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Abstract

This thesis presents considerations for determining a meritorious time integration strat-

egy for a system of linear and nonlinear ordinary differential equations (ODEs) in

time resulting from decoupling space and time in initial value problems (IVPs) using

GM/WF for the spatial discretization. It is shown that Wilson’s θ and Newmark’s

methods are meritorious over the others. It is further established that Newmark’s

method is meritorious over Wilson’s θ method for integrating ODEs in time result-

ing from non-structural applications such as the mathematical models in Eulerian de-

scription for fluid mechanics. Newmark’s linear method is considered for integrating

linear and nonlinear first order and second order ODEs in time resulting from decou-

pling space and time for IVPs derived in Eulerian and Lagrangian descriptions of the

deforming continua. The assumption of isothermal physics reduces the mathematical

models of the IVPs to the Balance of linear momenta (BLM) in Eulerian and La-

grangian descriptions. In the present work we consider a space-time decoupled finite

element method in which the space-time approximations of the dependent variables

use approximation functions in space while the degrees of freedom are functions of

time. This assumption induces space-time decoupling. Galerkin method with Weak

form (GM/WF) for spatial discretization of the spatial domain is the preferred method

of constructing the integral form in space. Integration over the spatial discretization

yields a first order or second order system of linear or nonlinear ODEs in time. Though

decoupling of space and time may introduce irreversible damage, the benefits in terms

of simplicity of implementation and the speed of the calculations outweigh the short-

comings, particularly for IVPs in R3 for which a space-time coupled approach is al-
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most prohibitive. Discretization and p-level in space are based on converged solutions

of the corresponding boundary value problems (BVPs). Integration time step, ∆t, is

based on smoothness of the evolution and consideration of the stationary state of the

evolution being the same as the solution of the corresponding BVP. The work pre-

sented here needs to be augmented with stability analyses in order to realize its full

potential as it is only then we have a criteria for the choices of ∆x and ∆t. A priori and

a posteriori analyses in conjunction with stability analyses will enable optimal choices

of discretization ∆x, p-levels in space, and time integration step, ∆t.
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Chapter 1

Introduction, Literature Review and Scope

of Work

1.1 Introduction

The mathematical description of the state of matter in which quantities of interest change at

spatial locations as time elapses often leads to partial differential equations (PDEs) in which the

quantities of interest, dependent variables, exhibit simultaneous dependence on space and time.

Mathematical models consisting of the PDEs are generally referred to as Initial Value Problem

(IVPs). The most natural way to consider solutions of IVPs is to consider a space-time coupled

method in which simultaneous dependence of the dependent variable on space and time is pre-

served. When considering methods of approximation for IVPs, space-time coupled finite element

methods [1] are highly meritorious. In this approach one considers space-time finite elements to

either discretize the entire space-time domain or to discretize a space-time strip or a slab for an

increment of time followed by time-marching to compute the evolution up to the desired value of

time. Benefits and shortcomings of these two approaches are discussed in [1]. It has been shown

that using a space-time strip with time-marching is highly meritorious over a space-time mesh for

the space-time domain in all aspects for IVPs. When space-time variationally consistent space-
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time coupled finite element processes are constructed using space-time local approximations in

higher order spaces, accurate a posteriori computation of the residual functional is possible which

provides an absolute measure of the accuracy of the computed evolution without the knowledge of

the theoretical solution of the IVP. This feature permits computations of time accurate evolution for

all values of time desired. While space-time coupled FEM works exceptionally well and is highly

meritorious in R1 and R2, use of this approach for IVPs in R3 becomes impractical due to three

spatial coordinates and time. Local approximations, space-time discretizations, and computations

become almost prohibitive.

Thus, for IVPs in R3 there is a need for an alternate computational strategy in which the com-

plications using the space-time coupled approach in R3 can be avoided. This is the main incentive

to undertake the investigations presented in this thesis. Approximation methods that are based on

decoupling space and time have long been in use in context with with finite difference and finite

volume methods. Ever since the advent of FEM in 1968, space-time decoupled finite element

methods have been in use for obtaining solutions of IVPs. Even though all space-time decoupled

methods are based on non-concurrent treatments in space and time which is contrary to the physics

described by IVPs. These methods permit solutions of IVPs in R3 with greater simplicity and

secondly offer a variety of methodologies for obtaining final time evolution. In the present work

we only consider the space-time decoupled finite element method. In all space-time decoupled

methods for IVPs the system of PDEs is converted into a system of ordinary differential equations

(ODEs) in time. This approach of decoupling space and time in space-time decoupled finite el-

ement processes is highly meritorious over those that are considered in finite difference or finite

volume methods. The solutions of the resulting system of linear or nonlinear ODEs in time can be

obtained by

1. Finite Element Method in time

2. Direct time integration methods such as Runge-Kutta methods

3. Explicit time integration methods such as Euler’s method
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4. Implicit time integration methods such as Houbolt’s method, Wilson’s θ method, and New-

mark’s method, etc.

Choice of a stable and accurate time integration scheme is obviously crucial in obtaining so-

lutions of ODEs in time. While the linear system of ODEs in time pose no particular difficulty

in obtaining their solutions, nonlinear systems of ODEs in time require prudent use of iterative

methods for each increment of time to obtain a converged solution [2–17].

1.2 Literature Review

Some of the common methods of time integration used for ODEs in time are discussed in the

following. Newmark [3] presents a derivation and explanation of different parameters in his inte-

gration scheme. These two parameters γ and β decide how much of an influence the acceleration

is going to have on the velocities and displacements at t + ∆t. Different choices of γ and β per-

mit different time integration formulations. Wilson’s θ method [4], is very similar to Newmark’s

method. In this method equilibrium is considered at t + θ∆t followed by calculating the solution

at t + θ∆t and then at t + ∆t. For θ = 1.4 this method is found to be unconditionally stable for

second order linear systems of ODEs in time, and at a value of θ = 1.0, Wilson’s θ method reduces

to Newmark’s method.

Perhaps the earliest published work on numerical integration of ODEs in structural dynamics

resulting from space-time decoupling using Galerkin method with Weak Form (GM/WF) in space

is due to Hughes [2]. This paper considers Newmark’s linear average acceleration method for time

integrating nonlinear second order ODEs in time.

MMM ··· ..
uuu+CCC ··· .

uuu+KKK(uuu)uuu = fff

In which MMM and CCC have constant coefficients, but the coefficients of KKK are functions of uuu.

Integration schemes presented are intertwined with the energy functional, which is not a valid
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concept for nonlinear systems. The numerical examples contain trivial cases of nonlinearities far

removed form the nonlinearity in structural dynamics due to finite deformation and finite strain.

In another paper [5], the authors consider multitudes of different physics leading to nonlinearities,

without a clear and concise definition of the precise form of the ODEs addressed and the most

meritorious integration technique for them. A host of different time integration methods are dis-

cussed for a first order system of ODEs in time derived using auxiliary variables(s) and auxiliary

equations. Reference [6], considers second order ODEs in time for which finite element method in

time is used in which the integral form is in time is constructed using GM/WF in time.

In Wood, Bossak, Zienkiewicz’s (WBZ-α) work [7] authors propose modifications of New-

mark’s method as well as Hilber, Hughes, and Taylor (HHT-α) [8]. In both of these works a new

parameter, α, is introduced. The α parameter introduces numerical dissipation to the integration

scheme for the higher modes which was found to be desirable in both works. The WBZ-α method

aims to add positive dissipation to the integration scheme and results from WBZ-α method show

that there is less artificial dampening in the lower modes using their algorithm.

