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Abstract 

Due to increasing concern over the shortage of freshwater, there is a dire need to remediate 

unconventional water sources such as agricultural, industrial, or municipal wastewater beyond 

what is obtainable from the hydrologic water cycle. With the advances in surface science, 

wastewater remediation technologies, including membrane-based and adsorption-based 

technologies, have been preferred due to their resilience and effectiveness. This dissertation aims 

to improve the existing membrane-based and adsorption-based technologies by modulating the 

solid-liquid interaction parameters like photocatalysis, wettability, and electrostatic force of 

attraction. 

The first part of the dissertation discusses the fabrication of superhydrophilic and oleophobic 

coating, which can be utilized to separate and desalinate an oil and saline water mixture, and 

photocatalytically degrade the organic substances. The photocatalytic surface is coated on a 

commercial membrane with an ultraviolet (UV) light-curable adhesive. A mixture of 

photocatalytic nitrogen-doped titania (N-TiO2) and perfluoro silane-grafted silica (F-SiO2) 

nanoparticles is coated successively. The membrane resulted in a chemically heterogeneous 

surface with intercalating high and low surface energy regions (i.e., N-TiO2 and F-SiO2, 

respectively) that were securely bound to the commercial membrane surface. The coated 

membrane was then utilized for continuous separation and desalination of an oil-saline water 

mixture and for simultaneous photocatalytic degradation of the organic substances adsorbed on 

the membrane surface upon visible light irradiation. 

In the second part, a photocatalytic mesh that can selectively permeate water while repelling oil 

was fabricated by coating a mixture of nitrogen-doped TiO2 (N-TiO2) and perfluoro silane-grafted 

SiO2 (F-SiO2) nanoparticles on a stainless-steel mesh. Utilizing the photocatalytic mesh, the time-
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dependent evolution of the water-rich permeate flux as a result of photocatalytic degradation of 

the oil was studied under the visible light illumination is studied. A mathematical model was then 

developed that can relate the photocatalytic degradation of the organic substances deposited on a 

mesh surface to the evolution of the permeate flux. This model was established by integrating the 

Langmuir–Hinshelwood kinetics for photocatalysis and the Cassie–Baxter wettability analysis on 

a chemically heterogeneous mesh surface into a permeate flux relation. Consequently, the time-

dependent water-rich permeate flux values are compared with those predicted by using the model. 

It is found that the model can predict the evolution of the water-rich permeate flux with a goodness 

of fit of 0.92. 

In the following part, a robust in-air oleophobic hydrophilic coating for a filter was fabricated 

utilizing poly(ethylene glycol)diacrylate (PEGDA) and 1H,1H,2H,2H-heptadecafluorodecyl 

acrylate (F-acrylate). Methacryloxypropyl trimethoxysilane (MEMO) was utilized as an adhesion 

promoter to enhance the adhesion of the coating to the filter. The filter demonstrates robust oil 

repellency preventing oil adhesion and oil fouling. Utilizing the filter, gravity-driven and 

continuous separations of surfactant-stabilized oil-water emulsions are demonstrated. Finally, we 

demonstrate that the filter can be reused multiple times upon rinsing for further oil-water 

separations. 

The fourth part of the dissertation focuses on the remediation of dissolved contaminants like PFAS. 

For this, electric field-aided adsorption has been explored. An inexpensive graphite adsorbent is 

fabricated by using a simple press, resulting in a mesoporous structure with a BET surface area of 

132.9±10.0 m2 g-1. Electric field-aided adsorption and desorption experiments are conducted by 

using a custom-made cell consisting of two graphite electrodes placed in parallel in a 

polydimethylsiloxane container. Unlike the conventional sorption process, a graphite electrode 
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exhibits a higher adsorption capacity for PFAS with a short fluoroalkyl chain (perfluoropentanoic 

acid, PFPA) in comparison to that with a long fluoroalkyl chain (perfluorooctanoic acid, PFOA). 

Upon alternating the voltage to a negative value, the retained PFPA or PFOA is released into the 

surrounding water. Finally, we engineered a device module mounted to a gravity-assisted 

apparatus to demonstrate electrosorption of PFAS and collection of high purity water. 

 

In the last part, we demonstrate electrosorption of PFAS with varied fluoroalkyl chains by utilizing 

MXene-PEDOT:PSS absorbent. Intercalation of PEDOT:PSS to the MXene help enhance the 

capacitive property of MXene, increasing the electrosorption of PFAS. Using the adsorbent, we 

demonstrate electrosorption of PFAS with varied fluoroalkyl chain lengths from water upon 

applying a voltage of V = 1.0 V. Also, the adsorbent can desorb the PFAS from its surface when 

applying a voltage of V = - 1.0 V, which regenerates the adsorbent for further operations. Finally, 

a pseudo-second-order kinetic model that describes the reversible electrosorption of PFAS from 

MXene-PEDOT:PSS adsorbent is proposed. 
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visible light illumination. The accuracy of the predicted flux values was then validated by 

comparing them with the experimentally acquired results. 
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In this work, we demonstrate an inexpensive graphite adsorbent that enables reversible adsorption 

and desorption of PFAS with both short and long fluoroalkyl chain lengths (perfluoropentanoic 

acid (PFPA) and PFOA) in water upon alternating the voltage. The PFAS readily adsorbs to the 

graphite adsorbent upon application of a positive voltage within ≈10 s. We demonstrate that the 

adsorbed PFAS can be released into water with a high desorption efficiency of ≈96% and ≈94% 
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a quantitative relation to describe the kinetics of electrosorption for PFAS on a graphite adsorbent 

surface by utilizing a pseudo second-order kinetic model. 
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Chapter 1. Introduction 

1.1. Current water crisis: Shortage of freshwater due to contamination 

Water is perhaps the essential element for the sustenance of life. While almost three fourth of the 

earth's area is covered by water, only 2.8% of the freshwater is available for human life.1, 2 

Approximately 70% of the freshwater is concentrated in a few regions, which results in the fact 

that most of the population does not have the appropriate access.3 Also, due to rapid urbanization 

and industrial growth, the quality of available freshwater has deteriorated.4-6 It is reported that one 

in every three people has already been affected by such water contamination, and it is expected to 

become worse over the coming decades. Consequently, there is a creation of high water-stress 

regions around the world.7, 8  

One of the primary contributing factors to water contamination and high water stress is wastewater 

generated from various industrial and agricultural sectors.9-13 For example, in the oil refinery 

industry, every one barrel of crude oil processing14 generates approximately 10 barrels of 

wastewater (i.e., produced water).15 In California, the cumulative flow of tailwater from many 

farms has historically posed significant water contamination as it is discharged to surface waters 

such as wetlands, streams, and rivers.16, 17 These wastewaters contain organic and/, or inorganic 

contaminants get mixed with water bodies (e.g., surface water and groundwater).18-20 These 

contaminants21, 22 can accumulate in the human body through direct exposure or the food chain in 

the ecosystem.23-25 This often results in adverse effects on human health and causes chronic 

diseases.26, 27 Therefore, there is a dire need for developing technologies to remove contaminants 

from water and generate freshwater. 
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1.2. Contaminants in water: suspended or dissolved  

The contaminants often found in wastewater are mostly organic compounds such as pesticides, 

fluorocarbons (e.g., per- and polyfluoroalkyl substances (PFAS)), aliphatic hydrocarbons (e.g., 

oils), polynuclear aromatic hydrocarbons (e.g., organic solvents), and plasticizers. The wastewater 

also contains inorganic particulates and metal ions.23-25 While we can classify these contaminants 

into organic or inorganic based on their chemical structure and components,28 most wastewater 

remediation technologies cannot differentiate the types of contaminants.29-32 Instead, their working 

principles often rely on the contaminants' solubility in water which can lead to a contaminant-

specific technology. Based on the solubility in water, we classify the water-containing 

contaminants as suspended or dissolved.33-35 

Suspended contaminants are substances and materials that have low solubility with water or 

waterborne particles that exceed 2 m in size.33 Most suspended contaminants in wastewater 

comprise organic materials such as oils, organic solvents, plasticizers, and biological organisms.33-

35 They can cause several adverse health effects on the human body. For example, bacteria and 

algae (biological organisms) can cause gastrointestinal issues, which could result in chronic health 

effects or even death.23-25, 36, 37 In contrast, dissolved contaminants have high solubility with water, 

such as salts, pesticides, metal ions, and PFAS.33-35 Particularly, PFAS is an emerging contaminant 

that has been reported that they can cause carcinogenic diseases.23-25, 38, 39 

1.3. Wastewater remediation technologies 

Due to its adverse effects on the community and ecosystem, various wastewater remediation 

technologies have been developed (see Table 1.1).40, 41 Flotation is a separation process based on 

the density difference.42, 43 For example, small oil droplets can be removed from water by 

increasing the buoyancy of oil. In the coagulation process, a chemical (coagulant) is added to 
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wastewater to induce the aggregation of contaminants.14, 44 Sedimentation utilizes gravity to allow 

the suspended contaminants to settle at the bottom of the water.45, 46 Distillation is one of the most 

prevailing techniques which utilizes the difference in boiling points of the components.47, 48 

Membrane-based filtration utilizes a porous media (e.g., membrane) to remove contaminants based 

on the size exclusion.49, 50 Adsorption utilizes physical or chemical interaction between the 

adsorbent and contaminants to remove them.51, 52 Biodegradation is a process in which biological 

organisms degrade the dissolved or suspended contaminants in wastewater.53, 54 

Table 1.1. List of various wastewater remediation technologies. 

Method Working Principle Reference 

Floatation A process designed to remove suspended contaminants from 

wastewater based on the density difference. 

42, 43 

Coagulation 
A chemical process that can induce coagulation of suspended 

contaminants, which is typically followed by removal with 

charged materials.  

14, 44 

Sedimentation A gravity-driven process that allows the suspended particles to 

be settled at the bottom of the water. 

45, 46 

Distillation A thermal process for separating suspended or dissolved 

contaminants by using selective boiling and condensation. 

47, 48 

Membranes A process for removing contaminants by a porous membrane 

based on sized exclusion. 

49, 50 

Adsorption A process based on the physical or chemical interaction 

between the adsorbent and contaminants.  

51, 52 

Biodegradation A degradation process for contaminants by biological 

organisms. 

53, 54 

 

1.4. Membrane-based wastewater remediation technologies 

Membrane-based technologies are an effective solution for removing suspended or dissolved 

contaminants from wastewater based on size exclusion.55, 56 57 They are clean, environmentally 

friendly, and scalable due to their simplicity and modularity.58 Further, they are unaffected by 

temperature and do not cause secondary contamination because no additional chemicals are used 

during the operation.59-61 
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1.4.1. Various membrane technologies 

The membrane-based technologies are categorized by the driving force which enables water to 

permeate through while preventing the permeation of the contaminants.62 They can be either 

equilibrium or non-equilibrium-based processes.63 Further, they can be grouped into pressure-

driven or non-pressure-driven processes (Figure 1.1).  

Non-equilibrium-based pressure-driven processes are the most prevailing membrane technologies 

in wastewater treatment.64 They can be further divided into four types based on the porosity of the 

membrane such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse 

osmosis (RO).58, 65 (Table 1.2).  

