
User-in-the-loop Policy Enforcement with Cross-App
Interaction Discovery in IoT Platforms

©2022

Rui Chen
B.S. Computer Science, University of Wyoming, 2020

B.S. Computer Engineering, University of Wyoming, 2020

Submitted to the graduate degree program in Electrical Engineering and Computer Science
Department and the Graduate Faculty of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science in Computer Science.

Committee members

Fengjun Li, Chair

Bo Luo

Alex Bardas

Date defended: June 6, 2022

The Thesis Committee for Rui Chen certifies
that this is the approved version of the following thesis :

User-in-the-loop Policy Enforcement with Cross-App Interaction Discovery in IoT Platforms

Fengjun Li, Chair

Date approved:

ii

Abstract

The Internet of Things platforms have been widely developed to better assist users in design-

ing, controlling, and monitoring their smart home system. These platforms provide a programming

interface and allow users to install various IoT apps published by third parties. As users could ob-

tain the IoT apps from unvetted sources, a malicious app could be installed to perform unexpected

behaviors that violate the user’s security and safety, such as opening the door when no motion is

detected. Additionally, prior research shows that due to the lack of access control mechanisms,

even benign IoT apps can cause severe security and safety risks by interacting with each other in

unanticipated ways. An improved access control system is needed to detect and monitor unex-

pected behaviors from IoT apps to address such threats. In this thesis, we provided a system called

IoTDiscover that detects single app conflicts and interaction threats between the trigger-action be-

havior of an IoT app. The IoTDiscover also generates resolution policies to resolve the detected

conflicts by including a user-in-the-loop design. The code analysis and instrumentation will be ap-

plied to collect related information used for conflict discovery and policy enforcement, such as the

actual trigger-action behavior of an app, configuration information, and runtime trigger event/ac-

tion information. A policy enforcement module in the system will be encoded with policies, and

it will enforce the policies at runtime by blocking actions that violate the policy. We implement

and evaluate IoTDiscover with 17 official SmartApps and two malicious SmartApps on the Smart-

Things platform with five testing cases. As a result, IoTDiscover successfully detected all single

app conflicts and interaction threats in each testing case. The resolution policies are generated and

enforced effectively by blocking all violated actions.

iii

Acknowledgements

I would like to express my deepest appreciation to my advisor, Fengjun Li, who assisted me

through the research process with invaluable feedback and patience. Additionally, I would like to

thank all committee members for their consideration for this work.

I would like to thank Zhaohui Wang, who provided a valuable system to improve and assist my

research project.

Finally, I must express my very profound gratitude to my parents for providing me with unfail-

ing support and continuous encouragement through my years of study.

This accomplishment would not have been possible without all of your support. Thank you

again.

iv

Contents

1 Introduction 1

2 Background and Related Works 5

2.1 IoT Architecture and Security . 5

2.2 Smart Home Platforms . 6

2.2.1 Related Works . 7

3 Threat Model and Problem Statement 11

3.1 Threat Model . 11

3.2 Problem Statement . 11

3.3 Interaction Threats . 13

3.3.1 Conflicting Interactions . 14

3.3.2 Chained Interactions . 16

4 IoTDiscover Design 18

4.1 App Information Collection . 18

4.1.1 Code Analysis . 18

4.1.2 Code Instrumentation . 19

4.2 Conflicts Discovery and Resolution . 20

4.2.1 Single-App Conflicts Discovery . 20

4.2.2 Interaction Threats Discovery . 20

4.2.3 Single-App Conflicts Resolution . 23

4.2.4 Interaction Threats Resolution . 24

4.3 Policy Generator . 26

v

4.3.1 Policy Language Syntax . 26

4.3.2 Policy Language Semantics . 28

4.4 Policy Enforcement . 28

4.5 Summary of IoTDiscover . 29

5 Implementation 31

5.1 Code Analysis . 31

5.2 Code Instrumentation . 32

5.3 Conflicts Discovery and Resolution . 34

5.3.1 Single-App Conflicts Discovery and Resolution 34

5.3.2 Interaction Threats Discovery and Resolution 35

5.3.3 Resolution Policy Output . 39

5.4 Policy Generator and Enforcement . 40

6 Evaluation 41

7 Discussion and Future Works 46

8 Conclusion 48

vi

List of Figures

2.1 IoT Architecture. Perception Layer - the sensing layer consists of physical IoT

devices, Network Layer - transmitting information between perception layer and

application layer, Application Layer - provides high-quality smart services to the

end-user for controlling and monitoring IoT devices. 6

2.2 Samsung SmartThings Platform Overview. 8

3.1 Examples of Conflicting Interactions. (a) Same trigger executes opposite actions

in electronic channel; (b) two different triggers triggered at same time and executes

opposite actions; (c) Same trigger executes opposite actions in physical channel;

(d) opposite trigger events ineffectively execute the same action 14

3.2 Examples of Chained Interactions. (a) & (d) one TA triggers another TA in elec-

trical channel and physical channel, respectively; (b) & (e) self-disabling: one TA

triggers another TA, and second TA executes opposite action in electrical channel

and physical channel, respectively; (c) & (f) loop-triggering: two TAs are trigger-

ing each other in a loop in electrical channel and physical channel, respectively . . 16

4.1 IoTDiscover Workflow. 29

5.1 The user interface for single-app conflicts discovery and configuration page. The

app description and actual app’s behavior is presented to user, and the user can

compare and select whether they want to allow the behavior or not. 35

vii

5.2 The user interface to define resolution for conflicting interactions with user-in-the-

loop design. Recommended policies will be generated based on types of conflict-

ing interactions. The UI will display conflicts to the user and request the user to

select expected policy. 37

5.3 The user interface to define resolution for chained interactions with user-in-the-

loop design. Recommended conditions will be loaded based on target action device

and commands. The UI will display chained interactions to the user and request the

user to select expected condition. If the user selected to specify new condition, an

UI is provided to the user to input following information: target action, condition

object, condition event, condition state, and duration (optional). 38

viii

List of Tables

2.1 The comparison of IoTDiscover with other related works, where “
√

” in column

“single-app conflicts” and “cross-app interaction” denote as the system detects the

conflicts, and “⃝” denotes the system mitigates the conflicts. 10

3.1 List of trigger-actions that could cause interaction threats with each other, each

interaction threat example will be demonstrated with a pair of two trigger-actions . 13

4.1 Interaction Threats Definition. Let TAi = (Ti,Ai,CTi,CAi), i = 1, 2 denote two

arbitrary trigger-actions, where Ti,Ai,CTi,CAi) are trigger, action, trigger channel,

action channel, respectively. = denotes "same device and command/attribute"; =¬

denotes "conflict with"; ̸= denotes "different devices and commands/attributes; ∼

denotes "negation"; → denotes "triggers directly (electronic channel); ↛ denotes

"triggers indirectly (physical channel) . 21

4.2 Part of Pre-defined Conditions. The conditions are defined by analyze app/device

functionalities and adopted the idea of the safety and security properties of IoT

devices from existing works [13] [14] [26]. Each condition will be loaded based

on target action device and action command. 25

6.1 Result summary of evaluating IoTDiscover. All existing conflicts are detected, and

the system generated corresponding policies . 42

6.2 Detected threats, including selected single-app conflicts and cross-app interaction

threats . 44

ix

6.3 Resolution policies generated for testing case A, where P.1 is to resolve single-

app conflict in Darken-behind-me, P.2 is to resolve single-app conflict in Battery-

Monitor, P.3 is use to resolve interaction threats T.5, and P.4 is use to resolve

interaction threats T.6 . 44

6.4 Policy Enforcement Result for testing case A. By comparing the action before and

after policy enforcement, our result shows IoTDiscover successfully blocked all

the violate actions. 45

x

Listings

3.1 Code Snippet of battery monitor [5]. Where the description says "The battery

monitor could supervise the battery of your door. And when the battery is low, it

would send the report to you", but a hidden function will "unlock the door when

the motion sensor detects nobody home" (line 16-21) 12

5.1 Instrumented code example. Parent-Child relationship is defined on line 2; Guard

is set to capture and send runtime information (line 11); getChildAppDevices()

function is added to collect the user’s configured information (line 13-15); and a

dynamicPage is added to create user interface to collect the user’s decisions. (line

17-26) . 33

5.2 Resolution policy output format. permission defines whether ALLOW or DENY

the target action; trigger-action contains device and attribute/command informa-

tion of trigger and action; condition specifies the information of the user select-

ed/specified conditions, NULL value will be returned if no condition add to the

policy. 39

5.3 Resolution policy output example with configured information for policy "Allow

heater to be turned on when motion detected only if AC is off " 39

xi

Chapter 1

Introduction

Internet-of-Things (IoT) is a network of smart objects or “Things” embedded with sensors, actua-

tors, software applications, and other technologies connected through the Internet. They can com-

municate and share data with each other. The rapid development of IoTs technology facilitated

the smart objects to be used as the fundamental component in various industries such as trans-

portation, healthcare, agriculture, industrial automation, and especially smart homes. According

to the reports, as of 2021, 35 billion IoT devices were installed worldwide [23], and around 43%

of U.S. households have owned at least one smart home device [9]. Smart home or home automa-

tion consists of different types of IoT devices, including home appliances, lighting, heating, and

cooling systems, and various home security and safety system [28]. Such IoT devices can be mon-

itored and remotely controlled through IoT platforms, which is an ecosystem that connects all IoT

devices with a hub as a centralized gateway and provides a software environment to allow third

parties to develop and publish their IoT apps that assist users in managing their IoT devices. In

recent years, a number of smart home platforms have been developed and used in people’s life,

such as Samsung’s SmartThings [7], OpenHAB [6], Apple’s HomeKit [4], and HomeAsistant [3].

The proliferation of IoT devices and platforms advanced our living environment to be more

convenient, efficient, and autonomous. However, the complex IoT environment also makes IoT

security and privacy becomes a serious and challenging problem. In most attacks against IoT envi-

ronments, attackers exploit the vulnerability of IoT platforms to take control of devices to perform

malicious behavior that owners and administrators do not expect. Fernandes et al. [18] provided

a study on Samsung’s SmartThings and discovered the overprivileged problem due to the Smart-

Things permission/capability model design, where a capability defines a set of commands and

1

attributes. The coarse-grained capabilities make the SmartThings platform allow a SmartApp with

any given capabilities to gain unauthorized access to the device; for example, given a SmartApp

permitted with capabilities.lock can access both lock and unlock commands, where the SmartApp

only authorized to access lock command. In addition, due to the coarse SmartApp-SmartDevice

binding, the SmartApp that is authorized to access one of the capabilities of a selected device can

also gain access to all other capabilities of the same selected device. As the IoT platforms allow

users to install and authorize third-party IoT apps, which may be obtained from unvetted sources

and contains malicious code, attackers can exploit the overprivileged problem to construct mali-

cious app to access unauthorized control of devices in a dangerous manner, such as unlock the door

when the user is sleeping. While users are relying on app descriptions to acquire app functionality

information, they will not understand all functionalities of an app from descriptions, so they will

not be aware when a malicious action that differs from the app description occurs.

IoT platforms allow users to install various IoT apps in the same smart home environment.