Chung and Hulbert considered the methods in [7, 8] and derived a generalized-α method that

utilizes two damping parameters, αf and αm [9]. These parameters are determined based on the

amount of dissipation wanted in integration of the higher modes. Erlicher [10] also proposed

another variation of a generalized-α method for non-linear systems of ODEs in time by combining

the WBZ-α and HHT-α methods. Results showed high overshoot in the computed solution and

bad oscillations in energy.

There are other published papers that use variations of these methods for structural dynam-

ics [11–17]. Many of these works discuss the use of different parameters to bias the integration

schemes to yield desired solutions.

In the last two decades, there has been very little published work related to solutions of IVPs by

decoupling space-time and, subsequently, integrating ODEs in time. The solutions of ODEs result-

ing from non-structural applications are almost exclusively obtained using Runge-Kutta methods

of fourth or higher orders. Whereas in structural mechanics applications, (second order ODEs in
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time) the solution of the ODEs are obtained using Wilson’s θ method with θ = 1.4 based on linear

acceleration or Newmark’s method based on constant average acceleration. We have found that for

whatever reasons, Runge-Kutta methods are rarely or almost never used in structural applications.

Likewise, Wilson’s θ and Newmark’s methods have not been used in non-structural applications

such as solutions of ODEs in fluid mechanics and gas dynamics.

This observation is almost strange from the point of view that a single unified, general and

robust integration scheme that is applicable to all ODEs in time, regardless of their origin, has

never been pursued in the published works. This is the primary focus of this research, to investigate

if such an integration scheme is possible for ODEs in time regardless of their origin or field of

application.

1.3 Scope of Work

In Runge-Kutta methods of various orders, the sum of overlapping areas in the time interval

with weighting coefficients are used to approximate the area under the curve between tn ≤ t ≤

tn+1. The expressions for these overlapping areas are derived using Taylor series expansion at

points between tn ≤ t ≤ tn+1. In these methods there are many drawbacks.

1. Knowing the solution at tn, one obtains a solution at tn+1, but for any tn < t < tn+1 we

don’t know the solution. That is the method lacks a description of the situation as a function

of t in the time interval tn ≤ t ≤ tn+1. This in itself is bad, but another serious limitation of

this is that it prevents determination of norm of any kind (such as L2-norm).

2. In the case of nonlinear ODEs in time, when the solution is advanced from time tn to tn+1

(solutions being known at tn) the expressions for the area constants are nonlinear i.e. they are

functions of unknown solution at tn+1. In this case, an iterative method is necessary for the

Runge-Kutta schemes in order to calculate a converged solution at time tn + ∆t. At present,

in many cases, linearized expressions are used for the area constants. This is obviously not

consistent mathematically and may lead to erroneous evolution.
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On the other hand, in Wilson’s θ method and Newmark’s method that have been strictly de-

veloped for structural mechanics applications (have never been used in non-structural applications

to our knowledge), there is a concept of a precise description of the solution as a function of time

over each integration time interval. In Wilson’s θ method based on linear acceleration in the time

interval [tn, tn + θ∆t], the displacement is a cubic function of time in the interval [t, t + θ∆t]. In

Newmark’s constant average acceleration method in the time interval [tn, tn + ∆t], the displace-

ment is quadratic in the time interval [t, t + ∆t]. Thus, we see that in both of these methods the

solution is obviously known (after calculation) at tn and tn+1 (= tn + ∆t) but we also have an

analytical expression in t for the solution at tn and tn+1 that describes how the solution behaves for

(tn, tn+1). This feature is extremely valuable in computing any described norms essential for error

estimation or error computation.

In the case of linear structural mechanics, one could decouple space and time in the mathemat-

ical model of the IVP using GM/WF in space and then transform the resulting system of coupled

second order ODEs in the modal basis. With the assumption of Rayleigh damping one could obtain

a system of decoupled second order ODEs. This permits stability analyses [1] of the Wilson’s θ

method and Newmark’s method using just a single ODE, as all of the ODEs are precisely similar

and only differ in natural frequency ωi and corresponding damping coefficient ζi. This allows us

to establish the unconditional stability of Wilson’s θ method and Newmark’s method for linear

structural dynamics.

Superiority of Wilson’n θ method and Newmark’s method over Runge-Kutta methods is rather

obvious from the discussion given above. When considering the use of Wilson’s θ and Newmark’s

time integration methods for general non-structural applications requires further considerations.

For a specific system of linear first order ODEs in time it is easier to derive the details of the meth-

ods, these can perhaps be generalized for a system of first order ODEs resulting from space-time

decoupling of the IVPs in Eulerian descriptions. We first consider a general system of ODEs (first

order or second order, linear or nonlinear) to describe some important steps involved in Wilson’s θ

method and Newmark’s method.
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1. Whether we choose Wilson’s θ method or Newmark’s method is irrelevant in the case of

linear structural dynamics, but this is not the case for non-structural applications. Choice of

θ = 1.4 only holds for linear dynamics in the modal basis, thus using Wilson’s θ method

without the knowledge of θ can be detrimental. Determination of θ for the application at

hand requires stability analysis. This limitation favors choosing Newmark’s method in which

stability is the issue for non-structural applications but there is no such requirement as θ in

Wilson’ θ method.

2. In structural mechanics applications for t ≤ tcritical

10
(based on time period) both methods yield

reasonable accuracy [1], however Wilson’s θ method has base elongation, but Newmark’s

method does not. This feature also favors Newmark’s method.

3. In the case of Newmark’s method we have two choices:

(a) Assumption of constant average value of the highest derivative of the dependent vari-

able in the interval [tn, tn + ∆t].

(b) Linear approximation of the highest derivative in the interval [tn, tn + ∆t]. This is

obviously superior over (a) as this is an approximation of one degree higher than in (a)

in time t.

Thus, Newmark’s linear method is meritorious of consideration for systems of ODEs in time

resulting from decoupling of space and time in the IVPs.

4. In the case of linear ODEs in time we must derive a recursive relationship based on the

assumption of linear variation of the highest order time derivative in the time interval [tn, tn+

∆t] followed by satisfying ODEs at time tn + ∆t. This allows us to compute the solution for

progressively increasing time with known initial conditions.

5. In the case of nonlinear ODEs in time we proceed as in (4). The recursive solution for

time marching in this case is nonlinear, hence it must be dealt with iteratively. We propose
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to use Newton’s linear method for each time interval to obtain a converged solution before

commencing to the next time step.

6. In decoupling space and time the choice of discretization in space and the choice of p-levels

is important. In the present work we choose these based on the converged solutions of the

corresponding BVPs.

7. The choice of ∆t is primarily based on oscillation free evolution and comparison of the

stationary state with the solution of the corresponding BVP.

In this thesis we consider IVPs in Lagrangian (Solid mechanics) as well as Eulerian (Fluid

mechanics) descriptions. For small strain-small deformation mathematical models (IVPs) in solid

mechanics, are primarily BLM. These are linear second order PDEs in space and time when ex-

pressed in terms of displacements. When the deformation and strain are finite the BLM results in

second order nonlinear PDEs in space and time for isothermal physics). In the present work we

consider both linear and nonlinear systems of second order PDEs in space and time resulting from

BLM in the Lagrangian description.

