

rdark(u,v) = (INIR,mean −2σNIR)− INIR(u,v) (3.18)

While a majority of the burnt regions in frame can be detected, smoke can brighten the dark

areas and cause cavities within larger burnt areas or completely miss edges of the burnt vegetation.

Therefore, to conglomerate the dark regions to a single area, a burnt region identifier similar to

the edge detector proposed in [32] is proposed. Features from Accelerated segment Test (FAST)

was designed to be fast and efficient for machine learning applications. Using a circular perimeter

of pixels around a potential edge within an image, the pixel is determined as a corner if a certain

number of pixels within the perimeter are higher or lower than the candidate pixel and a given

intensity threshold. If 75% of the observed pixels fall outside of the intensity range, the pixel is

determined as an edge. For the purpose of dark area detection, a box filter with a width of 20 pixels

is used to go over the image after identifying dark pixels. If over 75% of the filter is considered

dark, the candidate pixel at the center of the filter is considered dark as well. Figure 3.5c presents

an unideal image after using the detector, with the dark regions shown in white.

Given that candidate fire pixels will be on or near to the determined dark regions, ideally near

burnt vegetation, a candidate fire pixel is determined to be part of the fire front if it is within

5 meters (25 pix) of the dark regions. The false positives due to a high intensity and low fire

coverage within the image will be eliminated as fire, as those pixels will not be near other dark

regions of the image such as forested areas.

3.4.3 Morphological Processing

To create a continuous fire front representation from the algorithm results, a morphological pro-

cess involving image dilation and erosion was used. The original output from the fire detection
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algorithm produces pixel locations where fire was determined to be, however due to the controlled

nature of the burn and sensitivity of the algorithm, there are areas between fire pixels where smoke

occluded a bright fire location. Additionally, the initial fire front had periods of low flaming com-

bustion causing gaps between highly active sections of the fire and from the low intensity response

from the PeauPro imagery.

Image dilation is performed on binary images for the purpose of extending the boundary of a

foreground region. A fire pixel will become a larger shape in the case of the fire detection algo-

rithm. To create a fire front representation from the binary algorithm output image, morphological

dilation using a disk structure was applied to the image to connect all the detected fire pixels and

fill gaps left in the algorithm process. Shown on an example fire image in Figure 3.6b, the disk

structural element was chosen as the algorithm does not determine the primary fire front direction.

While fire fronts have a general direction of spread, the quasi steady state of the fire can cause

bumps and grooves in the fire front line. A circular shaped element will allow for a dilation size

that is unbiased in any single direction, while a rectangular element may generate a bias along the

principle direction of a rectangular element instead of the true geometry of the fire front.

The dilated representation of the fire captures the overall geometry of the fire perimeter, how-

ever areas in front of and behind the fire provide a false number of fire pixels in an image, as

expected. Image erosion, referred to as morphological filtering [33], is used to create a pixel-wide

"line" that can be used as a representative fire front produced from the original NIR image. After

the dilation process connects the gaps between the detected fire pixels, erosion will create a single

pixel line that maintains the original "medial axis" of the dilated pattern [34]. Referred to as skele-

tonization, an erosion process was applied to each dilated image (Fig. 3.6b) of the image set and a

final fire front line was produced for each fire image. The erosion process results are shown on the

test image (Fig. 3.6a) in Figure 3.6c.
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Figure 3.6: RGNIR image under morphological dilation with diamond element (b), thinned erosion
(c) and the manually labeled ground truth image (d) (12:10:15 PM).

3.5 Evaluation Criteria and Results

For evaluating the accuracy of the rule-based NIR fire detector discussed in this chapter, it is

desired to have a ground truth representation of the fire front as well as a front developed from the

fire pixels determined from the algorithm. By comparing the location and length of a manually

labeled fire front and the front produced by the NIR algorithm, quantitative assessment can be

performed using the Pratt Figure of Merit (PFOM).

The ground truth used for comparison (Fig. 3.6) was taken from the 20 NIR image set from the

level 1 GRAFFITI dataset described in Chapter 2. The ground truth line was generated by manually
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delineating the fire front in each image and creating a binary map of the fire front location. For the

test image used as an example in Section 3.4.3, the manually labeled ground truth fire front line is

shown in figure 3.6. As shown, while sections of the fire front have gaps in the eroded image (Fig.

3.6c), the produced line follows the fire front and captures the geometry of the front closely.

