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Abstract

We use ATAC-seq to examine chromatin accessibility for four different tissues in Drosophila

melanogaster: adult female brain, ovaries, and both wing and eye-antennal imaginal discs

from males. Each tissue is assayed in eight different inbred strain genetic backgrounds,

seven associated with a reference quality genome assembly. We develop a method for the

quantile normalization of ATAC-seq fragments and test for differences in coverage among

genotypes, tissues, and their interaction at 44099 peaks throughout the euchromatic

genome. For the strains with reference quality genome assemblies, we correct ATAC-seq

profiles for read mis-mapping due to nearby polymorphic structural variants (SVs). Compar-

ing coverage among genotypes without accounting for SVs results in a highly elevated rate

(55%) of identifying false positive differences in chromatin state between genotypes. After

SV correction, we identify 1050, 30383, and 4508 regions whose peak heights are polymor-

phic among genotypes, among tissues, or exhibit genotype-by-tissue interactions, respec-

tively. Finally, we identify 3988 candidate causative variants that explain at least 80% of the

variance in chromatin state at nearby ATAC-seq peaks.

Author summary

Chromatin states are well described in Drosophila melanogaster embryos, but adult and

pre-adult tissues are poorly studied, as are differences among genotypes. We carried out

ATAC-seq on four different tissues in eight different inbred genotypes with biological rep-

licates within tissue and genotype. We discover that apparent differences in coverage, and

by inference chromatin openness, are often due to segregating structural variants (SVs)

that can only be corrected for if strains are associated with high-quality genome assem-

blies. After correction for false positives associated with SVs, we identify thousands of

regions that appear to vary in chromatin state between genotypes or vary between geno-

types in a tissue-dependent manner. It has been widely speculated that cis-regulatory vari-

ants contribute to standing variation in complex traits. If this is true, chromatin states that

vary between individuals, perhaps in a tissue-dependent manner, are likely to be enriched

for quantitative trait loci.
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Introduction

Many human complex diseases, such as heart disease and diabetes, are highly heritable [1].

Large high-powered Genome-Wide Association Studies (GWAS) have dominated the study of

such diseases over the last decade, but despite thousands of associations between markers and

traits, the exact causative variants underlying risk typically remain hidden [2,3], and an appre-

ciable fraction of heritable variation remains unexplained [4]. Recent papers propose that vari-

ation in human complex traits is due to thousands of mostly intermediate-frequency, tiny

effect variants [5–7]. In contrast, QTL mapping studies in yeast [8,9], mouse [10–12], and Dro-
sophila [13] consistently map factors of much larger effect, with mapped QTL collectively

explaining a considerable fraction of heritability in a cross. Efforts to fully characterize com-

plex trait loci in model systems may hold the most promise for “lifting the statistical fog” [14]

associated with genetic mapping, and point to causative, functional alleles.

A promising strategy for identifying causative variants at candidate genes identified via

GWAS or QTL mapping is to focus on regions near those genes that act as cis-regulators of

gene expression. There is now a preponderance of evidence that the bulk of variation in com-

plex traits is due to regulatory variants [6,15–18], with little evidence that amino acid variants

explain human GWAS hits [19]. Yet, so little is actually known about complex traits that even

this claim is debated [19,20]. Until recently, non-coding regions with cis-regulatory function

have been difficult to identify at scale, but genomewide profiling of open chromatin regions

using DNase-I HS (DNase-I hypersensitive sites) sequencing [21] and/or the more experimen-

tally straightforward ATAC-seq (Assay for Transposase Accessible Chromatin) approach [22]

have allowed characterization of chromatin state in large panels of genotypes [23,24]. ATAC-

seq employs the Tn5 transposase sequencing chemistry to make an Illumina-compatible

paired-end sequencing library using nucleosome-bound DNA as template for the transposi-

tion reaction. Regions of DNA bound by transcription factors or nucleosomes are protected

from Tn5 insertion, whereas more open chromatin regions—likely harboring active cis-regula-

tory features—are associated with higher levels of sequence coverage. Much like RNA-seq

data, open chromatin regions identified by ATAC-seq can vary among tissues, developmental

timepoints, and genotypes [23,25–27]. In terms of the genetics of complex traits, chromatin

features displaying variation among genotypes, especially in a tissue-specific manner, are of

considerable interest as potential contributors to trait variation.

Multiple DNase1-HS-seq and ATAC-seq studies have been carried out in Drosophila mela-
nogaster [26,28–41] as well as other insects such as Anopheles gambiae [42]. The majority of

Drosophila studies have focused on a single genotype (or cell line), have compared different

mutant backgrounds, or have employed a small number of wildtype strains that lack a high-

quality genome sequence (c.f. [26,29,33,35,36,38,39]). In no case has the genotype queried

been the Drosophila melanogaster reference strain (i.e., Bloomington stock 2057 or “iso1”), the

strain ATAC-seq reads are generally aligned to. There are routinely a considerable number of

SNPs, short insertion/deletion variants, and a wide array of structural variants (SVs) distin-

guishing any pair of Drosophila strains [43], and such events–if they are effectively “hidden”

due to the absence of high-quality genomes for the target strains–may complicate the analysis

of chromatin state, as has been observed with RNAseq data [44]. Furthermore, chromatin

accessibility studies in Drosophila have focused principally on early embryonic stages [26,30–

32,34–37,41], cell lines [28], or whole adults, with only five studies examining specific adult tis-

sues or imaginal discs [29,33,38–40]. In terms of the complex traits that tend to be studied in

the Drosophila research community, which are skewed towards traits measured in adults and

larvae (c.f. Table 3 of [45]), cis-regulatory elements active in imaginal discs or adult tissues are

likely of broad interest.
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Here we carry out a biologically-replicated ATAC-seq experiment to characterize chromatin

accessibility in four adult tissues in several highly-characterized isogenic genotypes of D. melano-
gaster [43] (throughout this paper we use genotype to refer to a genome wide genotype or isogenic

strain). We identify a set of peaks with evidence for an open chromatin configuration in at least

one of the tissues. Unlike previous studies, and inspired by the quantile normalization method

deployed in microarray research [46], we develop a method for normalizing ATAC-seq reads

across tissues, genotypes, and biological replicates. We carry out statistical tests to identify ATAC-

seq peaks that differ in coverage as a function of tissue, genotype, or that display a tissue-by-geno-

type interaction. By virtue of studying highly isogenic genotypes with reference quality de novo
assemblies, we correct for artifacts in peak coverage due to hidden SVs. We show that a failure to

correct for the impact of SVs can result in a high rate of peaks inferred as differing between geno-

types, which are in fact due to mis-mapped read pairs. We finally identify a set of SNPs near to

variable ATAC-seq peaks that potentially represent candidate causal cis-acting factors.