In the case of the Eulerian description, the IVPs as used in fluid mechanics, also results primar-

ily in BLM which are naturally a system of nonlinear PDEs in space and time. In the present work

we consider a variety of representative mathematical models in the Eulerian description. Convec-

tion Diffusion equation, Burgers equation, Pure Advection, and the Energy equation representing

transient heat conduction in the presence of a diverging-converging velocity field.

In all IVPs a space-time decoupled formulation is constructed using GM/WF in space. So-

lutions of the resulting linear or nonlinear ODEs in time are obtained using Newmark’s linear

method, linear acceleration or linear velocity, for second order systems and first order systems

of ODEs in time respectively. In many cases the solutions obtained by the space-time decoupled

method are compared with solutions from space-time coupled methods to demonstrate accuracy of

the evolution obtained from the space-time coupled methods.

Stability analysis of the system of coupled linear ODEs resulting from decoupling of space
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and time in the IVPs using GM/WF in space can not be based on the approach used in Wilson’s

θ method and Newmark’s method as these ODEs can not be transformed into modal basis. Thus,

decoupling of the ODEs in time appears not feasible (at least at this stage). Investigation of the

stability of Newmark’s linear method for coupled linear systems of ODEs requires further work

and is beyond the scope of work undertaken in this thesis.

A priori error estimation and a posteriori error computation procedures for Wilson’s θ method

and Newmark’s method have been developed by Surana and Surana et al [1,18] and can be extended

for the time integration using Newmark’s method used for the ODEs considered in this thesis

arising from non-standard applications. This requires further consideration and is also beyond the

scope of work considered here.
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Chapter 2

Decoupling space and time in IVPs

2.1 Introduction

As discussed in Chapter 1, there are many approaches of decoupling space and time in IVPs.

The space-time decoupled finite element method is highly meritorious over all others as it enjoys

the benefits of the mathematical foundation of the calculus of variations. In this chapter we first

present a general treatment of decoupling space and time for linear and nonlinear IVPs.

2.2 Decoupling of space and time in space-time decoupled finite

element processes

Consider an initial value problem

Aφ− f = 0 ∀(x, t) ∈ Ωxt = Ωx × Ωt (2.1)

with some boundary conditions and initial conditions. In space-time decoupled finite element

methods we discretize the spatial domain Ω̄x such that the discretization Ω̄T
x =

⋃
e

Ω̄e
x(x, t) in which

Ω̄e
x is the spatial domain of element Ωe. Let φh(x, t) be the approximation of φ over Ω̄T

x such

that φh(x, t) =
⋃
e

φeh(x, t) in which φeh(x, t) is the local approximation of φ over Ω̄e
x. Based on
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fundamental lemma [1] we can construct the integral form of (2.1) over Ω̄T
x .

(Aφh − f, v)Ω̄T
x

= 0 (2.2)

(Aφh − f, v)Ω̄T
x

=
∑
e

(Aφeh − f, v) = 0 (2.3)

We generally consider GM/WF in space (see [1]) in which case v = δφh in (2.2) and v = δφeh in

(2.3). Consider the following local approximation φeh(x, t)

φeh(x, t) =
n∑
i=1

Ni(x)δei (t) = [N(x)]{δe} (2.4)

In (2.4), Ni(x) are approximation functions in space and δei (t) are nodal degrees of freedom that

change as time elapses, hence they are functions of time. Equation (2.4) decouples space and time.

Consider (Aφeh − f, v)Ω̄e
x

for an element e and substitute (2.4) and v = Nj(x); j = 1, 2, ..., n.

(Aφeh − f, v)Ω̄e
x

=

(
A

(
n∑
i=1

Ni(x)δei

)
− f,Nj(x)

)
Ω̄e

x

(2.5)

In (2.5), we let A act on the local approximation then integrate over Ω̄e
x. When the space-time

operator A is linear, then (2.5) reduces to

(Aφeh − f, v)Ω̄e
x

= [He
1 ]{δe}+ [He

2 ]{δ̇e}+ ... − {P e} − {f e} (2.6)

Substituting (2.6) in (2.3) gives,

[H1]{δ}+ [H2]{δ̇}+ [H3]{δ̈}+ ... = {P}+ {F} (2.7)

in which,

[H1] =
∑
e

[He
1 ] , [H2] =

∑
e

[He
2 ] , [H3] =

∑
e

[He
3 ] (2.8)

and {P} =
∑
e

{P e} , {F} =
∑
{f e} (2.9)

{δ} =
⋃
e

{δe} , {δ̇} =
⋃
e

{δ̇e} , {δ̈} =
⋃
e

{δ̈e} (2.10)
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Since the space-time operator A is linear, then all matrices in (2.7) contain constant coefficients.

When A is a nonlinear differential operator, the nonlinearity is generally in the spatial deriva-

tives, the time derivative terms are linear. For example, BLM in the Eulerian description. In such

cases, we shall find that the coefficients of [H1] are linear or nonlinear functions of {δ}, but the co-

efficients of [H2] and [H3] are constants. In this case, (2.7) represents a nonlinear system of ODEs

in time. The linear or nonlinear ODEs in time (2.7) resulting from the decoupling of space and

time are integrated using Newmark’s linear method [1]. We consider the details in the following.

2.3 First order system of linear ODEs

When the mathematical models for IVPs contain a linear space-time differential operator A

with only first order time derivatives, then GM/WF in space yield the following system of ODEs

for discretization Ω̄T
x of spatial domain Ω̄x.

CCC ···
.
δδδ +KKK ··· δδδ = FFF +PPP (2.11)

We consider Newmark’s method [1] with linear approximation of
.
δδδ between time [t, t+ ∆t]
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.
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t
t
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δδδt

.
δδδt+∆t

t + τ t + ∆t

Figure 2.1: Newmark’s linear method: Linear velocity for first order systems
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Referring to figure 2.1,

.
δδδt+τ =

.
δδδt +

τ

∆t
(

.
δδδt+∆t −

.
δδδt) (2.12)

then integrating with respect to τ ,

δδδt+τ = τ
.
δδδt +

τ 2

2∆t
(

.
δδδt+∆t −

.
δδδt) +CCC (2.13)

at τ = 0 , δδδt+τ = δδδt (2.14)

Using (2.14) in (2.13), we can evaluateCCC and then obtain the following from (2.13) after substi-

tutingCCC.

