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Abstract

We demonstrate that di-tert-butylsilanols are competent nucleophiles for the intramolecular 

interception of palladium π-allyl species. In these reactions, allyl ethyl carbonates are the best 

precursors for the formation of palladium π-allyl intermediates, and [(Cinnamyl)PdCl]2/BINAP is 

superior to other Pd salt/ligand framework combinations. Our optimized protocol is compatible 

with a variety of silanol substrates. Importantly, the cyclization is perfectly stereospecific, 

proceeding via an anti-syn mechanism, which stands in contrast to reported analogous reactions of 

alcohols and phenols, known to proceed via an anti-anti mechanism. The alkenes in the product 

dioxasilinanes serve as blank slates for further functionalization.
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The invention of highly regioselective and stereoselective methods for the installation of 

carbon–heteroatom linkages remains a very active area of research.1–4 The interception 

of palladium π-allyl complexes with carbon nucleophiles is a well-established method 

for the construction of C–C bonds,5–12 but many opportunities remain for the analogous 

construction of C–O bonds.13–19 Our laboratory has a programmatic focus on the 

development of the di-tertbutylsilanol auxiliary for alkene manipulation reactions.20–25 

We envisioned a new method for the construction of C–O bonds via the intramolecular 

interception of a palladium π-allyl species with a pendant di-tert-butylsilanol functional 

group (Scheme 1). On the basis of our previous work as well as that of others,26–31 

we expected such a reaction to be highly chemo-, regio-, and diastereoselective. This 

would be an important addition to the existing technology for the synthesis of complex 

polyhydroxylated molecules (Scheme 1).32–38

Before undertaking reaction optimization, we first had to develop a method that would 

allow for facile access to the requisite starting materials (Scheme 2). Using our 

laboratory’s silylation procedure,23 3-butyn-1-ol or 4-pentyn-2-ol could be converted into 

the corresponding silanol. Bis-deprotonation with 2 equiv of n-BuLi enabled condensation 

with a variety of aldehydes. Reduction of the alkyne to a cis-alkene was effected using 

Lindar’s catalyst under 1 atm of H2 gas. Finally, the free alcohol was converted into an ethyl 

carbonate using ethyl chloroformate and pyridine. This procedure was remarkably modular, 

reproducible, and scalable. We have carried it out reliably on starting scales as large as 10 

mmol, and all substrates shown in this account were prepared using this method.

Treating 1 with Pd(PPh3)4 and (R)-BINAP gave the cyclized product in 35% yield (Table 1, 

entry 1). When Pd(PPh3)4 was replaced with [(Cinnamyl)PdCl]2, the yield increased to 62% 

(Table 1, entry 2). Maintaining the reaction temperature at 80 °C was crucial, as increasing 

it to 110 °C and decreasing it to 23 °C were both deleterious (Table 1, entry 3). The reaction 

performance suffered when (R)-BINAP was replaced with either (R)-DTBM-SEGPHOS 

(Table 1, entry 4) or Xantphos (Table 1, entry 5). Using either base (Table 1, entries 6 amd 7) 

or acid additives (Table 1, entries 8 and 9) was similarly deleterious.

Shinde et al. Page 2

J Org Chem. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A variety of allyl electrophiles have been used as precursors to palladium π-allyl species.13 

The ethyl carbonate and Boc moieties were chosen empirically for optimization (Table 1 and 

Scheme 3, entries 1 and 2). An examination of other leaving groups, including acetate 

(Scheme 3, entry 3), benzoate (Scheme 3, entry 4), and 2,2,2-trichloroethyl carbonate 

(Scheme 3, entry 5), showed that none were superior to ethyl carbonate. Thus, for 

exploration of the substrate scope, ethyl carbonate was retained as the leaving group.

Our optimized protocol was compatible with a variety of substrates, with both linear 

(Scheme 4, entry 1) and branched alkyl chains (Scheme 4, entries 1–3). Substrates with 

pendant cycloalkanes (Scheme 4, entries 4–7), ethers (Scheme 4, entry 1), and aromatic 

rings (Scheme 4, entries 1, 6, 8, and 9) all reacted well. In general, cis-alkene substrates 

were required for a productive reaction; only one trans-alkene substrate (Scheme 4, entry 9) 

cyclized as expected. In almost all of the reactions, the starting material was consumed fully, 

and the remaining mass balance could be attributed to a linear diene side product arising 

from ionization and elimination of the allylic carbonate.39 A crystal structure of 46 (CCDC 

2164073) allowed us to unambiguously establish product identity. Most substrates were 

designed to form six-membered dioxasilinane products, but a five-membered dioxasilolane 

product (Scheme 4, entry 10) could be forced to form. Yields were low, however, and the 

product was unstable for long-term storage, even in a freezer set to −20 °C.

With 4-pentyn-2-ol as the starting material, the aldehyde addition in Scheme 2 furnished 

mixtures of diastereomers. Fortunately, in all cases, these diastereomers were separable 

by chromatography on silica gel. We were pleased to see that the subsequent palladium-

catalyzed cyclization was perfectly stereospecific. The major syn diastereomer reliably 

formed an anti product; the minor anti diastereomer formed a syn product (Scheme 

5). Determining the stereochemistry of the linear starting materials was a considerable 

challenge (Scheme 6A). After various failed crystallization attempts, we globally 

deprotected 31 (Scheme 5; see the Supporting Information for full experimental details) 

and converted it into silocine 61. On the basis of the observed NOE correlations, the 

stereochemistry of 61 and, by analogy, of 31 was assigned. To explain the stereospecificity 

of this reaction, we propose the mechanism shown in Scheme 6B. Insertion of palladium 

occurs anti to the ethyl chloroformate leaving group40 and is followed by coordination of 

the silanol nucleophile (inner-sphere process).41 Subsequent syn reductive elimination the 

furnishes product (Scheme 5). It is interesting to note that this stereoselectivity stands 

in contrast to related reactions where alcohols or phenols are used as nucleophiles; 

in these reactions, there is an overall retention of stereochemistry through an anti-anti 
mechanism.13,18

The product alkenyl dioxasilinanes could be further elaborated (Scheme 7). Using the 

second-generation Hoveyda–Grubbs catalyst, cross-metathesis of 33 with ethyl acrylate 

formed 62 in a 59% yield (Scheme 7A). Dihydroxylation of 48 formed tetrols 63 and 64 as a 

separable mixture of diastereomers (Scheme 7B).

In summary, we have demonstrated that di-tert-butylsilanols are competent nucleophiles 

for the intramolecular interception of palladium π-allyl species. In these reactions, 

allyl ethyl carbonates were the best precursors for the formation of palladium π-
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allyl intermediates, and [(Cinnamyl)PdCl]2/BINAP was superior to other Pd salt/ligand 

framework combinations. Our optimized protocol was compatible with a variety of silanol 

substrates. Importantly, the cyclization is perfectly stereospecific, proceeding via an anti-syn 
mechanism. The alkenes in the product dioxasilinanes serve as blank slates for further 

functionalization, and we expect this reaction to be a useful addition to the existing 

technology for the assembly of polyhydroxylated targets.

EXPERIMENTAL SECTION

General Considerations.

All reagents were obtained commercially unless otherwise noted. Solvents were purified 

by passage under 10 psi of N2 through activated alumina columns. Infrared (IR) spectra 

were recorded on a Thermo Scientific Nicolet iS5 FT-IR spectrometer; data are reported 

in frequency of absorption (cm−1). NMR data are recorded as chemical shift in ppm 

referenced internally using residual solvent peaks, multiplicity (s = singlet, d = doublet, 

t = triplet, q = quartet, m = multiplet or overlap of nonequivalent resonances), integration, 

and coupling constant (Hz). 1H NMR spectra were recorded at 400, 500, or 600 MHz. 
13C NMR spectra were recorded at 100 MHz. Exact mass spectra were recorded using an 

electrospray ion source (ESI) in either positive mode or negative mode with a time-of-flight 

(TOF) analyzer on a Waters LCT PremierTM mass spectrometer and are given in m/z. TLC 

was performed on precoated glass plates (Merck) and visualized either with a UV lamp (254 

nm) or by dipping into a solution of KMnO4–K2CO3 in water followed by heating. Flash 

chromatography was performed on silica gel (230–400 mesh) or Florisil (60–100 mesh).

Substrate Syntheses and Characterization of Compounds 2–5, 65, and 66.

Note: see the Supporting Information for expanded reaction schemes

Synthesis of Compounds 65 and 66.—A 100 mL round-bottom flask with a magnetic 

stir bar was charged with imidazole (1.36 g, 20 mmol, 2 equiv) and 80 mL of DMF. After 

the flask was cooled to 0 °C, di-tert-butylsilyl bis(trifluoromethanesulfonate) (5.29 g, 3.9 

mL, 12 mmol, 1.2 equiv) was added dropwise. Following addition, the flask was removed 

from the ice–water bath and the clear, colorless solution was stirred for 30 min at room 

temperature. Following this time, the reaction flask was cooled to 0 °C and 3-butynol or 

4-pentyn-2-ol (10 mmol, 1 equiv) was added dropwise followed by the addition of one bolus 

of 4-dimethylaminopyridine (0.337 g, 2.75 mmol, 0.28 equiv). The reaction was warmed 

to room temperature over a period of 12 h. Following this time, the reaction mixture was 

diluted with ethyl acetate and transferred to a separatory funnel. The solution was washed 

once with 50 mL of 1 M HCl(aq) and then with 200 mL of H2O and 50 mL of brine. The 

organic layer was collected, dried with MgSO4, and concentrated under reduced pressure 

to yield a semisolid residue. Chromatography on silica gel (gradient of 25 to 50% DCM in 

Hexanes) yielded purified products.

Compound 65.—
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Synthesized on a 10 mmol scale and purified using 35% to 50% CH2Cl2 in hexanes on silica 

gel (colorless oil, 1.8 g, 79% yield): 1H NMR (400 MHz, CDCl3) δ 3.93 (t, J = 6.6 Hz, 2H), 

2.44 (td, J = 6.6, 2.6 Hz, 2H), 1.99 (t, J = 2.6 Hz, 1H), 1.02 (s, 18H); 13C{1H} NMR (101 

MHz, CDCl3) δ 82.6, 69.6, 62.0, 27.5, 23.2, 20.6; IR 3480, 3300, 2940, 2870, 2350, 1730, 

1470, 1130, 830, 675 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C12H24O2SiNa+ 

251.1438, found 251.1436.

Compound 66.—

Synthesized on a 10 mmol scale and purified using 35–50% CH2Cl2 in hexanes on silica gel 

(colorless oil, 1.07 g, 44% yield): 1H NMR (400 MHz, CDCl3) δ 4.28−4.23 (m, 1H), 2.39 

(ddd, J = 16.6, 6.2, 2.6 Hz, 1H), 2.31 (ddd, J = 16.5, 5.8, 2.7 Hz, 1H), 2.17 (s, 1H), 2.03 (t, 

J = 2.7 Hz, 1H), 1.28 (d, J = 6.1 Hz, 3H), 1.02 (s, 9H), 1.01 (s, 9H).; 13C{1H} NMR (101 

MHz, CDCl3) δ 83.0, 70.1, 67.8, 29.6, 27.6, 23.5, 20.6, 20.4; IR 3564, 3300, 2935, 2867, 

2373, 1460, 1380, 1110, 1010, 835, 650 cm−1; HRMS (ESI) m/z [M + H+] calculated for 

C13H27O2Si+ 243.1780, found 243.1789.

General procedure for the Synthesis of Compound B.—

A 100 mL round-bottom flask with a magnetic stir bar was charged with an alkynyl silanol 

(3 mmol, 1 equiv) and 25 mL of dry THF. The reaction mixture was cooled to −78 °C 

using a dry ice–acetone bath. Then n-BuLi solution (2.5 M in hexanes, 6 mmol, 2.4 mL, 

2 equiv) was added dropwise. The reaction flask was removed from the dry ice–acetone 

bath and placed in an ice–water bath. The reaction mixture was warmed to 0 °C over a 

period of 1.5 h. Following this time, the requisite aldehyde (6 mmol, 2 equiv) was added 

dropwise at 0 °C, and the reaction mixture was warmed to room temperature over a period 

of 12 h. The reaction mixture was quenched with careful addition of a saturated aqueous 

NH4Cl solution (10 mL) and transferred to a separatory funnel. The aqueous layer was 

extracted with ethyl acetate (3 × 20 mL). The organic fractions were collected, dried with 
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MgSO4, and concentrated in vacuo. The resulting residue was purified by silica gel column 

chromatography (gradient of 8–12% ethyl acetate in hexanes). Note: in the case of R2 = H 

(paraformaldehyde), 4 equiv of aldehyde was used.

General procedure for the Synthesis of Compound C.—

A 100 mL round-bottom flask with a magnetic stir bar was charged with alkynyl silanol B 

and MeOH (0.1 M final reaction concentration). To this were added 2 drops of quinoline 

and then Lindlar catalyst (10 wt %; e.g. for 100 mg of substrate, 10 mg of catalyst was 

added). The flask was sealed with a rubber septum, briefly evacuated, and backfilled with 

hydrogen gas. The reaction mixture was then stirred under 1 atm of H2 (gas-filled balloon) 

for 3 h. Following this time, the reaction mixture was purged with N2 gas, diluted with ethyl 

acetate, and filtered through a bed of hydrated Celite. Care was taken not to let the bed run 

dry during filtration. The reaction mixture was concentrated, and the resulting residue was 

purified by silica gel column chromatography (gradient of 10–15% ethyl acetate in hexane).

