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Abstract  

 

The objective of this dissertation is to develop and investigate design methods for conducting solids 

cooled by multimode heat transfer, including surface radiation. The goal is to determine solid shapes with 

reduced or minimal overall thermal resistances. The influence of radiation on the predicted optimal 

shapes and thermal performance is investigated. 

First, a heuristic, evolutionary design method (EDM) is developed that iteratively adjusts a discrete 

solid shape based on local surface heat fluxes and temperatures. The EDM is initially applied to a 

conjugate conduction-free convection problem and compared to a solid replicated from a benchmark 

topology optimization (TO) study. While the EDM does not achieve the thermal performance of the 

benchmark solid, it does reduce the overall thermal resistance from an initial, arbitrary geometry. The 

effects of radiation are then incorporated into the physical model and EDM, which is applied to a range of 

solid emissivities and domain sizes. It is found that radiation has a significant influence on the thermal 

behavior (fluid flow and temperature distribution) and therefore on the predicted optimal solid shapes. In 

general, increasing the strength of radiation results in increased symmetry about the vertical centerline for 

both the thermal behavior and predicted solid geometries. 

Next, to isolate the effects of radiation, a coupled conduction-radiation problem is considered, and a 

heuristic solid growth method (SGM) is introduced that is similar in concept to the EDM. The SGM is 

distinct in that it incrementally adds solid material to the domain, so the solid mass is not constant 

throughout the design process. It is demonstrated that the relative strength of radiation has a significant 

effect on the solid growth and thermal performance. The SGM is also compared to a formal TO method 

that neglects the effects of radiation in obtaining optimal solid shapes. It is found that when a low amount 

of solid material or a relatively low solid thermal conductivity is considered, the SGM produces favorable 

solid configurations with lower overall thermal resistances. 

The effects of radiation are then incorporated into a formal TO method, by introducing a dual solid 

method (DSM) that utilizes both a discrete and continuous description of the solid material distribution. 

The discrete description is used to model radiation heat transfer, while the continuous solid description is 

used in conjunction with a TO method to adjust the solid shape. It is once again shown that the effects of 

radiation have a strong influence on the predicted optimal solid shapes and thermal performances. 

Lastly, a comparison of heuristic (SGM) and formal (DSM) design methods is made. When a high 

thermal conductivity solid is considered, the DSM achieves a lower overall thermal resistance. However, 

somewhat surprisingly, the SGM produces shapes having better thermal performance when a low solid 

thermal conductivity is considered.  
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Publications  

The following publications provide the basis for this dissertation. All numerical work detailed 

within the articles was completed by me under the advisory of Dr. Theodore Bergman. 

P1: C.D. Sevart and T.L. Bergman, An Iterative Design Method to Reduce the Overall Thermal 

Resistance in a Conjugate Conduction-Free Convection Configuration, Frontiers in Heat and Mass 

Transfer, 13 (18) (2019) (10 pages) 

The purpose of this paper is to develop a discrete, heuristic evolutionary design method and apply 

it to a conjugate conduction-free convection problem.  

P2: C.D. Sevart and T.L. Bergman, Evolutionary Design Method for a Conducting Solid Cooled by 

Combined Free Convection and Radiation, Journal of Heat Transfer, 143 (4) (2021) p. 042103 (9 pages) 

In this work, the effects of radiation are incorporated into the design methods developed in paper 

P1 and the influence of radiation on the final solid shape and thermal resistance is determined.  

P3: C.D. Sevart and T.L. Bergman, Growth Based Design of a Conducting Solid Cooled by Conjugate 

Gas Conduction and Surface Radiation, Proceedings of the ASME IMECE (2022) (In Review) 

A heuristic growth-based design method is developed and applied to a conjugate radiation-

conduction problem. The design method is similar to that of papers P1 and P2 but distinct in that 

the solid mass is not constant throughout the design process. The growth-based design method is 

compared to a topology optimization method which neglects the effects of radiation. 

P4: C.D. Sevart and T.L. Bergman, A Dual Solid Method for Topological Optimization of a Conducting 

Solid Cooled by Gas Conduction and Surface Radiation, Journal of Heat Transfer, (In Review) 

A formal topology optimization method that incorporates the effects of radiation is developed and 

applied to a radiation-conduction problem.  
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Introduction 1 
1.1 Background 

The geometric optimization of heat transfer devices is an important consideration for an assortment of 

thermal management applications. In terms of heat sink design, the goal is often to limit the amount of 

material or mass while minimizing the overall thermal resistance. Historically, this has been achieved by 

size and shape optimization (Bar-Cohen 1979, Bar-Cohen et al. 2003, Ahmed et al. 2018). For example, 

Bar-Cohen (1979) maximized the heat transfer rate per unit volume of a plate-fin heat sink cooled by 

natural convection by optimizing the fin spacing and thickness. The obvious drawback to size and shape 

optimization is that the basic geometric features must be specified a priori, while a true optimal structure 

might be more complex and unexpected.  

A design method that allows for more geometric freedom is Constructal Theory (Bejan 1997), which 

involves the hierarchical optimization and construction of flow pathways. The overall geometry is 

obtained by assembling multiple smaller sections referred to as constructs. It has been observed that 

increasing the number of constructs or lowering the number of constraints results in more complex 

geometries with lower thermal resistances (Almogbel and Bejan 2001, Muzychka 2007). While the 

overall geometry can evolve into more complex and unanticipated shapes, Constructal Theory still 

requires that the basic geometric features of the constructs be specified a priori.  

Topology Optimization (TO), however, is a design method that does not rely on any pre-specified 

geometric features and thus allows for the most geometric freedom (Bendsoe and Sigmund 2003). The 

solid shape is defined by a material distribution method that utilizes a discretized domain. The general TO 

process involves (i) specification of an initial material distribution and an objective function to be 

optimized, then (ii) the governing equations that describe the physics of the problem are solved (e.g. 

conservation of thermal energy, Navier-Stokes equations) and the objective function is evaluated, next 

(iii) the material distribution is adjusted according to an optimization algorithm. Steps (ii) and (iii) are 

repeated until the solid shape converges to an optimal solution. There are many subsets of TO that are 

characterized by the material distribution and optimization methods employed (Sigmund and Maute 

2013). One such subset that is commonly used is density TO methods, which utilize a spatial distribution 

of a solid volume fraction, 𝛾. The distribution can be discrete, in which each computational control 

volume or finite element is either solid or fluid (𝛾 = 1 or 0), or continuous, meaning that some locations 

contain a mixture of solid and fluid (0 ≤ 𝛾 ≤ 1). While discrete methods have the advantage of producing 
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a definite solid-fluid interface, continuous methods often have better accuracy in obtaining optimal 

structures (Sigmund and Maute 2013). 

The earliest examples of TO applied to heat transfer problems considered pure conduction (Li et al. 

1999, Li et al. 2004, Gersborg-Hansen et al. 2006, Zhang and Liu 2008, Gao et al. 2008, Marck et al. 

2012). However, for practical applications, it is often necessary to consider multiple modes of heat 

transfer. For example, many TO studies have considered the optimal design of conducting solids cooled 

by forced convection (Bruns 2007, Iga et al. 2009, Yoon 2010, Marck et al. 2013, Yan et al. 2019, Zhang 

et al. 2021). Iga et al. (2009) incorporated a design-dependent convection coefficient into a continuous 

density TO method and found that the strength of convection had a significant effect on the optimal solid 

shape and thermal performance. Another physical situation that has been considered by multiple TO 

studies is conjugate conduction-free convection heat transfer (Alexandersen et al. 2014, Alexandersen et 

al. 2016, Alexandersen et al. 2018, Lazarov et al. 2018). Similar to the findings of Iga et al. (2009), it has 

been observed that the optimal solid shape and thermal performance are highly dependent on the strength 

of advection when TO is applied to problems involving free convection (Alexandersen et al. 2014). 

Studies which consider the effects of radiation heat transfer in TO are much more limited. Castro et 

al. (2015) considered a radiative enclosure and optimized the distribution of reflective material on the 

interior surfaces using a continuous density TO method. Multiple objective functions and boundary 

condition cases were considered, and each resulted in a unique optimal solution. In a similar study, Zhao 

et al. (2021) determined the optimal distribution of radiant cooling panels within an office. The objective 

function considered both energy consumption and occupant thermal comfort. Both Castro et al. (2015) 

and Zhao et al. (2021) considered the optimal distribution of material on a surface, however, a more 

complex problem is the determination of optimal solid shapes that are cooled by radiation heat transfer. 

Wang et al. (2022) considered a thermophotonic problem and optimized the microscale material 

distribution of a thin film cooled by radiation and convection heat transfer. Radiation was incorporated 

into the heat diffusion equation as a uniformly distributed source term, which was independent of 

temperature. While the conduction and radiation processes were only weakly coupled, the radiative 

properties were dependent on the material distribution. Therefore, the optimal solid shape was influenced 

by conduction, radiation, and convection.  

To the author’s knowledge, TO has not been applied to a conducting solid cooled by strongly coupled 

multimode heat transfer, including the effects of surface-to-surface radiation. The application of TO to 

such a situation presents multiple difficulties. For example, while continuous density TO methods have 

higher accuracy than discrete methods, they do not possess a clear solid-fluid interface at which to 

evaluate radiation heat transfer. Furthermore, formal TO methods often rely on the evaluation of the 
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sensitivity (partial derivative) of the objective function to the solid shape (γ). The dependence of radiation 

transfer on view factors, for example, makes evaluating the sensitivities difficult. Regardless of these 

challenges, radiation heat transfer can often have a strong influence on thermal performance (Audunson 

and Gebhart 1972, Carpenter et al. 1976, Hall et al. 1999, Chu et al. 2019), therefore it is important to 

develop thermal design methods which incorporate the effects of radiation. 

1.2 Scope of Dissertation 

The objectives of the present dissertation are to develop and investigate geometric design methods for 

conducting solids cooled by multimode heat transfer, including thermal radiation, and to investigate the 

influence of radiation on the predicted optimal geometries and thermal performance. The overall goal of 

implementing the design methods is to determine solid configurations that result in reduced or minimal 

overall thermal resistances. To achieve these objectives, first, a heuristic evolutionary design method 

(EDM) is introduced which utilizes a discrete description of the solid material distribution and iteratively 

adjusts the solid shape based on local surface heat fluxes and temperatures. The EDM is first applied to a 

conjugate conduction-free convection problem and compared to the results of a benchmark TO method 

(paper P1).  Then, the effects of radiation are incorporated into the physical model and EDM (paper P2). 

Because the EDM does not require evaluation of the sensitivity information (partial derivatives), 

incorporating the effects of radiation is straightforward.  

Next, to isolate the effects of radiation, a conjugate conduction-radiation problem, in which free 

convection is assumed to be negligible, is considered, and a heuristic solid growth method (SGM) similar 

to the EDM is introduced (paper P3). The SGM is distinct in that solid material is incrementally added to 

the domain so that the amount of solid is not constant throughout the design process. The results of the 

SGM are compared to those of a formal TO method that neglects the effects of radiation in obtaining 

optimal solid shapes. Lastly, a formal TO method which incorporates the effects of radiation is developed 

and applied to a conjugate conduction-radiation problem (paper P4). A novel dual solid method (DSM) is 

introduced which utilizes both a continuous and discrete description of the solid distribution. The 

continuous distribution is used for adjusting the solid shape, while the discrete distribution is used to 

evaluate radiation heat transfer. Descriptions of the various design methods described in this dissertation 

are presented in Table 1. 

This dissertation is presented in the summary format and consists of the four publications introduced 

above. An overview of the publications will be organized by the design method implemented: EDM – 

negligible radiation (Paper P1), EDM – significant radiation (Paper P2), SGM (Paper P3), and DSM 

(Paper P4). Each overview will summarize the numerical modeling, design method implementation, and 
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results of the studies. Finally, a brief comparison of the various design methods will be discussed. The 

publications can be found in their entirety at the end of the dissertation. 

 

Table 1 Descriptions of design methods. 

Design Method Description 

Evolutionary Design Method (EDM) 

A heuristic, constant mass method in which the 

solid shape is iteratively adjusted based on local 

surface heat fluxes and temperatures. This design 

method is novel and was developed over the 

course of the dissertation. 

Solid Growth Method (SGM) 

A heuristic, non-constant mass method in which 

solid material is iteratively added to the domain 

based on local surface heat fluxes. This design 

method is novel and was developed over the 

course of the dissertation. 

Topology Optimization (TO) 

A formal optimization method in which the solid 

shape is iteratively adjusted based on sensitivity 

(partial derivative) information. 

Dual Solid Method (DSM) 

A formal TO method which utilizes both a 

continuous and discrete description of the solid 

material distribution. This design method is novel 

and was developed over the course of the 

dissertation. 
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Evolutionary Design Method – Negligible Radiation (Paper P1) 2 
An overview of Paper P1 is provided here, and the publication can be found in its entirety in Chapter 8. 

2.1 Physical and Numerical Modeling 

The physical situation considered by paper P1 is depicted in Fig. 1, in which a two-dimensional, 

square domain is filled with a specified amount of solid and an incompressible, Boussinesq fluid. The top 

boundary is isothermal and there is an applied heat rate at the bottom center of the domain. All other 

boundaries are adiabatic. The initial solid geometry is a semicircle of radius, R. The effects of radiation 

are assumed to be negligible. In all physical problems considered in this dissertation, it is assumed that 

the conditions are steady-state, the thermophysical properties are constant, and viscous dissipation is 

negligible. As mentioned previously, the goal of all four studies is to determine solid shapes which result 

in low overall thermal resistances, which for the given boundary conditions is defined as 𝑅𝑡
′ ≡

[𝑇(𝐻/2,0) − 𝑇𝑜]/𝑞′.  

 

 

Fig. 1 The computational domain including thermal boundary conditions, thermophysical properties, and 

the initial solid shape [P1]. 

 

2.1.1 Governing Equations 

The temperature distributions are obtained by solution of (i) the conservation of mass, (ii) the Navier-

Stokes equations, and (iii) the conservation of energy. In the fluid, the governing equations are expressed 

as 
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𝜕(𝜌𝑓𝑢)

𝜕𝑥
+

𝜕(𝜌𝑓𝑣)

𝜕𝑦
= 0 (1) 

 
𝜕(𝜌𝑓𝑢𝑢)

𝜕𝑥
+

𝜕(𝜌𝑓𝑢𝑣)

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜇𝑓

𝜕2𝑢

𝜕𝑥2 + 𝜇𝑓
𝜕2𝑢

𝜕𝑦2 (2) 

 
𝜕(𝜌𝑓𝑣𝑢)

𝜕𝑥
+

𝜕(𝜌𝑓𝑣𝑣)

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝜇𝑓

𝜕2𝑣

𝜕𝑥2 + 𝜇𝑓
𝜕2𝑣

𝜕𝑦2 + 𝜌𝑓𝑔𝛽𝑓∆𝑇 (3) 

 
𝜕(𝜌𝑓𝑐𝑝,𝑓𝑢𝑇)

𝜕𝑥
+

𝜕(𝜌𝑓𝑐𝑝,𝑓𝑣𝑇)

𝜕𝑦
=

𝜕

𝜕𝑥
(𝑘𝑓

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑓

𝜕𝑇

𝜕𝑦
) (4) 

In the solid the conservation of energy is  

 
𝜕

𝜕𝑥
(𝑘𝑠

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑠

𝜕𝑇

𝜕𝑦
) = 0 (5) 

At the interface between solid and fluid, the heat flux from the solid to the interface due to conduction must 

be equal to the convection heat flux from the interface to the fluid. A no-slip condition is applied at all 

boundaries of the domain. 

2.1.2 Discretization 

Throughout this dissertation, the governing equations are solved using the finite volume method with 

a uniform mesh and harmonic mean thermal conductivities at the control volume interfaces (Patankar 1980). 

In Paper P1, the SIMPLER algorithm is implemented with a staggered grid and a power-law differencing 

scheme to solve the Navier-Stokes equations. Each control volume is occupied entirely by either solid or 

fluid.  

2.2 Design Method 

The EDM is an iterative process in which the solid shape is adjusted by selectively adding and removing 

solid material. Numerically, this is accomplished by switching one solid control volume to fluid while 

concurrently switching one fluid control volume to solid, at each iteration. Note that the amount of solid 

mass is kept constant throughout the design process. The criterion for selecting which control volumes are 

switched is based on a shape evolution method (SEM). Four SEMs are considered in Paper P1, which are 

detailed in Table 2. For example, when SEM I is implemented, at each design iteration the fluid control 

volume along the solid-fluid interface that experiences the smallest local surface heat flux from the solid is 

switched to solid. Concurrently, the solid control volume which experiences the largest local surface heat 

flux to the fluid is switched to fluid. After the solid shape has been adjusted, Eqs. (1)-(5) are solved again 

and the process is repeated. The EDM is curtailed once the solid shape is the same as for a previous iteration, 

or once part of the solid becomes detached from the rest of the solid.  
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Table 2 Shape Evolution Methods considered in Paper P1. 

SEM Add Solid Where Remove Solid Where 

I Heat Flux is Smallest Heat Flux is Largest 

II Temperature is Highest Temperature is Lowest 

III Heat Flux is Largest Heat Flux is Smallest 

IV Temperature is Lowest Temperature is Highest 

 

2.3 Results and Discussion 

2.3.1 Predicted Solid Shapes and Thermal Performance  

The SEMs are exercised with the thermophysical properties and boundary conditions listed in Paper 

P1. The solid shapes at various points throughout the evolution are shown in Fig. 2. Each row of Fig. 2 

corresponds to an amount of displaced solid, AD, and number of design iterations, iter. The last solid 

structure in each column of Fig. 2 is the final solid shape predicted before curtailment of the EDM. As 

evident, SEM I undergoes the largest transformation, while SEMS II, III, and IV reach curtailment at AD = 

1 mm2 (iter = 4), 7 mm2 (iter = 28), and 8 mm2 (iter = 32) respectively.  

The evolution histories of thermal resistance for the four SEMs are shown in Fig. 3. While all four 

SEMs lead to a reduction in thermal resistance, the largest reduction is associated with SEM I, which has 

significantly more solid material displaced. The horizontal dashed line of Fig. 3 corresponds to a thermal 

resistance associated with a replicated benchmark topology optimized solid shape (Coffin and Maute 2016) 

with the same thermophysical properties and boundary conditions as Paper P1. The solid shapes, streamline 

distributions, and temperature distributions associated with the final results of SEM I and the replicated 

benchmark TO solid, are shown in Fig. 4. The solid shapes are similar in that they both exhibit highly 

asymmetrical behavior, and the streamlines and temperature distributions have a strong qualitative 

agreement. However, the benchmark result has a lower thermal resistance (𝑅𝑡
′ = 23.888 m∙K/W) compared 

to that of SEM I (𝑅𝑡
′ = 26.126 m∙K/W). The higher thermal resistance of SEM I is attributed to the buildup 

of solid material along the side adiabatic boundary which is relatively thermally inactive.  
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Fig. 2 Solid shapes generated by each of the four SEM sub-models. The final shapes are those at the 

bottom of each column [P1]. 

 

 

Fig. 3 Evolution of the thermal resistance for each SEM, and that of the benchmark geometry. Filled 

symbols are associated with the final geometries [P1].  

 

 
 



9 

 
Fig. 4 Predictions of (a) final solid geometry, (b) streamline distribution, (c) temperature distribution 

associated with (top) SEM I and (bottom) the replicated benchmark topology optimized solid from 

(Coffin and Maute 2016) [P1]. 

 

2.3.2 Implementation of a Cutoff Constraint 

To prevent the build-up of solid material along the side adiabatic boundary, a cutoff constraint is 

introduced into SEM I. The constraint prevents solid material from being added to locations where the 

local surface heat flux is less than 5% of the maximum local surface heat flux in the domain.  The 

resulting solid shape, streamline distribution, and temperature distribution are shown in Fig. 5. While the 

cutoff constraint effectively prevents the solid from contacting the side adiabatic boundary, the thermal 

resistance (𝑅𝑡
′ = 26.119 m∙K/W) is approximately the same as the final solid shape without the cutoff 

constraint (𝑅𝑡
′ = 26.126 m∙K/W) 
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Fig. 5 EDM predictions using SEM I with cutoff constraint: (a) final solid geometry, (b) streamline 

distribution, (c) temperature distribution [P1]. 
 

2.3.3 Parametric Simulations 

To investigate the effects of conduction and convection on the predicted solid shape and thermal 

performance, the EDM is exercised with different solid thermal conductivities and domain sizes 

(Rayleigh number). The predicted solid shapes using SEM I with various solid thermal conductivities are 

shown in Fig. 6. Surprisingly, the ks = 23.7 W/m∙K case exhibits a lower thermal resistance than that of 

the ks = 237 W/m∙K case. This is attributed to the modest differences in the solid shape between Figs. 6a 

and 6b. For the ks = 2.37 W/m∙K case (Fig. 6c), less solid is displaced, therefore the solid material resides 

lower in the domain and the thermal resistance is higher. 

 

 
Fig. 6 Predicted solid shape and thermal resistance for SEM I, RC = 0: (a) ks = 237 W/m∙K, (b) ks = 23.7 

W/m∙K, (c) ks = 2.37 W/m∙K [P1]. 

 

The predicted solid shapes for three different domain sizes, H, are reported in Fig. 7. Increasing the size 

of the domain strengthens convection, as quantified by the Rayleigh number which is defined as 𝑅𝑎 =

𝑔𝛽𝑓∆𝑇𝐻3 𝜈𝑓𝛼𝑓⁄ . As evident from Fig. 7, this results in a decrease in the overall thermal resistance. The 

solid shapes also reach slightly higher in the domain and bear a closer resemblance to the benchmark 



11 

structure of Fig. 4a. The influence of the cutoff constraint on the parametric simulations is also reported in 

Paper P1. While the added constraint does affect the solid shape, it leads to only a modest reduction in the 

thermal resistances.  

 

 

Fig. 7 Predicted solid shape and thermal resistance for SEM I, RC = 0: (a) H = 30 mm (Ra = 4460), (b) H 

= 45 mm (Ra = 10980), (c) H = 60 mm (Ra = 21620) [P1]. 
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Evolutionary Design Method – Significant Radiation (Paper P2) 3 
An overview of Paper P2 is provided here, and the publication can be found in its entirety in Chapter 8. 

3.1 Physical and Numerical Modeling 

The physical situation considered in Paper P2 is identical to that of P1 save that radiation is no longer 

assumed negligible. Throughout the remainder of this dissertation, the following assumptions apply to the 

modeling of thermal radiation: (i) all exposed surfaces are assumed to be diffuse, opaque, and gray, (ii) all 

surfaces are characterized by the same emissivity, ε, and (iii) the fluid is assumed to be radiatively 

transparent. The initial solid shape is again specified to be a semicircle of radius, R. 

3.1.1 Governing Equations 

The temperature distributions are calculated by solving the same governing equations as Paper P1 

(Eqs. (1) – (5)). However, at the solid-fluid interface, the heat flux from the solid to the interface due to 

conduction is now equal to the combined convection and radiation heat fluxes leaving the interface, that is 

 −𝑘𝑠
𝜕𝑇

𝜕𝑛
= 𝑞𝑐𝑜𝑛𝑣

′′ + 𝑞𝑟𝑎𝑑
′′  (6) 

The condition at the exposed adiabatic boundary is expressed as 

 𝑞𝑐𝑜𝑛𝑣
′′ + 𝑞𝑟𝑎𝑑

′′ = 0 (7) 

or 

 −𝑘𝑓
𝜕𝑇

𝜕𝑛
+ 𝑞𝑟𝑎𝑑

′′ = 0 (8) 

The remaining boundary conditions are straightforward and are detailed in Section 2.1 of Paper P2. 

3.1.2 Discretization 

The same numerical methods described in Section 2.1.2 are implemented in Paper P2 for the 

discretization. However, the boundary condition of Eq. (6) is approximated by incorporating a source term 

distribution, Srad(x, y), into the energy equation and the adiabatic boundary condition is satisfied by setting 

the boundary temperature such that it satisfies Eq. (8). Due to the coupled nature of the heat transfer 

processes, an iterative solution is required as follows: (i) first, Eqs. (1)-(5) are solved without the effects of 

radiation (Srad(x, y) = 0), then (ii) the radiation heat fluxes are evaluated as will be detailed in Section 3.1.3, 

next (iii) the source terms are adjusted (Srad(x, y) ≠ 0) and the boundary temperatures are set, then (iv) the 

governing equations are solved again. Steps (ii) – (iv) are repeated until the maximum relative change in 

local temperature is less than 10-8. 
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3.1.3 Radiation Modeling 

The source term distribution and boundary temperatures used to incorporate the effects of radiation 

depend on the local radiation heat fluxes. By assuming the temperature of each control surface is that of the 

adjacent solid control volume, the net radiative heat flux from a given control surface, i, is calculated as 

(Bergman and Lavine 2017) 

 𝑞𝑖
′′ =

𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
, (9) 

where 𝐸𝑏𝑖 = 𝜎𝑇𝑖
4 and 

 
𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
= ∑ 𝐹𝑖𝑗(𝐽𝑖 − 𝐽𝑗)𝑁

𝑗=1  (10) 

The method used to evaluate the view factors, 𝐹𝑖𝑗, is described in detail in Section 2.3 of Paper P2. In 

short, the view factors are first either calculated using Hottel’s crossed string method (Hottel 1954) or set 

to zero based on whether or not a center-to-center ray between the surfaces is obstructed. Then all 

partially obstructed view factors are adjusted such that the summation and reciprocity requirements are 

satisfied (Bergman and Lavine 2017). 

3.2 Design Method 

The EDM detailed in Section 2.2 with SEM I is implemented here. Solid is added to the location of 

the smallest combined (radiation + convection) local surface heat flux and removed from the location of 

the largest combined local surface heat flux. The design process ends once the solid begins to oscillate 

between two shapes from iteration-to-iteration. As will be shown in the following section, the overall 

thermal resistance does not necessarily decrease at every design iteration. Therefore, the EDM is allowed 

to proceed until it reaches an oscillation point, and then the solid shapes associated with the lowest overall 

thermal resistances will be reported as the predicted optimal solid shapes. 

3.3 Results and Discussion 

3.3.1 Influence of Radiation on Thermal Behavior 

To demonstrate the influence that radiation has on the thermal behavior, the heat transfer sub-model 

is first applied to the initial geometry with a range of emissivities, the results of which are shown in Fig. 

8. As evident, increasing the strength of radiation (ε) causes the fluid flow and temperature distributions 

to be more symmetric about the vertical centerline. This phenomenon is a result of radiation decreasing 

local temperatures and, therefore, buoyancy forces as described in Section 3.1 of Paper P2. 
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Fig. 8 Streamlines (top) and temperature distributions (bottom) associated with H = 30 mm and the initial 

semicircular geometry (R/H = 1/6, b/H = 1/30, Ra* = 199,100). (a) ε = 0, (b) ε = 0.1, (c) ε = 0.2. Temperature 

distributions are generated by plotting 12 evenly spaced isothermal contours between and including the 

maximum and minimum temperature [P2]. 

 

3.3.2 Predicted Solid Shapes and Thermal Performance 

The EDM is applied to various domain sizes and emissivities. The evolution histories of thermal 

resistance for H = 30 mm and a range of emissivities are shown in Fig. 9. The solid shapes and streamlines 

associated with the minimum thermal resistance are reported in Fig. 10. As mentioned previously, 

increasing the strength of radiation causes the thermal behavior to be more symmetric. As a result, the 

predicted optimal geometries of Fig. 10 become more symmetric as ε is increased, and the EDM reaches 

an oscillation point early into the design process for 𝜀 ≥ 0.15 (Fig. 9). The evolution histories of thermal 

resistance for the H = 60 mm cases are shown in Fig. 11, and the corresponding solid shapes and streamlines 

associated with the minimum thermal resistance are reported in Fig. 12. As the strength of advection is 

increased, the influence of radiation on fluid flow is weakened and the thermal behavior is less symmetric 

(Fig. 12). As a result, the solid shapes undergo a greater transformation, and the predicted optimal solid 

shapes are not achieved as early in the design process (Fig. 11).   
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Fig. 9 Evolution history of thermal resistance for H = 30 mm, Ra* = 199,100. Solid markers designate 

minimum thermal resistance [P2]. 

 

 

Fig. 10 Solid shape and streamlines associated with the minimum thermal resistances (solid markers in Fig. 

5) of the H = 30 mm, Ra* = 199,100 cases. Qualitatively, the streamlines of the ε ≥ 0.30 cases are similar 

to those of the ε = 0.25 case. Note the sharp transition in the fluid flow and the solid shape at  ≈ 0.2 [P2]. 
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Fig. 11 Evolution history of thermal resistance for H = 60 mm, Ra* = 1,592,000. Solid markers designate 

minimum thermal resistance [P2]. 
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Fig. 12 Solid shape and streamlines associated with the minimum thermal resistances (solid markers in Fig. 

