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Abstract

The computational mesh for a Computational Fluid Dynamics (CFD) simulation must provide

sufficient cell density at proper locations in the domain in order to resolve the flow physics im-

pactful to the targeted engineering parameters. The key locations for resolution are often im-

precisely known and so must be found by trial and error. This dissertation discusses CFD mesh

adaptation—the computer guided adjustment of the mesh in response to the simulation. Specif-

ically, this document addresses mesh adaptation for Large Eddy Simulation (LES) with the Flux

Reconstruction / Correction Procedure via Reconstruction (FR/CPR) method. It presents a com-

puter program to adaptively refine 3D unstructured hexahedral meshes, guided by the distribution

of error within the flow field, estimated by an error indicator algorithm integrated into the flow

solver. Furthermore, it introduces four error indicator algorithms for tracking the location and the

amount of under-resolution in turbulent flow fields. The error estimators are derived, mathemat-

ically analyzed, and numerically tested upon two well-known benchmark LES simulations. The

analysis leads to a performance evaluation of the error indicators, judged on their ability to drive

the CFD simulation toward truth. The four error indicators are: 1) The Unsteady Residual Indi-

cator (unStdE), based on the unsteady residual from the FR/CPR calculation, 2) The Smoothness

Indicator (smthE), based on a local smoothness indicator, 3) The Adapted Toosi-Larson Indicator

(T.L.errE), based on the estimated small scale turbulent kinetic energy, and 4) The Average Toosi-

Larson Indicator (T.L.errE), conceptually the same as T.L.errE but formulated to be less costly to

compute. Upon LES simulations that model transitional flow past the T106 low pressure turbine

blade, all of the error indicators demonstrate ability to boost resolution of the flow field, improv-

ing simulation accuracy of force coefficients, vortex structure, Reynolds stresses, and the energy

spectra. unStdE and T.L.errE are found to be the fastest to bring improvement to coarse-meshed

simulations. Of the two, unStdE is mathematically simpler and easier to compute.
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Chapter 1

Introduction

It is no exaggeration to say that the modern world is dependent on the control of fluid in motion.

We rely on high-speed vehicular transport, which involves movement through one or more fluids,

either air or water. The engines that propel our vehicles as well as the fuel pipes and the pumps are

also fluid based. Whether we seek to prototype, build, or operate machinery, we must understand

and predict the motion of objects in realistic flow conditions.

Computational fluid dynamics (CFD) answers that need numerically by solving a set of equa-

tions to model the physics of fluid motion. These equations are called the Navier-Stokes equa-

tions, named after mathematician / physicist George Gabriel Stokes (1819-1903) and French en-

gineer / physicist Claude-Louis Navier (1785-1836). The equations express the conservation of

mass, momentum, and energy for a freely deformable viscous medium (a fluid), which experi-

ences internal stress force proportional to both the pressure and the gradient of velocity. As a

predictive model for fluid motion, Navier-Stokes is combined with a thermodynamic equation of

state, relating pressure, temperature, and density.1

In principle, those equations are all that is required to predict any type of flow, but in practice,

it’s a more complicated matter. Turbulence—motion characterized by chaos—is one of those com-

plications. Random fluctuations from eddies that swirl out of the bulk flow, splintering, cascading

into whorls that diffuse and scatter the energy. Predicting the effect of such motion is difficult due

to the coupling between large and small scales.

The modeling of turbulence requires an enormous number of calculations, and that modeling

effort has inspired several techniques, with the most accurate methods requiring the most effort. At

1For the equations, see (Hirsch, 2007, chap. 1 & table 1).
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the far extreme of effort would be the brute force DNS (Direct Numerical Simulation), which aims

to resolve all parts of the flow, from the largest currents to the smallest eddies. The less intense

LES (Large Eddy Simulation) sidesteps the difficulty of resolving the small eddies by deferring to a

semi-empirical subgrid scale model. RANS (Reynolds Averaged Navier-Stokes) doesn’t even try to

predict any eddies, aiming only for the statistical average flow by corralling the turbulent element

into random variables, modeled statistically. Other techniques, less mainstream, conceptually split

the flow field into interacting regions of unique dominant behavior, which are treated individually

by dissimilar approximation.2

With all solution procedures, the result is a large system of equations in need of calculation.

CFD is the numerical art of solving the equations by a high-speed computer program, yielding a

predictive flow field. In spite of the difficulties of modeling turbulence, CFD technology is of great

practical interest to engineers. Since the development of CFD in the 1960s,3 CFD has become a

major tool for engineering companies since it allows for in-depth analyses when experimental tests

would be impractical or too costly.

A variety of numerical methods exist to solve the Navier-Stokes system of equations. In an en-

gineering environment, the usual procedures involve a grid, which subdivides the physical domain

into a set of small, non-overlapping cells. Local fluid conditions within the cells are approximated,

separate and apart from the fluid interactions between the cells.

The accuracy of the calculation greatly depends on the quality of the mesh. If the mesh is too

coarse, the flow field will be incorrectly captured. If the mesh is too fine, the computation will

be too long to execute in a practical time frame. Finding the proper balance between accuracy

and execution length generally requires the hand of an experienced analyst to iteratively refine a

starting mesh to achieve the needed accuracy. As highlighted by NASA’s CFD Vision 2030, the

meshing process is commonly acknowledged by CFD practitioners to be the primary obstacle and

the most time-consuming step of CFD analysis (Slotnick et al., 2014).

Mesh creation is especially onerous when the simulation is new to the analyst. To produce

2For a summary of the techniques, see (Hirsch, 2007, chap. 2).
3circa 1955-1980. See for example (Richardson, 1922; Harlow et al., 1955; Jameson et al., 1981).
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a mesh, knowledge of the flow field is required. But to simulate the flow field, a mesh must be

supplied. So the practical work of CFD devolves into a tedious “guess and check” exercise. At

this point, the frustrated analyst may speculate that the process of mesh turning could be more

profitably done by a suitably equipped computer program. Such a program could iterate between

the mesh and simulation, adjusting the former to supply the later, much like an adaptive numerical

integrator will redistribute quadrature points to maintain a target resolution.4

1.1 Adaptive CFD

There are three adaptive procedures by which a CFD simulation’s resolution may be adjusted after

the numerical solver has been established on its initial mesh: 1) R-adaptation, 2) P-adaptation, and

3) H-adaptation. R-adaptation, also known as the “moving mesh method” refers to mesh modi-

fication that either re-distributes the cells or alters the cell sizes without change to their number.

P-adaptation refers to modification of the CFD solver’s internal degree of numerical approximation

through either the addition or the subtraction of terms to the modeling polynomials. H-adaptation

refers to direct mesh modification that adds or subtracts cells.5 All three types of adaptation re-

quire instruction to guide the process of redistributing the simulation’s degrees of freedom. That

information can come from either the CFD analyst designing the simulation, or it can come from

an algorithm estimating a spatial error distribution.

1.2 Approaches to Adaptive CFD

Early approaches to adaptation, as well as some later approaches, were focused upon minimizing

the error of interpolation. In other words, the best mesh would be optimally designed for interpola-

tion of the solution field. The work of Diaz et al. (1997) is an example. The theory, borrowed from

the finite element procedure, holds that interpolation error is proportionate to the second derivative

of the interpolant upon the mesh (or to the Hessian matrix when more than one spatial dimension

4adaptive quadrature: (Shampine et al., 1997, chap. 5.2).
5For more detail, see (Li et al., 2001).
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is at play). The goal is to rearrange the cells and edges of the mesh to minimize the error of in-

terpolation. One challenge, considered by Diaz et al., is the need to choose a quantity for optimal

interpolation. But as the authors observed:

...one variable cannot encapsulate all the physics of the system (Diaz et al., 1997, pg.

476).

Therefore, they proposed pooling the flow field variables. Since the variables have dissimilar units,

they non-dimensionalized the variables, scaling by local maxima.

That pooling idea was criticized by Habashi et al. (2000), whose authors argued that the for-

mer idea of the “intersection metric” was likely to produce isotropic grids when anisotropic grids

would do better. In the first of a three part series of papers on the topic, Habashi et al. (2000)

proposed a “Mesh Optimization Methodology” (acronym “MOM”) utilizing a single variable Hes-

sian, evaluated upon the cellular edges of a 2D triangular mesh. Armed with the edge-based error

distribution, the MOM procedure would iteratively apply mixed H-adaptation and R-adaptation to

add, subtract, and move the triangle edges, smoothing the error distribution. The final mesh would

be highly anisotropic, optimally tuned to the chosen flow field variable, following the contours of

shock waves, etc.

In later works,6 the MOM procedure was applied to more advanced CFD problems with both

structured and unstructured 2D meshes. The authors demonstrated remarkable consistency at being

able to recover the same optimized mesh from dissimilar starting points. Also, upon these opti-

mized meshes, dissimilar CFD solution techniques would produce surprisingly similar flow fields.

And typically unstable CFD calculations would become robust, matching the stability of the com-

plex CFD solvers. The discovery highlighted the intertwined relationship between the mesh and

the simulation:

It brings one to question the major effort of the last decade into more refined algo-

rithms, all the while ignoring the impact of the meshes on the numerical solution

(Dompierre et al., 2002).
6(Ait-Ali-Yahia et al., 2002; Dompierre et al., 2002)
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As impressive as the MOM results were, the approach had drawbacks. One documented weak-

ness was the difficulty with extending the procedure to unsteady flows. As the authors point out:

Our adaptation strategy, by being an a posteriori one, cannot predict in advance the

movement of the vortices (Habashi et al., 2000, pg. 741).

In an attempt to extend the MOM to unsteady flow, they manually adjusted a global size parameter

in the program to artificially produce small cells in the appropriate area. While that maneuver did

produce a viable mesh, it hardly solved the bigger conceptual problem, which is that a perfectly

optimized mesh for t = 1 will not be optimal for t = 2, nor will a mesh tuned for variable X

necessarily work for variable Y . Another disadvantage is the complexity of the re-meshing process,

which involves node addition, node subtraction, edge swapping, and repositioning of the nodes.

The strong coupling between the meshing process and the CFD solution is clearly advantageous,

but it would be nice if the process was less complicated. That may be one of the reasons the series

of papers7 did not extend to 3D simulations. Nevertheless, variants of the MOM idea continue to

be explored (now that computer power has increased), even in 3D (as in Frey & Alauzet, 2005).

The Hessian matrix also continues to play a central role in error estimation, even when the target

error metric is not directly related to interpolation (as in Toosi & Larsson, 2017a). So too does

interpolatory error continue to be used, separate from Hessian matrix or the MOM procedure.

A recent and novel example of interpolation driven adaptation can be found in the work of Foti

et al. (2020), which approaches unsteady flow optimized meshing from a unique vantage point, best

described as the merger of video compression and CFD. With a process reminiscent of movie codec

image compression, the CFD procedure employs linear algebra (singular value decomposition and

rank-revealing QR decomposition) to calculate optimal spatiotemporal sampling points for the flow

field’s time history.

Interpolation is not the only criteria that has been used to drive mesh adaptation. Roy (2009),

classifies the other procedures into four categories:

7Anisotropic Mesh Adaptation: Towards User-Independent, Mesh-Independent and Solver-Independent CFD:
(Habashi et al., 2000; Ait-Ali-Yahia et al., 2002; Dompierre et al., 2002).
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• Feature-based methods adapt on the basis of a solution field attribute, such as a gradient or

a pressure value.

• Adjoint-based methods adapt according to an uncertainty estimate propagated backwards.

• Discretization-error-based methods adapt according to the difference between the solutions

of the exact PDE and the discretized PDE. Generally, the true solution isn’t known (otherwise

there would be no need to simulate it), so estimation is used to proxy the discretization error.

• Truncation-error-based methods adapt according to the difference between the exact and

the approximate PDEs (the equations themselves, not the solutions as with discretization-

error-based methods).

Roy reports feature-based adaptation as the most popular approach at the time but notes that it

does not always work. He attributes the failure to lack of mathematical justification. In regards to

the adjoint procedure, he notes interesting results in the literature, but he dismisses the method as

overly complex. The other two methods, he reasons, are related mathematically. In a final analysis

with the Burgers Equation8, he concludes that truncation-error adaptation is the best, explaining

that:

...the truncation error serves as the local source for [the] discretization error transport

equations (Roy, 2009, pg. 19).

In other words, truncation-error is an upstream version of discretization-error. Truncation-error,

coming from omissions in the modeling equations, is the easier quantity to estimate. Discretization-

error, the accumulated inaccuracy at the end of the simulation, is more obviously relevant but diffi-

cult to estimate. Roy’s advice is to target the source of the inaccuracies, choosing truncation-error

as the basis for H-adaptation9.

Fidkowski & Darmofal (2011) express a different opinion of error transport and the adjoint

procedure. They highlight the fundamental difficulty of quantifying the effect of transported error:
8Burgers Equation: (Morton & Mayers, 2005, pg. 105-106)
9For more on the error transport equation, see (Qin et al., 2004).
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For hyperbolic problems, [like Navier-Stokes] the residual and discretization error may

not necessarily be large in certain crucial areas that significantly affect the solution

downstream and the computed outputs [of final engineering interest] (Fidkowski &

Darmofal, 2011, pg. 8).

As evidence, they cite the example of separated flow over an airfoil, pointing out that only the

adjoint method is specifically formulated to quantify the actual importance of the upstream inac-

curacies. The authors provide the definitive review of the adjoint method, starting from its mathe-

matical foundation, progressing to its use with H-adaptation & R-adaptation, moving to key tests,

and concluding with a summary of both its strengths and its weaknesses. The adjoint method is

perhaps best described as a process of reverse engineering to identify the cause of output pertur-

bations. The method assigns upstream blame for the downstream vacillation of any chosen output

parameter δJ. For example, it might determine which parts of the flow field are responsible for the

lift coefficient of a wing. Such knowledge is of immense value for adaptation because it directly

reveals where the simulation’s degrees of freedom ought to be placed for maximum effect. This

strength of the adjoint method is in direct contrast to all other methods of error estimation, which

cannot consider the goal of the simulation in the assessment and are therefore liable to misallocate

resources, needlessly resolving useless parts of the flow while missing the truly important details.

To demonstrate this point, Fidkowski & Darmofal (2011) reference an adaptive RANS simulation

of an EET (“energy efficient transport”) airfoil intended to predict the lift coefficient (originally

from Venditti & Darmofal, 2002, 2003). Whereas adjoint-assisted adaptation was able to match

the experimentally known lift (experiment by Lin & Dominik, 1995), a pure Hessian-based adap-

tation, predicated on Mach number, was unable to do so. The Hessian-based adaptation drove the

simulation to an incorrect answer by allocating too little resolution to the inviscid regions of the

flow field.

The conclusion of (Fidkowski & Darmofal, 2011) is that adjoint adaptation is the most efficient

way to obtain mesh-independent lift, drag, and moment coefficients — at least for CFD simula-

tions of the steady RANS variety. Other researchers have also reported impressive success with
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the adjoint procedure, finding that it can provide reasonable error estimates by which to improve

simulation accuracy. Comparisons against fixed grid approaches indicate that CPU time can be

reduced by orders of magnitude (as demonstrated by Yano & Darmofal, 2012; Zhou et al., 2017).

The mathematical essence of the adjoint method may be gleaned from its defining equation,

the contemplation of which will reveal not only how the adjoint method works, but also why the

procedure is — at least for the present — ill suited for general use with unsteady 3D simulations,

especially turbulent ones.