Table 1.2. List of non-equilibrium-based pressure-driven membrane technologies. 

Types Molecular Weight Cut Off 

(kDa) 

Retained diameter 

(µm) 

Pressure 

(Bar) 
Reference 

MF 100 – 500 10-1 – 10 1 – 3 66, 67 

UF 200 – 150 10-2 – 1 2 – 5 68, 69 

NF 2 – 20 10-3 – 10-2
 5 – 15 70, 71 

RO 0.2 – 2 10-4 – 10-3 15 – 75 72, 73 

 

 
Figure 1.1. Classification of membrane-based technologies. 
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1.4.2. Membrane fouling   

A primary challenge of membranes is fouling by suspended oils or solid particles over time.74, 75 

This results in a decline in their separation performance. For example, an RO membrane should 

be operated under a remarkably low (< 0.1 ppm) oil content in the feed to minimize the possibility 

of membrane fouling.76 Thus, it has been considered challenging to use RO membranes to 

remediate oily wastewater in a single step.74 Instead, several pretreatment processes are involved 

to remove any suspended or dissolved contaminants.77 Also, membrane fouling results in a lower 

life expectancy of the membranes and an increase in the materials costs.78 Furthermore, periodic 

membrane cleaning increases the operational cost as well as downtime. 76-78 

 Membrane fouling can take place inside or outer surfaces.79 Lower-pressure processes such as UF 

and MF suffer from internal fouling, whereas higher-pressure processes such as NF and RO 

undergo surface fouling.80 81 There are various types of foulants, including particulate, organic, 

inorganic, and biological microorganisms (biofouling).75, 82 Particulate fouling occurs when 

colloids (e.g., greases, oils, surfactants, clay, silt, crystals, silica sediments) adsorb to the 

membrane surface.83 This often results in pore-blocking and cake layer formation. Fouling by 

organic or inorganic materials such as proteins, humic substances, nucleic acids, lipids, and salts 

accumulate on the membrane surface, which results in a decline of permeability.84 Biofouling takes 

place when microorganisms adhere and accumulate on the membrane surface, which is followed 

by biofilm development.74, 84 

1.4.3. Mitigation of fouling 

Mitigation of membrane fouling is critical to achieving successful membrane-based filtration 

processes.75, 85 Conventionally, membrane fouling was treated by a variety of cleaning methods, 

including physical or chemical methods.62, 86 87 Physical methods include sponge ball cleaning,88 
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alternative flushings,89 backwashings,90 and air flushing91. These methods can remove the foulants 

from the membrane surface by non-reactive forces. In contrast, chemical methods involve reagents 

that can react with the foulants to reduce the foulant affinity to the membrane surface.92, 93 As a 

result, the foulants can be readily removed from the membrane surface.  

More recently, preventive measures have been developed to reduce downtime during the 

cleaning process and to increase the life expectancy of the membranes.94, 95 Modulation and 

functionalization of the membrane surface's properties to make it become less susceptible to 

fouling is attractive.94 For example, an electrically charged membrane surface can be less fouled 

due to the electrostatic repulsion of the foulants.96 A membrane surface with smoother topography 

has a lower propensity to experience fouling as the surface does not allow for the deposition or 

adhesion of the foulants into the roughness.97 Also, a sacrificial layer that can suppress the 

accumulation and adsorption of the foulants to the surface is introduced to membranes.98 

Furthermore, membranes possessing tailored wettability to water and foulants (e.g., oils) have 

exhibited that they can be fouling-resistant.99-102 Lastly, membranes that can degrade the organic 

deposits under light irradiation and clean the surface (i.e., photocatalytic membrane) have 

developed. Here we briefly introduce membranes with tailored wettability and photocatalytic 

capability.  

1.4.3.1. Photocatalytic membranes 

Photocatalysis can be a promising preventive technique against membrane fouling.101, 102  Upon 

irradiation of ultraviolet (UV) or visible light, a membrane coated with a photo-responsive 

catalytic material can degrade any organic deposits on its surface through the redox reactions.103, 

104 Such photocatalytic membranes are attractive because they can be triggered remotely and 

typically operated under ambient conditions (i.e., room temperature and 1 atm).101, 102 
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Photocatalytic degradation of the surface adsorbed foulants has demonstrated that it can effectively 

restore the membrane's inherent filtration performance.105, 106 Titanium dioxide (TiO2) is perhaps 

the most popular photocatalytic material for this purpose.103 It can effectively degrade the organic 

pollutants under UV light irradiation.107-109 The resulting TiO2 surface becomes superhydrophilic 

(i.e., water contact angle = 0).110, 111 Madaeni et al.,112 demonstrated that TiO2 coated RO 

membrane can clean the surface under UV light irradiation and show recovery of the flux. Xu et 

al.,113 demonstrated that nitrogen (N)-doped TiO2 coated UF membrane can degrade the organic 

deposits under visible light illumination. Kim et al.,114 prepared a hybrid thin-film-composite 

(TFC) membrane by self-assembly of the TiO2 particles with the carboxylic (-COOH) functional 

group of aromatic polyamide thin-film layer. The membrane possesses a dramatic 

photobactericidal effect on E. coli under UV light illumination. By means of an ion-assisted 

deposition method, TiO2 was directly applied to a porous Teflon sheet (PTS) by Yamashita et al.115 

UV light irradiation of the PTS can lead to photocatalytic degradation of organic pollutants.  

1.4.3.2. Membranes with modulated solid-liquid wettability 

Fundamental of wetting: When a liquid droplet is placed on a surface, it can either spread or get 

repelled by the surface, determining the wettability.99, 116, 117 Such a surface wettability can be 

characterized by the contact angle between the liquid and solid surface. The contact angle for a 

liquid droplet on a smooth surface is given by Young's relation118: 

(Equation 1.1)  cos SV SL

LV


 − 

=


 

where  is Young's contact angle and SV , LV , SL  refer to the solid surface energy, liquid surface 

tension, and the solid-liquid interfacial tension, respectively. It can be inferred that a liquid droplet 

can exhibit a contact angle depending on an interplay between the interfacial energies (i.e., solid-
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vapor (solid surface energy), liquid-vapor (liquid surface tension), and solid-liquid (interfacial 

tension)) (Figure 1.2).117 Note that the effect of gravity is neglected given that a liquid droplet is 

small enough.117, 119, 120  

 

A key premise of Young's relation is that a liquid droplet must reside on an ideally smooth 

surface as well as the contact angle in the thermodynamic equilibrium. Thus, it is almost 

impossible to experimentally measure Young's contact angle. 118 Consequently, contact angles 

measured on a rough surface (i.e., apparent contact angles, *) are measured and reported in the 

literature.117, 121, 122 Apparent contact angles can be classified into two types, namely,123 the 

advancing contact angle (*
adv) and the receding contact angle (*

rec). The advancing contact angle 

is typically the maximum contact angle, while the receding contact angle is the minimum contact 

angle on a given surface.99, 117 The difference between these two contact angles is called the contact 

angle hysteresis ( = adv - rec).
124  

Based on the contact angles for water, surfaces can be grouped into four categories99, 116, 

117, 119, 120: superhydrophilic (SHL) when water < 10,  hydrophilic (HL) when water < 90, 

hydrophobic (HP) when 90 < water < 150, and superhydrophobic (SHP) when *water > 150. 

Similarly, surfaces can be grouped into superoleophilic (SOL), oleophilic (OL), oleophobic (OP), 

 
Figure 1.2. A schematic illustrating a contact of a liquid droplet on a smooth surface. 
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and superoleophobic (SOP) when a surface shows oil contact angle (oil) of < 10, oil < 90, 90 

< oil < 150, and *
oil > 150. Note that a surface with hydrophilic and oleophilic wettability is 

called omniphilic. If a surface is both hydrophobic and oleophobic, it is called omniphobic. 

Similarly, if a surface is both superhydrophobic and superoleophobic, it is called superomniphobic 

(Figure 1.3). 

Typically, a surface that is oleophobic is hydrophobic; this is because the water surface 

tension water(  = 72.1 mN/m) is significantly higher than that of oils ( oil  = 20-30 mN/m).99, 116 

Therefore, developing a hydrophilic yet oleophobic surface needs to employ special interactions 

between the surface and the contacting liquid .99, 116, 119 99, 116, 125, 126  

Membranes with modulated solid-liquid wettability: Modulating the surface wettability is 

attractive in practical applications, including self-cleaning 127, 128, microfluidics 129, 130, and liquids 

separation 131, 132. Kaner et al.133 created a UF membrane by blending zwitterionic copolymer and 

polyvinylidene fluoride (PVDF). The membrane demonstrated the segregation of zwitterionic 

 
Figure 1.3. Classification of a surface based on the contact angles for liquid. (a) 

Superomniphilic (water  0 and oil  0). (b) Omniphilic (water and oil  < 90). (c) Omniphobic 

(90 < water and oil < 150). (d) Superomniphobic (*
water and *

oil > 150).  
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copolymer on the surface upon contact with water which resulted in an increase in hydrophilic 

wettability (i.e., water contact angle < 90°) and fouling resistance against a mixture of oil and 

surfactants. Xie et al.134 fabricated a self-cleaning composite membrane that exhibited 

superhydrophilic and underwater superoleophobic wettability (i.e., oil contact angle > 150° on a 

surface submerged in water). The membrane was able to retain a film of water within the 

hierarchical structure, which significantly reduced the contact area between the oil droplets and 

the membrane's surface. Consequently, the membrane showed very high underwater oil contact 

angles and was able to readily remove both high-and low-density oils. Cheng et al.135 integrated 

cross-linked hydrophilic oligomers into a polyacrylonitrile membrane that increased its wettability 

and resulted in a lower adhesive force on oil droplets. 

1.4.4. Photocatalytic membrane with modulated wettability: Need for decoupling of 

wettability and photocatalysis 

 

Membranes with modulated wettability can be further extended by incorporating photocatalytic 

nanoparticles107-109. Such membranes can progressively eliminate the inherent shortcomings of 

conventional membranes, such as membrane fouling107. Zhao et al.,136 reported polyacrylonitrile 

(PAN) membrane coated with a fluorinated agent and photocatalytic zinc oxide (ZnO). The 

membrane exhibited remediation of wastewater upon ultraviolet (UV) light irradiation and 

resistance to fouling. Luster et al.,137 fabricated an N-doped TiO2-coated alumina membrane and 

demonstrated photocatalytic degradation of carbamazepine as a model pollutant under simulated 

solar irradiation. Coelho et al.,138 coated a filter paper with zirconia (ZrO2)-doped cerium (Cr) to 

prepare a photocatalytic membrane. The membrane demonstrated the degradation of humic acid 

(model foulant) and flux recovery of the permeate upon visible light illumination. Despite a large 

volume of literature on photocatalytic membranes with modulated wettability, there is very limited 

research on the effect of photocatalysis on the coating materials (e.g., perfluorinated silanes) that 
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are incorporated to engender the desirable wettability. This is because a photocatalytic chemical 

reaction is non-selective. Therefore, there is a need for decoupling the photocatalysis and 

wettability of the membrane. To achieve this, one needs to consider the following criteria139, 140. 