IoT apps developed by third-party are mostly designed based on the trigger-action paradigm [27],

where the trigger is the external information or any device state, such as when motion is detected

that enables the app to send a command of an action to control a device, such as turn on the light.

While the action command sent from an app changes the device state, which may trigger other

apps, some unanticipated interaction chain may happen between benign IoT apps in a complex

IoT environment. For instance, one app has a rule "turn on the light when it is dark (illuminance

below threshold)", which will enable another app as a rule "open the window when light is on".

Moreover, since one device can be controlled by more than one app as well as multiple apps can

be enabled by the same trigger simultaneously, two apps may send conflicting actions under the

same trigger to the same device, such as one app has a trigger-action rule "turn on the light when

motion is detected", while another app has a rule "turn off the light when motion is detected".

In order to address such problems, existing research efforts [29] [24] are applied Natural Lan-

guage Processing (NLP) to extract information from app descriptions provided by the manufacturer

or developer and compare it with the result of code analysis to verify whether the functionality and

2

capabilities of the IoT apps are following the original design goal and identify the overprivileged

problem in the apps. Since these works are mostly focused on unexpected behavior of a single app

caused by the overprivileged problem, other researchers have been working on discovering cross-

app interaction problems with static analysis [13] [16] [11] [22] and applied policy enforcement

techniques to capture and monitor the app behavior at runtime based on pre-defined policies [27]

[26] [17] [14]. These policies are specified by policy writers or directly from the user’s expectation

and will be described as a particular policy language. The policy enforcement system will only

accept the app to send an action command that satisfies all given policies; otherwise, the action

will be denied. However, the policies in these works are pre-defined by policy writers based on

a certain IoT environment, which is hidden from the user. When a new device or new IoT app

is added to the IoT environment, the existing policy may not be effective for the new device and

app. In addition, some efforts allow users to define their policy, which requires the user to have

high-level knowledge of the functionality of each app and policy language.

In this thesis, we provided a dynamic policy enforcement system that discovers all single-app

conflicts and interaction threats and generates resolution policies that are used to restrict unex-

pected behaviors. The system consists of four major steps: (1) app information collection that

consists of code analysis to extract actual trigger-actions and code instrumentation that collects

necessary information to be used for conflict discovery and policy enforcement, such as app’s

settings/configurations, user’s decision for actual trigger-actions, and guarded event and action

information at runtime, (2) conflicts discovery and resolution module takes configuration informa-

tion and the user’s decision of trigger-actions from instrumented app to detect all possible single

app conflicts and interactions between each trigger-action, and generate resolved condition-based

policies based on different types of conflicts, these rules will be extracted as safety, security and

functionality property feature lists and pass to policy generation (3) once the policy generator

received the property features, it will generated as policy languages that will be encoded in pol-

icy enforcement module, (4) policy enforcement module enforcs the policies by verifying guarded

event and action information from instrumented app against the policies and makes decisions such

3

as “allow” if the event and action passed all policies or “deny” otherwise.

We evaluated IoTDiscover with five testing cases and manually selected several SmartApp in

each case. The SmartApps are selected from the SmartThings official marketplace [7], and two of

them are malicious apps from IoTBench [5]. As a result, our IoTDiscover system could efficiently

detect any types of conflicts and enforce the policies to block any violations.

4

Chapter 2

Background and Related Works

2.1 IoT Architecture and Security

In general, the Internet of Things or IoT is a network that contains a number of physical de-

vices which are allowed to communicate with other devices and are controlled by IoT applications

through the network. The basic IoT architecture shown in Figure 2.1 can be divided into three lay-

ers: the Perception layer, the Network layer, and the Application layer. The perception layer is also

called the sensing layer, which consists of physical IoT devices to collect and transmit informa-

tion. The physical IoT devices are embedded with low-power nodes such as sensors and actuators

that perform different functionalities such as querying temperature, humidity, illuminance, motion,

acceleration, etc. [10]. As those nodes are vulnerable to various attacks, attackers can capture or

replace the node with a malicious node or inject malicious code or false data into the nodes’ mem-

ory. The network layer is responsible for transmitting information collected from the perception

layer to different process systems such as clouds and IoT applications through wireless commu-

nication protocols like Wi-Fi, Bluetooth, ZigBee, and Z-Wave. The network layer may consist of

IoT hubs, switches, or routers. Similar to the traditional networking layer of the TCP/IP model,

the IoT networking layer would perform all the same tasks. Thus, this layer is susceptible to the

same attacks as traditional networking layers, such as DDoS attacks [21], MITM attacks [25], and

Routing attacks (malicious nodes in an IoT application may try to redirect the routing paths during

data transmitting). The application layer provides high-quality smart services to the end-user and

allows users to control and manage their IoT devices and information. In recent years, different

IoT applications have been developed in this layer, such as smart homes, smart cities, industrial au-

5

Figure 2.1: IoT Architecture. Perception Layer - the sensing layer consists of physical IoT devices,
Network Layer - transmitting information between perception layer and application layer, Appli-
cation Layer - provides high-quality smart services to the end-user for controlling and monitoring
IoT devices.

tomation, and smart healthcare. Most IoT applications provide a platform to allow users to install,

develop, and manage their self-designed or third-party developed IoT apps that control IoT devices

based on users’ expectations. However, due to the lack of access control mechanisms, even benign

IoT apps can cause security and privacy problems by interacting with each other in unanticipated

ways. More detail about such IoT platform is discussed in Section 2.2.

2.2 Smart Home Platforms

To better assist users in designing, controlling, and monitoring their smart home system, many

smart home platforms have been developed to provide an ecosystem that allows users to centralize

all home devices and install IoT apps published by third-party. Such platforms typically adopt a

similar cloud-backed architecture that contains three components: hub, backend cloud, and smart-

phone app. In this thesis, we will only focus on the Samsung SmartThings platform, which is one

6

of the most popular smart home platforms.

In Samsung SmartThings, shown in Figure 2.2, the SmartThings Hub is a physical device used

to connect all the IoT devices through IoT communication protocols such as ZigBee, ZWave, and

Wi-Fi. The Hub is also responsible for bridging the communication between the cloud backend and

devices to send commands from SmartApps and update device states to SmartApps. The Smart-

Things cloud backend provides a Groovy-based sandbox environment to allow the communication

between SmartApps and Device Handlers. SmartApps are Groovy-based programs that define au-

tomation rules for the home devices, and the Device Handlers are the software-based encapsulation

of physical devices and enabled the communication between physical smart home devices and the

SmartThings platform [8]. Instead of directly communicating to the physical devices, SmartApps

control the device by communicating with Device Handler based on a permission (capability) sys-

tem. The capabilities have the components of commands and attributes that connected devices can

support and specify in Device Handler. For example, a light device with a capability called capa-

bility.switch has an attributes switch and can access two commands on and off. SmartApps state the

capabilities they need during app installation and subscribe to the events from Device Handler as

well as send commands to Device Handler to control the device. The SmartThings platform also

provides the user interface (UI) with the smartphone app and a Web-based IDE that allow users

to manage their hubs, devices, and SmartApps. Users can install different SmartApps from the

official SmartThings market or from third parties or develop expected SmartApps by themselves.

2.2.1 Related Works

The security problems of IoT platforms have been broadly explored in many recent research ef-

forts. Fernandes et al. [18] provided a practical security study of the Samsung SmartThings

platform and identified several design flaws of the SmartThings permission-based model, such as

the overprivileged problem caused by coarse-grand capability and coarse SmartApp-SmartDevice

binding, which allows a SmartApp to access unauthorized commands with permitted capabilities.

Moreover, they also identified that there exist event leakage and event spoofing problem due to

7

Figure 2.2: Samsung SmartThings Platform Overview.

insufficient sensitive event data protection.

IoT Access Control. To address above problems, Fernandes et al. [19] presented FlowFence, a

system based on information flow control with Opacified Computation, and the sensitive data will

be explicitly isolated inside the FlowFence-provided sandboxes. Celik et al. [12] provided a static

taint analysis tool called SAINT to identify sensitive sources and sinks as well as identify sensitive

data flows. To address the overprivileged problem, Jia et al. [20] proposed ContexIoT, a context-

based permission system for IoT platforms that identifies fine-grained context action information

before execution and prompts the user at runtime with such information to provide contextual in-

tegrity as well as request for user’s permission. However, the in-context prompt requires the user to

be involved in approving permissions at runtime, which does not satisfy the real-time automation

of IoT apps. Tian et al. [24] introduced SmartAuth, which automatically extracts code annotations

and capability requests of a SmartApp by performing static analysis on the app’s source code and

natural language processing (NLP) on the app’s description provided by the developer. SmartAuth

then compares the app’s actual functionality from the source code and the functionality described

in the app description to detect whether an unexpected functionality is occurring. All these current

works are only available in detecting single IoT app misbehaviors, while they are not concerned

with interaction behavior between multiple IoT apps in a complex IoT environment.

Cross-App Interactions. Chi et al. [15] introduced the new threat, Cross-App Interference (CAI)

8

threats, which could be caused by unanticipated or malicious interactions between multiple apps

on IoT platforms. The CAI threats contain three categories based on the trigger-condition-action

model of app rules: Action-Interference Threats, Trigger-Interference Threats, and Condition-

Interference Threats. To detect the CAI threats, they performed a HOMEGUARD system by using

symbolic execution techniques to extract and analyze IoT apps’ execution path and implementa-

tion. Celik et al. [13] provided a static analysis system, called SOTERIA, that also applies a symbolic

execution technique for model checking to verify whether an IoT app or IoT environment violated

the safety, security, and functional properties. There are many other existing works based on a

static analysis approach to identify potential unexpected behavior caused by the interaction be-

tween multiple IoT apps [11] [22]. However, although these works effectively detect potential

interference threats of IoT apps, they do not provide mitigation solutions after detected violations

to protect apps from these threats.

Policy Enforcement. Policy enforcement techniques have been widely adopted in many existing

works to monitor and control unexpected interactions of multiple IoT apps at runtimes, such as

IoTGUARD [14], EXPAT [27], and PATRIoT [26]. These approaches usually start with code instru-

mentations to instrument the source code with a guard to monitor the actions and capture related

information of IoT apps at runtime. The policies will be pre-defined by the policy writer [14] [26]

or self-defined policy based on the user’s expectations [27] and described in policy language. The

runtime action information captured by the guard will be sent to a policy enforcement engine that

enforces the policy by blocking violated actions and allowing actions that are satisfied with all

policies. All these works are lacking in the policy design. IoTGUARD and PATRIoT are pre-defined

policies by the policy writer from manually investigating the rules, which relies on the trust of

the policy writer to provide benign and correct policies. In addition, the user is unaware of which

action is violated since the pre-defined policies are concealed from them. The system of EXPAT

allowed users to define policies based on their expectations and provided a policy verification to

verify that the users-defined policies were not conflicting. However, this system requires the user

to have high-level knowledge of the functionality and interactions of the entire IoT system, which

9

Name Single-App
Conflicts

Cross-App
Interactions

Presenting
Recommended Policies

Runtime Policy
Enforcement

ContexIoT
[20]

√
,⃝

SmartAuth
[24]

√
,⃝

HOMEGUARD

[15]
√

SOTERIA

[13]
√

IoTGUARD

[14]
⃝

√

PATRIoT
[14]

⃝
√

IoTDiscover
√

,⃝
√

,⃝
√ √

Table 2.1: The comparison of IoTDiscover with other related works, where “
√

” in column “single-
app conflicts” and “cross-app interaction” denote as the system detects the conflicts, and “⃝”
denotes the system mitigates the conflicts.

could be a challenge to the user since some potential functionality of IoT apps is hidden from the

user.