Results

Workflow and samples

We dissected wing and eye-antennal imaginal discs from male third instar larvae, and brains

and ovaries from adult females, for eight Drosophila Synthetic Population Resource [47]

founder strains. All eight have been re-sequenced using short-read sequencing [48], while

seven have extremely well characterized, reference-quality genomes [43]. For each tissue and

genotype combination we obtained three biological replicates. The eight genotypes chosen are

highly inbred and represent a world-wide sampling of variation within the species (see S1 Fig

and S1 Table). Dissected samples were immediately processed to make indexed ATAC-seq

libraries [22] and sequenced to obtain 20–147 million Illumina paired-end reads per sample

(mean = 73M, SD = 21M). Reads were aligned to the D. melanogaster reference genome (dm6)

and pooled across genotypes, but within tissues, to identify open chromatin “peaks” located

throughout the euchromatic genome using MACS2 [49]. Individual replicate/genotype/tissue

samples were separately normalized to obtain a weighted coverage at each identified peak.

Finally, we utilized reference quality assemblies for the seven assembled strains to correct read

coverage statistics for the presence of nearby polymorphic structural variants (SVs) and carried

out statistical tests at peaks to identify chromatin structures that varied among the four tissues,

the seven genotypes, or exhibited a tissue-by-genotype interaction. Our general workflow is

depicted in S2 Fig and read mapping statistics for each sample are given in S4 Table.

ATAC-seq identifies open chromatin regions across four tissues in the

Drosophila genome

Peaks were filtered to only include those in euchromatin regions (see S2 Table) that were also

significantly enriched above background at p<0.01 as defined by MACS2. After filtering, we

identified 25464, 18111, 18496, and 17413 euchromatic peaks for adult female brain, ovary,

eye-antennal imaginal disc and wing imaginal disc tissue, respectively. Venn diagrams show-

ing peaks shared among tissues for the set of peaks enriched at p<0.01 and at p<0.001 (Fig

1A) are qualitatively similar, supporting the idea that the significance threshold for enrichment

that is employed only subtly impacts the collection of peaks we consider. The Venn diagram at

p<0.01 (Fig 1A) shows that although peaks shared among tissues are not uncommon– 9.8%,

7.5%, and 17.2% of the total collection of peaks are shared by all four, three, or two tissues,

respectively– 65.6% of the peaks are private to a single tissue. Brain tissue exhibits the highest

number of private ATAC-seq peaks, but even the pair of disc tissues–which one might naively
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think would be the most similar of our target tissue types–have appreciable numbers of private

peaks, highlighting the value of tissue-specific chromatin characterization.

For each peak, within each tissue, we characterized fold enrichment (a measure of peak

“height” based on read count in the peak relative to the local background [49]) to explore

whether the properties of the peaks we identify resemble those observed in previous studies.

Fig 1B, depicting fold enrichment for the brain, shows that the vast majority of peaks (>90%)

have fold enrichments of less than 5. We observed the same trends for the four other tissues

(see S3A, S4A and S5A Figs). This observation is consistent with results from DNase1-HS-seq

experiments [50,51] and other ATAC-seq datasets [52,53]. We further examined the distribu-

tion of fold enrichment as a function of distance from transcription start sites (TSSs) for brain

Fig 1. Summary of open chromatin peaks identified across four tissues. (A) Venn diagram showing overlap in peak calls across

tissues as a function of the p-value cut-offs of 0.01 (left) and 0.001 (right). (B) Distribution of peak enrichment scores for the brain

samples. (C) Peak enrichment scores as a function of distance to the nearest transcription start site with a smoothing line for brain

samples. Insert focues on peaks within 10kb of the TSS showing only the smoothing line. (D) Peak enrichment distribution as a function

of genomic feature for brain samples (TSS, transcription start site; TTS, transcription termination site).

https://doi.org/10.1371/journal.pgen.1010439.g001
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peaks, as TSSs often exhibit strong enrichment patterns [54,55]. Fig 1C shows fold-enrichment

as a function of distance from the TSS for the female brain (S3B, S4B and S5B Figs for the

other tissues). The patterns we see largely mirror other studies [52,54,55]. We finally examined

average fold enrichment as a function of HOMER annotation type (Fig 1D depicts female

brain). Fold enrichments are strongest for 5’UTR, TSS, and perhaps transcription termination

sites (TTS). Enrichments are more subtle for other feature types, although for all feature types

there were clearly a subset of peaks with strong fold enrichment scores. The same trend in

peak enrichment with regard to feature types can also be observed in other tissues (S3C, S4C

and S5C Figs). Overall, properties of the ATAC-seq peaks observed for our four target tissues

are comparable to those observed in the Drosophila literature [56], giving us confidence that

the peaks of this study are robustly inferred. Finally, there is some suggestion that more highly

enriched peaks (e.g., those near TSSs) tend to be more likely to be shared among tissues. S6 Fig

shows the degree of peak sharing among tissues as a function of the feature type that peak is

located in.

Our next goal was to obtain a common set of genomic locations (or loci) at which statistical

tests to evaluate variation in chromatin accessibility over genotypes and/or tissues could be

carried out. To do this we merged peaks (i.e., the single base position where coverage peaked)

over all tissues and genotypes that were within 200-bp of one another, and whose MACS2-de-

fined boundaries overlapped. In contrast, peaks that were separated by more than 200-bp were

not merged even if their MACS2 boundaries overlapped. To illustrate the merging procedure

Fig 2 (top panel) depicts a representative ~30kb region centered on the gene hairy (a gene con-

tributing to embryonic segmentation and peripheral neurogenesis) showing peaks called sepa-

rately for each of the four tissues, as well as the consensus set of peaks with adjacent peaks

merged (the “all tissues” track; see methods). Red hashes show the location of each peak, and

horizontal black bars depict the entire peak interval from MACS2. The lower panel zooms in

on a smaller 10kb region with a more detailed depiction of the raw coverage data (the y-axis is

fold enrichment). As with typical ATAC-seq datasets we often see a strong peak near the TSS

that is consistently identified across tissues. In contrast, for non-TSS peaks, MACS2 bound-

aries may only sometimes overlap depending on the tissue. The lower panel illustrates how our

heuristic merges peaks close to one another across tissues to define a single peak location (red

hashes). The heuristic gives a single “all tissues” location for the peak associated with the TSS

of hairy, despite the peak position varying slightly among tissues. Furthermore, consider the

region downstream of the 3’ UTR of hairy, the MACS2 boundaries (indicated by the black

bars) for two peaks overlap for ovaries, but not for the two disc tissues, and the six peaks each

have different locations. Despite the MACS2 boundaries overlapping in ovaries, the raw cover-

age clearly suggests two peaks. As those peaks are greater than 200bp apart, the heuristic calls

two peaks and further merges the positions of those two peaks across tissues. An algorithm

that merges peaks based on overlapping boundaries, especially when data is collected from

multiple tissues, would merge these two peaks (since their boundaries overlap), despite evi-

dence they are separate. Based on visual inspections of the fold-enrichment profiles for many

other regions (not shown) we observe many such instances where merging peaks based on

overlapping MACS2 boundaries, especially those observed only in a subset of tissues, seems

misleading, whereas keeping the peaks separate appears correct.