To compare the algorithm detected fire front and the manually labeled ground truth, certain

metrics need to be selected similar to edge detection evaluation. The Pratt Figure of Merit (PFOM)

is proposed for use as an edge detection evaluator [35] where the primary errors in detection are

fragmentation, offset differences and smearing, which are all present in the NIR fire front dataset

when compared to the ground truth line. Shown below in Eqn. 3.19, the PFOM takes into account

the number of pixels in the fire front of the ground truth (Igt) and the algorithm estimate (Ialg), the

mean squared distance of the k-th pixel detected to the closest pixel in the ground truth image, and

a scaling constant of α = 1
9 . The constant was chosen to relatively penalize thickened lines and

offset, isolated pixels, as used in other edge detection evaluations [35, 36]. The cardinality of the

ground truth and the algorithm estimate refers to the amount of fire pixels contained within each

image. In edge detection applications, the PFOM of various edge detectors ranges from 0.4 - 0.6

for simple edge detectors while more advanced and computationally expensive detectors can reach

above 0.7 [37].

PFOM(Igt , Ialg) =
1

max{card(Igt),card(Ialg)}

card(Igt)

∑
k=1

1
1+αd2(k)

(3.19)

The PFOM with cardinality difference between the ground truth and algorithm results of each

sequential image taken from the overlapped data set created in Chapter 2 is shown in Figure 3.7.

With an RMS value of 0.54 over the 20-image set, the algorithm described above is comparable

to the basic edge detectors evaluated in the literature using the same figure of merit. Images that

generated a high PFOM showed the fire front throughout the image, including portions where

smoke is occluding the front (Fig. 3.8). However, if the fire perimeter is heavily occluded, the

image contains highly reflective objects, or the fire front is barely in frame, the NIR algorithm may

produce false positives or miss sections of the fire.
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Figure 3.7: Pratt Figure of Merit results for the NIR dataset

Figure 3.8a represents an ideal image for representing the fire perimeter using the NIR algo-

rithm. While the fire front is thin and covered by smoke, the NIR band was able to detect occluded

fire pixels. As shown in Figure 3.8b, the morphological processes of the algorithm developed a fire

front representation (purple) that followed the manually labeled ground truth line (green).

Figure 3.8: High Pratt Figure of Merit scored (PFOM = 0.738) cropped RGNIR image [a] with
expanded fire region [c], algorithm estimate (purple), and manually labeled (green) fire fronts [b].
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Figure 3.9 represents a typical image that produced a low merit score and contains two main

issues within the algorithm. First, the relative presence of active fire within the image is minimal,

therefore the assumed standard deviation of the NIR channel is lower than expected and Eqn. 3.14

will allow areas of high reflectance to be candidate fire pixels. The RGNIR image candidate fire

pixels before the dark region detection is shown in Figure 3.10. Besides the brighter sections of the

grass field outside the fire area, the sun’s reflection off the vehicle shown to the right of the active

fire is also considered a fire pixel. Since the vehicle is close to the fire, and therefore the burnt

region, that pixel after the dark region detection process is still considered part of the fire front.

Figure 3.9: Low Pratt Figure of Merit scored (PFOM = 0.242) RGNIR image [top] with expanded
fire region [bottom right], algorithm generated (purple), and manually labeled (green) fire fronts
[bottom left].
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Figure 3.10: Low Pratt Figure of Merit score RGNIR image (Fig. 3.9) with detected fire pixels
(green) before the dark region detection process.

When determining why an image produced a low or high PFOM score, two factors are evident

from the PFOM equation itself (Eqn. 3.19) and are the primary variables when determining if a

fire front was accurately portrayed: the cardinality difference and distance between the estimated

and the ground truth fire front line. These factors convey if the correct amount of fire pixels were

detected and how far the estimated lines were from the ground truth. To assist in quantifying cardi-

nality differences, Eqn. 3.20 is used. Referred to as the Cardinality Difference Ratio (CDR), Eqn.

3.20 represents the absolute error of the cardinality between the ground truth and the algorithm fire

front representations with respect to the cardinality of the ground truth line. Absolute error alone

is not enough for error evaluation as images with low cardinality can still produce an incorrect fire

front representation. An ideal algorithm estimate would produce a CDR of zero.

CDR =

∣∣card(Ialg)− card(Igt)
∣∣

card(Igt)
(3.20)

To observe the distance error between the algorithm estimate and the ground truth line, the

root-mean square (RMS) Euclidean distance error is used. The CDR and RMS distance error for

each image in the GRAFITTI dataset is shown in Figure 3.11 along with the image’s respective

PFOM score. The primary goal of the Pratt Figure of Merit is to quantify the two other parameters
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shown in Figure 3.11 and to generate a single metric that represents the accuracy of edges within

an image. However, when the goal is to grade a fire front line in the presence of false positives and

minimal positional error around the manually labeled fire front, the PFOM score by itself is not

enough by itself to determine success or failure.

Figure 3.11: Cardinality Difference Ratio (CDR), RMS Distance Error and PFOM score.