To demonstrate the unsuitability, let J(u) represent a target output quantity of interest, a func-

tion of flow field u. Assume that u satisfies the residual equation R(u) = 0, as would be the case

in a steady-state CFD problem. The defining equation for the adjoint is

δJ(u) ≡ ψT δR(u).

Field ψ is the desirable adjoint vector. It must be solved by an inversion of the simulation, via the

discrete adjoint equation: (
∂R
∂u

)T

ψ +

(
∂J
∂u

)T

= 0,

The disadvantage begins with the procurement of ψ, a computational feat in its own right. Also

troublesome is the nature of the coupling between ψ and u. When the math is extended to time

dependent flows, not only does the adjoint procedure require the final version of u, it also requires

the entire time history (Fidkowski & Darmofal, 2011). Memory space, potentially massive, is a

prerequisite. The adjoint equations must be solved in reverse time, from the simulation’s end to its

start. However, for the most accurate result, it’s not enough to replay the timesteps like a movie

in reverse, frame-by-frame. The mesh actually needs to be adapted between the frames, so the

trip backward through u’s history will not necessarily coincide with the trip forward (Fidkowski,

2017).

Adaptation with the adjoint is computationally expensive, but it is still tractable in some use-

ful cases, for instance when the CFD problem can be reduced to two dimensions (as in Wang
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& Mavriplis, 2009), or the CFD problem can be made time independent (as in Park, 2004), or

the effect of viscosity can be ignored (as in Alauzet & Loseille, 2016). Turbulent simulation via

RANS is amenable (as in Hartmann et al., 2011) because RANS is inherently time independent.

But high fidelity unsteady turbulent simulation via LES—simultaneously 3D, time dependent, and

viscous—is not compatible with adjoint adaptation at this time. The computational cost is pro-

hibitively high. Even worse, the adjoint math has problems with unsteady turbulence. The chaos

threatens the mathematical integrity of the procedure because the instantaneous flow field quanti-

ties are so irregular as to be mathematically unsound (shown by Wang et al., 2014).

The chaos, it might be argued, ought not to be insurmountable because the engineer is likely

only interested in time averaged quantities. There has been work in that direction (by Blonigan

et al., 2018), smoothing the chaos via a procedure known as Least Squares Shadowing. However,

the statistics require many timesteps to stabilize, so the price is formidable. Overall and for the

present, output adjoint-based mesh adaptation is impractical for LES. That is problematic because

of the need for high-fidelity turbulence simulation. To quote NASA’s CFD Vision 2030 report:

Perhaps the single, most critical area in CFD simulation capability that will remain a

pacing item by 2030 in the analysis and design of aerospace systems is the ability to

adequately predict viscous turbulent flows with possible boundary layer transition and

flow separation present (Slotnick et al., 2014, pg. 12).

Alauzet & Loseille (2016) echo this same unmet need in their review paper A Decade of

Progress on Anisotropic Mesh Adaptation for Computational Fluid Dynamics. They report that

most existing adaptation algorithms are restricted to steady, inviscid flow fields. The authors ad-

dress the problem of unsteady flow by proposing a time-extended version of the adjoint procedure,

executed periodically at fixed points along the simulated timeline. They conclude by highlighting

the unsolved challenges presented by: 1) viscous flow, 2) boundary layer flow, and 3) turbulence.

With adjoint adaptation unavailable for LES, physics based adaptation criteria have been de-

veloped instead. Adaptation methods in the physics category utilize physical attributes of the

simulated turbulence to judge the realism and veracity of the CFD simulation. A physics based
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method might, for example, compare turbulent length scales, or the balance of energy, or the size

of viscosity subcomponents, or the statistical correlation between nearby points in space.10 Celik

et al. (2005), the inventors of the LES quality index LES IQ, recommend that 80% of the turbu-

lent kinetic energy be resolved. Often, the physics-based adaptation strategy will utilize a quantity

comparison between a resolved and an estimated element of the turbulence, above and below the

threshold of the subgrid scale model.

Benard et al. (2016) takes the subgrid approach while also incorporating the advice of Celik

et al.. His proposal is for two-step adaptation, first to resolve the mean flow, second to resolve

the turbulence to the 80% threshold. The first step utilizes an interpolation-based procedure with a

Hessian matrix. The second step uses a physics based procedure, comparing unresolved to resolved

turbulent kinetic energy. Of course, the amount of unresolved kinetic energy is not actually a

known quantity, but it is circuitously estimated through the combination of a subgrid scale model

and a theoretical math relationship connecting the subgrid model’s predicted eddy viscosity and

the LES algorithm’s filter width. For Benard et al. the filter width was assumed equal to the mesh

cell size, justifying the decision to base mesh adaptation upon it.

Slightly earlier than Benard et al., the approach proposed by Antepara et al. (2015) aims at

roughly the same physics target. Instead of kinetic energy, velocity magnitude serves as the metric,

specifically the magnitude of the residual velocity after application of a...

...non-uniform Laplace filter based on a Gaussian filter, [normalized], [conservative],

and ... self-adjoint (Antepara et al., 2015).

Breaking with the pattern, Abbà et al. (2020) uses a structure function that is ”widely used

to study turbulence statistics and ... known to be directly related to subgrid stresses”: Di, j =

〈∆ui∆u j〉 , with u a directional component of velocity and ∆u ≡ [u(®x + ®r) − u(®x)]. Insufficient

resolution is signaled by abnormally large magnitudes of the Di, j values, judged by comparison

against corresponding Di, j values from isotropic flow.

10For examples, see Benard et al. (2016) and references therein.
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1.3 The Goals of this Dissertation

Many recent attempts to increase the resolution of LES have focused upon P-adaptation: (Naddei

et al., 2019; Abbà et al., 2020; Wang et al., 2020). However, this dissertation focuses upon H-

adaptation, with the claim that H-adaptation alone has more potential than P-adaptation alone.

With a poor mesh, several iterations of pure H-adaptation can produce a reasonable solution, while

unassisted P-adaptation may fail at flow field discontinuities. The phenomenon exists because H-

adaptation provides a direct boost to the spatial sampling, which is needed in the discontinuous

situation.

P-adaptation provides benefit in other contexts by enhancing the dexterity of the modeling

equations. Both H-adaptation and P-adaptation have their place within the larger goal to improve

the quality of the CFD simulation. A suitably powerful CFD computer program can actually

switch between H-adaptation and P-adaptation at the push of a button — provided there exists an

error estimator algorithm to provide guidance. So in the big picture, the error estimator is more

important than any difference between P & H adaptation. So although the focus of this dissertation

is upon H-adaptation, the aim is to better the error estimators.

As indicated by NASA’s CFD Vision 2030 report, there is a growing need for predictive mod-

eling of high-fidelity turbulence. That need motivates the concentrated focus of this dissertation,

not just upon error estimators, but turbulent-capable error estimators, specifically LES capable

ones — the simpler the better, given the already enormous computational costs associated with the

calculation.

Besides the error estimators, it is additionally the intent of this dissertation to provide both

blueprint and high quality implementation of the computational infrastructure to actually do 3D

unstructured mesh adaption for industrial scale modeling problems of unsteady turbulence.
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1.4 Structure of this Dissertation

Chapter 2 covers the mathematical underpinnings of all algorithms in this dissertation, starting with

the CFD numerical scheme and extending through the error estimators featured in this work. The

CFD scheme is FR/CPR, a high-order discontinuous procedure that solves the unsteady Navier-

Stokes equations. Four error indicators are presented, the first three of which are considered capa-

ble enough for detailed testing.

1. unStdE, an estimator based on the high-order unsteady residual operator and inspired by the

residual-based adaptation criterion used for steady flow adaptation. In the terminology of

(Roy, 2009), this error estimator would be classified as a truncation-error method.

2. smthE, an estimator based on local geometric smoothness of the flow field, inspired by prior

work in shock capturing (Persson & Peraire, 2006) and error estimation for non-turbulent

flow (Naddei et al., 2019). This estimator would be classified as a feature-based approach.

3. T.L.errE, a physics based estimator translated to the FR/CPR simulation methodology from

the work of Toosi & Larsson (2017a). This error indicator is predicated on sub-grid energy

density.

4. T.L.errE, a simplified version of T.L.errE, less capable but far easier to compute.

Chapter 3 blueprints both algorithms and computer program architecture to produce error-

adapted 3D unstructured meshes from an unsteady fluid simulation. The proposed architecture

hooks into a highly parallelized implementation of FR/CPR for execution in tandem.

Chapter 4 numerically tests the proposed error estimators, implemented per the blueprints of

Chapter 3. Well-known benchmark LES simulations of the T106 turbine blade (Hillewaert & JS.,

2016, 2018) are used to compare and contrast the adaptation performance. Simulation accuracy is

assessed by flow field comparison against DNS (Alhawwary & Wang, 2019).

Chapter 5 provides a glimpse of the future of error-guided mesh adaptation, discussing the

burgeoning research area combining Machine Learning with CFD mesh adaptation. This chapter
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completes the joint research project first reported upon by Phommachanh (2021), which sought to

trial the artificial intelligence of a neural network in place of an error estimator.

Finally, Chapter 6 summarizes and presents areas for future study.
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Chapter 2

Numerical Methods1

Navier-Stokes is the system of partial differential equations embodying the physics of fluid sub-

stance. No general procedure exists to solve Navier-Stokes analytically, but the equations can be

approached numerically, discretized, and cast into a form amenable to computer calculation. CFD

is the numerical art of actuating the Navier-Stokes calculation to obtain a predictive flow field.

This chapter describes the CFD calculation used in this research. It also describes the math-

ematics of each proposed error estimator algorithm for trial and testing for boosting simulation

resolution by subdividing the simulation’s supporting mesh.

2.1 FR/CPR: The Discretization of Navier-Stokes

Navier-Stokes depicts the conservation of mass, momentum, and energy for the fluid medium.

Let Q denote the conservative flow variables within a differential volume of space. That is, let

Q be the column matrix [ρ, ®m, E]T, with ρ representing mass (per unit volume), ®m representing

momentum (per unit volume), and E representing total energy (per unit volume). Let function ®F

denote the flux vector, i.e. the peripheral exchange of fluid over the boundary of the differential

volume, both its convective and its dissipative parts (ref. Hirsch, 2007). With the defined symbols,

the Navier-Stokes equations, written in conservative form, are expressed thus:

1This chapter extends the analysis from:

• Ims, J. & Wang, Z. J. (2022). A comparison of three error indicators for adaptive high-order large eddy
simulation. In AIAA SciTech 2022 Forum (pp. 1201)

• Ims, J. & Wang, Z. J. (under review). A comparison of three error indicators for adaptive high-order large eddy
simulation. (submitted to) Journal of Computational Physics.
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∂Q
∂t

= −∇ · ®F(Q,∇Q). (2.1)

In words: Absent any source, the given quantity of fluid will only change in the amount it flows

into or out of the region.

There is another way to mathematically express the same truth, which will be more useful for

upcoming calculation: ˆ
V

(
∂Q
∂t

+ ∇ · ®F(Q,∇Q)
)

dΩ = 0. (2.2)

To solve Navier-Stokes, this research employs the FR/CPR method, short for Flux Recon-

struction or Correction Procedure via Reconstruction. The method was conceptualized by Huynh

(2007), with further development by Huynh et al. (2014) and Wang & Huynh (2016). FR/CPR

begins with the Navier-Stokes in the form of equation (2.2), discretizing the equation in a manner

similar to the Discontinuous Galerkin method (Bassi et al., 2006).

The first step is to define the volume elements, represented by symbol V . For that task, a tessel-

lated grid is established, covering the domain. The integral of equation (2.2) is then reinterpreted

to apply to each cell individually upon that mesh. In so doing, the integrand is multiplied by a

test function and a corrective field is added to counteract modeling inaccuracy at the cell-to-cell

interface. The result is:

ˆ
Vi

W
(
∂Q
∂t

+ ∇ · ®F(Q,∇Q) + δ

)
dΩ = 0, (2.3)

where Vi is now the volume of a single cell (index i), W is the test function — arbitrary beyond a

requirement that it be zero outside Vi — and δ is the spatial correction field, defined by the relation:

ˆ
Vi

Wδ dΩ =

˛
∂Vi

W
(
®Fcom − ®F(Q,∇Q)

)
· d®S. (2.4)

®Fcom is the “common flux,” the virtual flux that exists on the discontinuous border between neigh-

boring cells. ®Fcom is computable via a Riemann solver (see for example Roe, 1981).
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Although the correction field δ is introduced in (2.3) as a volume field, equation (2.4) shows

that it is more appropriate to consider it a source term upon the boundary ∂Vi. It arises from (and

corrects for) the mismatch between ®F inside the cell and the jump discontinuity ®Fcom surrounding

the cell. Another way to interpret δ is as a mathematical anchor for the integrand at the cell-to-

cell interface; as such, it defines a unique, single-valued field where there would otherwise be an

ambiguous function with multiple values.

The next step will be to remove the integral of equation (2.3), leaving a system of per-cell equa-

tions that relate the internal action of Q to the peripheral action of ®F. However, before proceeding

further, it’s helpful to explain the overall strategy of FR/CPR. The goal is to model Q in a per-cell

manner, via polynomials. Every cell is to receive a unique modeling polynomial, and every cell

is to equilibrate its polynomial among the neighbors, working through the boundary fluxes ®F. In-

evitably, there will be discontinuities between neighbors, but the discontinuities are to be absorbed

by correction field δ and forced back upon Q so that the individual modeling polynomials will

coordinate. With the strategy established, we may continue.

From equation (2.3), the volume integral is stripped away via judicious choice of the test func-

tion W and via the expansion of the integrand terms as polynomials. A system of equations re-

mains, which relates discrete values of the polynomials on a set of nodal points ( j) within the cell

(i) that comprises volume Vi

∂Qp

∂t

����
i, j

+ x
p

[
∇ · ®F

]
i, j

+ δi, j = 0. (2.5)

In this final version of the Navier-Stokes equations, subscript p denotes the polynomial order.

Operator x
p

[
·

]
denotes projection onto the abstract space of the modeling polynomials.

The nodal values of the correction field δi, j may be obtained by discretizing equation (2.4), us-

ing a procedure similar to that just employed for Q. Step 1 introduces an interpolatory polynomial

along the cell boundary to model the normal component of the flux jump

(
®Fcom − ®F

)
· n̂. (2.6)
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The action of Step 1 will allow the surface integral to be expanded. Meanwhile, the volume integral

can be expanded as Step 2, using the polynomial representation of δ. Step 3 works out the integrals,

resulting in the following general expression for the discretized correction field for a linear simplex

element:

δi, j =
1
|Vi |

∑
f ∈∂Vi

∑
l

α j, f ,l F n
f ,l S f . (2.7)

As before, Vi represents cell volume. The ‘α’s are “lifting coefficients,” independent of the flow

field. S represents boundary face surface area. F n represents the per-node & per-face value of the

modeling polynomial for the normal flux jump (equation (2.6)). Index l cycles through the chosen

interpolation flux points, and index f cycles through the set of boundary faces.

There are a few additional details unique to the formulation of FR/CPR used in this research.

For viscous flow simulations, the flux term in equation (2.5) has a dependence on ∇Qp. The com-

putation of that gradient uses the Bassi-Rebay 2 scheme (Bassi & Rebay, 2000). For numerical

stabilization of severely under resolved areas of the flow field, use is made of an accuracy pre-

serving limiter (Li & Wang, 2017). Time integration is possible via both an explicit or an implicit

scheme. When explicit, the scheme is the three stage SSP Runge-Kutta (Shu, 1988). When im-

plicit, the scheme is the A-stable, second-order accurate, BDF2OPT procedure (Vatsa et al., 2010).