First, the membrane's wettability must remain unchanged by a photocatalytic reaction. Similarly, 

its physical and chemical integrity must not be affected by a photocatalytic reaction, particularly 

if the membrane is organic. Lastly, the coating (e.g., photocatalytic nanoparticles) needs to remain 

undetached when a high hydraulic shear force is exerted. In this dissertation, we will discuss how 

we can prepare a membrane with decoupled photocatalysis and wettability (see Chapters 2 and 3). 

1.5. Adsorption-based wastewater remediation technologies  

Adsorption-based technologies utilize an absorbent that can be directly exposed to wastewater and 

remove suspended or dissolved contaminants without causing secondary contamination.141 The 

contaminants adhere to the adsorbent surface over time. When the concentrations of the 

contaminant on the adsorbent surface and that in the water become constant, thermodynamic 

equilibrium is reached.51, 142 The relation between the equilibrium amounts of contaminants 

adsorbed and in the water at a given temperature is an adsorption isotherm.143 Langmuir 

isotherm144 and Freundlich isotherm145 are typically employed in literature to describe the 

adsorption efficiency of contaminants.143  

1.5.1. Adsorption and regeneration of adsorbent  

Based on the interaction forces, adsorption can be either physical or chemical adsorption.146 

Physical adsorption process can take place all over the adsorbent surfaces (i.e., not location-

specific). For example, electrostatic interaction147 allows an adsorbent to attract and retain 

contaminants from the water. Various parameters, including adsorbent surface area, temperature, 

pressure, and nature of contaminants, affect this physical adsorption process.147 Adsorption caused 
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by chemical forces148 is highly location-specific. It usually takes place at the reaction centers on 

the adsorbent surface. An example of chemical adsorption is the chemical bond formation between 

the contaminants and the adsorbent surface.  

Any adsorbents have limited adsorption capacity.97 149 When adsorbents with low-cost 

(e.g., powdered activated carbon (PAC) and biochar) reach their adsorption capacity, they are 

simply disposed of or incineratEd.150-152 However, this can be problematic because it can cause 

secondary contamination and increase the material cost.153 Another method to deal with the 

saturated adsorbents is regeneration to restore their inherent adsorption capacity.154 155 Effective 

regeneration of the saturated adsorbent makes the adsorption-based wastewater remediation 

technologies not only economical but also environmentally friendlier.156, 157 Given that most 

adsorbents manufactured with costs158, their recyclability is an important factor in view of the 

economic efficiency of the entire adsorption process.159, 160 Regeneration of adsorbents can also be 

an important step to recover the adsorbed contaminants.161 Particularly, this is desirable when the 

contaminants are valuable products (noble metal ions) or need to be sampled (PFAS).162, 163  

1.5.2. Electric field aided adsorption 

Electric field aided adsorption (i.e., electrosorption) is a process that produces clean water from 

dissolved contaminants like metal ions, salts, and PFAS.164 In this process, ions, and counterions 

are electrostatically attracted to oppositely charged electrodes and adsorb on the surface to form 

regions of excess charge known as electrical double layers (EDL) (Figure 1.4)165. As a result, the 

concentration of the charged species in the solution depletes, leaving behind a deionized (DI) water 

stream.166 The theoretical efficiency of the electrosorption process is reported to surpass most of 

the remediation technologies at contaminants concentrations below 10 g L−1.167 Also, due to the 

creation of EDL on the adsorbent, the adsorbent's adsorption capacity and kinetics are relatively 
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higher compare to that of physical or chemical adsorption.168 Further, the electrosorption process 

has more flexibility than membrane-based separations due to the vast array of ion-selective 

electrodes and electrode coatings.3  

 

1.5.2.1. Working principles 

Electrosorption is an electrochemical technique employing high-surface-area, conductive 

materials that adsorb ions from contaminated water.169 In this system, two electrodes are 

submerged in an electrolyte (e.g., contaminated water). Upon application of an electric field in 

between the electrodes, cations migrate towards the negatively charged cathode and anions 

towards the anode due to coulombic forces, and electric charge is built up at the surface of the 

electrode.166 At the surface of the electrode, the charges form an EDL. Capacitive deionization 

(CDI)170, 171 utilizes an electrosorption process to remove dissolved ions from water. A model for 

the interface between an electrode and an electrolyte has been established based on the Gouy-

Chapman-Stern (GCS) theory.172 173 Based on the GCS model, an EDL is composed of the Stern 

layer174 (i.e., a fixed capacity region at the electrode surface created due to the finite size of 

adsorbed ions) and a diffuse layer with a mixture of ions and counterions.175, 176 The GCS model 

is usually used to describe systems in which the EDL is small compared to the size of the pores. 

 
Figure 1.4. A schematic of electrosorption process. 
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The diffuse layer does not have a precise width; instead, ion concentrations progressively decay 

with increasing distance from the surface.175 The Debye length (λD) is a characteristic distance for 

the counterion concentration and potential to decay by a factor of e (2.7). Empirically, one can 

consider the diffuse layer to have ended after 2- or 3-times the Debye length.175 At equilibrium, 

the ion distribution profiles can be described in first approximation by the Boltzmann distribution, 

which is the basis of the Poisson–Boltzmann equation.175 

1.5.2.2. Adsorbents for electrosorption 

An effective electrosorption process requires the adsorbent to fulfill the following design criteria. 

First, it should possess a large specific surface area that serves as an adsorption site. Also, it should 

exhibit durability against chemically and thermally aggressive environments.177-180 Furthermore, 

it should demonstrate high capacitance and electrical conductivity. Commonly, carbon-based 

materials are the best choice for electrode material.181  

Activated carbon: Activated carbon has a high surface area to volume ratio with hierarchical pore 

geometries. Also, it shows fast charge transfer and ion diffusion kinetics which is ideal for the 

electrosorption process.168  

Carbon aerogels: Carbon aerogels have a monolithic mesoporous structure (as opposed to the 

particulate structure of activated carbon) which contributes to fast ion diffusion kinetics. Ions can 

easily diffuse through the mesoporous structure while retaining high adsorption capacity. It also 

has a high specific surface area, low thermal expansion coefficient, and is highly chemically 

resistant, ideal for elecrtosorption.182 

Graphene: Recently, graphene has emerged as a promising candidate for electrosorption as it has 

large specific surface areas and high conductivity.183 It demonstrates that its physicochemical 

properties can be readily modulated by chemical reactions.  
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Mesoporous carbon: Similar to graphene, mesoporous carbon possesses a high surface area which 

has been considered an emerging material for electrosorption.184 

MXene: MXene, a new class of two-dimensional metal carbide, carbonitride, and nitride (i.e., 

MXene), has emerged as a competitive adsorbent for the electrosorption process due to its high 

capacitance and electrical conductivity.185 The layered structure of MXene allows the dissolved 

ions to be readily inserted and adsorbed to the surface (i.e., ion intercalation).186 

1.5.3. Reversible electrosorption of dissolved contaminants (PFAS) 

Considering that electrosorption employs the electrostatic and coulombic force of attraction 

between an electrode and ionized species, it can effectively remove dissolved contaminants such 

as PFAS. Li et al.177 utilized electrochemical assistance to enhance PFOA and PFOS adsorption 

by a multiwalled carbon nanotube. Nu et al.180 utilized an electrode made of carbon nanotube and 

graphene mixture for PFAS removal. Similarly, Wang et al.178 utilized carbon nanotube in 

continuous flow mode electrode to remove PFAS from water. Compared to conventional 

adsorbents that primarily rely on hydrophobic interaction with PFAS, the electrosorption process 

can be effective for removing short-chain PFAS.180, 187 Another important feature of 

electrosorption for PFAS is the on-demand desorption process which can be initiated by reversing 

the voltage. This enables not only the regeneration of adsorbents but the collection of concentrated 

PFAS solutions for further analyses.  

1.6. Scope of the dissertation 

Overall, this dissertation comprises four journal articles published during my Ph.D. (P1, P2, P3, 

and P4) and one project. The overarching objective of this dissertation is to develop novel 

technologies for removing the dissolved and/or suspended contaminants from wastewater by 

modulating solid-liquid interaction. In Ch. 2 and Ch. 3, we developed a visible light-responsive 
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photocatalytic surface with hydrophilic and oleophobic wettability for the separation of oil-in-

water emulsions. We investigated the relationship between the photocatalytic degradation of the 

organic deposits on the membrane surface and the permeability. In Ch. 4, we developed a robust 

in-air oleophobic and hydrophilic membrane that can separate surfactant-stabilized oil-water 

mixtures. Finally, in Ch. 5 and Ch. 6, we developed the electrosorption process for the remediation 

of PFAS-contaminated water. A graphite (Ch. 5) and MXene (Ch. 6) were utilized as electrode 

adsorbents.  
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Chapter 2: Engineered Nanoparticles with Decoupled Photocatalysis and Wettability for 

Membrane-based Desalination and Separation of Oil-Saline Water Mixtures 

This chapter is adapted from Paper P1. 

Abstract: Membrane-based separation technologies are the cornerstone of remediating 

unconventional water sources, including brackish and industrial or municipal wastewater, as they 

are relatively energy-efficient and versatile. However, membrane fouling by dissolved and 

suspended substances in the feed stream remains a primary challenge that currently prevents these 

membranes from being used in real practices. Thus, we directly address this challenge by applying 

a superhydrophilic, and oleophobic coating to a commercial membrane surface, which can be 

utilized to separate and desalinate an oil and saline water mixture, and photocatalytically degrade 

the organic substances. We fabricated the photocatalytic membrane by coating a commercial 

membrane with an ultraviolet (UV) light-curable adhesive. Then, we sprayed it with a mixture of 

photocatalytic nitrogen-doped titania (N-TiO2) and perfluoro silane-grafted silica (F-SiO2) 

nanoparticles. The membrane was placed under UV light, which resulted in a chemically 

heterogeneous surface with intercalating high and low surface energy regions (i.e., N-TiO2 and F-

SiO2, respectively) that were securely bound to the commercial membrane surface. We 

demonstrated that the coated membrane could be utilized for continuous separation and 

desalination of an oil-saline water mixture and for simultaneous photocatalytic degradation of the 

organic substances adsorbed on the membrane surface upon visible light irradiation. 

 

2.1. Introduction 

Modulating the surface wettability plays a vital role in a solid-liquid system and has found 

increasing interest in practical applications, including self-cleaning1, 2, microfluidics3, 4, and liquids 

separation5, 6. Based on the contact angle () for high (e.g., water) and low (oil) surface tension 

liquids, a surface can be grouped into four wettability; omniphobic (water > 90° and oil > 90°), 

hydrophobic and oleophilic (water > 90° and oil < 90°), hydrophilic and oleophobic (water < 90° 

and oil > 90°), and omniphilic (water < 90° and oil < 90°)7, 8. We9-11 and others12-14 have 

demonstrated that a low surface energy coating in conjunction with surface texture can result in a 

non-wetting Cassie-Baxter state with air trapped between the contacting liquid and the solid 

surface. 