In this thesis, we adopted the CAI threats definition from [15] to define the different interac-

tion threats based on the trigger-action rule patterns. As this work does not provide mitigations

when CAI threats are detected, our system will generate resolution policies based on the user’s

expectations. The PATRIoT [26] is open source and provides expressive policy language and effi-

cient performance with low overhead, and we leveraged the design of policy language and policy

enforcement system from PATRIoT. Compared with previous efforts, our work uncovered both the

backend app functionality and potential interaction threats to the user and enforced the resolution

policies based on the user’s expectations at runtime. A summary of the comparison with related

works is shown in Table 2.1.

10

Chapter 3

Threat Model and Problem Statement

3.1 Threat Model

In our threat model, we consider unexpected actions caused by malicious apps or apps with design

flaws in a smart home environment. These apps could be installed from unvetted sources or de-

veloped by users. We assume: (1) The adversary can exploit the vulnerability of SmartApps, such

as overprivileged problem, to access unauthorized action command; (2) The adversary can inject

malicious code into an IoT app, or misuse compromised IoT apps to cause unsafe an insecure ac-

tivities; (3) The adversary does not have the ability to directly access secure devices, such as unlock

the front door lock, but the adversary can obtain the information about apps interaction chains and

can leverage a compromised app to trigger another app to send action command to secure devices.

We also consider that an unintended threats could also happened by multiple benign apps in a com-

plex IoT environment, which directly (electronic channel) or indirectly (physical channel) cause

security and privacy issues without an attacker. We assume the IoT devices are trustworthy and

consider the adversary’s ability to compromise the IoT platform due to vulnerabilities of platforms

and software to be out of the scope of this thesis.

3.2 Problem Statement

Any unintended behaviors in an IoT environment can lead to unsafe and insecure situations that

violate users’ expectations. We consider two problem scenarios that could cause unintended behav-

iors: (1) Single-app conflicts, where an IoT app may implement different functionality as described

11

1 description : "The battery monitor could supervise the battery of your door
. And when the battery is low , it would send the report to you"

2 input " thebatterymo ", " capability . battery ", required : true , title:"Where?"
3 input " themotionsensor ", " capability . motionSensor ", title: "Where?"
4

5 subscribe (thebatterymo , " battery ", batteryHandler)
6 subscribe (motionSensor , " motion . inactive ", motionHandler)
7

8 def batteryHandler (evt) {
9 sendSMS (phone , " battery low")

10 }
11

12 def motionHandler (evt) {
13 attack ()
14 }
15

16 def attack () {
17 def lockState = thebatterymo . currentLock
18 if(lockState != null && lockState == " locked ") {
19 thebatterymo . unlock ()
20 }
21 }

Listing 3.1: Code Snippet of battery monitor [5]. Where the description says "The battery monitor
could supervise the battery of your door. And when the battery is low, it would send the report to
you", but a hidden function will "unlock the door when the motion sensor detects nobody home"
(line 16-21)

in the app description, and (2) Multi-app interaction threats, where IoT apps are individually de-

veloped to perform their functions without flaws, but multiple apps in the same environment may

have unexpected interactions that will cause some potential safety, security, and privacy threats.

Single-App Conflicts. The user usually relies on app descriptions to learn about app’s function-

ality and install the expected app. However, some real functionalities of an IoT app may not be

disclosed to the user in the app descriptions, which causes a discrepancy between the user’s per-

ceived functionality and the app’s actual functionality [24]. An unexpected action may be triggered

surreptitiously without the user’s acknowledgment. For example, Listing 3.1 shows a code snippet

of a malicious app (battery monitor [5]) described as "The battery monitor could supervise the bat-

tery of your door. And when the battery is low, it would send the report to you". The user reviewed

the app description and installed this app in the smart home. However, a real functionality does

12

TA_1 Turn on light_1 when motionSensor is active
TA_2 Turn off light_1 when motionSensor is active
TA_3 Turn off light_1 when doorLock is locked
TA_4 Turn on the heater when switch_1 is on
TA_5 Turn on the fan when switch_1 is on
TA_6 Turn on light_1 when motionSensor is inactive
TA_7 Open the window when mode is “home”
TA_8 Set mode to “home” when motionSensor is active
TA_9 Turn off the heater when powerMeter exceeds 3000W

TA_10 Turn on the heater when motionSensor is active
TA_11 Turn on light_1 when TV is on
TA_12 Turn on TV when light_1 is on
TA_13 Open the window when temperature > 70
TA_14 Turn off light_1 when illuminance > 50
TA_15 Turn on light_1 when illuminance < 50

Table 3.1: List of trigger-actions that could cause interaction threats with each other, each interac-
tion threat example will be demonstrated with a pair of two trigger-actions

not disclosed to the user in the app’s description, which is a malicious function to “unlock the door

when the motion sensor detects nobody home” (line 16-21).

Multi-app Interaction Threats. To help the non-technical user better understand and setup their

smart home automation, the IoT apps are generally programmed with a trigger-action paradigm

that specifies when a trigger event occurs (such as the device state is changed, e.g., when motion

is detected), one or more action commands will be sent by the app to activate the devices (which

changes the device state, e.g., turn on the light). As one device could be controlled by more than

one app, which leads to the device state change and also enables other apps as a trigger, two or

multiple apps can interact with each other and cause unexpected behaviors that violate safety and

security. Such unexpected behavior could be conflicting actions and actions triggered by unex-

pected triggers. In section 3.3, we will describe the details of interaction threats with examples.

3.3 Interaction Threats

To identify the interaction threats of two trigger-actions, we were inspired by the definition of

CAI threats [15] and presented our interaction threats based on trigger-action paradigm of IoT

13

Figure 3.1: Examples of Conflicting Interactions. (a) Same trigger executes opposite actions in
electronic channel; (b) two different triggers triggered at same time and executes opposite actions;
(c) Same trigger executes opposite actions in physical channel; (d) opposite trigger events ineffec-
tively execute the same action

apps. We consider there are two trigger-actions (TA) installed in the same environment. These two

trigger-actions could be specified in two different apps or the same app. We identified two types

of interaction threats: conflicting interactions and chained interactions. To illustrate the examples,

we defined 15 trigger-actions shown in Table 3.1.

3.3.1 Conflicting Interactions

To illustrate the conflicting interactions, we consider that two trigger-actions could cause conflict-

ing interactions with three configurations, where (1) two trigger-actions are configured with the

same trigger and action devices, (2) two trigger-actions are configured with the same trigger de-

vice, but different action device that executed under the same channel, (3) two trigger-actions are

configured with different trigger device but activate the same device in opposite commands.

When two trigger-actions are programmed to subscribe with the same trigger device, which is

14

possible that two trigger-actions are triggered simultaneously with the same trigger attributes. In

this case, a conflicting action occurs when the two trigger-actions send opposite action commands

to the same action device. For example, as shown in Figure 3.1(a), TA_1 defines "turn on light_1

when motionSensor is active", and TA_2 defines "turn off light_1 when motionSensor is active".

Both trigger-actions are triggered when the motion sensor detects motion, but sends the opposite

command to device light_1, which may cause unpredictable behavior (on/off only, on then off, off

then on) and damage to the device. In another case, when two rules are programmed to be triggered

by the same trigger device with opposite trigger attributes, the conflict on the trigger is caused when

two rules are sending the same action command to the same action device. An example shows

in Figure 3.1(d), where TA_1 and TA_6 both have the action “turn on the light_1”, but TA_1

is triggered by “when motionSensor is active” and TA_6 is triggered by “when motionSensor is

inactive”. As a result, the state of the action device might be immutable when the trigger device is

only assigned with two attributes (active/inactive in the example).

In the second configuration, the conflicting interactions could be indirectly caused by the same

device when two trigger-actions are operating different devices that act under the same physical

channel (e.g., temperature, humidity, and illuminance) with opposite purposes. As shown in Figure

3.1(c), TA_4 and TA_5 are both triggered by “when switch_1 is on”, but TA_4 sends commands

“turn on the heater”, where the heater is acting under the temperature channel, and the purpose

is increasing the temperature, and TA_5 as “turn on the fan”, where the fan is also acting under

temperature channel but aims to decrease the temperature. This type of conflict could cause energy

consumption while two devices are kept active but never reach the final purpose (e.g., temperature

decrease to 65F for fan, temperature increase to 75F for heater).

Lastly, there could be a situation where two trigger-actions are triggered by different trigger

devices and attributes but send the opposite command to the same action device. In this situation, a

conflict action occurs when the trigger is activated at the same time. For example, in Figure 3.1(b),

TA_1 specifies "turn on light_1 when motionSensor is active", and TA_3 specifies "turn off light_1

when door is locked", where these two rules are conflicting when motion is detected while the door

15

Figure 3.2: Examples of Chained Interactions. (a) & (d) one TA triggers another TA in electrical
channel and physical channel, respectively; (b) & (e) self-disabling: one TA triggers another TA,
and second TA executes opposite action in electrical channel and physical channel, respectively;
(c) & (f) loop-triggering: two TAs are triggering each other in a loop in electrical channel and
physical channel, respectively

is locked at the same time.

3.3.2 Chained Interactions

A chained interaction occurs when a device state is changed by the action command of one trigger-

action trig another trigger-action. One trigger-action could directly trigger another trigger-action

when the action device of the first trigger-action is the same as the trigger device of the second

trigger-action. As shown in Figure 3.2(a), when TA_8 is triggered when motion is detected and

“mode is set to ‘home’”, which triggers the execution of TA_7, “open the window when mode

is ‘home’”. In this example, the unexpected action “open the window” will be executed “when

motionSensor is active”. Similar to the conflict interactions, a chained interaction could also be

indirectly caused when the action device of the first trigger-action and trigger device of the second

trigger-action are acting under the same channel with the same action goal. For instance, Figure

3.2(d) shows that TA_4 defines “turn on the heater when switch_1 is on”, and TA_13 defines

“open the window when the temperature is above 70F”. The action (turn on the heater) of TA_4

acts under the temperature channel to increase the temperature, which is the same channel of

16

the trigger of TA_13 (temperature above 70F). In this case, TA_4 will indirectly trigger TA_13

after a while, and the window will be open when swith_1 is on. These chained interactions lead to

unintended trigger-actions that are not desired by the user. Adversaries may leverage these chained

interactions to indirectly send action commands to target devices with a malicious app.