7) of the H = 60 mm, Ra* = 1,592,000 cases [P2].  
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3.3.3 Impact of Radiation and the EDM on Overall Thermal Resistance 

To quantify the influence of (i) the strength of radiation and (ii) the reconfiguration of the solid shape 

on the overall thermal resistance, two parameters are introduced. For a given H and ε case, the influence 

of radiation is calculated as the relative difference between the minimum thermal resistance of the ε = 0 

case with the same H and the minimum thermal resistance of that particular case: 

 𝑅̂𝑡,1
′ =

𝑅𝑡,𝑚𝑖𝑛
′ (𝜀=0)−𝑅𝑡,𝑚𝑖𝑛

′

𝑅𝑡,𝑚𝑖𝑛
′ (𝜀=0)

 (11) 

The results of this parameter are shown in Fig. 13. In general, 𝑅̂𝑡,1
′  increases with ε. The decrease in 𝑅̂𝑡,1

′  

between ε = 0.1 and 0.15 of the H = 30 mm case is due to the severe differences in predicted optimal solid 

shape (Fig. 10). 

The influence of the reconfiguration of solid on the overall thermal resistance is quantified as the 

relative difference between the initial thermal resistance and the minimum thermal resistance 

 𝑅̂𝑡,2
′ =

𝑅𝑡,𝑖
′ −𝑅𝑡,𝑚𝑖𝑛

′

𝑅𝑡,𝑖
′  (12) 

which is plotted in Fig. 14. The greatest reductions are experienced by the H = 30 mm, 𝜀 ≤ 0.1 cases. 

Unsurprisingly, the smallest reductions are associated with the higher emissivities, for which the solid 

shape did not deviate much from its initial semicircular geometry. 

 

Fig. 13 Relative reduction between ε = 0 minimum thermal resistance and minimum thermal resistance of 

each emissivity value [P2].  
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Fig. 14 Relative reduction between initial and minimum thermal resistance [P2].  
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Solid Growth Method (Paper P3) 4 

An overview of Paper P3 is provided here, and the publication can be found in its entirety in Chapter 8. 

4.1 Physical and Numerical Modeling 

The physical situation considered in both Paper P3 and P4 is shown in Fig. 15. The physical problem 

is identical to that of Paper P2, but now it is assumed that buoyancy effects are negligible. Therefore, the 

conducting solid is cooled by (i) surface radiation and (ii) conduction in a stagnant fluid. The solid 

material is restricted to the section of the domain below y = ymax. The initial solid shape is a small 

rectangular section of solid placed at the location of the applied heat rate. Throughout the design process, 

solid material is iteratively added to the domain, thus increasing the solid mass. 

 

 

Fig. 15 Physical domain and boundary conditions [P3]. 

 

4.1.1 Governing Equations 

Since there is no fluid motion, the temperature distribution in both the solid and fluid is governed 

only by the heat diffusion equation, Eq. (5). The boundary conditions are very similar to that of Paper P2, 

however, at the solid-fluid interface, the balance of heat fluxes is now described as 
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 −𝑘𝑠
𝜕𝑇

𝜕𝑛
= −𝑘𝑓

𝜕𝑇

𝜕𝑛
+ 𝑞rad

′′  (13) 

The discretization and radiation modeling are the same as detailed in Section 3.1 of this dissertation. 

 

4.2 Design Method 

The SGM begins with a small amount of solid material (2 computational control volumes) at the 

location of the applied heat rate. The governing equation is solved, and the combined (radiation + 

conduction) local surface heat fluxes are calculated. Solid material is then added to the location with the 

largest heat flux. Without fluid flow, it is expected that the heat transfer processes be horizontally 

symmetric, therefore symmetry is enforced on the solid growth. At each design iteration, two control 

volumes (one on the left-hand side of the domain and one at the corresponding location of the right-hand 

side) are switched from fluid to solid. Through an investigation not detailed in Paper P3, it was 

determined that the best thermal performance was achieved by adding solid material at the location of the 

largest heat flux, rather than the smallest. This is in direct contradiction to the results of Paper P1 and is 

attributed to the differences in the physical problem being considered.  

The results of the SGM are compared to a formal TO method which assumes pure conduction and is 

described in detail in Paper P4 and Section 5.2.1 of this dissertation. The method utilizes a continuous 

material distribution, and local thermal conductivities are defined using the Solid Isotropic Material with 

Penalization method (Bendsoe and Sigmund 2003). The material distribution is optimized using the 

Method of Moving Asymptotes (Svanberg 1987). To evaluate radiation heat transfer, the optimized 

continuous distribution is converted to a discrete distribution as described in Section 3 of P3 and Section 

4 of P4. In short, the discrete solid is obtained by specifying the control volumes with the highest solid 

fraction values to be entirely solid and all remaining control volumes to be entirely fluid. With the 

discrete solid obtained, the coupled radiation-conduction problem is solved as detailed in Section 3.1 of 

this dissertation. Note that the TO solid shapes reported in Paper P3 were obtained by a process that 

neglects the effects of radiation. 

4.3 Results and Discussion 

The SGM is applied with ε = 0 and 0.4 for 𝑘𝑠
∗ = 1 and 0.1, where 𝑘𝑠

∗ ≡ 𝑘𝑠/(237 W/m ∙ K). A figure 

of merit is introduced which rewards both low overall thermal resistance and low amount of solid and is 

defined as 𝐹 ≡ (𝑅tot
′ ⋅ 𝑘𝑓 ⋅ 𝐴𝑠 𝐴tot⁄ )−1, where As is the cross-sectional area of the solid and Atot is the area 

of the entire H × H computational domain. The evolution history of the overall thermal resistance and 

figure of merit are reported in Fig. 16. The TO method is applied at four arbitrarily selected As values, the 
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results of which are also shown in Fig. 16 as isolated, filled data points. For the ε = 0 SGM cases, 𝑅tot
′  

decreases monotonically as solid material is added to the domain, while F undergoes a more complex 

evolution. In contrast, the ε = 0.4 SGM cases have regions in which 𝑅tot
′  increases as solid material is 

added. As will be detailed later, this is a result of solid sections shielding radiation transfer. 

 

Fig. 16 Evolution history of (a) overall thermal resistance and (b) figure of merit predicted by the SGM. 

Filled data points correspond to TO predictions [P3]. 
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4.3.1 Predicted Solid Shapes and Thermal Performance, 𝑘𝑠
∗ = 1 

The corresponding solid configurations and temperature distributions associated with the 𝑘𝑠
∗ = 1 cases 

are shown in Figs. 17 and 18 respectively. Note that the TO solid shapes are the same for ε = 0 and 0.4, 

therefore one TO solid is shown for each As value. The overall thermal resistance (𝑅tot
′ ), conduction 

thermal resistance (𝑅cond
′ ), and figure of merit associated with the temperature distributions of Fig. 18, 

are reported in Table 3. The solid growth processes of the various cases are described in detail in Sections 

4.2 and 4.3 of Paper P3 and are briefly summarized here. 

For the ε = 0 case, the solid initially grows upward towards the isothermal top boundary. Once the 

solid reaches the top of the design domain, it bifurcates outward resulting in the T-shaped structure of Fig. 

17a. The horizontal section of solid at the top of the domain continues to expand outward until reaching 

the side adiabatic boundary, at which point the location of maximum local surface heat flux shifts to the 

bottom center of the domain. From there, the solid growth results in the additional sections of solid 

present in the lower half of the domain of Fig. 17b. Once the vertical solid sections along the side 

adiabatic boundaries come into contact with the top horizontal section of solid, there is a sharp decrease in 

𝑅tot
′  (Fig. 16a, 𝐴𝑠 × 103 ≈ 0.1165 m2) which corresponds to a sharp increase in F (Fig. 16b, 𝐴𝑠 × 103 ≈

0.1165 m2). For the remainder of the growth process, solid is added along the three existing vertical 

columns, increasing their thickness, as shown in Figs. 17c and 17d.  

The inclusion of radiation (ε = 0.4) results in a significantly different growth process, as shown by 

Figs. 17e - 17h. The solid initially grows outward horizontally, until turning upwards at the side adiabatic 

boundary. Then the solid growth shifts to the bottom center of the domain resulting in the central vertical 

section of solid present in Fig. 17e. This central section continues to grow until reaching the top boundary 

and bifurcating outward (Fig. 17f). As the horizontal section of solid at the top of the domain expands 

outward, it serves to reduce the conduction thermal resistance but increasingly shields radiation transfer 

between the high-temperature sections at the bottom of the domain and the colder, top isothermal 

boundary. As a result, 𝑅tot
′  increases (Fig. 16a, 0.08 m2 ≲ 𝐴𝑠 × 103 ≲ 0.1 m2). Later in the design 

process, the solid growth is characterized by the addition of slender vertical columns near the center of the 

domain (Figs. 17g and 17h).  

The solid configurations resulting from TO (Figs. 17i - 17l) are slightly more complex than the SGM 

solids. As 𝐴𝑠 increases, the TO solid structures are characterized by thicker solid sections with more 

branching and complexity. For 𝐴𝑠 × 103 = 0.05 m2 (Fig. 17i), the conversion between continuous and 

discrete descriptions results in sections of solid which are not fully connected and therefore exhibit an 

increased conduction thermal resistance (Table 3). For 𝐴𝑠 × 103 > 0.05 m2, however, the TO solid 
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structures have conduction resistances of less than or similar value to the SGM cases and the lowest 

overall thermal resistances. Based on these limited results, it may be concluded that the TO approach 

produces more desirable structures when a relatively high solid thermal conductivity is considered and 

sufficient solid is present to minimize numerical effects that artificially increase conduction resistance 

values. 

 

 

Fig. 17 Solid configurations for 𝑘𝑠
∗ = 1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (middle), 

and TO (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, h, l) [P3]. 
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Fig. 18 Temperature distributions for 𝑘𝑠
∗ = 1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 

(middle), and TO (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, 

h, l) [P3]. 
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Table 3 Thermal resistances and figures of merit for 𝑘𝑠
∗ = 1 [P3]. 

 

 

 

4.3.1 Predicted Solid Shapes and Thermal Performance, 𝑘𝑠
∗ = 0.1 

Solid configurations and temperature distributions of the 𝑘𝑠
∗ = 0.1 cases are reported in Figs. 19 

and 20, respectively, at several 𝐴𝑠 values. The thermal resistances and figures of merit associated with the 

solid configurations of Fig. 19 are reported in Table 4. The solid growth of the ε = 0, 𝑘𝑠
∗ = 0.1 case is 

nearly identical to the ε = 0, 𝑘𝑠
∗ = 1 case aside from slight differences in the later stages of the growth 

process, as evident by Figs. 17c, 17d, 19c, and 19d. The solid evolution of the ε = 0.4, 𝑘𝑠
∗ = 0.1 case (Figs. 

19e - 19h) is remarkably different than that of the other SGM cases. The solid growth initiates by growing 

outward horizontally, then a vertical section of solid grows upwards from the bottom center of the 

domain. The solid evolution is then characterized by the addition and extension of multiple vertical 

columns near the vertical centerline (Figs. 19e-19f). Eventually, the central column reaches the top of the 

design domain and bifurcates outward (Fig. 19g). This horizontal section of solid at the top of the domain 

causes some shielding of radiation heat transfer, as evidenced by the increase in 𝑅tot
′  (0.8063 m∙K/W to 

0.8101 m∙K/W) and decrease in 𝑅cond
′  (4.385 m∙K/W to 3.448 m∙K/W) between 𝐴𝑠 × 103 = 0.15 m2 and 

0.2 m2. 

The TO design method again results in branching structures (Figs. 19i - 19l). In comparison to the 

higher thermal conductivity TO case (Figs. 17i - 17l), the TO solid configurations of the 𝑘𝑠
∗ = 0.1 case 
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(Figs. 19i - 19l) are of simpler geometry with less branching and a higher concentration of solid near the 

vertical centerline. For all 𝐴𝑠 values other than 𝐴𝑠 × 103 = 0.05 m2, the TO method achieves the lowest 

conduction thermal resistance (Table 4). However, the SGM, ε = 0.4 case exhibits a lower overall thermal 

resistance for all 𝐴𝑠 values. This result shows that the SGM achieves a lower thermal resistance due to 

radiation and therefore results in a preferred solid configuration when the radiation heat transfer is 

dominant, such as when a low solid thermal conductivity or low amount of solid is considered. 
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Fig. 19 Solid configurations for 𝑘𝑠
∗ = 0.1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (middle), 

and TO (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, h, l) [P3]. 
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Fig. 20 Temperature distributions for 𝑘𝑠
∗ = 0.1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 

(middle), and TO (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, 

h, l) [P3]. 
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Table 4 Thermal resistances and figures of merit associated with 𝑘𝑠
∗ = 0.1 [P3]. 
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Dual Solid Method (Paper P4) 5 

An overview of Paper P4 is provided here, and the publication can be found in its entirety in Chapter 8. 

The Dual Solid Method, developed during the course of the dissertation, is novel and represents the most 

rigorous design method presented in this dissertation. 

5.1 Physical and Numerical Modeling 

The same physical situation considered in Paper P3 is considered in Paper P4. As will be detailed in 

Section 5.2, the design method relies on both a continuous and discrete description of the solid 

distribution. The discrete solid distribution is employed to evaluate radiation heat transfer as detailed in 

Section 4.1 of this dissertation. The continuous distribution is used in conjunction with a topology 

optimization method to determine optimal solid shapes. Because the discrete description methodology has 

already been discussed, the following sections are concerned with the governing equations and 

discretization of the continuous solid model. 

5.1.1 Governing Equations: Continuous Solid Distribution 

The continuous solid model utilizes a spatial distribution of local solid fraction, 𝛾(𝑥, 𝑦), where 0 ≤

𝛾 ≤ 1. Radiation heat transfer is incorporated by a spatially distributed source term, 𝑆rad,𝑐𝑚(𝑥, 𝑦), that is 

related to the radiation heat transfer of the discrete solid model and is independent of 𝛾(𝑥, 𝑦). The heat 

diffusion equation is recast as: 

 
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0 (14) 

where local thermal conductivities depend on 𝛾(𝑥, 𝑦) such that 𝑘𝑓 ≤ 𝑘 ≤ 𝑘𝑠. At the adiabatic boundary 

  −𝑘
𝜕𝑇

𝜕𝑛𝑏
+ 𝑞𝑏

′′ = 0 (15) 

where 𝑞𝑏
′′ = 0 or 𝑞rad

′′  depending on information provided from the discrete model. The remaining 

boundary conditions are similar to that of the discrete model. 

5.1.2 Discretization: Continuous Solid Distribution 

Equation (14) is solved using the finite volume method with control volumes co-located with those of 

the discrete solid model. The Solid Isotropic Material with Penalization (SIMP) method (Bendsoe and 

Sigmund 2003) is used to calculate local thermal conductivities as 

 𝑘(𝛾) = 𝑘𝑓 + 𝛾𝑃(𝑘𝑠 − 𝑘𝑓) (16) 
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where P is a penalization parameter. The purpose of the SIMP method is to discourage intermediate solid 

fraction values and leads to optimal continuous solid distributions that are closer to discrete.  

The spatial distribution of source terms present in Eq. (14) is determined from the discrete solid 

model as 

  𝑆rad,𝑐𝑚(𝑥, 𝑦) = 𝑆rad,𝑑𝑚(𝑥, 𝑦) (17) 

where 𝑆rad,𝑑𝑚(𝑥, 𝑦) is the source term distribution of the converged discrete solid model. The boundary 

condition of Eq. (15) is enforced by specifying the source term at the boundary as: 

  𝑆rad,𝑐𝑚(𝑥, 𝑦) = −𝑞𝑏
′′/∆𝑤  (18) 

where ∆𝑤 = ∆𝑥 = ∆𝑦 is the control volume width. 

 

5.2 Design Method 

5.2.1 Topology Optimization 

 The continuous solid distribution is adjusted using a sensitivity-based TO method for which the 

objective function 

  𝑓𝑜(𝛾, 𝑇) = 𝑇(𝐻/2, 0) (19) 

is minimized. This is equivalent to minimizing the total thermal resistance subject to  

 ∑ 𝛾𝑖
𝑁
𝑖=1 ≤ 𝑉𝑜 × 𝑁  (20) 

and 

  0 ≤ 𝛾𝑖 ≤ 1 (21) 

while satisfying the governing equations. Here, 𝛾𝑖 is the solid fraction of an arbitrary control volume i, 𝑉𝑜 

is the total solid fraction of the entire domain, and N is the total number of computational control volumes 

in the domain. The local solid fraction distribution is optimized using the Method of Moving Asymptotes 

(Svanberg 1987) which relies on the sensitivities of the objective function to the individual solid fraction 

values, 𝜕𝑓𝑜 𝜕𝛾⁄ , to generate a convex approximation of 𝑓𝑜. At each design iteration of the TO process a new 

convex sub-problem is formed and its solution is taken as the new solid fraction distribution. An adjoint 

method is used to calculate the sensitivities, which is described in detail in Appendix B of Paper P4. 

 The main components of the TO process are depicted in Fig. 21. Initially, the solid fraction is spatially 

uniform, 𝛾(𝑥, 𝑦) = 𝑉𝑜, and the radiation source term is specified to be either 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0 or 

𝑆rad,𝑐𝑚(𝑥, 𝑦) = 𝑆rad,𝑑𝑚(𝑥, 𝑦). Then, 𝑘(𝛾) is determined based on the SIMP method and the discretized 
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equations are solved to determine 𝑇(𝑥, 𝑦) and 𝑓𝑜. The sensitivities are then calculated and filtered 

(Appendix B of Paper P4). Lastly, 𝛾(𝑥, 𝑦) is adjusted based on the filtered sensitivities using the MMA. 

This process is repeated until the maximum change in local solid fraction ∆𝛾max, is less than a convergence 

criterion, CC = 0.001. Note that the optimal solid distribution is dependent on 𝑆rad,𝑐𝑚(𝑥, 𝑦). Therefore, the 

iterative process of Fig. 21 must be completed for each unique 𝑆rad,𝑑𝑚(𝑥, 𝑦) distribution that is transferred 

from the discrete model by way of Eq. (17). 

 

Fig. 21 Topology optimization process for adjusting the continuous solid distribution, 𝛾(𝑥, 𝑦). 𝐼𝑐𝑚 = 0 at 

the start of the first iteration [P4]. 

 

5.2.2 Dual Solid Method 

 The DSM process is outlined in Fig. 22. The first step is to obtain the optimal continuous solid 

distribution for the pure conduction problem (𝑆rad,𝑐𝑚 = 0, 𝐼DSM = 0), using the process of Fig. 21. An 

equivalent discrete solid distribution is then obtained from the optimal continuous solid distribution. To 

ensure the total solid fraction, 𝑉𝑜, is the same for both models, the number of solid control volumes in the 

discrete model is determined from 𝑁𝑠 = 𝑉𝑜 × 𝑁. The solid fraction values, 𝛾, of individual control 

volumes of the continuous model are sorted, and the 𝑁𝑠 control volumes with the largest values of 𝛾 are 

specified to be solid in the discrete solid model. The remaining control volumes are specified to be fluid. 
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 With the equivalent discrete solid obtained, the coupled radiation-conduction problem is solved as 

detailed previously. The radiation source term distribution of the discrete model is then passed to the 

continuous model by way of Eq. (17), and the TO process of Fig. 21 is repeated (𝐼DSM = 1, 

𝑆rad,𝑐𝑚(𝑥, 𝑦) ≥ 0) to obtain a new continuous solid distribution. This process is repeated until (i) the 

discrete solid shape does not change between iterations, (ii) the discrete solid shape oscillates between 

two distinct solid shapes, or (iii) a sufficiently large number of iterations have been performed. Note that 

there are two iteration counters involved in the DSM. Specifically, 𝐼DSM tracks the number of times the 

discrete solid distribution is adjusted (Fig. 22), while 𝐼𝑐𝑚 tracks the number of times the continuous solid 

distribution is adjusted for each unique 𝑆rad,𝑐𝑚(𝑥, 𝑦) (Fig. 21). 

 

 

Fig. 22 The dual solid method (DSM) process. Dashed box represents the topology optimization process 

of Fig. 2. 𝐼DSM  = 0 for the 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0 case [P4]. 
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5.3 Results and Discussion 

5.3.1 Base Case Results 

 The DSM is first demonstrated in detail for a base case of 𝑇𝑜 = 750 K, 𝑘𝑠
∗ = 1. The first step is to 

obtain the optimal continuous solid distribution for the pure conduction problem. The evolution history of 

the thermal resistance associated with the continuous solid distribution through the initial TO process 

(Fig. 21) as well as the continuous solid distribution for various 𝐼𝑐𝑚 are reported in Fig. 23. The thermal 

resistance rapidly decreases as the solid shape converges towards the branching structure shown. The 

solid distribution becomes more distinct throughout the TO process as a result of the SIMP method 

(Section 5.1.2). The optimal continuous solid distribution and corresponding temperature distribution for 

the pure conduction problem are shown in Fig. 24a.  

 Once the optimal continuous distribution is obtained, an equivalent discrete distribution is generated 

as described in Section 5.2.2 and is used to solve the coupled radiation-conduction problem. The discrete 

solid distribution and corresponding temperature distribution with ε = 1 are shown in Fig. 24b. Note that 

there is a slight increase in the conduction thermal resistance as a result of the mapping between 

continuous and discrete solid models.  

   

 

Fig. 23 Pure conduction base case evolution history of the conduction resistance and solid shapes 

associated with the continuous solid model using the TO process of Fig. 21. Solid distributions are shown 

at 𝐼𝑐𝑚 = 5, 20, 400, and 1350 [P4]. 
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Fig. 24 The base case solid distribution (left) and temperature distribution (right) associated with (a) the 

optimized continuous solid of the pure conduction solution (𝐼𝑐𝑚 = 1350 of Fig. 23), and (b) the equivalent 

discrete solid with radiation and conduction included (𝐼DSM = 0) [P4]. 

 

The radiation conditions of Fig. 24b are then incorporated into the TO process of Fig. 21 by way of 

Eq. (17). The detailed results of 𝐼DSM = 1 are also presented in Paper P4 (Section 5.3, Figs. 6 and 7 of 

Paper P4). After one iteration of the DSM, the incorporation of the radiation source terms results in a 

slight change to the discrete solid shape and a small reduction in the overall thermal resistance. 

The evolution histories of the total and pure conduction thermal resistances associated with the 

discrete solid model throughout the DSM process are shown in Fig. 25. As evident, there is an initial 

sharp decrease in the total thermal resistance, coinciding with a sharp increase in the pure conduction 

resistance. Both resistances approach constant values at 𝐼DSM ≈ 15, with the total thermal resistance 

achieving a minimum value at 𝐼DSM = 54, as identified by the filled data symbol. The discrete solid 

distribution and associated temperature distribution at 𝐼DSM = 54 are shown in Fig. 26. In comparison to 

the solid shape of Fig. 24, the points at which the solid branches bifurcate have shifted lower in the 

domain. Also, the gap at the top of the domain has increased in width, creating a better window for 

radiation transfer between the top, isothermal boundary and the high-temperature sections at the bottom 

of the domain. The decrease in overall thermal resistance, along with the increase in conduction thermal 
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resistance, demonstrate the ability of the DSM to determine solid geometries with enhanced radiation heat 

transfer. 

 

 

Fig. 25 Base case evolution history of the total pure conduction thermal resistances associated with the 

discrete solid for the first 100 iterations of the DSM. The minimum total thermal resistance occurs at 𝐼DSM 

= 54 [P4].  

 

Fig. 26 Base case discrete solid and temperature distributions associated with 𝑅tot,min
′  the of Fig. 25 at 

𝐼DSM = 54 [P4]. 

 

5.3.2 Parametric Simulations 

The DSM was then applied to a range of 𝑇𝑜 and 𝑘𝑠
∗ values to determine the influence of the relative 

strengths of radiation and conduction, respectively, on the predicted optimal geometries and thermal 

resistances. The evolution histories of the total and conduction thermal resistances associated with the 

discrete solid distribution for the 𝑇𝑜 = 1000 K and 500 K cases are shown in Fig. 27. As evident by Fig. 

27a, the overall thermal resistance of the 𝑇𝑜 = 1000 K case monotonically approaches the optimal value. 

In contrast, the 𝑇𝑜 = 500 K case (Fig. 27b) exhibits a more complex evolution and struggles to identify an 
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optimal solution. In fact, the lowest overall thermal resistance is associated with 𝐼DSM = 0. Due to the 

relatively weak strength of radiation for the 𝑇𝑜 = 500 K case, the DSM is not able to achieve an overall 

thermal resistance lower than the solid shape generated from the pure conduction analysis.  

The discrete solid shapes and temperature distributions associated with 𝑅tot,min
′  for the three 𝑇𝑜 cases 

are shown in Fig. 28. As 𝑇𝑜 is increased, the location at which the solid first bifurcates moves lower in the 

domain, resulting in more space between the two main branches. The gap in the solid at the top of the 

domain is also widened as 𝑇𝑜 is increased. These changes in the solid shape reduce shielding and increase 

radiation heat transfer.  

 

 

Fig. 27 Evolution history of the total and pure conduction thermal resistances associated with the discrete 

solid for (a) 𝑇𝑜 = 1000 K and (b) 𝑇𝑜 = 500 K [P4]. 
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Fig. 28 Discrete solid shapes and temperature distributions associated with 𝑅tot,min
′  for (a) 𝑇𝑜 = 500 K 

(𝐼DSM = 0), (b) 𝑇𝑜 = 750 K (𝐼DSM = 54), and (c) 𝑇𝑜 = 1000 K (𝐼DSM = 31) [P4]. 

 

The evolution histories of the total and conduction thermal resistances associated with the 

discrete solid distribution for the 𝑘𝑠
∗ = 0.01 and 0.1 cases are shown in Fig. 29. The case with the weaker 

strength of conduction (𝑘𝑠
∗ = 0.01), and therefore stronger relative strength of radiation, exhibits a 

monotonic decrease in overall thermal resistance and converges to the optimal solution (Fig. 29a). The 𝑘𝑠
∗ 

= 0.1 case, however, has a sharp initial decrease in overall thermal resistance coinciding with a sharp 

increase in the conduction thermal resistance. The resistance values are roughly constant for the 

remainder of the DSM process (Fig. 29b).  
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Both the initial (𝐼DSM = 0) and the optimal (𝐼DSM > 0) discrete solid shapes and temperature 

distributions associated with the various 𝑘𝑠
∗ cases are reported in Fig. 30. Again, the discrete solid shapes 

associated with 𝐼DSM = 0 (left column of Fig. 13) are obtained from the pure conduction TO. As evident in 

the second and third rows of the first column of Fig. 30, the optimal discrete solid shapes that were 

generated from the continuous model with 𝜀 = 0 are similar for 𝑘𝑠
∗ = 0.1 and 1. For the 𝑘𝑠

∗ = 0.01 case, 

however, there is a higher concentration of solid near the vertical centerline and less branching. The 

optimal geometries associated with ε = 1 (third column of Fig. 30) are substantially different than those 

associated with ε = 0. This is especially evident for the weak conduction (strong radiation) case, 𝑘𝑠
∗ =

0.01, where parts of the solid propagate laterally outward, forming two horizontal, petal-like structures 

that do little to reduce the conduction resistance but serve as radiatively active surfaces that improve 

radiative exchange with the cold, upper surface. Another feature that is unique to the 𝑘𝑠
∗ = 0.01, ε = 0.4 

case is that all the solid material resides in the lower half of the domain, which prevents shielding of 

radiation transfer. 
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Fig. 29 Evolution history of the total and pure conduction thermal resistances associated with the discrete 

solid for (a) 𝑘𝑠
∗ = 0.01 and (b) 𝑘𝑠

∗ = 0.1 with 𝑇𝑜 = 750 K [P4]. 
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Fig. 30 Discrete solid shapes and temperature distributions associated with 𝑇𝑜 = 750 K and 𝑘𝑠
∗ = 0.01 

(top), 𝑘𝑠
∗ = 0.1 (middle), and 𝑘𝑠

∗ = 1 (bottom). 𝐼DSM = 0 for the first and second columns. The third and 

fourth columns are associated with 𝑅tot,min
′  and (a) 𝐼DSM = 9, (b) 𝐼DSM = 16, and (c) 𝐼DSM = 54 [P4]. 
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Discussion 6 

6.1 Comparison of Methods 

Three design methods (EDM, SGM, and DSM) that incorporate the effects of radiation have been 

developed and shown to have merit. The EDM and SGM are both heuristic methods that are not founded 

on rigorous optimization methodologies but rather on rules based on intuition. Although they are heuristic 

and their implementation is relatively simple and straightforward, it was shown that these design methods 

resulted in favorable geometries with reduced overall thermal resistances. The DSM utilizes a formal TO 

method that is based on rigorous optimization theory and is fueled by sensitivity information. Like the 

EDM and SGM, the DSM was shown to reduce the overall thermal resistance in most physical cases 

considered. 