Organofluorine is perhaps the most prevailing material to lower the overall surface free energy 

and render the surface repellent to liquids10. It has been extensively employed to fabricate not only 
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a surface with omniphobic15, 16 or superomniphobic wettability (i.e., *
water > 150° and *

oil > 

150°)9, 17, 18 but that with a selective (i.e., hydrophobic and oleophilic or hydrophilic and 

oleophobic) wettability19-22. For example, Mertens et al.19 utilized a combination of 

photolithography and oxygen plasma treatment to fabricate a nanocrystalline diamond surface with 

hydrophobic and hydrophilic arrays. Howarter et al.20 grafted a perfluorinated polyethylene glycol 

on a silicon surface which can exhibit hydrophilic and oleophobic wettability.  

The utility of surfaces with selective wettability can be further extended by incorporating them 

with photocatalytic nanoparticles that can degrade organic substances upon light irradiation23-25. 

Such a photocatalytic surface with selective wettability has demonstrated a potential for a wide 

range of practical applications, including anti-fouling26, 27, self-cleaning28, 29, and bactericidal 

coating30. Recent studies31-34 have revealed that membranes with selective wettability can further 

benefit by incorporating photocatalytic nanoparticles that can radically transform physical 

filtration into chemically reactive processes. Thus, it can progressively eliminate the inherent 

shortcomings of conventional membrane-based filtration, such as pollutant degradation and 

membrane fouling23. Zhao et al.35 reported a polyacrylonitrile membrane coated with a fluorinated 

agent and photocatalytic ZnO. The membrane exhibited remediation of wastewater upon 

ultraviolet (UV) light irradiation and resistance to fouling. Luster et al.36 fabricated an N-doped 

TiO2-coated alumina membrane and demonstrated the photocatalytic degradation of 

carbamazepine (CBZ) as a model pollutant under simulated solar irradiation. Further, Coelho et 

al.26 coated a filter paper with zirconia-doped cerium to prepare a photocatalytic membrane. The 

membrane demonstrated flux recovery by photocatalytic degradation of humic acid as foulant. 

Before these photocatalytic membranes with desired wettability can be utilized for practical 

applications, they need to fulfill the following three conditions37, 38. First, the membrane’s 
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wettability must remain unchanged by a photocatalytic reaction. Similarly, its physical and 

chemical integrity must not be affected by a photocatalytic reaction, particularly if the membrane 

is organic. Lastly, the coating (e.g., photocatalytic nanoparticles) needs to remain undetached when 

a high hydraulic shear force is exerted.   

In this work, we engineered a visible light-responsive photocatalytic coating with superhydrophilic 

and oleophobic wettability both in air and underwater by utilizing nitrogen-doped titania (N-TiO2) 

and perfluoro silane-grafted silica (F-SiO2) nanoparticles. The coating was sprayed onto a 

commercial membrane surface with UV-curable adhesive. Subsequent irradiation of UV light 

resulted in a chemically heterogeneous surface with intercalating high surface energy (N-TiO2) 

and low surface energy (F-SiO2) regions that are securely bound to the surface. Both the wettability 

and the integrity of the membrane remained unaffected throughout the photocatalytic degradation 

process of the organic substances when exposed to visible light irradiation. This can be attributed 

to the robust chemistry of the cured adhesive that protected the perfluoro silane molecules grafted 

to the SiO2 nanoparticles as well as the underlying membrane from the reactive radical species 

generated when it was exposed to visible light irradiation. Thus, the coated membrane can be 

utilized for continuous separation and desalination of an oil-saline water mixture and simultaneous 

photocatalytic degradation of the organic substances adsorbed on the membrane surface upon 

visible light irradiation. 

2.2. Experimental procedure 

2.2.1. Chemicals. 

Titanium butoxide (TBOT), tetraethyl orthosilicate (TEOS), triethylamine (TEA), Sodium dodecyl 

sulfate (SDS), and Sodium chloride (NaCl) were purchased from Millipore Sigma. 1H,1H,2H,2H-

perfluorodecyl trichlorosilane (perfluoro silane) was purchased from Alfa Aesar. Ethanol, acetone, 
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isopropyl alcohol, hydrochloric acid (HCl), nitric acid (HNO3), and n-hexadecane were purchased 

from Fisher Scientific. Norland ultraviolet (UV) light-curable optical adhesive (NOA 61) was 

purchased from Norland Products Inc. Commercial TRISEP ACM5 membrane was purchased 

from Sterlitech. 

2.2.2. Synthesis of N-TiO2 nanoparticles. 

Titanium butoxide (TBOT, 5.0 g) was added dropwise to isopropyl alcohol (79 g), followed by the 

addition of deionized (DI) water (910 g). Nitric acid (HNO3, 0.01 M) was added to the solution to 

adjust the pH = 2. Subsequently, triethylamine was added dropwise to the solution. Please note 

that the molar ratios of TEA to TBOT were 0.5, 1.0, 2.0, and 3.0. The solution was stirred for 12 

h at 30 °C. The precipitates were collected by centrifugation and thoroughly rinsed with DI water 

and ethanol. Upon vacuum drying for 10 hours, the deep-yellow nitrogen-doped titanium dioxide 

(N-TiO2) nanoparticles were obtained.  

2.2.3. Synthesis of F-SiO2 nanoparticles. 

Tetraethyl orthosilicate (TEOS, 1.0 g) was added dropwise to a solution of hydrochloric acid (HCl, 

0.01 M) in DI water (100 g), followed by the addition of 1H,1H,2H,2H-perfluorodecyl 

trichlorosilane (1.0 g). The solution was stirred for 60 minutes at 60 °C, and the precipitates were 

collected by centrifugation. Following a thorough rinsing with DI water and ethanol and after 10 

h of vacuum drying, the perfluoro silane-grafted silica (F-SiO2) nanoparticles were obtained. 

2.2.4. Photocatalytic membrane fabrication.  

A commercial membrane surface was spin-coated with a Norland ultraviolet (UV) light-curable 

optical adhesive (NOA 61) (1.0 wt% in acetone). Please note that the commercial membrane (i.e., 

Sterlitech TRISEP ACM5) consists of three layers, a thin polyamide layer with a molecular weight 

cut-off equal to 100 Da, and a porous polysulfone layer, and a non-woven polyester as the support. 
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Suspension of N-TiO2 and F-SiO2 nanoparticles mixture (i.e., N-TiO2/F-SiO2) in DI water (10 

wt%) was then sprayed (iWata spray gun) onto the adhesive-coated membrane for one minute. The 

spraying distance and nitrogen gas pressure were maintained at 15 cm and 200 kPa, respectively. 

Please note that the concentration of N-TiO2 nanoparticles in the N-TiO2/F-SiO2 mixture was 0, 

20 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 wt%. Subsequently, the membrane surface was 

irradiated by a long-wavelength UV light (100 W,  = 365 nm, Analytikjena) for 5 minutes to cure 

the adhesive. The membrane was thoroughly rinsed with DI water and ethanol. 

2.2.5. Preparation of oil-in-water emulsion dissolved with salt. 

An oil‐in‐water emulsion containing salt was prepared by vigorous mixing of n‐hexadecane and 

DI water (10:90 vol%:vol% n‐hexadecane: water) dissolved with salt (NaCl, 1.0 wt% with respect 

to water mass). Sodium dodecyl sulfate (SDS, 0.015 wt%) was added to stabilize the emulsion.  

2.2.6. N-TiO2 and F-SiO2 size measurements. 

The average size of N-TiO2 and F-SiO2 nanoparticles was measured by utilizing dynamic light 

scattering (DLS) (ZetaPALS zeta potential analyzer, Brookhaven Instruments) equipped with a 

BI-9000AT digital autocorrelator. Suspensions of N-TiO2 (0.01 wt%) and F-SiO2 (0.01 wt%) were 

prepared in DI water, followed by ultrasonication. 

2.2.7. N-TiO2 crystal structure analyses. 

The crystal structure of N-TiO2 was studied by powder X-ray Diffraction (XRD) (PANalytical 

Model X’Pert PRO diffractometer) with Cu K𝛼 radiation (k = 1.54 Å) by scanning at a rate of 2° 

(2𝜃) min-1. X-ray Photoelectron Spectroscopy (XPS) was utilized to study the nitrogen doping of 

N-TiO2. XPS was conducted by a Phi Versaprobe II utilizing monochromatic source Mg Ka.  
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2.2.8. N-TiO2 and F-SiO2 absorbance measurements. 

Ultraviolet-Visible (UV-Vis) spectrophotometry was utilized to analyze the nanoparticles' 

absorbance spectrum. UV-Vis spectrophotometry was conducted by utilizing a Thermo Evolution 

600 at a scan rate of 240 nm min-1 and a data interval of 2 nm. 

2.2.9. N-TiO2 photocatalytic performance measurements. 

The photocatalysis performance of N-TiO2 nanoparticles was analyzed by conducting the dye 

degradation test. UV-Vis spectrophotometry was utilized to study the dye degradation 

performance. N-TiO2 nanoparticles (0.5 wt%) were dispersed in DI water dissolved with Solvent 

Blue 38 dye (0.5 wt%). 20 mL of the dispersion was poured into a glass beaker equipped with a 

magnetic stirrer. The visible light (13.1 W, Sugarcube ultraLED) guide was submerged into the 

beaker to irradiate the dispersion. A small quantity (2 mL) of the dispersion was taken every 1 h. 

It was centrifuged and filtered by filter paper, followed by UV-Vis spectrophotometry. UV-Vis 

spectrophotometry was conducted at a scan rate of 240 nm min-1 and a data interval of 2 nm.  

2.2.10. Membrane surface analysis. 

Scanning Electron Microscopy (SEM, FEI Versa 3D DualBeam) was utilized to study the surface 

porosity and texture of the N-TiO2/F-SiO2 coated membrane. An accelerating voltage of 10 kV 

was utilized. All surfaces were sputter-coated with a gold layer ( 4-5 nm) to prevent the charging 

effect.   

2.2.11. Visible light intensity measurement. 

A photometer (Fisherbrand Traceable DualDisplay Lightmeter) was utilized to measure the 

intensity of the incident visible light on the membrane surface. The photometer was placed 

underneath the top cover of the cross‐flow cell and irradiated by the visible light source from the 
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same distance ( 5 cm) at which the membrane was irradiated during the separation and 

desalination.  

2.2.12. Salt and oil concentration measurements. 

We determined the salt concentration in the water-rich permeate by calculating the electrical 

conductivity of the permeate and compared the value with the calibration curve. Two probes (1 

cm2 each) of a multimeter (Gardner Bender GDT-3190) at a distance of 2 cm were submerged in 

the permeate (20 mL). The multimeter measures the electrical resistance (R), which is converted 

to electrical resistivity. Subsequently, the inverse of electrical resistivity yields the electrical 

conductivity (s). We determined the oil concentration by utilizing thermogravimetric analyses 

(TGA, PerkinElmer PYRIS 1). Approximately 10 mg of the water-rich permeate was heated from 

room temperature (≈22 C) to 110 C at a rate of 5 C min-1, followed by maintaining at 110 C 

for 50 minutes.  