Finally, when the CFD solver is being used for Large Eddy Simulation (LES) the implicit approach

is taken. That is, the numerical scheme is used as is, without a subgrid scale model.

2.2 The Error Estimators

2.2.1 The Unsteady Residual Indicator

Error indicator unStdE is inspired by the “residual-based” error indicator from Gao & Wang (2011).

The original error indicator was used for two-dimensional non-turbulent flow problems. This work

extends and adapts the indicator for use with three dimensional LES.

“Error” is defined as the difference in resolution afforded by a +1 order increase in the sim-
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ulation’s modeling polynomial. Specifically, it is the difference
(
∂Qp+1
∂t −

∂Qp

∂t

)
, where Qp is the

per-cell modeling polynomial of the flow field from equation (2.5). The motivation for such a

definition springs from the observation that equation (2.5) — the equation that the fluid simulation

actually solves — is but an approximation of the original physics equation (2.1). Likewise, Qp

is only an approximate (and local) imitation of the true flow field Q. Presumably, this approxi-

mation can be improved by using a higher order modeling polynomial, with its extra degrees of

freedom better mimicking the undulations of the flow. That being the case, the difference between

a (p + 1)st-order approximation and the original pth-order approximation can presumably gauge

how far from the original Qp the true flow field was. But it is not the plain terms of Qp and Qp+1

that appear in the error formula; it is their time derivatives. A derivation will show why.

Before proceeding, it’s instructive to pause and anticipate why this particular error definition

may be expected to do well at driving autonomous mesh refinement within the context of FR/CPR.

In this type of simulation, spatial resolution is jointly set by the polynomial order and the cell

tessellation density. An increase to either will boost spatial resolution by increasing the number

and density of sampling points. Since a polynomial order increase (P-refinement) will act similarly

to a cell division (H-refinement), it can be expected that an error indicator based on the former will

serve well for making judgments about the latter.

The derivation of unStdE begins with equation (2.5), the discretized Navier-Stokes equation.

Here it is again, rearranged to a form that will be useful to our purpose.

∂Qp

∂t

����
i, j

= Res
p

(
Qp,Q

neighbors
p

)����
i, j

(2.8)

Res( · ) is the “residual operator.” It is the sum of the boundary flux terms and the spatial cor-

rection field, both from the original equation. The residual operator will be the primary focus of

further calculations, necessitating simplification of its notation. Parameters Qp and Qneighbors
p will
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be combined into the joint symbol
{
Qp

}
.

Res
p

(
Qp,Q

neighbors
p

)
=⇒ Res

p

( {
Qp

} )
The next step in the derivation is to consider the quantity ( dQp+1 − dQp), i.e., the differential

“error” that accumulates during a single tick of the simulation’s clock. This is the parent quantity

giving rise to the error estimate ε we are after.

d( error ) ≡
(

dQp+1 − dQp
)

=

(
∂Qp+1

∂t
−
∂Qp

∂t

)
dt

=

(
Res
p+1

( {
Qp+1

} )
− Res

p

( {
Qp

} ) )
dt

= ε dt.

(2.9)

As can be seen from (2.9), the quantity ε is directly proportional to the accumulating error at

each “tick” of the simulation’s clock, with the proportionality constant being dt. In other words, ε

is the time derivative of the polynomial difference, or, equivalently, the error generation rate. The

calculation of ε can be approximated as:

εi, j ≈

{
Res
p+1

(
x

p+1

[ {
Qp

} ] )
−

x
p+1

[
Res

p

( {
Qp

} ) ]}
i, j

. (2.10)

Operator x
·

[
·

]
denotes projection onto the polynomial space (P) with the subscripted order. In-

dices (i, j) number the cells (i) and their polynomial interpolation nodes ( j). In words, the calcula-

tion procedure is to:

1. Project Qp to space Pp+1 and apply the FR/CPR residual calculation.

2. Apply the FR/CPR residual calculation to Qp. Then project the result to space Pp+1.

3. Do the final subtraction in space Pp+1.
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Like Qp+1, the error quantity εi, j is a multidimensional object within the Pp+1 piecewise poly-

nomial space. It spatially varies across each cell i, attaining a different value at each interpolation

node j. For it to become useful as a mesh refinement flag, the variation must be condensed down

to a single number per cell. The flattening approach is to volume-average within each cell, using

numerical quadrature.

Ei =

∑
j |εi, j |Vi; j∑

j Vi; j
≈

˝
Vi
|εi | dVi˝

Vi
dVi

. (2.11)

Thus far, Ei is a multi-value object, with one dimension corresponding to each of the original

conservative flow field variables within Q. That is, E is the column matrix [Eρ, E®m, EE ]
T. Any one

of these ‘E’s could reasonably be selected to control mesh refinement, but since the variables carry

dissimilar information, it is undesirable to select one over the other, so the three are blended. Each

one is normalized, made unitless via division of its global mean across the flow domain. Then the

‘E’s are combined in a three-way average.

At the end, the time-average is computed, 〈 · 〉 , collapsing the temporal variation of the error

to a single number per cell.

Thus, the final formula for unStdE is

unStdEi ≡
1
3
·

〈
Eρ; i

Eρ

+
‖E®m; i‖

‖E®m‖
+
EE; i

EE

〉
(2.12)

2.2.2 The Smoothness Indicator

Indicator smthE derives from a shock-capturing algorithm of the same name (Persson & Peraire,

2006), originally intended to identify flow field regions at risk of triggering solver divergence.

The repurposed algorithm now goes by a variety of names in the literature. Naddei, in (Naddei

et al., 2019), dubs it the “spectral decay indicator” (SED). Testing its capabilities on steady flow

simulations, Naddei concluded that its performance and relative simplicity make it a potentially

worthwhile option to explore for use with unsteady or even turbulent simulations.

The theoretical motivation to use smthE for autonomous mesh refinement comes from the fact
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that this indicator is purpose-built to find un-smooth regions of the flow field, areas where the

gradient is sharp and under-resolved, areas where the spatial change is too rapid for the solver to

track. Knowing this, we may anticipate that smthE will seek to apply mesh refinement in the areas

where flow conditions change dramatically over short distances, examples being the boundary

layers above friction generating surfaces, the vortex tangle inside turbulent wakes, and the lines

along shocks. All seem like reasonable areas to target if the goal is to improve a simulation’s

prediction of lift, drag, and friction.

The derivation of our version of this indicator begins with Qp, the polynomial approximation of

the flow field from the discretized Navier-Stokes equation, equation (2.5). The goal is to evaluate

the amount of spatial fluctuation within Qp upon a change in the local spatial resolution. For that

task, Qp is projected down one polynomial order, obtaining Qp−1. Then Qp−1 differenced relative

to Qp, squared to produce a positive, error-like quantity.

εi, j =
(Qp −Qp−1)

2

‖Qp‖
2

�������
i, j

≡


(ρp − ρp−1)

2

ρ2
p

( ®mp − ®mp−1) · ( ®mp − ®mp−1)

‖ ®mp‖
2

(Ep − Ep−1)
2

E2
p

 i, j

(2.13)

As usual, subscripts i and j are per-cell, per-interpolation node indices, respectively.

Qp and Qp−1 are within different polynomial spaces, so properly speaking, they do not have

coincident interpolation nodes j and cannot be directly subtracted. That difficulty is overcome by

projecting Qp−1 back to polynomial space Pp, so subtractions within (2.13) should be interpreted

as

Qp −Qp−1 =⇒ Qp − x
p

[
x

p−1

[
Qp

] ]
.

As with Qp, quantity εi, j is a multidimensional object, with one component corresponding to

each of the original conservative flow field variables. Any single component could legitimately be

selected as the decision variable for mesh refinement. In this work, we combine the influence of
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all components in a three-way average.

ε̃i, j =
1
3
(ερ; i, j + ε ®m; i, j + εE; i, j) (2.14)

Like Qp, quantity ε̃i, j possesses both spatial variation across each cell and temporal variation

over the simulation’s duration. To flatten, we volume-average within each cell and time-average

over the duration, obtaining a single number per cell in the end.

Ei =

∑
j ε̃i, jVi; j∑

j Vi; j
≈

˝
Vi
ε̃i dVi˝

Vi
dVi

=⇒ smthEi ≡ 〈Ei〉 (2.15)

2.2.3 The Toosi-Larson Indicator

T.L.errE is our variant of an anisotropic grid adaptation scheme developed by Toosi and Larson,

specifically designed for LES (Toosi & Larsson, 2017b,a). The motivating philosophy for this

error indicator differs significantly from the prior two indicators we’ve discussed. The prior two

were founded upon measures of sensitivity to a local change in the resolution of the flow field.

In contrast, T.L.errE is based upon a measure of turbulent kinetic energy at the smallest resolved

length scale. The idea is that an energy buildup at the small scale limit signifies the presence of

under-resolved turbulence. Toosi and Larson formulated their original error indicator for Cartesian

coordinates. Since FR/CPR simulation operates in curvilinear coordinates, it’s necessary to modify

the error formula.

The precursor formula for this error indicator, as presented Toosi and Larson (Toosi & Larsson,

2017b,a), is


®u ∗ = −

∆2
n

4
n̂T( ∇∇T®u )n̂ (2.16a)

A =
√
〈®u ∗ · ®u ∗〉 (2.16b)

Sub-equation (2.16a) is a directional high-pass differential filter of the velocity field ®u, in the di-

22



Figure 2.1: A curved cell with computational coordinates (η, ξ).

rection specified by unit normal n̂, with length scale ∆n. Sub-equation (2.16b) is the error value A,

a proxy of the average, small-scale, turbulent kinetic energy that lies along the filter direction. The

angle brackets 〈 · 〉 represent an average over both space and time. The doubly projected Hessian

operator n̂T( ∇∇T )n̂ can equivalently be written as
∑3

k=1
∑3

l=1 nknl
∂2
/∂xk∂xl , which perhaps better

illustrates its mathematical meaning: a directional second derivative in the direction of vector n̂.

To use this error indicator, one first has to choose a filter direction. Toosi & Larsson (2017b,a)

discuss this choice, recommending that it be based on the type of mesh and the method of refine-

ment. For this work, the mesh is of type unstructured, and cell splitting is the method of refine-

ment. The corresponding recommendation is to filter in the direction perpendicular to each cell cut

line being evaluated, making quantity A “point” in every direction that spatial degrees-of-freedom

could potentially be added. This guidance is given in the context of a Cartesian coordinate system

with the implicit assumption that the mesh is linear, but the meshes here are nonlinear, so it is at

this juncture that the adjustments begin.

Figure 2.1 depicts a generic high-order curvilinear cell, drawn with two dimensions for clarity.

The cell is curved, parameterized by computational coordinates (η, ξ). If split, the cut lines will be

perpendicular to the coordinate curves of (η, ξ), so it is along these curves that we evidently ought

to filter. The challenge is how to modify formula (2.16) to best accomplish that. There are two

approaches we could adopt. Approach 1 is to apply a coordinate transformation to the derivatives of

the Hessian operator, mapping the original equation from the physical space to the computational

space, preserving it exactly. Approach 2 is to apply physical reasoning to the problem and seek a

new formula, directly within computational space itself. Approach 2 is the one we will ultimately
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adopt even though Approach 1 seems, at first glance, to be the superior choice. To show why

Approach 2 is better, we will first discuss Approach 1.

Referring to Figure 2.1 for guidance, we seek the second directional derivative in the direc-

tion of ξ̂, a (normalized) basis vector in computational space. We begin by calculating the first

directional derivative, using symbol ®x to represent the position vector in Cartesian space.

Dξ̂(®u) = ∇®u · ξ̂ =
∂ ®u
∂ ®x
·

∂ ®x/∂ξ

∂ ®x/∂ξ

 =





 ∂ ®x∂ξ 



−1 (
∂ ®u
∂ ®x
·
∂ ®x
∂ξ

)
=





 ∂ ®x∂ξ 



−1
∂ ®u
∂ξ

Therefore

=⇒ Dξ̂(®u) = s−1
ξ

∂ ®u
∂ξ

, with sξ ≡




 ∂ ®x∂ξ 



 (2.17)

Thus, the first directional derivative equals the partial derivative of ®u with respect to coordinate ξ,

multiplied by a scale factor. The result is similar for the second directional derivative.

D2
ξ̂
(®u) = Dξ̂

(
s−1
ξ

∂ ®u
∂ξ

)
= s−1

ξ

∂

∂ξ

(
s−1
ξ

∂ ®u
∂ξ

)
= s−1

ξ

(
−s−2

ξ

∂sξ
∂ξ

∂ ®u
∂ξ

+ s−1
ξ

∂2®u
∂ξ2

)
= −s−2

ξ

∂sξ
∂ξ

(
s−1
ξ

∂ ®u
∂ξ

)
+ s−2

ξ

∂2®u
∂ξ2 = −s−2

ξ

∂sξ
∂ξ
Dξ̂(®u) + s−2

ξ

∂2®u
∂ξ2

= s−2
ξ

(
−
∂sξ
∂ξ
Dξ̂(®u) +

∂2®u
∂ξ2

)
Therefore

=⇒ D2
ξ̂
(®u) = s−2

ξ

(
−
∂sξ
∂ξ
Dξ̂(®u) +

∂2®u
∂ξ2

)
(2.18)

The second directional derivative is the sum of two terms. The first accounts for the variation

due to fluctuation in the length scale of coordinate ξ (as seen from physical space). The second

accounts for variation in the value of ®u itself. As before, there is a leading scale factor.

The length scale is going to be more or less constant unless the mesh is unevenly curved, so

in equation (2.18), we look past the first term to make a key observation about the second. The
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second term, ∂
2 ®u/∂ξ2 , is precisely the quantity that we would have calculated had we simply defined

computational space as home base from the beginning.

As it turns out, computational space can legitimately be interpreted as the native coordinate

system of the simulation. Even though the flow field physics may play out in physical space,

the modeling polynomials themselves inhabit computational space. Consequently, computational

space is a perfectly suitable location to apply filtering for error estimation. With that observation,

we switch approaches. Instead of translating (2.16) from physical space to computational space,

we simply start there, declaring the error formula to be



®u =
®m
ρ

(2.19a)

®u ∗ξ = −
h2
ξ

4
∂2®u
∂ξ2 (2.19b)

Aξ =

√〈
®u ∗ξ · ®u

∗
ξ

〉
(2.19c)

For the filter width ∆n, we choose hξ , the distance — in computational space — between

successive polynomial interpolation nodes. The nodes are uniformly distributed across the width of

the cell, and that width — in computational space — is constant and always equal to 1. Therefore,

hξ is defined to be 1/(p+1), where p is the order of the flow field modeling polynomial. Of course,

in physical space, the cells are not evenly sized, so the chosen hξ will mean that ∆n will also not

be evenly sized. The filter width will physically vary per cell, in accordance with cell size and the

amount by which the computational coordinate is stretched due to local curvature. Said another

way, ∆n will self adjust to the local resolution in physical space.