General procedure A: Synthesis of Compounds 1 and 6–32.—A 50 mL round-

bottom flask with a magnetic stir bar was charged with cis-allylic alcohol C (1 mmol) 

and 10 mL of CH2Cl2 (final concentration of 0.1 M). The reaction mixture was cooled 

to 0 °C using an ice–water bath. Next, pyridine (158 mg, 2 mmol, 2 equiv) and DMAP 

(6 mg, 0.05 mmol, 0.05 equiv) were sequentially added. The reaction mixture was stirred 

for 5 min at 0 °C, and then ethyl chloroformate (217 mg, 2 mmol, 2 equiv) was added 

dropwise. The reaction mixture was warmed to room temperature over a period of 12 

h. Following this time, the reaction mixture was quenched with addition of a saturated 

aqueous NaCl solution (brine) and transferred to a separatory funnel. The aqueous layer was 

extracted with CH2Cl2 (3 × 15 mL), and the organic fractions were collected. After drying 

with MgSO4 and concentration in vacuo, the resulting residue was purified by silica gel 

column chromatography. Note: column conditions, scale of the reaction, isolated yields, and 

characterization data are associated with each compound (see below).
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Synthesis of Compound 2.—

A 50 mL round-bottom flask with a magnetic stir bar was charged with (Z)-di-tert-butyl((5-

hydroxypent-3-en-1-yl)oxy)silanol (1 equiv, 871 mg, 3.34 mmol) and anhydrous THF (30 

mL, final concentration 0.11 M). The reaction flask was cooled to 0 °C using an ice–water 

bath. Boc anhydride (1 equiv, 730 mg, 3.34 mmol) and 4-dimethylamino pyridine (DMAP; 

0.3 equiv, 123 mg, 1 mmol) were added sequentially. The reaction mixture was warmed to 

room temperature over a period of 12 h. Following this period, the reaction mixture was 

quenched with addition of a 5% aqueous HCl solution and transferred to a separatory funnel. 

The aqueous layer was extracted with ethyl acetate (3 × 15 mL), and the organic fractions 

were collected. After drying over MgSO4, the organic layer was concentrated in vacuo. 

The resulting residue was purified by silica gel column chromatography using 2–5% ethyl 

acetate in hexane as eluent to give 2 (colorless oil, 845 mg, 2.34 mmol, 70% yield).

Compound 2.—Synthesized on a 3.35 mmol scale and purified using 4% ethyl acetate 

in hexane on silica gel (colorless oil, 845 mg, 70% yield): 1H NMR (400 MHz, CDCl3) δ 
5.83−5.52 (m, 2H), 4.64 (dd, J = 6.6, 1.0 Hz, 2H), 3.83 (t, J = 6.7 Hz, 2H), 2.46−2.28 (m, 

2H), 1.48 (s, 9H), 1.01 (s, 18H); 13C NMR (101 MHz, CDCl3) δ 153.7, 132.0, 125.1, 82.3, 

62.93, 63.92, 31.5, 28.0, 27.6, 20.6; IR 3562, 2934, 2860, 2358, 1741, 1473, 1370, 1290, 

1164, 1101, 936, 827,645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C18H36O5SiNa+ 

383.2224, found 383.2215.

Synthesis of Compound 3.—

A 50 mL round-bottom flask with a magnetic stir bar was charged with (Z)-di-tert-butyl((5-

hydroxypent-3-en-1-yl)oxy)silanol (391 mg, 1.5 mmol, 1 equiv) and anhydrous CH2Cl2 (20 

mL, final concentration 0.075 M). The reaction flask was cooled to 0 °C using an ice–water 

bath. Pyridine (242 μL, 3 mmol, 2 equiv) and DMAP (9.2 mg, 0.075 mmol, 0.05 equiv) 

were added sequentially. Next, Ac2O (293 mg, 2.23 mmol, 1.5 equiv) was added dropwise. 

The reaction mixture was warmed to room temperature over a period of 12 h. Following 

this time, the reaction mixture was quenched with addition of a saturated aqueous NaCl 

solution (brine) and transferred to a separatory funnel. The aqueous layer was extracted 

with CH2Cl2 (3 × 15 mL), and the organic fractions were collected. After drying with 

MgSO4 and concentration in vacuo, the resulting residue was purified by silica gel column 

chromatography using a gradient of 2–5% ethyl acetate in hexanes to give 3 (colorless oil, 

220 mg, 0.727 mmol, 48% yield).
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Compound 3.—Synthesized on a 1.5 mmol scale and purified using 4% ethyl acetate in 

hexane on silica gel (colorless oil, 220 mg, 48% yield): 1H NMR (400 MHz, CDCl3) δ 
5.86−5.75 (m, 1H), 5.64−5.58 (m, 1H), 4.64 (d, J = 7.0 Hz, 2H), 3.85 (td, J = 6.6, 0.9 Hz, 

2H), 2.40 (q, J = 6.8 Hz, 2H), 2.06 (s, 3H), 1.01 (s, 18H); 13C{1H} NMR (101 MHz, CDCl3) 

δ 171.1, 132.0, 125.2, 62.9, 60.6, 31.5, 27.6, 21.2, 20.6; IR 3522, 2934, 2860, 2358, 1718, 

1473, 1376, 1244, 1101, 1027, 827, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for 

C15H30O4SiNa+ 325.1806, found 325.1793.

Synthesis of Compound 4.—

A 50 mL round-bottom flask with a magnetic stir bar was charged with (Z)-di-tert-butyl((5-

hydroxypent-3-en-1-yl)oxy)silanol (400 mg, 1.54 mmol, 1 equiv) and anhydrous CH2Cl2 

(20 mL, final concentration 0.077 M). The reaction flask was cooled to 0 °C using an 

ice–water bath. Pyridine (248 μL, 3.07 mmol, 2 equiv) and DMAP (9.4 mg, 0.077 mmol, 

0.05 equiv) were added sequentially. Next, benzoyl chloride (260 mg, 0.215 mL, 1.85 mmol, 

1.2 equiv) was added dropwise. The reaction mixture was warmed to room temperature over 

the next 12 h. Following this time, the reaction mixture was quenched with addition of a 

saturated aqueous NaCl solution (brine) and transferred to a separatory funnel. The aqueous 

layer was extracted with CH2Cl2 (3 × 15 mL), and the organic fractions were collected. 

After drying with MgSO4 and concentration in vacuo, the resulting residue was purified by 

silica gel column chromatography using a gradient of 2–5% ethyl acetate in hexanes to give 

4 (colorless oil, 303 mg, 0.831 mmol, 54% yield).

Compound 4.—Synthesized on a 1.54 mmol scale and purified using 4% ethyl acetate 

in hexane on silica gel (colorless oil, 303 mg, 54% yield): 1H NMR (400 MHz, CDCl3) δ 
8.06−8.03 (m, 2H), 7.56−7.54 (m, 1H), 7.45−7.43 (m, 2H), 5.78−5.74 (m, 2H), 4.92−4.90 

(m, 2H), 3.87 (t, J = 6.6 Hz, 2H), 2.46 (q, J = 6.5 Hz, 2H), 1.02 (s, 18H); 13C{1H} NMR 

(101 MHz, CDCl3) δ 166.6, 133.0, 132.0, 130.3, 129.7, 128.4, 125.2, 62.9, 60.9, 31.5, 27.5, 

20.5; IR 3522, 2934, 2860, 2358, 1701, 1473, 1358, 1270, 1101, 936, 827, 713, 645 cm−1; 

HRMS (ESI) m/z [M + Na+] calculated for C20H32O4SiNa+ 387.1962, found 387.1943.

Synthesis of Compound 5.—

A 50 mL round-bottom flask with a magnetic stir bar was charged with (Z)-di-tert-butyl((5-

hydroxypent-3-en-1-yl)oxy)silanol (391 mg, 1.5 mmol, 1 equiv) and anhydrous THF (20 

mL, final concentration 0.075 M). The reaction flask was cooled to 0 °C using an ice–

water bath. Pyridine (297 mg, 0.302 mL, 3.75 mmol, 2.5 equiv) was added followed by 

dropwise addition of 2,2,2-trichloroethyl chloroformate (382 mg, 0.248 mL, 1.8 mmol, 
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1.2 equiv).The reaction mixture was warmed to room temperature over the next 12 h. 

Following this time, the reaction mixture was quenched with addition of a saturated aqueous 

NH4Cl solution and transferred to a separatory funnel. The aqueous layer was extracted 

with ethyl acetate (3 × 15 mL), and the organic fractions were collected. After drying with 

MgSO4 and concentration in vacuo, the resulting residue was purified by silica gel column 

chromatography using a gradient of 2–5% ethyl acetate in hexanes to give 5 (colorless oil, 

285 mg, 0.654 mmol, 44% yield).

Compound 5.—Synthesized on a 1.5 mmol scale and purified using 4% ethyl acetate in 

hexane on silica gel (colorless oil, 285 mg, 44% yield): 1H NMR (400 MHz, CDCl3) δ 
5.86−5.75 (m, 1H), 5.75−5.63 (m, 1H), 4.80 (d, J = 7.0 Hz, 2H), 4.76 (d, J = 0.9 Hz, 2H), 

3.85 (td, J = 6.6, 0.9 Hz, 2H), 2.40 (q, J = 6.8 Hz, 2H), 1.01 (d, J = 0.9 Hz, 18H); 13C{1H} 

NMR (101 MHz, CDCl3) δ 154.1, 133.4, 123.9, 94.6, 77.0, 64.9, 62.8, 31.5, 27.6, 20.6; IR 

3562, 2934, 2860, 2358, 1758, 1473, 1381, 1250, 1101, 936, 822, 730 cm−1; HRMS (ESI) 

m/z [M + Na+] calculated for C16H29Cl3O5SiNa+ 457.0748, found 457.0738.

Characterization of Substrates 1 and 6–32.

Compound 1.—

Synthesized using procedure A on a 2.94 mmol scale and purified using 5% ethyl acetate in 

hexane on silica gel (colorless oil, 860 mg, 88% yield): 1H NMR (400 MHz, CDCl3) δ 5.77 

(dtt, J = 11.1, 7.0, 1.1 Hz, 1H), 5.68 (dtt, J = 10.9, 6.9, 1.3 Hz, 1H), 4.70 (dd, J = 6.9, 1.1 Hz, 

2H), 4.20 (q, J = 7.1 Hz, 2H), 3.83 (t, J = 6.7 Hz, 2H), 2.50−2.29 (m, 2H), 1.31 (t, J = 7.1 

Hz, 3H), 1.01 (s, 18H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.2, 132.4, 124.6, 64.0, 63.5, 

62.8, 31.4, 27.4, 20.4, 14.3; IR 3530, 2934, 2860, 1724, 1473, 1376, 1270, 1101, 936, 827, 

645 cm−1; HRMS calculated for C16H32O5SiNa+ 355.1911, found 355.1896.

Compound 6.—

Synthesized using procedure A on a 0.57 mmol scale and purified using 5% ethyl acetate 

in hexane on silica gel (colorless oil, 180 mg, 81% yield): 1H NMR (400 MHz, CDCl3) δ 
5.64 (ddd, J = 10.1, 8.5, 6.4 Hz, 1H), 5.49−5.25 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.82 (m, 

2H), 2.56 (m, 1H), 2.34 (ddtd, J = 14.2, 7.8, 6.5, 1.5 Hz, 1H), 1.83−1.64 (m, 1H), 1.63−1.43 

(m, 1H), 1.41−1.18 (m, 7H), 1.02 (s, 9H), 1.00 (s, 9H), 0.89 (td, J = 5.6, 4.3, 2.6 Hz, 3H).; 
13C{1H} NMR (101 MHz, CDCl3) δ 154.9, 130.7, 129.4, 74.6, 63.9, 63.0, 34.3, 31.8, 27.5, 

27.4, 27.1, 22.5, 20.6, 20.3, 14.2, 13.9; IR 3540, 2934, 1718, 1473, 1270, 1101, 1010, 942, 
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827, 793, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C20H40O5SiNa+ 411.2543, 

found 411.2533.

Compound 7.—

Synthesized using procedure A on a 0.76 mmol scale and purified using 5% ethyl acetate in 

hexane on silica gel (colorless oil, 260 mg, 82% yield): 1H NMR (400 MHz, CDCl3) δ 5.64 

(ddd, J = 10.1, 8.6, 6.3 Hz, 1H), 5.49−5.25 (m, 2H), 4.17 (q, J = 7.1 Hz, 2H), 3.82 (qdd, 

J = 10.1, 7.6, 6.4 Hz, 2H), 2.65−2.43 (m, 1H), 2.33 (ddtd, J = 14.2, 7.8, 6.5, 1.4 Hz, 1H), 

1.81−1.63 (m, 1H), 1.52 (dt, J = 13.9, 7.5 Hz, 1H), 1.28 (dt, J = 8.5, 5.7 Hz, 11H), 1.09 (s, 

9H), 0.92 (m, 9H), 0.90−0.84 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 154.9, 130.7, 

129.4, 74.6, 63.9, 63.0, 34.6, 31.8, 31.7, 29.0, 27.5, 27.5, 24.9, 22.6, 20.6, 20.3, 14.2, 14.0; 

IR 3510, 2934, 2860, 1718, 1473, 1376, 1261, 1101, 1010, 936, 827, 645 cm−1; HRMS 

(ESI) m/z [M + Na+] calculated for C22H44O5SiNa+ 439.2856, found 439.2828.

Compound 8.—

Synthesized using procedure A on a 2.5 mmol scale and purified using 5% ethyl acetate in 

hexane on silica gel (colorless oil, 740 mg, 76% yield): 1H NMR (400 MHz, CDCl3) δ 5.76 

(ddd, J = 11.1, 8.9, 5.8 Hz, 1H), 5.49 (ddt, J = 11.3, 9.8, 1.7 Hz, 1H), 5.15 (d, J = 9.9 Hz, 

1H), 4.20 (q, J = 7.1 Hz, 2H), 3.86 (dddd, J = 30.8, 10.1, 7.7, 6.3 Hz, 2H), 2.76−2.55 (m, 

1H), 2.33 (ddtd, J = 14.1, 8.1, 6.1, 1.8 Hz, 1H), 1.33 (td, J = 7.1, 0.6 Hz, 3H), 1.05 (s, 9H), 

1.03 (s, 9H), 0.97 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.2, 132.1, 126.2, 81.1, 

63.9, 63.0, 34.7, 31.8, 27.5, 27.4, 25.6, 20.6, 20.3, 14.3; IR 3539, 2963, 1718, 1473, 1370, 

1273, 1101, 1010, 942, 827, 793, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for 

C20H40O5SiNa+ 411.2537, found 411.2533.