In order to make a direct comparison between a heuristic method and a formal optimization method, 

the DSM is now applied to the physical conditions of Paper P3 and compared to the SGM. Note that the 

initial solid shape of the DSM (𝐼DSM = 0) is already included in Paper P3 as the TO comparison. The solid 

shapes generated by the (i) SGM with ε = 0, (ii) SGM with ε = 0.4, (iii) TO with ε = 0, and (iv) DSM with 

ε = 0.4 are shown in Fig. 31 for the 𝑘𝑠
∗ = 1 case. The iteration (𝐼DSM) at which the DSM achieves the 

minimum thermal resistance is also reported in Fig. 31. The corresponding temperature distributions are 

shown in Fig. 32. The thermal resistance values and figures of merit are reported in Table 5. Note that 

Figs. 31 and 32 and Table 5 are extensions of the figures from Paper P3. 

In comparing the DSM (Figs. 31m - 31p) and TO (Figs. 31i – 31l), there are subtle changes in the 

solid configurations as a result of incorporating radiation. The point at which the solid initially bifurcates 

has moved lower in the domain, as was observed in Paper P4. There is also a slight decrease in overall 

thermal resistance between TO and DSM as reported in Table 5. The DSM (Figs. 31m - 31p) results in 

solid configurations with more complexity than the SGM (Figs. 31e - 31h). Also, the lowest overall 

thermal resistance for every 𝐴𝑠 value of the 𝑘𝑠
∗ = 1 cases is achieved by the DSM (Table 5). It was already 

shown in Paper P3 that the TO method resulted in favorable thermal performance for most 𝐴𝑠 values, so 

this result is not surprising.  

The solid configurations and corresponding temperature distributions associated with 𝑘𝑠
∗ = 0.1 are 

shown in Figs. 33 and 34, respectively. The thermal resistances and figures of merit are reported in Table 

6. With the lower solid thermal conductivity, the relative strength of conduction is lower, thus radiation is 

relatively stronger. As a result, there is a more significant difference between the solid shapes of the DSM 

(Figs. 33m - 33p) and TO (Figs. 33i - 33l). Correspondingly, there is a more dramatic decrease in 𝑅tot
′  and 
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increase in 𝑅cond
′  between TO and DSM (Table 6). However, even though the DSM has better thermal 

performance than the TO method, the heuristic SGM (Figs. 33e - 33h) achieves the lowest overall thermal 

resistance for every 𝐴𝑠 value of the 𝑘𝑠
∗ = 0.1 cases. This somewhat unexpected result is attributable to the 

high concentration of vertical columns extending from the bottom center of the domain in Figs. 33e - 33h. 

This feature results in a large surface area of solid that participates in radiation exchange with the top, 

colder isothermal boundary. A sensitivity filter (Appendix B of Paper P4) is employed in TO and the 

DSM to prevent unrealistic checkerboard patterns from emerging. As a result, the high concentration of 

alternating solid and fluid control volumes present in Figs. 33e - 33h cannot be achieved by TO or the 

DSM. 

 

 

Fig 31 Solid configurations for 𝑘𝑠
∗ = 1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (second 

column), TO (third column), and DSM (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i, m), 0.1 m2 (b, f, j, n), 0.15 

m2 (c, g, k, o), and 0.2 m2 (d, h, l, p). The 𝐼DSM corresponding to the minimum thermal resistance (m-p) 

are also reported. 

𝐼DSM
  = 76 

𝐼DSM
  = 21 

𝐼DSM
  = 20 

𝐼DSM
  = 10 
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Fig 32 Temperature distributions for 𝑘𝑠
∗ = 1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (second 

column), TO (third column), and DSM (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i, m), 0.1 m2 (b, f, j, n), 0.15 

m2 (c, g, k, o), and 0.2 m2 (d, h, l, p). 
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Table 5 Thermal resistances and figure of merit for 𝑘𝑠
∗ = 1. 
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Fig 33 Solid configurations for 𝑘𝑠
∗ = 0.1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (second 

column), TO (third column), and DSM (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i, m), 0.1 m2 (b, f, j, n), 0.15 

m2 (c, g, k, o), and 0.2 m2 (d, h, l, p). The 𝐼DSM corresponding to the minimum thermal resistances (m-p) 

are also reported. 

 

 

  

 

 

 

 

𝐼DSM
  = 21 

𝐼DSM
  = 79 

𝐼DSM
  = 66 

𝐼DSM
  = 33 
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Fig 34 Temperature distributions for 𝑘𝑠
∗ = 0.1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 

(second column), TO (third column), and DSM (right) for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i, m), 0.1 m2 (b, f, j, 

n), 0.15 m2 (c, g, k, o), and 0.2 m2 (d, h, l, p). 
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Table 6 Thermal resistances and figure of merit for 𝑘𝑠
∗ = 0.1. 

 

 

6.2 Conclusions and Recommendations 

An overview of the four publications which constitute this dissertation has been provided, and a brief 

comparison of the heuristic and formal design methods has been discussed. The main contributions of this 

body of work are summarized as follows: 

• A novel evolutionary design method (EDM) has been developed in Paper P1 and shown to 

have some merit by reducing the overall thermal resistance. While better thermal 

performance is achieved by a topology optimization (TO) method, the EDM has the 

advantage of being relatively simple and straightforward, which allows for the effects of 

radiation to be easily incorporated. 

• To the author’s knowledge, Paper P2 is the first study to apply a design method that does not 

require geometric features to be specified a priori to a conducting solid cooled by conjugate 

free convection and surface-to-surface radiation. The study demonstrates the influence that 

thermal radiation has on (i) the physics of the problem (fluid flow and temperature 

distribution) and (ii) the predicted optimal geometry. It was found that, in general, increasing 



50 

the strength of radiation results in increased symmetry about the vertical centerline for both 

the physics and predicted solid geometries. 

• Paper P3 introduces a novel solid growth method (SGM), which is distinct from the EDM in 

that the solid mass is not constant throughout the design process. It was demonstrated that the 

relative strength of radiation had a significant effect on the solid growth and thermal 

performance. The SGM was also compared to a formal TO method that neglects the effects of 

radiation. It was found that when a low amount of solid material or a relatively low solid 

thermal conductivity is considered, the SGM produces favorable solid configurations with 

lower overall thermal resistances. 

• In Paper P4, the effects of thermal radiation were incorporated into a formal TO method, by 

introducing a novel dual solid method (DSM) that utilizes both a continuous and discrete 

description of the solid distribution. To the author’s knowledge, the DSM is the first TO 

method to iterate between two distinct solid descriptions and Paper P4 represents the first 

study to apply a formal TO method to a strongly coupled radiation-conduction problem. Once 

again, it was shown that radiation has a significant effect on the predicted optimal geometry 

and thermal performance. 

• The results of Papers P2, P3, and P4 demonstrate that thermal radiation can have a significant 

effect on optimal geometries and should, therefore, be considered in thermal design methods. 

This is particularly true for physical situations with dominant radiation heat transfer, such as 

(i) high temperatures and emissivities, (ii) low amounts of solid material, (iii) low solid 

thermal conductivity, and (iv) low or negligible advective effects. 

• Lastly, a comparison of heuristic (SGM) and formal (DSM) design methods was made. 

Somewhat surprisingly, the SGM resulted in better thermal performance when a low solid 

thermal conductivity was considered. This is attributed to the high concentration of vertical 

columns that is unattainable by the DSM due to its filtering routine. 

Based on the results of this dissertation, several recommendations for future research are as follows: 

• The DSM was applied to a coupled radiation-conduction problem. It would be beneficial, 

however, to incorporate the effects of free convection. This could be achieved by using the 

discrete numerical model of Paper P2 in conjunction with the continuous TO methods 

developed in the literature for free convection problems (Alexandersen et al. 2014). 

• Throughout this dissertation, the radiative surfaces are assumed to be diffuse and gray, 

however, many solids are characterized by both directional and spectral radiative properties. 

Incorporating these effects could lead to significantly different optimal geometries. 
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• It was also assumed that the fluid is radiatively transparent. The design methods could be 

adapted for situations involving semi-transparent media. This would require a more advanced 

radiation model. 

• Lastly, due to their complexity, the optimal solid geometries obtained in this dissertation 

might require additive manufacturing methods to be fabricated. Therefore, it would be 

beneficial to incorporate manufacturing constraints and effective thermophysical properties 

associated with additive processes into the design methods.  
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AN ITERATIVE DESIGN METHOD TO REDUCE THE 

OVERALL THERMAL RESISTANCE IN A CONJUGATE 

CONDUCTION-FREE CONVECTION CONFIGURATION 

Chadwick D. Sevart*, Theodore L. Bergman 

University of Kansas, Lawrence, Kansas, 66044, USA 

ABSTRACT 

A design approach is proposed and demonstrated to identify desirable two-dimensional solid geometries, cooled by natural 

convection, that offer superior thermal performance in terms of reduced overall (conduction-convection) thermal resistance. The 

approach utilizes (i) heat transfer modeling in conjunction with (ii) various novel shape evolution rules. Predictions demonstrate 

the evolution of the solid shape and associated reduction of the overall thermal resistance. Parametric simulations reveal the 

dependence of the predicted solid shape on the evolution rule employed, the thermal conductivity of the solid material, and the 

strength of advection within the fluid.  

 

Keywords: Topology Optimization, Heat Sinks, Natural Convection  

 

1. INTRODUCTION 

The design of various thermal systems has long been a point 

of research with a common goal being to reduce the overall 

conduction-convection thermal resistance while minimizing 

the weight or volume of the solid. Relative to heat sink design, 

early on this was achieved using size and geometrical 

optimization of heat sinks that were comprised of 

geometrically well-defined sub-components (e.g. straight, 

circular, or pin fins of various cross sectional shapes). For 

example, Bar-Cohen (1979) developed expressions for 

optimum fin thicknesses, spacing between fins, and fin 

widths, that maximize the heat dissipation per unit fin cross 

sectional area. The correlations were developed based on the 

assumption of a uniform heat transfer coefficient and fin 

efficiency. In a later study by Bar-Cohen et al. (2003), the 

work was extended to incorporate experimentally validated 

correlations for the heat transfer coefficient (Nusselt number), 

including for non-isothermal plates. In a similar study, Kim 

(2012) optimized the size and shape of plate fin heat sinks that 

had a trapezoidal cross-section and found better thermal 

performance when compared to a similar optimized plate fin 

heat sink of uniform thickness.  

 
* Corresponding author. Email: cdsevart@ku.edu 

While size and shape optimization provided good 

designs of traditional heat sink layouts comprised of, for 

example, plate fin or pin fin arrays, a truly optimal heat sink 

shape that achieves the best thermal performance is often 

complex and might consist of unanticipated geometrical 

features. To this end, topology optimization (TO) is an 

evolving design methodology which provides the best solid 

shapes that will achieve a specified goal while satisfying 

imposed constraints (Bendsøe and Sigmund, 2003).  

The general TO process involves: (i) discretization of a 

computational domain consisting of a solid and perhaps an 

adjoining fluid, (ii) specification of an initial spatial 

distribution of solid material, (iii) solution of the appropriate 

equations that describe the physical process or processes of 

interest, and (iv) optimization of the solid material shape and 

configuration using an appropriate algorithm. Steps (iii) and 

(iv) are repeated until the final solid shape is achieved. A 

comprehensive review of the different variations of TO and 

their characteristics can be found in Sigmund and Maute 

(2013). 

TO was first introduced by Bendsøe and Kichuchi 

(1988) and used as a method to most effectively distribute 

stresses in a structural member of unknown shape but has 

since been adapted to the fields of heat transfer and fluid flow. 

 

Frontiers in Heat and Mass Transfer 

 

Available at www.ThermalFluidsCentral.org  

http://www.thermalfluidscentral.org/


58 

To this end, Li et al. (1999) applied TO to heat conduction 

problems; they used the principles of evolutionary structural 

optimization (ESO) to design solids that resulted in the most 

uniform distribution of a surface heat flux. Other works that 

apply TO to heat conduction problems include Gersborg-

Hansen et al. (2006), Gao et al. (2008), Marck et al. (2012), 

Dirker and Meyer (2013) and Xia et al. (2018). Subsequently, 

several studies included convection heat transfer occurring at 

the boundary of solid structures into TO problems by use of a 

constant convection coefficient and Newton’s law of cooling 

(Yin and Ananthasuresh, 2002; Bruns, 2007; Ahn and Cho, 

2010).  

To the authors’ knowledge, the first investigators to 

apply TO to fluid flow configurations were Borrvall and 

Petersson (2003) who sought to minimize the pressure drop 

experienced by the fluid in low Reynolds number flows. A 

study by Yoon (2010) involved the application of TO to 

forced convection problems accounting for non-uniform 

convective conditions that were determined by solution of an 

advection-diffusion model. Similar studies which incorporate 

the effects of fluid flow by solving the advection-diffusion 

equations include Koga et al. (2013), Haertel and Nellis 

(2017), Qian and Dede (2016), and Subramaniam et al. 

(2019). Topology optimization for natural convection 

problems has been recently studied by Alexandersen et al. 

(2014) where the authors used density-based TO to design 

complex 2D heat sinks as well as micropumps driven by 

natural convection. In a later work, the same method was used 

to design a 3D heat sink for light emitting diodes 

(Alexandersen et al.,2018). In a similar study by Coffin and 

Maute (2016), a level-set TO method was introduced to 

determine optimal solid shapes experiencing steady-state and 

transient natural convection. Joo et al. (2017) used a 

simplified surrogate model for natural convection which 

incorporated a shape-dependent convection coefficient in 

order to design a 3D natural convection heat sink using 

density based TO. 

Although TO is a powerful design methodology, it can 

be computationally expensive, especially when considering a 

complex physical problem such as conjugate heat transfer 

with conduction in the solid region and natural convection in 

the fluid. The objective of this work is to propose and 

demonstrate an overall evolutionary design method (EDM) 

for 2D solids cooled by natural convection. The EDM consists 

of a heat transfer (HT) sub-model and one of four proposed 

shape evolution method (SEM) sub-models. The proposed 

EDM is comparable to bidirectional evolutionary structural 

optimization (BESO), in which a solid structure evolves by 

the simultaneous removal of unnecessary material that is less 

stressed and addition of material to regions that are more 

stressed. Through this process the structure gradually 

approaches the maximum overall stiffness per unit material 

volume. The difference between BESO and the design 

method of this work is that the solid is reconfigured based on 

local temperatures or heat fluxes. Similar evolutionary design 

methods have been applied to heat conduction problems, such 

as (Li et al. 1999 and 2004). The proposed design method is 

relatively simple compared to many TO methods because (i) 

the shape evolution does not require a formal optimization 

analysis and (ii) the governing equations are solved using a 

finite volume method, making the solid redistribution 

straightforward. The predictions of the proposed EDM will be 

compared to an optimized heat sink design (Coffin and Maute, 

2016) operating under identical conditions. A parametric 

study will also be conducted to observe the influence of solid 

thermal conductivity and the domain size (Rayleigh number) 

on the final solid shape. 

 

2. PHYSICAL AND NUMERICAL 

MODELS 

The situation of interest is depicted in Fig. 1. A two-

dimensional, square domain is composed of a fixed amount of 

solid and an adjacent fluid. As shown, the solid is arbitrarily 

specified to have an initial, semi-circular cross-section of 

radius R and cross-sectional area At = R2/2. A heat rate per 

unit length, q', is applied at the bottom center of the domain, 

while the top boundary is isothermal at a reference 

temperature To. All remaining boundaries are adiabatic. The 

temperature of the solid at the location where q' is applied is 

to be minimized by allowing the solid shape to evolve under 

the constraint that the total amount of solid remains constant, 

affecting both conduction in the solid and free convection in 

the fluid. The conduction and convection processes are 

coupled at the solid-fluid interface. 

The overall EDM simulation is initiated with the domain 

shown in Fig. 1. After the steady-state temperature 

distributions (including the maximum solid temperature at x 

= H/2, y = 0) are calculated with the HT sub-model (Section 

2.1) the solid cross-sectional shape is modified according to a 

SEM (Section 2.2), the conjugate conduction-convection 

problem is re-solved, and the maximum solid temperature is 

re-calculated. The heat transfer prediction – shape evolution 

– heat transfer prediction process is continually repeated with 

the goal to reduce the solid temperature at the location where 

q' is applied.  

2.1 Heat Transfer Sub-Model 

Heat transfer within the fluid is described by (i) the 

conservation of mass equation, (ii) the Navier-Stokes 

equations and (iii) the conservation of energy equation. A 

Boussinesq, Newtonian fluid is considered, and viscous 

dissipation is neglected. The fluid flow and heat transfer 

processes are steady-state, and it is assumed that all 

thermophysical properties are constant. Conditions will be 

specified so that the fluid flow is laminar. Therefore, the 

governing equations for the fluid are 

 
𝜕(𝜌𝑓𝑢)

𝜕𝑥
+
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where u and v are the x and y components of the velocity 

respectively, p is the pressure, µf is the viscosity, f is the 
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density, f is the coefficient of thermal expansion, cp,f  is the 

specific heat, and kf is the thermal conductivity of the fluid. 

Heat transfer in the solid is governed by an energy equation 

similar to Equation (4), but with u = v = 0 and ks specified 

instead of kf. Radiation heat transfer is neglected, so at the 

solid-fluid interface the heat flux in the solid normal to the 

interface is equal to the heat flux in the fluid normal to the 

interface, and the temperature of the solid is equal to the 

temperature of the fluid. No-slip conditions are applied at the 

boundaries of the domain. 

Local temperatures and heat fluxes are obtained using 

the finite volume method (Patankar 1980), with each control 

volume being entirely solid or entirely fluid. A staggered grid 

was used to solve the discretized forms of the Navier-Stokes 

equation, the power-law differencing scheme was employed, 

and harmonic mean thermal conductivities were calculated to 

properly determine thermal conditions at the control volume 

surfaces that separate the solid and fluid phases. The 

equations were solved using the SIMPLE algorithm. Because 

it is not known a priori how the solid and fluid sub-domains 

will evolve, the entire computational domain was populated 

with control volumes of uniform size. The computational 

model was validated as discussed in the Appendix.  

 
Fig. 1 Conjugate conduction-convection system showing the 

initial solid location and computational domain, 

relevant thermophysical properties, and thermal 

boundary conditions. 

2.2 Shape Evolution Methods 

A flow chart of the overall EDM is shown in Fig. 2. The 

simulation begins with specification of an initial solid 

geometrical shape (Fig. 1). The governing heat transfer 

equations are then solved using the HT sub-model, and all 

local heat fluxes and temperatures along the solid-fluid 

interface are calculated. Within each iteration of the EDM, 

one control volume is switched from solid to fluid, while a 

second control volume is concurrently switched from fluid to 

solid in adherence to a specified SEM.  

As discussed in Section 1, the solid reallocation 

associated with the SEM is similar to that of structural 

evolutionary methods such as BESO, where solid is removed 

from locations where it is less beneficial and added to 

locations where it is more useful. Unlike structural problems, 

however, evolutionary solid reallocation schemes for 

conjugate conduction-convection heat transfer problems are 

less obvious because (i) addition or subtraction of solid along 

the interface will affect the fluid flow in a nonlinear manner 

and (ii) the solid is of relatively high thermal conductivity and 

therefore poses a small thermal resistance relative to that 

posed by the fluid. Four SEMs are considered here.  

In SEM I, all solid (fluid) control volumes along the 

solid-fluid interface are checked, and the solid (fluid) is 

converted to fluid (solid) in the control volume that 

experiences the largest (smallest) heat flux to the fluid (from 

the solid). In SEM II, all solid (fluid) control volumes along 

the solid-fluid interface are checked, and solid (fluid) is 

converted to fluid (solid) in the control volume with the 

lowest (highest) surface temperature. SEM III is the opposite 

of SEM II, that is, all solid (fluid) control volumes along the 

solid-fluid interface are checked, and solid (fluid) is converted 

to fluid (solid) in the control volume with the highest (lowest) 

surface temperature. SEM IV is the opposite of SEM I, that 

is, all solid (fluid) control volumes along the solid-fluid 

interface are checked, and the solid (fluid) is converted to 

fluid (solid) in the control volume that experiences the 

smallest (largest) heat flux to the fluid (from the solid).  

The overall EDM simulation is curtailed when either of 

two criteria is achieved. The first curtailment criterion is 

reached when part of the solid becomes disconnected from the 

rest of the solid and a boundary of the domain, resulting in 

some of the solid “floating” unrealistically within the 

surrounding fluid. The second curtailment criterion is met 

when the predicted solid shape oscillates from iteration-to-

iteration, marking the end of the solid shape evolution. 

 
Fig. 2 The evolutionary design method (EDM). 
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3. EDM PREDICTIONS 

Results are presented for the following cases. Prior to 

employing the full EDM, the HT sub-model (without utilizing 

a SEM) is used to both (i) replicate the heat transfer and fluid 

flow predictions and (ii) quantify the overall thermal 

resistance of the conjugate conduction/convection system, 

𝑅𝑡
′ ≡ [𝑇(𝐻 2⁄ , 0) − 𝑇𝑜]/𝑞′, associated with the benchmark 

solid shape predicted by Coffin and Maute (2016). Second, 

using the same conditions specified by Coffin and Maute 

(2016), final solid shapes and the associated overall thermal 

resistances are reported for predictions generated by the 

overall EDM model using each of the four SEM sub-models 

described in Section 2.2. After these predictions are reported, 

an additional constraint is imposed in the EDM model of Fig. 

2, and results are discussed. Finally, the influence of (i) the 

solid phase thermal conductivity and (ii) the domain size 

(Rayleigh number) on the final solid shape and overall 

thermal resistance is examined.   

 

3.1 Replication of Benchmark Predictions and 

Quantification of the Benchmark Thermal 

Resistance 

To test the HT sub-model and quantify 𝑅𝑡′ associated with the 

benchmark study (Coffin and Maute, 2016), the materials (kf 

= 0.0257 W/m∙K; ks = 237 W/m∙K; ρf  = 1.205 kg/m3; µf = 

1.511×10-5 Pa∙s; cp,f  = 1005 J/kg∙K; cp,s  = 910 J/kg∙K, βf  = 

3.43×10-3 K-1), domain size (H = 30 mm), and thermal 

boundary conditions (q' = 0.05 W/m, To = 1 K) of the 

benchmark were specified for the problem of Fig. 1.  

The optimal shape of the benchmark study is shown in 

Fig. 3a, along with the predicted benchmark temperature and 

streamline distributions. As evident, thermal and velocity 

conditions are not symmetric about x = H/2 despite the 

symmetric conditions of the problem and consist of a large 

clockwise circulation of the fluid (air) that sculpts an 

irregular, nearly-isothermal sloped solid that is thicker on the 

LHS of the computational domain. Note that no solid is in 

contact with the left adiabatic wall of the domain; this is 

attributed to the complexity of the conjugate conduction and 

convection heat transfer processes as well as inclusion of an 

additional constraint in the benchmark model. Specifically, 

the total perimeter of the solid was constrained by Coffin and 

Maute (2016); a similar constraint was not incorporated in this 

study due to the use of an orthogonal computational mesh. 

The consequence of this additional constraint will be 

discussed further in Section 3.3.  

To demonstrate the veracity of the HT sub-model, the 

solid shape of Fig. 3a was replicated and is shown in Fig. 3b. 

The HT sub-model was then applied to the combined solid-

fluid domain resulting in the predicted streamline (Fig. 3c) 

and temperature (Fig. 3d) distributions shown, which are in 

excellent qualitative agreement with those of the benchmark 

(Fig. 3a). The maximum temperature reported by Coffin and 

Maute (2016) is T(H/2,0) = 2.16 K while the maximum 

temperature predicted by the HT sub-model is T(H/2,0) = 2.19 

K.  The predicted thermal resistance associated with Fig. 3d 

is 𝑅𝑡
′ = 23.888 K ⋅ m/W.  

 

 
Fig. 3 Solid shape (white line), temperature and streamline 

distributions: (a) benchmark predictions (Coffin and 

Maute, 2016), (b) solid shape (black area) used in the 

HT sub-model, (c) streamline distribution predicted 

by the HT sub-model, (d) temperature distribution 

predicted by the HT sub-model. Figure 3(a) is 

reprinted by permission from Springer Nature 

Customer Service Centre GmbH: Springer, Structural 

and Multidisciplinary Optimization, “A Level-Set 

Method for Steady-State and Transient Natural 

Convection Problems,” Peter Coffin and Kurt Maute, 

2016. 

 

3.2 Shape Evolution using the Four SEM Sub-

models 

With the accuracy of the HT sub-model demonstrated, the 

overall EDM model, composed of the HT and SEM sub-

models, was used to predict the topology of the solid of total 

area At = 39.5 mm2. Solid shapes at various stages of iteration 

of the overall EDM model, corresponding to a cumulative 

amount of displaced solid AD, and number of design 

iterations, iter, are shown in Fig. 4 for each of the four SEM 

sub-models. For SEM Method IV, the final shape was reached 

after only AD = 1 mm2 of solid was displaced, which 

corresponds to 4 design iterations, and is shown in the upper 

right corner of the figure. With use of SEM IV, curtailment of 

the EDM was triggered by the oscillation between two solid 

shapes on subsequent iterations resulting in 𝑅𝑡
′ = 28.008 K ⋅

m/W. Shapes corresponding to AD = 1 mm2 are also shown 

for the other three SEMs in the top row of the figure. 

When AD = 7 mm2, the solid shape predicted using SEM 

III becomes separated from itself, resulting in part of the solid 

being artificially suspended in the fluid, and the simulation 

was curtailed. Just prior to solid separation, 𝑅𝑡
′ = 27.375 K ⋅

m/W.  

Although the solid shapes predicted with SEM I and 

SEM II are similar when AD = 7 mm2, the shape predicted 

using SEM II is noticeably more symmetric. Shortly 

thereafter, at AD = 8 mm2, the simulation associated with SEM 

II was curtailed due to oscillation between solid shapes in 

subsequent iterations with 𝑅𝑡
′ = 27.041 K ⋅ m/W. In contrast, 

the solid shape predicted with use of SEM I continues to 

evolve, and eventually reaches its final configuration only 

after a significant amount of solid is displaced. (Interestingly, 

the amount of displaced solid exceeds the amount of solid 

present, AD = 43 mm2 > At).  
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Fig. 4 Solid shapes generated by each of the four SEM sub-

models. The final shapes are those at the bottom of 

each column. 

 

The final shape predicted using SEM I bears similarity to that 

of the benchmark (Fig. 3a), with the sloped solid being thicker 

on the LHS of the domain. Unlike the benchmark, however, 

the solid makes contact with the vertical LHS insulated 

surface of the enclosure. The thermal resistance associated 

with the final shape is 𝑅𝑡
′ = 26.126 K ⋅ m/W  Curtailment of 

the simulation was triggered by the oscillation between solid 

shapes on subsequent iterations of the EDM. Hence, the solid 

that is shown is the final shape generated by the overall EDM 

model. 

A magnified view of the final (AD = 43 mm2) predicted 

solid shape using SEM I, along with the corresponding 

streamline and isotherm distributions are presented in Fig. 5. 

Similar to the benchmark results of Fig. 3, the system displays 

highly asymmetrical behavior with the solid displaced in the 

direction of the adjacent fluid velocities, resulting in sculpting 

effects similar to those noted for the benchmark result shown 

in Fig. 3a. The streamline and temperature distributions of 

Figs. 3 and 5 are also qualitatively similar. Unlike the solid of 

the benchmark study (Fig. 3a), however, no constraints were 

employed to generate the results of Fig. 5 with respect to the 

solid’s peripheral length, so the disparity between the details 

of final solid shape predicted here and that of the benchmark 

is not surprising. 

The evolution (open symbols) of the predicted thermal 

resistance associated with each SEM, as well as that of the 

benchmark geometry (dashed line), is reported in Fig. 6. The 

filled symbols correspond to the four final geometries of Fig. 

4. As is evident for all of the SEM sub-models employed, the 

thermal resistance generally decreases as more solid is 

displaced. This trend is attributed to the fact that the total area 

of the solid-fluid interface generally increases as adjustments 

are made to the solid shape. Compared to SEM II through 

SEM IV however, SEM I displaced over four times as much 

solid and has the smallest  final thermal resistance. 

  

 
Fig. 5 EDM predictions using SEM I: (a) final solid 

geometry, (b) streamline distribution, (c) temperature 

distribution. 

 

 
Fig. 6 Evolution of the thermal resistance for each SEM, and that of the benchmark geometry. Filled symbols are associated with 

the final geometries. 

  

Although the solid geometry predicted by SEM I ( Fig. 5a) is 

similar in shape to that of the benchmark (Fig. 3a) its thermal 
resistance (𝑅𝑡

′ = 26.126 K ⋅ m/W) is closer in value to that of 

the initial geometry (Fig. 1, 𝑅𝑡
′ = 28.062 K ⋅ m/W) than to 
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that of the benchmark (𝑅𝑡
′ = 23.888 K ⋅ m/W). This result is 

unexpected, and is attributed to the buildup of solid adjacent 

to the insulated left face of the enclosure that is promoted by 

SEM I. The solid adjacent to the insulated vertical wall is 

relatively inactive thermally, and might be better utilized if it 

had been moved from the adiabatic boundary to the upper 

surface of the solid. 