If you recall the definition of the Q from Section 2.1 ( i.e. Q ≡ [ρ, ®m, E]T ), you will see that ®u

is not among the variables actually being tracked by the simulation. That’s not a problem because

®u is calculatable from the variables that are being tracked. Actually, instead of ®u, the calculation
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procedure favored here is to jump directly to ∂2 ®u
∂x2 via the chain rule:

∂ ®u2

∂ξ2 =
1
ρ

∂2 ®m
∂ξ2 −

1
ρ2

(
2
∂ ®m
∂ξ

∂ρ

∂ξ
+ ®m

∂2ρ

∂ξ2

)
+

2 ®m
ρ3

(
∂ρ

∂ξ

)2

(2.20)

The conservative variable derivatives are computed on a cell-by-cell basis straight from the FR/CPR

modeling polynomials of Q. Section 2.1 also informs us that the modeling polynomials are dis-

continuous at the periphery of each cell, where they intersect and clash with the polynomials of

neighbor cells. Because of the discontinuities, the derivatives within equation (2.20) should tech-

nically require correction terms at the periphery of each cell. However, in this dissertation, no

correction terms are applied. The decision saves a bit of computational effort and does not pro-

duce any noticeable deleterious effect. Something else worth noting is that equation (2.20) imparts

non-linearity to ∂ ®u2

∂ξ2 beyond whatever non-linearity the conservative variables themselves may con-

tribute. Thus, even when Q is linearly modeled at p = 1, the second derivative of velocity will still

exhibit a high-order character. Through the velocity factor, so too will T.L.errE.

The last piece of (2.19) that needs explanation is the angle brackets. The brackets represent

a double average, first spatial over the volume of the cell, second temporal over the simulation’s

timeline.

The final error metric is obtained by cycling over the computational coordinate directions,

treating subscript ξ as an index, to select the biggest error for the cell. Symbolically, the calculation

is:

• Point-wise error, per cell (i), per node ( j), per coordinate direction (ξ):

εξ; i, j = A2
ξ = ®u ∗ξ; i, j · ®u

∗
ξ; i, j
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• Average directional error, per cell (i), per coordinate (ξ):

Eξ; i =

∑
j εξ; i, jVi; j∑

j Vi; j
≈

˝
Vi
εξ; i dVi˝

Vi
dVi

• Final error, per cell (i):

T.L.errEi ≡

√
max
ξ

( 〈
Eξ; i

〉 )
(2.21)

2.2.4 The Average Toosi-Larson Indicator

The Average Toosi-Larson Indicator, T.L.errE, is a modified version of T.L.errE, differing only in

the position of the time average operator 〈 · 〉 . While the calculation of T.L.errE ends with the time

average, the calculation of T.L.errE begins with it, using 〈®u〉 as its velocity field rather than ®u. Since

the calculation feeds off time averaged velocity, there is no need for additional time averaging at

the end.

The benefit of T.L.errE is a reduction in the computational effort. 〈®u〉 is a commonly desired

output variable, so it is typically available from the simulation for free. With 〈®u〉 in hand, there are

no further time dependent parts of T.L.errE, so its entire calculation may be done in post-processing,

with a single step procedure. The defining equations for this error estimator are as follows.

• Starting point:


®a ∗ξ = −

h2
ξ

4
∂2 〈®u〉
∂ξ2 (2.22a)

Bξ =
√
®a ∗ξ · ®a

∗
ξ (2.22b)

• Pointwise error, per cell (i), per node ( j), per coordinate direction (ξ):

εξ; i, j = B2
ξ = ®a ∗ξ; i, j · ®a

∗
ξ; i, j (2.23)
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• Average directional error, per cell (i), per coordinate (ξ):

Eξ; i =

∑
j εξ; i, jVi; j∑

j Vi; j
≈

˝
Vi
εξ; i dVi˝

Vi
dVi

• Final error, per cell (i):

T.L.errEi ≡

√
max
ξ

(
Eξ; i

)
Since 〈 · 〉 is a linear operator that commutes with ∂2

∂ξ2 , it may be tempting to think that T.L.errE

is nothing but a clever way to calculate T.L.errE and that the two similar error estimators will be

equivalent. However, no such equivalency exists because operator 〈 · 〉 does not commute with the

dot operator in equation (2.19c).

An unfortunate consequence of the differing position of 〈 · 〉 is that T.L.errE has less infor-

mational access to the velocity jitter of the underlying turbulence than its counterpart estimator

T.L.errE. While T.L.errE will witnesses the root-mean-square of ®u ∗ξ , estimator T.L.errE will only ob-

serve a much smoother square-of-the-average. Therefore, it’s possible to predict that T.L.errE will

be less adept at detecting temporally unstable parts of the flow field. It may still have a chance to

detect areas of high spatial change.

Error estimator T.L.errE was a late addition to the error estimator lineup, and due to the mathe-

matically lower expectations for its success, it was tested apart from the main three error estimators

smthE, unStdE, and T.L.errE. Consequently, T.L.errE will not be discussed by Chapter 4, covering

numerical tests. T.L.errE will be discussed by Chapter 5, in the context of a machine learning

experiment that incorporated it.

2.3 Mesh Splitting

To ensure that the new mesh will have a smooth progression of cell size between refinement zones,

we impose a few constraints on the cell marking process. First, there is a one-level size constraint;
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any doubly split cell will force a mark upon any un-split neighbor cells. Second, there is a clumping

constraint; any cell that is at least 50% flanked by marked neighbors will automatically get marked

too, regardless of error value. These extra rules are applied iteratively until the proposed cell

markings cease to change in response.
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Chapter 3

Methodology1

The error indicators have a common operating procedure. Built to run in parallel with an FR/CPR

flow solver, they accumulate a per-cell error quantity over the course of a simulation, exporting it

at the end. In post-processing, the errors may be used by a separate algorithm to refine the mesh.

3.1 Procedure for Adaptive Mesh Refinement

Since the guiding error values are natively per-cell quantities, the most straightforward refinement

approach is to cleave cells into parts. The process begins, naturally enough, by ranking the cells

by error magnitude, highest to lowest. Next, a preset fraction of the topmost cells are flagged for

cleavage. Were the process to stop here, the flagged cells would not necessarily yield a smooth

progression of size between refinement zones. A smooth size progression is desirable for the flow

solver, so after the flagging step, additional processing is done to smooth the refinement list. Two

rules are applied iteratively, until the flagged cell list stabilizes.

Rule 1: Marked cells in close proximity must clump together. When an un-flagged cell is

more than 50% surrounded by flagged cells, it becomes flagged too.

Rule 2: No more than a one-level size difference is permitted between neighbor cells.

When a size jump is discovered, the coarser neighbor is flagged for splitting.

1Mesh tooling from this chapter contributed to:

• Jia, F., Ims, J., Wang, Z. J., Kopriva, J., & Laskowski, G. M. (2018). An evaluation of a commercial and a high
order FR/CPR flow solvers for industrial large eddy simulation. In 2018 AIAA Aerospace Sciences Meeting
(pp. 0827)

• Jia, F., Ims, J., Wang, Z., Kopriva, J., & Laskowski, G. M. (2019). Evaluation of second-and high-order solvers
in wall-resolved large-eddy simulation. AIAA Journal, 57(4), 1636–1648.
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Figure 3.1: Illustration of a forbidden 2-level size jump.

Algorithm Box 1 expresses the full process. The algorithm exports a list of cells that are to be

subdivided. Figure 3.1 illustrates a 2-level size jump, forbidden by Rule 2.

Applying the exported list of cell subdivisions is conceptually straightforward, but the process

has one tricky element: treatment of the domain boundaries. Ideally, the subdivision of a boundary

surface will add geometric detail to the mesh. However, this is easier said than done because the

extra geometry information has to come from somewhere other than the mesh itself.

Of course, when the shape of the domain is composed of simple geometric shapes, it is possible

to hard code in this information, but in a practical use scenario with 3D meshes, this is no longer

possible to do. In that case, the source of information must be the original CAD files. Use of

the CAD files adds considerably complexity, transforming what was simple cell subdivision into

localized remeshing. Moreover, in a production CFD environment, original CAD files are not

always available since the CFD solver doesn’t require them.

Without CAD, the mesh surface cannot be enhanced, but its existing shape can still be pre-

served. Shape preservation is the minimum requirement that a practical mesh subdivider must

meet. In some contexts, it may actually be the more desirable goal. Alteration of a domain bound-
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Algorithm 1 Generation of the Mesh Refinement Map
Require: Per-cell error values Ei and a target refinement fraction T .

1: Rank cells by E, largest to smallest.
2: Mark the top T fraction for refinement.
3: repeat until changes cease. . Aggregate into refinement zones.
4: for all c ∈ unmarked cells do
5: Mark c if more than 50% of ‘c’s neighbors are marked.
6: repeat until changes cease. . Remove sharp size transitions.
7: for all m ∈ marked cells do
8: for all cell faces f ∈ m do
9: if upon f , there’s a greater than 1-level refinement mismatch then

10: Mark the coarsest cell abutting f .
11: return Per-cell refinement flags.

ary will inevitably alter the flow field, independent of any boost to solver resolution. When the

goal is simply to increase the resolution as in the present research, the boundaries should be left as

they are, subdivided but not enhanced.

There are two ways to subdivide while preserving boundary shape. Option #1 is to reposition

new boundary cells according to a local extrapolation of the surface geometry, using an approach

akin to the program MeshCurve (Ims & Wang, 2019; Ims et al., 2015). Option #2 is to align

new cells according to the mesh’s own embedded high-order geometry. If the mesh is high-order,

option #2 is the better approach because it truly preserves the existing shape. The former option

risks corrupting the shape by way of estimation. But the later option is not without risk. The exact

preservation of boundary shape combined with an increase in mesh resolution will exacerbate any

existing geometry errors in the starting mesh by making them more visible to the flow solver.

In the present work, the boundary shape is preserved by using the high-order geometry of the

mesh as a scaffold to place new boundary cells. The calculation is done cell-by-cell. Uniquely

curved cut lines are produced to conform to the cell’s high-order curved exterior, using the natural

coordinate system of the cell.

Figure 3.2 illustrates the natural coordinate system, showing how it makes the calculation sim-

ple. The natural coordinate system is relative to the cell’s unique geometry. Distance is measured

in fractions of arch length while the grid lines follow the cell’s shape. With size and shape both

32



abstracted away, the cell is made straight-sided, non-skewed, and of unit area. For such a regular

cell, generating cut lines is easy. In fact, since all cells of common shape map to exact same unit

cell, the cut lines can be calculated ahead of time and pre-programmed for efficient reference at run

time. The only challenge is to transform the pre-computed cut lines out of the natural coordinate

system into physical space, where they take on the desired curvature.

The coordinate transformation is nonlinear. It’s done by way of interpolation with the clas-

sical finite element formula. Shape functions at the cell’s nodes spatially interpolate the (x, y, z)

coordinates for the cut lines. The equation is (3.1).

®r =
∑

i

®ciφi(η, ζ, ξ) (3.1)

®ci is the position vector of the ith node in physical space, i.e. its (xi, yi, zi) coordinates. φi is the

basis function. ®ri is the sought after position vector in physical space that corresponds to the natural

coordinates (η, ζ, ξ). The formula has no restriction on the type of basis function. This work uses

the classic Lagarange basis.

Figure 3.3 is an illustration of the resulting cell division in action. On the figure’s left is a

strongly curved high-order hexahedral cell. On the right is the resulting mesh after two rounds

of uniform refinement, with cut lines placed at the midpoint for each spatial dimension. As the

rightmost image makes clear, the new sub-cells are following the boundary curves of the original

parent cell, preserving its shape.

3.2 Hanging Nodes

When a hexahedral or quadrilateral cell is cut into pieces but its neighbor is not into pieces, then

a hanging node is produced between the cells. The hanging node breaks the one-to-one corre-

spondence between the left and right neighbor faces. The FR/CPR calculations of the flow solver

(see equations (2.5) and (2.7)) depend upon the one-to-one match between neighbor faces. When

hanging nodes exist, the flow solver is no longer able to calculate fluid motion variables upon the
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Figure 3.2: The physical coordinate system versus the natural coordinate system.

cell interface.

The destructive presence of hanging nodes is a major impediment to the version of mesh re-

finement so far described. It prevents the generated meshes from being used in subsequent CFD

calculations. To make hanging nodes viable with FR/CPR, it is necessary to bridge the gap between

the non-corresponding cells, using some type of interpolation. In this way, the un-split neighbor

may be supplied with an interface that is unbroken while the opposing conglomeration of subcells

can exist and operate normally.

The chosen interpolation method here is the mortar method (Shi et al., 2016; Kopriva, 1996),

illustrated by Figure 3.4. At the hanging node juncture, a bridging “mortar” face is inserted, which

fuses the sub-faces from the broken side to match the unbroken side. All FR/CPR calculations

that would normally occur upon the interface happen upon the mortar face, at the higher of the

two discontinuous resolutions. Input data is sourced from abutting cells, copied directly from the

higher resolution side and interpolated from the lower resolution side. Output data transfers back

by a direct copy to the higher resolution side and by an L2 projection down to lower resolution

side. Figure 3.5 shows the viability of the computational technique with a velocity field snapshot

from an FR/CPR simulation using mortar method.

Two of the pieces of the input data required by the FR/CPR calculation are the pointwise normal
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Figure 3.3: Curvature preserving cell division. On the left is a strongly curved single high-order
hexahedral cell. To its right are two levels of uniform refinement, showing how the cell division
process is able to preserve the boundary curvature.

vectors and the pointwise area vectors from the interface. These are required for variables F n
f ,l and

S f in equation (2.7). A subtle quirk of the mortar calculation is that these geometry vectors must

source from the lower resolution side when the flow solver is operating at polynomial order P1.

However, when the flow solver is operating at higher polynomial orders, better results are achieved

by sourcing the geometry vectors from the higher resolution side. This quirky requirement is

due to the limited spectral bandwidth available to the flow field at P1. A P1 flow field upon

the low resolution side is linear across the cell, so it cannot appropriately respond to a hanging

node “corner” upon the edge. Even though the “corner” is supposed to be perfectly flat, roundoff

error will make it slightly pointed, resulting in an unstable calculation if the geometry vectors are

allowed to reveal the hanging node’s existence.

3.3 Computer Implementation

The flow solver used in this work is hpMusic, the high-order FR/CPR flow solver developed

and maintained by the Computational Thermal-Fluids Laboratory at the University of Kansas

(Bhaskaran et al., 2017; Wang et al., 2017). The error estimators were implemented as add-on

modules to the program, executing their calculations as part of the flow solver’s time-stepping
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Figure 3.4: Hanging nodes exist at the juncture between refined and unrefined cells, which require
special treatment in the flow solver. At such junctures, the flux calculations are done on a virtual
”mortar face,” using projected data from the abutting cells Shi et al. (2016); Kopriva (1996).

sequence. The cell flagging sequence (algorithm box 1) was added to the program as a post-

processing step. Cell-splitting and flow-field interpolation from old mesh to new was implemented

as an independent utility program.

Figure 3.6 presents the program structure and execution sequence for the full system. The

key calculation steps, added for this work, are colored in green. The flow solver takes as input a

configuration file (red), a mesh (blue), and—optionally—an initializing flow field (purple). The

flow solver exports, upon its completion, the flow field restart file, and the list of cells marked for

splitting (yellow). The list of flagged cells, the starting mesh, and the flow field restart file move

to program 2, the mesh adapter. Here, the cells are split and the flow field is interpolated from old

mesh to new mesh. The new mesh and new flow field may then be used to restart the flow solver

where it left off.

All programs were written in C++11, with distributed parallelization via MPI and localized

parallelization via threading and SIMD vectorization via openmp (OpenMP Architecture Review

Board, 2015).
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Figure 3.5: Velocity field across hanging node interfaces, marked by thick green lines. At these
interfaces, the mesh resolution changes discontinuously. To bridge the resolution gap, the mortar
method is used. The resulting flow field is realistic and the simulation is stable.