Normalizing coverage corrects for sample-to-sample variation and the

presence of structural variants

Different samples yield different numbers of raw reads. Additionally, histograms of ATAC-seq

fragment lengths show a characteristic periodicity representing nucleosome free DNA, mono-
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nucleosome bound DNA, di-nucleosome bound DNA, and so on (see Figs 2 of [22] and S7 for

convenience). Fig 3, depicts the distribution of raw fragment lengths for two biological repli-

cates of brain tissue ATAC-seq from the A4 strain in red (i.e., independent tissue dissections

and library preps). It is evident that replicate 2 has more nucleosome bound DNA than repli-

cate 1. We hypothesize that such differences might arise from subtle differences in sample prep

that result in different rates of disassociation of nucleosomes from DNA, and this sample-to-

sample variation is likely challenging to experimentally control for. To allow comparisons

Fig 2. An illustrative example of peak calling results near the gene hairy. (Top panel) Peaks called separately by

tissue as well as a consensus set of peaks calls (labeled “all tissues”). Single base peaks are indicated with red hash lines

with black bars representing uncertainty. (Bottom panel) a zoomed region showing peaks and raw read coverage.

https://doi.org/10.1371/journal.pgen.1010439.g002
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across tissues and genotypes we normalized each sample so that the genome-wide distribution

of fragment sizes are identical (see methods) using an approach akin to the quantile normaliza-

tion technique used extensively in the context of gene expression [57]. Our normalization

results in a weight being assigned to each fragment and by working with those weights, as

opposed to raw fragment counts, histograms have identical fragment size distributions across

all samples (Fig 3, blue curves). This normalization allows for straightforward statistical testing

between tissues and genotypes. S8 Fig depicts the distribution of fragment lengths across the

96 samples of this study prior to normalization and the removal of one sample due to low data

quality.

A second concern often ignored in ATAC-seq analysis, that can make it difficult to com-

pare samples across genotypes, is the presence of structural variants that could masquerade as

polymorphisms in chromatin structure. ATAC-seq data obtained from different genotypes are

generally aligned to a single reference genome, and a polymorphic structural variant near an

ATAC-seq peak can result in unaligned reads, which will present as a local drop in coverage,

and lead to the incorrect inference of more closed chromatin in that region of the genome.

The eight genotypes examined in this study are highly isogenic and seven are associated with

reference quality de novo assemblies, putting us in the unique position of being able to correct

for polymorphic structural variants. We correct for SVs by excluding all fragments across all
samples that span a structural variant present in any of the several assembled samples.

We illustrate the impact of correcting for SVs on wing disc ATAC-seq data for a 10kb

region around the rpr gene (a gene important in programmed cell death) for two genotypes

(B6 in brown, A4 in green), B6 harbors a ~17kb mdg1 transposable element ~5kb upstream of

the TSS of rpr (Fig 4A). In the uncorrected for SVs wing disc dataset, there is an apparent dif-

ference in chromatin configuration near the mdg1 insertion. But after correcting for reads

mis-mapped due to the mdg1 insertion it appears that such an inference is incorrect and the

lower coverage in the B6 genotype is largely due to mis-mapped reads associated with the

Fig 3. Distribution fragment lengths before and after normalization. Representative examples of the raw fragment size distribution

for genotype A4 and brain tissue for two replicates in red. The same two samples are depicted in blue following normalization.

https://doi.org/10.1371/journal.pgen.1010439.g003
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Fig 4. Examples illustrating the effects of SV correction on coverage. (A) After correcting for a large insertion of a

mdg1 transposable elements upstream of rpr in strain B6 (brown) the apparent difference in coverage between strains

B6 and A4 (green) is largely eliminated. (B) Correcting for the effect of a hopper TE in an intron of Mef2 in the A4

genotype largely eliminates an apparent difference in chromatin configuration.

https://doi.org/10.1371/journal.pgen.1010439.g004
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mdg1 TE. Although, even after correcting for the mdg1 insertion, there does appear that there

is a subtle difference in chromatin structure to the right of its location. Interestingly, this

region contains two other SVs (a 2.8 kb F insertion in A4 and a 111bp deletion in B6) that do

not impact chromatin structure inferences.

Fig 4B depicts a second example of an ATAC-seq peak in the first intron of the Mef2 gene,

whose product is crucial in myogenesis [58]. The top panel shows a 45kb region centered on

the Mef2 gene, while the bottom panel zooms in on a 550bp region entirely contained within

the first intron showing coverage for brain samples with and without SV correction. In the SV-

uncorrected data, this peak significantly varies by genotype with a -log10(FDR p-value) of 3.7.

Seven of the genotypes exhibit a relatively open chromatin configuration, while A4 (in dark

green) exhibits lower coverage in a region that contains a TE insertion. In a typical experiment,

where the existence of the TE insertion would be unknown, and “hidden” from short read call-

ers, the effect on read mapping of the TE would not have been corrected for, and we would

have incorrectly inferred a genetic difference in chromatin accessibility. After SV correction,

the ATAC-seq peak is not identified as being polymorphic. It is important to note that our cor-

rection acts by masking regions close to SVs in non-SV containing samples, so our proposed

solution is far from perfect. But uncharacterized structural variants in non-reference genotypes

can clearly cloud the interpretation of ATAC-seq datasets (as we show below).

Although both panels of Fig 4 illustrate transposable elements, other structural variants can

impact read mapping. S9 Fig depicts a polymorphic 1.9kb deletion relative to the reference in

strain A4 in the first intron of the Abl gene. The deletion knocks out two ATACseq peaks, but

if only mapping short reads to the reference strain, A4 would appear to have a closed chroma-

tin configuration.