Compound 9.—

Synthesized using procedure A on a 1.98 mmol scale and purified using 5% ethyl acetate in 

hexane on silica gel (colorless solid, 594 mg, 69% yield): 1H NMR (400 MHz, CDCl3) δ 
7.32−7.23 (m, 2H), 7.22−7.12 (m, 3H), 5.69−5.57 (m, 1H), 5.40 (m, 2H), 4.17 (q, J = 7.1 

Hz, 2H), 3.81 (m, 2H), 2.63 (t, J = 7.5 Hz, 2H), 2.60−2.49 (m, 1H), 2.39−2.24 (m, 1H), 

1.85−1.50 (m, 4H), 1.29 (t, J = 7.1 Hz, 3H), 1.02 (s, 9H), 1.00 (s, 9H).; 13C{1H} NMR 
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(101 MHz, CDCl3) δ 154.9, 141.9, 131.0, 129.2, 128.41, 128.36, 125.9, 74.3, 63.9, 63.0, 

35.6, 34.2, 31.8, 27.48, 27.46, 26.8, 20.6, 20.3, 14.2; IR 3530, 2934, 2860, 2363, 1718, 

1473, 1261, 1101, 1010, 936, 827, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for 

C25H42O5SiNa+ 473.2699, found 473.2694.

Compound 10.—

Synthesized using procedure A on a 0.79 mmol scale and purified using 5% ethyl acetate 

in hexane on silica gel (colorless oil, 230 mg, 64% yield): 1H NMR (400 MHz, CDCl3) δ 
7.44−7.27 (m, 5H), 5.77 (dddd, J = 11.0, 8.4, 6.7, 1.0 Hz, 1H), 5.66 (dddd, J = 9.2, 7.4, 3.9, 

1.0 Hz, 1H), 5.48 (ddt, J = 10.9, 9.2, 1.5 Hz, 1H), 4.61 (d, J = 1.1 Hz, 2H), 4.22 (q, J = 7.1 

Hz, 2H), 3.97−3.71 (m, 2H), 3.64 (dd, J = 10.8, 7.4 Hz, 1H), 3.55 (dd, J = 10.7, 3.9 Hz, 

1H), 2.57 (dddd, J = 15.6, 8.5, 5.3, 1.6 Hz, 1H), 2.40 (dqd, J = 14.0, 6.7, 1.6 Hz, 1H), 1.33 

(t, J = 7.1 Hz, 3H), 1.04 (s, 9H), 1.03 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 154.8, 

137.9, 132.8, 128.4, 127.8, 127.7, 125.7, 73.3, 73.2, 71.3, 64.1, 62.9, 31.9, 27.5 (2 lines), 

20.6, 20.3, 14.2; IR 3528, 2934, 1747, 1473, 1370, 1281, 1101, 1010, 827, 742, 645 cm−1; 

HRMS (ESI) m/z [M + Na+] calculated for C24H40O6SiNa+ 475.2492, found 475.2467.

Compound 11.—

Synthesized using procedure A on a 0.6 mmol scale and purified using a gradient of 10% 

EtOAc in hexanes on silica gel (light yellow oil, 250 mg, 82%): 1H NMR (400 MHz, 

chloroform-d) δ 7.42−7.29 (m, 5H), 5.73−5.59 (m, 1H), 5.42 (d, J = 7.4 Hz, 2H), 4.51 (d, J 
= 1.8 Hz, 2H), 4.18 (q, J = 7.2, 2H), 3.91−3.74 (m, 2H), 3.56−3.40 (m, 2H), 2.60−2.51 (m, 

1H), 2.39−2.30 (m, 1H), 1.82−1.64 (m, 4H), 1.31 (t, J = 7.3, 3H), 1.02 (s, 9H), 1.01 (s, 9H). 
13C{1H} NMR (101 MHz, chloroform-d) δ 154.8, 138.4, 130.9, 129.1, 128.3, 127.6, 127.5, 

74.2, 72.9, 69.7, 63.9, 62.9, 31.7, 31.3, 27.47, 27.46, 25.3, 20.5, 20.2, 14.2. IR 3545, 2934, 

2860, 2363, 1741, 1473, 1370, 1261, 1101, 1010, 942, 827, 742, 645 cm−1; HRMS (ESI) 

m/z [M + Na+] calculated for C26H44O6SiNa+ 503.2799, found 503.2780.

Compound 12.—

Synthesized using procedure A on a 0.9 mmol scale and purified using a gradient of 0–10% 

EtOAc in hexanes on silica gel (light yellow oil, 250 mg, 75% yield): 1H NMR (400 MHz, 

chloroform-d) δ 5.71 (ddd, J = 11.3, 8.8, 6.1 Hz, 1H), 5.43 (ddd, J = 11.0, 9.7, 1.7 Hz, 1H), 

5.15 (dd, J = 9.5, 7.1 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.83 (dddd, J = 16.2, 14.3, 10.0, 6.8 
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Hz, 2H), 2.67−2.53 (m, 1H), 2.39−2.28 (m, 1H), 1.94−1.87 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 

1.03 (s, 9H), 1.01 (s, 9H), 0.97 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H); 13C{1H} NMR 

(101 MHz, chloroform-d) δ 155.0, 131.6, 127.5, 79.0, 63.8, 63.0, 32.2, 31.8, 27.46, 27.44, 

20.5, 20.2, 18.1, 17.8, 14.2; IR 3545, 2963, 2860, 1718, 1473, 1376, 1261, 1101, 827 cm−1; 

HRMS (ESI) m/z [M + Na+] calculated for C19H38O5SiNa+ 397.2381, found 397.2380.

Compound 13.—

Synthesized using procedure A on a 1.4 mmol scale and purified using a gradient of 0–10% 

EtOAc in hexanes on silica gel (light yellow oil, 452 mg, 76% yield): 1H NMR (400 MHz, 

chloroform-d) δ 5.69 (ddd, J = 10.6, 8.9, 6.0 Hz, 1H), 5.46 (tt, J = 10.6, 1.5 Hz, 1H), 5.39 

(dd, J = 9.7, 5.9 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.90−3.76 (m, 2H), 2.67−2.57 (m, 1H), 

2.36−2.30 (m, 1H), 1.53−1.39 (m, 4H), 1.31 (t, J = 7.2 Hz, 3H), 1.28−1.22 (m, 1H), 1.03 (s, 

9H), 1.01 (s, 9H), 0.90 (td, J = 7.3, 5.0 Hz, 6H); 13C{1H} NMR (101 MHz, chloroform-d) 

δ 155.0, 131.4, 127.8, 76.0, 63.8, 63.0, 44.9, 31.8, 27.5, 27.4, 21.3, 21.2, 20.6, 20.2, 14.2, 

11.2, 11.0; IR 3545, 2963, 2860, 2318, 1718, 1473, 1376, 1261, 1101, 1010, 942, 827, 

645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C21H42O5SiNa+ 425.2694, found 

425.2678.

Compound 14.—

Synthesized using procedure A on a 1.8 mol scale and purified using a gradient of 0–10% 

EtOAc in hexanes on silica gel, inseparable ~1:1 mixture of diastereomers (light yellow 

oil, 510 mg, 72%): 1H NMR (400 MHz, chloroform-d) δ 5.75−5.64 (m, 1H), 5.50−5.38 

(m, 1H), 5.29−5.21 (m, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.91−3.76 (m, 2H), 2.66−2.54 (m, 

1H), 2.38−2.27 (m, 1H), 1.74−1.60 (m, 1H), 1.57−1.50 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 

1.20−1.07 (m, 1H), 1.03 (s, 9H), 1.01 (s, 9H), 0.97−0.88 (m, 6H); 13C{1H} NMR (101 

MHz, chloroform-d) δ 155.0, 131.6, 131.3, 127.9, 127.3, 77.9, 77.7, 63.8, 63.0, 39.0, 38.5, 

31.9, 31.8, 27.46, 27.44, 25.0, 24.8, 20.6, 20.2, 14.4, 14.2, 11.4, 11.2; IR 3545, 2963, 2860, 

2363, 1718, 1473, 1376, 1261, 1101, 1010, 942, 827, 645 cm−1; HRMS (ESI) m/z [M+Na+] 

calculated for C20H40O5SiNa+ 411.2537, found 411.2520.

Compound 15.—
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Synthesized using procedure A on a 1.37 mmol scale and purified using 5% ethyl acetate 

in hexane on silica gel (colorless oil, 318 mg, 56% yield); 1H NMR (400 MHz, CDCl3) 

δ 5.69 (dddd, J = 11.0, 8.8, 6.1, 0.9 Hz, 1H), 5.40 (ddt, J = 11.1, 9.6, 1.5 Hz, 1H), 5.15 

(ddd, J = 9.6, 7.5, 0.9 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.81 (m, 2H), 2.57 (m, 1H), 2.30 

(ddtd, J = 14.2, 8.0, 6.3, 1.7 Hz, 1H), 1.83 (d, J = 12.7 Hz, 1H), 1.78−1.60 (m, 4H), 1.56 

(dtd, J = 11.4, 8.0, 3.7 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.26−1.11 (m, 4H), 1.05−0.97 

(m, 19H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.1, 131.5, 127.9, 78.4, 63.9, 63.1, 41.8, 

31.9, 28.6, 28.3, 27.49, 27.47, 26.3, 25.9, 25.7, 20.6, 20.3, 14.2; IR 3600, 2934, 2860, 1718, 

1473, 1376, 1261, 1101, 947, 827, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for 

C22H42O5SiNa+ 437.2699, found 437.2683.

Compound 16.—

Synthesized using procedure A on 0.963 mmol scale and purified using 5% ethyl acetate in 

hexane on silica gel (colorless oil, 350 mg, 85% yield): 1H NMR (400 MHz, CDCl3) δ 5.68 

(dddd, J = 11.1, 8.8, 6.1, 0.8 Hz, 1H), 5.41 (ddt, J = 11.1, 9.5, 1.5 Hz, 1H), 5.17 (ddd, J 
= 9.7, 7.2, 0.9 Hz, 1H), 4.26−4.08 (m, 2H), 3.81 (dddd, J = 25.3, 10.0, 7.8, 6.3 Hz, 2H), 

2.59 (ddddd, J = 13.9, 9.0, 7.6, 6.1, 1.4 Hz, 1H), 2.32 (ddtd, J = 14.3, 8.0, 6.3, 1.7 Hz, 

1H), 1.81−1.19 (m, 18H), 1.05 (s, 9H), 1.03 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 
155.1, 131.6, 127.9, 78.8, 63.9, 63.1, 41.3, 31.9, 28.4, 28.1, 27.46, 27.48, 26.73, 26.67, 26.4, 

25.9, 25.3, 20.6, 20.3, 14.2; IR 3510, 2929, 2860, 2363, 1718, 1473, 1261, 1101, 1010, 942, 

827, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C24H46O5SiNa+ 465.3007, found 

465.2990.

Compound 17.—

Synthesized using procedure A on a 1.43 mmol scale and purified using 5% ethyl acetate 

in hexane on silica gel (colorless solid, 516 mg, 85% yield): 1H NMR (400 MHz, CDCl3) 

δ 5.68 (dddd, J = 11.0, 8.8, 6.1, 0.9 Hz, 1H), 5.40 (ddt, J = 11.1, 9.6, 1.5 Hz, 1H), 5.14 

(ddd, J = 9.6, 7.5, 0.9 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.81 (m, 2H), 2.57 (ddddd, J = 

14.0, 9.0, 7.7, 6.2, 1.4 Hz, 1H), 2.30 (ddtd, J = 14.1, 7.9, 6.3, 1.7 Hz, 1H), 1.94−1.63 (m, 

4H), 1.51 (dddd, J = 15.1, 11.9, 7.0, 3.4 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.24−1.13 (m, 

2H), 1.13−0.94 (m, 21H), 0.93−0.76 (m, 5H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.1, 

131.4, 127.9, 78.5, 63.9, 63.1, 41.9, 39.3, 32.2, 32.1, 31.9, 29.8, 28.6, 28.1, 27.49, 27.47, 

20.6, 20.3, 14.2, 11.5; IR 3530, 2934, 2854, 2363, 1718, 1473, 1376, 1267, 1101, 1010, 936, 

827, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C24H46O5SiNa+ 465.3007, found 

465.2991.
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Compound 18.—

Synthesized using procedure A on a 0.77 mmol scale and purified using 5% ethyl acetate in 

hexane on silica gel (colorless solid, 274 mg, 82% yield): 1H NMR (400 MHz, CDCl3) δ 
7.24−7.07 (m, 4H), 5.74 (ddd, J = 10.6, 8.7, 6.1 Hz, 1H), 5.53−5.34 (m, 2H), 4.19 (q, J = 

7.1 Hz, 2H), 3.93−3.75 (m, 2H), 3.10 (dd, J = 15.8, 7.8 Hz, 1H), 3.01−2.91 (m, 1H), 2.86 

(dd, J = 15.9, 7.8 Hz, 1H), 2.81−2.66 (m, 2H), 2.65−2.54 (m, 1H), 2.35 (ddtd, J = 14.2, 

7.9, 6.4, 1.6 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.01 (s, 9H), 1.00 (s, 9H); 13C{1H} NMR 

(101 MHz, CDCl3) δ 154.9, 142.5, 142.2, 132.1, 127.9, 126.44, 126.37, 124.6, 124.4, 77.2, 

64.1, 63.0, 43.5, 35.7, 35.1, 31.9, 27.49, 27.47, 20.6, 20.3, 14.2; IR 3530, 2934, 2860, 2358, 

1724, 1473, 1370, 1261, 1101, 1004, 942, 827, 742, 645 cm−1; HRMS (ESI) m/z [M + Na+] 

calculated for C25H40O5SiNa+ 471.2543, found 471.2537.