Self-disabling and loop-triggering are two special cases of chained interactions [15]. The self-

disabling happens when two trigger-actions are operated on the same action device with conflict

action commands, and the action caused by the first trigger-action directly/indirectly triggers the

second trigger-action. Figure 3.2(b) shows an example of self-disabling where the heater is turned

on when motion is detected in TA_10, and the state of the power meter will change to high, which

triggers TA_9 to “turn off the heater” immediately after the heater is turned on. The loop-triggering

occurs when two trigger-actions are both triggering each other with the same trigger and action, as

shown in Figure 3.2(c). If TA_12 “turn on the light_1” makes the TV state change to “on”, TA_11

will be triggered to “turn on the light_1” again, which then triggers TA_12. As a result, these two

trigger-actions are run into a forever loop which makes the app keep sending action commands.

Figures 3.2(e) and 3.2(f) are shown the self-disabling and loop-triggering that happened indirectly

under the physical channel, respectively.

17

Chapter 4

IoTDiscover Design

The major goals of our system is to present the user with any hidden app functionalities that differ

from app descriptions and discover potential interaction threats between multiple apps and allow

the user to select or specify policies to restrict unexpected actions. In order to achieve our goal,

the system contains four major steps: (1) App information collection, (2) Interaction discovery and

resolution, (3) Policy generation, (4) Policy enforcement.

4.1 App Information Collection

The app information collection consists of two modules: code analysis and code instrumentation.

The code analysis is used to extract actual trigger-action behavior from the source code. The code

instrumentation collects app information used for conflict discovery and policy enforcement by

adding extra logic and functionalities.

4.1.1 Code Analysis

The code analysis is a popular approach to analyzing the source code of an IoT app. In our project,

the main purpose of code analysis is to extract information such as the actual trigger-action behav-

iors from the source code. Our code analysis system leveraged a backward taint analysis approach

that constructs all the method calling paths to a device action command call [12]. Before the back-

ward taint analysis, the system will extract the intermediate representation (IR) from the source

code of IoT apps. The IR is used to construct an app’s entry points, event handlers, and call graphs,

as well as model the lifecycle of an app by using backward taint analysis. With this approach, we

18

can get an output that includes the information of the calling path to execute any action call in the

app, which also includes the trigger information that trigs the event handler. Then we can process

the information of calling paths to extract the trigger-action information such as trigger event and

action device and command. In the end, the trigger-action will be formed in a feature list with a

format as shown below:

Trigger-Action_ID:
Trigger: <device>, <attribute>
Action: <device>, <command>

4.1.2 Code Instrumentation

Our code instrumentation will inject extra logic and functionalities that collects three types of infor-

mation: (1) the device and app configuration information as well as user-defined numerical values,

such as the temperature threshold that turn on a heater, (2) the user’s decision for actual trigger-

action behaviors of an app, which extracted from code analysis; (3) the runtime trigger event and

action information. The instrumented app transmits the configuration and decision information to

the conflict discovery and resolution module to identify any potential conflict or interaction threats

based on the user’s configuration of actual trigger-action behavior. The runtime trigger event and

action will be transmitted to the policy enforcement module once the app is triggered by an event

and before the action is executed.

Collecting Configuration and Decision Information. The user is required to specify related

information to run the app and control the target device in an IoT environment, such as device

name/ID or numerical threshold values. Such configuration information is collected when the user

installs or updates an app through an app’s user interface. Once the user configured all request

information, it is stored in a read-only map of an IoT app. Thus, the code instrumentation needs to

insert logic to read this information from the read-only map and transmit it to the conflict discovery

and resolution module.

Collecting Runtime Trigger Event and Action Information. A guard will be inserted to the

19

source doe by code instrumentation to monitor and gather action information at run-time. The

guard is set at each action command. Once the app is triggered to send a command to access

the device, the guard will interrupt the action, transmit the related event/action information to the

policy enforcement, and wait for the decision.

4.2 Conflicts Discovery and Resolution

As the problem statement described in section 3.2, a conflict could be categorized into single app

conflicts and multi-app interaction threats. In this section, we discuss our approach to discovering

such conflicts and provide policy-based solutions to each type of conflict.

4.2.1 Single-App Conflicts Discovery

We consider a single app conflict occurred when an app executes an unauthorized action that does

not describe in the app description and is unaware of the user. To discover such conflicts, many

existing approaches are using natural language processing (NLP) techniques to extract trigger-

action information from the app’s free-text description and compare it with the actual trigger-action

extracted from the source code [24]. However, due to the complexity of description language

semantics, it is challenging for NLP to extract sufficient information precisely. Thus, we will let

the user manually discover and decide whether the actual behavior of an app is in conflict or not.

The actual trigger-action will be demonstrated to the user with easy understanding sentence, and

the user can compare it will app descriptions to identify whether the behavior is different from the

description based on their understanding and expectations.

4.2.2 Interaction Threats Discovery

The interaction discovery follows the interaction threats examples we described in section 3.3.

We assume two trigger-actions installed in the same environment, and each denoted as TA1 =

(T1,A1,CT1,CA1) and TA2 = (T2,A2,CT2,CA2), where Ti, Ai, CTi, CAi are trigger, action, phys-

20

Category Basic Pattern Auxiliary Pattern ID Examples

Conflicting
Interactions

A1 = ¬A2
T1 = T2 A.1 Fig. 3.1(a)
T1 ̸= T2 A.2 Fig. 3.1(b)

A1 = A2 T1 = ¬T2 A.3 Fig. 3.1(d)
A1 ̸= A2,CA1 = ¬CA2 T1 = T2 A.4 Fig. 3.1(c)

Chained
Interactions

A1→ T2

∼ (A2→ T1),A1 ̸= A2 T.1 Fig. 3.2(a)
∼ (A2→ T1),A1 = ¬A2 T.2 Fig. 3.2(b)

A2→ T1,A1 ̸= A2 T.3 Fig. 3.2(c)

A1 ↛ T2,CA1 =CT2

∼ (A2 ↛ T1),A1 ̸= A2 T.4 Fig. 3.2(d)
∼ (A2 ↛ T1),A1 = ¬A2 T.5 Fig. 3.2(e)

A2 ↛ T1,CA2 =CT1,A1 = ¬A2 T.6 Fig. 3.2(f)

Table 4.1: Interaction Threats Definition. Let TAi = (Ti,Ai,CTi,CAi), i = 1, 2 denote two arbitrary
trigger-actions, where Ti,Ai,CTi,CAi) are trigger, action, trigger channel, action channel, respec-
tively. = denotes "same device and command/attribute"; = ¬ denotes "conflict with"; ̸= denotes
"different devices and commands/attributes; ∼ denotes "negation"; → denotes "triggers directly
(electronic channel); ↛ denotes "triggers indirectly (physical channel)

ical channel of the trigger, and physical channel of the action of TAi, respectively. We use the

operator “=” to denote the trigger/action of TA1 and TA2 are operated on the same device with

the same attributes/commands; “= ¬” denotes two trigger-actions are operated on the same device

but with conflict attributes/commands; and “ ̸=” denotes the trigger/action of two trigger-actions

are operated on different devices. Based on the interaction threats examples and referring to the

existing work of CAI inference threats definition [15], we define an interaction threat occurs when

the trigger/action of TA1 conflict or interplay with the trigger/action of TA2 with some explicit

and inexplicit interaction channels. In this section, we will formalize the two types of interaction

inferences: conflicting interactions and chained interactions. Table 4.1 shows the summary of the

interaction threats we have defined.

Conflicting Interactions. Based on the effects on actions of TA1, we define three types of basic

patterns. The first basic pattern has been defined by CAI threats, where two trigger-actions oper-

ate on the same action device but perform conflicting commands simultaneously in the electronic

channel (A1 = ¬A2). In this type, the actions could be triggered by the same trigger event (T1 = T2,

as the example in Figure 3.1(a)), or could be triggered by different trigger events that happened

at the same time (T1 ̸= T2, as the example in Figure 3.1(b)). We defined the second basic pattern

21

where the two rules are control two different action devices but perform conflicting commands

under the same physical channel (A1 ̸= A2,CA1 = ¬CA2). The third pattern we defined it as inef-

fective triggers where the same action of two rules (A1 = A2) are triggered by the opposite trigger

events (T1 = ¬T2).

Chained Interactions. In CAI threats, a chained interaction is defined when a device state is

changed by an action command of one trigger-action TA1 triggers another trigger-action TA2, and

TA2 will be executed after TA1. In this case, new implicit rule is defined but may not be desired

by the user. We consider the chained interaction are happened in electronic channel when TA1

directly triggers TA2 based on electronic state changes of a device (A1 → T2), and we consider

the chained interactions are happened in physical channel when TA1 indirectly triggers TA2 based

on the physical environment changes where the action of TA1 and the trigger of TA2 are acting

under the same physical channel (A2 ↛ T1 & CA2 =CT1), such as temperature. The definition of

CAI threats only defined electronic channel interactions, and we extended two physical channel

interactions based on their definition. T.1 & T.4 defines the common chained interactions where

the action of TA2 does not have conflict or interaction with the action of TA1 (A1 ̸= A2). Self-

disabling and loop-triggering are the special cases of the chained interactions. Self-disabling (T.2

& T.5) happened when two rules perform conflicting commands (A1 = ¬A2) while TA1 triggers

TA2. Looping-triggering (T.3 & T.6) occurred when the action of TA1 directly or indirectly triggers

TA2 (A1→ T2 or A1 ↛ T2 & CA1 =CT2), then the action of TA2 triggers TA1 after that (A2→ T1

or A2 ↛ T1 & CA2 =CT1).

Discover Interactions. To discover the interactions that we described above, we consider a tuple

(trigger t, action a, channel of trigger ct, channel of action ca) to represent one trigger-action be-

havior extracted from the code analysis, and each trigger/action is paired with the configuration

information collected by instrumented code (such as device ID and user-defined threshold value).

Algorithm 1 and Algorithm 2 present the procedure of discovering conflicting interactions and

chained interactions, respectively. Let TA denote sets of trigger-action behaviors with configured

information. The two algorithms take TA as inputs and compare each two trigger-actions based

22

Algorithm 1 Interaction Discovery - Conflict Interactions
1: Input: TAP, sets of trigger-actions with configured information, {t, a, ct, ca}
2: Output: IA, sets of discovered conflict interactions
3:
4: for i ∈ TAP do
5: for j ∈ TAP do
6: if i == j then
7: continue
8: if i.a ==∼ j.a then
9: if i.t == j.t || i.t! = j.t then

10: IA←{i, j}
11: if i.a == j.a then
12: if i.t ==∼ j.t then
13: IA←{i, j}
14: if i.a! = j.a && i.ca ==∼ j.ca then
15: if i.t == j.t then
16: IA←{i, j}

on the effects of actions. The output of the algorithms would be a list that contains tuples of in-

teraction pairs (e.g., [(t1,a1,ct1,ca1), (t2,a2,ct2,ca2)]). To the end, all potential interactions are

discovered and will be presented to the user with recommended solutions, which we will discuss

in the section 4.2.4.

4.2.3 Single-App Conflicts Resolution

Once the user discovers a conflict and decides to block the trigger-action, a solution will be gen-

erated by defining an access control policy to restrict the action. For example, when the user

discovers a trigger-action “unlock the door when motion is detected” conflicts with the app de-

scription, to restrict the action, a policy “Deny unlock the door if motion is detected” is defined to

block the action “unlock the door”. The trigger-actions that are not discovered with any single app

conflicts will then be used to identify any potential interaction threats.