ANOVA identifies polymorphic chromatin structures

For every merged-peak in the euchromatic genome we carried out an ANOVA to determine if

chromatin accessibility varies across Tissues, Genotype, or their interaction (T:G). We carried

out this analysis for data either corrected or uncorrected for polymorphic structural variants

for the seven genotypes with reference genomes. As the statistical analysis involved roughly

sixty-eight thousand peaks and three p-values for each peak (Tissue, Genotype, and their inter-

action) we convert p-values to a false discovery rate and consider a test significant if the FDR is

less than 0.5%. Table 1 gives the number of significant chromatin profile differences by factor,

and Fig 5A shows tissue overlap using a Venn diagram. A robust observation is that for the

SV-corrected data, close to 100% of all peaks display differences in chromatin features among

the four tissues we examine. Of the peaks showing differences between tissues ~84% are not

significant for a genotype or tissue by genotype interaction (Fig 5A). Thus, chromatin features

are far more likely to vary among tissues than genotypes. Although differences between geno-

types are far less frequent than differences between tissues, we still identify roughly 1000 such

peaks (Table 1). Interestingly we identify roughly four times as many tissue by genotype inter-

actions than simple genotype specific peaks. Finally, we created Manhattan plots for all

Table 1. Number of peaks showing significant variation at an FDR of 0.5%.

Statistical Test SV-corrected SV-uncorrected

Genotype 1050 2456

Tissue 30383 34361

Genotype:Tissue 4508 5792

Total 31769 36059

https://doi.org/10.1371/journal.pgen.1010439.t001
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ANOVA tests, and observe that SV-corrected “hits” are largely uniformly distributed through-

out the euchromatic genome with no evidence for “hotspots” (S10 Fig), although perhaps

there is a tendency for an increased rate of significant genotype hits nearer centromeric

regions (despite aggressive filtering for euchromatin only regions).

Since we carried out ANOVA on both SV corrected and uncorrected data, we can assess

the impact of failing to correct for SVs on inference. There is considerable overlap in those

peaks showing tissue-only effects between the uncorrected and SV-corrected datasets (Fig 5C).

In contrast, we observe many fewer ATAC-seq peaks following SV correction in the genotype

and tissue-by-genotype peak sets (Fig 5B and 5D): Of the peaks identified in the uncorrected

analysis, 55% for the genotype-only set, and 21% for the tissue-by-genotype set are eliminated

by correcting for SVs. We more carefully examined the peaks eliminated by SV correction

(n = 1441 genotype-only, n = 4041 tissue-only, n = 1382 interaction) to determine what might

be driving their disappearance (Table 2). The vast majority of these peaks—89%, 99%, and

90% for genotype, tissue, or the interaction, respectively—are either completely contained

within an SV or are within 800bp of an SV boundary (Table 2). The location of these peaks

suggests that they are purely the result of incorrect mapping of short sequencing reads from a

non-reference genotype to a common reference genome. The remaining genotype- and

Fig 5. Venn diagrams showing overlapping peaks by ANOVA categories and SV correction status. (A) Venn diagram showing

overlap of regions significant (FDR< 0.5%) for Genotype (blue), Tissue (orange), or G:T (orchid) for the SV-corrected data. (B-D)

Venn diagrams showing the number of peaks significant G,T, or a G:T interaction, respectively. Green are tests carried out without

correction for known SVs, and brown after SV-correction.

https://doi.org/10.1371/journal.pgen.1010439.g005

Table 2. Number of peaks that are only significant in SV uncorrected data as a function of statistical test and dis-

tance from nearest SV.

Statistical Test Number of Peaks

within ±800bp > ±800 bp Total

Genotype 801 481 159 1441

Tissue 2282 1736 23 4041

Genotype:Tissue 639 599 144 1382

https://doi.org/10.1371/journal.pgen.1010439.t002
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interaction-only peaks that disappear following SV correction, but that are greater than 800bp

from an SV, appear to be excluded by just failing to survive thresholds. Either they are elimi-

nated by having their average coverage drop just below our threshold of 50 following SV-cor-

rection, or by just failing to reach our 0.5% FDR threshold in the SV corrected dataset (S11

Fig). Failing to correct for SVs during ATAC-seq peak calling—as is the norm when de novo
genome assemblies are not available for the target strains—will generate large numbers of false

positive peaks that do not, in truth, impact chromatin accessibility.

S12 Fig depicts false positive differences between genotype, tissues, or a genotype by tissue

interaction as a function of the SV-type corrected for, and if the ATACseq peak is inside the

SV or instead within 800-bp of an SV. In the case of indels, for example, an ATACseq peak

could be contained within a deletion present only in one of the non-reference strains. In con-

trast, for a peak to be within a TE, that TE would need to be present in the reference strain and

absent in the other strains examined, due to the way mapping to a reference genome works.

Chakraborty et al. [43] observed 7347 TE insertions, 1178 duplication CNVs, 4347 indels, and

62 inversions in the euchromatin genomes of DSPR strains based on de novo sequencing. As

expected, TEs dominate false positives due to SVs within 800bp of an ATACseq peak, whereas

INDELs dominate the landscape for peaks contained within an SV. In general, the likelihood

of a false positive is a complex function of the type of event, its population frequency, and how

that event presents to short read mappers relative to the reference genome.

Examples of polymorphic chromatin structures

Fig 6A depicts SV-corrected coverage brain and ovary samples centered between the TTS of

the Npc2f gene, whose human ortholog (NPC2 gene) is implicated in Niemann-Pick disease

and Niemann-Pick disease type C2 due to its involvement in regulating sterol transport [59],

and the TSS of Kal1 gene, whose human ortholog (Anosmin-1 gene) is responsible for the X-

linked Kallmann’s syndrome [60]. We observe a genotype polymorphism in chromatin state

with the B2 genotype (light green) exhibiting a more closed chromatin state compared to the

other genotypes for ovary tissue (-log10(FDR p-value) = 3.6). This ATAC-seq peak is further

polymorphic by tissue with brain tissue exhibiting a generally closed chromatin state. We spec-

ulate that the B2 genotype has lower expression of Kal1 in ovaries, with the chromatin

Fig 6. Illustrative examples of polymorphic chromatin configuration. The images depict regions upstream of the TSS of Kal1 (A),

upstream of the TSS of a Eip75B isoform (B), upstream of the TSS of a Eip75B isoform (C), and a large region known to harbor cis-

regulatory element upstream of hairy (D). SV-corrected coverage is given for a subset of interesting tissue.

https://doi.org/10.1371/journal.pgen.1010439.g006
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structure impacting its TSS. Fig 6B depicts a polymorphic ATAC-seq peak located within the

intron or near the TSS of the eIF4A gene (depending on isoform), with elF4A acting as RNA-

dependent ATPase and ATP-dependent RNA helicase that facilitates attachment of the 40S

ribosomal subunit [61]. Coverages are higher for A5, A7, and B3, than the other genotypes in

wing disc tissue (-log10(FDR p-value) = 3.5) with other tissues (not shown) showing similar

trends in coverage. The location of the peak suggests a role in mediating isoform usage

between genotypes via an alternative TSS, with the peak heights suggesting an allelic series. Fig