An example case of successful identification using PFOM is shown in sequential images 8 and

9. Similar in environmental layout, 9 has a lower PFOM score even though it has a similar RMS

error to 8 and a lower CDR value. Figure 3.12 presents pertinent sections of three images taken

from the GRAFFITI dataset after processed in the NIR fire front identification algorithm, images 8,

9 and 18 sequentially. The respective values from Figure 3.12 are shown in Table 3.1. Images 8 and

9 present images taken roughly one second apart, yet according to Table 3.1 have vastly different

PFOM scores and CDR values, but have similar RMS distance errors. While the fire fronts in

both images are thin and difficult to detect in the NIR image due to lack of prominent fire areas,
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both can distinguish the general shape and location of the fire line. Since both images contain a

relatively small amount of fire pixels, reflective areas in the surrounding fields were also detected

as fire, as shown in the right of the top and middle images of Figure 3.12. The primary difference

between images 8 and 9 are the sparsely distributed false positive points in image 8 compared to

the continuous, solid false front line seen in image 9 due to the dark region detector picking up

sections of the darker brush not seen in image 8. While image 8 had a high cardinality difference

when compared to image 9 (Table 3.1), the scarcity of false positives was not penalized as harshly

in image eight’s PFOM score. This is due to the false front line in image 9 being far from the

ground truth line, thus the PFOM reflected that the large distance error was a higher penalty than

overall cardinality.

Figure 3.12: Cropped sections of images 8 (top), 9 (middle) and 18 (bottom) with identified fire
front lines (green).

However, when comparing images 8 and 18 (top and bottom of Figure 3.12 respectively), where

image 18 had no false positive fire pixels far from the fire front, the PFOM score was lower than
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Table 3.1: Image analytics for Fig. 3.12.

Sequential PFOM Score CDR RMS Distance
Image # ( 1

pix3 ) (∼) Error (pix)
8 0.545 0.568 700.13
9 0.334 0.056 673.46

18 0.426 0.507 6.76

expected when compared to image 8. From Table 3.1, images 8 and 18 share a similar CDR value,

while the RMS distance error is greater in image 8 than in image 18. By observation, image 18 was

able to accurately generate a fire front representation that portrays the shape and location of the

imaged fire front, yet the PFOM of image 18 is over 0.1 and lower than image 8. The only major

difference between the two images is the amount of fire present in the frame and therefore the

cardinality of the ground truth fire front line is greater in image 18 than 8. When creating manual

ground truth lines, minute details can be labeled where the algorithm is incapable of discerning.

Figure 3.13 shows the algorithm produced line against the manually labeled fire front line. More

fire pixels being present in the ground truth of image 18 than image 8. Along with the fact that the

fire is thicker during the portion of the flight, the cardinality difference between the estimate and

ground truth impacted the PFOM score of image 18 greater than the false positives in image 8 that

are far away from the fire.

Figure 3.13: Image 18 ground truth (green) and algorithm produced (purple) fire front lines.

The PFOM score when applied to fire front identification based on a manually labeled fire front
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line is vague as a standalone value, but generally produces a relative value between images. Com-

pared to fire front and fire detection literature, most authors determine the problem of quantifying

fire perimeter delineation as a segmentation task [10, 26, 38]. Remote sensing literature are more

involved in the by-products of fire perimeter identification such as rate of spread (ROS) and use

manual identification of fire fronts for continual work, but that process can be time consuming

and has biases depending on the resolution and the fire environment [2, 39]. Automatic fire front

detection has been accomplished and discussed before on an sUAS scale [40], but usually through

the use of thresholds which need to be changed per image environment. Also, the results are rarely

quantified against a ground truth image. While PFOM needs context regarding cardinality and

distance error to identified fire fronts, it is a step towards validating fire front detection algorithms

that can lead to real-time fire detection for fire fighting missions.

3.6 Conclusions

In this chapter, a new rule-based NIR fire identification algorithm was proposed for the problem of

fire front detection in the NIR spectrum. The algorithm was validated using the 20 level 1 RGNIR

images from the GRAFFITI dataset. After morphological processing, the algorithm produced a

fire front line with an average Pratt Figure of Merit value of 0.523 over the dataset, which shows

the effectiveness of the algorithm. Other observations show the ground truth cardinality difference

played a role in the score of the algorithm, as the RMS distance error per fire pixel detected over

the tested images was 1.02 pixels, or roughly 10 cm. For future work, a larger dataset will be

tested. A new metric will be studied where a single value can accurately depict the success of fire

line detection, independent of amount of fire pixels in an image. Additionally, real-time detection

will be tested where the sUAS can follow and track the fire front.

43



Chapter 4

Grass Fire Front and Depth Estimation using NIR versus

Thermal Images from sUAS: a Comparative Study

4.1 Introduction

This chapter focuses on a comparative study between the NIR image-based and thermal image-

based fire metric estimation using the GRAFFITI dataset. Two grass fire metrics are the primary

focus: fire front location and flame depth. Accurate measurement of the spread and shape of

wildland grass fires is critical to fire behavior modeling, controlled burn planning and wildfire

prevention. Fire metrics like rate of spread (ROS), flame depth, flame height and fire front location

are critical to fire modeling and fire hazard prediction, but are difficult to measure in field settings

on the ground [41]. Fire metrics have been measured in laboratory settings [42, 43], but are of

particular interest in real prescribed fire and wildfire scenarios.