δδδt+τ = δδδt + τ
.
δδδt +

τ 2

2∆t
(

.
δδδt+∆t −

.
δδδt) (2.15)

Using τ = ∆t in (2.12) and (2.15) we obtain,

.
δδδt+∆t =

.
δδδt+∆t (2.16)

δδδt+∆t = δδδt + ∆t
.
δδδt +

∆t

2
(

.
δδδt+∆t −

.
δδδt) (2.17)

from (2.17)

.
δδδt+∆t =

2

∆t
(δδδt+∆t − δδδt −∆t

.
δδδt) +

.
δδδt (2.18)

Consider (2.11) at t+ ∆t,

CCC ···
.
δδδt+∆t +KKK ··· δδδt+∆t = FFF t+∆t +PPP t+∆t (2.19)

substituting for
.
δδδt+∆t from (2.18) in (2.19),

CCC ···
(

2

∆t
(δδδt+∆t − δδδt −∆t

.
δδδt) +

.
δδδt

)
+KKK ··· δδδt+∆t = FFF t+∆t +PPP t+∆t (2.20)
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rearranging terms,(
2

∆t
CCC +KKK

)
··· δδδt+∆t = FFF t+∆t +PPP t+∆t −CCC ···

(
2

∆t
δδδt +

.
δδδt

)
(2.21)

and from (2.18),

.
δδδt+∆t =

2

∆t
(δδδt+∆t − δδδt)−

.
δδδt (2.22)

Initial conditions for (1) consists of

δδδt=0 = δδδ0 (2.23)

Using (2.23) in (2.11), we can obtain
.
δδδ0:

.
δδδ0 =CCC−1 ··· (PPP t=0 +FFF t=0 −KKKδ0) (2.24)

Thus, δδδ0 and
.
δδδ0 are known at t = 0, hence solutions can now be completed at t+ ∆t i.e δδδt+∆t =

δδδ∆t and
.
δδδt+∆t =

.
δδδ∆t using (2.21) and (2.22). This process is continued until the desired time

t = τ is reached.

2.4 First order system of nonlinear ODEs

When the space-time differential operator has first order time derivatives but is nonlinear in

space, then the use of GM/WF for spatial discretization of Ω̄T
x yields a system of nonlinear first

order ODEs in time. Consider,

CCC ···
.
δδδ +KKK(δδδ) ··· δδδ = FFF +PPP (2.25)

Application of Newmark linear method described in section 2.3 will yield,(
2

∆t
CCC +KKK(δδδt+∆t)

)
··· δδδt+∆t = FFF t+∆t +PPP t+∆t −CCC ···

(
2

∆t
δδδt +

.
δδδt

)
(2.26)
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Since KKK is a function of unknown δδδt+∆t, (2.26) is a system of nonlinear algebraic equations in

δδδt+∆t. Thus, we must calculate δδδt+∆t iteratively to satisfy (2.26). First we rewrite (2.26) as,

ggg(δδδt+∆t) =

(
2

∆t
CCC +KKK(δδδt+∆t)

)
··· δδδt+∆t −FFF t+∆t −PPP t+∆t +CCC ···

(
2

∆t
δδδt +

.
δδδt

)
(2.27)

We must find a δδδt+∆t iteratively that satisfies (2.27)

Let δδδ0
t+∆t be an assumed solution of δδδt+∆t Then,

ggg(δδδ0
t+∆t) 6= 0 (2.28)

and let ∆δδδt+∆t be a correction to δδδ0
t+∆t such that

ggg(δδδ0
t+∆t + ∆δδδt+∆t) = 0 (2.29)

Expanding (2.29) in Taylor series about δδδ0
t+∆t and retaining only up to linear terms in ∆δδδt+∆t:

ggg(δδδ0
t+∆t + ∆δδδt+∆t) = ggg(δδδ0

t+∆t) +
∂ggg()

∂δδδ0
t+∆t

|δδδ0
t+∆t

··· ∆δδδt+∆t = 0 (2.30)

∆δδδt+∆t = −(δggg(δδδt+∆t)|δδδ0
t+∆t

)−1 ··· ggg(δδδ0
t+∆t) (2.31)

and δδδt+∆t = δδδ0
t+∆t + ∆δδδt+∆t (2.32)

The solution is considered converged for the time step ∆t when

|gggi(δδδt+∆t)| ≤ ∆ , a preset tolerance for zero

max
i
|∆δδδt+∆t| ≤ ∆ , a preset tolerance for zero

(2.33)

This is Newton’s linear method for nonlinear algebraic equations. δggg(δδδt+∆t) can be obtained using

(2.27).

δggg(δδδt+∆t) = δ(KKK(δδδt+∆t) ··· δδδt+∆t) = δKKK(δδδt+∆t) ··· δδδt+∆t +KKK(δδδt+∆t) (2.34)

using (2.34) in (2.31), ∆δδδt+∆t can be calculated.
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2.5 Second order system of linear ODEs in time

For small deformation, small strain, isothermal deformation of solids, BLM in displacements

is a system of linear second order PDEs in space and time. If we consider dissipation to be a

function of strain rate, then the integral form based on GM/WF for a spatial discretization Ω̄T
x

yields (assuming entropy production due to dissipation is negligible) the following at time t.

MMM ···
..
δδδ +CCC ···

.
δδδ +KKK ··· δδδ = FFF +PPP (2.35)

In this case MMM , CCC, and KKK have constant coefficients, hence (2.35) is a system of linear second

order ODEs in time. It has been shown that Newmark’s linear method [1] is unconditionally stable

and has the best accuracy for integrating (2.35) in time. The derivation presented in reference [1]

is given in the following.
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τ

t

..
δδδ

t
∆t

t + τ t + ∆t

..
δδδ t

..
δδδ t+∆t

Figure 2.2: Newmark’s linear method: Linear acceleration for second order systems

Based on a linear
..
δδδ over the interval [t, t+ ∆t] we can write,

..
δδδ t+τ =

..
δδδ t +

τ

∆t
(

..
δδδ t+∆t −

..
δδδ t) (2.36)
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integrating with respect to τ and evaluating constant of integration at τ = 0.

..
δδδ t+τ =

.
δδδt + τ

..
δδδ t +

τ 2

2∆t
(

..
δδδ t+∆t −

..
δδδ t) (2.37)

Integrating (2.37) with respect to τ and evaluating constant of integration at τ = 0.

δδδt+τ = δδδt + τ
.
δδδt +

τ 2

2

..
δδδ t +

τ 3

6∆t
(

..
δδδ t+∆t −

..
δδδ t) (2.38)

Using τ = ∆t in (2.36)-(2.38) we obtain,

..
δδδ t+∆t =

..
δδδ t+∆t (2.39)

.
δδδt+∆t =

.
δδδt +

∆t

2

..
δδδ t +

∆t

2

.
δδδt+∆t (2.40)

δδδt+∆t =
.
δδδt + ∆t

.
δδδt +

(∆t)2

3

..
δδδ t +

(∆t)2

6

..
δδδ t+∆t (2.41)

using (2.41) we can solve for
..
δδδ t+∆t.

..
δδδ t+∆t =

6

(∆t)2
(δδδt+∆t − δδδt)−

6

(∆t)2

.
δδδt − 2

..
δδδ t (2.42)

substituting
..
δδδ t+∆t in (2.40) we obtain,

.
δδδt+∆t =

3

∆t
(δδδt+∆t − δδδt)− 2

.
δδδt −

∆t

2

..
δδδ t (2.43)

Consider (2.35) at t+ ∆t:

MMM ··· δδδt+∆t +CCC ···
.
δδδt+∆t +KKK ···

..
δδδ t+∆t = FFF t+∆t +PPP t+∆t (2.44)

substituting for (2.42) and (2.43) in (2.44) and rearranging terms we can obtain the following,
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(
6

(∆t)2
MMM +

3

∆t
CCC +KKK

)
··· δδδt+∆t = FFF t+∆t +PPP t+∆t+(

6

(∆t)2
MMM +

3

∆t
CCC

)
··· δδδt +

(
6

∆t
MMM + 2CCC

)
···

.
δδδt+(

2MMM +
∆t

2
CCC

)
···

..
δδδ t

(2.45)

using initial conditions at t = 0 for δδδt=0 and
.
δδδt=0, we can calculate

..
δδδ t=0 using (2.35) at t = 0.