6C is an example of two adjacent peaks exhibiting a genotype:tissue interaction (-log10(FDR p-

value) = 4.5 and 4.4 respectively) located in intron 1 of the Eip75B gene isoform F, and near

TSS of Eip75B gene isoform E. This gene has been shown to regulate the complex traits of feed-

ing behavior, fat deposition, and developmental timing [62,63,64]. As with the example of

EIF4A we speculate that this polymorphism impacts isoform usage via alternative TSSs. Fig 6D

depicts four peaks polymorphic by tissue, or by genotype:tissue interaction, for an interesting

14kb region directly upstream of TSS of hairy. hairy is well studied in the context of develop-

mental biology [65–67] and the genetics of complex traits [68–70], with several cis-regulatory

enhancers in this region playing a role in regulating the seven stripes formed in the blastoderm

stage [71,72]. The four ATAC-seq peaks exhibit chromatin configurations that vary among tis-

sues (-log10(FDR p-value) = 14.7, 17.9,10.9, and 14.9 left to right). Finally, the peak at

chr3L:8672906 is polymorphic for a genotype:tissue interaction (-log10(FDR p-value) = 2.3).

Candidate causative SNP identification

For each of the SV-corrected peaks significant for a genotype or genotype:tissue interaction we

estimate the proportion of variation in peak height explained by each SNP (or marker) within

250bp of the peak (Fig 7). We speculate that such SNPs are strong candidates for cis-regulatory

Fig 7. ATAC-seq peak coverage variation explained by nearby polymorphisms. Peaks significant for genotype or genotype by tissue are on the left and

right respectively. The number of sites are grouped by Minor Allele Count (MAC).

https://doi.org/10.1371/journal.pgen.1010439.g007
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factors that control chromatin configuration. Two caveats are that we are only examining

seven reference genomes so our models may be over-fitted, and truly implicating events as

causative would require gene replacement experiments. We identify and test 6707 and 33570

SNPs located within 250bp of genotype or genotype: tissue interaction specific ATAC-seq

peaks respectively. Out of those, there are 1253 (18.7%), and 2735 (8.1%) SNPs that explain

greater than 80% of the variation in peak heights due to Genotype or G:T respectively, an aver-

age of 6 nearby SNPs per significant peak (Table 3). We further annotate all SNPs that explain

100% of variance for functional impact. Out of 687 SNPs that explain 100% of variance in peak

height (by genotype or for a genotype: tissue interaction), there are a total of 22 SNPs anno-

tated as having a high functional impact (i.e., missense, premature start codon, or splice vari-

ant), which is odd given that there is no reason to think a mutation of high functional impact

on a transcribed protein is likely to impact a nearby chromatin configuration. The potential

functional impact of the remaining 665 SNPs is more difficult to discern (S13 Fig).

Examples of potentially causative SNPs

Fig 8A depicts an ATAC-seq peak downstream of TTS of Bre1 isoform A and exon 4 of iso-

form B, a gene involved in regulation of Notch signaling [73–75]. Genotypes B2 and B3 are

more closed in eye disc and brain compared to all other genotypes (Fig 8A). There is a poten-

tial causal SNP almost centered on the peak explaining 100% and 57% of the variation in eye

disc and brain respectively. Fig 8B depicts a polymorphic peak for brain and ovary in which

the A6 (purple) genotype appears more open than the others (-log10(FDR p-values) = 6.1 and

10.2 for genotype and G:T respectively). The peak is located in a intron of Ptpmeg (involved in

the maintenance of axon projection [76] and inhibition of EGFR/Ras/mitogen-activated pro-

tein kinase signaling pathway during wing morphogenesis [77]), as well as ~400bp down-

stream of TTS of mthl9 (whose gene subfamily plays important role in Drosophila
development, stress response, and regulation of life span [78]). Two nearby SNPs each explain

100% of variation in genotypes, and both are private to the A6. Fig 8C depicts a peak polymor-

phic by genotype that appears largely brain specific with A7 (pink) being more closed relative

to other genotypes, and B2 (light-green) perhaps more open slightly downstream but not asso-

ciated with a called peak. A nearby SNP private to A7 in the 5’-UTR (and 51bp downstream of

a TSS) of a Nna1 isoform explains 99% variance in genotype in brain. Fig 8D depicts poten-

tially causal SNPs exhibiting a genotype:tissue interaction located upstream of two TSSs for the

gene stv (involved in the chaperone pathway essential for muscle maintenance [79]). For both

peaks and tissues the A4 (green) genotype exhibits a more closed configuration especially in

wing disc and to a lesser extent brain. A SNP private to A4 explains 81%, 95%, 55%, and 97%

of the variance in coverage for brain and wing disc at left and right peaks respectively.

Table 3. Number of SNPs within 250 bp and explaining > = 80% of the variation in coverage for peaks signifi-

cantly varying by Genotype or G:T.

Peaks that vary by:

Tissue Genotype Genotype:Tissue

Genotype 1253 NA

G:T NA 2735

Brain 1620 6485

Ovary 1299 5441

Eye Disc 1401 6780

Wing Disc 1465 7385

Total Tests 6707 33570

https://doi.org/10.1371/journal.pgen.1010439.t003
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Discussion

Previous ATAC-seq/DNase1-HS-seq experiments in Drosophila have focused almost exclu-

sively on embryos, whole adult bodies, or cell lines, and only rarely have compared multiple

genotypes. We carried out a replicated ATAC-seq experiment on two adult tissues (female

brains and ovaries) and two imaginal disc tissues (wing and eye-antennal imaginal discs) from

which adult tissues are ultimately derived. It is widely believed that the sites that contribute to

complex trait variation are likely to be regulatory in nature, thus chromatin features expressed

in adult tissues are strong candidates to harbor such causative sites. Thus, we expect the data

collected as part of this experiment will be of utility to the Drosophila complex trait commu-

nity, who tend to study traits that manifest in adult or larval flies (c.f. Table 3 of Mackay and

Huang 2018) [45], and see utility in our distributing coverage as a function of genotype and tis-

sue as a series of Santa Cruz Genome Browser tracks (http://goo.gl/LLpoNH). We characterize

eight highly isogenic strains of Drosophila that are a subset of the strains used to found the

Drosophila Synthetic Population Resource [48], with seven of those strains having reference

quality genome assemblies levels [43]. We largely employ a standard ATAC-seq peak calling

pipeline, apart from our strategy for merging peaks within and between tissues, to obtain a

union dataset consisting of 44099 open chromatin peaks.