3.3.1 Implementation of the Error Estimators

The error estimators are built utilizing C++ class inheritance. Each estimator is implemented as

a child of an abstract base class ErrEst. The base class provides function placeholders and data

structures common to all of the error estimators:

• data structure initialization at boot

• loading saved state from disk

• saving state to disk

• accumulation of quantities at each iteration of the flow solver

• a post-processing calculation

• pointers to the flow solver’s own data structures, through which the flow field information

may be retrieved

The individual error estimators inherit from ErrEst, supplying code for the virtual functions

and for any functionality unique to the given error estimator. The class for error indicator T.L.errE,
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Figure 3.6: Program structure and execution sequence.
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described in subsection 2.2.3, has a special (vectorized) function to compute ∂2 ®u
∂ξ2 from the conser-

vative flow field variables [ρ, ®m, E]T.

The estimators are fully parallel. Just like the flow solver itself, the error estimators execute

distributed over MPI CPUs, one copy per mesh partition, as shown by Figure 3.7. A second layer

of parallelization exists within the distributed copies. Upon each CPU, the error estimators utilize

openmp threading and SIMD vectorization.

Parallelized file I/O is implemented at the solver level by way of functions that wrap the com-

mands MPI_Gatherv and MPI_Scatterv. The call to function save automatically invokes ma-

chinery to make the distributed error estimators synchronize, sending data to the root processor,

where it is rearranged according to the cell sequence in the un-partitioned mesh before export

to disk. The load function follows the same procedure in reverse. Because the data is always

rearranged to match the un-partitioned mesh, the files are independent of the number of MPI pro-

Figure 3.7: Like the flow solver itself, the error estimators are highly parallelized with MPI. Each
MPI processor has its own instance of the C++ error estimator object, with dominion over the
assigned mesh partition.
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cessors. Thus it is possible for the program to be halted and restarted on a different number of

CPUs. The serialized files have another benefit too. They are usable in the mesh adapter program,

which is serial.

The mesh adapter is basically a series of for loops, proceeded and followed by functions to

read and write both the mesh file and the saved flow field. The for loops cycle over the mesh’s

cells one-by-one, modifying each according to instructions exported by the error estimator. The

central calculation is a matrix multiplication, which maps the pre-computed cell cut lines from

natural coordinates to physical coordinates. A second matrix multiplication interpolates the flow

field from old mesh to new, cell-by-cell.
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Chapter 4

Test Cases1

4.1 T106c

The first test case for the error estimators is T106c, a benchmark LES challenge problem featured

at both the 4th and the 5th International Workshops on High-Order CFD Methods (Hillewaert & JS.,

2016, 2018). This simulation models air flowing through an angled turbine blade. The simulation

has several characteristics to recommend its use as a test case:

• There is a readily-available DNS simulation to compare against, simulated by the Uni-

versity of Kansas’s Computational Thermo-Fluids Laboratory.

• It has the appropriate degree of complexity.

It is a realistically complex problem, reminiscent of turbo-machinery simulations that might

be conducted in an industrial setting. Yet it is also simple enough for the flow field to be

dissected and analyzed.

• It features a mix of flow conditions.

The incoming air is laminar, but the flow transitions to turbulent as it passes over the turbine

blade. Modeling the flow transition is a challenge for the CFD solver.

1Portions of this chapter report results from:

• Ims, J. & Wang, Z. J. (2022). A comparison of three error indicators for adaptive high-order large eddy
simulation. In AIAA SciTech 2022 Forum (pp. 1201)

• Ims, J. & Wang, Z. J. (under review). A comparison of three error indicators for adaptive high-order large eddy
simulation. (submitted to) Journal of Computational Physics.
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Figure 4.1: The simulation domain for the T106c turbine blade.

Figure 4.1 illustrates the geometry of the T106c flow field. The simulation domain consists of

the highlighted part of the image, encircling a single blade from an infinite stack, produced with

periodic boundary conditions above and below in the y-direction. All elements of the geometry are

spaced relative to the blade’s chord length C. The vertical distance between the stacked blades is

0.95C. The spanwise depth (in to & out of the page) is 0.1C, but periodic boundary conditions are

also depth-wise to give the illusion that the blade is infinitely wide. The incoming airflow is angled

upward at 32.7◦ with a state sufficient to produce exit isentropic Mach and Reynolds numbers of

Mis = 0.65 and Reis = 80, 000, respectively, at scale C = 1 m.

The test pits the three primary error estimators (smthE, unStdE, and T.L.errE) against each other,

competing to improve simulation quality. The error estimators will begin with a coarsened mesh

for T106c, topologically similar to the mesh used in a published DNS simulation of T106c by

Alhawwary & Wang (2019). The DNS flow field was simulated at polynomial order P3, but

the error estimators will run at P2, exacerbating the loss of resolution from the coarsened mesh.

After executing upon the coarsened mesh, each error estimator will be permitted two rounds of
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H-adaptation to improve the resolution. At each round of H-adaptation, the refinement budget

will be 20%; that is, at every round, the error estimators will each select the 20% most erroneous

cells to subdivide. After each H-adaptation, the quality of the simulation will be gauged by its

comparison against the DNS simulation. Examination will also be made of the cell refinement

pattern, elucidating the characteristic behaviors of the error estimators.

4.1.1 Visual Quality Assessment

As a visual basis for the flow field quality improvement produced by the error estimators, Figure

4.2 contrasts ending snapshots of the turbulent wake, immediately aft of the turbine blade. The

images render the entropy increase relative to the far field, making the vortex pattern visible. In

each image, the underlying mesh has been superimposed on the flow field, with thick lines denoting

the hanging node boundaries. An examination of the images reveals the first two items of interest

pertinent to the planned analysis. 1) All of the error indicators chose to refine both near the blade

surface and also within the more active parts of the turbulent wake. 2) All three error indicators

were successful at boosting the vortex resolution, uncovering detail not present in the starting

simulation upon the base mesh.

4.1.2 The Mesh Refinements

Figure 4.3 directly contrasts the mesh refinements themselves, using a color code to show which

cells were marked at each round of refinement. Blue denotes cells that were marked upon the base

mesh. Yellow denotes cells that were marked upon the once-refined mesh. Orange denotes cells

that were marked upon the twice-refined mesh. Zoomed views of the refinements are provided by

Figures 4.3, 4.4, and 4.5.

For correct interpretation of the figure, it is critical to remember that the refinement budget

is quantified in terms of cell quantity (i.e. the 20% most erroneous cells), not cell volume. Ac-

cordingly, the size of the colorized regions does not communicate how many cells were refined. It

communicates how large those cells were. This fact is key to spotting the major difference between
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(a) base starting mesh (b) unStdE

(c) smthE (d) T.L.errE

Figure 4.2: Visual quality comparison of the T106c turbulent wake after refinement #2. The vor-
tices have been made visible by rendering the instantaneous entropy increase relative to the far
field.
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the error indicators, namely that some of the indicators preferentially targeted small cells near the

blade (smthE) while others preferentially targeted large cells in the wake (T.L.errE). Likewise, the

shrinkage in color areas at later refinement steps does not indicate a reduction in the number of

flagged cells. It indicates that some cells were split multiple times into tiny fragments.

The figure shows that each of the error indicators traced out an arced path from the suction

side of the blade, starting from the point of flow separation and following the detached stream into

the turbulent area at the rear of the blade. In the wake behind the blade, the error indicators made

similar resolution requests. First, they marked cells in the general area around and downstream of

the turbulence, following the vortex train. Second, they marked cells at the center of the turbulent

zone, where the whirling motion was greatest. Third, they marked cells in two disconnected areas:

1) deep within the turbulent zone, and 2) just outside the region marked in step #2. This second

action hints that the consequence of refinement #2 may have been an enhancement of the vortices,

streaming from the blade, through the turbulence zone and out the opposite side.

An alternative view of the mesh refinement is presented by Figures 4.6 through 4.8. These

figures graph y+ =
yuτ
ν =

y
ν

√
τw
ρ of the first cell layer as a function of distance along the turbine

blade. (y is the distance to the wall; ν is the kinematic viscosity; and uτ =
√

τw
ρ is the friction

velocity, with τw being the wall shear stress and ρ the fluid density.) Horizontal axis coordinate

X = 0 corresponds to the leading tip of the blade. Horizontal coordinates X = ±1 correspond to

the blade’s tail. Positive X refers to the blade’s suction side. Negative X refers to the pressure side.

y+ is a non-dimensionalized coordinate, measuring relative distance into the flow boundary layer,

so the plots show the level of boundary resolution provided by the flow simulation and the effect

of the error indicators. (Smaller y+ is better.)

The plots reveal a clear difference between the indicators. Figure 4.6 shows indicator smthE

lowered y+ across most of the surface. In contrast, indicator T.L.errE (Figure 4.8) left the original

y+ mostly unaltered, adding resolution only to the upper rear of the blade. Indicator unStdE (Figure

4.7) took a hybrid approach. It lowered y+ at the rear of the blade and also in an upstream span

from X/Caxial ≈ 0.15 to X/Caxial ≈ 0.525.
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Figure 4.3: Comparison of the mesh refinement requested for simulation T106c. With each error
indicator, the simulation was executed three times in sequence, starting with the same base mesh.
Blue marks cells that were were flagged for refinement round #1. Yellow marks cells that were
flagged for refinement after round #2. Orange marks cells that were flagged after round #3. All
error indicators were granted the same refinement budget: the 20% most erroneous cells, plus as
many additional cells as it takes to meet the two smoothness requirements.
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Figure 4.3: Zoomed view of the cells flagged from simulation T106c by T.L.errE.

Figure 4.4: Zoomed view of the cells flagged from simulation T106c by unStdE.
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What’s special about that upstream area? Well, flow detachment occurs at roughly X/Caxial ≈

0.1, so error indicator unStdE was evidently trying to enhance the resolution of the departing stream

and the point of departure. smthE did similar, starting its own refinement at X/Caxial ≈ 0.08, but

whereas smthE simply refined everything downstream of the detachment point, unStdE broke off

early, picking up again where the detached jet reconnected, circa X/Caxial = 0.8. Unlike the other

two error indicators, T.L.errE did not enhance the surface resolution except for the tail of the blade,

inside the turbulent zone. Does that mean that error indicator T.L.errE failed to detect the point

of flow detachment and reattachment? No. When Figure 4.8 is put in the broader context of the

surrounding cell refinements, shown by Figure 4.3, it is possible to see that T.L.errE was flagging

off-surface cells near the same locations that unStdE and smthE were flagging on-surface cells.

In summary, all three error estimators detected the critical points of the flow field, but in refining

the mesh, they ascribed differing importance to the adjoining cells. smthE boosted resolution of

nearby WALLs. T.L.errE boosted resolution of nearby vortex paths. unStdE did both.
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Figure 4.5: Zoomed view of the cells flagged from simulation T106c by smthE.

Figure 4.6: Progression of y+ for smthE
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Figure 4.7: Progression of y+ for unStdE

Figure 4.8: Progression of y+ for T.L.errE
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4.1.3 Force Analysis: lift, drag, and pressure

To assess the impact of the increasing mesh resolution, we first look at the force coefficients,

starting with lift and drag.

Figures 4.9a and 4.9b plot the progression of the lift and the drag coefficients while Tables

4.1a and 4.1b list the plotted numbers. These coefficients are time-averaged quantities, with sta-

tistical uncertainty due to the turbulent fluntuation in the time domain. The tables provide 1σ

statistical bounds on the means. These are calculated in the typical fashion (e.g. sample standard

deviaiton divided by the square root of the number of measurements) with a correction factor for

the short-term temporal correlation of the time sampling. The correction procedure used an AR(1)

autoregressive model and is documented in Donath (2020).

From the plots and the tables, it appears that both unStdE and T.L.errE were successful at driving

the lift and the drag coefficients toward truth. smthE also drove CD toward truth, but with CL, it

seems to have slightly overestimated, and it is not clear that the progression is converging to the

correct value. The discrepancy is not large, and it is within the error bars, so the failure may not

actually indicate a problem, but it does hint that smthE may not be as performant as the other two

error estimators.

For the next assessment, we look at the pressure distribution along blade. Figure 4.10 plots

the pressure coefficient, one error indicator per row. The center plots cover the whole blade, while

the left and right columns show zoomed views. The x-axis is set up just as in the earlier y+ plots.

X/Caxial = 0 corresponds to the blade tip and X/Caxial = ±1 corresponds to the blade’s tail. The

suction side of the blade is to the right (positive x) and the pressure side is to the left (negative x).

The pressure distribution on the base mesh is already close to the truth solution, but all error

estimators managed to improve it by providing increased spatial sampling in the most unstable

regions, such as the underside of the blade’s tail. Another subtle improvement is the position of

the dips and peaks. A feature that did not noticeably improve is the amplitude of the profile. The

amplitude matches well with DNS for non-turbulent areas of the surface, but the amplitude is over

or under estimated upon the turbulent portions of the blade. T.L.errE and unStdE got closest to the
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(a) Lift coefficients for T106c

(b) Drag coefficients for T106c

Figure 4.9: Progression of the lift and drag coefficients for simulation T106c
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CL common CL for smthE CL for unStdE CL for T.L.errE

base mesh 0.4242 ± 0.002
refinement #1 0.4254 ± 0.003 0.4231 ± 0.003 0.4212 ± 0.005
refinement #2 0.4262 ± 0.003 0.4239 ± 0.004 0.4225 ± 0.005

truth ref. 0.4223 ± 0.005

(a) T106c lift coefficient

CD common CD for smthE CD for unStdE CD for T.L.errE

base mesh 1.1433 ± 0.003
refinement #1 1.1417 ± 0.004 1.1402 ± 0.005 1.1412 ± 0.007
refinement #2 1.1393 ± 0.005 1.1393 ± 0.006 1.1405 ± 0.007

truth ref. 1.1387 ± 0.008

(b) T106c drag coefficient

Table 4.1: progression of the lift coefficient (table 4.1a) and the drag coefficient (table 4.1b) for
simulation T106c

correct amplitude, with the former slightly overestimating and the later slightly underestimating.

Curiously, smthE, at refinement round #1, was even closer to the correct amplitude, but it moved

away at refinement #2.

4.1.4 Turbulence Analysis: Reynolds stress and energy spectra

Figure 4.12 shows how the mesh refinement affected the simulations’ accuracy of the turbulence,

using the uv cross term of Reynolds stress tensor as a proxy. The plots are grouped by row, one

error indicator along each, with the steps of refinement increasing left to right. unStdE occupies the

first row, subfigure 4.12a. smthE occupies the second row, subfigure 4.12b. And T.L.errE occupies

the third row, subfigure 4.12c. The base mesh is at the left (identical down the column). Refinement

#1 is in the middle. And refinement #2 is at the right. The final row, subfigure 4.12d, holds the

DNS truth solution.

This collection of plots is particularly revealing, showing not only a universal quality improve-

ment from all of the indicators but also a more definitive superiority of some relative to others,

judged on the basis of how quickly and accurately they conformed to the DNS truth. smthE lagged
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Figure 4.11: The monitor point (green dot) for the pressure and turbulent kinetic energy spectra.

behind the others at both the first and the second refinements, ending with the poorest match to

DNS. Meanwhile, both unStdE and T.L.errE converged rapidly, nearly in lockstep. A very close ex-

amination of their final plots shows that T.L.errE slightly bested unStdE near the most downstream

point of the blade and along the trailing upper surface.

As a final assessment, we turn to the frequency spectra of the pressure and the turbulent kinetic

energy, fluctuating in the turbulent wake immediately behind the blade. Figure 4.11 shows the

location of the monitor point relative to the blade.