Many researchers have used satellite and airborne imagery to determine fire metrics such as

the ROS and fire front location during wildfires. For example, satellite imagery has been used

for active fire detection, damage assessment and fire spread modeling [39, 44–46] but has low

spatial resolution and the time for observation can be longer than the duration of some wildfires

last. Airborne images from manned aircraft have been used to find forest fire perimeter and active

fire line that were used to develop fire propagation models [47]. Infrared imagery from aircraft

have also been used to gathered measurements of heat and carbon fluxes, fire line geometry, and

flame intensity [48]. Manned aircraft have been proven as a remote sensing platform to support

fire mapping and metrics measurement, but are limited by pilot safety and operation costs.
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sUAS have been used for wildfire remote sensing applications such as fire detection, damage

assessment, vegetation density and progression monitoring [26, 49, 50]. A majority of these ap-

plications use thermal, near-infrared (NIR), or visual spectral cameras which have quite different

spectral responses to fires in frame. The use of sUAS for fire metric measurement are limited in

existing literature. Thermal and NIR images from a multi-rotor sUAS collected over prescribed

fires in Montana and Oregon were used for fire ROS estimation [7]. Georeferenced orthomosaics

from thermal images taken from the fixed-wing KHawk-55T were used for fire ROS measurement

over a tall grass controlled burn with the field size of 650 m × 320 m [2]. Thermal or IR cameras

are typically used over visible spectrum solutions as thermal images can see hot spots through

smoke, where visible solutions have difficulties with occlusion [26]. Thermal cameras may pick

up regions that are smoldering or no longer part of the flaming zone of a fire [51]. However, ther-

mal imaging may suffer from pixel saturation over high temperature areas. Additionally, thermal

reflections and heat radiation can create fire analogues within the thermal spectrum [8]. Visual and

NIR solutions however can pick up light from flaming regions, which is an advantage over thermal

imaging when determining a fire front or flame depth.

This chapter provides a comparative study for fire front location and flame depth estimation

using RGNIR and thermal imagery taken by a sUAS with a nadir view. These spectra depict

the fire front differently, and therefore may introduce different challenges in analysis including

illumination, occlusion, and saturation issues. The objective is to quantify which method is more

accurate in determining the fire front and flame depth of the observed fire. The obtained results

can be used to guide future researchers in instrument selection for fire front delineation and fire

behavior characterization.

This chapter is organized as the following, the fire front detection basics of NIR and thermal

imagery are described in Section 4.2. Representative images from the GRAFFITI dataset are then

used for the comparative evaluation of both methods for fire front and depth estimation in Section

4.3. Conclusions and directions for future work are discussed in Section 4.4.
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4.2 NIR and Thermal Fire Front Signatures

Electro-optical sensors are the primary method for observation and measurement of wildland fires.

Different sensors can detect the various indicators of fire: heat, light, smoke, flicker, motion

and chemical byproducts [8]. The two sensors for discussion in this section are the thermal and

visual/NIR-band cameras used to generate the GRAFFITI dataset 2. Each camera can detect the

presence of fire, but the representation of the fire perimeter differs. Thermal cameras do not detect

photons like visual-band cameras, but react to temperature changes of a detection material. A ther-

mal image will depict the absorbed radiation in the camera sensor material caused by heat emitted

during the fire.

Thermal images are typically chosen for mitigating smoke occlusion, which is the primary

difficulty when observing fire using visual-band cameras [52]. Additionally, thermal cameras are

used for environmental monitoring during the night and day, while visual cameras can only be

used in daylight conditions. The peak radiance for fire is in the range of 8 - 12 µm, which is within

the designed range of the thermal camera used in the GRAFFITI dataset (Table 2.1). However,

in observation of open flame or smoldering fires, radiance response peaks at shorter wavelengths

(3 - 5 µm) [8]. From a nadir perspective, the flame and smoldering fire base become difficult to

distinguish as the flame is a lower temperature than the ground. Especially in high temperature

situations, thermal imaging at high resolutions can become saturated. An extremely small and

hot fire spot can appear larger in the thermal response due to the area dominating the temperature

response of the fire area. Detecting fire in thermal images is nontrivial as thermal reflections,

outside heat radiation, and infrared blocking can occur in thermal cameras to create fire analogues

[51].