2.2.13. Engineering a continuous separation and desalination apparatus. 

We engineered a continuous separation and desalination apparatus consisting of a cross-flow cell 

(CF042A, Sterlitech), a feed storage tank, a pump (2SF22SEEL, WEG industries), a differential 

pressure gauge (OMEGA DPG409-500DWU), a visible light source, and a permeate tank. The 

membrane with an effective surface area of  42 cm2 was sandwiched in between two transparent 

acrylic counterparts of the cross-flow cell. The membrane surface was irradiated by visible light 

with varying intensities. 
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2.3. Results and discussion 

2.3.1. Synthesis of N-TiO2 and characterization of its photocatalysis upon visible light 

irradiation. 

To fabricate a visible-light-responsive photocatalytic coating with selective wettability (i.e., 

hydrophilic and oleophobic), we utilized a mixture of nitrogen-doped titanium dioxide (N-TiO2) 

and perfluoro silane-grafted silica (F-SiO2) nanoparticles. N-TiO2 can degrade organic substances 

when it is exposed to visible light irradiation39 and exhibit hydrophilic wettability40, while F-SiO2 

can lower the overall surface free energy (sv)
41. We hypothesized that an optimal balance of N-

TiO2 and F-SiO2 can result in hydrophilic and oleophobic wettability.  

To verify this hypothesis, we first synthesized N-TiO2 nanoparticles by utilizing the sol-gel 

method42 (further described in the Experimental procedure). Triethylamine (TEA) and titanium 

butoxide (TBOT) were used as a nitrogen dopant and a TiO2 precursor (Figure 2.1a). Hydrolysis 

of TBOT (concentration = 0.5 wt%) in an acidic solution (pH ≈ 2.0) that was dissolved with TEA 

(concentration = 0.3 wt%) resulted in N-TiO2 nanoparticles with an average diameter of 50 nm  

 
Figure 2.1. (a) Schematic illustrating the synthesis of N-TiO2 nanoparticles by utilizing 

titanium butoxide (TBOT) and triethylamine (TEA) as TiO2 precursor and nitrogen dopant, 

respectively. (b) A number size distribution of N-TiO2 nanoparticles obtained by utilizing 

the DLS method. 
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1 nm (Figure 2.1b). During this reaction, TEA introduces nitrogen (e.g., elemental nitrogen or 

complex nitrogen species such as NO, NO2, and NH) into the TiO2 lattice43. X-ray photoelectron 

spectroscopy (XPS) spectra demonstrate a peak at a binding energy of  399.2 eV, which indicates 

the presence of anionic nitrogen from the O-Ti-N bond 42, while a neat TiO2 lacks such a peak 

(Figure 2.2a). 

X-ray diffraction (XRD) patterns were utilized to determine the crystal structure of N-TiO2 

nanoparticles (Figure 2.2b). The characteristic peaks at 2 = 25.27°, 37.94°, 48.16°, 54.07°, 

55.12°, 62.73°, 69.06°, 70.65°, and 75.33° correspond to the anatase phase with lattice planes 

(101), (103), (200), (105), (211), (204), (116), (220), and (107), respectively. Nitrogen doping 

resulted in a slight decrease in the intensity of these peaks (i.e., broadening). This can be attributed 

to the alteration in the crystallite size. Note that doping with nitrogen did not cause any phase 

transformation.  

Doping with nitrogen can narrow the bandgap energy of the TiO2, which may extend the absorption 

spectra further toward the visible light region (i.e., 390 nm <  < 750 nm)44. The ultraviolet-visible 

 
Figure 2.2. (a) The XPS spectrum of N-TiO2 exhibiting characteristic peaks of N 1s, Ti 2p, 

and O 1s. The spectrum of a neat TiO2 is also shown for comparison. Inset shows the core level 

spectrum of characteristic N 1s. (b) XRD pattern of N-TiO2 synthesized by using a molar ratio 

of TEA and TBOT as 2.0. The XRD pattern of a neat TiO2 is also shown. (c) Ultraviolet-visible 

(UV-Vis) absorption spectra of N-TiO2 synthesized by varied molar ratios of TEA to TBOT 

(e.g., 0.5, 1.0, 2.0, and 3.0). Neat TiO2 and SiO2 absorption spectra are also shown for 

comparison.  
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(UV-Vis) spectrophotometry data verified that N-TiO2 absorbs a broad range of the visible light 

spectrum, whereas neat TiO2 and SiO2 showed negligible absorption (Figure 1c). Furthermore, 

the results showed that the N-TiO2 fabricated with a higher molar ratio of TEA to TBOT (i.e., 

higher dopant concentration) tended to exhibit stronger absorbance in the range of wavelengths 

from 390 nm to 750 nm. However, once the molar ratio exceeds 2.0, this will have a negligible 

effect on the absorbance of the resulting N-TiO2. Thus, we utilized a molar ratio of TEA to TBOT 

of 2.0 (hereafter denoted as N-TiO2) in this study. 

Given that the resulting N-TiO2 exhibits a photocatalytic anatase crystalline phase, we 

demonstrated that it could degrade organic substances upon visible light irradiation. Figure 2.3a 

presents the time-dependent degeneration of the absorbance for water dissolved with organic dye 

(Solvent Blue 38, concentration = 0.5 wt%) and N-TiO2 (concentration = 0.5 wt%). The light 

intensity (I) was maintained at I  198 mW cm-2 (See Experimental procedure). The water 

 
Figure 2.3. (a)UV-Vis absorption spectra of water dissolved with N-TiO2 and Solvent Blue 

dye as a function of visible light irradiation time. Inset: A photograph showing the water 

dissolved with Solvent Blue dye after visible light irradiation for 2 h, 4 h, 8 h, and 10 h. The 

as-prepared water dissolved with Solvent Blue dye (concentration = 0.5 wt%) is also shown. 

(b) UV-Vis absorption spectra of water solutions dissolved with Solvent Blue 38 dye 

(concentration = 0.5 wt%) and N-TiO2 (concentration = 0.5 wt%) after 2h of visible light 

irradiation with varied intensity. The UV-Vis absorption spectra of water solution dissolved 

with Solvent Blue 38 dye (concentration = 0.5 wt%) and N-TiO2 (concentration = 0.5 wt%) 

after 10h in dark is also provided. 
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solution became nearly colorless after 10 hours of irradiation, indicating that almost all of the dye 

molecules were degraded. Please note that the dye molecules degraded more rapidly when placed 

under higher intensity light (Figure 2.3b).  

Figure 2.4a demonstrates the synthesis of silica nanoparticles with low surface energy (F-SiO2) 

by hydrolysis of tetraethyl orthosilicate (TEOS) followed by grafting of 1H,1H,2H,2H-

perfluorodecyl trichlorosilane (i.e., perfluoro silane) (See also Experimental procedure). We 

determined the size distributions of F-SiO2 nanoparticles by utilizing the DLS method. The DLS 

data revealed that the average size of F-SiO2 nanoparticles is 50 nm  2 nm (Figure 2.4b). It is 

worth noting that the average size of F-SiO2 nanoparticles is very close to that of N-TiO2 

nanoparticles (See Figure 2.1b). This is critical to ensure that the N-TiO2/F-SiO2 mixture forms a 

homogeneous and uniform coating on the membrane surface. 

2.3.2. Fabrication and characterization of N-TiO2/F-SiO2 coated membrane. 

Figure 2.5 shows a schematic illustrating the overall process of membrane fabrication. By utilizing 

N-TiO2 and F-SiO2 nanoparticles, we created a photocatalytic membrane with hydrophilic and 

 
Figure 2.4. (a) Schematic illustrating the synthesis of F-SiO2 nanoparticles by utilizing 

tetraethyl orthosilicate (TEOS) as SiO2 precursor and 1H,1H,2H,2H-perfluorodecyl 

trichlorosilane (i.e., perfluoro silane). (b) A number size distribution of F-SiO2 nanoparticles 

obtained by utilizing the DLS method.  
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oleophobic wettability both in air and saline water. A commercial filter (TRISEP ACM5) was 

utilized as a membrane on which our visible light-responsive photocatalytic coating with selective 

wettability was applied. Please note that the TRISEP ACM5 was chosen because of its 

applicability to a wide range of separation proceses45. First, we spin-coated the membrane surface 

with a thiol-ene-based UV-curable adhesive. Immediately following this step, a solution of N-TiO2 

and F-SiO2 (i.e., N-TiO2/F-SiO2) (concentration = 10 wt%, Experimental procedure) was 

sprayed for one minute. Then, the membrane was irradiated with UV light ( = 365 nm, Intensity 

 78 mW cm-2) for five minutes at room temperature ( 22 °C) to cure the adhesive. Please note 

that we varied the concentrations of N-TiO2/F-SiO2 (e.g., 0, 20 wt%, 40 wt%, 60 wt%, 80 wt%, 

and 100 wt%).  

 

The resulting membrane’s surface is covered with N-TiO2/F-SiO2 coating possessing a hierarchical 

roughness with a re-entrant texture (Figure 2.6a and the inset image). We measured the advancing 

(*
adv) and receding (*

rec) contact angles for saline water (1.0 wt% NaCl in DI water, lv = 72.1 

mN m-1) and oil (n-hexadecane, lv = 27.5 mN m-1) in air (Figure 2.6b). The results indicated that 

a membrane coated with N-TiO2/F-SiO2 with a lower N-TiO2 concentration exhibited higher 

  

Figure 2.5. Schematic illustrating the fabrication of photocatalytic membrane with hydrophilic 

and oleophobic wettability. A commercial filter is coated with an ultraviolet (UV) light-curable 

adhesive followed by sprayed with a mixture of N-TiO2 and F-SiO2 nanoparticles. The 

membrane was placed under UV light for curing. 
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contact angles for both saline water and oil. We found that when the N-TiO2 concentration reached 

60 wt%, the contact angle for saline water became zero (i.e., *
saline water, adv (in-air) = 0 and *

saline 

water, rec (in-air) = 0) while that for oil remained constant (*
oil, adv (in-air) = 95° 4°, *

oil, rec (in-air) = 61° 

3°). Further increases in the N-TiO2 concentrations resulted in sharp decreases in contact angles 

for oil.  

 

Given that membrane operations in real-world applications often result in continuous immersion 

in liquids (e.g., water), we also measured the contact angles for oil on the membrane surface 

submerged in saline water (Figure 2.7a). The results indicated that a membrane with a lower in-

air water contact angle is likely to have a higher oil contact angle when submerged in saline water. 

For example, a membrane coated with N-TiO2/F-SiO2 of 60 wt% N-TiO2 (i.e., N-TiO2/F-SiO2 (60 

wt%)) exhibited *
oil, adv (under saline water) = 175° 3° and *

oil, rec (under saline water) = 171° 2°, while the 

one coated with N-TiO2/F-SiO2 (20 wt%) exhibited *
oil, adv (under saline water) = 169° 2° and *

oil, rec 

 
Figure 2.6. (a) A photograph showing a commercial filter coated with N-TiO2/F-SiO2 (60 

wt%). Inset: Scanning electron microscopy (SEM) image of the membrane surface showing a 

hierarchical roughness with a re-entrant texture. (b) The measured in-air advancing and 

receding apparent contact angles for saline water (1.0 wt% NaCl in DI water) and oil (n-

hexadecane) on the membrane surface coated with N-TiO2/F-SiO2 with varied compositions. 
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(under saline water) = 161° 3°. The results can be further corroborated by analyzing the adhesion force 

of an oil droplet (n-hexadecane) placed on the membrane surface that was submerged in saline 

water46 (Figure 2.7a). The adhesion force was 1.1  0.3 mN on a membrane coated with N-TiO2/F-

SiO2 (60 wt%) and 1.7  0.4 mN on a membrane coated with N-TiO2/F-SiO2 (20 wt%). 