Figures 4.15 through 4.17 plot the power spectrum of the pressure fluctuation. Figures 4.18

through 4.20 plot the power spectrum of the turbulent kinetic energy. In these graphs, the dashed

line denotes the theoretical slopes of the energy cascade, and the black line marks the spectrum of

the DNS flow field. Each set of plots show the progression from base mesh (Figures 4.15 & 4.18 )

to the final mesh after two rounds of refinement (Figures 4.17 & 4.20 ).

At each refinement level, there is clear improvement in the spectral resolution coming from

every error indicator. Universally, the higher frequency parts of the spectra shift upward toward

the DNS line, while the peaks at the lower frequencies come into sharper focus. There is a visibly

clear difference between the error indicators in their rate of improvement. Indicator smthE is the

slowest to converge to DNS. Indicators T.L.errE and unStdE converge almost equally fast, with
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T.L.errE slightly outpacing unStdE.

4.1.5 Assessment

At this point, it can be said that all of the estimators have done a tolerable job. All three identi-

fied the important parts of the flow field, boosting resolution where the flow over the blade both

detached & reattached. They also boosted resolution in the bubble of turbulence that formed at the

tail of the blade and spun up into a vortex train. The estimators exhibited a difference in prefer-

ence for refining the small cells in the boundary layer versus the large cell along the path of vortex

flow. But despite the difference in the targeted refinement locations, all error estimators were able

to improve the resolution of the simulation. That improvement was noticeable: 1) in the visible

rendering of the vortices in the turbulent wake, 2) through minor improvements to the force coef-

ficients, 3) upon plots of the Reynolds stress, and 4) within the energy spectra of flow. There were

several indications that smthE was the weakest of the three error estimators.
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(a) from error indicator unStdE

(b) from error indicator smthE

(c) from error indicator T.L.errE

(d) DNS truth comparison

Figure 4.12: Progression of the horizontal cross term of the Reynolds stress tensor, from the coarse
mesh on the left to the fine mesh on the right.
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(a) DNS (b) unStdE

(c) smthE (d) T.L.errE

(e) base mesh

Figure 4.13: Reynolds stress VV component for the refinement #2.
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(a) DNS (b) unStdE

(c) smthE (d) T.L.errE

(e) base mesh

Figure 4.14: Reynolds stress UU component for the refinement #2.
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Figure 4.15: Pressure PSD comparison between the DNS truth (black) and the unrefined coarse
mesh (purple).

Figure 4.16: Pressure PSD comparison after the 1st refinement. DNS truth is plotted in black.
unStdE is plotted in green. smthE is plotted in orange. T.L.errE is plotted in blue.
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Figure 4.17: Pressure PSD comparison after the 2nd refinement. DNS truth is plotted in black.
unStdE is plotted in green. smthE is plotted in orange. T.L.errE is plotted in blue.

Figure 4.18: Turbulent kinetic energy PSD comparison between the DNS truth (black) and the
unrefined coarse mesh (purple).
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Figure 4.19: Turbulent kinetic energy PSD comparison after the 1st mesh refinement. DNS truth
is plotted in black. unStdE is plotted in green. smthE is plotted in orange. T.L.errE is plotted in blue.

Figure 4.20: Turbulent kinetic energy PSD comparison after the 2nd mesh refinement. DNS truth
is plotted in black. unStdE is plotted in green. smthE is plotted in orange. T.L.errE is plotted in blue.
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4.2 Modified T106a

The second test case is derived from the T106a simulation, another well known LES benchmark2,

similar in design to the previous one. Figure 4.21 illustrates the geometry, drawing the mesh in

red. The domain is again an infinite stack of T106 turbine blades, duplicated above and below the

primary blade by way of cyclic boundary conditions. The vertical spacing between the blades (the

pitch-to-chord ratio) is 0.798 C, with C being the chord length of the primary blade. The span-to-

chord ratio (depth into the page) is 0.1C. The flow state is defined by the ambient conditions upon

the back exit. Outgoing air leaves with isentropic Mach number Mis = 0.4 at isentropic Reynolds

number of Reis = 60, 000 with scale C = 1 m. Incoming flow is angled upward by 46.1◦.

A few differences exist between this T106a simulation and the version described by Hillewaert

& JS. (2016, 2018). First, the incoming angle differs slightly. Second, symmetric boundary condi-

tions are applied above and below in the z-direction (in-to and out-of the page). The classic T106a

applies cyclic boundaries in the z-direction, making the blade infinitely wide. In this dissertation,

the blade is of finite width, sandwiched between reflective walls. 3

A final point of difference must also be mentioned: There is a geometry flaw upon the blade’s

tip and its tail. The coarse mesh has a sharp angle at the juncture between splines, and the highly

curved parts of the blade surface have a seashell-like bobble. It was not the intent to have a sharp

corner or a seashell bobble. The reason for highlighting them is to point out a particular dynamic

of the flow field that might be the consequence of these features: It is not until the resolution of

the simulation is heightened that the primary vortex shedding frequency becomes visible. The

suspected but unconfirmed cause is that the sharp corner and seashell pattern inject miniature

eddies into the turbulence, changing its character. The T106a test case was designed to challenge

the error estimators at resolving a flow field from a very coarse and poorly designed mesh. The

unintended geometry quirk is in keeping with that challenge, increasing the difficulty level.

2For more on the classic T106a simulation, consult the websites for the 4th and the 5th International Workshops on
High-Order CFD Methods: (Hillewaert & JS., 2016, 2018).

3Why the change to symmetric boundaries? Answer: Pragmatism. Originally, hpMusic, the lab’s FR/CPR solver,
could not tolerate a hanging-node mismatch between cyclic boundaries. The missing feature has now been imple-
mented, but the T106a setup file is preserved.
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Figure 4.21: The simulation domain for the T106a turbine blade.

The test procedure is similar to that for T106c. Two rounds of H-adaptation are applied, starting

from a coarse initial mesh, incapable of supporting the final flow field dynamics. The simulation’s

polynomial order is again P2. Unlike the previous test case, there is no readily available DNS sim-

ulation to act as a definitive truth source. Comparison will be made against a higher resolution P4

simulation with 1-level of uniform H-refinement to the mesh. Also featured in the comparison will

be a sequence of increasingly fine uniformly HP-adapted simulations leading to the P4 simulation.

Those additional simulations will be used to place the actions of the error-estimators in a broader

context to illustrate exactly how they are responding to the flow field. Unlike the previous test case,

there will not be a definitive winner from this test because none of the error estimators will have

managed to completely reproduce all aspects of the flow field by the third round of refinement,

with the 20% cell splitting budget. However, it will be shown that both T.L.errE and unStdE land

closer to the P4 “truth” source than smthE.
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4.2.1 The P4 simulation

Before discussing the error estimators, it is necessary to open with a few words about the P4

simulation, justifying its claim to be a sufficient truth source for the analysis. Figure 4.22 begins

the justification by plotting the distribution of the pressure coefficient (Cp) across the T106a blade

as a function of x-axis distance. Five simulations are superimposed in the graph, drawn with

increasing levels of blackness to signify their increasing resolution. Figure 4.23 is a zoomed view

of the rightward side, showing the line clustering. The lightest curve, “P1 uref0,” is from a P1

simulation upon the base mesh (uniform refinement level “0”). “P2 uref0” is a P2 simulation

upon the same mesh. “P3 uref1” is a P3 simulation upon a once uniformly refined mesh. Finally,

“P3 uref2,” visibly coincident with “P4 uref1,” is from a P3 simulation upon a twice uniformly

refined mesh, while “P4 uref1” is the P4 simulation upon the once uniformly refined mesh.

Figure 4.24 plots the error in the lift and drag coefficients (CL and CD) from the sequence,

illustrating that error is shrinking exponentially and has approached floating point roundoff by the

P4 simulation. For these plots, grid size is proxied by ( 3
√

nDOF)
−1, while error is proxied via the

subtraction of the force coefficients from “P3 uref2.”

If it were necessary to establish DNS accuracy, justification would be required that a further

increase to resolution would not alter the flow field. However, DNS accuracy will not be needed

for the forthcoming analysis. DNS resolution will never be reached by any of the error estimator

simulations. At best, the error estimators will be able to duplicate small pockets of resolution

from ”P4 uref1” and “P3 uref2.” The following analysis will make use of the P4 simulation as a

comparative aid to illustrate the progress of the error estimators.
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Figure 4.24: Log-Log plots of the error in the lift and drag coefficients from the high-order simu-
lations used as a “truth.”
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4.2.2 The Refinement Zones

Following the same topic ordering as Section 4.1, Figure 4.25 begins the analysis with a visual

comparison of the turbulent wake after H-adaptation #2. Views of the mesh have been superim-

posed in the flow field, with hanging node boundaries outlined in green. It is clear that all of the

error estimators have dramatically improved the level of detail in the the flow field, encircling the

turbulent eddies refinement zones. Even with this first qualitative comparison of the error estima-

tors, it is clear that the refinement pattern witnessed in Section 4.1 is starting to repeat here. That

is, smthE is sticking close to the surface, venturing only a little into the turbulent wake, while both

unStdE and T.L.errE are working within the wake.

Figure 4.26 directly contrasts the applied H-adaptation, color coding the flagged cells. Zoomed

views are provided by Figures 4.26, 4.27, 4.28. It can be seen that T.L.errE and unStdE are refining

in remarkably similar places, but T.L.errE is covering a wider area. As will be shown by the next

sequence of plots, the wider coverage of T.L.errE is because unStdE chose to spend more of its

refinement budget on the cells in the boundary layer.

Figures 4.29, 4.30, and 4.31 plot the y+ resolution. These charts show that smthE has refined

along both the pressure and suctions sides of blade, while unStdE has refined far more upon the

suction side than the pressure side. T.L.errE has only refined the blade surface in targeted areas: the

tail and certain locations upon the suction side.

4.2.3 Force Analysis: lift, drag, and pressure

The time-averaged lift and drag coefficients are reported by Tables 4.2a and 4.2b, while Figures

4.32a and 4.32b plot the numbers. Note that both tables and plots contain an extra round of refine-

ment to help illustrate the trend lines. While the lift coefficient appears to be converging toward

the “P4 uref1” truth reference, the drag coefficient appears to diverging. In a reversal of the usual

trend, it is T.L.errE that is most in disagreement with the CD truth reference, and it is smthE that is

the least in disagreement. unStdE, as always, is in the middle.

Figure 4.33 plots the pressure coefficient, one error indicator per row. The center plots cover
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(a) base starting mesh (b) unStdE

(c) smthE (d) T.L.errE

Figure 4.25: Visual quality comparison of the T106a turbulent wake after refinement #2. The
vortices have been made visible by rendering the instantaneous entropy increase relative to the far
field.
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Figure 4.26: Comparison of the mesh refinement requested for simulation T106a. With each error
indicator, the simulation was executed three times in sequence, starting with the same base mesh.
Blue marks cells that were flagged for refinement at round #1. Yellow marks cells that were flagged
for refinement at round #2. Orange marks cells that were flagged at round #3. All error indicators
were granted the same refinement budget: Split the top 20% most erroneous cells, plus as many
additional cells as it takes to meet the two smoothness requirements.
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Figure 4.26: Zoomed view of the cells flagged from simulation T106a by T.L.errE.

Figure 4.27: Zoomed view of the cells flagged from simulation T106a by unStdE.
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Figure 4.28: Zoomed view of the cells flagged from simulation T106a by smthE.

Figure 4.29: Progression of y+ for smthE
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Figure 4.30: Progression of y+ for unStdE

CL common CL for smthE CL for unStdE CL for T.L.errE

base mesh 0.2675 ± 0.005
refinement #1 0.2656 ± 0.004 0.2652 ± 0.003 0.2660 ± 0.003
refinement #2 0.2652 ± 0.003 0.2645 ± 0.002 0.2656 ± 0.003
(extra) ref. #3 0.2645 ± 0.002 0.2648 ± 0.003 0.2632 ± 0.003

truth ref. 0.2603 ± 0.006

(a) T106a lift coefficient

CD common CD for smthE CD for unStdE CD for T.L.errE

base mesh 1.0031 ± 0.011
refinement #1 1.0038 ± 0.011 1.0044 ± 0.007 1.0043 ± 0.008
refinement #2 1.0046 ± 0.010 1.0058 ± 0.007 1.0064 ± 0.005
(extra) ref. #3 1.0046 ± 0.012 1.0058 ± 0.007 1.0066 ± 0.007

truth ref. 1.0036 ± 0.002

(b) T106a drag coefficient

Table 4.2: progression of the lift coefficient (table 4.2a) and the drag coefficient (table 4.2b) for
simulation T106a

74



Figure 4.31: Progression of y+ for T.L.errE

the whole blade, while the the left and right columns are zoomed views. The yellow curve is from

the base mesh; the orange curve is from the once H-adapted mesh, and the red curve is from the

twice H-adapted mesh. The dashed line is the “P4 uref1” simulation.

Over most of the blade’s surface, the red and orange lines align with the dashed lines, indicating

good agreement between the truth simulation and the error-adapted ones. However, at the tail of

the blade, it is clear the none of the adapted mesh has reproduced the data from “P4 uref1.” In fact,

for the tail portion of Cp, it looks as if unStdE and smthE have actually become stuck at an incorrect

pressure distribution. T.L.errE is not stuck as evidenced by the shift in its “ref 2” curve upon the

tail.

On their own, these plots are mysterious, but when they are put in context of the uniformly HP-

adapted simulations from 4.23, they are easier to interpret. Figures 4.34 through 4.36 overlay the

HP-adaptation sequence with error-guided H-adaptive sequence, revealing that the error estimators

have “converged” to a point midway between “P2 uref0,” the base simulation, and “P3 uref1.”

Close examination of Figure 4.34 shows that upstream of the tail, T.L.errE was strategically shifting
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(a) Lift coefficients for T106a

(b) Drag coefficients for T106a

Figure 4.32: Progression of the lift and drag coefficients for simulation T106a
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between the accuracy of “P2 uref0” and “P3 uref1.” unStdE was doing similarly but with less stark

transitions. smthE didn’t progress much beyond “P2 uref0,” compared to the other error estimators.

smthE tended to do better at locations of high flow compression, such as the stagnation point (not

shown).

4.2.4 Turbulence Analysis: Reynolds stress and energy spectra

Figure 4.37 shows the progression in the UV component of the Reynolds stress tensor for refine-

ments #0 (i.e. the base mesh) through #2. Figure 4.38 shows a zoomed view of the final refinement.

Meanwhile Figures 4.39 and 4.40 complement the picture by adding views of the VV and UU stress

terms, also from the final round of refinement. There is something of interest to note. Although all

of the error-adapted meshes have greatly improved upon the quality of the starting simulation by

bringing the Reynolds stress into focus, they have not been altogether successful at producing the

correct shapes. For example, the UU hotspot from “P4 uref1” is rounder than the corresponding

hotspots from the error-adapted meshes.

The final set of plots to examine are the power spectra. The monitor point position is unchanged

from the previous test case, illustrated by Figure 4.11. The pressure and turbulent kinetic energy

spectra are presented by Figures 4.41 and 4.42, respectively. Two items are worth comment. First,

all of the error estimators are clearly improving the resolution of the turbulent energy cascade.

That improvement is evidenced by the high-frequency part of the spectrum, where the curves

exhibit increasingly good alignment with the truth reference. Second, the error estimators are not

clearly improving the position of the energy spikes in the low frequency part of the spectrum. The

failure to resolve the spikes is highlighted by Figure 4.43, which provides a zoomed view from

refinement #2. For contrast, Figure 4.44 provides the same view from the base simulation. From

these two plots, it looks like unStdE alone has made progress toward mimicking the first two spikes.