Compound 19.—

Synthesized using procedure A on a 0.8 mmol scale and purified using a gradient of 0–10% 

EtOAc in hexanes on silica gel (light yellow oil, 250 mg, 66% yield). 1H NMR (400 MHz, 

chloroform-d) δ 5.68−5.61 (m, 1H), 5.46−5.32 (m, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.91−3.72 

(m, 2H), 2.62−2.52 (m, 1H), 2.39−2.27 (m, 1H), 1.69−1.50 (m, 8H), 1.31 (t, J = 7.2 Hz, 

3H), 1.25−1.14 (m, 6H), 1.03 (s, 9H), 1.01 (s, 9H), 0.91−0.86 (m, 1H); 13C{1H} NMR (101 

MHz, chloroform-d) δ 154.9, 130.7, 129.4, 74.8, 63.8, 63.0, 37.5, 33.3, 33.2, 32.4, 32.0, 

31.7, 27.45, 27.44, 26.6, 26.3, 20.5, 20.2, 14.2. IR 3562, 2929, 2370, 1718, 1261, 1101, 

827, 645 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C24H46O5SiNa+ 465.3007, found 

465.2996.

Compound 20.—

Synthesized using procedure A on a 3.02 mmol scale and purified using 4% ethyl acetate 

in hexane on silica gel (colorless oil, 993 mg, 75% yield): 1H NMR (400 MHz, CDCl3) δ 
7.31−7.24 (m, 2H), 7.22−7.15 (m, 3H), 5.68 (ddd, J = 10.4, 8.6, 6.3 Hz, 1H), 5.54−5.29 (m, 

2H), 4.19 (q, J = 7.1 Hz, 2H), 3.81 (qdd, J = 10.0, 7.5, 6.4 Hz, 2H), 2.73−2.63 (m, 2H), 

2.62−2.44 (m, 2H), 2.37−2.25 (m, 1H), 2.16−2.02 (m, 1H), 1.93−1.78 (m, 1H), 1.31 (t, J = 

7.1 Hz, 3H), 1.02 (s, 9H), 1.00 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.0, 141.2, 

131.4, 129.1, 128.6, 128.5, 126.2, 74.1, 64.1, 63.1, 36.4, 32.0, 31.5, 27.60, 27.59, 20.7, 20.4, 
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14.4; IR 3562, 2934, 2860, 2358, 1741, 1473, 1370, 1261, 1101, 1010, 827 cm−1; HRMS 

(ESI) m/z [M + Na+] calculated for C24H40O5SiNa+ 459.2537, found 459.2534.

Note: the synthesis of this substrate was carried out using procedure A. However, the 

product was atypical; under the reaction conditions, we hypothesize that a rearrangement 

took place.

Compound 21.—

Synthesized using procedure A on a 1.34 mmol scale and purified using 4% ethyl acetate 

in hexane on silica gel (colorless oil, 265 mg, 48% yield): 1H NMR (400 MHz, CDCl3) δ 
7.42−7.36 (m, 2H), 7.32 (ddd, J = 8.1, 7.0, 1.0 Hz, 2H), 7.28−7.24 (m, 1H), 6.67 (d, J = 15.9 

Hz, 1H), 6.18 (dd, J = 15.9, 7.5 Hz, 1H), 5.54 (dddd, J = 8.5, 7.5, 4.9, 1.0 Hz, 1H), 4.21 (qd, 

J = 7.1, 2.2 Hz, 2H), 4.04−3.80 (m, 2H), 2.15−2.01 (m, 1H), 2.01−1.85 (m, 1H), 1.31 (t, J = 

7.1 Hz, 3H), 1.04 (s, 9H), 1.03 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.1, 136.1, 

133.1, 128.6, 128.1, 126.9, 126.7, 75.9, 64.1, 59.1, 38.0, 27.6, 27.5, 20.5, 20.4, 14.2; IR 

3545, 2934, 2860, 2358, 1724, 1473, 1376, 1261, 1101, 827, 747, 645 cm−1; HRMS (ESI) 

m/z [M + Na+] calculated for C22H36O5SiNa+ 431.2230, found 431.2217.

Compound 22.—

Synthesized using procedure A on a 5 mmol scale and purified using 3–4% ethyl acetate in 

hexane on silica gel (colorless oil, 965 mg, 61% yield): 1H NMR (400 MHz, CDCl3) δ 5.82 

(dtt, J = 11.2, 6.4, 1.4 Hz, 1H), 5.55 (dtt, J = 11.1, 6.8, 1.5 Hz, 1H), 4.77−4.64 (m, 2H), 4.45 

(dd, J = 6.5, 1.5 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.01 (s, 18H); 
13C{1H} NMR (101 MHz, CDCl3) δ 155.4, 134.6, 123.6, 64.4, 63.5, 59.1, 27.5, 20.5, 14.4; 

IR 3545, 2934, 2860, 2358, 1730, 1473, 1267, 1090, 827 cm−1; HRMS (ESI) m/z [M + Na+] 

calculated for C15H30O5SiNa+ 341.1755, found 341.1738.

Compounds 23 and 24.—Synthesized using procedure A on a 1.23 mmol scale and 

purified using 2.8–3.5% ethyl acetate in hexane on silica gel (1.06:1 dr, 408 mg, 72% yield).

Compound 23.—
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Major diastereomer; colorless oil, 208 mg, 37% yield: 1H NMR (400 MHz, CDCl3) δ 
7.23−7.02 (m, 4H), 5.90−5.72 (m, 1H), 5.57−5.45 (m, 1H), 5.40 (dd, J = 9.6, 7.6 Hz, 1H), 

4.33−4.05 (m, 3H), 3.08 (dd, J = 15.8, 7.8 Hz, 1H), 3.00−2.81 (m, 2H), 2.81−2.64 (m, 2H), 

2.54−2.41 (m, 1H), 2.40−2.27 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.21 (d, J = 6.2 Hz, 3H), 

1.01 (s, 9H), 0.99 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.0, 142.5, 142.2, 132.0, 

127.9, 126.4, 126.3, 124.6, 124.3, 68.4, 64.0, 43.7, 37.8, 35.5, 35.0, 27.6, 27.6, 23.2, 20.4, 

20.4, 14.3; IR 3562, 2934, 2860, 2358, 1718, 1473, 1376, 1261, 1010, 827 cm−1; HRMS 

(ESI) m/z [M + Na+] calculated for C26H42O5SiNa+ 485.2694, found 485.2699.

Compound 24.—

Minor diastereomer; colorless oil, 200 mg, 35% yield: 1H NMR (400 MHz, CDCl3) δ 
7.23−7.05 (m, 4H), 5.79−5.61 (m, 1H), 5.53−5.37 (m, 2H), 4.19 (q, J = 7.1 Hz, 2H), 4.02 

(dddd, J = 7.9, 6.0, 4.2, 2.1 Hz, 1H), 3.18 (s, 1H), 3.09 (dd, J = 15.7, 7.7 Hz, 1H), 2.99−2.89 

(m, 1H), 2.89−2.60 (m, 4H), 2.18−1.98 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.22 (d, J = 6.0 Hz, 

3H), 1.02 (s, 9H), 1.00 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.0, 142.4, 142.1, 

131.9, 127.7, 126.4, 126.4, 124.6, 124.4, 77.2, 68.9, 64.2, 43.6, 38.5, 35.6, 35.1, 27.6, 27.5, 

22.9, 20.7, 20.0, 14.2; IR 3608, 2934, 2854, 2358, 1718, 1473, 1376, 1261, 1004, 827 cm−1; 

HRMS (ESI) m/z [M + Na+] calculated for C26H42O5SiNa+ 485.2694, found 485.2714.

Compound 25.—

Synthesized using procedure A on a 1.38 mmol scale and purified using 2.8–3.5% ethyl 

acetate in hexane on silica gel (colorless oil, 217 mg, 34% yield): 1H NMR (400 MHz, 

CDCl3) δ 5.72−5.57 (m, 1H), 5.39 (ddd, J = 11.1, 9.7, 1.4 Hz, 1H), 5.18 (dd, J = 9.7, 7.4 

Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.99 (dtd, J = 8.5, 4.1, 2.4 Hz, 1H), 3.14 (s, 1H), 2.68 

(dddd, J = 13.9, 9.9, 4.1, 1.3 Hz, 1H), 2.03 (dddd, J = 14.0, 8.4, 5.8, 1.6 Hz, 1H), 1.91−1.61 

(m, 4H), 1.50 (tdt, J = 11.3, 6.9, 3.3 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 6.8 

Hz, 5H), 1.01 (m, 21H), 0.89−0.81 (m, 5H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.2, 

131.4, 127.8, 78.5, 69.0, 64.0, 42.0, 39.3, 38.4, 32.2, 32.1, 29.8, 28.6, 28.1, 27.6, 27.5, 22.8, 

20.8, 20.0, 14.2, 11.5; IR 3545, 2929, 2854, 1724, 1467, 1376, 1270, 1084, 1010, 827, 645; 

HRMS (ESI) m/z [M + Na+] calculated for C25H48O5SiNa+ 479.3169, found 479.3146.

Compound 26.—
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Synthesized using procedure A on a 1.94 mmol scale and purified using 5% ethyl acetate in 

hexane on silica gel single diastereomer (colorless oil, 200 mg, 27% yield): 1H NMR (400 

MHz, CDCl3) δ 5.69 (td, J = 10.6, 5.5 Hz, 1H), 5.45 (t, J = 10.5 Hz, 1H), 5.17 (d, J = 9.8 

Hz, 1H), 4.17 (q, J = 7.4 Hz, 2H), 3.98 (ddt, J = 9.1, 6.3, 3.1 Hz, 1H), 2.74 (ddd, J = 14.2, 

10.3, 3.9 Hz, 1H), 2.10−1.92 (m, 1H), 1.29 (td, J = 8.1, 7.6, 2.7 Hz, 3H), 1.21 (d, J = 6.3 

Hz, 3H), 1.05 (s, 9H), 1.04 (s, 9H), 0.96 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.3, 

131.9, 126.1, 81.1, 69.0, 64.0, 38.4, 34.8, 27.6, 27.5, 25.5, 22.8, 20.8, 19.9, 14.2; IR 3545, 

2968, 2860, 2363, 1718, 1473, 1278, 1090, 942, 827, 645 cm−1; HRMS (ESI) m/z [M + 

Na+] calculated for C21H42O5SiNa+ 425.2694, found 425.2691.

Compounds 27 and 28.—Synthesized using procedure A on a 0.7 mmol scale and 

purified using 2.8–3.5% ethyl acetate in hexane on silica gel. Formed as a separable 1.3:1 

mixture of diastereomers (colorless oil, 142 mg, 72% yield).

Compound 27.—

Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 5.71 (dt, J = 10.7, 7.4 Hz, 1H), 

5.47−5.30 (m, 2H), 4.28−4.07 (m, 3H), 2.48−2.28 (m, 2H), 1.71 (tt, J = 9.3, 6.5 Hz, 1H), 

1.52 (ddd, J = 14.4, 8.2, 5.9 Hz, 1H), 1.35−1.21 (m, 21H), 1.19 (d, J = 6.1 Hz, 3H), 1.01 

(s, 9H), 0.99 (s, 9H), 0.87 (t, J = 6.8 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 154.9, 

130.6, 129.5, 74.6, 68.5, 63.8, 37.7, 34.8, 31.9, 29.64, 29.62, 29.50, 29.55, 29.4, 29.3, 27.57, 

27.61, 25.0, 23.2, 22.7, 20.42, 20.36, 14.3, 14.1; IR 3539, 2929, 2854, 2358, 1718, 1467, 

1376, 1261, 1010, 827 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C28H56O5SiNa+ 

523.3789, found 523.3784.

Compound 28.—

Minor diastereomer: 1H NMR (400 MHz, CDCl3) δ 5.69−5.51 (m, 1H), 5.49−5.28 (m, 2H), 

4.23−4.08 (m, 2H), 4.00 (dddd, J = 8.0, 6.0, 4.2, 2.1 Hz, 1H), 2.77−2.58 (m, 1H), 2.27 

(ddd, J = 9.7, 8.6, 7.2 Hz, 1H), 2.16−1.97 (m, 1H), 1.78−1.65 (m, 1H), 1.60 (q, J = 7.4 Hz, 

1H), 1.52 (q, J = 6.5 Hz, 1H), 1.29−1.22 (m, 19H), 1.21 (d, J = 6.0 Hz, 3H), 1.02 (s, 9H), 

1.01 (s, 9H), 0.91−0.82 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 155.0, 130.7, 129.3, 

Shinde et al. Page 17

J Org Chem. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



74.5, 68.9, 63.9, 38.4, 34.6, 31.9, 29.6, 29.5, 29.4, 29.32, 29.26, 29.1, 27.6, 27.5, 24.9, 22.8, 

22.7, 20.7, 20.0, 14.2, 14.1; IR 3545, 2934, 2854, 2358, 1467, 1376, 1273, 1010, 827 cm−1; 

HRMS (ESI) m/z [M + Na+] calculated for C28H56O5SiNa+ 523.3789, found 523.3795.

Compounds 29 and 30.—Synthesized using procedure A on a 0.872 mmol scale, formed 

as a separable mixture of diastereomers in a ratio of 1.3:1, and purified using 3% ethyl 

acetate in hexane on silica gel (colorless oil, 254 mg, 65% combined yield).