Visual/NIR-band camera solutions are used in fire detection but are limited historically for

missed fire detection and high false positive rates. These systems are also sensitive to environmen-

tal conditions and illumination differences between different sets of fire images. However, visible

solutions work based on light reflections; since flames are a light source, visual/NIR-band solu-

tions can pick up smoldering fire and flames at wavelengths less than 3 µm [8]. Visual/NIR-band
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cameras can usually aquire images at high frame rates (29.97 Hz) with higher resolution image

sensors than thermal cameras at a fraction of the cost. While unable to achieve full fire awareness

like a thermal camera, the unsaturated fire pixels found in visual/NIR-based cameras provide an

alternative approach to determine the fire front location at a much higher spatial resolution.

The difference in the fire front observation from the thermal and NIR bands can be found in

Fig. 4.1, which presents the image pair 11 in GRAFFITI dataset. The images show the Southwest

portion of the prescribed fire which include the head fire (South fire front) and flank fire (West fire

front). Fig. 4.1b is a histogram adjustment of the raw thermal image (4.1a) for better visualization

of the surrounding features. The adjusted thermal image also shows the saturation effect of high

temperature areas that are not flaming at this point during the controlled burn. The saturation effect

along the head fire front is more prominent than the flank fire.

When comparing both thermal images to the RGNIR image (Fig. 4.1), two characteristics are

evident: smoke occlusion and flame observation. The smoke from the head fire covers the flank

fire along the West side of the fire perimeter, occluding the thin fire line and diminishing the strong

emitted fire light from under the smoke. Additionally, the depth of the fire appears thinner in the

RGNIR spectrum than in the thermal images.

The reft-most white region of the fire field in Fig. 4.1a and 4.1b is imperceptible in the RGNIR

image. This section of the fire is no longer combusting, yet the residual hot ground beneath the

extinguished flame is detected as part of the fire perimeter in the thermal spectrum. However, the

RGNIR image presents a discontinuous fire front from smoke occlusion and the thin nature of the

fire. Fig. 4.2 presents an overlay of the RGNIR image with a binary fire pixel mask from the

thermal image; a thermal pixel is determined to be fire if the digital number is above 90% of the

maximum intensity pixel within the thermal image [53]. As shown, the high intensity pixels of

the RGNIR image along the head fire are not continuous due to smoke occlusion and flame flicker

effects. While the image only has a reprojection error of less than 2 pixels, the thermal image

fire front is off significantly along the head fire and within error on the flank side. The limitations

between the two spectral images are supported by observations in other datasets.
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Figure 4.1: Image 11 of GRAFFITI dataset with primary wind direction: raw thermal image (a),
histogram adjusted thermal image (b), and paired RGNIR image (c).

4.3 Fire Metrics Measurement Comparison

Flame dimension measurement is critical to fire modeling research as the rate of energy released

by a spreading fire is directly correlated to the flame depth and ROS. Accurate quantification of

these dimensions can lead to a better understanding of the fire impact, suppression requirements

and size of the safety zone around a wildland fire [54]. Before analyzing the dimensional accuracy

between the thermal and RGNIR images, the fire front and back must be delineated. Determining

the fire front on thermal and NIR imagery has previously been performed using edge detection
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Figure 4.2: Cropped RGNIR image and detected thermal fire pixel overlay of GRAFFITI dataset:
image 11.

algorithms such as Canny edge detection and Laplacians [39]. Similar methods have been used on

NDVI imagery, derived from the NIR spectrum, using the zero-crossing of the derivative image to

define the fire perimeter.

The NIR detection algorithm from Ch. 3 is used for the determiniation of the fire front location

and flame depth. The thermal image fire pixels are determined using methodology from [2, 53],

where any pixels above 90% of the maximum intensity pixel in an image is considered part of the

fire perimeter. Two image pairs from the GRAFFITI dataset with less than 2 pixels RMS repro-

jection error will be used for analysis. It is assumed that the images are perfect nadir views since

the caera orientation angles are small (<15 deg.). Fig. 4.3 shows the raw RGNIR and histogram

adjusted thermal images for the two image pairs used for flame dimension comparison: image 11

and 20 of the GRAFFITI dataset. Fig. 4.4 shows the overlays between the fire pixels found using

the NIR algorithm (purple) in Ch. 3 and the thermal fire detection (green) described above.

4.3.1 Fire Front Detection Comparison

To represent the fire front in the RGNIR and thermal images, an inset profile line similar to [39]

is used. Inset maps were used to observe fire front delineations of a thermal image against the
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Figure 4.3: Raw RGNIR and adjusted thermal image pairs for image 11 (a) and 20 (b) of GRAF-
FITI dataset.

Figure 4.4: Cropped overlays of RGNIR (purple) and thermal (green) fire pixels of image 11 (a)
and 20 (b) from GRAFFITI dataset.

temperature gradient along the inset line [39]. For this section, Fig. 4.5 presents the inset profile

lines used for fire front detection. The origin point for each line, represented by a red dot in Fig.