Our analyses identified approximately thirty thousand peaks that differed in coverage

between tissues, highlighting the future need for tissue specific chromatin maps. We further

identified on the order of one thousand chromatin peaks that differ among genotypes and five

thousand that vary among genotypes in a tissue specific manner. Chromatin peaks that differ

among genotypes associated with candidate genes identified via QTL mapping in DSPR [48]

or GWAS using DGRP [80] are strong candidates for contributing to differences in gene

expression levels. Surprisingly, peaks displaying genotype by tissue interaction are more fre-

quent than the genotype specific peaks. Such peaks represent candidates for modulating gene

expression in a genotype dependent manner in a small subset of tissues that gene impacts. It is

reasonable to speculate that ATACseq peaks displaying tissue by genotype interactions

Fig 8. Illustrative examples of putatively causal SNPs. Regions are depicted downstream of the TTS of Bre1 (A), downstream of the

TTS of mthl9 (B), the 5’UTR of a Nna1 isoform (C), and upstream of the TSSs of two stv isoforms (D). Only shows SNPs

explaining> 80% of variation in Genotype of a G:T interaction (blue) are depicted.

https://doi.org/10.1371/journal.pgen.1010439.g008
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underlie QTL that appear to be tissue or complex trait specific and do not show a great deal of

pleiotropy.

We carried out statistical testing to identify chromatin states that vary among tissues, seven

of the eight wild-type genotypes, and/or exhibit a tissue by genotype interaction (i.e., differ-

ences among genotypes varying in the tissue dependent manner). To facilitate statistical test-

ing, we carried out two important data normalization steps unique to this study. We first

developed a per sample normalization procedure that creates per fragment weights that con-

trol for differences between samples in the total number of reads, and the percentage of read

pairs that are nucleosome-free, mononucleosomic, binucleosomic, etc. The degree to which

normalization impacts inference depends on how similar the fragments distributions are

between samples. Some tissues seem easily amenable to ATACseq preps, especially cell lines,

in which case perhaps no correction is necessary. On the other hand, more difficult tissues,

will result in larger differences in fragment size distributions, and the correction is more likely

to be beneficial. Any normalization method is likely to be most useful when comparing geno-

types within tissue, where subtle differences in ATACseq peak heights could be biologically

meaningful. There is some risk that differences fragment size distributions between tissues

could be biological in origin, a problem shared among all between tissue normalization meth-

ods. These caveats acknowledged, the observation of fragment size distribution differences

between biological replicates suggests that normalization may be beneficial.

A second important normalization step attempted to control for false positive inferences

due to hidden structural variants. By virtue of seven of the eight isogenic strains being associ-

ated with reference quality de novo assemblies [43], we control for the potential artifact of poly-

morphic structural variants creating read-alignment differences that in turn could masquerade

as differences in chromatin configuration. We accomplish this by masking regions in all

strains harboring a nearby SV present in any strain. We carried out statistical testing on data-

sets either ignoring or following correction for polymorphic SVs and estimate the potential to

identify false positives in data sets where SVs are hidden. Failure to account for SVs does not

strongly impact the inference of differences in coverage between tissues, but it can have a huge

impact in terms of detecting difference in chromatin accessibility between genotypes or those

showing a genotype by tissue interaction, where we estimate potential false positive rates of

48% and 19% respectively. Our method of correcting for SVs is conservative and consists of

masking regions association with polymorphic SVs.

A shortcoming of our masking SVs is that we cannot perform in depth analyses of possible

biological effects of the SVs themselves (unless they exert those effects over distances longer

than ~800bp). A potential solution would be to align reads to a genome private to each strain,

followed by lifting those alignments over to a universal coordinate system to compare geno-

types. Although this approach works well for SNP-based variation in well-behaved genomic

regions, we find that lift-overs tend to break down when structural variants distinguish strains

[81], and this is especially problematic for events like duplications where there is not even a 1:1

mapping between genomes. While our method of masking SV is not perfect, it is simple to

implement and can remove upward of 50% of false positive peaks.

For ATAC-seq peaks that vary significantly in coverage among genotypes or that show a tis-

sue by genotype interaction we attempted to identify nearby SNPs (or markers) that may con-

trol that variation. It is both reasonable to suggest, and supported by experiments (c.f., [24,82–

85]), that alleles that control chromatin accessibility peaks are likely to be in cis and physically

close to the peak. We identify several thousand such SNPs that explain more than 80% of the

variation due to genotype or a genotype by tissue interaction for coverage, a collection likely

enriched for causative polymorphisms, despite our over-fitting of the data. It would be of value

to extend this approach to a much larger collection of genotypes, although such work may
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necessitate focusing on a single tissue and require more de novo genome sequences to control

for hidden structural variants. As Crispr/Cas9/allele swapping methods continue to come of

age in Drosophila [86–90] medium-throughput functional assays capable of confirming spe-

cific allele chromatin peaks interactions could alternatively be used to characterize alleles regu-

lating nearby chromatin states and gene expression levels.

Materials and methods

Strains

We employed 8 of the 15 strains that serve as founders of the Drosophila Synthetic Population

Resource (DSPR), a multiparental, advanced generation QTL mapping population consisting

of hundreds of recombinant inbred lines [48]. These highly-inbred strains—A4, A5, A6, A7,

B2, B3, B6, and B7 (S1 Table)—are a worldwide sample of genotypes (S1 Fig), and seven of the

eight (excluding B7) have reference quality assemblies such that virtually all SVs are known

[43].

Tissue dissection and ATAC-seq library preparation

The 8 inbred strains were raised and maintained in regular narrow fly vials on a standard corn-

meal-yeast-molasses media in an incubator set to 25˚C, 50% relative humidity, and a 12 hour

Light: 12 hour Dark cycle. We isolated nuclei from four different tissues for our 8 target

strains. (1) Adult brains (central brain + optic lobes) were dissected and pooled from ten 1–4

day old females per replicate. (2) Ovaries were dissected and pooled from five 1–5 day old

females per replicate. (3) Wing imaginal discs were dissected and pooled from 3–7 male wan-

dering third instar larvae per replicate. (4) Eye-antennal imaginal discs were dissected and

pooled from 4–7 male wandering third instar larvae per replicate. For each strain/tissue com-

bination we generated 3 replicates. All dissections were carried out 1–9 hours after lights on,

and following dissection all samples were immediately subjected to nuclei isolation.