..
δδδ t=0 =MMM−1(PPP t=0 +FFF t=0 −CCC

.
δδδt=0 −KKKδδδt=0) (2.46)

Then δδδt=0,
.
δδδt=0, and

..
δδδ t=0 are known at t = 0. using these ICs and (2.45), the solution at t+∆t

i.e δδδt+∆t can calculated followed by the calculation of
.
δδδt+∆t and

..
δδδ t+∆t using (2.43) and (2.42).

The solution at t + ∆t is used as ICs to calculate the solution at t + 2∆t. This is continued until

the desired time is reached.

2.6 Second order systems of nonlinear ODEs in time

For finite deformation, finite strain but no isothermal deformation physics, Green’s strain mea-

sure and rate of Green’s strain measure are used in the constitutive theory for contravariant second

Piola-Kirchhoff stress tensor. This leads to nonlinear PDEs in displacements from from BLM. Use

of GM/WF in space yields the following system of nonlinear ODEs in time,

MMM ···
..
δδδ +CCC(δδδ) ···

.
δδδ +KKK(δδδ) ··· δδδ = FFF +PPP (2.47)

in which the mass matrixMMM has constant coefficients but the coefficients ofCCC andKKK are at least

up to quadratic functions of δδδ .

Application of Newmark’s linear acceleration method to (2.47) (following section 2.5), yields
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the following for (2.47) for time marching the solution of the ODEs.(
6

(∆t)2
MMM +

3

∆t
CCC(δδδt+∆t) +KKK(δδδt+∆t)

)
··· δδδt+∆t = FFF t+∆t +PPP t+∆t+(

6

(∆t)2
MMM +

3

∆t
CCC(δδδt+∆t)

)
··· δδδt +

(
6

∆t
MMM + 2CCC(δδδt+∆t)

)
···

.
δδδt+(

2MMM +
∆t

2
CCC(δδδt+∆t)

)
···

..
δδδ t

(2.48)

SinceCCC andKKK are functions of unknownδδδt+∆t, (2.48) is a system of nonlinear algebraic equations

in δδδt+∆t, thus we must calculate a solution for δδδt+∆t iteratively that satisfies (2.48). By transferring

all terms to the LHS.

ggg(δδδt+∆t) =

(
6

(∆t)2
MMM +

3

∆t
CCC(δδδt+∆t) +KKK(δδδt+∆t)

)
··· δδδt+∆t −FFF t+∆t −PPP t+∆t−(

6

(∆t)2
MMM +

3

∆t
CCC(δδδt+∆t)

)
··· δδδt −

(
6

∆t
MMM + 2CCC(δδδt+∆t)

)
···

.
δδδt−(

2MMM +
∆t

2
CCC(δδδt+∆t)

)
···

..
δδδ t = 0

(2.49)

Since ggg(δδδt+∆t) is a nonlinear function of unknown solution δδδt+∆t, we must now find δδδt+∆t itera-

tively that satisfies (2.49). Let δδδ0
t+∆t be an assumed solution of δδδt+∆t then,

ggg(δδδ0
t+∆t) 6= 0 (2.50)

Let ∆tδδδt+∆t be a correction to
.
δδδt+∆t such that,

ggg(δδδ0
t+∆t + ∆tδδδt+∆t) = 0 (2.51)

following the details in section 2.4, we can obtain,

∆δδδt+∆t = −(δggg(δδδt+∆t)|δδδ0
t+∆t

)−1 ··· ggg(δδδ0
t+∆t) (2.52)

and an improved solution of δδδt+∆t is given by,

δδδt+∆t = δδδ0
t+∆t + ∆δδδt+∆t (2.53)

This is Newton’s linear method for these nonlinear algebraic equations. Convergence criteria and
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other details follow section 2.4. The variation of ggg(δδδt+∆t) can be obtained using (2.49):

δ(ggg(δδδt+∆t)) =

(
6

(∆t)2
MMM +

3

∆t
CCC(δδδt+∆t) +KKK(δδδt+∆t)

)
+(

3

∆t
δCCC(δδδt+∆t) + δKKK(δδδt+∆t)

)
··· δδδt+∆t−(

3

∆t
δCCC(δδδt+∆t)

)
··· δδδt −

(
2δCCC(δδδt+∆t)

)
···

.
δδδt−(

∆t

2
δCCC(δδδt+∆t)

)
···

..
δδδ t

(2.54)

using δggg(δδδt+∆t) from (2.54) in (2.52), we can calculate ∆δδδt+∆t.

Remarks

1. The time integration schemes presented here for linear and nonlinear first and second order

ODEs in time are applied to various model problems in Chapter 3.

2. In most cases, the solutions obtained from the space-time decoupled approach are compared

with these obtained using space-time coupled finite element method based on residual func-

tional [1].
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Chapter 3

Model Problem Studies

3.1 Introduction

In this chapter we consider numerical solutions of model IVPs that lead to first order and

second order systems of linear and nonlinear ODEs in time due to space-time decoupling by using

GM/WF in space to construct the integral form over the spatial discretization of Ω̄T
x of the spatial

domain Ω̄x. Solutions of ODEs in time are calculated using Newmark’s linear method described

in Chapter 2. These solutions are also compared with the solutions obtained using a space-time

coupled finite element method with a space-time strip or space-time slab and then time marching

(see [1] for details).

3.2 First order system of ODEs in time

In this section we consider IVPs in which space-time decoupling leads to a first order system

of linear or nonlinear ODEs in time. These IVPs naturally result from the conservation and the

balance laws (CBL) in Eulerian descriptions such as fluid mechanics.
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3.2.1 Convection diffusion equation

Consider the time dependent convection diffusion equation (simplified form of the energy equa-

tion).

∂φ

∂t
+
∂φ

∂x
− 1

Pe

∂2φ

∂x2
= f(x, t) ∀(x, t) ∈ Ωxt = Ωx × Ωt = (0, 1)× (0, τ) (3.1)

BCs: φ(0, t) = 1, φ(1, t) = 0 ∀t ∈ (0, τ)

ICs: φ(x, 0) = 0 ∀x ∈ (0, 1)

(3.2)

Consider a three node 25 element uniform discretization of Ω̄x = [0, 1] with element local-nodes

treated at 1, 2, and 3. Based on the fundamental lemma, we can write the following using approx-

imation φh of φ over Ω̄T
x .

(Aφh − f, v)Ω̄T
x

=
∑
e

(Aφeh − f, v)Ω̄e
x

= 0 (3.3)

using, φeh(x, t) =
n∑
i=1

Ni(x)δei (t) = [N(x)]{δe(t)} (3.4)

in (3.3) in GM/WF over Ω̄e
x we can obtain,

(Aφeh − f, v)Ω̄e
x

= [Ce]{δ̇e}+ [Ke]{δe} − {f e} − {P e} (3.5)

in which,

Ce
ij =

∫
Ω̄e

x

Ni(x)Nj(x)dx (3.6)

Ke
ij =

∫
Ω̄e

x

(Ni
∂Nj

dx
+

1

Pe

∂Ni

dx

∂Nj

dx
)dx (3.7)
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f ei =

∫
Ω̄e

x

fNidx (3.8)

{P e} =


P e

1

...