The implication is that the error estimators have not fully captured the flow field dynamics, which

means that the resolution is lacking somewhere in the domain.
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(a) from error indicator unStdE

(b) from error indicator smthE

(c) from error indicator T.L.errE

(d) truth comparison

Figure 4.37: Progression of the horizontal cross term of the Reynolds stress tensor, from the coarse
mesh on the left to the fine mesh on the right
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(a) “P4 uref1” (b) unStdE

(c) smthE (d) T.L.errE

(e) base mesh

Figure 4.38: Reynolds stress UV component for refinement #2.
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(a) “P4 uref1” (b) unStdE

(c) smthE (d) T.L.errE

(e) base mesh

Figure 4.39: Reynolds stress VV component for refinement #2.
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(a) “P4 uref1” (b) unStdE

(c) smthE (d) T.L.errE

(e) base mesh

Figure 4.40: Reynolds stress UU component for refinement #2.
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Figure 4.43: Zoomed view of the spikes in the turbulent kinetic energy spectra from refinement
#2. The ‘P4 uref1” truth reference is drawn in black. T.L.errE, smthE, and unStdE are drawn in blue,
orange, and green, respectively.

Figure 4.44: Zoomed view of the spikes in the turbulent kinetic energy spectra from refinement #0.
The ‘P4 uref1” truth reference is drawn in black. The base simulation is drawn in purple.
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4.2.5 Assessment

All three error estimators improved the flow field, as evidenced by 1) the entropy images, 2) the

pressure distribution, 3) the CL value, 4) the Reynolds stresses, and 5) the high-frequency part

of the energy spectra. Improvement was either not visible or negative in 1) the CD value and 2)

the low-frequency part of the energy spectra. The metrics that did not improve are indicative of

under-resolved flow field dynamics. In other words, there is an area of the domain that requires

further H-adaptation for the fluid’s self-interaction to manifest. It is not possible to say where

the under-resolved area is. The under-resolved area may be the region around the sharp corner

geometry quirk previously mentioned. The under-resolved area might also be a section of the

detached flow’s path, impinging on the turbulent wake. As a future study, it would be interesting

to find the key location and to see if the error estimators would eventually find it.

Without the flow field dynamics fully resolved, it would be hasty to designate a definitive

winner, but a relative judgment is possible, founded upon how far the error estimators progressed

by the end of the experiment. The result is consistent with the previous test case. Namely, the most

capable error estimators appears to be T.L.errE and unStdE. T.L.errE is tentatively deemed to be in

the lead because it alone was continuing to make adjustments to the flow dynamics at the end of

the experiment. The lest capable error estimator is clearly smthE.

4.3 Discussion

For both the T106c and the T106a test cases, error indicators T.L.errE, unStdE, and smthE all pro-

duced workable meshes that boosted resolution of the turbulence. However, the indicators were not

equally quick in converging the simulations to truth. Indicator smthE was consistently the slowest

while T.L.errE and unStdE were in close competition for fastest. Upon examination, it is found that

these performance dissimilarities are consistent with the underlying mathematical definitions of

the error indicators.

For each indicator, it is possible to identify a built-in sensitivity to a particular mathematical

89



characteristic of the flow field, summarized thus:

• Error indicator smthE, founded upon a shock-capturing gradient algorithm, picks out un-

smooth regions of the flow, specifically areas with a high degree of spacial variability.

• Error indicator T.L.errE, founded upon an estimate of small-scale turbulent kinetic energy,

picks out energy dense regions, specifically areas rich in under-resolved vortex motion.

• Error indicator unStdE, founded upon a subtractive difference of the unsteady flow residual,

picks out “active” regions of the flow, specifically areas that are temporally very dynamic.

It is possible to trace how these built-in sensitivities lead naturally to the unique mesh adapta-

tions produced by the error indicators. In particular:

• Indicator smthE h-refines the areas of high gradient flow, e.g. in boundary layers and where

front lines forcefully collide.

• Indicator T.L.errE h-refines the areas of vortex decay, e.g. along vortex cascades and within

turbulent wakes.

• Indicator unStdE h-refines the areas of heaviest “action,” e.g. a blend of the vortex dense

areas and the high-gradient regions.

As for the differences in speed of convergence, two explanations are offered. The first explana-

tion stems from the immediate observation that the faster error indicators are also the more vortex

sensitive. Vortex sensitivity may assist convergence by driving the adaptation process to quickly

resolve the major churning motions in the flow, helping the adaptation process correctly prioritize

between large scale features and small scale detail. Supporting this view is the observation that

T.L.errE, the most vortex sensitive indicator of the group, was also the indicator producing the most

visually complete-looking eddy patterns. unStdE, the second most vortex sensitive indicator, was

also the second most visually complete. In contrast, smthE, the least vortex sensitive indicator, pro-

duced noticeably lopsided-looking pictures with very high resolution near walls but low resolution
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at active areas away from walls. Thus, it would appear that T.L.errE, and to a slightly lesser extent

unStdE, both optimized resolution across the entire flow field while smthE incorrectly focused on

some spots to the detriment of others.

The second explanation stems from the math observation that both unStdE and T.L.errE may be

interpreted as actual measures of a CFD error-like quantity, defined as the inconsistency between

the actualized flow field and the underlying physics equations. In fact, unStdE purports to actually

be a direct measure (really an estimate) of this very quantity. It is literally the instantaneous flaw

in the simulated flow field—i.e. a spatial map of where the Navier-Stokes equations (2.8) are not

being followed. Similarly, T.L.errE is a spatial map of the turbulent motion too intricate for the

simulation to resolve, and where the simulation cannot resolve the motion, it also cannot control

the virtual fluid enough to enforce the virtual laws of physics. Per this view, the slowness of smthE

is attributable to the weak relationship between the indicator’s measured quantity (sharp gradients)

and the simulation’s physical realism. Although it is undeniably true that: 1) A fine mesh is needed

to resolve a sharp gradient, and 2) Turbulence will produce sharp gradients, the presence of a

sharp gradient is really only a warning that poor physics may be occurring in the vicinity.
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Chapter 5

Extention to Machine Learning

As previously stated, CFD mesh design requires the hand of an experienced engineer. In point of

fact, mesh design requires a brain. That observation raises the question: Might mesh adaptation

be doable by artificial neural network (ANN)?

There are at least two reasons to recommend the use of ANNs for mesh adaptation. First, it

is a feature of ANNs that a properly designed network can mimic any function (Pinkus, 1999).

This property makes ANNs appropriate for mimicking semi-mysterious patterns which have no

analytical formula. Examples are self-driving cars, image recognition, language translation, and

the biological cycle prediction. CFD mesh adaptation would seem to be a similar type of puzzle.

Second, the computational cost of a neural network is low compared to most operations in CFD,

with the computational cost concentrated in the setup. Once an ANN has been designed and

trained, it is cheap to run because the runtime calculation is merely matrix multiplication. So for

mesh adaptation, a potential benefit of a neural network is that an expensive calculation can be

replaced by a cheap one. Furthermore, because of the high commercial demand for ANNs, it is

possible that future computer chips will incorporate dedicated circuitry for them, offering a further

speed boost which the CFD community may wish to leverage.

The young discipline of machine learning has bloomed within the last decade, with the inven-

tion of Deep Learning, and is only now beginning to affect the CFD research community. The

specific idea to apply machine learning to H-adaptation is so recent that publications on the topic

are to be found only in the last couple of years and are numbered in the single digits. At KU, this

topic of research was opened by a student MS thesis (Phommachanh, 2021), training an ANN to

do AI-powered mesh adaptation. That work leaned heavily upon the knowledge and tools from
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this present work, which was under development at the time, forging a link between that research

and the research here. The topic of ML-guided mesh adaptation is both a natural extension to this

dissertation and a suitable topic to close upon, so this final chapter will expand upon the work of

Phommachanh (2021) by reporting the CFD mesh adaptation performance of the trained ANN.

5.1 Related Work

So far, no two researchers have used a neural network in the same way. The three most relevant

papers to H-adaptation will be reviewed here. The first paper by Tingfan et al. (2022) uses a neural

network to assist R-adaptation by interpolating a CFD flow field. The second paper by Yang

et al. (2021) trains a hypernetworks, a linked series of ANNs, to drive H-adaptation for advection

problems. The third paper by Fidkowski & Chen (2021) trains an ANN to replace a sub-algorithm

in a complex H-adaptation procedure.

5.1.1 R-Adaptation with the Assistance of an Artificial Neural Network

Tingfan et al. (2022) deployed an ANN in an attempt to speed R-adaptation by lowering the com-

putational burden of the mesh update iteration. The mesh update iteration normally requires either

intermittent execution of the CFD solver to adjust the flow field to the new mesh — which is time

consuming — or it requires execution of an interpolation algorithm — which is inaccurate. The

proposal was to update the flow field by way of a neural network, achieving accuracy at low cost.

It is worth noting that the feasibility of this proposal is debatable because the maneuver requires

that the ANN be trained on the initial flow field, a lengthy process that could negate any speed

benefit. Nevertheless, Tingfan et al. reported success with the type of flow fields tested, which

were extremely simple: 2 dimensional, static, and non-turbulent. The authors also found that a

seven layer NN outperformed the accuracy of inverse distance weighted interpolation.

The paper leaves open the question of generalizability. In particular, it is not clear that the

proposed network’s size and topology will be sufficient for complex flow fields. That means the
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network might require re-crafting on a case-by-case basis. In fact, the paper’s data suggests the

likelihood of this flaw is high. It reports that when the ANN was transitioned between artificial

flow fields of increasing complexity, the ANN required expansion. Another weakness is that the

training data is limited by design to the informational content of the flow field, casting doubt on the

degree of accuracy compared to fancy interpolation methods. That said, neither flaw detracts from

the demonstrated potential of an ANN to memorize a complex image and extrapolate embedded

patterns. Furthermore, both the problem of generalizability and accuracy might be solvable in the

figure with a physics-informed neural network, trained on the actual flow physics of Navier-Stokes

(Raissi et al., 2019).

5.1.2 H-Adaptation by Hypernetworks and Graph Neural Networks

Yang et al. (2021), sought to apply hypernetworks1 and graph neural networks2 to the task of

H-adaptation, producing meshes for time-dependent advection. The goal of the research was to

produce a generalizable ANN that could adapt meshes for simulations dissimilar from the training

data.

The primary contribution of the research was a new way to conceptualize the underlying math

problem, which made it possible to use neural networks in the desired way. The adaptation pro-

cedure needed to produce a sequence of meshes, tuned for the unknown advection field at each

timestep. The proposed approach was to envision the task of finding the ideal mesh sequence as a

probabilistic Markov decision process, where the infinite variety of possible meshes constitutes an

abstract space of probabilities. This creative idea re-cast the job of the ANN from mesh-adapter to

pilot. The ANN needed to calculate an abstract path through the space of probabilities, yielding

the best possible sequence of meshes.

After presenting the re-conceptualization of the math problem, the researchers leveraged prior

1A hypernetwork is an extended version of the normal ANN, featuring a sub-network that controls the between-
neuron weights of another ANN (Ha et al., 2016).

2A graph neural network is a type of ANN specialized to process data in graph form (Scarselli et al., 2008).
“Graph” is referring to a linked network of nodes, not an image.

94



work in hypernetworks and graph neural networks to craft several ANNs capable of handling the

needed sequential decision-making. As a final test of those ANNs, the researchers set up a simple

training exercise with an advection simulation.

They researchers crafted a group of simple truth fields for which exact L2 errors could be

calculated. They used very simple geometric shapes: bumps, circles, a flat plane, and stair-steps.

The ANNs were presented with advection simulations of the fields on auto-repeat, allowing the

ANNs to explore the effects of their refinement decisions. The result was reportedly several ANNs

that could drive the H-adaptation process. However, no attempt was made to try out the final ANNs

on any complex problems.

5.1.3 ANN assisted Adjoint-Adaptation for CFD

Fidkowski & Chen (2021) proposed a four-part adaptation procedure, consisting of: 1) an adjoint-

based error estimator, 2) an interpolation-based error estimator, 3) an ANN, and 4) the 2D mesher

BAMG.3. With a dizzyingly complex array of algorithm interconnections, the ANN was config-

ured to take input from: 1) the adjoint estimator, and 2) the interpolation-based estimator, while

funneling its output data to BAMG.4 The entire complex was a copy of an earlier super-algorithm

into which the ANN had been dropped, replacing a sub-component algorithm called MOESS.5

The training was successful, resulting in a cross-linked, multi-part adaptation procedure. In

final analysis, Fidkowski & Chen (2021) claim that the ANN outperformed the original MOESS,

exhibiting greater restraint when challenged by outlier inputs. Fidkowski & Chen also report that

the ANN learned to calculate in one step what MOESS required many interactions to produce.

The complexity of the (Fidkowski & Chen, 2021) setup is daunting. With the additional 2D

limitation of BAMG and the already high cost of the adjoint calculation, it is safe to conclude that

the proposed machine is not close to the final solution for H-adaptation. However, the experiment

3Bi-dimensional Anisotropic Mesh Generator: (Hecht, 1998)
4BAMG itself was configured with dual input data streams, one from the ANN and the other direct from the adjoint

estimator.
5Mesh Optimization via Error Sampling and Synthesis: (Carson et al., 2020)
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Figure 5.1: Illustration of a Feedforward Neural Network (FFNN). When there are two or more
hidden layers, the network is to as a Multilayer Perceptron (MLP). (Reprinted, with edits from
Phommachanh, 2021)

appears close to the optimal utilage of an ANN for the problem of H-adaptation. To summarize:

• Drop the ANN in place of an already existing algorithm for optimized meshing.

• Feed the ANN all potentially relevant data, spanning both geometry and flow field.

• Train the ANN to mimic the optimized meshes of the algorithm it is intended to replace.

5.2 Mesh Adaptation by Machine Learning

The experiment underlying Phommachanh’s MS thesis is similar in style to the work of Fidkowski

& Chen (2021), but the type of algorithm replaced by the ANN is different, the mesh type is dif-

ferent, the supporting adaptation framework is different, and so is the targeted CFD problem. The

replaced algorithm was an error estimator from this dissertation, specifically T.L.errE, described in

Chapter 2. The mesh type was 3D unstructured hexahedral. The supporting adaptation framework

was the one described in Chapter 3. The targeted CFD problem was turbulence. What is reported

next is the description of the complete experiment, beginning with a summary of the ANN and its

training (Phommachanh, 2021) and then extending into the CFD testing of the trained ANN.
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5.2.1 The Neural Network

The neural network was a fully connected Multilayer Perceptron (MLP), a type of Feed Forward

Neural Network (FFNN) with more than one hidden layer. Figure 5.1 diagrams the basic structure.

Data flows through the network left to right, per the direction of the arrows, passing from one layer

of neurons to the next. At each neuron n, the incoming datums are uniquely weighted and summed.

The group is then biased and passed to an activation function, producing a single output datum,

per neuron, for the next layer of the network to operate upon. Activation functions come in many

varieties. The important characteristic that they share, at least for the work here, is that of non-

linearity, for it is the non-linearity of the activation function, in combination with the hidden layers,

that imbibe the ANN with its capacity as a universal function approximator (Pinkus, 1999). The

activation function used here is the LeakyReLU activation function, equation (5.2). The per-node

datum weighting and biasing is mathematically represented by equation (5.1). In these formulas,

bold symbols denote column matrices, and subscript n refers to neuron ID number.

yn = φLeakyReLU

(
bn + wT

n x
)

(5.1)

φLeakyReLU( x ) ≡


x for x ≥ 0

αx for x < 0, with 0 < α < 1
(5.2)

In this work, α ≡ 0.03.