23

Algorithm 2 Interaction Discovery - Chained Interactions
1: Input: TAP, sets of trigger-actions with configured information, {t, a, ct, ca}
2:
3: Output: IA, sets of discovered conflict interactions
4:
5: for i ∈ TAP do
6: for j ∈ TAP do
7: if i == j then
8: continue
9: if i.a == j.t then

10: if j.a! = i.t then
11: if i.a! = j.a || i.a ==∼ j.a then
12: IA←{i, j}
13: else if j.a == i.t && i.a! = j.a then
14: IA←{i, j}
15: if i.a! = j.t && i.ca == j.ct then
16: if j.a! = i.t && j.ca! = i.ct then
17: if i.a! = j.a || i.a ==∼ j.a then
18: IA←{i, j}
19: else if j.a! = i.t && i.ca == i.ct && i.a ==∼ j.a then
20: IA←{i, j}

4.2.4 Interaction Threats Resolution

User-in-the-loop Design. Based on each type of interaction threat, the IoTDiscover system will

generate related solutions (e.g., access control policies) to restrict unexpected actions caused by

the interaction. As different users have various requirements and expectations for their IoT system,

which leads to a challenge in defining access control policies that satisfies all users’ requirements.

To address this, we include the user in the loop, where the system will first generate some solutions

and present them with discovered interaction threats to the user as recommendations, then ask the

user to select or specify what they think is most appropriate to their requirements. Once the user

defines the appropriate solution, the system will learn from the user’s choice and store the new

solution defined by the user to make a better recommendation next time.

Resolution for conflicting interactions. The conflicting interaction happens when two conflict

actions are executed simultaneously or conflict triggers trig the same device. The main idea to

resolve such conflict is to avoid the two trigger-actions behaving at the same time. For interaction

24

ID Conditions Description
C.1 Allow light to be turned on only if illuminance below 50 for 10 mins
C.2 Allow light to be turned on only if motion is detected
C.3 Allow light to be turned on only if user is at home
C.4 Allow light to be turned off only if motion is not detected within 30s
C.5 Allow window to be open only if user is at home
C.6 Allow heater to be turned on only if AC is off
C.7 Allow water valve to be turned on only if water leakage is detected with in 60s

Table 4.2: Part of Pre-defined Conditions. The conditions are defined by analyze app/device func-
tionalities and adopted the idea of the safety and security properties of IoT devices from existing
works [13] [14] [26]. Each condition will be loaded based on target action device and action com-
mand.

threats A.1, A.3, and A.4, the two trigger-actions are subscribed to the same trigger device, which

makes the conflict action always executed at the same time (or a device ineffectively controlled

by conflict triggers) unless only one trigger-action exist. Thus, we will let the user decide which

trigger-action needs to be blocked and generate a policy based on the user’s decision, for example,

“Deny A1 if T1” when the user decide to block TA1.

Resolution for chained interactions. The chained interaction happens when an unexpected action

is executed under an unauthorized trigger. One solution is to define a policy to deny the unexpected

action to be executed when the trigger is happening, for example: “Deny A2 if T1”. However, there

exist two cases that will make the policy inadaptable and ineffective: (1) the user may allow the

chained interactions only if it is under a certain condition, (2) for the special case of loop-triggering,

the trigger (action) of TA1 are usually the same as action (trigger) of TA2 (T1 = A2 and A1 = T2,

respectively) (T.3), or the trigger device state for T1 will be changed after A1 is executed, (e.g., turn

on the light will change the illuminance value read by illuminance sensor) (T.6).

To address this, we define conditions to only allow a target action to be executed under certain

conditions. The conditions are pre-defined based on the use cases of the devices (e.g., a light could

be turned on and off), and adopted ideas of safety and security properties of IoT devices from many

existing works [13] [14] [26]. For example, condition C.1 specifies, “Allow light to be turned on

only if illuminance below 50 for 10 mins”, which could avoid the frequent turning of the light

25

on and off for the example in Figure 3.2(f). Table 4.2 shows the part of pre-defined conditions.

Once a chained interaction threat is discovered, the system looks for a solution by scanning all

the pre-defined conditions and loading the condition list based on the target action device type and

commands. For example, the system is looking for a solution to restrict the action “turn on the

light_1”, where light_1 with a device type of light, then the conditions C.1, C.2, and C.3 will be

loaded. The loaded condition lists will be presented to the user as a recommendation, and the user

could select one from existing lists or specify a new condition by following the format and idea

of recommended conditions. Once the condition is selected and specified by the user, it will be

combined with the target trigger-action to construct a trigger-condition-action based policy. For

example, if a condition “Allow heater to be turned on only if AC is off ” is specified to restrict

trigger-action “turn on the heater when motion detected”, then a new policy “Allow heater to be

turned on when motion detected only if AC is off ” is generated.

4.3 Policy Generator

We adopted the policy language design from the work of PatrIoT [26] to generate the resolution

policies into formal policy language that can be enforced by policy enforcement module. In this

section, we will introduce the policy language syntax and semantics that are applicable to our

policy rules.

4.3.1 Policy Language Syntax

Each resolution policy will be extracted as a policy block, where each policy block starts with a

Policy keyword followed by an identifier such as Example_1. The body of each policy block

contains a permission statement and one or two condition statements, as shown below:

Policy <identifier>:
ALLOW/DENY <target_clause>
ONLY IF <condition_clause>

In the permission statement, the keyword ALLOW or DENY are used to identify the permis-

26

sion from user whether to allow or deny the action under a particular condition, respectively. The

<target_clause> are the action information such as action_device and action_cmd that extracted

from the rule element of policy rules. There are two optional condition statements are start with a

keyword ONLY IF or EXPECT, where ONLY IF defined as the target action can only be allowed

or denied under the certain condition, and EXPECT defined as the target action can only be al-

lowed or denied with the exceptional case under a restriction condition and the ONLY IF statement

can be disregarded in this case. Based on the policy rules in our work, the EXPECT statement will

be rarely defined in a policy. The <condition_clause> contains the condition statement extracted

from the condition element of policy rules, it can be either a temporal condition or a non-temporal

condition. A temporal condition would be a condition where the event has been triggered in a time

period, and it is extracted based on the condition event time from the policy rules. The temporal

operators such as SINCE, LASTLY, and ONCE are used to identify the past state of a device and

can optionally take a within keyword and an additional time interval [l,r], where l and r denote the

lower bound and upper bound of the existing time, to specify the condition event occurring time.

For example, a condition state that when motion is detected within 30 seconds can be converted

to policy language as LAST LY (state(motion) = active)WIT HIN[0,30]. A non-temporal condi-

tion means the target action would be triggered immediately based on current state of condition

devices. Each <condition_clause> could have logical combinations of more than one conditions

by using AND, OR logical operators. While users could define a single app policy rule without a

condition statement, in this case, we define the <condition_clause> as the automation unit that only

allow/deny certain IoT app to send a target command to control the target device, which restricted

the actions caused by overprivileged problem. Below are shown two examples of policy language

syntax that converted from policy rules.

Policy Example_1:
ALLOW action_command = on AND action_device = ligth1
ONLY IF LASTLY(state(motionSensor1) = active) WITHIN [0, 30]

27

Policy Example_2:
ALLOW action_command = unlock AND action_device = frontDoorLock
ONLY IF automation_unit = enhanced-auto-lock-door

4.3.2 Policy Language Semantics

The formal semantics of policy language will convert the policy statement that contains permis-

sion statement and condition statement of a given policy to a quantifier-free, first-order metric

temporal logic (QF-MTL) formula. The there is no order constraints on the policy statements,

but different policy statements are combined with a “deny overrides allow” conflict resolution

mechanism. this means that an action can only be allowed when the trigger event satisfies all the

policy statement. As each policy statement will be convert to equivalent QF-MTL formula, the

metavariable ϕaction,ϕcondition, and ϕexception can be used to describe the corresponding OF-MTL

formulas that captures information of target action (<target_clause>), only if condition, and ex-

ceptions of each policy statement. In this case, a allow statement can be explained as ϕaction ⇒

ϕcondition∧¬ϕexception, and a deny statement can be explained as ϕaction⇒¬ϕcondition∨ϕexception.

Our policy rule may miss the exception statement, and we consider the missing exception statement

to be logical FALSE.

4.4 Policy Enforcement

The policies will be encoded into the policy enforcement module as different policy functions.

Once the policy enforcement module receives the guarded trigger events and actions information

from the instrumented app, the policy will be enforced by matching them with the trigger events

and actions. If the trigger events and actions are compliant with all the policies, an “accept” deci-

sion is made and sent to the execution engine to execute the action; otherwise, a “deny” decision is

made, and the execution engine will reject the action. As the policy enforcement module needs to

receive every guarded event and action information from different IoT apps, it is required to pre-

serve a global view of the entire system state and deployed at a place reachable by every guarded

trigger events and actions of different apps.

28

Figure 4.1: IoTDiscover Workflow.

4.5 Summary of IoTDiscover

In this section, we are discussing the integration of all the modules and steps described above.

Figure 4.1 shows the workflow of our IoTDiscover system.

A user could browse through the app store or third-party marketplace to select expected apps

based on the app’s descriptions and tries to install the apps to the IoT platform. Those apps could

be installed from unvetted sources where malicious code or unintended functionality could be

sneaked into the source code, which is not specified in the app descriptions. The code analysis

module analyzes the function flow of the app’s source code to extract the actual behavior with

trigger events (e.g., temperature below 70F) and corresponding actions (e.g., turn on the heater) of

the app (❶). The extracted trigger-action will be present to the user by using code instrumentation

in order to gather the user’s permission (e.g., allow/deny) for the actual behavior of the app. The

code instrumentation adds extra logic to source code that collects app information, including user’s

settings/configurations of an app, user’s permission of actual app behaviors, as well as guarded

events/actions information at runtime (❷). The instrumented app will be installed on the platform,

and the user sets up the configuration through the app’s user interface (UI) and gives permissions

by comparing extracted behaviors with app descriptions (❸).

29

When the instrumented apps are deployed, the user permitted trigger-actions are configured as

new rules to control the devices in an app. The interaction discovery and resolution module takes

the configured new rules to identify all possible interactions with existing rules and generate solu-

tions for interactions that could be adopted by the user to specify expected policies (❹). Based on

the interaction threats described in Chapter 3.3, the interaction resolutions provided three types of

solutions to resolve the threats: deny conflicting actions and ineffective triggers, specify condition-

based policies to restrict interaction chains, and deny external communication under certain trigger

events. The discovered interactions and solutions are presented to the user and request the user’s

expectations by selecting or permitting given solutions. In the end, the interaction discovery and

resolution module collect resolved rules and form them as property lists that will be converted into

formal policy languages by a policy generator (❺).

Once the policy languages have been generated, they will be encoded into the policy enforce-

ment module, which identifies policy violations by verifying the app’s runtime event and actions

against the defined policies (❻). The instrumented app guards each action as well as sends event

and action information to the policy enforcement module. If an action violates a policy, the policy

enforcement rejects the action; otherwise, the action will be allowed to execute.

30

Chapter 5

Implementation

We implement our system on the Samsung SmartThings platform by using the SmartThings web-

based IDE. And some program processes such as code analysis, code instrumentation, and policy

generator are implemented on a Raspberry Pi 4 module.