Compound 29.—

Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.33−7.22 (m, 2H), 7.22−7.12 (m, 3H), 

5.74 (dt, J = 10.8, 7.4 Hz, 1H), 5.49 (ddt, J = 10.7, 9.1, 1.6 Hz, 1H), 5.40 (ddd, J = 9.4, 

7.4, 5.4 Hz, 1H), 4.29−4.07 (m, 3H), 2.59−2.57 (m, 2H), 2.34 (dddd, J = 14.5, 12.6, 7.8, 

4.5 Hz, 2H), 2.15−1.98 (m, 1H), 1.85 (ddt, J = 13.7, 10.2, 6.0 Hz, 1H), 1.31 (t, J = 7.1 Hz, 

3H), 1.18 (d, J = 6.2 Hz, 3H), 1.01 (s, 9H), 0.99 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) 

δ 154.9, 141.2, 131.0, 129.1, 128.5, 128.3, 126.0, 74.1, 68.5, 63.9, 37.7, 36.4, 31.4, 27.63, 

27.59, 23.2, 20.43, 20.38, 14.3; IR 3545, 2934, 2860, 1741, 1724, 1261, 1110, 827 cm−1; 

HRMS (ESI) m/z [M + Na+] calculated for C25H42O5SiNa+ 473.2694, found 473.2677.

Compound 30.—

Minor diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.27 (m, 2H), 7.22−7.11 (m, 3H), 5.65 

(td, J = 9.8, 5.9 Hz, 1H), 5.51−5.35 (m, 2H), 4.26−4.10 (m, 2H), 3.99 (ddd, J = 8.3, 6.1, 

4.2 Hz, 1H), 2.76−2.48 (m, 3H), 2.17−1.97 (m, 2H), 1.94−1.72 (m, 1H), 1.31 (t, J = 7.1 Hz, 

3H), 1.20 (d, J = 6.0 Hz, 3H), 1.00 (overlapping singlets, 18H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 154.9, 141.1, 131.3, 128.8, 128.5, 128.3, 126.1, 73.9, 68.8, 64.1, 38.4, 36.2, 31.3, 

27.6, 27.5, 22.8, 20.7, 20.0, 14.2; IR 3545, 2934, 2860, 1724, 1267, 1010, 827 cm−1; HRMS 

(ESI) m/z [M + Na+] calculated for C25H42O5SiNa+ 473.2699, found 473.2675.

Compounds 31 and 32.—Synthesized using procedure A on a 1.41 mmol scale, formed 

as a separable 1:1.5 mixture of diastereomers, and purified using 3% ethyl acetate in hexane 

on silica gel (colorless oil, 458 mg, 68% combined yield).

Compound 31.—
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Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.14−7.00 (m, 2H), 6.92−6.73 (m, 

2H), 5.71 (dt, J = 10.0, 7.4 Hz, 1H), 5.52−5.31 (m, 2H), 4.25−4.05 (m, 3H), 3.78 (s, 3H), 

2.63−2.47 (m, 2H), 2.45−2.26 (m, 2H), 1.74 (ddd, J = 10.5, 5.4, 3.0 Hz, 1H), 1.69−1.51 (m, 

3H), 1.29 (t, J = 7.1 Hz, 3H), 1.19 (d, J = 6.1 Hz, 3H), 1.01 (s, 9H), 0.99 (s, 9H); 13C{1H} 

NMR (101 MHz, CDCl3) δ 157.8, 154.9, 134.0, 130.8, 129.34, 129.28, 113.8, 74.4, 68.5, 

63.9, 55.3, 37.7, 34.7, 34.3, 27.62, 27.58, 27.0, 23.2, 20.43, 20.36, 14.3; IR 3545, 2934, 

2860, 2358, 1741, 1513, 1256, 1010, 827 cm−1; HRMS (ESI) m/z [M + Na+] calculated for 

C27H46O6SiNa+ 517.2961, found 517.2948.

Compound 32.—

Minor diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.14−7.01 (m, 2H), 6.88−6.76 (m, 2H), 

5.61 (td, J = 10.0, 5.9 Hz, 1H), 5.50−5.31 (m, 2H), 4.16 (q, J = 7.1 Hz, 2H), 4.00 (ddd, J = 

8.4, 6.1, 4.2 Hz, 1H), 3.78 (s, 3H), 2.75−2.62 (m, 1H), 2.57 (t, J = 7.4 Hz, 2H), 2.07 (dddd, 

J = 13.9, 8.4, 6.0, 1.4 Hz, 1H), 1.81−1.67 (m, 1H), 1.67−1.45 (m, 3H), 1.29 (t, J = 7.1 Hz, 

3H), 1.20 (d, J = 6.0 Hz, 3H), 1.02 (s, 9H), 1.01 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) 

δ 157.8, 155.0, 134.0, 130.9, 129.3, 129.1, 113.8, 74.3, 68.9, 64.0, 55.3, 38.4, 34.6, 34.0, 

27.6, 27.5, 27.0, 22.8, 20.7, 20.0, 14.2; IR 3545, 2934, 2860, 2358, 1718, 1513, 1261, 1010, 

827 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C27H46O6SiNa+ 517.2961, found 

517.2948.

Cyclization Reaction Procedures.

General Procedure B.—[(Cinnamyl)PdCl]2 (5.2 mg, 0.01 mmol, 0.05 equiv), R-BINAP 

ligand (12.5 mg, 0.02 mmol, 0.1 equiv), and a stir bar were placed in a microwave vial 

under a N2 atmosphere. A 0.4 mL portion of toluene (saturated with N2 through bubbling) 

was added, and the mixture was stirred for 15 min at room temperature. Over this time, 

the reaction mixture turned a turbid yellow-orange (Figure S1). An additional 2 mL of 

nitrogen-sparged toluene was added (reaction concentration 0.08 M). A silanol substrate (0.2 

mmol, 1 equiv) was added to the reaction mixture. The reaction flask was sealed and then 

immersed in an oil bath that had been preheated to 80 °C. The reaction mixture was stirred 

at this temperature for 3 h. Generally, during productive reactions, the reaction mixture 

turned dark brown within 30 min of heating, and this color persisted throughout the reaction 

(Figure S1). After 3 h, the reaction flask was cooled to room temperature, and the contents 

were filtered through a pad of Celite using ethyl acetate. The filtrate was concentrated in 
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vacuo, and the resulting residue was purified by chromatography on silica gel (specific 

conditions are associated with each product).

Note: It is essential to maintain a N2 atmosphere during all aspects of reaction setup and to 

use N2 − sparged solvent. Care must be taken not to introduce O2 or air into the reaction 

during addition of silanol substrate.

1 mmol Scale procedure.—[(Cinnamyl)PdCl]2 (26 mg, 0.05 mmol, 0.05 equiv), R-

BINAP ligand (62 mg, 0.1 mmol, 0.1 equiv), and a stir bar were placed in a nitrogen-purged 

50 mL round-bottom flask. A 2.5 mL portion of toluene (saturated with N2 through 

bubbling) was added, and the mixture was stirred for 15 min at room temperature. Over 

this time, the reaction mixture turned a turbid yellow-orange (Figure S2). An additional 10 

mL of nitrogen-sparged toluene was added (reaction concentration 0.08 M). 20 (437 mg, 1 

mmol, 1 equiv) was added to the reaction mixture. The reaction mixture was stirred at this 

temperature for 3 h. The reaction mixture turned dark brown within 30 min of heating, and 

this color persisted throughout the reaction (Figure S2). After 3 h, the reaction flask was 

cooled to room temperature, and the contents were filtered through a pad of Celite using 

ethyl acetate. The filtrate was concentrated in vacuo, and the resulting residue was purified 

by chromatography on silica gel to give 48 (180 mg, 0.519 mmol, 52% yield).

Characterization of Products.

Compound 33.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel (colorless oil, 29 mg, 60% yield): 1H NMR (400 MHz, CDCl3) δ 5.86 

(ddd, J = 17.1, 10.4, 4.6 Hz, 1H), 5.31 (dt, J = 17.1, 1.8 Hz, 1H), 5.08 (dt, J = 10.4, 1.7 Hz, 

1H), 4.58 (dddt, J = 10.7, 4.4, 3.0, 1.6 Hz, 1H), 4.21−3.99 (m, 2H), 1.84 (dtd, J = 14.3, 11.0, 

5.2 Hz, 1H), 1.70 (dq, J = 14.3, 2.6 Hz, 1H), 1.08 (s, 9H), 1.04 (s, 9H); 13C{1H} NMR (101 

MHz, CDCl3) δ 140.7, 113.2, 74.3, 64.1, 36.7, 27.4, 27.2, 22.7, 20.0; IR 2929, 2860, 1620, 

1473, 1147, 1113, 822, 650 cm−1; HRMS (ESI) m/z [M + H+] calculated for C13H27O2Si+ 

243.1780, found 243.1753.

Compound 34.—

Synthesized using procedure B on a 0.2 mmol scale; Purified using 1.5% ethyl acetate in 

hexane on silica gel (colorless oil, 32.2 mg, 54% yield); 1H NMR (400 MHz, CDCl3) δ 5.68 
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(dtd, J = 14.9, 6.7, 1.3 Hz, 1H), 5.46 (ddt, J = 15.3, 5.7, 1.5 Hz, 1H), 4.52 (dddd, J = 11.4, 

6.3, 2.6, 1.5 Hz, 1H), 4.09 (pt, J = 5.3, 2.5 Hz, 2H), 2.12−1.93 (m, 2H), 1.84 (dtd, J = 14.3, 

10.8, 5.2 Hz, 1H), 1.65 (dq, J = 14.4, 2.6 Hz, 1H), 1.45−1.22 (m, 4H), 1.07 (s, 9H), 1.04 (s, 

9H), 0.90 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 132.6, 130.1, 74.5, 64.0, 

37.3, 31.8, 31.4, 27.4, 27.2, 22.6, 22.2, 20.0, 13.9; IR 2934, 2860, 1473, 1244, 1119, 970, 

827, 650 cm−1; HRMS (ESI) m/z [M+Na+] calculated for C17H34O2SiNa+ 321.2226, found 

321.2229.

Compound 35.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel (colorless oil, 35.9 mg, 55% yield): 1H NMR (400 MHz, CDCl3) δ 
5.78−5.58 (m, 1H), 5.46 (ddt, J = 15.3, 5.7, 1.4 Hz, 1H), 4.66−4.35 (m, 1H), 4.09 (pt, J = 

5.3, 2.5 Hz, 2H), 2.08−1.95 (m, 2H), 1.93−1.77 (m, 1H), 1.70−1.62 (m, 1H), 1.28 (tdd, J = 

7.9, 6.7, 5.7, 2.9 Hz, 8H), 1.07 (s, 9H), 1.04 (s, 9H), 0.93−0.81 (m, 3H); 13C{1H} NMR (101 

MHz, CDCl3) δ 132.6, 130.2, 74.5, 64.0, 37.3, 32.1, 31.7, 29.2, 28.8, 27.4, 27.2, 22.6, 20.0, 

14.1; IR 2929, 2860, 2363, 1473, 1364, 1119, 970, 819, 650 cm−1; HRMS (ESI) m/z [M + 

Na+] calculated for C19H38O2SiNa+ 349.2533, found 349.2523.

Compound 36.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel (colorless oil, 37 mg, 62% yield): 1H NMR (400 MHz, CDCl3) δ 5.68 

(dd, J = 15.6, 1.4 Hz, 1H), 5.35 (dd, J = 15.6, 5.3 Hz, 1H), 4.53 (dddd, J = 10.5, 5.3, 2.9, 1.4 

Hz, 1H), 4.16−4.00 (m, 2H), 1.82 (dtd, J = 14.3, 10.6, 5.2 Hz, 1H), 1.65 (dq, J = 14.3, 2.8 

Hz, 1H), 1.07 (s, 9H), 1.05 (s, 9H), 1.04 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) 140.6, 

127.5, 74.4, 63.9, 37.4, 32.5, 29.6, 27.4, 27.2, 22.6, 20.0; IR 2957, 2860, 1473, 1136, 970, 

827, 650 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C17H34O2SiNa+ 321.2236, found 

321.2205.

Compound 37.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel (colorless oil, 36.8 mg, 51% yield): 1H NMR (400 MHz, CDCl3) δ 
7.34−7.26 (m, 2H), 7.20 (ddt, J = 7.0, 3.0, 1.6 Hz, 3H), 5.73 (dtd, J = 14.9, 6.7, 1.3 Hz, 1H), 
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5.51 (ddt, J = 15.3, 5.4, 1.5 Hz, 1H), 4.69−4.44 (m, 1H), 4.21−4.04 (m, 2H), 2.64 (dd, J = 

8.7, 6.8 Hz, 2H), 2.18−2.03 (m, 2H), 1.87 (dtd, J = 14.2, 10.9, 5.3 Hz, 1H), 1.75 (tt, J = 7.8, 

6.5 Hz, 2H), 1.67 (dq, J = 14.3, 2.6 Hz, 1H), 1.07 (s, 9H), 1.04 (s, 9H); 13C{1H} NMR (101 

MHz, CDCl3) δ 142.5, 133.2, 129.5, 128.5, 128.3, 125.7, 74.4, 64.1, 37.3, 35.4, 31.6, 31.0, 

27.5, 27.2, 22.7, 20.0; IR 2934, 2860, 2363, 1473, 1136, 970, 827, 650 cm−1; HRMS (ESI) 

m/z [M + Na+] calculated for C22H36O2SiNa+ 383.2382, found 383.2389.