 

The membrane’s wettability for saline water can affect the flux because it determines the 

breakthrough pressure (i.e., the maximum pressure difference across the membrane that is required 

for a liquid to permeate through it)47. We measured the flux of saline water (1.0 wt% NaCl in DI 

water) through the membranes coated with various concentrations of N-TiO2/F-SiO2. A total of 

100 L of saline water was continuously fed for 180 minutes through the membrane, which was 

attached to a crossflow cell. We measured the volume of the permeate every 10 minutes. It must 

be noted that the transmembrane pressure (TMP, i.e., the pressure exerted across the membrane) 

was maintained at ∆p ≈ 760 kPa ± 9 kPa. Figure 2.7b shows the normalized flux (Jn) of the 

  

Figure 2.7. (a) The measured advancing and receding apparent contact angles, as well as 

adhesion force for an oil droplet (n-hexadecane) on the membrane surface coated with N-

TiO2/F-SiO2 with varied compositions submerged in saline water. (b) The normalized flux (Jn) 

of the permeate through the membranes coated with N-TiO2/F-SiO2 with varied compositions. 

The data for the as-purchased commercial filter and that for the one coated only with cured 

adhesive is also provided for comparison. 
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permeate, which is defined as Jt/Jo, where Jt = ∆m/A∆t∆p. Here ∆m represents the change in the 

permeate mass during a particular time interval (i.e., ∆t = 10 minutes). A is the membrane’s 

projected area (A ≈ 42 cm2) and  is the density of the permeate (r = 1000 kg m-3). Jo symbolizes 

the flux over the TMP value obtained during the first three minutes of submersion. While Jn 

gradually decreased and reached a constant value (Jn  0.590.04) after approximately t = 150 

minutes for all membranes, one coated with N-TiO2/F-SiO2 with a higher concentration of N-TiO2 

showed less of a decrease in the Jn value at t = 150 minutes. For example, a membrane coated with 

N-TiO2/F-SiO2 (60 wt%) yielded a Jn value of 0.61, whereas one coated with N-TiO2/F-SiO2 (20 

wt%) showed a value of 0.56 at t = 150 minutes. This finding can be attributed to the difference in 

breakthrough pressure of saline water47 (Figure 2.8). Please note that the as-purchased filter and 

the one coated only with the cured adhesive exhibited Jn = 0.59 and Jn = 0.58, respectively, at t = 

150 minutes (Figure 2.7b). This clearly indicates that neither the cured adhesive nor the N-TiO2/F-

SiO2 coating affects the membrane’s flux.  

 

Figure 2.8. A plot of the measured breakthrough pressure for saline water (1.0 wt% NaCl in 

DI water) of the membranes coated with N-TiO2/F-SiO2 with varied compositions. 
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We then measured the salt rejection (ξ) of the membranes coated with various concentrations of 

N-TiO2/F-SiO2. Figure 2.9a presents the calibration curve of the electrical conductivity of DI 

water as a function of NaCl concentrations. Here, we define the salt rejection as ξ = 1 – σf/σo, where 

σo and σf are the concentrations of salt in the feed of saline water (i.e., 1.0 wt%) and those in the 

permeate obtained in t = 180 minutes, respectively. By comparing the ξ values for the membranes 

coated with various compositions of N-TiO2/F-SiO2 with those of the as-purchased commercial 

membrane or those coated only with cured adhesive, we found that the N-TiO2/F-SiO2 had a 

negligible effect on salt rejection (Figure 2.9b). 

 

  

Figure 2.9. (a) The calibration curve established by calculating the electrical conductivity of 

water as a function of salt (NaCl) concentrations. Inset shows zoomed-in electrical conductivity 

data in the NaCl concentration range of 0.00-0.20 wt%. (b) The salt rejection (ξ) data of the 

membranes coated with N-TiO2/F-SiO2 with varied compositions. The data of the as-purchased 

commercial membrane and that coated only with cured adhesive are also provided for 

comparison. 
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High shear force by the feed stream exerted on the membranes often causes the delamination of 

the coating from the membrane surface. We evaluated the adhesion of N-TiO2/F-SiO2 to the 

commercial membrane surface by measuring the mass of the membranes after 180 minutes of 

continuous desalination of saline water (1.0 wt% NaCl in DI water) at a flow rate of 1.5 L min-1 

and compared the values with that of the as-prepared membranes. Here we utilized a high-precision 

balance (Mettler Toledo XS105 DU, precision = 0.010 ± 0.002 mg). The results show that the mass 

of the as-prepared membranes and those of the membranes after the test remained nearly 

unchanged (i.e., the mass loss < 0.1%, Figure 2.10). Here we define the mass loss (mL) as mL = (1 

– mf/mo)×100, where mo and mf are the initial mass of the N-TiO2/F-SiO2 mixture coated to the 

membrane and that after subjecting the membrane to saline water, desalination for 180 minutes, 

respectively. This can be attributed to the cured adhesive, which can hold N-TiO2 and F-SiO2 

nanoparticles together and securely bind them to the membrane surface by forming an interlocking 

structure between the nanoparticles and the membrane. In contrast, the membranes prepared 

without cured adhesive exhibited ≈ 89 ± 2% mass loss. 

 

Figure 2.10. The mass loss of the membranes coated with N-TiO2/F-SiO2 with varied 

compositions after 180 minutes of desalination of saline water at a flow rate of 1.5 L min−1. For 

comparison, the results obtained by utilizing the membranes without cured adhesive are also 

shown. 
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2.3.3. Continuous separation and desalination of an oil-saline water mixture and 

simultaneous photocatalytic degradation of organic foulants upon visible light irradiation. 

The photocatalytic capability of our coating, in conjunction with its hydrophilic and oleophobic 

wettability both in air and under saline water, enables the membrane to separate and desalinate an 

oil-saline water mixture while simultaneously degrading the organic foulants adsorbed onto the 

membrane surface during exposure to visible light irradiation48, 49. To demonstrate this, we 

mounted the membrane to an apparatus and irradiated it with visible light (Figure 2.11). The feed 

oil-saline water mixture was continuously fed to the cell while the water-rich permeate 

continuously passed through the membrane and collected in a permeate tank. Here we utilized an 

n-hexadecane-in-water emulsion (10:90 vol:vol, n-hexadecane:water) dissolved with salt (1.0 wt% 

NaCl with respect to water mass) that was stabilized by sodium dodecyl sulfate (SDS) (See 

Experimental procedure). We tested membranes coated with various concentrations of N-

TiO2/SiO2. Of note, all membranes were prewetted by soaking them in saline water (1.0 wt% NaCl) 

for 150 minutes to obtain a constant flux over TMP (Jprewet) before being subjected to the feed 

emulsion. 

 

Figure 2.11. Schematic illustrating the cross-flow apparatus that enables continuous separation 

and desalination of an oil-saline water mixture and simultaneous photocatalytic degradation of 

organic foulants adsorbed onto the membrane surface upon visible light irradiation. 
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When the feed emulsion was introduced, the flux of the water-rich permeate began to rapidly 

decrease due to membrane fouling by oil (Figure 2.12a and Table 2.1). This is a consequence of 

oil adsorption to the membrane surface which can hamper the permeation of water and cause a 

rapid decline in the flux. Note that Jn is defined as Jt/Jprewet. According to our findings, an N-

TiO2/F-SiO2-coated membrane with a higher N-TiO2 composition exhibited a steeper decrease in 

flux. For example, when a membrane was coated with N-TiO2/F-SiO2 (80 wt%), Jn  0.17 (Jt  

0.0135 Lm-2h-1kPa-1); however, when it was coated with N-TiO2/F-SiO2 (20 wt%), Jn  0.30 (Jt  

0.0163 Lm-2h-1kPa-1) at t = 180 minutes. This can be primarily attributed to the fact that N-TiO2 is 

more vulnerable to oil adsorption50 while F-SiO2 can repel it51. Note that such a rapid flux decline 

of membranes after the introduction of an oil-water mixture has been reported52, 53.  

  

Figure 2.12. (a) The normalized flux (Jn) of the water-rich permeate through the membranes 

coated with N-TiO2/F-SiO2 with varied compositions that are subjected to sodium dodecyl 

sulfate (SDS)-stabilized n-hexadecane-in-water emulsion (10:90 vol:vol, n-hexadecane:water) 

dissolved with salt (1.0 wt% NaCl with respect to water mass). (b) The normalized flux (Jn) of 

the water‐rich permeate through the membranes being irradiated by visible light (I ≈ 198 mW 

cm−2). 
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When the water-rich permeate flux reached a constant value at t = 180 minutes, we began to 

irradiate the membrane surface with visible light (I  198 mW cm-2) to induce photocatalytic 

degradation of the surface adsorbed oil. This is a result of electron-hole (e−-h+) pairs generated 

upon light irradiation with an energy greater than the bandgap energy of a photocatalyst (e.g., N-

TiO2)
54. The electrons and holes can react with the ambient molecules (e.g., oxygen or water) and 

generate reactive radicals such as hydroxyl, which can remove organic contaminants such as oil 

by chemical oxidation (or reduction)31. The membrane was then continuously subjected to a fresh 

feed emulsion. We observed that a membrane coated with N-TiO2/F-SiO2 with a higher 

concentration of N-TiO2 caused a more significant increase in the Jn value, which is a direct result 

of the photocatalysis-driven recovery of the clean membrane surface that exhibits a lower 

breakthrough pressure for saline water (Figure 2.12b and Table 2.2). For example, a membrane 

coated with N-TiO2/F-SiO2 (80 wt%) showed Jn  0.24 (Jt  0.0190 Lm-2h-1kPa-1) while that coated 

with N-TiO2/F-SiO2 (20 wt%) exhibited Jn  0.31 (Jt  0.0174 Lm-2h-1kPa-1) after 60 minutes of 

irradiation.  

While an in situ photocatalysis-driven recoveries of the clean membrane surface is presented in 

this work, a majority of previous studies have demonstrated it ex-situ. For example, Zhang et al.33 

synthesized an electrospun membrane-anchored with photocatalytic β-FeOOH nanorods. The 

membrane demonstrated that it could photocatalytically degrade the surface adsorbed organic 

matter and recover its flux upon a visible light after 40 minutes. Peyravi et al.55 incorporated 

photocatalytic TiO2/zeolite into a composite membrane and demonstrated 83.6% flux recovery 

under UV irradiation. Liu et al.34 fabricated a membrane utilizing TiO2/carbon nitride nanosheets 

and showed membrane surface cleaning with a flux recovery ratio of >95%. Also, Kovács et al.56 

demonstrated that a TiO2-coated ultrafiltration membrane could almost completely recover its 
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original flux after 1 hour of UV irradiation. Further, Xie et al.57 fabricated a photocatalytic 

membrane using β-FeOOH, which demonstrated >98% of flux recovery within 10 minutes under 

visible light. 