5.1 Code Analysis

To implement code analysis, we adopted an existing work from our group, provided by Zhaohui

Wang [2]. The code analysis would directly work on the Abstract Syntax Tree (AST) represen-

tation of Groovy code. Specifically, since the SmartApps for SmartThings platform performs an

action by using different method calls. To get all the necessary information to build IR, the AST-

Transformation class is used to write a visitor to visit each AST node and extract all entry points,

expressions, and method calls inside AST nodes. The code analysis will take the app’s source code

as input. As the intermediate result, the app’s inputs, capabilities, and action list that identified at

each entry point. In addition, the sink activity list is also extracted where the app generates exter-

nal communication with a destination outside of the platform, such as sending SMS, sending the

notification, and sending any http requests. We consider these activities could cause unexpected

actions in privacy concerns as they may leak users’ sensitive activities. To get the information for

trigger-actions, we processed the action list and sink activity list to extract the features of trigger-

action, including trigger_device, trigger_attribute, action_device, and action_command. As the

sink activity is not sending any command to any devices, the action_device would be the same

as the automation unit, also known as the app’s name, and the action_command is set as the sink

31

action where the sendSMS or httpRequest function is called. Blow is showing the example of

extracted trigger-action information for the code in Listing 3.1.

rule32:
Trigger: <device: thebatterymo>, <attribute: battery>
Action: <device: battery monitor>, <command: sendSMS>

rule33:
Trigger: <device: themotionsensor>, <attribute: motion.inactive>
Action: <device: thebatterymo>, <command: unlock>

5.2 Code Instrumentation

IoT apps are instrumented by code instrumentation before they are installed into the Smart-

Things platform. Extra code logic will be inserted in order to gather target information. An ex-

ample of instrumented code is shown in Listing 5.1. SmartThings platform allows a SmartApp

to be programmed with a dynamic preference (dynamicPage) where the content of a page could

be dynamically generated based on the inputs from previous sections or returned value of in-app

function calls. To assist the user to distinguish potential actions that differ from app description,

a dynamicPage preference is added to the source code (line 17-26 of Listing 5.1) to create a user

interface that displays app descriptions and single app trigger-actions based on the user configured

devices and settings. As the conflict discovery and resolution module need to receive configura-

tion and decision information from different IoT apps, it is also needed to prevent a global view

of the entire system (similar to the policy enforcement module). To achieve that, a Parent-Child

relationship is structured between all SmartApps and the two modules, where the parent app could

call any public function inside the child app, and the child app could also call any public function

inside the parent app. The conflict discovery and resolution and policy enforcement modules are

parent apps, and all instrumented apps are child apps. With this structure, the parent apps are able

to get configuration and setting information by calling getChildAppDevices() function (line 13)

that is injected by code instrumentation.

32

1 definition (...
2 parent : " ruichenpolicy : PolicyManager ",
3 ...
4)
5

6 preferences {...}
7 # Events
8 subscribe (motion1 , " motion . inactive ", motionInactiveHandler)
9

10 def motionInactiveHandler (evt) {
11 parent . verify (app. getLabel (), evt , switch1 . getDisplayName (), ’off ’,

null) == true ? switch1 .off () : log.debug(’Invariants violation !’)
12 }
13 def getChildAppDevices () {
14 return settings
15 }
16 def SetupPage () {
17 dynamicPage (name:" SetupPage ") {
18 # original input section ...
19 section ("App Description ") {
20 # display app description
21 }
22 section ("Single -App Policy :") {
23 # display extracted trigger - action
24 # request for permission Allow/Deny
25 }
26 }
27 }

Listing 5.1: Instrumented code example. Parent-Child relationship is defined on line 2; Guard is
set to capture and send runtime information (line 11); getChildAppDevices() function is added to
collect the user’s configured information (line 13-15); and a dynamicPage is added to create user
interface to collect the user’s decisions. (line 17-26)

To set the guard to monitor an app’s action behavior, the code instrumentation will parse the

app’s source code to find the actions (method calls) in the pre-compiled action list. Similar to code

analysis, the code instrumentation also works on the AST of a SmartApp with AST visitors. Once

an action command is visited, it is replaced with a ternary operator, which examines if the function

call to the policy enforcement module is evaluated to be true in the condition part. In the end, the

AST will be translated back to the source code as instrumented SmartApp.

33

5.3 Conflicts Discovery and Resolution

Configure Trigger-Action List. To implement the conflict discovery and resolution module, a

parent app is created during the code instrumentation process and encoded with trigger-actions

extracted from code analysis. Since the trigger-action information extracted from code analysis is

based on input variable names (e.g., thebatterymo, themotionsensor), where multiple apps could

have the same input variable names, but the user can configure them with different devices. Thus,

it is necessary to config these input variables with the actual device id or device name that the user

selected to be used in each app. The discovery and resolution app first calls getChildAppDevice()

function from child apps to get the settings and configuration information that contains all input

values of certain SmartApp. The information returned by the function is formed as a list with a

key of the input variable name and the value of the device name, for example: [“thebatterymo”

: “myFrontDoorLock”, “themotionsensor” : “myMotionSensorDevice”]. Then the trigger-actions

will be paired with the setting and configuration information as shown below for an example. And

the configured trigger-actions can be used to identify any conflicts.

rule32:
Trigger: <device: myMotionSensorDevice>, <attribute: motion.inactive>
Action: <device: myFrontDoorLock>, <command: unlock>

5.3.1 Single-App Conflicts Discovery and Resolution

Discovery. We allow the user to identify whether the actual action of an app conflicts with the

app’s description by providing a user interface, as shown in Figure 5.1. The app’s description and

trigger-action with configured device name will be present to the user. An input box with Accept

and Deny option is provided after the actual trigger-action display window to request the user to

decide whether they expect to allow the trigger-action or not. The input variable name for the

user’s decision is based on the trigger-action id. Once the user configures and installs the instru-

mented app, the decision will be stored and transmitted to its parent app in the form of [“trigger-

action_ID” : “decision (Accept/Deny)”] with configuration information. Resolution. Once the

34

Figure 5.1: The user interface for single-app conflicts discovery and configuration page. The app
description and actual app’s behavior is presented to user, and the user can compare and select
whether they want to allow the behavior or not.

instrumented apps are installed, the decision with trigger-action_ID is sent to the conflict discov-

ery and resolution module. The module then pairs the decision with each trigger-action based on

trigger-action_ID. For each trigger-action with a “Deny” decision, it will be moved out from the

trigger-action list and converted into a policy. The trigger-action with the “Allow” decision is not

changed in the list and will then be used to discover any potential interaction threats between each

other.

5.3.2 Interaction Threats Discovery and Resolution

Define Physical Channels. Before we compare each trigger-action to discovery interactions, we

need to identify the action and trigger channel of each trigger-action based on the device and com-

35

mand/attribute. Some devices may not have physical effects when the device state is changed (e.g.,

motionSensor, TV, DoorLocker, etc.), then we define the channel of such devices with NULL

value. For other devices that could cause physical effects or subscribe to physical environmental

changes (e.g., temperatureSensor, light, heater, etc), we consider three common channels: temper-

ature, humidity, and illuminance. We assign each device ID/name with related channels based on

the device type; for example, the device “mylight_1” and “mylight_2” are two devices with “light”

type and will be assigned under the illuminance channel. Each channel contains two features, ei-

ther increasing or decreasing. The two features depend on the command/attributes of the device

under a certain channel, for instance, a light to be turned on (or illuminance > 50) is under an in-

creasing illuminance channel, and a light to be turned off (or illuminance < 50) is under decreasing

illuminance channel. We denote the device action with an increasing feature as 1, and with de-

creasing feature as 0. Then the channel of a trigger/action will be denoted as [channelName, 0/1],

and inserted into the trigger-action list in the forms of (t, a, ct, ca) as described in section 4.2.2.

Discovery. Based on Algorithm 1 and Algorithm 2, a Groovy code program is created and im-

plemented in the SmartThings platform. The program inputs the trigger-action list with channels

and filters out interaction threats by verifying whether TA1 and TA2 satisfies both the basic pattern

and auxiliary pattern. As an example of detecting A.1 type of conflicting interaction, the program

first verifies whether TA1 and TA2 are sharing the same action device and access conflicting com-

mand to the same device, if so, then A1 = ¬A2 holds. Then the program verifies whether the two

trigger-action share the same trigger device and trigger attributes, if so, then T1 = T2 holds, and A.1

interaction threats occur. Otherwise, if the two trigger-action are configured with different trigger

devices, then T1 ̸= T2 holds and A.2 interaction threats occur. All discovered interaction threats

will be marked with their type and stored in a list.

Resolution. For each discovered interaction threat, the system will generate related policies or

search for related conditions based on interaction threats type. The loaded solutions are presented

to the user with a description of detected interaction threats through a user interface on Smart-

Things mobile app. Each type of resolution to interaction threats would be performed as a dif-

36

Figure 5.2: The user interface to define resolution for conflicting interactions with user-in-the-loop
design. Recommended policies will be generated based on types of conflicting interactions. The
UI will display conflicts to the user and request the user to select expected policy.

ferent user interface design. For interaction threats A.1, A.3, and A.4, they can be solved with

two options of resolutions, either block TA1 or block TA2. Then an input box will be provided to

the user to select which trigger-action would be blocked, as shown in Figures 5.2(a) & (b). Since

there is only one solution that could solve A.2 type conflicting threats, the system will generate

two policies to avoid the two trigger-actions acting at the same time and only present the policies

to notify the user that new policies are created, as shown in Figure 5.2(c).

For chained interaction threats, two types of resolution will be presented, one is a “Deny”

policy that will restrict an action triggered by an unauthorized trigger, and another is the list of pre-

defined conditions based on the action device type and command. The user can select the “Deny”

policy or any conditions to restrict their expectation, as shown in Figures 5.3(a) & (b). If the user is

not satisfied with all recommended solutions, a “add new condition” selection would be selected,

and the user can specify a new condition; the user interface is shown in Figure 5.3(c).

To demonstrate, we use an example and assume the user is trying to specify a condition “Allow

mylight_1 to be on only if myMotionSensor is active”. The user is required to first identify which

action he/she wants to restrict (mylight_1.on in this example). For each target action, three required

37

Figure 5.3: The user interface to define resolution for chained interactions with user-in-the-loop
design. Recommended conditions will be loaded based on target action device and commands. The
UI will display chained interactions to the user and request the user to select expected condition.
If the user selected to specify new condition, an UI is provided to the user to input following infor-
mation: target action, condition object, condition event, condition state, and duration (optional).

input windows will be provided to the user to specify the conditions. The condition_object would

be the condition device (myMotionSensor), and the user can select any device from all already in-

stalled devices in the same environment. The condition_event would be the state of the condition

device, which includes all capability commands or attributes of the device (active and inactive for

motion sensor), and the user can select the desired one (active in this example). There exist some

devices that may be assigned with numerical attributes, such as temperatureSensor, illuminance-

Sensor, and humiditySensor. For these devices, the condition_event would be a text input box to

allow the user to specify the operator (=,>,<) and numerical thresholds. The condition_state

represented the state of the condition event, which only has two choices: is and is not, (in this ex-

ample, is is selected). An optional text input is also provided to allow users to define the duration

conditions, for example, “within 10 mins”, or “over 10 mins”. When a new condition is specified

38

1 {" permission " : <ALLOW/DENY >,
2 "trigger - action " : {" trigger " : [<device >, <attribute >],
3 " action " : [<device >, <command >]},
4 " condition " : [<object >, <event >, <state >, <duration >]}

Listing 5.2: Resolution policy output format. permission defines whether ALLOW or DENY the
target action; trigger-action contains device and attribute/command information of trigger and
action; condition specifies the information of the user selected/specified conditions, NULL value
will be returned if no condition add to the policy.