P e
n

 (3.9)

using (3.5) in (3.3) we obtain,

[C]{δ̇(t)}+ [K]{δ(t)} = {F (t)}+ {P (t)} (3.10)

in which,

[C] =
∑
e

[Ce]

[K] =
∑
e

[Ke]

{F} =
∑
e

{F e}

{P} =
∑
e

{P e}

(3.11)

Equation (3.10) with BCs and ICs (3.2) are integrated using Newmark’s linear method using a

p-level of 15 in space and integration time step ∆t = 0.01, 0.005, and 0.001 for Pe = 100, 1000,

and 10000. Figures 3.1-3.3 show the evolution of φ versus x for various values of time t. As Pe

is increased steepened fronts of φ are accurately simulated. Solutions compared from the space-

time coupled finite element method based on a space-time strip with a 25 element, 9 node uniform

discretization with pξ = pη = 9 and a time marching step of ∆t = 0.01, 0.005, and 0.001 for Pe =

100, 1000, and 10000 are in perfect agreement with the evolutions reported in figures 3.1-3.3.
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(a) Convection diffusion equation (space-time decoupled)
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(b) Convection diffusion equation (space-time coupled)

Figure 3.1: Convection diffusion equation: Pe = 100 (STDC vs. STC)
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(a) Convection diffusion equation (space-time decoupled)
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(b) Convection diffusion equation (space-time coupled)

Figure 3.2: Convection diffusion equation: Pe = 1000 (space-time decoupled)
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(a) Convection diffusion equation (space-time decoupled)
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(b) Convection diffusion equation (space-time coupled)

Figure 3.3: Convection diffusion equation: Pe = 10000 (space-time decoupled)
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3.2.2 Pure advection

Consider the following initial value problem, referred to as pure advection, due to absence of

diffusion. Initial conditions propagate spatially without any change. This model problem is a good

test of the presence of numerical dispersion in the computational process.

∂φ

∂t
+
∂φ

∂x
= f(x, t) ∀x, t ∈ Ωxt = Ωx × Ωt = (0, 1)× (0, τ) (3.12)

BC: φ(0) = 0 (3.13)

Initial conditions consist of a Gaussian distribution for φ(x, 0) given by

φ(x, 0) = exp(
−(x− x0)2

2σ2
0

) ∀x ∈ [0, 1]

x0 = 0.2; σ0 = 0.03

(3.14)

We note that ICs (3.14) does yield BC φ(0) = 0 at x = 0. We consider a 20 element uniform

discretization Ω̄T
x =

⋃
e

Ω̄e
x of spatial domain Ω̄x = [0, 1] using three node p-version hierarchical

finite elements with nodes located at 1, 2, and 3. Based on fundamental lemma, we can write the

following using (3.12) and approximation φh of φ over Ω̄T
x such that φh(x, t) =

⋃
e

φeh(x, t).

(Aφh − f, v)Ω̄T
x

=
∑
e

(Aφeh − f, v)Ω̄e
x

= 0 (3.15)

Let

φeh(x, t) =
n∑
i=1

Ni(x)δei (t) = [N(x)]{δe(t)} (3.16)

using (3.12) in (3.13) and GM/WF over Ω̄e
x we can obtain,

(Aφeh − f, v)Ω̄e
x

= [Ce]{δ̇e(t)}+ [Ke]{δe(t)} − {f e(t)} (3.17)
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in which

Ce
ij =

∫
Ω̄e

x

NiNjdx (3.18)

Ke
ij =

∫
Ω̄e

x

(Ni
∂Ni

dx
)dx (3.19)

f ei =

∫
Ω̄e

x

fNidx (3.20)

Using (3.17) in (3.15) we can obtain the following assembled equations for Ω̄T
x .

[C]{δ̇(t)}+ [K]{δ(t)} = {F} (3.21)

in which

[C] =
∑
e

[Ce]

[K] =
∑
e

[Ke]

{F} =
∑
e

{f e}

{δ} =
⋃
e

{δe}

(3.22)

Equations (3.21) with BCs (3.13) and ICs (3.14) are integrated using Newmark’s linear method

using a p-level of 15 in space and ∆t= 0.001. The solution is calculated for 300 time steps. Figure

3.4 shows the evolution of φ, i.e φ versus x, for various values of time. We clearly observe there is

virtually no amplitude reduction and base elongation of the applied Gaussian distribution at t = 0,

confirming the absence of numerical dispersion. Solutions are also computed using space-time

coupled finite element formulation based on the residual functional using a space-time strip with

uniform discretization containing 20 space-time p-version finite elements and time marching. The

two solutions show excellent agreement.
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Figure 3.4: Pure advection: Gaussian Distribution (space-time decoupled)

3.2.3 Transient heat conduction in Eulerian description

In this model problem we consider the simplified form of the energy equation (in the absence

dissipation, sources, and sinks).

∂φ

∂t
+ v(x)

∂φ

∂x
− k

RePr

∂2φ

∂x2
= f(x, t) ∀(x, t) ∈ Ωxt = Ωx × Ωt = (0, 1)× (0, τ) (3.23)

BCs: φ(0, t) = 1, φ(1, t) = 0 ∀t ∈ (0, τ)

ICs: φ(x, 0) = 0 ∀x ∈ (0, 1)

(3.24)

In which φ is dimensionless temperature, v(x) is a known velocity field, k is thermal conductivity,

Pe is Peclet number, and Pr is Prandtl number. We consider a 25 element uniform discretization

Ω̄T
x =

⋃
e

Ω̄e
x of Ω̄x using three node hierarchical elements. Let φh be approximation of φ over Ω̄T

x

and φeh be local approximation over an element Ω̄e
x. Then based on the fundamental lemma [1] we
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can write,

(Aφh − f, v)Ω̄T
x

=
∑
e

(Aφeh − f, v)Ω̄e
x

= 0 (3.25)

in which, φh(x, t) =
⋃
e

φeh(x, t) (3.26)

and φeh(x, t) =
n∑
i=1

Ni(x)δei (t) = [N(x)]{δe(t)} (3.27)

Substituting (3.26) in (3.25) for an element Ω̄e
x and using GM/WF we obtain,

(Aφeh − f, v)Ω̄e
x

= [Ce]{δ̇e(t)}+ [Ke]{δe(t)} − {f e(t)} (3.28)

In (3.28), we have performed integration by parts once in the term with a second derivative of φ

with respect to x. In (3.28), the coefficient matrix and vectors are given by,

Ce
ij =

∫
Ω̄e

x

NiNjdx (3.29)

Ke
ij =

∫
Ω̄e

x

(v(x)Ni
∂Nj

dx
)dx+

k

PePr

∫
Ω̄e

x

∂Ni

dx

∂Nj

dx
dx (3.30)

f ei =

∫
Ω̄e

x

fNidx (3.31)

{P e} =


P e

1

...