Compound 38.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel (colorless oil, 40.6 mg, 56% yield): 1H NMR (400 MHz, CDCl3) δ 
7.43−7.24 (m, 5H), 5.88 (dtd, J = 15.4, 5.6, 1.4 Hz, 1H), 5.77 (ddt, J = 15.3, 4.6, 1.3 Hz, 

1H), 4.61 (dddd, J = 10.7, 4.5, 2.7, 1.3 Hz, 1H), 4.54 (s, 2H), 4.15−4.09 (m, 2H), 4.05 (dq, 

J = 5.7, 1.1 Hz, 2H), 1.86 (dtd, J = 14.3, 11.0, 5.4 Hz, 1H), 1.69 (dq, J = 14.3, 2.5 Hz, 1H), 

1.08 (s, 9H), 1.05 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 138.3, 135.7, 128.4, 127.8, 

127.6, 125.4, 73.6, 72.2, 70.2, 64.1, 36.9, 27.4, 27.2, 22.7, 20.0; IR 2934, 2860, 1473, 1364, 

1113, 970, 827, 742, 650 cm−1; HRMS (ESI) m/z [M + H+] calculated for C21H35O3Si+ 

363.2355,, found 363.2316.

Compound 39.—

Synthesized using procedure B on a 0.2 mmol scale and purified using a gradient of 0–2% 

EtOAc in hexanes on silica gel (light yellow oil, 37.6 mg, 48% yield): 1H NMR (400 MHz, 

chloroform-d) δ 7.41−7.28 (m, 5H), 5.75−5.66 (m, 1H), 5.49 (ddt, J = 15.4, 5.4, 1.6 Hz, 1H), 

4.54−4.50 (m, 3H), 4.16−4.05 (m, 2H), 3.49 (t, J = 6.5 Hz, 2H), 2.15 (q, J = 7.2 Hz, 2H), 

1.87−1.78 (m, 1H), 1.77−1.70 (m, 2H), 1.64 (dq, J = 14.4, 2.7 Hz, 1H), 1.05 (s, 9H) 1.01 (s, 

9H); 13C{1H} NMR (101 MHz, chloroform-d) δ 138.6, 133.2, 129.1, 128.3, 127.6, 127.5, 

74.3, 72.8, 69.7, 64.0, 37.1, 29.2, 28.6, 27.4, 27.1, 22.6, 19.9; IR 2934, 2860, 2358, 1473, 

1113, 970, 827, 650 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C23H38O3SiNa+ 

413.2482, found 413.2516.

Compound 40.—

Synthesized using procedure B on a 0.2 mmol scale and purified using a gradient of 0–2% 

EtOAc in hexanes on silica gel (colorless oil, 28.5 mg, 50% yield): 1H NMR (400 MHz, 
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chloroform-d) δ 5.66 (ddd, J = 15.4, 6.4, 1.4 Hz, 1H), 5.42 (ddd, J = 15.5, 5.5, 1.4 Hz, 

1H), 4.53 (dddd, J = 10.3, 4.9, 2.5, 1.3 Hz, 1H), 4.17−4.05 (m, 2H), 2.35−2.26 (m, 1H), 

1.90−1.80 (m, 1H), 1.66 (dd, J = 14.3, 2.7 Hz, 1H), 1.05 (s, 9H), 1.02 (s, 9H), 1.01 (m, 6H); 
13C{1H} NMR (101 MHz, chloroform-d) δ 136.8, 129.7, 74.4, 63.9, 37.3, 30.4, 27.4, 27.1, 

22.5, 22.2, 19.9; IR 3563, 2860, 1473, 1364, 1119, 970, 827, 650 cm−1; HRMS (ESI) m/z 
[M + H+] calculated for C16H33O2Si+ 285.2244, found 285.2234.

Compound 41.—

Synthesized using procedure B on a 0.2 mmol scale and purified using a gradient of 0–2% 

EtOAc in hexanes on silica gel (light yellow oil, 25.5 mg, 40% yield): 1H NMR (400 MHz, 

chloroform-d) δ 5.49−5.36 (m, 2H), 4.56 (dt, J = 10.3, 3.1 Hz, 1H), 4.11 (m, 2H), 1.86 (m, 

1H), 1.69 (dd, J = 14.3, 2.8 Hz, 1H), 1.48−1.37 (m, 2H), 1.33−1.21 (m, 3H), 1.05 (s, 9H), 

1.02 (s, 9H), 0.88−0.84 (m, 6H); 13C{1H} NMR (101 MHz, chloroform-d) δ 133.5, 132.9, 

74.1, 63.9, 45.5, 37.3, 27.5, 27.4, 27.1, 22.5, 20.0, 11.7, 11.6; IR 2963, 2860, 1473, 1124, 

970, 827, 650 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C18H36O2SiNa+ 335.2377, 

found 335.2367.

Compound 42.—

Synthesized using procedure B on a 0.2 mmol scale and purified using a gradient of 0 to 

2% EtOAc in hexanes on silica gel. Inseparable ~1:1 mixture of diastereomers (light yellow 

oil, 23.7 mg, 39% yield): 1H NMR (400 MHz, chloroform-d) δ 5.59 (m, 1H), 5.45 (ddt, J 
= 15.4, 5.2, 1.2 Hz, 1H), 4.61−4.52 (m, 1H), 4.13 (dqt, J = 8.2, 5.2, 2.7 Hz, 2H), 2.10−2.02 

(m, 1H), 1.93−1.81 (m, 1H), 1.73−1.66 (m, 1H), 1.39−1.29 (m, 2H), 1.07 (s, 9H), 1.04 (s, 

9H), 1.01 (dd, J = 6.8, 3.3 Hz, 3H), 0.89 (td, J = 7.4, 3.9 Hz, 3H); 13C{1H} NMR (101 MHz, 

chloroform-d) δ 135.4, 131.1, 131.0, 74.3, 74.2, 63.9, 37.7, 37.6, 37.4, 37.3, 29.7, 29.6, 27.4, 

27.1, 22.5, 20.0, 19.9, 19.8, 11.7, 11.6; IR 2963, 2860, 2370, 1473, 1124, 970, 827, 650 

cm−1; HRMS (ESI) m/z [M + H+] calculated for C17H35O2Si+ 299.2406, found 299.2415.

Compound 43.—

Shinde et al. Page 23

J Org Chem. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel (colorless oil, 38.9 mg, 60% yield): 1H NMR (400 MHz, CDCl3) δ 5.63 

(ddd, J = 15.5, 6.4, 1.3 Hz, 1H), 5.41 (ddd, J = 15.5, 5.5, 1.4 Hz, 1H), 4.51 (dddd, J = 10.3, 

5.0, 3.1, 0.9 Hz, 1H), 4.09 (pt, J = 5.3, 2.4 Hz, 2H), 2.03−1.89 (m, 1H), 1.83 (dtd, J = 14.4, 

10.7, 5.2 Hz, 1H), 1.77−1.68 (m, 4H), 1.65 (dq, J = 14.3, 2.7 Hz, 2H), 1.35−1.07 (m, 5H), 

1.09 (s, 9H), 1.08 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 135.7, 130.2, 74.5, 64.0, 

40.0, 37.3, 32.90, 32.87, 27.4, 27.2, 26.2, 26.1, 22.6, 20.0; IR 2929, 2854, 1473, 1364, 1130, 

970, 827, 650 cm−1; HRMS (ESI) m/z [M + H+] calculated for C19H37O2Si+ 325.2557, 

found 325.2560.

Compound 44.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel (colorless oil, 36.7 mg, 52% yield): 1H NMR (400 MHz, CDCl3) δ 5.65 

(ddd, J = 15.4, 7.2, 1.3 Hz, 1H), 5.39 (ddd, J = 15.4, 5.5, 1.2 Hz, 1H), 4.62−4.35 (m, 1H), 

4.25−3.92 (m, 2H), 2.29−2.13 (m, 1H), 1.83 (dtd, J = 14.3, 10.7, 5.2 Hz, 1H), 1.66 (tdd, J = 

15.5, 4.5, 2.4 Hz, 5H), 1.60−1.33 (m, 10H), 1.07 (s, 9H), 1.04 (s, 9H).; 13C{1H} NMR (101 

MHz, CDCl3) δ 136.7, 129.8, 74.5, 64.0, 40.2, 37.4, 31.9, 31.7, 27.4, 27.39, 27.44, 26.0, 

25.09, 25.07, 22.6, 20.0; IR 2920, 2860, 2358, 1473, 1141, 970, 827, 650 cm−1; HRMS 

(ESI) m/z [M + Na+] calculated for C21H40O2SiNa+ 375.2695, found 375.2686.

Compound 45.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel (colorless solid, 36 mg, 51% yield): 1H NMR (400 MHz, CDCl3) δ 5.62 

(ddd, J = 15.5, 6.5, 1.3 Hz, 1H), 5.41 (ddd, J = 15.4, 5.5, 1.3 Hz, 1H), 4.60−4.44 (m, 1H), 

4.19−3.97 (m, 2H), 1.94−1.69 (m, 6H), 1.65 (dq, J = 14.3, 2.7 Hz, 1H), 1.29−1.14 (m, 2H), 

1.13−0.96 (m, 21H), 0.96−0.80 (m, 5H); 13C{1H} NMR (101 MHz, CDCl3) δ 135.7, 130.2, 

74.5, 64.0, 40.4, 39.1, 37.3, 32.8, 32.82, 32.79, 30.0, 27.4, 27.2, 22.6, 20.0, 11.5; IR 2960, 
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2854, 2363, 1473, 1244, 1130, 970, 890, 827, 776 650 cm−1; HRMS (ESI) m/z [M + Na+] 

calculated for C21H40O2SiNa+ 375.2690, found 375.2690.

Compound 46.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel (colorless solid, 35 mg, 49% yield): 1H NMR (400 MHz, CDCl3) δ 
7.20 (qd, J = 4.0, 2.7 Hz, 2H), 7.18−7.11 (m, 2H), 5.87 (ddd, J = 15.2, 7.1, 1.4 Hz, 1H), 

5.59 (ddd, J = 15.3, 5.5, 0.9 Hz, 1H), 4.57 (dddd, J = 10.6, 5.3, 2.8, 1.3 Hz, 1H), 4.22−4.00 

(m, 2H), 3.22−2.97 (m, 3H), 2.89−2.70 (m, 2H), 1.88 (dtd, J = 14.3, 10.7, 5.4 Hz, 1H), 

1.75−1.61 (m, 1H), 1.09 (s, 9H), 1.07 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 143.15, 

143.12, 133.1, 132.2, 126.2, 124.34, 124.31, 74.3, 64.0, 42.9, 39.5, 37.2, 27.5, 27.2, 22.6, 

20.0; IR 2934, 2860, 2363, 1473, 1136, 970, 827, 742, 650 cm−1; HRMS calculated for 

C22H34O2SiNa+ 381.2220, found 381.2223.

Compound 47.—

Synthesized using procedure B on a 0.2 mmol scale and purified using a gradient of 0–

2% EtOAc in hexanes on silica gel (light yellow oil, 33 mg, 46% yield): 1H NMR (400 

MHz, chloroform-d) δ 5.72−5.65 (m, 1H), 5.47 (ddt, J = 15.3, 5.7, 1.5 Hz, 1H), 4.58−4.46 

(m, 1H), 4.17−4.06 (m, 2H), 2.11−1.99 (m, 2H), 1.90−1.78 (m, 1H), 1.76−1.61 (m, 6H), 

1.32−1.13 (m, 6H), 1.05 (s, 9H), 1.03 (s, 9H), 0.95−0.82 (m, 2H); 13C{1H} NMR (101 

MHz, chloroform-d) δ 132.4, 130.4, 74.4, 64.0, 37.24, 37.22, 36.8, 33.3, 33.2, 29.4, 27.4, 

27.2, 26.7, 26.4, 22.6, 19.9; IR 2923, 2854, 2358, 1470, 1124, 970, 827, 650 cm−1; HRMS 

(ESI) m/z [M + Na+] calculated for C21H40O2SiNa+ 375.2690, found 375.2691.

Compound 48.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel (colorless oil, 37 mg, 54% yield): 1H NMR (400 MHz, CDCl3) δ 
7.39−7.26 (m, 2H), 7.25−7.12 (m, 3H), 5.77 (dtd, J = 14.9, 6.7, 1.4 Hz, 1H), 5.52 (ddt, J 
= 15.3, 5.5, 1.4 Hz, 1H), 4.55 (dddd, J = 11.9, 6.6, 2.6, 1.3 Hz, 1H), 4.24−3.98 (m, 2H), 

2.90−2.61 (m, 2H), 2.52−2.31 (m, 2H), 1.85 (dtd, J = 14.4, 10.9, 5.3 Hz, 1H), 1.65 (dq, J = 
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14.3, 2.6 Hz, 1H), 1.08 (s, 9H), 1.05 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 141.9, 

133.4, 128.9, 128.5, 128.3, 125.8, 74.3, 64.1, 37.2, 35.7, 34.0, 27.4, 27.2, 22.7, 20.0; IR 

2934, 2869, 1473, 1364, 1101, 970, 890, 827, 747, 650 cm−1; HRMS (ESI) m/z [M + Na+] 

calculated for C21H34O2SiNa+ 369.2220, found 369.2191.

Compound 49.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel (colorless oil, 34.4 mg, 54% yield): 1H NMR (400 MHz, CDCl3) δ 
7.44−7.36 (m, 2H), 7.36−7.28 (m, 2H), 7.26−7.19 (m, 1H), 6.66 (dd, J = 15.8, 1.6 Hz, 1H), 

6.22 (dd, J = 15.8, 5.1 Hz, 1H), 4.77 (dddd, J = 10.8, 4.7, 2.7, 1.6 Hz, 1H), 4.24−4.10 (m, 

2H), 1.95 (dtd, J = 14.3, 11.2, 4.9 Hz, 1H), 1.78 (dq, J = 14.3, 2.6 Hz, 1H), 1.08 (s, 9H), 1.06 

(s, 9H); 13C{1H} NMR (101 MHz,CDCl3) δ 137.0, 132.3, 128.6, 128.5, 127.4, 126.5, 74.3, 

64.1, 37.0, 27.5, 27.2, 22.7, 20.1; IR 2934, 2860, 2358, 1473, 1136, 970, 827, 650 cm−1; 

HRMS (APCI) m/z [M − H] calculated for C19H29O2Si 317.1942, found 317.1942.