1 {" permission " : <ALLOW >,
2 "trigger - action " : {" trigger " : [" motionSensor_1 ", " active "],
3 " action " : [" heater ", "on"]},
4 " condition " : ["AC", "off", "is", NULL]}

Listing 5.3: Resolution policy output example with configured information for policy "Allow
heater to be turned on when motion detected only if AC is off "

by the user, it is uploaded to the condition list and presented as recommended conditions for the

next related interaction threats. In the end, the selected or specified conditions will be combined

with the target trigger-actions and form a new policy. All the policies adopted by the user will be

stored in a policy list and transmitted to the policy generator module to generate policy languages

that could be used for policy enforcement.

5.3.3 Resolution Policy Output

The resolution policy generated in the resolution module will be tokenized as abstracted fea-

tures. This will allow the policy generator module to extract necessary information easily. As

shown in Listing 5.2, each policy will be structured as a JSON list that contains three main features:

(1) the permission would be Allow/Deny the target action to be executed, (2) the trigger-action is

the target trigger action information that including trigger/action device, trigger/action attributes/-

commands, and (3) the condition that the user select or specified to restrict the chained interaction

threats, which could be NULL if there is no condition added to the policy. Listing 5.3 shows an

example of the featured policy “Allow heater to be turned on when motion detected only if AC is

off ”. Once all policies are structured in the JSON list, the list will be sent to the policy genera-

39

tor module. Since the generation module is a program implemented outside of the SmartThings

platform, the list will be sent through an external communication (sendSMS).

5.4 Policy Generator and Enforcement

Policy Generator. The policy generator is a Python script that runs on a Raspberry Pi 4 module.

Once it receives the JSON list from the conflict resolution module, it extracts related information

and generates a policy block based on policy language syntax. The keyword Allow/Deny is based

on the feature “permission”, and <target_clause> is filled with “action” with action device and

action command, and <condition_clause> contains both “trigger” and “condition”. An example of

policy language generated for Listing 5.3 is shown below.

Policy P_1:
ALLOW action_command = on AND action_device = heater
ONLY IF state(motionSensor_1) = active AND

state(AC) = off

Policy Enforcement. Once the defied policies are generated, the code instrumentation will

process again and create a policy enforcement module that is encoded with policies. A parser

generated by ANTLR [1] is used to parse the policy language syntax, and the policy semantics

will be encoded as different policy functions in the enforcement module. To enforce the policies, a

policy decision function is generated to make decisions on whether the action is satisfied with the

given policies. The policy enforcement module runs as a parent app in the SmartThings platform

in order to prevent the global view of the entire system. In this way, all child apps (instrumented

apps) are allowed to call the decision function by passing the related event and action information

as arguments and waiting for a response. The decision function then passes the arguments to all

existing policy functions and verifies whether the action is violated or not. If the action passes

all policy functions, a TRUE decision will be returned and allow the app to execute the action

command; otherwise, a FALSE decision is returned, and the action is rejected.

40

Chapter 6

Evaluation

Testing Cases. Due to the limited number of IoT devices, we present five test cases by manually

selecting a few numbers of SmartApp in each test case. A total of 19 SmartApps are selected,

some apps may be used in multiple testing cases but with different configurations. The SmartApps

are selected from the official marketplace, except two are installed from IoTBentch [5], which in-

cludes malicious code and function flaws. The two malicious SmartApps are installed in the first

testing case (testing case A). We then run each testing case in IoTDiscover. The experiment is per-

formed on a Raspberry Pi 4 Module, and the instrumented apps are implemented on the Samsung

SmartThings Web IDE. 4 physical devices and 6 virtual devices are installed in the same room

on SmartThings IDE and the numerical state for virtual devices (e.g., temperature value) is mon-

itored through SmartThings simulator. We also installed the SmartThings mobile app to control

and monitor the status of the devices. The overall evaluation result is shown in Table 6.1.

Conflict Detection Result. To evaluate the correctness of the discovery result, we manually go

over the source code of each app and record all the trigger-actions that occurred in the app’s code.

With the recorded trigger-action and configuration information, we analyze single-app conflicts

and interaction threats by comparing the trigger-actions. We also run these apps in each testing

case to verify the correctness of our manual analysis. After executing all five testing cases, each

testing case resulted in different types of conflicts, and one app in a testing case may cause multi-

ple conflicts. 9 types of interaction threats and some single-app conflicts are detected, except A.1

type of conflicting interaction. That is because we could not find corresponding apps from current

resources to form A.1 type conflict. Thus, to evaluate the effective of our system in this type of

conflict, we created one app with simple functionality to “turn on the light when motion is NOT

41

Testing Case # of apps
of Single-App

Conflicts
Detected

Interaction
Threats
Detected

of Policies
Generated

A 6 2 T.5, T.6 4
B 5 1 A.2, T.4 3
C 5 0 T.1, A.3 2
D 4 2 T.3 3
E 6 1 A.4, T.2 2

Table 6.1: Result summary of evaluating IoTDiscover. All existing conflicts are detected, and the
system generated corresponding policies

detected” and test it with an existing app Brighten-my-path, which have a functionality to “turn

on the light when motion is detected”. As a result, A.1 conflict is successfully detected, and related

policy is also generated. A summary of all interaction threats and selected single app conflicts is

presented in Table 6.2.

Conflict Resolution Result. We use testing case A as an example to demonstrate the conflict reso-

lution results. 6 SmartApps are included in testing case A, and two of them are malicious apps. In

this testing case, 2 single-app conflicts and two interaction threats (T.5, T.6) are detected. With the

2 single-app conflicts, we selected to block the related trigger-actions, and then 2 “Deny” policies

were generated. For interaction threat types T.5 & T.6, 8 recommended conditions are presented

for each light actions (4 for light.on and 4 for light.o f f). By manually reviewing the pre-defined

condition list, we verified that all the condition lists with related action devices and commands are

correctly presented to the user as recommendations. In the end, we selected two conditions for

each interaction threat, and a total of 4 policies were generated as a JSON list. The description of

the policy results is shown in Table 6.3.

Policy Enforcement Result. To evaluate the policy enforcement, we first execute the apps with

violated actions before the policy is executed and recode the app and devices’ actions. Then we

execute the apps again with violated actions after the policy is enforced. To demonstrate, we

use the examples of testing case A. In testing case A, the app Battery Monitor contains a hidden

trigger-action “unlock the door when motion is inactive”, to block this unexpected action, a policy

“Deny door to be unlocked if motion is inactive” is encoded into the policy enforcement. When we

42

execute the Battery Monitor app after the policy is enforced, we noticed that the action “unlock the

door” is blocked. Similar to the interaction threats of T.5, the device light_1 will be immediately

turned on after it is turned off when no motion is detected. After a policy “Allow light_1 to be on

only if illuminance is blow 50 for 1 min”, which makes the light to be turned on after the light is

turned off within 1 minute. Our analysis of all apps’ behavior after the policy is enforced shows

that the system correctly enforced all the policy violations in each testing case, including the vio-

lations in a single app and the interaction threats. Table 6.4 shows the tested triggers and observed

actions before and after the policy enforcement.

43

Testing
Case App Name Threats Threat

Type

A

Darken-behind-me
Unknown trigger-action: Turn off light_1 when
motionSensor is active

Single-
app

Battery-Monitor
Unknown trigger-action: unlock myFrontDoor when
motionSensor is inactive

Single-
app

Darken-behind-me Turn off the light_1 when motionSensor is inactive T.5
Light-up-the-night Turn on the light_1 when illuminance below 50

Light-up-the-night Turn off the light_1 when illuminance exceeds 50 T.6
Turn on the light_1 when illuminance below 50

B

Lock-it-at-a-specific-time Lock myFrontDoor when currentTime is 9:00pm A.2
Unlock-it-when-i-arrive Unlock myFrontDoor when presentSensor is present

Humidity-alert Turn on humidifier when humidity between 30% T.4
Curling-iron Turn on the heater when motionSensor is active

C

Curling-iron Turn on heater when motionSensor is active A.3
Turn on fan when motionSensor is active

Make-it-so Open the window when mode is "home" T.1
Change-mode-on-unlock Change mode to "home" when door is unlocked

D
Make-it-so Turn on light_1 when mode is "home" T.3
Switch-change-mode Change mode to "home" when light is on

E

Close-the-valve Turn off the valve when waterSensor is wet A.4

Dry-the-wetspot
Turn off the valve when waterSensor is dry (user
misconfigured)

Energy-saver Turn off the heater when powerMeter exceeds 3000W T.2
Its-too-cold Turn on the heater when temperature below 70F

Created-app Trun on the light_1 when motion is NOT detected A.1
Brighten-my-path Turn on the light_1 when motion is detected

Table 6.2: Detected threats, including selected single-app conflicts and cross-app interaction
threats

ID Policy
P.1 Deny light_1 to be off if motionSensor is active
P.2 Deny unlock myFrontDoor if motionSensor is inactive
P.3 Allow turn on the light_1 only if illuminance below 50 over 1 min
P.4 Allow turn off the light_1 only if illuminance exceeds 50 over 1 min

Table 6.3: Resolution policies generated for testing case A, where P.1 is to resolve single-app
conflict in Darken-behind-me, P.2 is to resolve single-app conflict in Battery-Monitor, P.3 is use to
resolve interaction threats T.5, and P.4 is use to resolve interaction threats T.6

44

Triggers Action Before Policy Enforcement Action After Policy
Enforcement

motion.active light_1 on then off immediately light_1 on only
motion.inactive light_1 off, myFrontDoor unlocked light_1 off only

set illuminance to 30 light_1 on then off immediately
light_1 on then off

after 1 mins

set illuminance to 60 light_1 off then on immediately
light_1 off then on

after 1 mins

Table 6.4: Policy Enforcement Result for testing case A. By comparing the action before and after
policy enforcement, our result shows IoTDiscover successfully blocked all the violate actions.

45

Chapter 7

Discussion and Future Works

In this section, we discuss the limitations of our system and future works that could be done on

this project.

User-in-the-loop Design. We considered the user-in-the-loop in our system design to allow users

to select the best solution to restrict the conflicts. However, in our current recommendation system,

the user’s option and new conditions are only stored in the condition lists. When a new interac-

tion threat is discovered, the system lists all the condition list that matches the device type and

command, which will present a tedious list as the user specifies more conditions. To address this

problem, future work could adapt machine learning and provide a model training that learns from

the information about the user’s choice and expectation in the conflict resolution, and when a new

interaction threat is fit in the model, it will automatically recommend the most popular or com-

monly used conflict resolution.