2.3.4. Robustness of the membrane 

2.3.4.1. Determining the oil concentration in the water-rich permeate 

Although our membranes are fouled by oil during the separation of the oil-saline water mixture, 

we showed that the oil concentration in the water-rich permeate remained very low. We determined 

the oil concentration by utilizing thermogravimetric analyses (TGA, PerkinElmer PYRIS 1). 

Approximately 10 mg of the water-rich permeate was heated from room temperature (≈ 22 C) to 

110 C at a rate of 5 C min−1, followed by maintaining at 110 C for 50 minutes. Given that the 

boiling points of water and oil (n-hexadecane) are 100 C and ≈287 C, respectively, the sample 

remaining after TGA can be assumed as pure oil. Figure 2.13 shows the TGA data of the water-

rich permeate through the membranes coated with N-TiO2/F-SiO2 with varied compositions. The 

 

Figure 2.13. The TGA data of the water-rich permeates after the separation of SDS-stabilized 

oil-in-water emulsion dissolved with NaCl (1.0 wt% with respect to water mass) through the 

membranes coated N-TiO2/F-SiO2 with varied compositions. 
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results indicate that the concentrations of oil in the water-rich permeates are very low (i.e., < 0.1 

wt%). This can be attributed to the membranes’ extremely low permeability.  

2.3.4.2. Effect of photocatalytic degradation reaction on the F-SiO2. 

We also measured the contact angles for oil and saline water after 60 minutes of visible light 

irradiation and found that they remained unchanged (Figure 2.14a). We attribute this to the fact 

that the membrane’s surface chemistry remained unchanged. Figure 2.14b presents the FT-IR 

spectra of a membrane’s surface coated with N-TiO2/F-SiO2 (60 wt%) after 120 minutes of visible 

light irradiation (I ≈ 198 mW cm−2). By comparing it with that of the as-prepared membrane, we 

can verify that the surface chemistry remains unaffected. Particularly, the absorption peaks in the 

range of ≈1100 cm-1 to ≈1400 cm−1 which correspond to C-F in perfluoro silane, remained nearly 

unchanged.  

 

 

Figure 2.14. (a) The apparent contact angles for oil (n-hexadecane) droplet on the membranes 

in air and under saline water before and after visible light irradiation for 120 minutes. The data 

of the as-prepared membranes are also shown for comparison. (b) The FT-IR spectra of a 

membrane surface coated with N-TiO2/F-SiO2 (60 wt%) after 120 minutes of visible light 

irradiation with an intensity of 198 mW cm−2. For comparison, the FT-IR spectra of the as-

prepared membrane surface is shown. 
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2.3.4.3. The cured adhesive layer and salt rejection after visible-light-driven photocatalysis  

We verified that the cured adhesive (Norland Optical Adhesive 61) remains unaffected after 

visible-light-driven photocatalysis on the membrane surface. We conducted FT-IR measurements 

by utilizing PerkinElmer Spectrum 400 FT-IR Spectrometer in attenuated total reflectance (ATR) 

mode. The FT-IR spectra were recorded at a resolution of 4 cm−1 for 16 scans. A sample was 

prepared by mixing adhesive and N-TiO2 with a 1:1 weight ratio in acetone (solute concentration 

= 1.0 wt%), followed by casting the mixture on a polytetrafluoroethylene (PTFE) substrate. Then, 

the film was cured by UV light ( = 365 nm, I  78 mW cm−2) for 5 minutes at room temperature 

( 22 °C). Finally, the film was detached from the substrate and ground for FT-IR measurements. 

The survey spectra of the adhesive after 180 minutes of visible light irradiation (I  198 mW cm−2) 

are shown in Figure 2.15a. Note that the spectra of neat N-TiO2 were set as the background. By 

comparing the survey spectra with that of the as-prepared adhesive, we found that the absorption 

peaks underwent negligible alterations after visible-light-driven photocatalysis.  

 

Figure 2.15. (a) The FT-IR spectra of the cured adhesive after 180 minutes of visible light-

driven photocatalysis by N-TiO2 (I  198 mW cm−2). For comparison, the FT-IR spectra of the 

as-prepared adhesive is also shown. (b) The salt rejection (ξ) of the membranes coated with N-

TiO2/F-SiO2 with varied compositions after exposure to 60 minutes of visible light irradiation. 
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Table 2.1. The values of the flux of the water-rich permeate through the membranes coated with 

N-TiO2/F-SiO2 with varied compositions that are subjected to sodium dodecyl sulfate (SDS)-

stabilized n-hexadecane-in-water emulsion (10:90 vol: vol, n-hexadecane: water) dissolved with 

salt (1.0 wt% NaCl with respect to water mass). 

N-TiO2/F-SiO2 compositions 
Flux at t = 0  

(Jo, Lm-2h-1kPa-1) 

Flux at t = 180 minutes  

(Jt, Lm-2h-1kPa-1) 

N-TiO2/F-SiO2 (0) 0.0467 0.0177 

N-TiO2/F-SiO2 (20 wt%) 0.0547 0.0163 

N-TiO2/F-SiO2 (40 wt%) 0.0627 0.0174 

N-TiO2/F-SiO2 (60 wt%) 0.0786 0.0157 

N-TiO2/F-SiO2 (80 wt%) 0.0826 0.0135 

N-TiO2/F-SiO2 (100 wt%) 0.0826 0.0033 

 

Table 2.2. The values of the flux of the water-rich permeate through the membranes coated with 

N-TiO2/F-SiO2 with varied compositions after 60 minutes of irradiation of visible light (I ≈ 198 

mW cm−2) 

N-TiO2/F-SiO2 compositions 

Flux at t = 180 minutes  

(before irradiation, Lm-2h-

1kPa-1) 

Flux at t = 240 minutes 

(after 60 minutes 

irradiation, Lm-2h-1kPa-1) 

N-TiO2/F-SiO2 (0) 0.0177 0.0177 

N-TiO2/F-SiO2 (20 wt%) 0.0163 0.0174 

N-TiO2/F-SiO2 (40 wt%) 0.0174 0.0200 

N-TiO2/F-SiO2 (60 wt%) 0.0157 0.0212 

N-TiO2/F-SiO2 (80 wt%) 0.0135 0.0190 

N-TiO2/F-SiO2 (100 wt%) 0.0033 0.0090 

The salt rejection (ξ) of the membranes coated with various concentrations of N-TiO2/F-SiO2 was 

measured after 60 minutes of visible light irradiation. The salt rejection remained almost constant 

(Figure 2.15b). We attribute this to the cured adhesive layer, which protected the commercial 
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membrane’s active layer (e.g., polyamide) from a reactive radical species that was generated from 

exposure to visible light irradiation. 

2.4. Conclusions 

In summary, we have developed a photocatalytic coating with hydrophilic and oleophobic 

wettability by intercalating a mixture of visible light-responsive N-TiO2 and low surface energy 

F-SiO2 nanoparticles. We tested the feasibility of our coating in membranes by spraying it on a 

commercial membrane surface with UV-curable adhesive. Subsequent irradiation of UV light 

resulted in a chemically heterogeneous surface with intercalating high surface energy (N-TiO2) 

and low surface energy (F-SiO2) regions that are securely bound to the surface. Our membrane can 

recover the flux upon visible light irradiation. We attributed this to the photocatalytic degradation 

of the surface adsorbed oil when placed under visible light irradiation. Such photocatalytic 

degradation did not compromise the wettability or integrity of the membrane due to the robust 

chemistry of the adhesive. We engineered an apparatus that enabled the continuous separation and 

desalination of a surfactant-stabilized oil-in-water emulsion that was dissolved with salt and the 

photocatalytic degradation of organic substances that were adsorbed on the coated membrane 

surface when it was exposed to visible light irradiation. It was found that the coated membrane 

was able to recover its permeate flux in situ when placed under visible light irradiation. We 

envision that our membrane will have a wide range of practical applications, including wastewater 

treatment, fuel purification, and desalinating brackish water.  
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Chapter 3: Predicting kinetics of water-rich permeate flux through photocatalytic mesh 

under visible light illumination 

This chapter is adapted from Paper P2. 

Abstract: Membrane-based separation technologies are attractive to remediating unconventional 

water sources, including brackish, industrial, and municipal wastewater, due to their versatility 

and relatively high energy efficiency. However, membrane fouling by dissolved or suspended 

organic substances remains a primary challenge that can result in an irreversible decline of the 

permeate flux. To overcome this, membranes have been incorporated with photocatalytic 

materials that can degrade these organic substances deposited on the surface upon light 

illumination. While such photocatalytic membranes have demonstrated that they can recover 

their inherent permeability, less information is known about the effect of photocatalysis on the 

kinetics of the permeate flux. In this work, a photocatalytic mesh that can selectively permeate 

water while repelling oil was fabricated by coating a mixture of nitrogen-doped TiO2 (N-TiO2) 

and perfluoro silane-grafted SiO2 (F-SiO2) nanoparticles on a stainless steel mesh. Utilizing the 

photocatalytic mesh, the time-dependent evolution of the water-rich permeate flux as a result of 

photocatalytic degradation of the oil was studied under visible light illumination. A mathematical 

model was developed that can relate the photocatalytic degradation of the organic substances 

deposited on a mesh surface to the evolution of the permeate flux. This model was established by 

integrating the Langmuir–Hinshelwood kinetics for photocatalysis and the Cassie–Baxter 

wettability analysis on a chemically heterogeneous mesh surface into a permeate flux relation. 

Consequently, the time-dependent water-rich permeate flux values are compared with those 

predicted by using the model. It is found that the model can predict the evolution of the water-

rich permeate flux with a goodness of fit of 0.92. 

 

3.1. Introduction 

With growing environmental awareness and tighter regulations, there is an increase in investments 

in developing water remediation technologies.1-8 Membrane-based technologies are attractive 

because they are relatively energy-efficient and versatile to different effluents generated in 

industrial processes.9-12 One of the primary challenges of membranes is fouling by dissolved or 

suspended organic substances that can get adsorbed on the membrane surface or pore walls.13, 14 

This results in a decrease in permeability and can eventually shorten the membrane’s life cycle.14-

16 Therefore, membrane-based remediation technologies often involve prefiltration to remove the 

suspended or dissolved substances.17 Also, membranes are periodically subjected to cleaning 

processes such as backwashing, forward flushing, and chemical treatment to remove the surface-
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deposited contaminants.18, 19 While these methodologies are effective and widely employed in real 

applications, they can irreversibly degrade membrane’s performance over time.20, 21   

Manipulating the membrane’s wettability has been reported as an alternative to enhance its fouling 

resistance.22-25 For example, membranes with hydrophilic (i.e., water contact angle < 90) or 

superhydrophilic (i.e., water contact angle ≈ 0) wettability can prevent adsorption of the organic 

substances (e.g., oil) to the surface by allowing water to form a thin film.26-28 Also, these 

membranes can exhibit selective permeation for water while repelling oils, which enables 

separation of oil-water mixtures with a high separation efficiency29. In comparison, membranes 

possessing lower solid surface energy (sv) can repel the organic substances without needing a 

water film.30-32 We6 have reported fouling-resistant membranes that can separate oil-water 

mixtures with an insignificant decline in the permeate flux by combining hydrophilic (or 

superhydrophilic) wettability along with lower solid surface energy. 