Compound 50.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel; single diastereomer (colorless oil, 20 mg, 44% yield): 1H NMR (400 

MHz, acetone-d6) δ 5.17−5.00 (m, 1H), 4.57 (ddt, J = 17.1, 2.1, 1.1 Hz, 1H), 4.35 (ddt, J 
= 10.5, 2.3, 1.1 Hz, 1H), 3.78 (dtd, J = 9.3, 6.1, 1.2 Hz, 1H), 3.34 (ddd, J = 9.2, 6.3, 0.9 

Hz, 1H), 2.70 (t, J = 9.4 Hz, 1H), 0.26 (2 s, 18H); 13C{1H} NMR (101 MHz, acetone-d6) δ 
138.5, 115.8, 77.1, 70.3, 27.4, 27.3, 21.6, 21.3; IR 2934, 2860, 2358, 1650, 1473, 1050, 873, 

827, 656 cm−1; HRMS (APCI) m/z [M + H+] calculated for C12H25O2Si+ 229.1618, found 

229.1617.

Compound 51.—
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Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel; single anti diastereomer (colorless oil, 33 mg, 44% yield): 1H NMR 

(400 MHz, CDCl3) δ 7.20 (qd, J = 4.3, 2.1 Hz, 2H), 7.18−7.09 (m, 2H), 5.87 (ddd, J = 

15.3, 7.0, 1.4 Hz, 1H), 5.66 (ddd, J = 15.2, 5.8, 0.9 Hz, 1H), 4.67 (tdd, J = 5.9, 4.2, 1.3 

Hz, 1H), 4.34 (td, J = 6.3, 4.0 Hz, 1H), 3.21−3.01 (m, 3H), 2.79 (dt, J = 14.7, 7.4 Hz, 2H), 

1.81 (qdd, J = 14.4, 6.1, 4.2 Hz, 2H), 1.28 (d, J = 6.3 Hz, 3H), 1.05 (s, 9H), 1.03 (s, 9H); 
13C{1H} NMR (101 MHz, CDCl3) δ 143.3, 143.2, 133.9, 132.2, 126.4, 126.3, 124.5, 124.4, 

70.6, 66.5, 43.1, 41.7, 39.63, 39.62, 27.5, 27.4, 24.2, 21.2, 21.0; IR 2934, 2860, 2358, 1473, 

1141, 982, 822, 742, 650 cm−1; HRMS (APCI) m/z [M + H+] calculated for C23H37O2Si+ 

373.2557, found 373.2546.

Compound 52.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel; single syn diastereomer (colorless oil, 50 mg, 67% yield): 1H NMR 

(400 MHz, CDCl3) δ 7.24−7.16 (m, 2H), 7.16−7.10 (m, 2H), 5.84 (ddd, J = 15.2, 7.1, 1.4 

Hz, 1H), 5.54 (ddd, J = 15.1, 5.5, 0.9 Hz, 1H), 4.53 (dddd, J = 11.3, 5.5, 2.5, 1.3 Hz, 1H), 

4.35−3.98 (m, 1H), 3.21−2.90 (m, 3H), 2.77 (ddd, J = 15.2, 7.5, 4.7 Hz, 2H), 1.63 (dt, J = 

14.1, 2.4 Hz, 1H), 1.56−1.42 (m, 1H), 1.21 (d, J = 6.1 Hz, 3H), 1.04 (s, 9H), 1.00 (s, 9H); 
13C{1H} NMR (101 MHz, CDCl3) δ 143.3, 143.29, 133.0, 132.6, 126.3 (2C), 124.5, 124.4, 

74.2, 67.0, 44.6, 43.0, 39.7, 27.7, 27.5, 27.4, 25.9, 22.8, 19.8; IR 2934, 2323, 1650, 1473, 

1147, 982, 827, 742, 650 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C23H36O2SiNa+ 

395.2377, found 395.2382.

Compound 53.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel; single syn diastereomer (colorless oil, 33 mg, 45% yield): 1H NMR 

(400 MHz, CDCl3) δ 5.61 (ddd, J = 15.4, 6.7, 1.3 Hz, 1H), 5.46−5.27 (m, 1H), 4.56−4.36 

(m, 1H), 4.21 (ddd, J = 11.1, 6.1, 2.2 Hz, 1H), 1.94−1.82 (m, 1H), 1.76 (td, J = 11.1, 9.1, 

4.5 Hz, 4H), 1.60 (dt, J = 14.1, 2.5 Hz, 1H), 1.55−1.43 (m, 1H), 1.20 (dd, J = 12.4, 6.5 Hz, 

6H), 1.11−0.96 (m, 20H), 0.87 (t, J = 7.4 Hz, 5H); 13C{1H} NMR (101 MHz, CDCl3) δ 
135.5, 130.6, 74.4, 69.9, 44.7, 40.4, 39.2, 32.98, 32.96, 32.7, 30.1, 27.6, 27.4, 24.9, 22.7, 

19.8, 11.6; IR 2929, 2854, 2358, 1473, 1376, 1141, 982, 827, 650 cm−1; HRMS (APCI) m/z 
[M + H+] calculated for C22H43O2Si+ 367.3027, found 367.3032.

Compound 54.—
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Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel; single syn diastereomer with relative stereochemistry assigned by NOE 

data (colorless oil, 38.8 mg, 62% yield): 1H NMR (400 MHz, CDCl3) δ 5.66 (dd, J = 15.6, 

1.4 Hz, 1H), 5.31 (dd, J = 15.6, 5.4 Hz, 1H), 4.49 (dddd, J = 11.4, 5.3, 2.6, 1.4 Hz, 1H), 

4.22 (dqd, J = 12.2, 6.1, 2.2 Hz, 1H), 1.60 (dt, J = 14.1, 2.4 Hz, 1H), 1.46 (dt, J = 14.1, 11.2 

Hz, 1H), 1.19 (d, J = 6.1 Hz, 3H), 1.11−0.90 (m, 27H); 13C{1H} NMR (101 MHz, CDCl3) δ 
140.3, 127.8, 74.3, 69.8, 44.7, 32.5, 29.6, 27.5, 27.3, 24.8, 22.6, 19.7; IR 2934, 2860, 2358, 

1473, 1364, 1147, 1096, 976, 827, 650 cm−1; HRMS (APCI) m/z [M + H+] calculated for 

C18H37O2Si+ 313.2557, found 313.2551.

Compound 55.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel; single anti diastereomer, assigned on the basis of a lack of NOE 

enhancements and by analogy to the syn diastereomer (colorless oil, 40.3 mg, 49% yield): 
1H NMR (400 MHz, CDCl3) δ 5.74−5.60 (m, 1H), 5.54 (ddt, J = 15.3, 5.9, 1.3 Hz, 1H), 

4.62 (q, J = 5.7 Hz, 1H), 4.33 (td, J = 6.3, 4.0 Hz, 1H), 2.08−1.98 (m, 2H), 1.83 (ddd, J 
= 14.4, 6.2, 4.0 Hz, 1H), 1.74 (ddd, J = 14.4, 6.0, 4.3 Hz, 1H), 1.27 (q, J = 3.1, 2.2 Hz, 

21H), 1.05−0.99 (overlapping singlets, 18H), 0.9−0.8 (m, 3H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 132.7, 130.9, 70.8, 66.6, 41.8, 32.3, 32.1, 29.9, 29.83, 29.81, 29.79, 29.7, 29.5, 

29.4, 27.52, 27.46, 24.2, 22.9, 21.2, 21.0, 14.3; IR 2934, 2854, 2358, 1473, 1376, 1136, 982, 

827, 650 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C25H50O2SiNa+ 433.3472, found 

433.3483.

Compound 56.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel; single syn diastereomer, assigned on the basis of observed NOE 

enhancements (colorless oil, 32.9 mg, 40% yield): 1H NMR (400 MHz, CDCl3) δ 5.74−5.58 

(m, 1H), 5.48−5.35 (m, 1H), 4.48 (dddd, J = 11.2, 5.5, 2.4, 1.2 Hz, 1H), 4.22 (ddd, J = 

11.1, 6.1, 2.3 Hz, 1H), 2.02 (dddt, J = 9.9, 7.2, 6.0, 1.2 Hz, 2H), 1.64−1.57 (m, 1H), 1.47 

(d, J = 14.1 Hz, 1H), 1.37−1.21 (m, 18H), 1.19 (d, J = 6.1 Hz, 3H), 1.03 (s, 9H), 0.99 (s, 

9H), 0.92−0.85 (m, 3H); 13C{1H} NMR (101 MHz, CDCl3) δ 133.0, 130.1, 74.4, 70.0, 44.7, 

32.3, 32.1, 29.86, 29.82, 29.80, 29.78, 29.5, 29.4, 29.3, 27.7, 27.4, 25.0, 22.9, 22.8, 19.8, 
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14.3; IR 2934, 2854, 2358, 1467, 1376, 1147, 982, 827, 650 cm−1; HRMS (ESI) m/z [M + 

Na+] calculated for C25H50O2SiNa+ 433.3472, found 433.3463.

Compound 57.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel; single anti diastereomer, assigned on the basis of a lack of NOE and 

by analogy to the syn diastereomer (colorless oil, 57.7 mg, 80% yield): 1H NMR (400 MHz, 

CDCl3) δ 7.32−7.23 (m, 2H), 7.23−7.12 (m, 3H), 5.73 (dtd, J = 14.6, 6.6, 1.3 Hz, 1H), 5.56 

(ddt, J = 15.3, 5.8, 1.4 Hz, 1H), 4.62 (q, J = 5.6 Hz, 1H), 4.29 (td, J = 6.2, 4.1 Hz, 1H), 

2.78−2.64 (m, 2H), 2.44−2.30 (m, 2H), 1.79 (ddd, J = 14.4, 6.4, 4.1 Hz, 1H), 1.71 (ddd, J = 

14.4, 5.8, 4.3 Hz, 1H), 1.26 (d, J = 6.3 Hz, 3H), 1.03 (s, 9H), 1.02 (s, 9H); 13C{1H} NMR 

(101 MHz, CDCl3) δ 141.9, 133.4, 129.4, 128.5, 128.3, 125.8, 70.4, 66.5, 41.5, 35.6, 33.9, 

27.4, 27.3, 24.0, 21.0, 20.9; IR 2934, 2860, 1743, 1141, 982, 827 cm−1; HRMS (ESI) m/z 
[M + H+] calculated for C22H37O2Si+ 361.2563, found 361.2580.

Compound 58.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane (colorless oil, 36.8 mg, 54% yield): 1H NMR (400 MHz, CDCl3) δ 7.34−7.24 

(m, 2H), 7.24−7.13 (m, 3H), 5.74 (dtd, J = 14.9, 6.7, 1.4 Hz, 1H), 5.51−5.44 (m, 1H), 4.50 

(dddd, J = 11.1, 5.2, 2.2, 1.1 Hz, 1H), 4.28−4.13 (m, 1H), 2.81−2.58 (m, 2H), 2.36 (dtt, 

J = 10.0, 7.7, 1.2 Hz, 2H), 1.59 (dt, J = 14.1, 2.4 Hz, 1H), 1.51−1.42 (m, 1H), 1.21 (d, 

J = 6.1 Hz, 3H), 1.04 (s, 9H), 1.01 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 142.0, 

133.5, 128.7, 128.5, 128.3, 125.8, 74.1, 69.9, 44.4, 35.7, 34.0, 27.5, 27.3, 24.8, 22.7, 19.7; 

IR 2934, 2860, 2363, 1473, 1141, 982, 827 cm−1; HRMS (ESI) m/z [M + H+] calculated for 

C22H37O2Si+ 361.2563, found 361.2560.

Compound 59.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate 

in hexane on silica gel; single anti diastereomer, assigned by lack of NOE and by analogy 

to the syn diastereomer (colorless oil, 32.4 mg, 40% yield): 1H NMR (400 MHz, CDCl3) δ 
7.18−7.03 (m, 2H), 6.96−6.72 (m, 2H), 5.79−5.65 (m, 1H), 5.59−5.53 (m, 1H), 4.63 (q, J 
= 5.6 Hz, 1H), 4.33 (tt, J = 6.4, 3.4 Hz, 1H), 3.79 (d, J = 1.1 Hz, 3H), 2.57 (t, J = 7.7 Hz, 

2H), 2.08 (q, J = 7.0 Hz, 2H), 1.81 (d, J = 2.3 Hz, 1H), 1.78−1.63 (m, 3H), 1.27 (dd, J = 6.2, 

Shinde et al. Page 29

J Org Chem. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.0 Hz, 3H), 1.03 (s, 9H), 1.02 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 157.7, 134.5, 

133.1, 130.1, 129.3, 113.7, 70.5, 66.5, 55.3, 41.6, 34.5, 31.6, 31.1, 27.4, 27.3, 24.0, 21.1, 

20.9; IR 2934, 2854, 2358, 1513, 1473, 1244, 1136, 922, 842, 650; HRMS (ESI) m/z [M + 

Na+] calculated for C24H40O3SiNa+ 427.2639, found 427.2626.