Our full protocol for ATAC-seq library construction is provided in S1 Text, but in brief:

Animals were dissected in nuclei lysis buffer under a standard stereoscope, and dissected tissue

for a given replicate pooled into 200-μl of nuclei lysis buffer on ice. Each sample was then sub-

jected to manual grinding, passed through 30-μM filter cloth, spun down, and the supernatant

removed. Subsequently, 25-μl of tagmentation reaction mix was added to the pellet, and incu-

bated at 37˚C for 30-min before freezing at −20˚C. After thawing, the sample was cleaned

using a MinElute PCR purification column (Qiagen, 28004), and an aliquot was subjected to

PCR to add on custom, Illumina-compatible indexing oligos. Finally, samples were cleaned

using a standard bead-based approach, quantified using a Qubit dsDNA BR kit (Thermo-

Fisher, Q32850), and examined via a TapeStation 2200 using genomic DNA ScreenTapes (Agi-

lent Technologies, 5067–5365 / 5067–5366).

All 96 libraries (8 strains × 4 tissues × 3 replicates) were pooled at equal amounts—along

with a series of other libraries that are not part of the project—and run over 16 lanes of an Illu-

mina HiSeq4000 sequencer at the UCI Genomics High-Throughput Facility collecting PE50

reads.

Read processing

Adapters were trimmed from the raw reads using Trimgalore-0.4.5 [91,92], and trimmed

reads were aligned to the dm6 D. melanogaster reference genome [93] using bwa 0.7.8 [94].

Unmapped reads, and reads with unmapped mates were removed with samtools 1.3 (option -F

524 -f 2) [95], and all non-primary reads and improperly aligned reads were also removed with
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samtools 1.3 (option fixmate -r and option -F 1084 -f 2). Following this, duplicate reads are

removed using picard 2.18.27 [95,96] via MarkDuplicates and

REMOVE_DUPLICATES = TRUE. Only reads aligning to the five major chromosome arms

—X, 2R, 2L, 3R, and 3L - were retained for analysis. BAM files were corrected to reflect the

actual insertion points of the Tn5 transposase acting as a dimer by having plus strand reads

shifted +4bp and minus strand reads shifted −5bp as suggested in [22]. We refer to these as

“corrected BAM files”. Paired end BED files reflecting mapped fragments were generated

using bedtools 2.25.0 [97]. The same process was carried out for all 96 samples (8 genotypes, 4

tissues, and 3 replicates).

ATAC-seq peak calling

Corrected BAM files from all 96 samples were merged by tissue across replicates and geno-

types, and MACS2 [49] was used to call peaks separately on the ovary, brain, wing disc, and

eye disc. MACS2 options were -f, -p 0.01 to set cut-off p-value for peaks to be considered sig-

nificant, -B—SPMR,—no-model to skip any read shifting as we were using corrected BAM

files, and -g was set to 142573017, the summed length of the major chromosome arms in the

dm6 genome release. The peak calling resulted in four ENCODE “tissue NarrowPeak files”,

one for each tissue.

Merging of peaks across tissues

Tissue NarrowPeak files were concatenated, sorted by chromosome and peak summit, then a

custom python script grouped and averaged peak summit locations that were within 200 bp of

one another, but greater than 200 bp from the nearest adjacent peak summit. Each averaged

peak summit is associated with a minimum left interval boundary and maximum right interval

boundary obtained from all the summit peaks contributing to an average peak. The resulting

file was converted to ENCODE NarrowPeak format for viewing using the UCSC genome

browser with "peak" as peak name,"1000" as peak score, "." as peak strand, "10" as peak enrich-

ment, and "-1" as q-value and p-value to accommodate the ENCODE NarrowPeak format,

referred to as the “all tissue” track/peak file. Only the chromosome and the mean peak summit

columns are used in downstream statistical analysis steps.

Euchromatin peak filter and peak annotation

We choose to focus solely on euchromatic regions of the genome since heterochromatic

regions are gene poor, poorly annotated, and enriched for structural variants and transposable

elements. The euchromatin region boundaries we employ are given in S2 Table and come

from [98]. All peaks in the all tissue peak file, and the four tissue NarrowPeak files used in

downstream analyses, include only euchromatin located peaks.

We used HOMER v 4.11.1 [99] and the tissue NarrowPeak files separately for each of the

four tissues to annotate each peak summit as belonging to one of eight exclusive groups based

on their location relative to features annotated in the dm6 reference genome: (1) transcription

start site (TSS: −1000 to +100bp from the transcription start site), (2) transcription termination

site (TTS: −100 to +1000bp from transcription termination site), (3) coding exons, (4) 5’ UTR

exon, (5) 3’ UTR exon, (6) intronic, (7) intergenic, and (8) non-coding (referring to non-pro-

tein-coding, but nonetheless transcribed DNA). In the case of a peak belonging to more than

one feature type it is assigned to a single feature type with priority according to the numeric

order of the features in the previous sentence (i.e., TSS has priority over 5’ UTR, etc). Since we

focus in this work on peak summits, whereas HOMER annotates a peak as being at the mid-

points of an interval, we edited the interval associated with each peak to be the peak summit
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+/− 1bp. The percentages of peaks falling into each feature type by tissue are given in the S3

Table. These percentages are compared to the annotation types associated with one million

randomly assigned peak locations. Comparing these percentages between tissues and/or to

other studies is a measure of quality control.

Quality control of ATAC-seq peaks

We carried out manual quality control steps on the dataset. First, we generated Venn diagrams

for each tissue to compare the number of peaks using two different cut-offs for significance in

the MAC2 peak calling. We compared cut-offs of -log(p-value) > = 2 and> = 3 (MACS2 p-

value cutoff suggestions) using R package VennDiagram version 1.6.20. The number of over-

lapping peaks were calculated via the mergePeak function in HOMER with option -venn on

the tissue bed files. We forced the maximum distance between peak centers to be< = 100bp

for two peaks to be considered "overlapping". We observed the degree of overlap to be qualita-

tively similar for -log(p-value) cutoffs of either 2 or 3, as a result we employ a cutoff of 2 for

peaks called by MACS2.

We further created several plots using the peak fold-enrichment profiles obtained from

MACS2. Peak fold-enrichments are a measure of read counts at peaks relative to the local ran-

dom Poisson distribution of reads [49]. ATAC-seq peaks are typically highly enriched in tran-

scription related genomic regions, such as TSS, TTS, 5’ UTR, or exons [52,100]. We similarly

examined fold-enrichment as a function of annotated region type to confirm our data is con-

sistent with previous work. We similarly examined fold-enrichment profiles as a function of

distance from the nearest TSS to ensure our peaks were consistent with prior work. We also

looked at the distribution of fragments lengths for each library to make sure libraries were not

dominated by naked DNA and exhibited peaks associated with nucleosome bound DNA (c.f.

S7 and S8 Figs). Lastly, we generated Manhattan plots of peak locations to ensure that they are

not spatially clustered at a gross genomic scale.