4.5, is within the unburned area inside the fire perimeter. All four profile lines then extend over the

fire front line and past the fire backline. The directions of the inset profile lines were defined to be

perpendicular (flank fires) or parallel (heading fires) based on the mean wind direction.
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Figure 4.5: Inset profile line definitions for fire front detection in image 11 (a) and image 20 (b) of
the GRAFFITI dataset.

The results on detected fire front and back lines along the inset lines are shown in Fig. 4.6.

Along with the intensity response in the thermal and RGNIR channels, the solid gray areas shows

the depth of the fire in the thermal image while the dashed black lines show where fire pixels were

detected using the NIR algorithm. The southern line shows the thermal image fire front is about a

meter in front of the RGNIR front, while the western line shows the algorithm estimated front is

less than half a meter ahead of the thermal fire front.

Image 11 has a reprojection error of roughly two pixels and a spatial resolution of 0.23 m/pix.

Therefore, the difference between the delineated fire fronts in the west line are within error and de-

pict the fire front at the same location. The southern fire front difference of one meter is larger than

the location error, demonstrating an offset when observing head fire front in the two spectrums.

The thermal fire front seems to extend from the flame front observed in the RGNIR image. This

is primarily due to radiant heat being carried by the smoke. Although hot spots can be detected

by thermal images through smoke, the high temperature of the smoke occludes the true position of

the fire front. At low resolutions the positional difference is negligible, but for the low altitude and

high-resolution thermal images of the GRAFFITI dataset, the smoke clearly carries the apparent

fire front ahead of the flaming front.

The results of the inset lines from image 20 show a similar trend (Fig. 4.7). The thermal and

RGNIR images were taken at a later time than image 11, allowing the fire front to evolve. The
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Figure 4.6: Inset profile line results for image 11 (4.5a) with marked fire positions in the thermal
and RGNIR image.

difference between the southern fire fronts is 1.4 m where the algorithm estimated fire front is

behind the thermal front. This can again be contributed to the smoke leading the head fire front

in the thermal image; where the heat of the fire produces high temperature smoke and moves the

apparent fire front forward. Conversely to the results of the flank fire front in Fig. 4.6, the thermal

front is leading the RGNIR fire front by 1.6 m. The reprojection error of image 20 is slightly over

a pixel, therefore the positional difference is not contributed to image misalignment.

Further observation of Fig. 4.3 shows the wind and smoke direction are not directly to the

North, but due slightly Northwest. This would cause smoke from the East flank to move slightly

forward of the spread direction and slightly behind the spread direction the West flank fire front.

Smoke along the Western front does not affect the fire front detection as the high temperature
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Figure 4.7: Inset profile line results for image 20 (4.5b) with marked fire positions in the thermal
and RGNIR image.

smoke is carried back over the fire, allows the thermal camera to still get a clear view of the flaming

front. However, the Eastern fire front in the thermal image will be pulled ahead of the flaming front

due to the smoke from the prescribe fire. The difference between the smoke and wind direction

against the Eastern and Western fire flanks once again shows that in the thermal image, smoke can

slightly obfuscate the apparent fire front compared to the visual/NIR-based camera solution.

4.3.2 Flame Depth Estimation Comparison

Flame depth is defined as the width of the area where continuous flaming combustion occurs behind

the leading edge of the fire front [54]. Historical determination of the trailing edge of the flaming

zone has been considered subjective and difficult to locate due to the transient state between the

flaming and smoldering combustion of the flame back [55]. For initial analysis of the flame zone

depth of the images in Fig. 4.3, a similar approach is taken from the previous section. An inset
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profile can observe the first and last instance of detected fire along the line and the distance between

the two can determine the flame depth along the line. By measuring the detected fire locations

across multiple inset lines along the fire perimeter, the fire depth can be calculated.

Fig. 4.8 presents the four regions used for initial analysis of the flame depth of the prescribed

fire used in the GRAFFITI dataset. The green lines are the edges of the detected fire pixels in the

thermal image, using the 90% maximum intensity threshold. The purple pixels are a combination

of the detected fire pixels and the fire front representation using the NIR algorithm described in Ch.

3. The four regions used for flame depth calculation are shown in yellow. The red line indicates

the position of the first inset profile line and the region ends at the blue inset profile line shown in

Fig. 4.8.

Figure 4.8: Flame depth evaluation regions in image 11 (a) and image 20 (b) of the GRAFFITI
dataset.

Fig. 4.9 shows the results for the flame zone depth along the selected inset lines in the South and

West regions. The NIR detection algorithm occasionally found no points along the inset profile,

and those are excluded from the flame depth figures. For the South and West sections of the fire

perimeter, the average flame depth using NIR detection was 0.74 m and 0.25 m, respectively. This

reflects the relation between head and flank fires as the prevailing wind creates a thicker flame

when compared to the apparently thin flames of the flank fire [41]. On the other hand, the flame
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depth derived from the thermal fire detection is much larger and not reliable due to the fire pixel

saturation issue and the transient nature of combustion at the fire back line. While the flame is

not present, the burnt grass and ground below are still hot from the passing fire. Similar to how

smoke can create a flame analogue in thermal fire front detection, residual heat behind the flame

zone has high thermal emissivity [39]. This thermal interaction causes the apparent back of the fire

perimeter to be further behind the fire than other sensors would detect.