 

3.3 IMPLEMENTATION OF A CUTOFF 

CONSTRAINT IN SEM I 

SEM I operates by moving solid to the solid-fluid interface 

location that experiences the smallest heat flux. Hence, the 

solid will accelerate toward an adiabatic boundary, eventually 

becoming thermally inactive as it makes contact with the 

boundary. In order to prevent the solid from reaching the 

insulated LHS of the domain, SEM I was modified by 

introducing an additional criterion that, as will become 

evident, prohibits the solid from making contact with the 

insulated vertical surface. This modification is based on a 

cutoff heat flux, 𝑞𝑐
′′ , that is quantified in terms of a cutoff 

ratio, 𝑅𝑐, and the maximum local heat flux along the solid-

fluid interface, 𝑞𝑚𝑎𝑥
′′ . If the local heat flux along the solid-

fluid interface is below the cutoff heat flux, solid will not be 

added to that location. Therefore, the modified version of 

SEM I is as follows. 

 

(1) Remove solid from the location of 𝑞𝑚𝑎𝑥
′′  and 

 

(2) Add the same amount of solid to the location of the 

smallest q′′ that is greater than 𝑞𝐶
′′ where 

 

𝑞𝐶
′′ = 𝑞𝑚𝑎𝑥

′′ × 𝑅𝐶                 (5) 

 

To demonstrate the modified SEM I, a value of RC = 0.05 was 

specified and the EDM predictions were compared to those 

using the un-modified version of SEM I (RC = 0). The final 

solid shape, streamline distribution and temperature 

distribution are presented in Fig. 7. Clearly, implementation 

of the cutoff criterion prevents the solid from contacting the 

adiabatic wall, with the final solid shape (with RC = 0.05) 

bearing more similarity to the benchmark shape than the 

shape predicted with the un-modified version of SEM I (RC = 

0).  Despite being in better qualitative agreement with the 

benchmark shape, the thermal resistance associated with the 

final shape and RC = 0.05 is 𝑅𝑡
′ = 26.119 K ⋅ m/W which is 

approximately the same as for the solid of Fig. 5a.  

The evolution history of the thermal resistance generated 

by use of SEM I with and without the cutoff ratio criterion is 

shown in Fig. 8. The cutoff criterion using RC = 0.05 comes 

into play only when AD = 24 mm2. For AD > 24 mm2, the 

thermal resistance is smaller for RC = 0.05 than for RC = 0, 

although the differences in the values of 𝑅𝑡
′  predicted with and 

without the cutoff ratio imposed are small.  

 

 
Fig. 7 EDM predictions using SEM I with RC = 0.05: (a) final 

solid geometry, (b) streamline distribution, (c) 

temperature distribution. 
 

3.4 Parametric Simulations 

As demonstrated in Section 3.2 and 3.3, the EDM model is 

able to predict solid shapes that are in qualitative agreement 

with those of the benchmark, resulting in reduced thermal 

resistances across the computational domain. Because heat 

transfer across the domain is due to conduction in the solid 

phase and convection in the fluid, parametric simulations 

were performed in order to assess the sensitivity of the 

predicted solid shape (and the corresponding thermal 

resistance) to changes in the conduction process (i.e. 

variations in the thermal conductivity of the solid), and 

changes in the convection process (i.e. the size of the 

computational domain, or Rayleigh number). 
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Fig. 8 Evolution of the thermal resistance for SEM I with and without a cutoff ratio constraint. Filled symbols are associated with 

the final geometries 

 

Influence of the solid thermal conductivity The 

thermal conductivity of the solid used in the benchmark study 

and in the preceding simulations is approximately 5 orders of 

magnitude greater than that of the fluid. Therefore, the solid 

exhibits nearly isothermal conditions throughout. Figure 9 

shows the final predicted solid shape, thermal resistance and 

amount of displaced solid using SEM I with RC = 0 for ks = 

237, 23.7, and 2.37 W/m∙K. Slight differences in the solid 

shapes corresponding to ks = 237 and 23.7 W/m∙K can be 

noted upon close inspection. Decreasing the solid’s thermal 

conductivity would generally lead to a higher overall thermal 

resistance, but as evident, the thermal resistance is slightly 

lower for the ks = 23.7 W/m∙K case than for the ks = 237 

W/m∙K benchmark case. This unexpected result is attributed 

to offsetting effects associated with the modest differences in 

the solid (and fluid) domain shapes of Fig. 9a and Fig. 9b. As 

the value of the solid phase thermal conductivity is further 

reduced to ks = 2.37 W/m∙K (Fig. 9c), the solid shape exhibits 

a notably different shape relative to the two higher thermal 

conductivity simulations, and the thermal resistance begins to 

increase. Additional reductions in ks (not shown) result in 

even greater values of the overall thermal resistance. 

Predictions using SEM I and RC = 0.05 are shown in Fig. 

10 and exhibit the same trends as noted in Fig. 9. Again, the 

ks = 23.7 W/m∙K case (Fig. 10b) yields the lowest overall 

thermal resistance. 

 

 
Fig. 9 Predicted solid shape and thermal resistance for SEM 

I, RC = 0: (a) ks = 237 W/m∙K, (b) ks = 23.7 W/m∙K, 

(c) ks = 2.37 W/m∙K. 

   

 
Fig. 10 Predicted solid shape and thermal resistance for 

SEM I, RC = 0.05: (a) ks = 237 W/m∙K, (b) ks = 23.7 

W/m∙K, (c) ks = 2.37 W/m∙K.   

 
Influence of the strength of convection (Rayleigh 

number) Uniformly increasing the size of the overall 

domain, while holding all other conditions constant, will 

strengthen convection heat transfer and is expected to reduce 

the overall thermal resistance. Figure 11 shows the final solid 

shape, thermal resistance, and amount of solid displaced using 

SEM I with RC = 0 for H = 30, 45, and 60 mm. Note that the 

Rayleigh number associated with each domain size is 

calculated using the maximum predicted temperature 

difference, 𝑅𝑎 = 𝑔𝛽𝑓∆𝑇𝐻3 𝜈𝑓𝛼𝑓⁄ , where 𝛼𝑓 = 𝑘𝑓 𝜌𝑓𝑐𝑝,𝑓⁄ . 

As evident in the figure, (i) the overall resistance is decreased 

by approximately 40 percent as a result of doubling H and (ii) 

the solid shapes associated with larger Ra exhibit better 

qualitative resemblance to the optimized shape of Coffin and 

Maute (2016). The effect of the increased strength of 

convection on the final solid shape is as expected. Figure 12 

illustrates the sensitivity of the final solid shape, thermal 

resistance, and amount of solid displaced using SEM I and 

𝑅𝐶 = 0.05 on the domain size. As for the RC = 0 case, the 

solid shapes associated with higher Rayleigh numbers have 

lower thermal resistances and are in better qualitative 

agreement with those of the benchmark prediction.  

The evolution history of the overall thermal resistance 

using SEM I and H = 60 mm is shown in Fig. 13. Unlike the 
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trends evident in Fig. 8 (H = 30 mm), the predictions exhibit 

a more substantial increase in thermal resistance (for 10 ≲
𝐴𝐷 ≲ 25) followed by a decrease in the thermal resistance to 

its final value. For 10 ≲ 𝐴𝐷 ≲ 25, the solid is being moved 

toward the LHS vertical adiabatic boundary. As the boundary 

is approached, the solid becomes less thermally active, 

increasing the overall thermal resistance. The increase in the 

thermal resistance is not as pronounced for the lower Rayleigh 

number cases (Fig. 8) because the solids for those cases retain 

somewhat semi-circular shapes as they approach the LHS 

boundary, whereas the solids associated with Fig. 13 

transition from semi-circular shapes to flatter shapes in the 

range 10 ≲ 𝐴𝐷 ≲ 25. The flattening solids become further 

removed from the cold top boundary, increasing the overall 

thermal resistances to a more significant degree than for the 

lower Ra cases. For either case, for 𝐴𝐷 ≳ 30 the solids 

become less flat and evolve upward as shown in Figs. 11a and 

11c, increasing the exposed solid surface area and reducing 

the thermal resistance.  

The percentage reductions in thermal resistance for the three 

different domain sizes, using SEM I with and without 

implementation of the cutoff ratio, are presented in Table 1. 

The largest reduction in thermal resistance is associated with 

the lowest Rayleigh number. Implementation of the cutoff 

ratio has a greater effect for the larger Rayleigh number 

cases 
 

 

 

 
Fig. 11 Predicted solid shape and thermal resistance for 

SEM I, RC = 0: (a) H = 30 mm (Ra = 4460), (b) H = 

45 mm (Ra = 10980), (c) H = 60 mm (Ra = 21620). 

 

 
Fig. 12 Predicted solid shape and thermal resistance for 

SEM I, RC = 0.05: (a) H = 30 mm (Ra = 4458), (b) H 

= 45 mm (Ra = 9079), (c) H = 60 mm (Ra = 21520). 

 
Table 1 Percent reduction of 𝑅𝑡

′  from initial shape to final 

shape generated by EDM. 

 RC = 0 RC = 0.05 

H = 30 mm 6.90% 6.92% 

H = 45 mm 3.20% 3.46% 

H = 60 mm 2.93% 3.37% 

 

 
Fig. 13 Evolution of the thermal resistance for SEM 1 when H = 60 mm with and without a cutoff ratio constraint. Rayleigh 

numbers range from Ramin = 21,520 at AD = 43 mm2 with Rc = 0.05 to Ramax = 22,660 at AD = 26 mm2 with Rc = 0. Filled 

symbols are associated with the final geometries. 
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4. SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS 

A novel EDM model, consisting of heat transfer (HT) and 

shape evolution method (SEM) sub-models was developed and 

its use was demonstrated. Four SEMs were considered, and 

predictions were compared to a benchmark optimized design. 

The best performance was achieved using SEM I in which high 

thermal conductivity material is removed from the location of 

the largest interfacial heat flux and added to the location of the 

smallest flux. An additional constraint was proposed and 

examined, with the objective of prohibiting the solid from 

contacting the adiabatic side boundary of the domain. This 

constraint lead to a thermal resistance similar in value to that 

predicted without the constraint. Parametric simulations were 

conducted to assess the influence of conduction (solid thermal 

conductivity) and convection (Rayleigh number). Perhaps 

unexpectedly, a solid thermal conductivity value (23.7 W/m∙K) 
lower than that used in the benchmark led to a final solid shape 

with a lower overall thermal resistance. Increasing the strength 

of convection decreased the thermal resistance and resulted in 

final solid shapes that bear a closer resemblance to the 

benchmark study.  

The decrease in 𝑅𝑡′ and qualitative similarity of the solid 

shape generated by SEM I relative to a benchmark solid shape 

suggest there is merit to using SEM I. However, the predicted 

thermal resistance is greater than that of the optimized design. 

Hence, although the EDM proposed here is straightforward and 

easily implemented, it lacks the accuracy of more complex 

optimization routines. 

General recommendations for future research include: (i) 

improving the relatively straightforward evolutionary methods 

proposed here to achieve the high accuracy of TO methods or 

(ii) developing new computational techniques to reduce the 

expense of high accuracy TO methods. More specifically, 

improving the evolutionary methods proposed here might 

entail: (i) specification of different material re-distribution 

rules, (ii) incorporation of additional or new constraints to 

guide the evolution of the solid shape, and (iii) developing new 

or additional curtailment criteria to allow the solid to more 

fully evolve. 
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NOMENCLATURE 

AD area of displaced solid (mm2) 

At total solid area (mm2) 

cp specific heat (J/kg·K) 

g gravitational acceleration (m/s2) 

H domain length (mm) 

k  thermal conductivity (W/m·K)  

Nu Nusselt number 

p  pressure (Pa) 

q' heat rate per unit length (W/m) 

q'' heat flux (W/m2) 

Ra Rayleigh number  

RC cutoff ratio 

Rt' thermal resistance (K∙m/W)    

T  temperature (K) 

To reference temperature (K)  

u  x-velocity (m/s) 

v y-velocity (m/s)  

x  x-coordinate (m) 

y y-coordinate (m)  

 

Greek Symbols  

α thermal diffusivity (m2/s) 

β coefficient of thermal expansion (K-1)  

μ dynamic viscosity (Pa∙s) 

ρ density (kg/m3) 

  

Subscripts  

c cutoff 

f fluid 

max maximum 

min minimum 

s solid 
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APPENDIX  

The HT and SEM sub-models were validated to the extent 

possible as follows. First, predictions of the convection heat 

transfer aspects of the HT model were compared to the classic 

benchmark solution provided by de Vahl Davis (1983) 

involving a square cavity containing air with adiabatic top and 

bottom surfaces and isothermal side walls. Values of the 

average Nusselt number were predicted for Rayleigh numbers 

ranging from 103 to 106. Using a 60 × 60 uniform mesh, the 

largest difference between predicted average Nusselt numbers 

was 3.1 percent at Ra = 106. The difference between the 

maximum local Nusselt numbers was 7.1 percent at Ra = 106. 

The HT sub-model was then used to predict a benchmark 

solution (Costa, 2012) for natural convection of air in a 

partitioned cavity involving conjugate conduction-free 

convection heat transfer, as shown in Fig. 14. Two cases were 

considered: (i) hotter wall on the right and (ii) hotter wall on 

the left. Both a 50 × 50 mesh and a 100 × 100 mesh were 

employed in the comparison exercise. The average Nusselt 

numbers for each case are shown in Table 2. The predictions 

generated by the HT sub-model are in good agreement with the 

benchmark solutions, and there is only a slight improvement in 

agreement with the benchmark as the mesh is refined from 50 

× 50 to 100 × 100. Based on the preceding discussion, a 60 × 

60 mesh was deemed to be adequate for the computations of 

this study. 

 

 

 
Fig. 14 Domain for the conjugate conduction-free convection 

benchmark solutions (Costa, 2012).  
 

 

Table 2 Predicted and benchmark (Costa, 2012) average 

Nusselt numbers.  

 Predicted 𝑁𝑢̅̅ ̅̅  
50 × 50 
 (% error) 

Predicted 𝑁𝑢̅̅ ̅̅  
100 × 100  
(% error) 

𝑁𝑢̅̅ ̅̅  
(Costa 
2012) 

Hot wall 
on left 

4.374 
(3.45%) 

4.266 
(0.90%) 

4.228 

Hot wall 
on right 

5.500 
(3.64%) 

5.416 
(2.05%) 

5.307 

 

A third comparison was made to predict the evolution of 

a geometrical shape in a conduction scenario similar to that 

considered by Li et al. (1999). In this comparison, an initially 

square domain is (i) completely filled with a conducting 

material and a second isothermal material at its square center 

and is (ii) exposed to isothermal exterior boundaries. The solid 

shape (defined by the interface between white and black areas 

in Fig. 15) evolves by continually removing control volumes 

adjacent to the boundaries of the solid that experience the 

smallest average heat flux. The boundary of the solid shape is 

maintained at the same temperature as the original boundary of 

the square domain. As evident in Fig. 15, the qualitative 

agreement between the two predicted solid shapes is excellent. 

The iteration history, showing evolution of the minimum and 

maximum local heat fluxes along the solid boundary is shown 

for both studies in Fig. 16. As in Fig. 15, the predictions and 

benchmark results are in good qualitative agreement, 

especially at later stages of the iteration when the solid shapes 

approach their final configurations. Differences between the 

current and benchmark results are attributed to the different 

numerical techniques used (finite volume versus finite element 

of Li et al., 1999). 

 

 
Fig. 15 Predicted solid shapes (right column) of Li et al. 

(1999) and those of the current study (left column). 

Shapes are shown at volume-to-initial volume ratios 

of (a) 88 percent, (b) 79 percent and (c) 55 percent. 

https://doi.org/10.1016/S0924-4247(01)00853-6
https://doi.org/10.1007/s12206-010-0328-1
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RHS is reprinted from International Journal of Heat 

and Mass Transfer, 42-17, Li, Q., Steven, G.P., 

Querin, O.M., and Xie, Y.M. “Shape and Topology 

Design for Heat Conduction by Evolutionary 

Structural Optimization” 3361-3371, 1999, with 

permission from Elsevier. 

 

 
 

Fig. 16 Iteration history of predicted maximum and minimum 

local heat fluxes along the solid boundary of Fig. 15. 

The top figure is from the results of the current model 

while the bottom is from Li et al.(1999). Bottom 

figure is reprinted from International Journal of Heat 

and Mass Transfer, 42-17, Li, Q., Steven, G.P., 

Querin, O.M., and Xie, Y.M. “Shape and Topology 

Design for Heat Conduction by Evolutionary 

Structural Optimization” 3361-3371, 1999, with 

permission from Elsevier. 

A final verification exercise was conducted to determine 

the sensitivity of the final predicted solid shape to the initial 

solid shape specified in the overall EDM model of Fig. 2. 

Specifically, predictions based on the semicircular initial solid 

considered in this study were compared to those generated by 

specifying an initially nearly rectangular solid containing the 

same amount of material as the semicircle. Figure 17 includes 

the initial shape (top row) and final shape without (RC = 0, 

middle row) and with (RC = 0.05, bottom row) the cutoff 

criterion applied. As evident, the final shapes associated with 

RC = 0 are nearly independent of the initial specified shape. For 

RC = 0.05, the final shapes are similar but exhibit more 

noticeable yet minor variations; the initially rectangular shape 

yielded a slightly lower (2.5 percent difference) thermal 

resistance than the initially semicircle shape simulation as 

reported in Table 3. 

 

 
Fig. 17 Influence of the initial solid shape on the final solid 

shapes without (RC = 0) and with (RC = 0.05) the 

cutoff criterion.  

Table 3 Predicted thermal resistances for initially 

semicircular and rectangular solid shapes.  

 Semicircle Rectangle 

AD 
(mm2) 

Rt′ 
(K∙m/W) 

AD 
(mm2) 

Rt′ 
(K∙m/W) 

Without 
cutoff 

43 26.126 48 25.710 

With 
cutoff 

38 26.119 48 25.525 
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Abstract – An iterative design algorithm is used to adjust the shape of a conducting solid body that is 

subjected to a surface heat flux and cooled simultaneously by free convection and radiation in order to 

reduce the overall thermal resistance. Parametric simulations are carried out over a range of domain 

dimensions and emissivity values to determine the sensitivity of (i) the predicted solid shape and (ii) the 

overall thermal resistance to the relative strength of convection or radiation. Results show that, for the 

conditions considered, surface radiation has a significant influence on the predicted optimal solid 

geometry and overall thermal resistance.  

Keywords – Topology Optimization, Conjugate Heat Transfer, Free Convection, Radiation 

 

1. Introduction 

The optimal geometrical configuration of solid objects, such as heat sinks, that are cooled simultaneously 

by free convection and radiation is important to achieve the desired thermal performance or limit the 

amount of solid material used. As applied to heat sink design, this goal has been historically achieved by 

shape and geometrical optimization. Such methods require the solid object to be composed of well-

defined, basic geometrical features that can be easily parameterized. For example, Bar-Cohen [1] 

mailto:cdsevart@ku.edu
mailto:tlbergman@ku.edu
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considered rectangular plate fins cooled by free convection, and optimized the fin thickness, the spacing 

between fins, and the fin width in order to minimize the heat sink thermal resistance. While size and 

shape optimization are well-developed tools to improve the performance of traditional heat sink layouts, a 

true optimal design may be geometrically complex and not easily described by pre-defined basic 

geometrical features.  

The challenge of identifying desirable complex solid shapes for heat sinks or other solid objects has 

led to recent developments in topological optimization (TO), which was initially developed for structural 

engineering problems and can be used to determine the optimal distribution of solid to achieve a specific 

goal while satisfying various constraints [2]. There are multiple TO techniques, with each approach 

characterized by unique methods and implementation procedures. In general, the TO process is as 

follows: (i) a computational domain is discretized and an initial material distribution is specified, (ii) the 

governing equations which describe the physics of the problem (e.g. conservation of thermal energy and 

the Navier-Stokes equations) are solved, and (iii) the material distribution is adjusted according to an 

algorithm in order to minimize or maximize an objective function. For heat transfer problems, the 

objective might be to minimize the overall thermal resistance or a local temperature. Steps (ii) and (iii) are 

repeated until an optimal geometry is identified. 

The initial applications of TO to heat transfer problems considered only conduction. For example, Li 

et al. [3] used TO to determine the optimal distribution of a high thermal conductivity material in a 

conducting field that provided a minimum temperature at a specified location. Topology optimization for 

heat conduction problems has been researched extensively and is relatively well established, as evidenced 

by various studies and the references contained therein [4-8].  

For practical applications, it is usually necessary to consider designs involving multiple modes of heat 

transfer. Several studies have incorporated the effects of forced convection through specification of a 

constant convection coefficient and incorporation of Newton’s law of cooling [9-11]. This relatively 

simple approach can provide approximate optimal designs, but in order to accurately capture the local 

effects of convection, a detailed fluid flow model involving the solution of the Navier-Stokes equations 
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must be employed. An early investigation that applied TO to a conjugate conduction-convection problem 

was described by Yoon [12], who designed a heat dissipating structure cooled by forced convection that 

minimized the thermal compliance of the structure. In a similar study, Koga et al. [13] used TO to design 

a microchannel heat sink that minimized the pressure drop of the flowing coolant and maximized the heat 

dissipation for the problem at hand. A prototype of the heat sink was manufactured, and the 

computational results were validated experimentally.  

Alexandersen et al. [14] applied TO to heat sinks cooled by free convection and found the resulting 

optimal geometries to be intricately complex, with the complexity being highly sensitive to the strength of 

the local advection processes within the fluid. These methods were later extended to three-dimensional 

geometries [15] and applied to the cooling of light emitting diodes [16]. Asmussen et al. [17] introduced a 

reduced-order Navier-Stokes equation for the same natural convection problem considered in [14] and 

found that the simplified model produced similar results to the full fluid model, but with reduced 

computational expense.  

The heat sink designs obtained in [16] were manufactured for experimental testing in [18], 

demonstrating that the complex geometrical structures obtained through application of TO can be 

physically realized through advanced manufacturing methods. Although surface radiation was not 

accounted for in the prediction of the optimal solid shape, the authors investigated the effect of surface 

radiation by applying a graphite paint to the heat sink, thus increasing its emissivity and reducing the 

overall thermal resistance of the structure.  

While radiation heat transfer can play an important role in various heat transfer systems including 

heat sink operation, it is seldom accounted for in the design and shape optimization of heat sinks, 

particularly heat sinks of complex geometrical shape. To the authors’ knowledge only one study has 

utilized TO for a radiative heat transfer problem, but the study neglected convection. Specifically, Castro 

et al. [19] determined the optimal distribution of a low emissivity material inside a cubic radiative 

enclosure. Several objective functions were considered, including (i) minimizing or (ii) maximizing the 

net heat flux and (iii) minimizing the temperature at a specified region of the enclosure. For all cases 
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considered by the authors, it was found that the design method used resulted in unique material 

distributions which offered substantial thermal performance enhancement as described quantitatively by 

the objective functions. 

Based on the literature review and to the authors’ knowledge, use of TO to determine the optimal 

shape of a conducting solid that is cooled simultaneously by free convection and radiation, a scenario that 

is pertinent to nearly all heat sinks exposed to the free convection of gases, has not been reported. 

Although it is not surprising that increasing the surface emissivity experimentally will improve the 

thermal performance of a heat sink that has been computationally designed with TO without taking 

radiation into account [18], it is entirely unclear whether inclusion of radiation in the TO process itself 

would yield significantly different heat sink geometries. Therefore, the objective of this study is to 

investigate and quantify the influence of surface radiative heat transfer on the predicted optimal shape of a 

conducting solid body cooled simultaneously by free convection and radiation, with the goal being to 

reduce the overall thermal resistance that is influenced by conjugate conduction, convection, and radiation 

effects. A relatively simple and evolutionary design method introduced by Sevart and Bergman [20] was 

modified to include the radiation effects, and is employed here.  

 

2. Physical and Numerical Model 

The physical problem of interest is shown in Fig. 1, in which a two-dimensional, square domain consists 

of (i) a specified amount of solid material and (ii) a radiatively transparent, incompressible gas. The top 

boundary of the domain is isothermal at a reference temperature of To, and there is a heat rate per unit 

depth of q' applied at the bottom of the domain over a strip of width b that is centered at x = H/2. All other 

domain boundaries are adiabatic.  

All exposed surfaces, including those of the solid and the interior boundaries of the domain, are 

radiatively active as well as diffuse and gray with an emissivity of ε. The shape of the solid, which is 

initially specified to be a semicircle of radius R as shown in Fig. 1, is adjusted iteratively according to the 
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evolutionary design method described in Section 2.4. The goal is to minimize the overall thermal 

resistance between the center of the bottom domain boundary and the top domain boundary (𝑅𝑡
′ =

[𝑇(𝐻 2⁄ , 0) − 𝑇𝑜]/𝑞′). As will become evident, the overall thermal resistance and, in turn, the optimal 

solid shape is influenced by conjugate effects including (i) conduction within the solid, (ii) free 

convection in the fluid, and (iii) radiation exchange involving all exposed solid surfaces. Both the 

physical model and the design iteration model that are used here are extensions of the models previously 

reported by the authors [20]. 

 

2.1 Governing Equations and Boundary Conditions 

Temperature distributions within both the fluid and solid are determined by solution of (i) the 

conservation of mass equation, (ii) the Navier-Stokes equations, and (iii) the conservation of energy 

equation applied to both the solid and the fluid, along with pertinent boundary conditions that include the 

effects of thermal radiation transfer at all of the exposed solid surfaces. In developing the equations, the 

fluid is assumed to be Newtonian and Boussinesq, and viscous dissipation is assumed to be negligible. 

Steady-state conditions are assumed, and the thermophysical properties are assumed to be constant. As 

noted previously, the surfaces are assumed to be diffuse and gray, and the fluid is radiatively non-

participating. With these assumptions, the governing equations for the fluid are 

 
𝜕(𝜌𝑓𝑢)

𝜕𝑥
+
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where u and v are the x- and y-components of the velocity respectively, ρf is the fluid density, µf is the 

viscosity, p is the pressure, βf is the thermal expansion coefficient, cp,f  is the specific heat, and kf is the 

thermal conductivity of the fluid. The conservation of energy equation for the solid is  

 

 
𝜕

𝜕𝑥
(𝑘𝑠

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑠

𝜕𝑇

𝜕𝑦
) = 0 (5) 

 

where ks is the solid thermal conductivity.  

 The temperature along the top boundary of the domain is constant, T(x, y = H) = To, while the boundary 

condition at the bottom center of the domain where the heat rate is applied (over the width b) is  

 

 −𝑘𝑠
𝜕𝑇

𝜕𝑦
= 𝑞′/𝑏 (6) 

 

which incorporates the additional assumptions that (i) the solid reconfiguration is constrained so that it 

always occupies the region H/2 – b/2 ≤ x ≤ H/2 + b/2 at y = 0 and (ii) the heat flux is uniform over the strip 

of width b.  Adiabatic domain boundaries that are covered by the solid (e.g., R ≤ x ≤ H/2 - b/2 and H/2 + 

b/2 ≤ x ≤  H/2 + R in Fig. 1) are described by 

 

 −𝑘𝑠
𝜕𝑇

𝜕𝑛
= 0 (7) 

 

where n is the direction normal to the domain boundary.  

 Radiation heat transfer occurs at all exposed surfaces of the solid, as well as at the interior domain 

boundaries. At the interface separating the fluid and the solid, the conduction heat flux in the solid to the 

solid-fluid interface is equal to the summation of the convection and radiation heat fluxes from the 

interface. That is, 
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 −𝑘𝑠
𝜕𝑇

𝜕𝑛
= 𝑞𝑐𝑜𝑛𝑣

′′ + 𝑞𝑟𝑎𝑑
′′  (8) 

 

At locations where the adiabatic boundary is directly exposed to radiation (e.g., 0 ≤ x <  H/2 - b/2 and H/2 

+ b/2 < x ≤  H in Fig. 1) local convection fluxes are offset by local radiation fluxes leading to 

 

 𝑞𝑐𝑜𝑛𝑣
′′ + 𝑞𝑟𝑎𝑑

′′ = 0 (9) 

 

which can also be expressed as 

 

 −𝑘𝑓
𝜕𝑇

𝜕𝑛
+ 𝑞𝑟𝑎𝑑

′′ = 0 (10) 

 

Evaluation of the radiation fluxes that appear in Eqs. (6) through (10) is described in Sections 2.2 and 2.3. 