System Automation. After the resolution policies are generated in the conflict discovery and res-

olution module, the policies will be sent as SMS message to the policy generator module that is

outside of the SmartThings platform. However, the SMS message needs to be manually extracted

by copying the SMS message and past to the Python script of policy generator. In addition, as one

child app cannot have multiple parent apps, and there are two parent apps created in our system,

so the user is required to uninstall the first parent app (conflict discovery and resolution) and then

is able to install the second parent app (policy enforcement). These steps make every process to

be manually and complicated. A mitigation solution to automate the processes could be enable

the external communication between the module inside SmartThings and the module outside the

SmartThings through a REST API server. With this solution, the resolution policies could be sent

46

by using an http request, and the policy enforcement module could be executed outside the Smart-

Things platform, where the instrumented app sends http request with guarded information and wait

for the response from the policy enforcement module. We consider these improvements as future

works.

Policy verification. Our recommendation system allows the user to select and specify any policy

or conditions without verifying them. We assume all the policies generated by the system and the

user are validated with no conflicts. However, in a highly complex IoT environment, the user-

specified policies may conflict with other policies, or the policy condition could interact with other

existing trigger-actions and fail to block unsafe and insecure states. For example, when the user

defined a policy “Allow light to be on when motion is active only if daytime is 9:00pm”, and later

a new policy is defined as “Deny light to be on when motion is active”, where the two policies are

conflicted. To address this issue, the policy verification system is needed to verify if the policy is

valid or not.

Network-based policy enforcement. In this thesis, we only focused on monitoring the unex-

pected behavior of an IoT app at the app level. However, many IoT platforms, an example as the

SmartThings platform, allow the app to generate communications to external destinations. These

communications are unknown to the user and could communicate to a malicious destination. In

this case, the app could bypass the app-level policies and gain access to a device through the net-

work level with unexpected behaviors. In addition, many existing researches have been shown that

many attacks could be applied at the network level of an IoT environment, such as DDoS attacks.

Recent efforts are focused on solving such problems by using Manufacturer Usage Description

(MUD), which is an Internet Engineering Task Force (IETF) standard that defines the device pro-

file or MUD file provided by the manufacturer and describes the intended network behavior of

an IoT device in detail. By using the Software Defined Network (SDN), the MUD file can be

translated into network access policies and enforced in the network. While most works are mainly

focused on network-level access controls, the intersection of network level and app level access

control could become a future work.

47

Chapter 8

Conclusion

Due to the increase in the development of IoT devices and IoT apps, the IoT system advanced

our living environment to be more convenient, efficient, and autonomous, as well as made the IoT

environment to be more complex, which may cause IoT security and privacy problems. Since

users usually install an IoT app from unvetted vendors and most IoT platforms are lack access

control mechanisms, the unexpected behavior of an IoT app may have occurred in two causes:

(1) users are known limited information about an app through the app’s description, a malicious

action could hide in the source code and execute without user’s authorization, (2) even benign

apps could unexpectedly interact with each other. While existing efforts to address such threats are

either only focused on single app conflicts or based on enforcing pre-defined policies where the

user does not know the sources and functionalities. In this thesis, we presented a system, IoTDis-

cover, that discovers both single-app conflicts and multi-app interaction threats. For every conflict

discovered by IoTDiscover, it generates resolution policies to restrict unexpected actions based on

the user’s choice. A dynamic policy enforcement module is also presented to enforce resolution

policies against violated actions. We have evaluated our system with 17 official SmartApps and

two flawed/malicious apps in 5 testing cases. As a result, IoTDiscover can detect all conflicts in

each testing case and block all the violations by enforcing the resolution policies.

48

References

[1] Antlr. https://www.antlr.org.

[2] Codeanalysis. https://github.com/cyoki/IoTPrivacy.

[3] Homeasistant. https://www.home-assistant.io/.

[4] Homekit. https://developer.apple.com/homekit/.

[5] Iotbentch. https://github.com/IoTBench/IoTBench-test-suite.

[6] Openhab. https://github.com/openhab/openhab1-addons/wiki.

[7] Smartthings. https://www.smartthings.com/.

[8] Smartthings developer. https://developer-preview.smartthings.com/docs/

devices/hub-connected/legacy/.

[9] Smart home device household penetration in the united states in

2019 and 2021. https://www.statista.com/statistics/1247351/

smart-home-device-us-household-penetration/, 2022.

[10] AL-FUQAHA, A., GUIZANI, M., MOHAMMADI, M., ALEDHARI, M., AND AYYASH, M.

Internet of things: A survey on enabling technologies, protocols, and applications. IEEE

communications surveys & tutorials 17, 4 (2015), 2347–2376.

[11] ALHANAHNAH, M., STEVENS, C., AND BAGHERI, H. Scalable analysis of interaction

threats in iot systems. In Proceedings of the 29th ACM SIGSOFT international symposium

on software testing and analysis (2020), pp. 272–285.

49

https://www.antlr.org
https://github.com/cyoki/IoTPrivacy
https://www.home-assistant.io/
https://developer.apple.com/homekit/
https://github.com/IoTBench/IoTBench-test-suite
https://github.com/openhab/openhab1-addons/wiki
https://www.smartthings.com/
https://developer-preview.smartthings.com/docs/devices/hub-connected/legacy/
https://developer-preview.smartthings.com/docs/devices/hub-connected/legacy/
https://www.statista.com/statistics/1247351/smart-home-device-us-household-penetration/
https://www.statista.com/statistics/1247351/smart-home-device-us-household-penetration/

[12] CELIK, Z. B., BABUN, L., SIKDER, A. K., AKSU, H., TAN, G., MCDANIEL, P., AND

ULUAGAC, A. S. Sensitive information tracking in commodity {IoT}. In 27th USENIX

Security Symposium (USENIX Security 18) (2018), pp. 1687–1704.

[13] CELIK, Z. B., MCDANIEL, P., AND TAN, G. Soteria: Automated {IoT} safety and security

analysis. In 2018 USENIX Annual Technical Conference (USENIX ATC 18) (2018), pp. 147–

158.

[14] CELIK, Z. B., TAN, G., AND MCDANIEL, P. D. Iotguard: Dynamic enforcement of security

and safety policy in commodity iot. In NDSS (2019).

[15] CHI, H., ZENG, Q., DU, X., AND YU, J. Cross-app interference threats in smart homes:

Categorization, detection and handling. In 2020 50th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks (DSN) (2020), IEEE, pp. 411–423.

[16] DING, W., AND HU, H. On the safety of iot device physical interaction control. In Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security

(2018), pp. 832–846.

[17] DING, W., HU, H., AND CHENG, L. Iotsafe: Enforcing safety and security policy with

real iot physical interaction discovery. In the 28th Network and Distributed System Security

Symposium (NDSS 2021) (2021).

[18] FERNANDES, E., JUNG, J., AND PRAKASH, A. Security analysis of emerging smart home

applications. In 2016 IEEE symposium on security and privacy (SP) (2016), IEEE, pp. 636–

654.

[19] FERNANDES, E., PAUPORE, J., RAHMATI, A., SIMIONATO, D., CONTI, M., AND

PRAKASH, A. {FlowFence}: Practical data protection for emerging {IoT} application

frameworks. In 25th USENIX security symposium (USENIX Security 16) (2016), pp. 531–

548.

50

[20] JIA, Y. J., CHEN, Q. A., WANG, S., RAHMATI, A., FERNANDES, E., MAO, Z. M.,

PRAKASH, A., AND UNVIERSITY, S. Contexlot: Towards providing contextual integrity

to appified iot platforms. In NDSS (2017), vol. 2, San Diego, pp. 2–2.

[21] KOLIAS, C., KAMBOURAKIS, G., STAVROU, A., AND VOAS, J. Ddos in the iot: Mirai and

other botnets. Computer 50, 7 (2017), 80–84.

[22] NGUYEN, D. T., SONG, C., QIAN, Z., KRISHNAMURTHY, S. V., COLBERT, E. J., AND

MCDANIEL, P. Iotsan: Fortifying the safety of iot systems. In Proceedings of the 14th

International Conference on emerging Networking EXperiments and Technologies (2018),

pp. 191–203.

[23] STEWARD, J. The ultimate list of internet of things statistics for 2022.

https://findstack.com/internet-of-things-statistics/#:~:text=Reports%

20indicate%20that%20there%20will,and%2075.44%20billion%20by%202025, 2022.

[24] TIAN, Y., ZHANG, N., LIN, Y.-H., WANG, X., UR, B., GUO, X., AND TAGUE, P.

{SmartAuth}:{User-Centered} authorization for the internet of things. In 26th USENIX Se-

curity Symposium (USENIX Security 17) (2017), pp. 361–378.

[25] WONG, H., AND LUO, T. Man-in-the-middle attacks on mqtt-based iot using bert based

adversarial message generation. In KDD 2020 AIoT Workshop (2020).

[26] YAHYAZADEH, M., HUSSAIN, S. R., HOQUE, E., AND CHOWDHURY, O. Patriot: Policy

assisted resilient programmable iot system. In International Conference on Runtime Verifi-

cation (2020), Springer, pp. 151–171.

[27] YAHYAZADEH, M., PODDER, P., HOQUE, E., AND CHOWDHURY, O. Expat: Expectation-

based policy analysis and enforcement for appified smart-home platforms. In Proceedings of

the 24th ACM symposium on access control models and technologies (2019), pp. 61–72.

51

https://findstack.com/internet-of-things-statistics/#:~:text=Reports%20indicate%20that%20there%20will,and%2075.44%20billion%20by%202025
https://findstack.com/internet-of-things-statistics/#:~:text=Reports%20indicate%20that%20there%20will,and%2075.44%20billion%20by%202025

[28] ZHANG, W., MENG, Y., LIU, Y., ZHANG, X., ZHANG, Y., AND ZHU, H. Homonit: Mon-

itoring smart home apps from encrypted traffic. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security (2018), pp. 1074–1088.

[29] ZHANG, W., MENG, Y., LIU, Y., ZHANG, X., ZHANG, Y., AND ZHU, H. Homonit: Mon-

itoring smart home apps from encrypted traffic. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security (2018), pp. 1074–1088.

52

	Introduction
	Background and Related Works
	IoT Architecture and Security
	Smart Home Platforms
	Related Works

	Threat Model and Problem Statement
	Threat Model
	Problem Statement
	Interaction Threats
	Conflicting Interactions
	Chained Interactions

	IoTDiscover Design
	App Information Collection
	Code Analysis
	Code Instrumentation

	Conflicts Discovery and Resolution
	Single-App Conflicts Discovery
	Interaction Threats Discovery
	Single-App Conflicts Resolution
	Interaction Threats Resolution

	Policy Generator
	Policy Language Syntax
	Policy Language Semantics

	Policy Enforcement
	Summary of IoTDiscover

	Implementation
	Code Analysis
	Code Instrumentation
	Conflicts Discovery and Resolution
	Single-App Conflicts Discovery and Resolution
	Interaction Threats Discovery and Resolution
	Resolution Policy Output

	Policy Generator and Enforcement

	Evaluation
	Discussion and Future Works
	Conclusion