Figure 4.9: Flame zone depth for South (a) and West (b) regions of image 11.

Fig. 4.10 shows a similar relationship between the thermal and NIR algorithm detected flame

depths. With the average head flame depth at 2.85 m and the flank depth at 0.37 m, both values

show the head fire is thicker as the fire evolves and the flank depth remains relatively steady when

compare to the values from image 11 (Fig. 4.9). The average and standard deviation (STD) for

flame depth of the four fire regions described are shown in Table 4.1.

Table 4.1: Flame depth statistics from NIR GRAFFITI images.

Image # NIR mean NIR STD
& Position (µNIR) [m] (σNIR) [m]

Img. 11 West 0.25 0.09
Img. 11 South 0.74 0.47
Img. 20 East 0.37 0.18

Img. 20 South 2.85 1.24
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Figure 4.10: Flame zone depth for South (a) and East (b) regions of image 20.

Flame-front residence time is used for quantifying which result is more accurate. Residence

time (τr) is the length of time for a flame zone to pass over a given point. It is an important

characteristic for describing a wildfire as it represents the convective heating above a surface fire

[55, 56]. The definition for flame-front residence time is given below:

τr =
D

ROS
(4.1)

where D is the flame depth and ROS is the rate of spread. Residence time can be on the scale

of minutes or seconds, primarily varying based on the fuel type and distribution [57]. For wild-

land grass fires like the prescribed burn in the GRAFFITI dataset, the estimated residence time is

between 1 - 5 seconds for light pastures or 10 - 15 seconds in heavy pastures [41].

Rate of spread for the prescribed fire used in the GRAFFITI dataset has been previously calcu-

lated in the same sections of the fire field shown in Fig. 4.3 [2]. The results for residence time using

the average fire depth found in the thermal and algorithm are shown in Table 4.2. The residence

time found using the NIR algorithm closely matches the estimates for grass fires provided in [41].
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Table 4.2: Flame depth statistics from GRAFFITI images.

Image # ROS NIR depth mean NIR residence
& Position (m/s) [2] (µNIR)[m] time, τr,NIR (s)

Img. 11 West 0.08 0.25 3.13
Img. 11 South 0.22 0.74 3.36
Img. 20 East 0.11 0.37 3.36

Img. 20 South 0.28 2.85 10.18

4.3.3 Discussions & Suggestions

The overlay comparisons shown in sections 4.3.1 and 4.3.2 present the difference in observation

between thermal and RGNIR bands over the same fire front. While thermal imagery is typically

preferred for identification of fire hot spots through smoke, the radiant heat in smoke causes the

detected fire front to be in front of head fires detected by the NIR-based method. When analyzing

wildfires with a significant amount of smoke or rapidly changing wind conditions, measuring fire

front location using only thermal imagery can potentially lead to small bias errors. Additionally,

thermal images are not reliable for flame zone depth determination due to the ambiguous nature of

temperature detection behind a fire front.

While visual/NIR-based solutions for observing wildland grass fires can create false positives,

the accuracy of fire localization and measurement is better than thermal imagery if smoke obscu-

ration is not significant. Both in-expensive and typically higher resolution than thermal cameras,

visual/NIR-based multispectral cameras are shown to have some advantages when delineating fire

metrics such as fire front location and flame zone depth with minimal to no smoke occlusion. Ther-

mal cameras are recommended to be used for high altitude monitoring or thick smoke situations.

4.4 Conclusions

This chapter presented a comparative study on the differences between fire detection in thermal

and NIR imagery. Thermal and NIR overlays from the GRAFFITI dataset of a head and flank fire

showed that while the high temperature fire can be easily detected in thermal spectrum, saturation
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and high temperature smoke can move the apparent fire front forward when compared to the de-

tected front from the NIR algorithm. Additionally, the RGNIR images provided a flame depth of

0.25 - 2.85 m, within expected values from literature. This chapter provides the first quantification

of thermal and vision-based fire metrics at the sUAS scale and provide situations of when to use

each spectrum in wildland grass fire observation and measurement. Future work needs to be done

regarding other spectrums including short-wave infrared or a typical RGB color band. Addition-

ally, further fire metrics should be derived from nadir thermal and NIR imagery for use in fire

prevention, modeling and real time detection like flame height, flame length and georeferenced

position.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The GRAFFITI dataset, a new multispectral wildland grass fire dataset is created in this thesis

using sUAS imagery. This dataset aims to address the challenges in low altitude fire observation

and fire metrics measurement using thermal and NIR aerial imagery.