As is the case for biological neural networks, an ANN requires training before use. During

training, example data is passed into the ANN and the random errors that emerge are backpro-

pogated through the neuron layers, tuning the per-node weights and biases, wn and bn. The training

is akin to least-squares regression but instead of twisting a function of known form to fit laboratory

data, the aim is to solve for the function itself. That function will form in the “mind” of the ANN,

and it will never be written in equation form. Thus, the great power and weakness of ANNs is that

they may be trained to mimic patterns which the trainer does not understand.
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Layer Neuron Quantity
First 256
Second 128
Third 64
Fourth 32

Table 5.1: Size of the neural network. (Phommachanh, 2021)

A danger with any regression problem, ANN training included, is that the math model will

either overfit or underfit the data. That is, the math may have so much inherent flexibility that

it will exactly mimic the training data, errors & all, failing to infer general patterns. Conversely,

the math may be so rigidly inflexible that it also fails to extract the patterns. Although there is no

guaranteed way to avoid the dangers, mitigation is possible. The common training technique is

to split the training data into parts, reserving a portion purely for testing and a portion purely for

validation.

For the KU experiment, the goal was to train an ANN with size as reported by Table 5.1 to

mimic the error estimators T.L.errE. The network was provided with per-cell data consisting of: 1)

the cross cell distance and 2) the average velocity field.

Training data for the ANN was sourced from two meshes from the T106c simulation: the base

mesh and the once H-adapted mesh from T.L.errE. The list of 63,498 cells was split randomly,

partitioned with 70% for training, 20% for testing, and 10% for validation. The ANN was trained

to reproduce the raw error values assigned to each cell by error indicator T.L.errE, a task requiring

2000 training epochs (iterations). Batch size was 10, and the learning rate was 1.0 × 10−5.

Figure 5.2 is an illustration of how well the final ANN was able to mimic the T.L.errE error

estimator upon one of the training meshes. The figure shows a wire frame view from mesh with

solid red cubes marking cells that have been flagged for subdivision. The few solid white cubes

mark cells that have been flagged indirectly, through the action of the smoothing algorithm 1,

discussed in Chapter 3. Subfigure 5.2a shows the work of the formula version of T.L.errE while

Subfigure 5.2b shows the work of the ANN.

98



(a) flagged cells from the formula version of T.L.errE

(b) flagged cells by the ANN

Figure 5.2: Demonstration of the successful training of the ANN. Subfigure 5.2a draws the flagged
cells upon the base mesh of T106c with the formula version of T.L.errE. Subfigure 5.2b draws the
cells flagged by the trained ANN.
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5.2.2 CFD Tests

The trained ANN-based error estimator was tested on both of the prior two CFD simulations:

T106c and T106a. Presented next is an analysis of those simulations.

5.2.2.1 T106c

Figure 5.3 contrasts the cell adaptations between the ANN-trained version of T.L.errE and its prede-

cessor formula T.L.errE. Significant differences between the refinement pattern are visible. While

T.L.errE refined in the unstable wake, T.L.errE refined along the path of detached flow. The differ-

ence in the refinement pattern can mainly be attributed to the difference in input data type to the

error estimators. T.L.errE operates upon the instantaneous flow field velocity, while T.L.errE oper-

ates upon the average flow field velocity. Because the average velocity field is averaged, it lacks

the unstable turbulent wake. Consequently, the only detail left for T.L.errE to act upon are the areas

of rapid spatial change, which in this case is the path of the detached jet.

Figure 5.4 represents the lift and drag coefficient plots from Chapter 4 Section 4.1, adding the

data from the ANN. The CL sequence from the ANN is low quality, but not worse than smthE. For

CD, the ANN error estimator is on par with the other error estimators.

Figure 5.5 plots the energy spectra from the ANN-based error estimator, with the pressure

spectra at top and the turbulent kinetic energy spectra at the bottom. Both graphs show that the

first round of refinement from the ANN boosted the turbulent resolution, but the later rounds of

refinement did not. Referring back to Figure 5.3, it is easy to explain why the estimator seemed

to stall. It was only at the step #1 refinement that the error estimator adapted in the vicinity of

the turbulent wake. So although the error estimator was undoubtedly improving the flow field

elsewhere for steps #2 and #3, it was not boosting resolution of the visible turbulence.

Finally, Figure 5.6 renders a sequence of the Reynolds stresses, the vv component. The bottom

two subimages are of the DNS field (left) and the T.L.errE field (right). The ANN error estimator

clearly did well here, comparable to T.L.errE, in terms of matching DNS.
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Figure 5.3: Zoomed view of the cells flagged from simulation T106c.
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(a) Lift coefficients for T106c

(b) Drag coefficients for T106c

Figure 5.4: progression of the lift and drag coefficients for simulation T106c
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Figure 5.5: Progression of the energy spectra for T106c from the ANN.
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(a) base mesh (b) T.L.errE refinement #1

(c) T.L.errE refinement #2

(d) DNS (e) T.L.errE refinement #2

Figure 5.6: The first three sub-images show the progression of the VV component of Reynolds
stress from error indicator T.L.errE computed by the ANN upon simulation T106c. The two sub-
images at the bottom, for comparison, are from the DNS simulation (left) and refinement #2 from
T.L.errE.
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5.2.2.2 T106a

Figure 5.7 shows which cells were flagged by the ANN upon the T106a test case, contrasting with

T.L.errE. It should be noted that the ANN was never trained upon any T106a, so the fact that it was

able to operate at all upon T106a is already a measure of success. Comparing the flagged cells

between the two error estimators, it is apparent that the ANN gave relatively little priority to the

turbulent wake. While T.L.errE refined three times over the entire wake, the ANN only performed

similarly in the area immediately behind the blade. Instead, it targeted the path of the detached

flow and also — inexplicably — intermittent groups of collinear cells along the blade boundary.

The ANN also refined irregularly scattered patches above and below the blade. The haphazard

patchwork gives the impression that at least some of the ANN’s choices are due to randomness.

Figure 5.8 illustrates the effect wrought by the eclectic refinement pattern upon the lift and drag

coefficients. Note that the plots contain the extra refinement round to illustrate the trend lines. The

ANN’s refinement choices have clearly put the simulation on a different trajectory than the other

three error estimators. Whereas the other three error estimators move straight downward toward

the truth reference on the CL plot, the ANN moves upward in what might be the beginning of an

arc. On the CD plot, the other three error estimators move upward, overshooting the target, but the

ANN moves downward and then angles up toward the truth reference. The ANN’s trajectory puts

it in last place for CL but at second place for CD.

The ANN’s success at CD suggests that it might be more successful than the other error esti-

mators at uncovering the hidden dynamics of the T106a flow field. To find out, Figure 5.9 plots

the energy spectra. In these plots, colors designate the different rounds of H-adaptation. Blue

is the base simulation. Orange is the first found of H-adaptation. Green is the second round of

H-adaptation. Black is the truth reference.

Unfortunately, the plots do not provide evidence that the ANN has discerned the elusive dy-

namics of the T106a flow. In fact, the low frequency peaks do not appear to improve at all as

the ANN’s H-adaptation progresses. However, in the high-frequency part of spectra, the ANN is

clearly doing well at driving the spectral curves toward the truth line.
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Figure 5.7: Zoomed view of the cells flagged from simulation T106a.
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(a) Lift coefficients for T106a

(b) Drag coefficients for T106a

Figure 5.8: progression of the lift and drag coefficients for simulation T106a
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Figure 5.9: Progression of the energy spectra for T106a from the ANN.
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Figure 5.10 is the final plot sequence, showing the VV component of the Reynolds stress tensor.

The first images are the refinement sequence from the ANN. The bottom two are the “P4 uref1”

truth reference (left) and the refinement #2 solution from T.L.errE. These plots show that the ANN

has majorly sharpened the Reynolds stress image, but it has not quite gotten the correct distribution

shape. T.L.errE doesn’t have the correct shape either, but it is closer to the truth reference than the

ANN.

5.2.3 Assessment

As an error estimator, the ANN is effective. It is not the best error estimator out of those tested.

The ANN was created and trained as an experiment in machine learning to determine the viability

of training an ANN as an error estimator.

5.2.4 Recommendations for Future Machine Learning Study

There are several ways to build upon and improve the results. The first is to train the network to

mimic a more capable error estimator formula. The runtime flow field data provided to the ANN

could be broadened. The second way to boost performance is to increase the amount and variety

of the training data. Generating that training data will be a slow process if CFD simulations are

used to produce it, so a better source for training data may be the error estimator formula directly,

via Monte Carlo.

One of the shortcomings of the current ANN is that it is limited to polynomial order P2. That

limitation exists because the network was built to consume per-cell flow field data of a specific size

and sequence. Unfortunately, the amount and the grouping of the per-cell data changes with the

polynomial order, shattering the ANN. So, one of the longer term items for a future investigator to

tackle is to design an ANN that can operate independently of the polynomial order.
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(a) base mesh (b) T.L.errE refinement #1

(c) T.L.errE refinement #2

(d) “P4 uref1” (e) T.L.errE refinement #2

Figure 5.10: The first three sub-images show the progression of the VV component of Reynolds
stress from error indicator T.L.errE (computed by the ANN) upon simulation T106a. The two sub-
images at the bottom, for comparison, are from the “P4 uref1” simulation (left) and refinement #2
from T.L.errE.
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Chapter 6

Conclusions and Future Work

6.1 Summary

CFD error estimation methods were judged on driving mesh adaptation. Four specific error esti-

mators were introduced, formulated especially for use with the discontinuous high-order FR/CPR

numerical scheme, targeted for simulation of unsteady turbulence via LES. Those error estimators

are:

• smthE, founded upon a shock-capturing gradient algorithm

• T.L.errE, founded upon an estimate of small-scale turbulent kinetic energy

• unStdE, founded upon a subtractive difference of the unsteady flow residual

• T.L.errE, a less computationally burdensome variant of T.L.errE.

Formulas were derived for the error estimators, and their characteristic behaviors elucidated by

both theoretical derivation and numerical testing. The numerical testing was supported by devel-

oped software that performs error-guided H-adaptation of 3D unstructured hexahedral meshes. The

software has two parts: 1) a stand alone mesh adapter and 2) a flow field error estimation module.

The error estimation module implements the error estimators, incorporating their calculations into

a highly parallelized FR/CPR flow solver program. The error estimation module & flow solver run

simultaneously.

The performance of both the software and the error estimators were proven upon two classic

benchmark LES challenge problems, featuring transitional turbulence over the T106 low pressure
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turbine blade. Upon the T106c and T106a simulations, the error estimators all demonstrated an

ability to locate the turbulent parts of the flow field and boost the resolution of the turbulence.

Under their influence, unresolved vortex structure became visible; force coefficients moved toward

truth, Reynolds stresses sharpened, and the turbulent energy spectra came into view. The error

indicators were not equally quick in converging the simulations to truth. Indicator smthE was

consistently the slowest while T.L.errE and unStdE were in close competition for fastest.

It was also found that each of error indicators is sensitive to an independent characteristic of

the flow field, so depending on which characteristic the CFD analyst wishes to emphasize, he or

she should choose the indicators according to the following list:

• Error indicator smthE picks out un-smooth regions of the flow, specifically areas with a high

degree of spacial variability. When controlling a mesh adapter, it will primarily enhance the

resolution of the boundary layer

• Error indicator T.L.errE picks out energy dense regions, specifically areas rich in under-

resolved vortex motion. When controlling a mesh adapter, it will primarily enhance vortex

dominated regions, especially wakes.

• Error indicator unStdE picks out “active” regions of the flow, specifically areas that are tem-

porally very dynamic. When controlling a mesh adapter, it will distribute resolution both

in vortex dominated areas and within surface boundary layers, refining in similar areas as

T.L.errE but not as far from the surface, not as far downstream, and not as wide an area of

coverage.

If the CFD analyst wishes to boost simulation spatial resolution as fast as possible, he is advised

to choose either T.L.errE or unStdE. unStdE is easier to implement in the context of FR/CPR, but

T.L.errE is slightly more performant as a driver of H-adaptation.
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6.2 Future Research

This research involved the development of a toolset that has opened a considerably wide array of

potential follow-up investigations. The first spin-off project, a machine learning endeavor to train

an artificial neural network as an error estimator, followed quickly the creation of the adaptation

system and became a joint project, covered in this dissertation. Several specific suggestions for

future research are listed below, organized by their relation to the error estimators or the adaptation

machinery.

6.2.1 Future Research Regarding the Error Estimators

1. Subcomponent Tuning for unStdE and smthE

The formula for unStdE, Equation (2.12), includes a weighted average of subcomponent vari-

ables, one per flow field variable. It was observed in testing that these subcomponents can

possess an order of magnitude size difference, indicating that the simple average might not be

the best way to combine them. It is suggested that a future research project explore alterna-

tives. For instance, it may be beneficial to apply exponential scaling or dissimilar weighting

to the average.

For error estimator smthE, it might be beneficial to alter the time-averaging applied at the

final step of its formula, Equation (2.15), replacing it with a maximum operator. In other

words, the cell flagging could be based on the maximum error value witnessed over the sim-

ulation’s time history. The delivered code already has the ability to perform the adaptation

in this way, but the effect is not completely tested. Early results suggest that this change to

the formula may impart to smthE the ability to find some flow field features that unStdE and

T.L.errE cannot.

2. A Multi-Faceted Error Estimator

Since each of the error estimators is sensitive to an independent dynamic of the flow field and
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all of them are related to the flow field’s resolution, it is worth exploring to see if the error

estimators are combinable to yield a super-estimator. The super-estimator might gain benefit

by running the sub-indicators cyclically or by operating them as a voting ensemble. The

super-estimator could also be augmented with useful information about the flow field. For

example, a physics & geometry constraint could be applied to near-wall cell size, ensuring

the boundary layer cells will have enough isotropy to support near-wall vortices.

3. Add a Stopping Criteria

To prevent an LES simulation from turning into a DNS simulation, it is necessary to halt the

mesh refinement before spatial resolution becomes too high. A useful future research project

would be to add a refinement-stopping criteria to the error estimation system. A good starting

place might be the physics-based LES quality indicator from (Celik et al., 2005), covered in

the literature review.

6.2.2 Future Research Regarding the Adaptation Machinery

1. Add support for more cell shapes.

The CFD flow solver supports all four of the cell shapes that can appear in unstructured

meshes: hexahedra, tetrahedra, pyramid, and triangular prism. However, the mesh adapter

fully supports only one cell shape: hexahedra. The mesh adapter could be expanded to

provide support for all of the cell shapes so that error-adapted meshes can be created for all

simulations. The challenge of adding these cells is that the researcher has to devise a way

to isotropically split pyramids and triangular prisms into equal-sized, equal-shaped parts.

Tetrahedral splitting could be accomplished by placing a node at its centroid and running a

line to each vertex.

2. Add hanging node support to all operating modes of the FR/CPR flow solver

The FR/CPR flow solver has the ability to run upon a GPU cluster, but the GPU executable

cannot handle hanging node meshes. Hanging node support could be implemented, yielding
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a combined speedup from both the GPU execution and the adaptive meshing.

3. Add decimation ability.

The developed adaptation software can only add resolution. It cannot optimize resolution

if there is already too much resolution. A future research project could expand the soft-

ware to dynamically combine cells, subtracting resolution that is not providing benefit to the

simulation.
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