 

2.2 Discretization of the Governing Equations and Boundary Conditions 

The governing equations were discretized and solved using the finite volume method and the SIMPLER 

algorithm [21]. The boundary condition of Eq. (6) is approximated by incorporating the net radiation flux 

into a source term, Srad, in Eq. (5) for only the solid control volumes immediately adjacent to the interface 

between the fluid and the conducting solid. The boundary condition at the exposed adiabatic boundaries 

of the domain is accommodated by iteratively adjusting local wall temperatures until Eq. (10) is satisfied.   

 In order to calculate the local radiation heat fluxes, each exposed control surface of the 

computational domain is assumed to be isothermal at its respective solid control volume temperature, and 

characterized by uniform radiosity and irradiation. The exposed control surfaces are also assumed to be 

opaque, diffuse, and gray. With these assumptions, the net radiation heat flux leaving an arbitrary exposed 

control surface i, is calculated as 
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 𝑞𝑖
′′ =

𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
, (11) 

 

where Ebi is the emissive power for a black surface (𝐸𝑏𝑖 = 𝜎𝑇𝑖
4), and Ji is the radiosity of surface i. The 

net radiation heat flux leaving control surface i is also equal to the sum of the radiation heat fluxes from 

surface i to all other control surfaces 

 

 
𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
= ∑ 𝐹𝑖𝑗(𝐽𝑖 − 𝐽𝑗)𝑁

𝑗=1  (12) 

 

where Fij is the view factor from arbitrary surface i to arbitrary surface j, and N is the number of control 

surfaces involved in the radiative exchange. Equations (11) and (12) are derived in [22]. The system of 

equations involving the unknown radiosities is solved using Gaussian elimination based upon most-

recently calculated values of the control surface temperatures. 

Because of the highly coupled nature of the conduction, convection, and radiation heat transfer 

processes, an iterative solution is required. First, Eqs. (1-5) are solved without considering radiation (Srad 

= 0). Then, the radiosities and radiation heat fluxes are calculated using Eqs. (11) and (12), and these 

fluxes are subsequently used to re-calculate the temperature distribution within the entire computational 

domain. The governing equations are solved repeatedly until the maximum relative change in local 

temperature is less than 10-8. 

 

2.3 Evaluation of View Factors 

The view factors, Fij, in Eq. (12) are calculated using Hottel’s crossed string method [23]. For simple, 

two-dimensional geometries, view factor evaluation using this method is a straightforward process. In this 

study, however, some of the view factors can be affected as the solid shape evolves since the two arbitrary 

control surfaces i and j can become partially (or completely) obstructed from one another by the opaque 
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solid. This situation is handled as follows. First, numerical values of the view factors are found for each 

solid shape using an initial calculation that is subsequently adjusted in order to satisfy the conservation of 

radiation energy requirement [24, 25]. The calculation and adjustment scheme is: (i) a ray is projected 

from the center of surface i to the center of surface j, as shown in Fig. 2a, (ii) if the ray passes through any 

solid control volume, the view factor is set to zero. Otherwise, the view factor is calculated as if surfaces i 

and j were unobstructed, (iii) after all initial values of the view factors are obtained, the summation rule 

[22] is applied with 𝑠𝑢𝑚𝑖 = ∑ 𝐹𝑖𝑗
𝑁
𝑗=1  calculated for all of the exposed control surfaces, (iv) if 𝑠𝑢𝑚𝑖 ≠ 1, 

two additional rays are projected from the edges of surface i to the edges of surface j (Figs. 2b and 2c) to 

determine if the view between i and j is partially obstructed, (v) if 𝑠𝑢𝑚𝑖 < 1, all view factors from surface 

i that were incorrectly set to zero, such as for the situation shown in Fig. 2b, are increased from zero to a 

value that forces 𝑠𝑢𝑚𝑖 = 1, (vi) if 𝑠𝑢𝑚𝑖 > 1, all view factors that were overpredicted, such as for the 

scenario shown in Fig. 2c, are decreased by an equal amount that ensures 𝑠𝑢𝑚𝑖 = 1. Throughout the view 

factor evaluation process, the reciprocity relation [22] is used. That is, if Fji has already been calculated or 

corrected, then 𝐹𝑖𝑗 = 𝐹𝑗𝑖
𝐴𝑗

𝐴𝑖
. 

 

2.4 Evolutionary Design Method 

A flow chart of the evolutionary design method used to adjust the solid shape, which is described in detail 

elsewhere [20], is shown in Fig. 3. First, an initial solid material distribution is specified, and the 

governing equations of Section 2.2 are solved. Then, the local heat fluxes along the solid-fluid interface 

are calculated. At the location of the largest surface heat flux, the adjacent solid control volume is 

converted to fluid. Concurrently, at the location of the smallest surface heat flux, the adjacent fluid 

control volume is converted to solid. Constraints are imposed on which control volumes can switch phase, 

in order to prevent the evolution of implausible solid shapes that are described in the literature [2] such as 

detached (i.e. floating) solid control volumes or checkerboard patterns indicative of porous solids which 

are not of interest here. For example, if converting the solid control volume adjacent to the largest surface 
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heat flux to fluid would lead to a detached solid shape, then that control volume would not be selected for 

adjustment. The control volume at the location of the next largest surface heat flux would be selected 

instead. As noted previously, the control volumes at the location of the applied heat rate, qʹ, are forced to 

remain solid. The criterion to stop the iterative design for all cases is the onset of oscillation of the solid 

between two distinct shapes which marks the end of the solid shape evolution. Note that the amount of 

solid (and air) remains constant even though the solid changes shape. 

 

3. Results 

The physical model and evolutionary design method are applied to a range of domain sizes and emissivity 

values in order to investigate the influence of convection and radiation on the predicted optimal solid 

shape and overall thermal resistance between the bottom center of the domain boundary and the top, 

isothermal boundary of the domain, 𝑅𝑡
′ = [𝑇(𝐻 2⁄ , 0) − 𝑇𝑜]/𝑞′. For all cases, the thermophysical 

properties are associated with air and aluminum (kf = 0.0257 W/m∙K; ks = 237 W/m∙K; ρf  = 1.205 kg/m3; 

µf = 1.511×10-5 Pa∙s; cp,f  = 1005 J/kg∙K; cp,s  = 910 J/kg∙K, βf  = 3.43×10-3 K-1). The non-adiabatic 

boundary conditions are q' = 0.05 W/m and To = 300 K. In all cases, b/H=1/30 and R/H = 1/6. A 60 × 60 

uniform control volume distribution is deemed to be adequate for the results reported here (see the 

Appendix). 

3.1 The Influence of Radiation on the Thermal Behavior Associated with the Initial Geometry 

To demonstrate the influence of radiation heat transfer on the free convection (and conduction) heat 

transfer processes, predicted streamline and temperature distributions associated with the initial solid 

geometry are provided in Fig. 4. As evident and as reported previously [20], flow conditions, which 

may be described in terms of a modified Rayleigh number, 𝑅𝑎∗ = 𝑔𝛽𝑞′𝐻4 𝑏𝑘𝑓𝜈𝛼⁄ = 199,100 are 

highly asymmetrical when radiation is neglected ( = 0, Fig. 4a), as may be expected considering 

the proclivity of the fluid flow to exhibit strong asymmetry in situations involving natural 
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convection in enclosures characterized by horizontally-symmetric thermal boundary conditions 

[26].  

 The asymmetry of the fluid velocity (and temperature) distribution becomes less pronounced 

as radiation is included in the analysis, with nearly fully symmetric convective (and thermal) 

conditions established for  = 0.2 (Fig. 4c). The establishment of nearly symmetrical conditions in 

Fig. 4c is attributed to two related effects. First, in the absence of fluid flow and for the boundary 

conditions of the problem, radiation heat transfer would induce perfectly symmetric thermal 

behavior. Second, even with fluid flow accounted for, the increasing strength of radiation (higher 

emissivities) will decrease the temperatures and temperature differences throughout the domain. 

These decreased temperature differences will, in turn, reduce buoyancy forces in the fluid which 

are ultimately responsible for the asymmetry noted in Figs. 4a and 4b. Maximum temperatures 

occur at x = H/2, y = 0 for all cases reported in Fig. 4 and are 301.42, 301.29, and 301.07 K, for  = 

0, 0.1, and 0.2, respectively. As expected, the thermal resistance across the cavity is reduced as the 

emissivity increases with 𝑅𝑡
′ = 28.46, 25.86, and 21.46 K∙m/W for Figs. 4a, 4b, and 4c, respectively. 

 Because of the important influence of the surface emissivity on local fluid velocities (and 

temperatures) associated with the initial semi-circular solid shape, it is expected that the solid 

shapes corresponding to minimized thermal resistances will also be influenced by radiation heat 

transfer. The relative strength of radiation to that of convection heat transfer increases as  

increases, or as Ra* decreases, and the influence of both  and H (i.e. Ra*) on the optimal solid 

shapes are reported in the next section.  

 

3.2 Thermal Performance, Solid Shapes, and Streamlines 

The design method of Fig. 3 is now applied with Ra* = 199,100, 671,800, and 1,592,000 (H = 30, 45, and 

60 mm) and with emissivity values ranging from 0 to 0.5 in increments of 0.05 (11 distinct emissivity 

values representing a total of 33 individual conditions) to illustrate the sensitivity of both the final solid 
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shape and the overall thermal resistance to convection and radiation conditions. Predictions for higher 

emissivity values are not reported since, as will become evident, although the overall thermal resistance 

decreases with increasing emissivity as expected, the influence of radiation on the final solid shape 

becomes weak as the emissivity approaches 0.5. 

 Predicted thermal resistances, obtained as the design iterations proceed for each Ra*,  case, are 

provided in Figs. 5-7. Note that the results shown in Figs. 5-7 correspond to a total of 3406 individual 

simulations involving the conjugate conduction, convection, radiation analysis described in Section 2. For 

each Ra*,  case the design iterations continue until a final geometry is achieved. However (as evident for 

the Ra* = 199,100,  = 0.05 case of Fig. 5, for example) the final geometry (at design iteration 197) does 

not necessarily correspond to the geometry associated with the minimum thermal resistance, which is 

identified with a solid data symbol (at design iteration 160).  

 As expected, and as confirmed in Figs. 5-7, thermal resistances decrease as either Ra* or  

increase. In general, but not in all cases, the final geometry is reached with fewer design iterations as the 

emissivity is increased, reflecting the behavior described in Section 3.1 in which the inclusion of radiation 

heat transfer leads to more symmetric behavior and, as will become evident, a tendency for the solid to 

remain in the vicinity of the vertical centerline of the enclosure. Note that asymptotic convergence to a 

geometry that provides the minimum overall thermal resistance is not expected since, because of the 

conjugate conduction - free convection - radiation nature of the problem, it is not certain that a single 

adjustment of the solid shape during its evolution will lead to a reduced resistance relative to that of its 

previous shape. 

 The solid shapes and streamlines in the fluid associated with the minimum thermal resistances (solid 

data points) of Figs. 5-7 are reported in Figs. 8-10. As shown in Fig. 8 for Ra* = 199,100 (H = 30 mm), 

the solid shape associated with the minimum thermal resistance with  = 0 has shifted to the bottom left of 

the enclosure. For this case, the solid is initially guided to the left by the highly asymmetric nature of the 

fluid velocity and temperature distributions of the first design iteration (the initial solid distribution, Fig. 
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4a). The solid shape evolution for the  = 0 case of Figs. 5 and 8 is reported and discussed in detail 

elsewhere [20]. As also evident in Fig. 8, as the influence of the radiation heat transfer () is increased the 

final solid shape shifts from its initial position to a lesser degree. As might be expected from inspection of 

Figs. 4c and 5, the solid shape is nearly unchanged from its initial semi-circular geometry when  ≥ 0.2.  

 As Ra* increases (Figs. 6 and 7), the strength of convection increases relative to that of radiation, and 

the optimal solid shapes are not achieved as early in the design iteration process as in Fig. 5. For the Ra* 

= 671,800 case (H = 45 mm), the solid shape associated with  = 0 again resides at the bottom left of the 

enclosure (Fig. 9), similar to the situation reported in Fig. 8 for the Ra* = 199,100 case. Because the 

relative strength of convection associated with Fig. 9 exceeds that of Fig. 8, flow conditions display some 

asymmetry, even at  = 0.5, although the solid remains concentrated near the centerline of the cavity. 

Similar behavior is noted in Fig. 10 for the Ra* = 1,592,000 (H = 60 mm) case.  The flow remains highly 

asymmetric, even for  = 0.5. The evolution of the solid shape for  = 0 associated with Fig. 10 is 

discussed in detail elsewhere [20]. Temperature distributions associated with the extreme emissivity cases 

of Figs. 8-10 are reported in Fig. 11.  

 

3.3  Impact of the Iterative Design Process on Overall Thermal Resistance and Final Solid Shape 

As evident in Figs.5-7 there is, in general and as expected, a significant reduction in the overall thermal 

resistance as the strength of radiation (ε) or convection (Ra*) is increased. For all of the cases considered 

here, there is a less significant, but still measurable change in the thermal resistance that is attributed to 

the reconfiguration of the solid during the design process of Fig. 3. As evident in the predictions 

discussed in Section 3.2, inclusion of radiation heat transfer leads to fluid flow (and temperature) 

distributions that exhibit more horizontal symmetry, with the final solid shape tending to remain in the 

vicinity of the vertical centerline of the enclosure as the strength of radiation increases. 
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 For each Ra*, the influence of radiation on the overall thermal resistance may be quantified by 

defining the relative difference between (i) the minimum thermal resistance for a particular emissivity 

value and (ii) the minimum thermal resistance of the ε = 0 case as  

 

 𝑅̂𝑡,1
′ =

𝑅𝑡,𝑚𝑖𝑛
′ (𝜀=0)−𝑅𝑡,𝑚𝑖𝑛

′

𝑅𝑡,𝑚𝑖𝑛
′ (𝜀=0)

 (13) 

 

and the results are shown in Fig. 12. In general, 𝑅̂𝑡,1
′  increases as  increases. An exception to this trend 

occurs for the Ra* = 199,100 (H = 30 mm) case where 𝑅̂𝑡,1
′   decreases as  is increased from 0.1 to 0.15 

which corresponds to a severe change in the final solid shape (Fig. 8). The dependence of the final solid 

shape on the emissivity is less pronounced for the H = 45 and 60 mm cases (Figs. 9 and 10) and 

reductions in 𝑅̂𝑡,1
′   as the emissivity is increased are not evident in Fig. 12.   

The relative reduction in the thermal resistance due specifically to the reconfiguration of the solid 

from (i) the value associated with the initial semicircular solid, 𝑅𝑡,𝑖
′  to (ii) the value associated with the 

optimal solid 𝑅𝑡,𝑚𝑖𝑛
′  may be defined for each Ra*,  case as 

 

 𝑅̂𝑡,2
′ =

𝑅𝑡,𝑖
′ −𝑅𝑡,𝑚𝑖𝑛

′

𝑅𝑡,𝑖
′  (14) 

 

The relative thermal resistance reductions associated with the minimal thermal resistance cases of Figs. 5-

7 are reported in Fig. 13.  As evident in the figure and as expected from the discussion of Figs. 5-10, the 

smallest relative reductions are associated with the least severe deviations of the solid shape from the 

initial semi-circular configuration (  ≳ 0.15 for Ra* = 199,100,  ≳ 0.35 for Ra* = 671,800 and 

1,592,000). In contrast, the most significant relative reductions occur at lower emissivity values ( ≲ 0.15 

for Ra* = 199,100,  ≲ 0.35 for Ra* = 671,800 and 1,592,000) that correspond to the greater 

reconfigurations of the solid. Hence, for the cases considered here, inclusion of even modest amounts of 
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surface radiation in the heat transfer analysis significantly affects the natural convection (and conduction) 

processes, the optimal solid shape, and the overall thermal resistance values. It is also evident from Fig. 

13 that for the cases with significant solid reconfiguration ( ≲ 0.15 for Ra* = 199,100,  ≲ 0.35 for Ra* 

= 671,800 and 1,592,000), the cases with a smaller relative strength of convection experience a larger 

reduction in thermal resistance due to reconfiguration of the solid (𝑅̂𝑡,2
′ ).  

 

4. Conclusions and Recommendations 

An evolutionary design method has been applied over a range of convection and radiation conditions 

in order to observe and quantify the influence of surface radiation on the predicted final solid shape and 

the corresponding overall thermal resistance across the domain. For the problem considered here, it was 

found that increasing the strength of radiation (ε) promotes temperature and fluid flow distributions that 

exhibit greater symmetry about the centerline of the domain, and thus a more symmetric optimal solid 

shape. The influence of radiation was quantified by introducing two parameters which quantify the 

relative reduction in thermal resistance in response to (i) increases in the surface emissivity (𝑅̂𝑡,1
′ ) and (ii) 

reconfiguration of the solid (𝑅̂𝑡,2
′ ). Because (i) the initial placement of the solid is symmetric about the 

centerline of the domain and (ii) increasing the strength of radiation leads to a solid shape that is 

symmetric about the centerline of the domain, the cases characterized by higher emissivity did not evolve 

much from their initial semicircular shape, and thus experienced small reductions in the thermal 

resistance.  

Based on the findings of this study, recommendations for future research include: (i) incorporation of 

the effects of radiation in other, more complex and more accurate TO design methodologies, and (ii) 

experimental validation of the thermal performance of heat sink designs generated by methods which 

include the effects of radiation and natural convection. Incorporating radiation into more complex TO 

methods presents several challenges and may be prohibitively computationally expensive; to this end, it 

would be beneficial to develop simplified numerical models that include radiation transfer such as done in 
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the past for natural convection problems [17]. Finally, many of the heat sink (and other solid) designs 

identified through application of TO would require advanced manufacturing methods to realize, such as 

additive manufacturing. In turn, the specific additive manufacturing technique used would affect both the 

physical and thermophysical properties of the solid (e.g., surface roughness, effective thermal 

conductivity, and surface emissivity) perhaps necessitating the incorporation of new sub-models that 

relate (i) the dependence of important physical and thermophysical properties to (ii) the manufacturing 

technique, into the entire TO design process.  
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Nomenclature 

A area of control surface (m) 

b width of applied heat rate (m)  

cp specific heat (J/kg·K) 

Eb black body emissive power (W/m2) 

F view factor 

g gravitational acceleration (m/s2) 

H domain length (m) 

J radiosity (W/m2) 

k  thermal conductivity (W/m·K)  

Nu Nusselt number 

p  pressure (Pa) 

q' heat rate per unit length (W/m) 

q'' heat flux (W/m2) 
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Ra* modified Rayleigh number  

Rt' thermal resistance (K∙m/W) 

𝑅̂𝑡,1
′  reduction in thermal resistance due to increasing emissivity 

𝑅̂𝑡,2
′  reduction in thermal resistance due to reconfiguration of the solid 

S source term (W/m3)    

T  temperature (K) 

To reference temperature (K)  

u  x-velocity (m/s) 

v y-velocity (m/s)  

x, y  coordinate directions 

 

Greek Symbols  

α thermal diffusivity (m2/s) 

β coefficient of thermal expansion (K-1)  

ε emissivity  

μ dynamic viscosity (Pa∙s) 

ρ density (kg/m3) 

  

Subscripts  

conv convection  

f fluid 

max maximum 

min minimum 

rad radiation 

s solid
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Appendix 

The numerical methods associated with the conduction and free convection components of the model 

were validated as described in detail elsewhere [20]. The detailed radiation modeling was validated as 

follows. First, in order to ascertain the accuracy of the view factor and radiation heat flux calculations 

when obstruction of individual radiation surfaces occur due to intervening solids, the pure radiation 

problem of [27], described in Fig. 14, was considered. All surfaces are isothermal and experience 

blackbody radiation exchange. The left boundary is at a uniform temperature of 320 K while the other 

boundaries and the central body are held at 300 K. Local radiation heat fluxes around the interior 

enclosure surfaces are shown in Fig. 15, where ζ is the distance from the bottom left of the domain 

measured in the clockwise direction. The predictions of the present study are in excellent agreement with 

the predictions of the reference. 

 Next, the model predictions involving combined free convection and blackbody radiation exchange 

were compared to the results reported in [28] in which an air-filled square cavity consists of adiabatic top 

and bottom surfaces, and isothermal side walls. Average convection Nusselt numbers, average radiation 

Nusselt numbers, and total average Nusselt number predicted with the current model are all within 1 

percent of the reference values when a 60 × 60 uniform mesh is used.  

 The third verification exercise was to determine the sensitivity of the final solid shape and thermal 

performance to the grid size. The evolutionary design method was exercised for the Ra* = 199,100 (H = 

30 mm),  = 0.15 case using uniform control volume distributions of 20 × 20, 40 × 40, and 60 × 60. The 

final solid shapes and streamlines corresponding to each mesh size are shown in Fig. 16. The thermal 

resistances associated with Figs. 16a-16c are 𝑅𝑡
′ = 24.11, 23.90, and 23.66 K∙m/W respectively. Because 

(i) there is only a modest change in both the solid shape and thermal resistance as the mesh size is 

increased from 40 × 40 to 60 × 60, and (ii) considering the significant total computational time required to 

generate Figs. 5-7, a 60 × 60 mesh was used in this study. To further justify the mesh size, simulations 

were performed using the initial geometry of Fig. 4c (H = 30 mm,  = 0.2), and the final geometry of Fig. 
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9 (H = 30 mm,  = 0.2) with a 120 × 120 grid.  For either geometry, the overall thermal resistance 

changed by less than two percent relative to the predictions associated with the 60 × 60 grid.  

 The final validation compares the predictions of the detailed model to those generated by an 

approximate, analytical model for the situation involving the initial, semicircular solid and stagnant air. 

The approximate model is based on multiple simplifying assumptions including: (i) the exposed 

semicircular top of the solid is isothermal (ii) the adiabatic walls of the enclosure are also reradiating [22], 

and (iii) all exposed surfaces experience uniform irradiation, radiosity, and temperature [22]. With these 

assumptions, an approximate, thermal resistance model [22] can be developed that consists of one 

resistance (based on the conduction shape factor [22] for the semicircular solid) that acts in series with 

second and third resistances that are in parallel. The second resistance is based on the conduction shape 

factor for the stagnant air [29] while the third resistance is based on a three-surface enclosure radiation 

analysis involving one reradiating surface [22]. Maximum solid temperatures (at the location where the 

heat rate is applied) generated by the approximate and numerical models for the H = 45 mm,  = 0.5 case 

are Tmax – To = 0.66 K and 0.53 K, respectively. As the emissivity is reduced to  = 0.25, maximum 

temperatures increase to Tmax – To = 0.99 K and 0.80 K, for the two models. For the case of no radiation 

transfer,  = 0, Tmax – To = 1.91 K for both the approximate and detailed numerical models. As evident, the 

trends involving the maximum temperatures are as expected, and the relatively good agreement between 

the predictions of the approximate and detailed models implies that the values of the overall thermal 

resistances reported in this study are of the correct order of magnitude. To lend insight to the coupled 

nature of the problem, the thermal resistance values for the semicircular solid of the approximate model is 

0.0031 W∙m/K. The conduction resistance of the stagnant air of the approximate model (which will be 

slightly larger than the convection resistance of the detailed model) is 38.4 W∙m/K. Finally, the radiation 

resistances are ∞, 41.0, and 20.1 W∙m/K for the  = 0, 0.25, and 0.50 cases of the approximate model. As 

evident, the radiation and conduction resistances associated with the air are of similar magnitude for the 

two cases involving radiation, illustrating the coupled nature of the heat transfer processes.  
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Figures 

 

 

Fig. 1 The computational domain including thermal boundary conditions, thermophysical properties, and 

the initial solid shape.  
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Fig. 2 View factor calculation and adjustment scheme: (a) a ray projected from the center of control surface 

i to the center of control surface j, (b) partially obstructed case where the view factor would initially be set 

to zero, then increased in value when corrected to conserve radiation energy, (c) partially obstructed view 

factor that is initially overpredicted, then decreased when corrected to conserve radiation energy.  
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Fig. 3 Flow chart of the iterative design method. 

 

 

Fig.4 Streamlines (top) and temperature distributions (bottom) associated with H = 30 mm and the initial 

semicircular geometry (R/H = 1/6, b/H = 1/30, Ra* = 199,100). (a) ε = 0, (b) ε = 0.1, (c) ε = 0.2. Temperature 

distributions are generated by plotting 12 evenly spaced isothermal contours between and including the 

maximum and minimum temperature. 
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Fig. 5 Evolution history of thermal resistance for H = 30 mm, Ra* = 199,100. Solid markers designate 

minimum thermal resistance. 

 

 

Fig. 6 Evolution history of thermal resistance for H = 45 mm, Ra* = 671,800. Solid markers designate 

minimum thermal resistance. 
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Fig. 7 Evolution history of thermal resistance for H = 60 mm, Ra* = 1,592,000. Solid markers designate 

minimum thermal resistance. 

 

 

Fig. 8 Solid shape and streamlines associated with the minimum thermal resistances (solid markers in Fig. 

5) of the H = 30 mm, Ra* = 199,100 cases. Qualitatively, the streamlines of the ε ≥ 0.30 cases are similar 

to those of the ε = 0.25 case. Note the sharp transition in the fluid flow and the solid shape at  ≈ 0.2. 
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Fig. 9 Solid shape and streamlines associated with the minimum thermal resistances (solid markers in Fig. 

6) of the H = 45 mm, Ra* = 671,800 cases.  

 

 

Fig. 10 Solid shape and streamlines associated with the minimum thermal resistances (solid markers in Fig. 

7) of the H = 60 mm, Ra* = 1,592,000 cases.  
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Fig. 11 Temperature distributions associated with the final solid shape for the case of the emissivity 

shown and (a) H = 30 mm, (b) H = 45 mm, (c) H = 60 mm. Temperature distributions are generated by 

plotting 12 evenly spaced isothermal contours between and including the maximum and minimum 

temperature. 

 

Fig. 12 Relative reduction between ε = 0 minimum thermal resistance and minimum thermal resistance of 

each emissivity value.  
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Fig. 13 Relative reduction between initial and minimum thermal resistance.  

 

 

Fig. 14 Pure radiation example from [27].  

 

 

Fig. 15 Predicated local radiation heat fluxes along the interior boundary of the enclosure shown in Fig. 13 

(solid line). Data points are from Fig. 8 of [28].   
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Fig. 16 Final solid shapes and streamlines for the Ra* = 199,100 (H = 30 mm),  = 0.15 case with a mesh 

size of (a) 20 × 20, (b) 40 × 40, and (c) 60 × 60.  
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ABSTRACT 
A solid growth model (SGM) is developed to identify desirable configurations of a conducting solid that is cooled 

by conduction through a stagnant gas and surface radiation. Thermal performance is quantified by the overall thermal 

resistance, as well as a figure of merit that rewards both (i) low thermal resistance and (ii) use of a small amount of 

solid. The results show that radiation affects both the evolution of the solid shape and the thermal performance. 

Predictions of the novel SGM are compared to those of a formal topology optimization (TO) method, which 

incorporates the effects of radiation after the solid shape is determined by considering conduction only. While 

application of the TO method yields a lower overall thermal resistance when a high solid thermal conductivity is 

considered, the SGM leads to better thermal performance when a low solid thermal conductivity is involved. 

Keywords: Topology Optimization, Solid Growth Model, Conjugate Heat Transfer, Radiation  

NOMENCLATURE 
A  area  

b  width of applied heat rate surface 

Eb  blackbody emissive power  

Fij  view factor between surfaces i and j 

F  figure of merit 

H  domain dimension 

J  radiosity  

k   thermal conductivity  

𝑘𝑠
∗  dimensionless solid thermal conductivity 

n  normal direction 

NS  number of exposed control surfaces 

q'  heat rate per unit length  

q''  heat flux  

𝑅 
′  thermal resistance    

S  source term    

T   temperature  

To  boundary temperature  

x, y   coordinate directions 

 

Greek Symbols 

ε  emissivity  

σ  Stefan-Boltzmann constant 

 

Subscripts  

cond conduction 



103 

f  fluid 

i,j  surfaces i and j 

max  maximum 

rad  radiation 

s  solid 

tot  total 

 

1. INTRODUCTION 

 Optimal thermal performance is sought in a wide range of thermal management applications. In the context of 

heat sink design, for example, a typical goal is to identify solid shapes that provide low overall thermal resistances 

while using a minimal amount of solid material. Methods used for heat sink design include but are not limited to: (i) 

standard techniques as described in heat transfer texts [1, 2], (ii) size and shape optimization [3, 4], (iii) constructal 

theory [5, 6], and (iv) topology optimization (TO) [7–10]. A drawback of the first three methods is that the basic 

geometric features (or sub-features) of the object are often specified a priori. For example, Bar-Cohen [3] utilized 

shape optimization to design finned heat sinks cooled by natural convection by varying the fin width and thickness, 

as well as by adjusting the spacing between fins. 