P e
n

 (3.32)

Substituting (3.28) in (3.25) we obtain,

[C]{δ̇(t)}+ [K]{δ(t)} = {F (t)}+ {P (t)} (3.33)
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Matrix [K] contains known velocity field v(x). We choose the following for v(x) (figure 3.5).

v(x) =
(v1 − v2)

0.25
(x− 0.5)2 + v2 ∀x ∈ [0, 1]

in which, v1 = v|x=0 = v|x=1

v2 = v|x=0.5

(3.34)

x

v(x)

v1 > v2

v2(x)

0.0 0.5 1.0

v(x)

x

v1 < v2

v2(x)

0.0 0.5 1.0

v1(x)

v1(x)

Figure 3.5: Plots of v(x) versus x

Evolution is completed using (3.33) and (3.24) using Newmark’s linear method with time step

∆t = 0.01 in all computations. We present the following numerical studies in which we have used

k = 1, Pr = 1, but vary Re.

Case (a): In this study we choose Re = 100 and

1. v1 = 0.25, v2 = 1.00 (v1 < v2)

2. v1 = 1.00, v2 = 0.25 (v1 > v2)

Case (b): In this study we choose Re = 1000 and

1. v1 = 0.25, v2 = 1.00 (v1 < v2)

2. v1 = 1.00, v2 = 0.25 (v1 > v2)
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Case (c): In this study we choose Re = 1000 and

1. v1 = v2 = 0.25

2. v1 = v2 = 0.50

3. v1 = v2 = 1.00

Calculated solutions are presented and discussed in the following.

Case (a): Figures 3.6 and 3.7 show plots of φ versus x for various values of time for v1 = 0.25, v2 =

1.00 and v1 = 1.00, v2 = 0.25 respectively. Influence of the velocity field is clearly observed

on the evolution of φ.
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Figure 3.6: Energy equation Eulerian description Re = 100, v1 = 0.25, v2 = 1.00
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Figure 3.7: Energy equation Eulerian description Re = 100, v1 = 1.00, v2 = 0.25

Case (b): In this case the studies presented in Case (a) are repeated for Re = 1000. Figures 3.8 and

3.9 show the evolution of φ for v1 = 0.25, v2 = 1.00 and v1 = 1.00, v2 = 0.25 respectively.

We note steepening of the evolution compared to Case (a) due to a higher Reynolds number.

The influence of the velocity field is clearly seen in figures (3.8) and (3.9).
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Figure 3.8: Energy equation Eulerian description Re = 1000, v1 = 0.25, v2 = 1.00
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Figure 3.9: Energy equation Eulerian description Re = 1000, v1 = 1.00, v2 = 0.25
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Case (c): In these studies Re = 1000 is kept fixed and the influence of constant (independent of x)

but progressively increasing velcity field is studied. Figures 3.10-3.12 show evolutions of φ

for v1 = v2 =0.25, 0.50, and 1.00 respectively. We observe steepening of the temperature

front as well as faster propagation of the fronts with progressively increasing velocity field.
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Figure 3.10: Energy equation Eulerian description Re = 1000, v1 = v2 = 0.25
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Figure 3.11: Energy equation Eulerian description Re = 1000, v1 = v2 = 0.50
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Figure 3.12: Energy equation Eulerian description Re = 1000, v1 = v2 = 1.00
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Computations remain stable in all cases presented here. Evolutions are small and oscillation

free.

3.2.4 First order nonlinear ODE in time

In this study we consider a single first order nonlinear ODE giaven in the following.

c1
∂φ

∂t
+ (c2 + c3q(φ))φ = f(t) ∀t ∈ Ωt ∈ (0, τ) (3.35)

IC: φ(0) = 1.0

and q(φ) = 1, φ, φ2, φ3

(3.36)

This model problem is considered to provide proof of concept for time integrating nonlinear ODEs

in time using Newmark’s linear method in conjunction with Newton’s linear method. If we choose

c1 = c and c2 + c3q(φ) = k, then (3.35) reduces to,

c
∂φ

∂t
+ k(φ)φ = f(t) (3.37)

(3.37) is exactly the same as (2.25), except that (3.37) is a single ODE, thus the derivations pre-

sented in 2.4 are applicable here. Based on section 2.4, we need δ(k(φt+∆t)φt+∆t), which is given

by

δ(k(φt+∆t)φt+∆t) = (δk(φt+∆t))φt+∆t + k(φt+∆t) (3.38)

Since k = c2 + c3q(φ),

δk = c3δq(φ)

δq(φ) = 0, 1, 2φ, 3φ2

(3.39)

We compute evolution described by (3.35) using Newmark’s linear method with Newton’s linear

method (derived in section 2.4).
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Case (a): c1 = 1.0, c2 = 0.1, c3 = 0.1

and q(φ) = 1, φ, φ2, φ3

Case (b): c1 = 1.0, c2 = 0.5, c3 = 0.5

and q(φ) = 1, φ, φ2, φ3

Figures 3.13 and 3.14 show plots of φ versus t for different choices of q(φ) for Case (a) and

Case (b). We observe steepening of φ versus t for increasing values of c2 and c3 for all choices

of q(φ). Influence of the choice of q(φ) is clearly observed also. Dependence of q(φ) on progres-

sively increasing degree of φ results in progressively higher values of φ. However, the difference

diminishes with increasing power of φ in q(φ). Newton’s linear method converges between 3-5

iterations for each time step. Evolutions are oscillation free and the computation remain stable for

all choices of parameters used.
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Figure 3.13: First order nonlinear ODE: c1 = 1.0, c2 = 0.1, c3 = 0.1
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Figure 3.14: First order nonlinear ODE: c1 = 1.0, c2 = 0.5, c3 = 0.5

3.2.5 Second order linear and nonlinear ODE in time

Mathematical descriptions of deforming solids in Lagrangian description for isothermal physics,

small deformation, and small strain leads to BLM in displacements that are a system of second or-

der linear PDEs in space and time. Use of GM/WF in space for a spatial discretization Ω̄T
x =

⋃
e

Ω̄e
x

yields a system of linear second order ODEs in time. When the deformation and strain are finite,

BLM yields second order nonlinear PDEs in space but linear in time. Use of GM/WF in space

to decouple space and time yields a system of second order nonlinear ODEs in time. Newmark’s

linear acceleration method for these two systems of ODEs in time have been presented in Chapter

2 (Sections 2.5, 2.6).

In the studies presented here, we consider only one second order ODE in time, linear as well

as nonlinear, to demonstrate proof of concept of Newmark’s linear method with Newton’s linear

method. We consider the constitutive theory for deviatoric stress tensor in terms of strain as well

as strain rate, thus permitting a dissipation mechanism.

In the case of finite deformation, finite strain both damping as well as stiffness matrices are
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nonlinear functions of displacements, hence after decoupling space and time using GM/WF in

space, the damping and stiffness matrices are matrices up to quadratic functions of the degrees of

freedom {δ}.

Consider the following second order nonlinear ODE in time,

m
∂2u

∂t2
+ cp(u)

∂u

∂t
+ kq(u)u = f(t) ∀t ∈ (0, τ) (3.40)

in which,

p(u) = c1 + c2u+ c3u
2

q(u) = d1 + d2u+ d3u
2

(3.41)

ICs: u(0, t) = 1.0

du(0, t)

dt
= 0.0

(3.42)

We note that when c2 = c3 = 0 and d2 = d3 = 0, (3.40) is a linear second order ODE in

time. Numerical solutions for φ are obtained using Newmark’s linear method for the linear case

and Newmark’s linear method with Newton’s linear method for the nonlinear case. We consider

the following studies. In all studies we consider m = 1, c = 1, k = 1.