Normalization for differences between tissues and genotypes

For the jth sample (i.e., replicate/tissue/genotype combination) we have a “fragment file” gener-

ated from the corrected BAM file that is a 3-column BED file with the chromosome, corrected

start and corrected stop base of each fragment defined by a set of paired reads. In order to

carry out statistical tests at peaks using our replicated ATAC-seq data we normalized the 95

different fragment files associated with each tissue/genotype/replicate combination (as one

sample failed a visual quality control check). Our normalization procedure is based on the

observation that both the number of reads and the distribution of fragment lengths varies

between samples (see Fig 3A and 3B). The former just reflects variation in the number of reads

obtained per library, and we believe the latter is due to subtle differences in sample preparation

that inadvertently selects for differing fractions of nucleosome free DNA. Our normalization

consists of adding a 4th column to the fragment file that can be thought of as a “weight” used

in all downstream analyses, where that weight normalizes the fragment files across the J sam-

ples. The weight is inspired by the “quantile normalization” method used in the field of gene

expression [57] and is simply: wij = Ni./Nij, where Nij is the number of fragments of length i in

the jth sample, and the “.” is the average over samples. As can be seen from the unweighted and

weighted histograms of Fig 3 these weights result in a distribution of fragment lengths that are

identical between samples.

With weights in hand, we calculated the weighted Coverage for each sample at any given

position in the genome, C, as the sum of the weights of all fragments covering that position.

We finally averaged coverage over replicates (within tissues and genotypes) to generate UCSC
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Genome browser tracks [101–104], although the biological replicates were retained for statisti-

cal testing.

Accounting for structural variants

In a typical ATAC-seq experiment raw reads are aligned to a reference genome, fragment files

are derived from those alignments, and the resulting fragment files are perhaps normalized.

However, in the case of the seven strains (A4,A5,A6,A7,B2,B3,B6) of this study we have com-

plete de novo reference quality genome assemblies [43]. The genomes of these strains are dis-

tinguished from the dm6 reference by thousands of SVs, such as mobile element insertions,

smaller insertions or deletions of DNA sequences (large enough to generally not be identified

by standard pipelines), tandem duplications, and inversions. These “hidden” structural vari-

ants can impact inferences regarding chromatin structure obtained from ATAC-seq data

assembled to a standard reference. To illustrate this issue we simulated 50bp PE reads from a

30kb or 32.5 kb genomic region using samtools::wgsim, with the two sequences being identical

aside from a 2.5kb insertion of DNA sequence derived from a transposable element. Simulated

short reads are then obtained from each region with an average fragment length of 400bp

(standard deviation of 100 bp), similar to the fragment length distribution of ATAC-seq reads.

Reads were mapped back to the shorter region (akin to a “reference genome”) and coverage is

depicted in S14 Fig. The figure clearly shows the potential for mis-mapped reads associated

with a polymorphic SV to create a large localized dip in sequence coverage (that could be inter-

preted as a closed chromatin structure), with the footprint of this phenomena likely restricted

to +/- 800bp (i.e., 2 standard deviation in read length) around the SV.

In the work of this paper, by virtue of seven of the genotypes examined having reference

quality de novo assemblies, we can control for the effect of unmapped reads due to structural

variants by removing fragments across all genotypes that span an SV in any given genotype.
This correction is done using bedtools intersect to remove all reads from all fragment files that

span insertion or deletion variants. For duplication variants, we first calculated duplicated

regions by adding and subtracting the total length of duplication from the insertion site. Then,

all reads spanning duplicated regions are removed. We then calculate new weights as described

above, and recalculate coverage.

Statistical testing

We carry out two ANOVA statistical tests for seven strains with reference qualify assemblies

(A4, A5, A6, A7, B2, B3, B6) at peaks to identify those that differ among genotypes, tissues, or

their interaction for weighted log transformed Coverage (lnC = ln(C+5)) after peaks with a

weighted average coverage< 50 were dropped as: lnC ~ geno + tissue + geno:tissue. Adding 5

to the number of counts makes the rare case of counts near zero less extreme relative to other

strains. A False Discovery Rate (FDR) associated with each p-value was calculated using the p.

adjust function in R [105,106]. Tests with FDR adjusted p-values < 0.005 (or -log10(FDR p-

value) > 2.3) are considered significant. QQ plots and Manhattan plots were generated for the

ANOVA results.

We carried out statistical tests on both SV corrected and uncorrected fragment files. Loci

significant in the SV-uncorrected data but not significant in the SV corrected data potentially

represent false positives. We define hits unique to the SV-uncorrected dataset as false positives

and estimate the rate of such false positives in experiments that do not correct for hidden SVs.

Results are also represented as Venn diagrams. We further examined each potential false posi-

tive to determine if the ATAC-seq peak was actually contained within a SV (e.g., a deletion rel-

ative to the reference), was within +/- 800bp of an SV boundary, or was >800bp from an SV
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(for peaks >800bp from a SV both F&R reads are expected to map to the reference genome

and thus such peaks are not expected to be impacted by the correction). We finally compared

the p-values between SV-corrected and uncorrected data for peaks>800bp from an SV to

determine if any remaining differences were due to simple sampling error in p-values near sig-

nificant cut-offs.

Causative SNP and SV identification by random effect model

For peaks significant for genotype or genotype:tissue we attempted to identify SNPs within

250bp of the peak that could potentially explain the significant result. We accomplished this

via the following random effects model in R::lme4 (version 1.1–23): lnC ~ (1|marker) + (1|
marker:tis) + (1|tis) + (1|geno:marker) + (1|tis:geno:marker)

We estimate the proportion of variance explained by a marker as varm/[varm+ varg:m] or

marker:tissue as varm:t/[varm:t + varg:m:t] respectively. Here marker refers to a state of a SNP,

thus several genotypes could share the same marker state. Furthermore, since the strains of

this study are isogenic, markers are either REF or ALT, and never heterozygous. In both cases

a ratio close to 100% identifies a SNP that explains all the variation associated with a significant

peak. We similarly estimate the proportion of variation explained for each tissue by dropping

terms involve tissue. These SNPs are strong candidates for being causative, with the strong

caveat that only 7 genotypes are examined in this study, so we are almost certainly over-fitting

and confirmatory experiments are necessary. We examine the distributions of these marker

tests and maintain a list of polymorphisms explaining 100% of the variation associated with

peaks. We finally annotate SNPs explaining 100% variance using SnpEff [107] and HOMER.

In addition, a list of SNPs/SVs which individually explain less than 80% variance of polymor-

phic peaks is also provided. These SNPs/SVs potentially explain only a fraction of the variation

in peak height, with the remaining due to other cis-acting or trans-acting variants. Future con-

firmatory experiments are even more necessary to confirm the causal effect of these SNPs/SVs.
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