 Several methods are not restricted by specified geometrical features. For example, TO techniques are based on 

solid material redistribution methodologies that ultimately define the desired solid shape. With TO, the solid density 

distribution within a computational domain is adjusted according to an optimization scheme that uses predicted state 

variables such as temperature or fluid velocity [7]. TO applied to pure heat conduction problems is relatively 

straightforward, has been investigated extensively, and has been extended to the development of new TO 

methodologies such as those capable of incorporating local volumetric thermal generation rates [11] or solving multi-

objective problems by minimizing both the average temperature and the temperature variance [12].  

 Multiple heat transfer modes must be considered for most practical applications. Relative to TO, a common 

situation involves the design of heat sinks subject to conjugate conduction-forced convection effects [8, 9, 13–16]. 

For example, TO was used to create a 3D, jet-impingement-air-cooled heat sink of complex shape [15] that was 

subsequently fabricated using additive manufacturing and tested experimentally. Several TO studies have addressed 

problems involving conjugate conduction-free convection [17–21]. For example, TO has been used to design 3D heat 

sinks for light emitting diodes that are cooled by natural convection [20]. Subsequently [21], the heat sinks of [20] 

were fabricated and tested experimentally to validate the predicted temperature distributions.  

 As is well known, surface radiation heat transfer can contribute significantly to thermal performance, and is 

dependent on the geometry of the radiating solid [22, 23]. In terms of size and shape optimization, several studies 

have considered radiation effects [25–29]. In contrast, the number of studies that have applied design approaches 

(similar to TO) to problems involving radiation is limited. Castro et al. [30] considered a cubic radiative enclosure to 

determine the optimal distribution of reflective material inside the enclosure to (i) minimize the net heat flux, (ii) 

maximize the net heat flux or (iii) minimize the temperature at a specified location. In [31], a particle swarm TO 

method was used to determine the optimal locations of low-temperature panels inside a room for purposes of 

developing a radiant cooling system. A weighted objective function involving both (i) occupant thermal comfort and 

(ii) energy consumption was utilized.  

 The preceding examples [30, 31] did not embody the more difficult problem of determining the most desirable 

shapes of solids cooled by radiation to maximize thermal performance. To address this challenge, Sevart and Bergman 

[32] developed an evolutionary design method (EDM) for determining desirable geometries of conducting solids 

cooled by conjugate radiation and natural convection. The EDM begins with fixed amounts of solid and fluid in a 

computational domain, after which the solid (and fluid) distribution was redistributed in an evolutionary manner based 

upon simple design rules. It was found that radiation had a substantial effect on the temperature distributions and fluid 

flow, and therefore on the predicted solid shapes.  

 The application of formal TO methods to determine optimal solid shapes for heat transfer problems involving 

surface radiation is challenging. This is because formal TO methods usually begin with a uniform, low-density solid 

distribution throughout the computational domain that is devoid of any surfaces, making evaluation of surface 

radiation heat transfer problematic. Recently however, Wang et al. [33], used TO to optimize the microscale features 

of a thin film including the effects of radiation. The conduction and radiation processes were only weakly coupled. It 

was found that the optimized structure was dependent on the interplay between conduction, convection, and radiation. 

 To the authors’ knowledge, a situation that has not been investigated is the determination of the geometry of a 

solid with no pre-specified geometric features or sub-features, which is cooled by strongly coupled conduction and 

surface-to-surface radiation. Such a situation might be of interest for low pressure or aerospace applications when 
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natural convection is negligible. In this study, therefore, a solid growth method (SGM), distinct from the EDM of [32], 

is presented and used to determine conducting solid configurations (shapes) that are cooled by conjugate radiation 

heat exchange and conduction in an adjacent fluid. To quantify thermal performance, a figure of merit that rewards 

both (i) low thermal resistance and (ii) use of a small amount of solid material is introduced. The influence of the solid 

emissivity and solid thermal conductivity on the predicted solid configurations and thermal performance is 

investigated. SGM predictions are compared to radiation-conduction predictions for solid configurations that are 

determined by TO. Note that surface radiation is neglected during the TO simulation that determines the final solid 

shape because, as discussed previously, TO methodologies begin by assuming a uniform, low-density solid distribution 

within the computational domain that is devoid of surfaces, precluding inclusion of surface radiation transfer in the 

TO process. At any rate, once the final TO solid shape is found, radiation is then included to determine the conjugate 

conduction-radiation thermal processes associated with the TO-determined solid geometry. 

 

 
FIGURE 1: Physical domain and boundary conditions.  

 
2. PHYSICAL SYSTEM AND SOLID GROWTH MODEL (SGM) 

The physical system is described in Fig. 1. A 2D, H × H domain consists of a contiguous solid of thermal 

conductivity ks and a radiatively transparent, stagnant fluid of thermal conductivity, kf < ks. Heat transfer occurs by 

conduction in the solid, conduction in the fluid, and surface-to-surface radiation transfer in response to an imposed 

heat rate per unit depth, q', that is applied over a section of the bottom boundary of width b, centered about x = H/2. 

The top boundary of the domain is isothermal at To, while the remaining portions of the domain boundaries are 

assumed to be adiabatic. The objective is to predict 2D solid shapes that pose low overall thermal resistances between 

the location of the applied heating and the top, cold boundary of the domain. The value of the overall resistance is 

determined by a complex interplay between the coupled conduction processes in the solid and the fluid which are, in 

turn, both coupled to the surface-to-surface thermal radiation processes occurring at all solid boundaries, including at 

the surface of a potentially complex solid-fluid structure whose geometry is initially unknown.  

The SGM predictions begin with minimal solid in the domain (the initial solid occupies only two computational 

control volumes; Section 2.2) placed adjacent to the heated portion of the bottom boundary. Local temperatures and 

heat fluxes are then determined by solving the appropriate discretized forms (Sections 2.2 and 2.3) of the governing 

equations (Section 2.1), after which an incremental amount of solid is added to the domain according to the growth 

methodology described in Section 2.4. The governing equations are solved again, and an incremental amount of solid 

is again added. The process of repeatedly adding solid to (and subtracting fluid from) the domain and re-solving the 

governing equations continues, resulting in the gradual growth of the solid at the expense of the fluid. The solid is 

restricted to the portion of the domain below the horizontal dashed line of Fig. 1 located at y = ymax. No restrictions 

are placed on the extent of the solid in the x-direction. 

 

2.1 Governing Equations and Boundary Conditions 
The temperature distribution in the entire solid-fluid domain is determined by solving the appropriate heat 

diffusion equations for the fluid and the solid. Steady state conditions are assumed, and all thermophysical properties 
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are taken to be constant for each case considered. The fluid does not participate in the radiation transfer and is assumed 

to be stationary with the effects of free convection being negligible. All exposed surfaces are assumed to be diffuse 

and gray, and characterized by the same emissivity, ε. With these assumptions, the heat diffusion equation applied to 

either the solid or the fluid is 

 

 
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) = 0 (1) 

 

where k = ks in the solid, and k = kf in the fluid. The top boundary is isothermal, that is, T(x, y = H) = To. The applied 

heat rate at the bottom of the domain is uniform over the width b, so that  
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Locally at the complex solid surface, the conduction heat flux in the opaque solid to the solid-fluid interface is 

equal to the conduction heat flux in the fluid from the solid-fluid interface plus the radiation heat flux from the exposed 

solid surface, 
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where n is the outward normal direction at any location along the solid-fluid interface. From Eq. (3) it is evident that 

at the exposed adiabatic boundaries,  

 

 −𝑘𝑓
𝜕𝑇

𝜕𝑛
+ 𝑞rad

′′ = 0 (4) 

 

As the opaque solid grows and evolves in shape, it may come into contact with an adiabatic boundary, preventing 

radiation heat transfer from that section of the boundary. In such a situation,  

 

 −𝑘𝑠
𝜕𝑇

𝜕𝑛
= 0 (5) 

 

2.2 Discretization and Boundary Conditions 
Equation (1) is solved using the finite volume method, with all interfacial effective thermal conductivities 

calculated using the harmonic mean approach [34]. The radiation heat flux appearing in Eq. (3) is treated by 

introducing an equivalent local source term in the solid, Srad, into the discretized form of Eq. (1). The values of the 

source terms are determined from the radiation heat transfer analysis of Section 2.3. At the exposed adiabatic control 

surfaces, radiation is accounted for by employing a constant temperature boundary condition, utilizing an appropriate 

boundary temperature so that that Eq. (4) is satisfied.  

Because the radiation and conduction processes are tightly coupled, an iterative solution is implemented for each 

individual solid geometry as follows: (i) local temperatures are determined by solving Eq. (1) without inclusion of the 

effects of radiation, (Srad = 0) then (ii) local surface radiation heat fluxes are calculated as will be described in Section 

2.3. Next, (iii) Srad is calculated, and the local temperatures of the exposed adiabatic boundaries are set so that they 

satisfy Eq. (4) after which (iv) Eq. (1) is solved again using the updated source terms and boundary conditions. Steps 

(ii) - (iv) are repeated until the change in each control volume temperature is less than 10-8 K. Because the ultimate 

size and shape of the solid is unknown, the computational domain is populated by control volumes of uniform 

dimension.  

 

2.3 Calculation of Radiation Heat Fluxes 
To calculate values of Srad, each exposed control surface is assumed to be isothermal at the temperature of the 

corresponding solid control volume. As noted previously, all surfaces are assumed to be opaque, diffuse, and gray and 

of the same emissivity, ε. With these assumptions, the net radiation heat flux from an arbitrary solid-fluid control 

surface, i, is given as [1] 

 

 𝑞𝑖
′′ =

𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
 (6) 
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where 𝐸𝑏𝑖 = 𝜎𝑇𝑖
4 is the blackbody emissive power and Ji is the radiosity. The net radiation heat flux, 𝑞𝑖

′′, is also equal 

to the summation of radiation heat fluxes from surface i to each of the other j exposed control surfaces which leads to 

[1] 

 

 
𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
= ∑ 𝐹𝑖𝑗(𝐽𝑖 − 𝐽𝑗)𝑁𝑆

𝑗=1  (7) 

 

where NS is the number of exposed control surfaces, and Fij is the view factor between surface i and surface j. The 

method used to calculate the view factors accounts for the total or partial obstruction of individual i - j control surfaces 

by an intervening solid, as discussed in detail in [32]. In short, all view factors are first approximated without 

accounting for any obstruction(s), using Hottel’s crossed string method [35]. The view factors are then adjusted, 

accounting for obstructions between individual control surfaces, in order to satisfy the summation rule and the 

reciprocity relation [1]. Equations (6) and (7) are solved using Gaussian elimination.  

 

2.4 Growth Methodology  
As discussed previously, there is initially only a small amount of solid (two computational control volumes) 

placed at the bottom center of the domain. After the first calculation of T(x, y), additional solid (two control volumes) 

is added to the existing solid, at the location(s) of the maximum local heat flux from the solid to the solid-fluid 

interface. Two control volumes of solid are added at each step (one control volume somewhere in the left half of the 

domain and the second additional control volume at the corresponding location in the right half of the domain) to take 

advantage of the symmetry of the problem and reduce computational expense. The SGM is based on the premise that 

solid material should be added to the location(s) where it is already most effective in reducing the overall thermal 

resistance. The SGM is therefore heuristic. Nonetheless, it will become evident that the SGM is capable of producing 

solid distributions that compete well with solid distributions determined by TO in terms of their overall thermal 

performances. 

In short, the steps of the SGM are: (i) local temperatures and surface radiation heat rates are calculated iteratively 

as described in Sections 2.2 and 2.3, (ii) the net heat fluxes (including both radiation and conduction) from each 

exposed control surface of the solid are determined, then (iii) the two fluid control volumes (one in the LHS of the 

domain and the other in the RHS) adjacent to the location of the maximum heat flux are switched to solid, resulting 

in the incremental growth of the solid at the expense of the fluid. Steps (i) - (iii) are repeated, allowing the solid shape 

to evolve in the growth domain, 0 ≤ 𝑥 ≤ 𝐻, 0 ≤ 𝑦 ≤ 𝑦max. 

 

3. TO MODEL AND DOMAIN MAPPING 
The predictions of the SGM are compared to those of a formal TO model which neglects the effects of radiation 

in the generation of its solid configurations. The TO model utilized in this study incorporates the Solid Isotropic 

Material with Penalization method [7] for the material distribution and the Method of Moving Asymptotes [36] for 

the optimization algorithm. The objective function is the thermal resistance, and the adjoint method is employed for 

calculating sensitivities of the objective function on the solid distribution [12]. A penalization parameter of P = 4 is 

used for all TO cases.  

Because the TO method utilizes a continuous description of the solid distribution (solid fractions of individual 

control volumes are not limited to values of 0 or 1), distinct solid-fluid interfaces are absent, making evaluation of 

surface radiation heat transfer problematic. By using an identical computational mesh in both the SGM and TO models, 

a discrete description (control volume solid fractions are either 0 or 1) of the solid and fluid distributions is generated 

using the optimal continuous solid distribution of the TO solution. The mapping of the continuous solid distribution 

to the discrete solid distribution utilizes the conservation of mass principle. Specifically, the control volumes of the 

continuous solid distribution are sequentially converted to pure solid starting with the highest density control volumes. 

The conversion process continues until the total mass represented by the discrete solid distribution equals the total 

mass of the continuous solid distribution. The remaining non-solid control volumes are converted to fluid. The 

resulting discrete solid-fluid distribution is then used to solve the coupled radiation-conduction problem as detailed in 

Sections 2.1 – 2.3. It is noted that the continuous and discrete solid distributions appear nearly identical in shape and 

size when inspected visually.  

 

4. RESULTS AND DISCUSSION 
The SGM was used to predict the evolution of a conducting solid, characterized by a range of thermal 

conductivities and emissivities, into a computational domain otherwise occupied by a stationary, radiatively 

transparent fluid. To quantify the thermal performance of the various solid-fluid configurations, the overall thermal 
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resistance between (i) the location x = H/2, y = 0 and (ii) the top cold, isothermal boundary, 𝑅tot
′ ≡ [𝑇(𝐻/2,0) −

𝑇𝑜]/𝑞′, is determined. The effects of conduction are isolated by calculation of the conduction resistance, 𝑅cond
′ , of the 

various configurations by setting  = 0. A figure of merit is introduced, 𝐹 ≡ (𝑅tot
′ ⋅ 𝑘𝑓 ⋅ 𝐴𝑠 𝐴tot⁄ )−1, where As is the 

cross-sectional area of the solid and Atot is the area of the entire H × H computational domain. As evident, the figure 

of merit rewards (i) low thermal resistances and (ii) use of small amounts of solid.  

In all cases the fluid is taken to be air, kf = 0.0257 W/m∙K, and the non-adiabatic boundary conditions are q' = 1 

W/m and To = 750 K. The dimension of the square computational domain is arbitrarily chosen to be H = 0.06 m with 

b/H = 1/90 and 𝑦max/H = 177/180. The value of b/H and 𝑦max/H are related to the use of a 180 × 180, uniform control 

volume computational domain that is employed for all of the simulations. As noted in Section 2, the growth history 

begins with a small amount of solid that is seeded in the computational domain. All interior surfaces of the domain 

are specified to be of the same emissivity as that of the solid.  

 

4.1 Evolution of 𝑹𝐭𝐨𝐭
′  and F 

A dimensionless solid thermal conductivity is introduced as 𝑘𝑠
∗ ≡ 𝑘𝑠/(240 W/m ∙ K) so that 𝑘𝑠

∗ = 1 corresponds 

to pure aluminum. The SGM is exercised with emissivity values of 𝜀 = 0 and 0.4 for 𝑘𝑠
∗ = 1 and 0.1, resulting in four 

physical condition cases.  

The evolution history of the overall thermal resistance (𝑅tot
′ ) and the figure of merit (F) for the four cases are 

shown in Figs. 2a and 2b, respectively. The TO method is applied at four arbitrarily selected As values for the four 

physical cases. The figure of merit and overall thermal resistance associated with the TO-determined solid 

configurations are represented by the isolated, filled data points in Fig. 2.  

 

 
FIGURE 2: Evolution history of (a) overall thermal resistance and (b) figure of merit predicted by the SGM. Filled data points 

correspond to TO predictions.  

 

For each SGM case, the largest 𝑅tot
′  values correspond to the least amount of solid (Fig. 2a, As → 0) and, initially, 

the smaller resistances are associated with the higher emissivity surfaces, as expected. Also, the figure of merit is 

larger for the higher emissivity cases (Fig. 2b, As → 0) since the solid is initially of the same shape for all cases. For 
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the ε = 0 cases, 𝑅tot
′  decreases as the solid expands (Fig. 2a), while F experiences a more complex evolution (Fig. 2b). 

In contrast, the two ε = 0.4 cases have As regions in which 𝑅tot
′  increases as solid material is added to the domain. As 

will be discussed later, this is a result of solid material blocking radiation transfer between locations of high 

temperature and the colder isothermal boundary. The ε = 0.4, 𝑘𝑠
∗ = 1 case has a slightly more complex evolution of 

𝑅tot
′   and F compared to the ε = 0.4, 𝑘𝑠

∗ = 0.1 case. The TO predictions will be discussed in Section 4.2.3 and 4.3.3. 

 

4.2 SGM and TO Predictions, 𝒌𝒔
∗ = 1 

Representative solid configurations and temperature distributions associated with 𝑘𝑠
∗ =1 are shown in Figs. 3 and 

4, respectively. There are three solid geometries shown for each As value in Fig. 3 corresponding to (i) the SGM with 

ε = 0 (Figs. 3a - 3d), (ii) the SGM with ε = 0.4 (Figs. 3e - 3h), and (iii) the TO discrete solid distribution with  = 0 

and 0.4 (Figs. 3i - 3l). (Because the discrete TO geometries are derived from a pure conduction analysis, the TO solid 

shapes are the same for ε = 0 and ε = 0.4.) Also note that the temperature distributions shown for the TO solids in Fig. 

4 are associated with ε = 0.4. One-hundred, uniformly spaced isotherms are included in the figures. The overall thermal 

resistance (𝑅tot
′ ), thermal resistance due to conduction (𝑅cond

′ ), and figure of merit for the solid configurations of Fig. 

3 are reported in Table 1. 

 

 
 
FIGURE 3: Solid configurations for 𝑘𝑠

∗ = 1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (middle), and TO (right) for 

𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, h, l). 

 

4.2.1 Solid Growth Method, 𝒌𝒔
∗ = 1, ε = 0 

For the ε = 0 case (Figs. 3a - 3d and 4a - 4d), the solid initially grows upward from the location of the applied 

heat rate, toward the isothermal top boundary. After the vertical solid column reaches the top of the growth domain 

(𝑦 = 𝑦max) at 𝐴𝑠 × 103 = 0.039 m2, it bifurcates and grows toward the side boundaries, resulting in the T-shaped 

structure of Fig. 3a. The thin, vertical solid column creates a pathway of high thermal conductivity material that 

effectively propagates high temperatures upward, as shown by the temperature distribution of Fig. 4a. As the central 

solid column approaches the top boundary, there is a sharp decrease in 𝑅tot
′  and a steep increase in F (Fig. 2, 0.02 m2 ≲

𝐴𝑠 × 103 ≲ 0.05 m2).  
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The thin horizontal solid section near the top of the growth domain evident in Fig. 3a continues to expand outward 

until it reaches the vertical adiabatic boundaries at 𝐴𝑠 × 103 = 0.059 m2. Subsequently, the location of maximum 

heat flux shifts to the bottom center of the domain, and the solid begins to grow outward horizontally, taking a new 

path along the bottom adiabatic boundary. After the solid in the vicinity of y = 0 reaches the vertical adiabatic 

boundaries at 𝐴𝑠 × 103 = 0.079 m2, it turns and grows upward, leading to the solid shape shown in Fig. 3b. This 

addition of solid does little to reduce 𝑅tot
′  and therefore serves to decrease F (Fig. 2, 0.05 m2 ≲ 𝐴𝑠 × 103 ≲ 0.1 m2). 

However, when the vertical solid sections located near the vertical boundaries come into contact with the horizontal 

solid section at the top of the domain at 𝐴𝑠 × 103 = 0.1165 m2, there is a sharp decrease in 𝑅tot
′  (Fig. 2a) and a 

corresponding increase in F (Fig. 2b). 

 

 
FIGURE 4: Temperature distributions for 𝑘𝑠

∗ = 1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (middle), and TO (right) 

for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, h, l). 

 

For the remainder of the growth process, solid is added along the three existing vertical columns, increasing their 

thickness, as shown in Figs. 3c and 3d. This additional solid leads to a slight reduction in 𝑅tot
′ , and a corresponding 

monotonic reduction in F for 𝐴𝑠 × 103 ≳ 0.1165 m2. 

 

Table 1: Thermal resistances and figures of merit for 𝑘𝑠
∗ = 1. 
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4.2.2 Solid Growth Method, 𝒌𝒔

∗ = 1, ε = 0.4 
In contrast to the ε = 0 case, the solid of the ε = 0.4 case (Figs. 3e - 3h and 4e - 4h) initially grows outward 

horizontally until it reaches the side adiabatic boundaries at 𝐴𝑠 × 103 = 0.02 m2. Subsequently, the solid turns and 

grows upward along the side boundaries. When the vertical solid sections along the side boundaries reach a height of 

𝑦 ≈ 𝐻 3⁄  at 𝐴𝑠 × 103 = 0.036 m2 the location of the maximum heat flux shifts to the bottom center of the domain, 

and the solid grows upward, leading to the solid configuration shown in Fig. 3e. The growth pathway for  = 0.4 

corresponds to a more gradual reduction in 𝑅tot
′  compared to that of the ε = 0 case (Fig. 2, 0 m2 ≲ 𝐴𝑠 × 103 ≲

0.05 m2). With the effects of radiation included, the isotherms shown in Fig. 4e, are no longer perpendicular to the 

adiabatic boundary, as required by Eq. (4). Because all of the solid is located in the bottom half of the domain, heat 

transfer is dominated by radiation for this solid structure, as noted by the low overall thermal resistance (𝑅tot
′  = 0.6307 

m∙K/W) and relatively high conduction resistance (𝑅cond
′  = 27.72 m∙K/W) reported in Table 1. 

The vertical section in the middle of the domain continues to grow until it reaches the top of the growth domain 

at 𝐴𝑠 × 103 = 0.076 m2, after which it bifurcates and grows outward horizontally. As the horizontal solid section at 

the top of the domain continues to grow outward, it serves to decrease the conduction resistance but increasingly 

shields radiation transfer between high temperature sections at the bottom of the domain and the colder, top isothermal 

boundary. This shielding effect leads to an increase in the total thermal resistance (Fig. 2a, 0.08 m2 ≲ 𝐴𝑠 × 103 ≲
0.1 m2). Although the ε = 0 and ε = 0.4 cases exhibit different initial growth histories, the two solid structures at 

𝐴𝑠 × 103 = 0.1 m2 (Figs. 3b and 3f) are nearly identical. The two cases also display similar temperature distributions 

(Figs. 4b and 4f), but the ε = 0 case has a more uniform temperature distribution in the lower half of the domain. In 

comparing the thermal resistances of the ε = 0.4 case at 𝐴𝑠 × 103 = 0.05 m2 and 0.1 m2 in Table 1, there is a slight 

decrease in 𝑅tot
′  (from 0.6307 to 0.6144 m∙K/W) but a significant decrease in 𝑅cond

′  (from 27.72 to 1.080 m∙K/W). 

Beyond 𝐴𝑠 × 103 = 0.1 m2, the vertical solid sections near the side boundary grow upward until coming into 

contact with the top solid section at 𝐴𝑠 × 103 = 0.1165 m2, which causes a sharp decrease in 𝑅tot
′  (Fig. 2a) and a 

corresponding sharp increase in F (Fig. 2b). The remainder of the growth process for the ε = 0.4 case is characterized 

by the addition of distinct, vertical solid sections that grow from the bottom of the domain to the top, as shown in Figs. 

3g and 3h. These solid sections, located near the vertical centerline, effectively propagate high temperatures upward 

(Figs. 4g and 4h).  

 
4.2.3 Topology Optimization Model, 𝒌𝒔

∗ = 1 
The branching tree-like structures obtained by TO (Figs. 3i - 3l) exhibit more complexity than the corresponding 

solid shapes obtained by SGM (Figs. 3a - 3h). As 𝐴𝑠 increases, the TO structures are characterized by thicker solid 

sections with more branching and additional complexity. The complexity serves to reduce conduction resistance 

values, but can increase the resistance to radiation transfer across the domain because of the radiation shielding effect. 

At 𝐴𝑠 × 103 = 0.05 m2, (Fig. 3i) the conduction resistance associated with TO (𝑅cond
′  = 21.12 m∙K/W) is bracketed 

by the conduction resistances associated with either SGM approach (𝑅cond
′  = 1.468 m∙K/W and 27.72 m∙K/W). The 

unexpectedly large 𝑅cond
′  associated with the TO prediction is attributed to the small amount of solid in the domain, 

and the corresponding thin solid branches of Fig. 3i. This complex TO-derived structure, obtained from the mapping 
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process of Section 3, is therefore associated with multiple staggered solid-fluid control volumes that serve to 

artificially increase the computed conduction resistances across the domain. A comparison of the overall resistances 

at this As value shows that the TO structure’s overall resistance (𝑅tot
′   = 0.9816 m∙K/W) is similar to the overall 

resistance of SGM (𝑅tot
′   = 0.6307 m∙K/W). 

 At 𝐴𝑠 × 103 = 0.1 m2, (Fig. 3j) more solid is present relative to the solid of Fig. 3i, the staggering effect that 

numerically increases conduction resistances is diminished, and the conduction resistance of the TO solid (𝑅cond
′  = 

1.015 m∙K/W) is smaller than those of either of the SGM predictions (𝑅cond
′  = 1.071 and 1.080 m∙K/W). The overall 

resistance of the TO solid (𝑅tot
′   = 0.5341 m∙K/W) is also smaller than that of the SGM predictions (𝑅tot

′  = 0.6144 

m∙K/W). As 𝐴𝑠 increases (𝐴𝑠 × 103 = 0.15 m2 and 0.2 m2), the conduction resistances reported in Table 1 for the 

SGM and TO predictions are similar in value, while the overall resistances associated with the TO approach (𝑅tot
′  = 

0.4946 and 0.4506 m∙K/W at 𝐴𝑠 × 103 = 0.15 m2 and 0.2 m2) are incrementally smaller than for either overall 

resistance associated with the SGM approach (𝑅tot
′  = 0.5286 m∙K/W and 0.4777 m∙K/W at 𝐴𝑠 × 103 = 0.15 m2 and 

0.2 m2). Based on these limited results, it may be concluded that the TO approach produces more desirable structures 

to reduce 𝑅tot
′  values and increase the corresponding figures of merit, for situations where sufficient solid is present 

to minimize numerical effects that artificially increase conduction resistance values. 

 

4.3 SGM and TO Predictions, 𝒌𝒔
∗ = 0.1 

Solid configurations and temperature distributions of the 𝑘𝑠
∗ = 0.1 cases are reported in Figs. 5 and 6, respectively, at 

several 𝐴𝑠 values. The thermal resistances and figures of merit associated with the solid configurations of Fig. 5 are 

reported in Table 2. 

 

 
FIGURE 5: Solid configurations for 𝑘𝑠

∗ = 0.1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (middle), and TO (right) for 

𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, h, l). 

 
4.3.1 Solid Growth Method, 𝒌𝒔

∗ = 0.1, ε = 0 
The 𝜀 = 0 case (Figs. 5a - 5d and 6a - 6d) initially has the same growth path as the 𝑘𝑠

∗ = 1, 𝜀 = 0 case (Figs. 3a - 

3d and 4a - 4d) and exhibits a similar evolution of 𝑅tot
′  and F (Fig. 2). The solid configurations of Figs. 5a and 5b are 

identical to those of Figs. 3a and 3b. The temperature distributions of the 𝑘𝑠
∗ = 0.1 case (Figs. 6a and 6b) exhibit a 
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higher concentration of isotherms in the region containing solid relative to the 𝑘𝑠
∗ = 1 case (Figs. 4a - 4d). The solid 

evolution for the 𝑘𝑠
∗ = 0.1, 𝜀 = 0 case is slightly different than the 𝑘𝑠

∗ = 1 case after 𝐴𝑠 × 103 = 0.1165 m2 in that 

more solid is added to the center vertical column relative to the outer columns (Figs. 5c and 5d).  

 

 
FIGURE 6: Temperature distributions for 𝑘𝑠

∗ = 0.1 and the SGM with 𝜀 = 0 (left), the SGM with 𝜀 = 0.4 (middle), and TO (right) 

for 𝐴𝑠 × 103 = 0.05 m2 (a, e, i), 0.1 m2 (b, f, j), 0.15 m2 (c, g, k), and 0.2 m2 (d, h, l). 