Case (a): c1 = 0.01, 0.10, 0.50 and 1.00

c2 = c3 = 0

d1 = 1, d2 = d3 = 0

This is a linear case in which the damping coefficient is varied from 0.01 to 1.00

Case (b): c1 = 0.50 and 1.00

c2 = c3 = 0.10

d1 = d2 = d3 = 1

This is a nonlinear case in which stiffness and damping are both nonlinear. Choice of d1 =

d2 = d3 = 1 keeps nonlinearity in k to be up to quadratic in u. Fixed values of c2 and c3

keep nonlinearity in damping fixed as well. Variable c1 (0.10, 0.50, 1.00) allows us to study
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the influence of varying the linear part of damping.

Case (c): c2 = c3 = 0.10 and 0.50

c1 = 1.00

d1 = d2 = d3 = 1

In this case the linear part of damping is kept fixed and the coefficients for nonlinear terms

are varied keeping the nonlinear stiffness terms the same in each study.

Case (d): c1 = c2 = c3 = 0.01, 0.10, and 0.50

d1 = d2 = d3 = 1

In this case for fixed nonlinearity in stiffness, we study the influence of nonlinear damping

by choosing all damping coefficients c1, c2, c3 to be the same.

We discuss the results in the following. Figures 3.15-3.18 show u versus t for c1 = 0.01, 0.10, 0.50

and 1.00 respectively. In this study the stiffness is constant and dissipation is independent of u but

the dissipation coefficient c1 is increased progressively. As c1 increases amplitude decay and base

elongation is clearly observed.
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Figure 3.15: u versus t: Second order linear ODE (c1 = 0.01)
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Figure 3.16: u versus t: Second order linear ODE (c1 = 0.10)
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Figure 3.17: u versus t: Second order linear ODE (c1 = 0.50)
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Figure 3.18: u versus t: Second order linear ODE (c1 = 1.00)

Figures 3.19 and 3.20 show u versus t plot for Case (b). For fixed nonlinearity in k and c and

increasing the coefficient c1 shows the usual affect of progressively more amplitude decay and base

elongation with increasing c1.
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Figure 3.19: u versus t: Second order nonlinear ODE (c1 = c2 = c3 = 0.10)
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Figure 3.20: u versus t: Second order nonlinear ODE (c1 = 0.50, c2 = c3 = 0.10)

In Case (c), with fixed linear damping (relatively high, c1 = 1.00), the influence of nonlinear

damping terms is not very significant. In this study k is nonlinear but the coefficients d1, d2, d3 are

kept fixed.

In the last study, Case (d), c1 = c2 = c3 = 0.01, 0.10, and 0.50 are used. As shown in Case

(c), since c1 dominates the response, the contribution of c2 and c3 is not expected to be significant.

This can be confirmed by comparing results in figure (3.23) and figure (3.17).
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Figure 3.21: u versus t: Second order nonlinear ODE (c1 = 1.00, c2 = c3 = 0.01)
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Figure 3.22: u versus t: Second order nonlinear ODE (c1 = c2 = c3 = 0.01)
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Figure 3.23: u versus t: Second order nonlinear ODE (c1 = c2 = c3 = 0.50)
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Figure 3.24: u versus t: Second order nonlinear ODE (c1 = 1.00, c2 = c3 = 0.10)
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Figure 3.25: u versus t: Second order nonlinear ODE (c1 = 1.00, c2 = c3 = 0.50)

Remarks

1. A number of linear and nonlinear second order ODEs are considered.

2. Newmark’s linear method with Newton’s linear method works well. Newton’s linear method

converges in 3-5 iterations for each time step.

3. Space-time coupled finite element solutions presented for selected model problems are nat-

urally the same as those from the space-time decoupled method.

4. Extension of this work to a system of second order linear and nonlinear ODEs should present

no problems.
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Chapter 4

Summary and Conclusions

Rationale has been presented for choosing Newmark’s linear method as a preferred time inte-

gration method for linear and nonlinear ODEs in time resulting from decoupling space and time

in IVPs using GM/WF for discretization in space. Newmark’s linear method has been applied

for integrating linear and nonlinear first order and second order ODEs in time resulting from the

decoupling of space and time in IVPs.

1. GM/WF is meritorious in space if the IVPs description contains second or higher order even

derivatives of the dependent variable(s) in space. The symmetric nature of the coefficient

matrices resulting from these terms after integration by parts has a stabilizing effect on the

time integration schemes.

2. It has been shown that Wilson’s θ method and Newmark’s linear method are worthy of con-

sideration as general time integration strategies for ODEs in time. Furthermore, Newmark’s

linear method is superior over Wilson’s θ-method [1] in terms of spectral radius, hence in

stability as well as in accuracy. This method does not require determination of a parameter

like θ which can not be done without stability analysis.

3. In the case of nonlinear ODEs in time resulting from the nonlinear IVPs, Newton’s linear

method is utilized to obtain a converged solution for each increment of time. Newton’s linear
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method is highly meritorious as has quadratic convergence. Only 3-5 iterations were needed

for convergence of each time step.

4. Convection diffusion, pure advection, and the energy equation in Eulerian description are

first order linear systems considered as model problems to investigate Newmark’s linear

method for integrating the resulting ODEs after decoupling space and time using GM/WF in

space.

5. The second order linear and nonlinear ODEs considered in the present work are representa-

tive of ODEs in time that result from decoupling space and time in IVPs for deforming solid

continua with small deformation, small strain, and finite deformation, finite strain.

6. The solutions obtained from the space-time decoupled method presented here are also com-

pared with space-time coupled finite element method, The agreement between the two is

good.

7. Stability analysis for a single linear ODE is quite straight forward [1]. However, in the case

of a system of linear ODEs or nonlinear ODEs, the stability analysis is not that straight

forward. It requires determination of the spectral radius of a large matrix in the case of a

linear system and in the case of a nonlinear system the determination of the spectral radius

is not possible unless the matrix is linearized.

8. In all numerical studies presented in this thesis, no issues of stability are encountered when

using Newmark’s linear method.

9. Attempts made using Wilson’s linear θ-method showed that Wilson’s linear θ-method was

only stable for θ = 1.0. In which case Wilson’s linear θ-method is the same as Newmark’s

linear method.

10. Comparisons of the space-time decoupled evolution with the space-time coupled finite ele-

ment method evolution confirm good accuracy of the solutions presented here.
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11. Computations of the space-time decoupled finite element formulations are significantly faster

than the computations for space-time coupled finite element formulations.

12. For IVPs in R3, this approach is vastly superior in terms of practicality and usefulness.

What is prohibitive for IVPs in R3 when using the space-time coupled finite element method

becomes relatively straight forward when space and time are decoupled, preferably using

GM/WF in space.

13. The full impact of this work can only be realized after the associated stability analyses are

developed as these would shed light on the possible prudent choices of ∆x in space an

integration time step ∆t.

14. In the present work, spatial discretization and p-levels are based on converged solutions of

the corresponding BVPs.

15. Choice of ∆t is based on obtaining smooth evolutions in which the stationary state of the

evolution is same as the solution of the corresponding BVPs.

16. Thus, ∆x and ∆t used in the present work by no means are unique or optimal. There may

be many other choices of ∆x and ∆t that may yield accurate evolutions. Stability analyses

in conjunction with a priori error estimate and a posteriori error computation are essential to

determine prudent and optimal choices of ∆x and ∆t for stability as well as accuracy.
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