Chapter 2 described the acquisition and development of the 70 image GRAFFITI dataset. Cur-

rent fire datasets include either imagery from oblique viewpoints or do not have a shared field of

view over the fire burning scene from multiple spectral bands. The GRAFFITI level 1 dataset has

20 raw RGNIR and thermal image pairs of a grass fire. For level 2, the homograph for 15 im-

age pairs were estimated with a low mean reprojection error of 1.26 pixels. The overlaid imagery

allows for further comparison on fire metrics determination using the RGNIR and thermal bands.

In Chapter 3, a novel rule-based NIR fire detection and fire front identification algorithm was

proposed. Using the 20 RGNIR images from level 1 of the GRAFFITI dataset, the average fire

front line produced a Pratt Figure of Merit score of 0.523. The effectiveness of the algorithm is

also shown by a small RMS distance error of 10 cm when comparing the detected fire front to the

manually delineated ground truth.

Finally, Chapter 4 discussed and analyzed the differences in the fire front and flame depth

estimation using thermal and NIR imagery. While thermal cameras could accurately detect the

presence of fire, the radiant heat from smoke and the smoldering ground behind the fire front may

affect fire metrics measurement. On the other side, while NIR based fire detection can lead to a

discontinuous fire front, the fire front location and flame depth estimates are more accurate when
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the effect of smoke is negligible. Initial fire depth estimation results showed the feasibility of NIR

imagery through the GRAFFITI dataset.

5.2 Future Work

Several potential future directions can be explored from each of the three main focuses of the

thesis:

1. Collection and creation of an improved multi-camera, multispectral dataset over wildland

fires:

• Improved hard-mounted payload bays for consistent camera alignment;

• Automatic feature matching between different bands which require feature identifiers

that are independent of the image spectrum.

2. NIR fire detection and fire front identification:

• Use a larger dataset with different illumination and environments to verify the robust-

ness of the NIR algorithm;

• Define new metrics to compare fire front delineations based on positional accuracy over

cardinality differences;

• Apply to real-time fire detection systems which can track and develop live-mapping of

a fire front.

3. Fire behavior metric analysis in thermal and NIR imagery:

• Analyze additional fire metrics;

• Include other spectra such as short-wave infrared spectrum and the RGB band.
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Appendix A

GRAFFITI Dataset Information and Examples

The full GRAFFITI dataset can be found on the CUSL "Flight Log" website (https://cusl.ku.edu/).

Below, Table A.1 provides time, position, attitude and level 2 information for each image in the

GRAFFITI dataset. Fig. A.1 provides the first four images of the level 1 and 2 of the GRAFFITI

dataset.

Table A.1: GRAFFITI Level I Statistics

Image No. Time UTM Easting UTM Northing Roll Pitch Yaw Level II
(∼) (CST) (m) [15S] (m) [15S] (deg) (deg) (deg) Composite
1 12:10:14 300375.8 4228474.2 -3.39 3.18 173.28 Y
2 12:10:15 300379.3 4228455.9 0.53 2.32 173.22 Y
3 12:10:22 300477.5 4228370.1 -16.91 3.42 97.47 Y
4 12:12:46 300923.8 4228517.5 5.01 7.31 243.93 Y
5 12:12:47 300902.5 4228519.7 0.13 9.07 247.63 N
6 12:13:40 300592.2 4228327.8 7.25 7.54 106.27 N
7 12:09:01 300415.1 4228414.8 2.31 6.76 228.42 Y
8 12:09:23 300815.3 4228400.3 6.83 9.15 116.92 Y
9 12:09:24 300839.3 4228398.4 0.6 6.96 120.51 Y

10 12:10:16 300384.2 4228436.7 0.18 2.32 175.22 Y
11 12:10:16 300386 4228428.6 -1.54 1.68 174.92 Y
12 12:10:36 300851.7 4228437.5 -15.03 5.92 67.25 Y
13 12:10:37 300866 4228448.2 -11.08 7.86 67.71 N
14 12:10:39 300916.6 4228492.3 -6.65 9.18 57.94 N
15 12:13:10 300422.9 4228539.6 0.79 9.95 246.97 N
16 12:13:11 300410.2 4228539.9 4.22 8.78 247.47 Y
17 12:14:35 300445.7 4228486.9 -1.01 6.19 240.89 N
18 12:14:36 300421.6 4228486.7 1.42 4.65 246.07 Y
19 12:17:18 300457 4228483.3 0.75 8.23 243.96 Y
20 12:17:47 300808.5 4228395.8 -1.94 4.66 111.79 Y
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Figure A.1: First four GRAFFITI images: raw RGNIR (left column), histogram adjusted thermal
(middle-left column), cropped RGNIR (middle-right column) and cropped thermal images (right
column)
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