 

 

 4.3.2 Solid Growth Method, 𝒌𝒔
∗ = 0.1, ε = 0.4 

The solid evolution of the 𝑘𝑠
∗ = 0.1, 𝜀 = 0.4 case (Figs. 5e - 5h) is remarkably different than that of the other 

growth method cases. The solid initially grows outward horizontally, but before it reaches the side boundaries, at 

𝐴𝑠 × 103 = 0.015 m2 the location of maximum heat flux shifts to the bottom center of the domain. Subsequently, the 

solid grows upward at 𝑥 = 𝐻/2 until it reaches 𝑦 ≈ 𝐻/2. After that, the solid growth is characterized by the nucleation 

and growth of new solid columns and the extension of existing columns as shown in Figs. 5e and 5f. For 𝐴𝑠 × 103 =
0.05 m2 and 0.1 m2 (Figs. 5e and 5f) most of the solid is in the lower half of the domain, and there is a large surface 

area of solid that exchanges thermal radiation with the top isothermal boundary. Both of these characteristics cause 

the thermal resistance to be dominated by radiation. This is shown by the fact that 𝑅cond
′  (28.78 and 14.44 m∙K/W) is 

significantly larger than 𝑅tot
′  (0.8540 and 0.8134 m∙K/W) at 𝐴𝑠 × 103 = 0.05 m2 and 0.1 m2 (Table 2). 

 
 

  



113 

Table 2: Thermal resistances and figures of merit associated for 𝑘𝑠
∗ = 0.1. 

 
 

The central solid column eventually reaches the top of the growth domain at 𝐴𝑠 × 103 = 0.115 m2 then bifurcates 

outward horizontally as shown in Fig. 5g. Unlike the 𝑘𝑠
∗ = 1, 𝜀 = 0.4 case (Figs. 3e - 3h) the horizontal section of solid 

at the top of the domain does not immediately extend entirely to the side boundaries. Instead, the solid growth 

alternates between extending the vertical columns, creating new vertical columns, and gradually extending the 

horizontal sections at the top and bottom of the domain. This complex solid evolution is reflected in Fig. 5h. Because 

the top horizontal section of solid in Fig. 5h does not span to width of the domain, such as for the solid configurations 

of Figs. 3f - 3h, there is less shielding of radiation between the high temperature regions at the bottom of the domain 

and the colder top boundary. However, there is still some shielding which occurs that increases the thermal resistance 

due to radiation, which is evidenced by the fact that between 𝐴𝑠 × 103 = 0.15 m2 and 0.2 m2 𝑅cond
′  decreases from 

4.385 to 3.448 m∙K/W, but 𝑅tot
′  increases from 0.8063 to 0.8101 m∙K/W (Table 2). Even though the solid thermal 

conductivity is relatively low, the high number of columns allows for high temperatures to propagate upwards as 

shown by Figs. 6e - 6h.   

 

4.3.3 Topology Optimization Model, 𝒌𝒔
∗ = 0.1 

In comparison to the higher thermal conductivity TO case (Figs. 3i - 3l), the TO solid configurations of the 𝑘𝑠
∗ = 

0.1 case (Figs. 5i - 5l) are of simpler geometry with less branching and a higher concentration of solid near the vertical 

centerline. At 𝐴𝑠 × 103 = 0.05 m2, (Fig. 5i) the conduction resistance associated with TO (𝑅cond
′  = 6.966 m∙K/W) is 

bracketed by the conduction resistances associated with either SGM approach (𝑅cond
′  = 4.742 m∙K/W and 28.78 

m∙K/W). However, for 𝐴𝑠 × 103 = 0.1 m2, 0.15 m2, and 0.2 m2 (Figs. 5j - 5l) the TO solid structures exhibit a lower 

𝑅cond
′  (2.926, 2.135, and 1.696 m∙K/W) than the SGM, ε = 0 (4.261, 2.317, and 1.946 m∙K/W) and ε = 0.4 (14.44, 

4.385, and 3.448 m∙K/W) cases. While the conduction thermal resistances of the TO solid structures (Figs. 5i - 5l) are 

lower than that of the SGM, 𝜀 = 0.4 case (Figs. 5e - 5h) for all four 𝐴𝑠 values, the total thermal resistances associated 

with TO (𝑅tot
′  = 1.274, 1.029, 0.9504, and 0.9226 m∙K/W) are higher than that of the growth method (𝑅tot

′  = 0.8540, 

0.8134, 0.8063, and 0.8101 m∙K/W) (Table 2). This result shows that the SGM, which incorporates the effects of 

radiation into the solid evolution, achieves a lower thermal resistance due to radiation and therefore results in a 

preferred solid configuration when the radiation heat transfer is dominant, such as when a low solid thermal 

conductivity or low amount of solid is considered. 

 

5. CONCLUSIONS 
A solid growth methodology has been developed and used to predict the evolution of thermally-conducting solid 

configurations that are simultaneously cooled by conduction to a stationary fluid as well as by surface radiation. The 

methodology was applied to four cases involving solids that have one of two surface emissivities and one of two 

thermal conductivities. Thermal performance was quantified by evaluating both (i) the overall thermal resistance and 

(ii) a figure of merit. It is shown that radiation has a significant influence on the solid shapes and corresponding overall 

thermal resistances. In general, inclusion of radiation produces solid configurations having vertical columns and thus 

more surface area of solid that can participate in radiative transfer. 
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Predictions of the SGM were compared to those of a formal topology optimization method based on the 

assumption of negligible radiation transfer. In general, for the higher solid thermal conductivity cases the TO method 

produced solid configurations with lower overall thermal resistances. However, for the lower solid thermal 

conductivity cases, the SGM that incorporates radiation transfer into the solid evolution predicted solid configurations 

with lower overall thermal resistances, even though the TO solid structures had lower conduction thermal resistances. 

The results of this study suggest that thermal radiation can have a significant influence on solid configurations 

that will offer desired thermal performance, especially when low thermal conductivity solids are considered. While 

the heuristic SGM proposed in this study is relatively simple and straightforward, it was able to produce solid shapes 

having lower overall thermal resistances than those associated with a formal TO method. It is recommended that future 

research address ways to incorporate the effects of thermal radiation into formal TO approaches. 
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Abstract – The topological optimization of a conducting solid simultaneously cooled by (i) conduction to 

a stationary, radiatively non-participating fluid and (ii) surface-to-surface radiation exchange is performed. 

A novel Dual Solid Method (DSM) that utilizes concurrent discrete and continuous descriptions of the solid 

phase distribution is introduced. Corresponding discrete and continuous solid models are used to (i) quantify 

the conduction and radiation heat transfer, and (ii) power a density-based topology optimization, 

respectively. The discrete and continuous models of the DSM are linked by sharing information pertaining 

to the radiation exchange process. The influence of the relative strengths of conduction and radiation is 

illustrated by performing parametric simulations involving various domain boundary temperatures and 

solid phase thermal conductivities. In general, use of the DSM to account for radiation heat transfer leads 

to solid shapes of reduced complexity, relative to shapes predicted when radiation is neglected.   

Keywords – Topology Optimization, Conjugate Heat Transfer, Radiation 

 

1 Introduction 

Identification of optimal solid configurations is of interest in many heat transfer applications. The 

optimization often involves minimization of an overall thermal resistance, subject to constraints on the 
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volume or weight of solid material. Early attempts involved size and shape optimization, where general 

geometric features are specified a priori and their dimensions are considered as the optimization 

parameters. For example, Bar-Cohen et al. [1] considered plate-fin heat sinks cooled by natural convection, 

and maximized the heat transfer rate per volume by varying the fin thickness and fin pitch.  

A limitation of size and shape optimization is that the actual optimal geometries may be complex, and 

not reduceable to simple geometrical features. As is well known, a method that allows for geometrical 

complexity is constructal theory [2], which involves the hierarchical construction and optimization of 

conducting or flow paths. The overall geometry is obtained by assembling multiple smaller sections. 

Although the smallest geometric features are specified a priori, the overall geometry is allowed to evolve 

into more intricate shapes that can be unanticipated. For example, Bejan [2] predicted a branching tree-like 

structure for cooling a heat generating volume so that the local maximum temperature is minimized. 

Almogbel and Bejan [3] considered a similar problem and found that allowing nonuniformly spaced 

branches increased the allowable number of constructs (branches) resulting in more complex geometries 

with lower thermal resistances. 

The method that allows the most geometrical flexibility is topology optimization (TO) [4]. The 

advantages of TO are rooted in its initial description of a material distribution throughout the entirety (or 

large portion) of a computational domain. From this unbiased starting point, the evolution of complex solid 

shapes proceeds without any specification of geometric features or sub-features. In general, the TO process 

applied to a heat transfer problem involves (i) specification of an initial material distribution, (ii) solution 

of the appropriate governing equations (e.g., the heat equation), followed by (iii) adjustment of the material 

distribution according to an optimization algorithm that is informed by the spatial distribution of the state 

variables (e.g., the temperature distribution). Steps (ii) and (iii) are repeated until the solid shape converges 

to an optimal form. There are various types of TO methods, categorized by the material distribution 

methodology and optimization algorithm used [5]. One type involves a density based method, in which the 

solid shape is defined by a discretized distribution of local solid volume fractions. This distribution can be 
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discrete, for which each location in a domain is computationally solid or fluid, or continuous, where some 

locations have intermediate values of a solid volume fraction and are treated as a mixture of solid and fluid.   

An early example of TO applied to heat conduction is that of Li et al. [6] in which a discrete 

evolutionary method was used to minimize the temperature at a specified location. The domain was initially 

filled with solid material from which solid elements were selectively removed based on the sensitivity of 

the objective temperature to a given solid element. Gersborg-Hansen et al. [7] developed a continuous TO 

method utilizing the finite volume method for a heat conduction problem. The optimized solids were 

complex branching structures. Topology optimization for heat conduction problems has been investigated 

extensively [8-10] and is relatively well-developed.   

It is necessary to consider multiple modes of heat transfer in most applications. For example, a simple 

way to incorporate the effects of convection using TO is to impose a boundary condition based on Newton’s 

law of cooling [11].  The effects of convection can also be modeled by introducing a temperature-dependent 

source term in the heat diffusion equation, such as done by Iga et al. [12] in which a continuous density 

based TO method was utilized. The source term was dependent on the local solid fraction through a Hat 

function which was non-zero only at locations of intermediate solid fraction values, therefore incorporating 

the effects of convection only at solid-fluid interfaces.  It was found that the optimal geometry became less 

complex when the strength of convection was increased.   

A more accurate way of incorporating convection into TO is through solution of the Navier-Stokes 

equations [13-19]. Yoon [13] considered a forced convection problem and applied a continuous density 

based TO method. It was found that the optimal geometries led to high fluid velocities at the locations of 

the applied heat rate. Alexandersen et al. [17] considered a natural convection problem. As with the results 

of [12], it was reported that the geometries become simpler as the strength of convection is increased. The 

methods of Alexandersen et al. [17] were later adapted to three-dimensional geometries [18] and then used 

for the design of heat sinks [19] which were subsequently fabricated using additive manufacturing [20]. 
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The branching tree-like structures were shown to exhibit a lower maximum temperature and a reduced mass 

compared to traditional heat sink geometries.  

Optimal geometric configurations for heat transfer processes are also affected by thermal radiation 

[21,22]. While the effects of radiation have been considered extensively in size and shape optimization 

studies [23-31], the development of TO methods which incorporate the effects of thermal radiation has been 

slow. Only a few examples exist in the literature, with most concerned with the optimal material distribution 

on a surface of simple geometry. For example, Castro et al. [32] considered a three-dimensional radiative 

enclosure with negligible conduction and convection effects. Three objective function cases were 

considered with the goal being (i) minimization of the temperature at a specified location and (ii) either 

minimization or maximization of the net radiative heat flux at a specified location. A continuous density 

based TO method was used to determine the optimal distribution of high emissivity material on multiple 

surfaces inside the enclosure.  

A more complex problem is the optimization of a conducting solid cooled or heated by radiation. For 

example, Shen et al. [33] used a continuous TO method to determine the optimal distribution of material 

on the exterior casing of an electronics device. Three-dimensional conduction was considered within the 

casing material and the effects of radiation were treated as a boundary condition. Wang et al. [34] 

considered the optimization of the microscale features of a thin structure in order to maximize the heat rate 

at a surface. A convection boundary condition was enforced on the top surface. The effects of radiation 

were incorporated by introducing a uniformly distributed source term into the heat diffusion equation. The 

source term was considered to be independent of the temperature distribution, therefore the heat transfer 

processes were only weakly coupled. The source term did depend on the emissivity which was influenced 

by the material distribution. Therefore, the optimal material distribution was influenced by radiation, 

conduction, and convection.   

To the authors’ knowledge, Shen et al. [33] and Wang et al. [34] are the only investigators to consider 

a formal TO method for the design of a conducting solid cooled by radiation. However, a situation that has 
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not been treated with a formal TO approach is one where conduction is coupled with surface-to-surface 

radiation transfer that is, in turn, dependent on both the temperature distribution and the solid shape. Such 

a situation was considered by Sevart and Bergman [35] in which desirable shapes of a conducting solid 

cooled by conjugate radiation and natural convection processes were determined. While the solid geometry 

had no features specified a priori, a heuristic evolutionary design method was employed rather than a formal 

TO method. It was found that, even for low surface emissivities, the effects of radiation had a significant 

influence on the predicted optimal shape and the overall thermal resistance. 

This study is concerned with the optimization of a solid configuration that is cooled by conjugate gas 

conduction and surface-to-surface radiation using a formal TO method that requires the assumption of a 

continuous, non-discrete solid. As is perhaps obvious, the main challenge is associated with incorporating 

the effects of radiation to or from distinct solid surfaces into a model that assumes a non-discrete, continuous 

material that is, in general, devoid of distinct solid surfaces. To address this challenge, a novel Dual Solid 

Method (DSM), which utilizes both discrete and continuous descriptions of the solid distribution, is 

introduced and developed.  

 

2 Physical and Numerical Model 

 The physical situation is shown in Fig. 1, in which a two-dimensional, square enclosure of dimension 

H consists of (i) a specified amount of solid of thermal conductivity 𝑘𝑠, and (ii) a stationary, radiatively 

transparent fluid of thermal conductivity 𝑘𝑓. The exposed surfaces of the solid and the interior walls are of 

emissivity 𝜀. A heat rate per unit length, 𝑞′, is applied at the bottom center of the domain over width b, 

while the top boundary is isothermal at 𝑇𝑜. All remaining enclosure boundaries are adiabatic. The solid is 

restricted to the portion of the domain below 𝑦max.  

 The solid shape that provides the smallest total thermal resistance (𝑅tot
′ ≡ [𝑇(𝐻/2,0) − 𝑇𝑜]/𝑞′) will be 

determined by utilizing both a discrete and a continuous description of the solid material distribution. The 
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continuous description is used in conjunction with a topological optimization method to redistribute the 

material, while the discrete description is necessary to evaluate the radiation exchange between surfaces. 

As will become evident, the two models are linked by the spatial distribution of thermal energy source 

terms associated with the radiation heat transfer. Hence, the topologically redistributed solid shape is 

dependent on (i) conduction in both the solid and fluid as well as (ii) radiation exchange at the exposed 

solid surfaces.  

2.1 Governing Equations: Discrete Solid Distribution. The temperature distribution throughout the 

domain can be determined by solving distinct conservation of thermal energy equations in both the solid 

and the fluid. Steady state conditions are assumed, and the thermophysical properties are considered to be 

constant. It is assumed that the fluid is stationary and does not participate in the radiation exchange process, 

while all surfaces are assumed to be opaque, diffuse, and gray. With these assumptions, both the solid and 

fluid temperature distributions are governed by the heat diffusion equation: 

 
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) = 0 (1)   

with 𝑘 = 𝑘𝑠 for the solid and 𝑘 = 𝑘𝑓 for the fluid. Along all solid-fluid interfaces, the heat flux from the 

solid is equal to the sum of the conduction and radiation heat fluxes from the interface, 

 −𝑘𝑠
𝜕𝑇

𝜕𝑛𝑠
= −𝑘𝑓

𝜕𝑇

𝜕𝑛𝑠
+ 𝑞rad

′′  (2) 

where 𝑛𝑠 is the direction normal to the solid surface as shown in Fig. 1. Similarly, the sum of the conduction 

and radiation heat fluxes is zero along the exposed adiabatic boundaries, 

 −𝑘𝑓
𝜕𝑇

𝜕𝑛𝑏
+ 𝑞rad

′′ = 0 (3) 

If the solid is in contact with an adiabatic boundary, blocking radiation, the boundary condition is: 

 −𝑘𝑠
𝜕𝑇

𝜕𝑛𝑏
= 0 (4) 
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Isothermal conditions are specified along the top of the domain, 𝑇(𝑥, 𝑦 = 𝐻) = 𝑇𝑜, and a uniform heat rate 

per unit length is applied over a width b at the bottom center of the domain: 

 −𝑘𝑠
𝜕𝑇

𝜕𝑦
|

𝑦=0
= 𝑞′/𝑏 (5) 

The radiation heat fluxes appearing in Eqs. (2) and (3) are evaluated as described in Appendix A. 

 2.2 Governing Equations: Continuous Solid Distribution. The continuous solid approach involves 

the spatial distribution of the local solid fraction, 𝛾(𝑥, 𝑦), where 0 ≤ 𝛾 ≤ 1. Because distinct solid surfaces 

are in general absent in the continuous solid formulation, surface-to-surface radiation heat transfer is 

accommodated by use of a spatially distributed source term, 𝑆rad,𝑐𝑚(𝑥, 𝑦), that is related to the radiation 

heat transfer of the discrete solid model and is independent of 𝛾(𝑥, 𝑦). Equation (1) is re-cast as: 

  
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
) + 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0 (6) 

where local thermal conductivities are determined from 𝛾(𝑥, 𝑦) so that 𝑘𝑓 ≤ 𝑘 ≤ 𝑘𝑠. Unlike in the discrete 

model formulation, the adiabatic boundary of the continuous model cannot be separated into sections which 

are exposed or covered by solid. Therefore, the condition along the entire adiabatic boundary can be stated 

as: 

  −𝑘
𝜕𝑇

𝜕𝑛𝑏
+ 𝑞𝑏

′′ = 0 (7) 

where 𝑞𝑏
′′ = 0 or 𝑞rad

′′  depending on information provided from the discrete model. The boundary 

conditions at the location of the applied heat rate and along the top, isothermal boundary are the same as in 

the discrete solid formulation.  

2.3 Discretization of the Governing Equations and Boundary Conditions: Discrete Solid 

Distribution. The finite volume method is used to solve the discretized form of Eq. (1) with harmonic-

mean thermal conductivities specified at all control surfaces [36]. Equal-sized computational control 

volumes of dimension ∆𝑥 = ∆𝑦 = ∆𝑤 are distributed throughout the domain, with each control volume 
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being either solid (𝑘𝑠) or fluid (𝑘𝑓). Equation (2) is treated computationally by incorporating a radiation 

source term, 𝑆rad,𝑑𝑚(𝑥, 𝑦), into the discretized form of Eq. (1). The source term is determined based on the 

local radiation heat fluxes that are calculated as described in Appendix A: 

 𝑆rad,𝑑𝑚(𝑥, 𝑦) = − ∑ 𝑞rad,𝑖
′′ /∆𝑤 

4
𝑖=1  (8) 

where 𝑞rad,𝑖
′′  is the radiation heat flux from control surface i of the control volume located at (x, y), and ∆𝑤 

is the control volume dimension. The condition at the exposed adiabatic boundary is handled by setting a 

constant boundary temperature that satisfies the discretized form of Eq. (3). The coupled radiation-

conduction problem for a fixed solid distribution is therefore solved using the following iterative procedure: 

(i) 𝑇(𝑥, 𝑦) is obtained neglecting radiation (𝑆rad,𝑑𝑚(𝑥, 𝑦) = 0), (ii) the local radiation heat fluxes that 

appear in Eqs. (2) and (3) are calculated or updated, (iii) the radiation source terms, 𝑆rad,𝑑𝑚(𝑥, 𝑦), and 

boundary temperatures at the exposed adiabatic boundary are calculated, and (iv) the discretized form of 

Eq. (1) is solved again with the updated source terms and boundary temperatures. Steps (ii) – (iv) are 

repeated until the maximum change in any local temperature is less than 10-8 K.  

 2.4 Discretization of the Governing Equations and Boundary Conditions: Continuous Solid 

Distribution. The finite volume method, with control volumes co-located with those of the discrete solid 

model, is also used to solve the discretized form of Eq. (6). The local solid fraction, 𝛾(𝑥, 𝑦) determines the 

local thermal conductivity based on an interpolation scheme. When using the continuous solid approach, it 

is desirable to obtain a crisp or binary material distribution that has most control volume values nearly equal 

to 0 or 1. To achieve this, an interpolation scheme is used to define the local thermal conductivity in Eqs. 

(6) and (7) which penalizes intermediate solid fractions. The Solid Isotropic Material with Penalization 

(SIMP) method [4] used here is:  

  𝑘(𝛾) = 𝑘𝑓 + 𝛾𝑃(𝑘𝑠 − 𝑘𝑓) (9) 

where P is the penalization parameter. Here, P = 3 was selected based on preliminary sensitivity studies, 

consistent with the recommendations of other researchers [5, 37]. 
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 A spatial distribution of source terms, determined from the discrete model, is utilized to accommodate 

the effects of surface radiation heat transfer: 

   𝑆rad,𝑐𝑚(𝑥, 𝑦) = 𝑆rad,𝑑𝑚(𝑥, 𝑦) (10) 

 The boundary condition of Eq. (7) is enforced by specifying the source term at the boundary as: 

  𝑆rad,𝑐𝑚(𝑥, 𝑦) = −𝑞𝑏
′′/∆𝑤  (11) 

As will become evident, Eq. (10) links the discrete and continuous solid models, and is utilized throughout 

the topological optimization process.  

3 Topology Optimization (TO) Applied to the Continuous Solid Model 

 The continuous solid distribution is adjusted using a sensitivity-based, TO method for which the 

objective function 

  𝑓𝑜(𝛾, 𝑇) = 𝑇(𝐻/2, 0) (12) 

is minimized. This is equivalent to minimizing the total thermal resistance subject to  

 ∑ 𝛾𝑖
𝑁
𝑖=1 ≤ 𝑉𝑜 × 𝑁  (13) 

and 

  0 ≤ 𝛾𝑖 ≤ 1 (14) 

while satisfying Eqs. (5) – (7). Here, 𝛾𝑖 is the solid fraction of an arbitrary control volume i, 𝑉𝑜 is the total 

solid fraction of the entire domain, and N is the total number of computational control volumes in the 

domain.  

 The Method of Moving Asymptotes (MMA) is used to optimize 𝛾(𝑥, 𝑦) [38]. This technique makes 

use of the sensitivities of the objective function to the solid fraction values, 𝜕𝑓𝑜 𝜕𝛾⁄ , to generate a convex 

approximation of 𝑓𝑜, the details of which are described by Svanberg [38]. The solution of the convex 
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problem provides the updated solid fraction distribution of the continuous solid model. Therefore, at each 

iteration of the TO process a new convex approximation is formulated and solved in order to adjust the 

solid distribution, 𝛾(𝑥, 𝑦).  

 The main components of the TO process as applied to the continuous model are depicted in Fig. 2. 

Initially, the solid fraction is spatially uniform, 𝛾(𝑥, 𝑦) = 𝑉𝑜, and the radiation source term is 

either 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0 to begin the simulation, or 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 𝑆rad,𝑑𝑚(𝑥, 𝑦). The optimization 

proceeds as follows. First, 𝑘(𝛾) is determined based on the SIMP method. Then the discretized equations 

are solved to determine 𝑇(𝑥, 𝑦) and 𝑓𝑜. Using the temperature and solid fraction distributions, the 

sensitivities are then calculated and filtered as described in Appendix B. Lastly, 𝛾(𝑥, 𝑦) is adjusted based 

on the filtered sensitivities using the MMA. The process shown by the dark arrow in Fig. 2 is repeated until 

the maximum change in local solid fraction, ∆𝛾max, is less than a convergence criterion, CC = 0.001 

(Appendix C). The counter used in the continuous model, 𝐼𝑐𝑚 = 0, 1, 2, …, tracks the number of times 

𝛾(𝑥, 𝑦) is adjusted for each unique 𝑆rad,𝑐𝑚(𝑥, 𝑦). The iterative process of Fig. 2 must be revisited and 

completed for each unique 𝑆rad,𝑑𝑚(𝑥, 𝑦) distribution that is transferred from the discrete model formulation 

by way of Eq. (10).  

 

4 The Dual Solid Method 

 The DSM, introduced here, utilizes both the discrete and continuous solid models, and is outlined in 

Fig. 3. The counter 𝐼DSM = 0, 1, 2, … is used to track the number of times a discrete solid distribution is 

created using the methodology described below, with each unique value of IDSM referred to as a design 

iteration [17-19]. First, the optimal continuous solid distribution for the pure conduction problem (𝐼DSM = 

0, 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0) is obtained using the process of Fig. 2. An equivalent discrete solid shape 

corresponding to a domain solid fraction 𝑉𝑜 is then generated with the number of solid control volumes, 𝑁𝑠, 

determined from 𝑁𝑠 = 𝑉𝑜 × 𝑁. The resulting 𝑁𝑠 solid control volumes are distributed throughout the 
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domain as follows. First, the solid fraction values of individual control volumes 𝛾(𝑥, 𝑦) of the continuous 

model are sorted, then the 𝑁𝑠 control volumes with the largest values of 𝛾 are specified to be solid in the 

discrete solid model. With the discrete solid (and fluid) distribution now determined from the predictions 

of the continuous model, distinct solid surfaces that experience radiation transfer are now present, and the 

coupled radiation-conduction problem is solved as described in Section 2.3.   

 After the solution of the radiation-conduction model, the radiation source terms that are calculated with 

the converged radiation-conduction solution using Eq. (8) are sent back to the continuous solid model by 

way of Eq. (10), and the TO process of Fig. 2 is repeated (𝐼DSM = 1, 𝑆rad,𝑐𝑚(𝑥, 𝑦) ≥ 0) to determine a new 

continuous solid distribution. The corresponding new discrete solid is then generated, and the process of 

sharing source terms and gradually re-sculpting the discrete solid shape is repeated (𝐼DSM = 2, 3, 4, …) until 

(i) the discrete solid distribution does not change as 𝐼DSM is increased, or (ii) the discrete solid oscillates 

between two distinct distributions as 𝐼DSM is increased, or (iii) a large number of design iterations have been 

performed. 

 As might be expected, the total thermal resistance changes from design iteration-to-design iteration as 

the individual control volumes with the largest 𝑁𝑠 solid fraction values shift their positions in the 

computational domain. Moreover, even minor adjustments to the solid shape can produce or eliminate 

surface-to-surface radiation obstructions that can significantly impact the total radiation resistance. Mainly 

because of the sensitivity of local radiation heat fluxes to the redistribution of the discrete solid, it will be 

observed that the discrete solid shape may not monotonically converge to an optimal form as 𝐼DSM increases. 

To accommodate this behavior, the simulations will typically be allowed to proceed through a large number 

of design iterations, and the solid shape associated with the lowest total thermal resistance will be deemed 

to be optimal, while acknowledging that more desirable solid shapes could possibly emerge if an extremely 

large number of design iterations were to be performed. 
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5 Results 

In this section, the topological optimization of the continuous solid will first be demonstrated. Mapping 

the optimized continuous solid distribution to the discrete solid distribution will be discussed, and the 

radiation transfer equations will be incorporated into the predictions to demonstrate their effect. After the 

initial phase of the DSM is presented, the entire design process will be allowed to proceed, and optimal 

shapes along with their associated thermal performance will be reported.  

The DSM is applied to the physical system of Fig. 1, using a range of top boundary temperatures and 

solid thermal conductivities, in order to ultimately determine the influence of radiation and conduction on 

the solid shape that is associated with the lowest total (radiation + conduction) thermal resistance. For all 

cases, the thermal conductivity of the fluid is that of air (𝑘𝑓 = 0.0257 W/m∙K) and all surfaces have an 

emissivity of either 𝜀 = 0 (pure conduction) or 𝜀 = 1. The total solid fraction is specified to be 𝑉𝑜 = 0.05. 

The characteristic length of the domain is H = 0.06 m and b/H = 1/90. A base case of 𝑇𝑜 = 750 K and 𝑘𝑠 = 

237 W/m∙K is considered. The applied heat rate at the bottom center of the domain is 𝑞′ = 10 W/m for all 

cases. All of the results are generated using a 180 × 180 computational control volume mesh based on a 

grid sensitivity study (Appendix C). One hundred isotherms are shown in each plot of temperature 

distributions. 