Compound 60.—

Synthesized using procedure B on a 0.2 mmol scale and purified using 1.5% ethyl acetate in 

hexane on silica gel; single syn diastereomer, relative stereochemistry assigned using NOE 

data (colorless oil, 56.6 mg, 70% yield): 1H NMR (400 MHz, CDCl3) δ 7.2−7.0 (m, 2H), 

6.9−6.8 (m, 2H), 5.7 (dtd, J = 14.9, 6.7, 1.3 Hz, 1H), 5.4 (ddt, J = 15.3, 5.5, 1.4 Hz, 1H), 

4.6−4.4 (m, 1H), 4.2 (ddd, J = 11.1, 6.0, 2.3 Hz, 1H), 3.8 (s, 3H), 2.6 (dd, J = 8.6, 6.8 Hz, 

2H), 2.1 (q, J = 7.6 Hz, 2H), 1.7 (tt, J = 8.4, 6.8 Hz, 2H), 1.6−1.6 (m, 1H), 1.5 (dt, J = 14.0, 

11.2 Hz, 1H), 1.2 (d, J = 6.1 Hz, 3H), 1.03 (s, 9H), 1.00 (s, 9H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 157.7, 134.6, 133.3, 129.33, 129.27, 113.7, 74.2, 69.8, 55.3, 44.5, 34.5, 31.6, 31.2, 

27.5, 27.3, 24.8, 22.6, 19.7; IR 2934, 2854, 2358, 1513, 1244, 1141, 976, 822 cm−1; HRMS 

(ESI) m/z [M + Na+] calculated for C24H40O3SiNa+ 427.2644, found 427.2658.

Structural Reasoning.

One challenge in this project was determining the relative stereochemistry of the linear 

diastereomeric starting materials (Scheme 5). Determining the relative stereochemistry was 

crucial to understand the mechanism of the subsequent palladium-catalyzed stereospecific 

cyclization. After several failed crystallization attempts of the starting silanols and ester 

derivatives, silocines were prepared for NOE studies.

(2R*,6S*,Z)-9-(4-Methoxyphenyl)non-4-ene-2,6-diol (43 mg, 0.162 mmol, 1 equiv) was 

dissolved in 2 mL of CH2Cl2 and transferred to a 10 mL round-bottom flask equipped 

with a magnetic stir bar, kept under a N2 atmosphere. Freshly distilled 2,6-lutidine (75.4 

μL, 0.65 mmol, 4 equiv) was added, followed by (t-Bu)2Si(OTf)2 (58.3 μL, 0.18 mmol, 1.1 

equiv). The reaction mixture was stirred at room temperature for 12 h and then quenched by 

addition of a saturated aqueous NH4Cl solution (3 mL). After transfer to a separatory funnel, 

the mixture was extracted with CH2Cl2 (3 × 10 mL). The organic fractions were collected, 

dried over sodium sulfate, and concentrated in vacuo. The resulting residue was purified 

by chromatography on silica gel to give 61 (colorless oil, 30 mg, 0.074 mmol, 41% yield). 

Note: the column was packed with a slurry of silica gel in hexanes containing 0.5% NEt3.

Compound 61.—
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Purified using 0–1.5% ethyl acetate in hexane on silica gel; single diastereomer (colorless 

oil, 30 mg, 41% yield): 1H NMR (400 MHz, CDCl3) δ 7.23−7.03 (m, 2H), 6.95−6.68 (m, 

2H), 5.83−5.53 (m, 2H), 4.67−4.49 (m, 1H), 4.49−4.34 (m, 1H), 3.79 (s, 3H), 2.72−2.42 (m, 

3H), 2.36−2.11 (m, 1H), 1.82 (m, J = 11.1, 8.2, 4.9, 1.1 Hz, 1H), 1.77−1.46 (m, 3H), 1.22 

(d, J = 6.3 Hz, 3H), 1.01 (s, 9H), 0.94 (s, 9H); 13C{1H} NMR (101 MHz, CDCl3) δ 157.8, 

137.2, 134.9, 129.4, 128.2, 113.8, 70.5, 69.4, 55.4, 37.9, 36.7, 35.0, 28.3, 28.0, 27.9, 23.7, 

22.2, 20.2; IR 2920, 2860, 2380, 1620, 1520, 1250, 1140, 1070, 830, 744, 650 cm−1; HRMS 

(APCI) m/z [M + H+] calculated for C24H41O3Si+405.2825, found 405.2797.

(2R*,6R*,Z)-9-(4-Methoxyphenyl)non-4-ene-2,6-diol (30 mg, 0.114 mmol, 1 equiv) was 

dissolved in 2 mL of CH2Cl2 and transferred to a 10 mL round-bottom flask equipped 

with a magnetic stir bar, kept under a N2 atmosphere. Freshly distilled 2,6-lutidine (53 μL, 

0.45 mmol, 4 equiv) was added, followed by (t-Bu)2Si(OTf)2 (40.7 μL, 0.125 mmol, 1.1 

equiv). The reaction mixture was stirred at room temperature for 12 h and then quenched by 

addition of a saturated aqueous NH4Cl solution (3 mL). After transfer to a separatory funnel, 

the mixture was extracted with CH2Cl2 (3 × 10 mL). The organic fractions were collected, 

dried over sodium sulfate, and concentrated in vacuo. The resulting residue was purified 

by chromatography on silica gel to give 67 (colorless oil, 24 mg, 0.059 mmol, 52% yield). 

Note: the column was packed with a slurry of silica gel in hexanes containing 0.5% NEt3.

Compound 67.—
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Purified using 0–1.5% ethyl acetate in hexane (colorless oil, 24 mg, 35% yield): 1H NMR 

(400 MHz, CDCl3) δ 7.17−7.04 (m, 2H), 6.90−6.73 (m, 2H), 5.73−5.56 (m, 2H), 4.56−4.38 

(m, 1H), 4.17 (ddd, J = 8.0, 6.2, 2.0 Hz, 1H), 3.79 (s, 3H), 2.65−2.52 (m, 2H), 2.42−2.26 

(m, 1H), 2.18 (dt, J = 13.4, 7.4 Hz, 1H), 1.84−1.70 (m, 1H), 1.70−1.48 (m, 3H), 1.21 (d, 

J = 6.2 Hz, 3H), 0.99 (s, 9H), 0.96 (s, 9H).; 13C{1H} NMR (101 MHz, CDCl3) δ 157.8, 

137.4, 134.9, 129.4, 127.8, 113.8, 71.4, 69.1, 55.4, 37.3, 37.1, 35.1, 28.6, 28.0, 27.9, 24.4, 

21.2, 20.9; IR 2920, 2860, 2380, 1610, 1520, 1240, 1170, 1040, 830, 750, 645 cm−1; HRMS 

(APCI) m/z [M + H+] calculated for C24H41O3Si+ 405.2825, found 405.2816.

Scheme 7: procedures and Characterization.

Olefin Cross-Metathesis Reaction.—A 10 mL microwave vial was charged with 33 
(49 mg, 0.2 mmol, 1 equiv), ethyl acrylate (100 mg, 1 mmol, 5 equiv), CH2Cl2 (4 mL, 

0.05 M reaction concentration), and a magnetic stir bar. Then, the Hoveyda–Grubbs second-

generation catalyst (6 mg, 0.01 mmol, 0.05 equiv) was added to the reaction mixture. The 

reaction vial was sealed and submerged in an oil bath preheated to 50 °C, and the reaction 

mixture was stirred at this temperature for 24 h. Following this time, the solvent was 

removed in vacuo, and the resulting residue was purified by chromatography on silica gel to 

give 62 (colorless oil, 37 mg, 0.118 mmol, 59% yield).

Compound 62.—Purified using 4% ethyl acetate in hexane on silica gel (colorless oil, 37 

mg, 59% yield): 1H NMR (400 MHz, CDCl3) δ 6.90 (dd, J = 15.3, 3.5 Hz, 1H), 6.12 (dd, 

J = 15.3, 2.0 Hz, 1H), 4.75 (dtd, J = 11.0, 3.1, 2.0 Hz, 1H), 4.40−3.94 (m, 4H), 1.91−1.70 

(m, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.03 (s, 9H), 1.01 (s, 9H); 13C{1H} NMR (101 MHz, 

CDCl3) δ 166.9, 149.6, 119.7, 72.9, 64.3, 60.5, 36.0, 27.5, 27.3, 22.9, 20.1, 14.4; IR 2934, 

2860, 2358, 1730, 1620, 1250, 1101, 930, 850, 730, 645 cm−1; HRMS (ESI) m/z [M + Na+] 

calculated for C16H30O4SiNa+ 337.1811, found 337.1838.

Dihydroxylation.—A 10 mL reaction vial was sequentially charged with K2OsO4·2H2O 

(7.4 mg, 0.02 mmol, 0.1 equiv), NMO·H2O (47 mg, 0.35 mmol, 1.75 equiv), 2 mL of 

tBuOH/H2O (3/1 mixture), and 48 (69 mg, 0.2 mmol, 1 equiv). The reaction vial was sealed, 

and the reaction mixture was stirred at room temperature for 2 h. Following this time, the 

reaction was quenched with 2 mL of a saturated aqueous Na2S2O3 solution and transferred 

to a separatory funnel. The aqueous layer was extracted with ethyl acetate (3 × 10 mL), 

and the organic fractions were collected and dried with MgSO4. After concentration in 
vacuo, the resulting residue was purified by chromatography on silica gel to give 63 and 

64 (separable 7:1 mixture of diastereomers, 59 mg combined, 0.155 mmol, 77% combined 

yield).

Compounds 63 and 64.—Purified using 5–15% ethyl acetate in hexane on silica gel (7:1 

dr, 59 mg, 77% yield);
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Compound 63.—Major diastereomer (colorless oil, 51 mg, 67% yield): 1H NMR (400 

MHz, CDCl3) δ 7.31−7.26 (m, 2H), 7.24−7.14 (m, 3H), 4.23−4.05 (m, 3H), 3.92 (ddd, J = 

8.7, 4.6, 2.1 Hz, 1H), 3.31 (dd, J = 5.8, 2.2 Hz, 1H), 2.84 (ddd, J = 14.6, 9.3, 5.6 Hz, 1H), 

2.71 (ddd, J = 13.8, 9.2, 7.0 Hz, 1H), 2.63 (s, 2H), 2.07−1.55 (m, 4H), 1.04 (s, 9H), 0.99 (s, 

9H); 13C{1H} NMR (101 MHz, CDCl3) δ 142.0, 128.6, 128.5, 126.0, 76.5, 76.1, 69.7, 64.5, 

35.3, 32.9, 32.1, 27.6, 27.2, 22.8, 20.0; IR 3420, 2934, 2860, 2358, 1473, 1101, 976, 822, 

747, 645 cm−1; HRMS (ESI) m/z [M +N a+] calculated for C21H36O4SiNa+ 403.2275, found 

403.2253.

Compound 64.—Minor diastereomer (colorless oil, 8 mg, 10% yield): 1H NMR (400 

MHz, CDCl3) δ 7.32−7.25 (m, 2H), 7.25−7.16 (m, 3H), 4.22 (ddd, J = 11.3, 3.5, 2.1 Hz, 

1H), 4.13 (dq, J = 7.0, 2.4 Hz, 2H), 3.76 (ddd, J = 8.9, 4.4, 1.9 Hz, 1H), 3.25 (dd, J = 3.5, 

2.0 Hz, 1H), 2.84 (ddd, J = 14.6, 9.6, 5.5 Hz, 1H), 2.71 (ddd, J = 13.8, 9.5, 6.9 Hz, 1H), 

2.19 (dtd, J = 14.3, 11.0, 6.5 Hz, 1H), 2.00 (dtd, J = 14.4, 9.1, 5.4 Hz, 1H), 1.81 (dddd, J 
= 13.9, 9.7, 6.9, 4.4 Hz, 1H), 1.55 (dq, J = 14.4, 2.3 Hz, 1H), 1.03 (s, 9H), 1.01 (s, 9H); 
13C{1H} NMR (101 MHz, CDCl3) δ 142.1, 128.6, 128.5, 126.0, 77.6, 75.6, 72.3, 64.2, 35.8, 

32.6, 32.1, 27.5, 27.2, 22.9, 20.2; IR 3482, 2934, 2860, 2358, 1473, 1141, 1007, 970, 896, 

827, 650 cm−1; HRMS (ESI) m/z [M + Na+] calculated for C21H36O4SiNa+ 403.2275, found 

403.2269.
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Scheme 1. 
(A) Polyhydroxylated and Stereochemically Complex Biologically Active Molecules and 

(B) Potentially Mild and Highly Selective Method for Protected 1,3-Diol Formation
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Scheme 2. 
Typical Sequence for Starting Material Preparation
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Scheme 3. 
Examination of Leaving Group Effects
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Scheme 4. 
Substrate Scope with Primary Silanols
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Scheme 5. 
Substrate Scope with Secondary Silanols
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Scheme 6. 
(A) Determination of the Stereochemistry of Linear Starting Materials and (B) Mechanistic 

Hypothesis
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Scheme 7. 
Product Alkenyl Dioxasilinanes Being Convenient Synthons for Many Transformations 

Including (A) Cross-Metathesis and (B) Dihydroxylation
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Table 1.

Reaction Optimization

Entry [Pd] Additive
a Ligand Yield (%)

b

1 Pd(PPh3)4 - (R)-BINAP
c 35%

2 [(Cinnamyl)PdCI]2 - (R)-BINAP 62%

3 [(Cinnamyl)PdCI]2 - (R)-BINAP 28%
d

Trace
e

4 [(Cinnamyl)PdCI]2 - (R)-DTBM-SEGPHOS 19%

5 [(Cinnamyl)PdCI]2 - Xantphos 27%

6 [(Cinnamyl)PdCI]2 KOtBu (R)-BINAP 46%

7 [(Cinnamyl)PdCI]2 NaHCO3 (R)-BINAP 42%

8 [(Cinnamyl)PdCI]2 CH3CO2H (R)-BINAP trace

9 [(Cinnamyl)PdCI]2 PhCO2H (R)-BINAP NR

a
1 equiv.

b
Performed on a 0.1 mmol scale; yields were determined by 1H NMR integration using methyl phenyl sulfone as an internal standard.

c
Arbitrarily chosen, as no enantioselectivity was observed.

d
At 110 °C.

e
At room temperature. See the Supporting Information for additional conditions tested.
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