5.1 Demonstration of TO Applied to the Continuous Solid Model. As described in Section 4, the 

initial step in the DSM approach is to obtain the optimal continuous solid distribution for the pure 

conduction problem. The evolution history of the conduction resistance, as well as the continuous solid 

distribution for various 𝐼𝑐𝑚 are reported in Fig. 4. As evident, the conduction resistance decreases rapidly 

as the solid evolves from its initial uniform, low density distribution to the branching structure shown. As 

the TO proceeds, the solid becomes more distinct as intermediate solid fraction values are replaced with 

values that are nearly 0 or 1, as driven by the penalization scheme of Section 2.4. 
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The optimal continuous solid distribution (𝐼𝑐𝑚 = 1350) and corresponding temperature distribution for 

the 𝜀 = 0 case are shown in Fig. 5(a). The temperature distribution is dominated by the presence of the thin, 

high thermal conductivity solid that propagates high temperatures from the location of the applied heat rate 

toward the cold upper surface. There is a high concentration of isotherms within 𝑦 ≥ 𝑦max because of the 

exclusion of the solid from this region. The conduction heat flux at all adiabatic boundaries is zero, as 

evident by the temperature distributions adjacent to these boundaries.  

5.2 Generation of a Discrete Solid Shape and the Influence of Radiation. The discrete solid 

distribution of Fig. 5(b) is created from the continuous solid distribution of Fig. 5(a) using the sorting 

methodology described in Section 4. Applying the discrete solid model with 𝜀 = 1 to the solid distribution 

of Fig. 5(b) leads to the corresponding temperature distribution shown. As in Fig. 5(a), the temperature 

distribution is influenced by the high thermal conductivity solid. In contrast to the pure conduction 

temperature distribution of Fig. 5(a), however, there is a larger concentration of isotherms in the 𝑦 < 𝑦max 

section of the domain for the 𝜀 = 1 case. This is because, for 𝜀 = 1, the thermal resistance in the 𝑦 ≥ 𝑦max 

region of the domain is reduced by the combined effects of conduction in the fluid and radiation exchange 

between the top of the solid structure and the isothermal top boundary. When radiation is included in the 

analysis, the isotherms of Fig. 5(b) are no longer normal to the adiabatic boundaries, as required by Eq. (3). 

The conduction resistance corresponding to the discrete solid of Fig. 5(b) may be obtained by specifying 

𝜀 = 0 in the discrete model. A comparison of the conduction resistances corresponding to the continuous 

and discrete solid distributions of Fig. 5 (see inserts) reveals a slightly larger value for the discrete solid 

case. The difference in conduction resistances is attributed to (i) the approximations inherent in mapping a 

continuous shape to a discrete shape and (ii) the presence of 𝛾 values in the continuous model that are not 

equal to 0 or 1. In contrast, a comparison of the total resistances of Fig. 5 reveals the significance of 

radiation, with 𝑅tot
′ 𝑅cond

′⁄ = 1 and ≈ 0.3 reported in Figs. 5(a) and 5(b), respectively.  
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 5.3 TO Applied to the Continuous Solid Model with Radiation. The effects of radiation that are 

embedded in the predictions of Fig. 5(b) are passed back to the TO process of Fig. 2 through the use of Eq. 

(10) to create a set of non-zero source terms for use in the continuous model, 𝑆rad,𝑐𝑚(𝑥, 𝑦) ≥ 0. The 

continuous model TO, with its non-zero source terms located throughout the domain, is then solved for the 

first time, 𝐼DSM = 1.  

 The evolution history of the first TO process to include the effects of radiation (𝐼DSM = 1) is shown in 

Fig. 6. Similar to the pure conduction evolution of Fig. 4, the total (radiation + conduction) thermal 

resistance decreases as the solid evolves from its initial uniform distribution to a more distinct branching 

structure. The discrete solid generated from the optimum continuous solid distribution (𝐼𝑐𝑚 = 1911, Fig. 6) 

and the associated temperature distribution are shown in Fig. 7. Modest differences in the solid shapes and 

temperature distributions of Figs. 5(b) (𝐼DSM = 0) and 7 (𝐼DSM = 1) can be observed upon close inspection, 

with the first bifurcation of the solid moved to a lower position in the domain. Also, the total thermal 

resistance has decreased from 𝑅tot
′  = 0.253 m∙K/W (𝐼DSM = 0) to 0.250 m∙K/W (𝐼DSM = 1) but the 

corresponding resistance due to pure conduction has increased from 𝑅cond
′  = 0.852 m∙K/W to 0.905 m∙K/W. 

As will become evident, the solid shapes and associated heat transfer phenomena continue to evolve as the 

dual solid method is allowed to run its course (𝐼DSM = 2, 3, 4, …). 

 5.4 Base Case Results. The evolution histories of the total and pure conduction thermal resistances 

associated with the discrete solid model are shown in Fig. 8. As evident, there is an initial sharp decrease 

in the total thermal resistance, coinciding with a sharp increase in the pure conduction resistance, suggesting 

the evolution of solid shapes that continually perform worse (better) from the conduction (radiation + 

conduction) perspective as the design iterations proceed. Both resistances approach constant values at 

𝐼DSM ≈ 15, with the total thermal resistance achieving a minimum value at 𝐼DSM = 54, as identified by the 

filled data symbol. The discrete solid and associated temperature distributions for 𝐼DSM = 54 are shown in 

Fig. 9. A comparison of the solid distributions of Figs. 5(b) and 9 reveals significant differences. For 

example, the locations at which any solid branch bifurcates is shifted to a lower position in the domain. 
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Also, the gap in the horizontal solid section near 𝑦max has widened, allowing radiation to more freely 

penetrate the domain in the vertical direction. Quantitatively, the central gap has doubled in width from 8x 

at 𝐼DSM  = 0 to 16x at 𝐼DSM = 54. The effectiveness with which the DSM method can determine solid 

shapes that enhance the combined radiation-conduction transfer across the domain is especially noteworthy, 

considering that the solid shape of Fig. 9 poses a substantially larger pure conduction resistance relative to 

the conduction-optimized shape of Fig. 5(b).  

 5.5 Parametric Simulations. The influence of radiation relative to that of conduction will be 

investigated by way of several parametric studies conducted with the DSM. 

 5.5.1 Influence of the top boundary temperature. Top boundary temperatures of 𝑇𝑜 = 1000 K and 500 

K are now considered in addition to the base case of 𝑇𝑜 = 750 K. The evolution histories of the total and 

conduction thermal resistances associated with the discrete solid distribution for the 𝑇𝑜 = 1000 K and 500 

K cases are shown in Fig. 10, and can be compared to the histories of the base case reported in Fig. 8. As 

evident in Fig. 10(a), the total resistances are significantly smaller for the 𝑇𝑜 = 1000 K case compared to 

the base case, but the conduction resistances are of similar value for 𝑇𝑜 = 750 K and 1000 K, as expected. 

In contrast to the evolution behavior noted in Fig. 8, the resistances more monotonically approach optimal 

values as radiation is strengthened by increasing 𝑇𝑜. The 𝑇𝑜 = 1000 K simulations are stopped at 𝐼DSM = 31, 

the point at which the discrete solid begins to oscillate between two distinct shapes as 𝐼DSM is increased.  

 The resistance histories for the 𝑇𝑜 = 500 K case, reported in Fig. 10(b), exhibit complexity as the DSM 

seeks an optimal solid configuration. The inability of the DSM to more readily identify an optimal 

configuration for this weak-radiation case is attributed to the good radiation-conduction performance that 

is already offered by a solid configuration that has been optimized under pure conduction conditions. In 

fact, the minimum total thermal resistance for 𝑇𝑜 = 500 K is associated with 𝐼DSM = 0 as evident in Fig. 

10(b). The 𝑇𝑜 = 500 K simulations are curtailed at 𝐼DSM = 61, at which point the solid distribution no longer 

changes with increasing 𝐼DSM. 
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 The solid shapes associated with 𝐼DSM = 0 are identical for the three cases and correspond to Fig 5(b). 

The discrete solid shapes and temperature distributions associated with 𝑅tot,min
′  for the three 𝑇𝑜 cases are 

shown in Fig. 11. As 𝑇𝑜 is increased, the point at which the thick solid first bifurcates moves lower in the 

domain, eventually coming into close proximity to the location of the applied heating. Correspondingly, 

more space is provided between the two main branches of the solid as 𝑇𝑜 is increased. Importantly, there is 

an increase in the width of the central gap in the horizontal solid section near 𝑦max, with widths of 8x, 

16x, and 22x for the solid distributions of Figs. 11(a), 11(b), and 11(c) respectively. The inner branches 

associated with the second bifurcation of the solid become shorter as 𝑇𝑜 increases, again reducing the 

resistance to upward propagation of thermal radiation. In general, increasing 𝑇𝑜 produces solid shapes that 

reduce the total (radiation + conduction) thermal resistance across the domain, even as the isolated 

conduction component of the total resistance increases in value. 

 5.5.2 Influence of the solid thermal conductivity. A dimensionless solid thermal conductivity is 

introduced, 𝑘𝑠
∗ ≡ 𝑘𝑠 237 ⁄ W/m∙K, and the DSM is used to predict the evolution histories of the thermal 

resistances for 𝑘𝑠
∗ = 0.01 and 0.1 with 𝑇𝑜 = 750 K reported in Figs. 12(a) and 12(b), respectively. For the 

weakest solid conduction (strongest radiation) case, Fig. 12(a), the total thermal resistance decreases and 

the conduction resistance increases monotonically until the DSM stops at 𝐼DSM = 9, after which the solid 

distribution does not change with increasing 𝐼DSM. The evolution histories of the 𝑘𝑠
∗ = 0.1 case, shown in 

Fig. 12(b), exhibit a large initial decrease (increase) in the total (pure conduction) thermal resistance 

between 𝐼DSM = 0 and 1, followed by small changes for 𝐼DSM > 1. The minimum value of the total thermal 

resistance occurs at 𝐼DSM = 16 and, interestingly, coincides with the maximum conduction resistance. The 

predictions were curtailed after a large number of iterations, 𝐼DSM = 100.  

 Both the initial (𝐼DSM = 0) and the optimal (𝐼DSM > 0) discrete solid shapes and temperature distributions 

associated with the conduction-radiation (𝜀 = 1) cases are reported in Fig. 13. Also included are the 
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corresponding conduction and total thermal resistances. Again, the discrete solid shapes associated with 

𝐼DSM = 0 (left column of Fig. 13) are obtained from the pure conduction TO. 

 As evident in the second and third rows of the first column of Fig. 13, the optimal discrete solid shapes 

that were generated from the continuous model with 𝜀 = 0 are similar for 𝑘𝑠
∗ = 0.1 and 1. In both cases 𝑘𝑠 ≫

𝑘𝑓 and conduction within the solid dominates conduction in the fluid. For 𝑘𝑠
∗ = 0.01, however, conduction 

in the fluid becomes more important, and the solid takes the form of a relatively thick, single branch that 

extends upward to within proximity of the cold upper surface before bifurcating. Hence, the complexity of 

the solid shape increases with increasing 𝑘𝑠, in a manner consistent with predictions reported in previous 

pure-conduction shape optimization studies [8, 12]. Also, as 𝑘𝑠 increases, slightly more of the solid migrates 

to the upper half of the domain. 

 The optimal solid shapes for the 𝜀 = 1 cases (third column of Fig. 13) differ substantially from the 

optimal shapes associated with 𝜀 = 0. This is especially evident for the weak conduction (strong radiation) 

case, 𝑘𝑠
∗ = 0.01, where parts of the solid propagate laterally outward, forming two horizontal, petal-like 

structures that do little to reduce the conduction resistance, but serve as radiatively active surfaces that 

improve radiative exchange with the cold upper surface. In contrast to all of the results discussed so far, the 

optimal solid configuration for the 𝑘𝑠
∗ = 0.01, 𝜀 = 1 case includes almost no material in the upper half of 

the domain which declutters the domain of solid obstructions to radiation heat transfer. As for the 𝜀 = 0 

cases, the discrete solid shapes associated with 𝑅tot,min
′  exhibit greater complexity as 𝑘𝑠 increases.  The 

total thermal resistances decrease with increasing 𝑘𝑠
∗ and 𝜀 , as expected. 

 

6 Conclusions and Recommendations   

A novel Dual Solid Method (DSM) that utilizes concurrent discrete and continuous descriptions of the 

shape of a solid has been developed to include surface radiation in a topology optimization process. The 
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solid geometries that minimize the overall (conduction + radiation) thermal resistance across a 

computational domain bear some resemblance to the branching tree-like structures reported for situations 

where radiation heat transfer was neglected [7,8,17]. The specific influence of coupled radiation and 

conduction heat transfer processes on the optimal solid shape, as well as on the corresponding overall 

thermal resistance, has been demonstrated and quantified through a series of parametric simulations. 

Increasing the average temperatures throughout the domain, achieved by increasing the temperature of the 

cold boundary, increases the influence of radiation. This leads to more open solid shapes that can more 

freely exchange radiation with the cold boundary. Reducing the thermal conductivity of the solid also 

increases the influence of radiation, and leads to optimal geometries that can be significantly different than 

the geometries determined when radiation is neglected.  

Acknowledging that radiation heat transfer is important, if not dominant in a broad range of practical 

applications, future investigations might address the following. 

- The influence of free or forced convection within the fluid phase was neglected in this study. It is 

expected that coupled conduction-radiation-convection phenomena may lead to distinctly different 

optimal solid shapes than have been reported in the literature. 

- The present study involves opaque solid surfaces that are assumed to be both diffuse and gray. 

Many solids are characterized by directional, as well as spectral radiative properties. Inclusion of 

these effects would require more advanced radiation modeling, and could influence the optimal 

solid shapes.  

- The present study involves radiatively opaque solids and a radiatively non-participating gas. For 

situations involving semi-transparent media, the radiation model used here would need to be 

replaced with more advanced descriptions of the radiation processes. 

- Due to their complexity, the optimized solid geometries might require additive manufacturing 

methods to be fabricated. It is well known that the properties of additively manufactured solids are 

influenced by the manufacturing process itself [39-42]. Hence, the influence of, for example, 
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anisotropic solid phase thermal conductivities and directional radiative properties attributable to 

the manufacturing process might need to be accounted for in the optimization process. 
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Nomenclature 

b width of applied heat rate surface 

{B} temperature vector multiplier 

CC topology optimization convergence criterion 

Eb blackbody emissive power  

Fij view factor between surfaces i and j 

𝑓𝑜 objective function 

H domain dimension 

Hj filter weight factor 

I counter variable 

J radiosity  

k  thermal conductivity  

[K] coefficient matrix  

𝑘𝑠
∗ dimensionless solid thermal conductivity 

L Lagrangian 

n normal direction 

N total number of control volumes 
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𝑁𝑠 number of discrete solid control volumes  

NS number of exposed control surfaces 

P penalization parameter 

q' heat rate per unit length  

q'' heat flux  

{Q} source term vector 

rmin filter radius 

𝑅 
′ thermal resistance    

S thermal energy source term    

T  temperature  

{T} temperature vector 

𝑇𝑜 boundary temperature  

𝑉𝑜 total solid fraction 

∆𝑤 control volume width 

x, y  coordinate directions 

 

Greek Symbols 

𝛾 local solid fraction 

∆(𝑖, 𝑗) center-to-center distance between control volumes 

𝜀 emissivity  

{λ} set of adjoint variables 

 

Subscripts  

b boundary 

cond conduction 

cm continuous model 
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dm discrete model 

DSM Dual Solid Method 

f fluid 

i,j surfaces i and j 

max maximum 

min minimum 

rad radiation 

s solid 

tot total 

 

Appendix A: Calculation of Radiation Heat Fluxes.  

 The exposed control surfaces of the computational control volumes are assumed to be isothermal and 

at the temperature of the corresponding solid control volume. As such, the net radiation heat flux from 

diffuse and gray control surface i can be calculated as [43]: 

  𝑞rad,𝑖
′′ =

𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
 (15) 

where 𝐸𝑏𝑖 = 𝜎𝑇𝑖
4 is the blackbody emissive power and Ji is the radiosity. The net radiation heat flux can 

also be expressed as [43]: 

  
𝐸𝑏𝑖−𝐽𝑖

(1−𝜀𝑖)/𝜀𝑖
= ∑ 𝐹𝑖𝑗(𝐽𝑖 − 𝐽𝑗)𝑁𝑆

𝑗=1  (16) 

where Fij is the view factor between arbitrary control surface i and arbitrary control surface j, and NS is the 

number of exposed control surfaces. A view factor calculation methodology that accounts for the 

obstruction of radiation between control surfaces i and j, a situation common for complex geometries, is 

employed [35]. In short, the view factors are first calculated by using Hottel’s crossed string method [44] 

without accounting for obstructions between surfaces i and j. The view factors associated with either 
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completely or partially obstructed control surfaces i and j are then adjusted in order to satisfy the 

conservation of radiation energy requirement [43]. Equations (15) and (16) are solved using Gaussian 

elimination. The methodology for evaluating Fij is described in detail elsewhere [35].   

 

Appendix B: Sensitivity Analysis and Sensitivity Filter.  

 An adjoint method is employed to determine the sensitivities of the objective function to the solid 

fraction values  𝜕𝑓𝑜 𝜕𝛾⁄ . The discretized heat equation for the continuous model can be expressed in matrix 

form: 

  [𝐾]{𝑇} = {𝑄} (17) 

while the objective function can then be expressed as: 

  𝑓𝑜 = 𝑇(𝐻/2,0) = {𝐵}𝑇{𝑇} (18) 

where, 

  {𝐵}𝑇 = {0,  0, …
1

2
,  

1

2
,  … 0,0} (19) 

If Eq. (17) is satisfied, then the objective function is equivalent to the Lagrangian: 

  𝐿 = {𝐵}𝑇{𝑇} + {𝜆}𝑇([𝐾]{𝑇} − {𝑄}) (20) 

where {𝜆} is a set of adjoint variables. Differentiating with respect to 𝛾 yields: 

  
𝜕𝐿

𝜕𝛾
= {𝐵}𝑇 {

𝜕𝑇

𝜕𝛾
} + {𝜆}𝑇 [

𝜕𝐾

𝜕𝛾
] {𝑇} + {𝜆}𝑇[𝐾] {

𝜕𝑇

𝜕𝛾
} − {𝜆}𝑇 {

𝜕𝑄

𝜕𝛾
} (21) 

Because the source term distribution handed from the discrete model is independent of the continuous solid 

distribution, the last term of Eq. (21) can be neglected. The remaining expression can then be rearranged to 

yield: 

  
𝜕𝐿

𝜕𝛾
= ({𝐵}𝑇 + {𝜆}𝑇[𝐾]) {

𝜕𝑇

𝜕𝛾
} + {𝜆}𝑇 [

𝜕𝐾

𝜕𝛾
] {𝑇} (22) 
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Therefore, calculation of {𝜕𝑇 𝜕𝛾⁄ } is not necessary if the following system of equations is satisfied: 

  [𝐾]{𝜆} = −{𝐵} (23) 

and the sensitivities can be evaluated as: 

  
𝜕𝑓𝑜

𝜕𝛾
=

𝜕𝐿

𝜕𝛾
= {𝜆}𝑇 [

𝜕𝐾

𝜕𝛾
] {𝑇} (24) 

Calculation of [𝜕𝐾 𝜕𝛾⁄ ] is straightforward using Eq. (9).  

 During a TO process, the solid can be prone to exhibit unrealistic checkerboard patterns in which there 

are alternating solid and fluid control volumes. To prevent this from occurring, a sensitivity filter is used. 

The sensitivities are adjusted based on the values of neighboring control volumes in order to smooth the 

distribution, that is 

 
𝜕𝑓𝑜

𝜕𝛾𝑖

̂
=

1

𝛾𝑖 ∑ 𝐻𝑗
𝑁
𝑗=1

∑ 𝐻𝑗𝛾𝑗
𝑁
𝑗=1

𝜕𝑓𝑜

𝜕𝛾𝑖
 (25) 

where 

  𝐻𝑗 = max(0, 𝑟min − ∆(𝑖, 𝑗)) (26) 

Here, 𝑟min is the filter radius and ∆(𝑖, 𝑗) is the center-to-center distance between any pair of control volumes 

i and j. For all cases considered, 𝑟min = 1.5∆𝑤, which is a value large enough to prevent checkerboard 

patterns, but small enough that it does not restrict the minimum feature size of the solid distribution.  
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Appendix C: Grid Dependence and Convergence Criterion Study. 

 The numerical techniques used to calculate view factors, determine local radiation heat fluxes, and 

solve the discretized forms of the heat equations have been validated previously [35]. Here, attention is 

given to the dependence of the predictions on (i) the convergence criterion used in the TO analysis and (ii) 

the grid size.  

 The DSM was conducted using CC = 0.01, 0.001, and 0.0005 for 𝑇𝑜 = 750 K, 𝑘𝑠
∗ = 1, and  = 1 using 

a uniform mesh of 180 × 180 control volumes. The discrete solid shapes and temperature distributions 

associated with 𝐼DSM = 0 and with  𝑅tot,min
′   for the three CC values are provided in Fig. 14. As is evident, 

the solid shapes and total thermal resistances undergo minor changes as CC is reduced from 0.001 to 0.0005. 

Considering the additional computational time required as CC is reduced, CC = 0.001 is used. 

 The DSM was exercised using grids of 60 × 60, 120 × 120, 180 × 180, and 240 × 240 uniform control 

volumes. The discrete solid shapes and temperature distributions associated with 𝐼DSM = 0 and with  

𝑅tot,min
′   for the three largest grid sizes are reported in Fig. 15. As evident, the dependence of the solid 

shapes and 𝑅tot 
′ values on the grid size is significant for the larger control volume sizes, but is modest as 

the grid is refined from 180 × 180 to 240 × 240. Considering the tradeoff between the grid size and the total 

computational time required to perform the simulations (the heat equation is solved more than 106 times to 

generate the results reported here), a grid size of 180 × 180 is used for the simulations of this study.  
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Figure Captions 

Fig. 1 Physical domain and boundary conditions 

Fig. 2 Topology optimization process for adjusting the continuous solid distribution, 𝛾(𝑥, 𝑦). 𝐼𝑐𝑚 = 0 at 

the start of the first iteration. 

Fig. 3 The dual solid method (DSM) process. Dashed box represents the topology optimization process of 

Fig. 2. 𝐼DSM  = 0 for the 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0 case. 

Fig. 4 Pure conduction base case evolution history of the conduction resistance and solid shapes 

associated with the continuous solid model using the TO process of Fig. 2. Solid distributions are shown 

at 𝐼𝑐𝑚 = 5, 20, 400, and 1350. 

Fig. 5 The base case solid distribution (left) and temperature distribution (right) associated with (a) the 

optimized continuous solid of the pure conduction solution (𝐼𝑐𝑚 = 1350 of Fig. 4), and (b) the equivalent 

discrete solid with radiation and conduction included (𝐼DSM = 0). 

Fig. 6 Evolution history of the overall thermal resistance associated with the continuous solid and the 

radiation conditions of the base case using the TO process of Fig. 2. Solid distributions are shown for 𝐼𝑐𝑚 

= 5, 20, 400, and 1911. 

Fig. 7 The base case discrete solid and temperature distributions (𝐼DSM = 1) 

Fig. 8 Base case evolution history of the total pure conduction thermal resistances associated with the 

discrete solid for the first 100 iterations of the DSM. The minimum total thermal resistance occurs at 𝐼DSM 

= 54.  

Fig. 9 Base case discrete solid and temperature distributions associated with 𝑅tot,min
′  the of Fig. 8 at 𝐼DSM 

= 54 
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Fig. 10 Evolution history of the total and pure conduction thermal resistances associated with the discrete 

solid for (a) 𝑇𝑜 = 1000 K and (b) 𝑇𝑜 = 500 K 

Fig. 11 Discrete solid shapes and temperature distributions associated with 𝑅tot,min
′  for (a) 𝑇𝑜 = 500 K 

(𝐼DSM = 0), (b) 𝑇𝑜 = 750 K (𝐼DSM = 54), and (c) 𝑇𝑜 = 1000 K (𝐼DSM = 31). 

Fig. 12 Evolution history of the total and pure conduction thermal resistances associated with the discrete 

solid for (a) 𝑘𝑠
∗ = 0.01 and (b) 𝑘𝑠

∗ = 0.1 with 𝑇𝑜 = 750 K  

Fig. 13 Discrete solid shapes and temperature distributions associated with 𝑇𝑜 = 750 K and 𝑘𝑠
∗ = 0.01 

(top), 𝑘𝑠
∗ = 0.1 (middle), and 𝑘𝑠

∗ = 1 (bottom). 𝐼DSM = 0 for the first and second columns. The third and 

fourth columns are associated with 𝑅tot,min
′  and (a) 𝐼DSM = 9, (b) 𝐼DSM = 16, and (c) 𝐼DSM = 54. 

Fig. 14 Discrete solid shapes and temperature distributions associated with grid sizes of CC = 0.01 (top), 

CC = 0.001 (middle), and CC = 0.0005 (bottom). 𝐼DSM = 0 for the first and second columns. Third and 

fourth columns are associated with 𝑅tot,min
′  and (a) 𝐼DSM = 8, (b) 𝐼DSM = 15, and (c) 𝐼DSM = 7. 

Fig. 15 Discrete solid shapes and temperature distributions associated with grid sizes of 120 × 120 (top), 

180 × 180 (middle), and 240 × 240 (bottom). 𝐼DSM = 0 for the first and second columns. Third and fourth 

columns are associated with 𝑅tot,min
′  and (a) 𝐼DSM = 7, (b) 𝐼DSM = 15, and (c) 𝐼DSM = 11. 
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Fig. 1 Physical domain and boundary conditions 
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Fig. 2 Topology optimization process for adjusting the continuous solid distribution, 𝛾(𝑥, 𝑦). 𝐼𝑐𝑚 = 0 at 

the start of the first iteration. 
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Fig. 3 The dual solid method (DSM) process. Dashed box represents the topology optimization process of 

Fig. 2. 𝐼DSM  = 0 for the 𝑆rad,𝑐𝑚(𝑥, 𝑦) = 0 case. 
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Fig. 4 Pure conduction base case evolution history of the conduction resistance and solid shapes 

associated with the continuous solid model using the TO process of Fig. 2. Solid distributions are shown 

at 𝐼𝑐𝑚 = 5, 20, 400, and 1350. 
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Fig. 5 The base case solid distribution (left) and temperature distribution (right) associated with (a) the 

optimized continuous solid of the pure conduction solution (𝐼𝑐𝑚 = 1350 of Fig. 4), and (b) the equivalent 

discrete solid with radiation and conduction included (𝐼DSM = 0). 
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Fig. 6 Evolution history of the overall thermal resistance associated with the continuous solid and the 

radiation conditions of the base case using the TO process of Fig. 2. Solid distributions are shown for 𝐼𝑐𝑚 

= 5, 20, 400, and 1911. 
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Fig. 7 The base case discrete solid and temperature distributions (𝐼DSM = 1) 
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Fig. 8 Base case evolution history of the total pure conduction thermal resistances associated with the 

discrete solid for the first 100 iterations of the DSM. The minimum total thermal resistance occurs at 𝐼DSM 

= 54.  
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Fig. 9 Base case discrete solid and temperature distributions associated with 𝑅tot,min
′  the of Fig. 8 at 𝐼DSM 

= 54 
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Fig. 10 Evolution history of the total and pure conduction thermal resistances associated with the discrete 

solid for (a) 𝑇𝑜 = 1000 K and (b) 𝑇𝑜 = 500 K  
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Fig. 11 Discrete solid shapes and temperature distributions associated with 𝑅tot,min
′  for (a) 𝑇𝑜 = 500 K 

(𝐼DSM = 0), (b) 𝑇𝑜 = 750 K (𝐼DSM = 54), and (c) 𝑇𝑜 = 1000 K (𝐼DSM = 31) 
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Fig. 12 Evolution history of the total and pure conduction thermal resistances associated with the discrete 

solid for (a) 𝑘𝑠
∗ = 0.01 and (b) 𝑘𝑠

∗ = 0.1 with 𝑇𝑜 = 750 K  
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Fig. 13 Discrete solid shapes and temperature distributions associated with 𝑇𝑜 = 750 K and 𝑘𝑠
∗ = 0.01 

(top), 𝑘𝑠
∗ = 0.1 (middle), and 𝑘𝑠

∗ = 1 (bottom). 𝐼DSM = 0 for the first and second columns. The third and 

fourth columns are associated with 𝑅tot,min
′  and (a) 𝐼DSM = 9, (b) 𝐼DSM = 16, and (c) 𝐼DSM = 54. 
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Fig. 14 Discrete solid shapes and temperature distributions associated with grid sizes of CC = 0.01 (top), 

CC = 0.001 (middle), and CC = 0.0005 (bottom). 𝐼DSM = 0 for the first and second columns. Third and 

fourth columns are associated with 𝑅tot,min
′  and (a) 𝐼DSM = 8, (b) 𝐼DSM = 15, and (c) 𝐼DSM = 7. 
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Fig. 15 Discrete solid shapes and temperature distributions associated with grid sizes of 120 × 120 (top), 

180 × 180 (middle), and 240 × 240 (bottom). 𝐼DSM = 0 for the first and second columns. Third and fourth 

columns are associated with 𝑅tot,min
′  and (a) 𝐼DSM = 7, (b) 𝐼DSM = 15, and (c) 𝐼DSM = 11. 

 

 

 

 

 

 