Membranes with selective wettability have been incorporated with photocatalytic materials (e.g., 

TiO2,
6, 33, N-TiO2, 

34  α-Fe2O3,
16, 35 Fe3O4,

36 WO3,
37 ZnO,38 BiVO4,

7 α-FeOOH,39 MoO3,
40 

Co3O4,
41

 Gd2ZnMnO6/ZnO42) that can degrade the organic substances deposited on the surface 

upon light illumination. These membranes have demonstrated that they can oxidize (or reduce) the 

organic substances either dissolved in a liquid (e.g., water) or adsorbed on the membrane surface 

when irradiated by light with an energy higher than their bandgap energy.43, 44 This can clean the 

membrane’s surface and purify the permeate. Moreover, these photocatalytic membranes can 

recover the water-rich permeate flux upon light illumination after being fouled by organic 

substances. For example., Zhang et al.45 demonstrated in situ recovery of the water-rich permeate 

flux utilizing a nitrogen doped TiO2 coated membrane under visible light illumination. Guo et al.46 

fabricated a photocatalytic membrane by utilizing BiOBr/Ag nanoparticles that can degrade 
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organic dyes (e.g., methylene Blue, crystal Violet, acid Red 18, and acid Yellow 36) upon UV 

light illumination and recover the water-rich permeate flux. Liu et al.47 fabricated a PVDF-Ni-ZnO 

composite membrane and demonstrated in situ photocatalysis-driven recovery of the water-rich 

permeate flux during the filtration of an aqueous solution dissolved with organic substances (e.g., 

humic acid, sodium alginate, bovine serum albumin). Recently, we3, 6 developed photocatalytic 

membranes by coating a commercial filter with a mixture of visible light-active iron-doped TiO2 

or nitrogen-doped TiO2 and perfluorosilane-grafted SiO2. These membranes have demonstrated in 

situ recovery of the water-rich permeate flux upon visible light illumination during oil-water 

separation.  

An increase in the permeate flux upon light illumination has been attributed to the photocatalytic 

degradation of the organic substances deposited on the membrane surface.27, 48, 49 Also, such 

photocatalytic membranes have demonstrated that they exhibit a time-dependent evolution of the 

surface chemistry heterogeneity (e.g., clean and contaminated regions) upon light illumination, 

which can be quantitatively described by the contact angle measurements.6, 22, 50-52 To our 

knowledge, quantitative relationships of the evolution of surface chemistry heterogeneity on a 

membrane surface and that of permeate flux upon visible light illumination are lacking. 

Establishing such a relationship is critical to understanding both membrane fouling and 

photocatalytic cleaning mechanisms, which enables one to design a separation membrane with 

tailored performance. 

Based on these findings, herein, we conducted an experimental analysis on the effect of wettability 

and photocatalysis on the permeate flux through a photocatalytic material-coated stainless steel 

mesh and developed a mathematical relation between them under visible light illumination. For 

this, we fabricated a photocatalytic mesh utilizing a stainless steel mesh coated with nitrogen-



 

 

60 

 

doped TiO2 (N-TiO2) and perfluorosilane-grafted SiO2 (F-SiO2) nanoparticles mixture. A 

mathematical model was derived by integrating the Langmuir–Hinshelwood kinetic model of 

photocatalysis22, 30 and the Cassie–Baxter analysis of the contact angles for water on a 

photocatalytic surface53 into a permeate flux relation.54 The mathematical model was then utilized 

to predict the water-rich permeate flux through the photocatalytic mesh during visible light 

illumination. The accuracy of the predicted flux values was then validated by comparing them with 

the experimentally acquired results. 

3.2. Experimental procedure 

3.2.1. Synthesis of N-TiO2 and F-SiO2 nanoparticles. 

N-TiO2 and F-SiO2 nanoparticles were synthesized by employing a modified sol-gel method 

according to the procedures in our previous work.6 For N-TiO2, titanium butoxide (TBOT, 5.0 g) 

was added dropwise to a mixture of isopropyl alcohol (IPA) and DI water (1:9 volumetric ratio, 

IPA: DI water). The pH of the solution was adjusted to 2.0±0.1 by adding nitric acid (0.01 M). 

Subsequently, triethylamine with a molar ratio of 2.0 with respect to TBOT was added dropwise 

to the solution. After stirring the solution for 12 h at 30 °C, the precipitates were collected by 

centrifugation and thoroughly rinsed with ethanol and DI water. The product was vacuum dried to 

obtain N-TiO2. For synthesizing F-SiO2, tetraethyl orthosilicate (TEOS, 1.0 g) was mixed with a 

0.01 M hydrochloric acid in DI water (100 g). 1H,1H,2H,2H-perfluorodecyl trichlorosilane (1.0 

g) was then added to the mixture dropwise. The solution was magnetically stirred for 60 minutes 

at 60 °C, and the centrifugation was utilized to collect the resulting precipitates. The precipitates 

were then thoroughly rinsed with ethanol and DI water, followed by vacuum drying to obtain F-

SiO2 nanoparticles. 
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3.2.2. Fabrication of photocatalytic mesh with selective wettability for water over oil. 

Stainless steel (SS) 316 Twill Dutch weave mesh (area = 42 cm2) was cleaned with ethanol in an 

ultrasonic bath for 10 minutes. The mesh was then dip-coated in a Norland ultraviolet (UV) light-

curable optical adhesive (NOA 61) (1.0 wt% in acetone). Subsequently, a dispersion of N-TiO2/F-

SiO2 mixture in DI water (solute concentration = 10 wt%) was sprayed (IWata Eclipse, Anest 

IWata) onto the adhesive-coated mesh for one minute. The spraying distance and nitrogen gas 

pressure were maintained at 15 cm and 200 kPa, respectively. The concentrations of N-TiO2 

nanoparticles in the N-TiO2/F-SiO2 mixture were 0, 25 wt%, 50 wt%, 75 wt%, and 100 wt%. The 

mesh was then illuminated by a long-wavelength UV light (100 W,  = 365 nm, UVA Blak-Ray 

B100A, Analytikjena) for 5 minutes to cure the adhesive. Finally, the fabricated photocatalytic 

mesh was thoroughly rinsed with ethanol and DI water.  

3.2.3. Surfactant-stabilized oil-in-water emulsion. 

The surface texture of a mesh coated with N-TiO2/F-SiO2 nanoparticles was characterized by field-

emission scanning electron microscopy (FESEM, FEI Versa 3D). The characterizations were 

performed at an accelerating voltage of 10 kV. 

3.2.4. Determining the nominal pore size of the mesh. 

Filter retention analysis3, 55 was utilized to determine the nominal pore size of the mesh. We 

sequentially fed monodisperse SiO2 particles with various diameters to the mesh in the order of 

the lowest to the highest diameter. We calculated the proportion of the particles retained on the 

mesh for each diameter according to %R = MR/MT, where MR and MT are the mass of SiO2 retained 

on the mesh and the total mass of that introduced to the mesh, respectively. We assigned the 

diameter of SiO2 as the nominal pore size of the mesh if %R exceeds 50% for that particular 

diameter. Note that we used SiO2 particles with diameters of 120, 150, 200, 300, 400, 500, 600, 
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and 750 nm and prepared suspensions in ethanol with a concentration of 50 mg mL−1. We 

measured the %R as 66, 69, and 71%, with the SiO2 possessing a diameter of 400 nm for meshes 

coated with N-TiO2/F-SiO2 mixture with 50, 75, and 100 wt% of N-TiO2, respectively. Therefore, 

400 nm was assigned as the nominal pore size of meshes. 

3.2.5. Contact angle measurement. 

All contact angle measurements were conducted by utilizing a Rame-́ hart 190-U1 goniometer. 

About 3 μL of liquids were used during the measurements.  

3.2.6. Visible light intensity measurement. 

The average size of N-TiO2 and F-SiO2 nanoparticles was measured by utilizing dynamic light 

scattering (DLS) (ZetaPALS zeta potential analyzer, Brookhaven Instruments) equipped with a 

BI-9000AT digital autocorrelator. Suspensions of N-TiO2 (0.01 wt%) and F-SiO2 (0.01 wt%) were 

prepared in DI water, followed by ultrasonication. 

3.2.7. Root mean square (RMS) roughness measurements. 

An optical profiler (Veeco Wyko NT 1100) was utilized to measure the root mean square (RMS) 

surface roughness of coated meshes. The scan rate was set to 50 nm s−1. The scanned area was 5 

µm × 5 µm. 

3.3. Results and discussion 

3.3.1. Photocatalytic mesh fabrication and under-oil water wettability. 

A mixture of nitrogen-doped TiO2 (N-TiO2) and perfluorosilane-grafted SiO2 (F-SiO2) 

nanoparticles were utilized to fabricate a visible light-active photocatalytic mesh (see 

Experimental procedure). Please note that the synthesis of a mixture of N-TiO2 and F-SiO2 

nanoparticles (i.e., N-TiO2/F-SiO2) was reported in previous work6, which demonstrated selective 

wettability for water over oil (i.e., hydrophilic and oleophobic wettability). Briefly, a dispersion of 
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N-TiO2/F-SiO2 in deionized (DI) water (solute concentration = 10 wt%) was sprayed onto stainless 

steel (SS) 316 Twill Dutch weave mesh (SS mesh) for one minute. Note that the SS mesh was pre-

treated with an ultraviolet (UV)-curable adhesive. Here, we utilized dispersions with varied N-

TiO2 concentrations in the N-TiO2/F-SiO2 mixture (i.e., 0, 25 wt%, 50 wt%, 75 wt%, and 100 

wt%). Subsequently, the SS mesh was illuminated by a long-wavelength UV light (100 W,  = 365 

nm) for 5 minutes to completely cure the adhesive. Finally, the resulting mesh was thoroughly 

rinsed with ethanol and DI water.  

 

Figure 3.1a demonstrates a scanning electron microscopy (SEM) image of a SS mesh coated with 

N-TiO2/F-SiO2 mixture that includes 50 wt% N-TiO2 (i.e., N-TiO2/F-SiO2 (50 wt%)). The mesh 

surface was evenly coated with N-TiO2/F-SiO2 nanoparticles showing a hierarchical structure (i.e., 

surface texture with two or more length scales56) with a root mean square (RMS) surface 

roughness3 of 0.75 𝜇m ± 0.03 𝜇m (see Experimental procedure). Further, the nominal pore size 

of the mesh was measured as 0.40 𝜇m ± 0.03 𝜇m after coating with N-TiO2/F-SiO2 mixture (See 

 

Figure 3.1. (a) Scanning electron microscopy (SEM) image of stainless steel (SS) 316 Twill 

Dutch weave mesh coated with N-TiO2/F-SiO2 (50 wt%). The inset shows a higher 

magnification SEM image of the mesh surface. (b) The measured mass of the mesh coated with 

N-TiO2/F-SiO2 with and without the cured adhesive after the standard Tape Peel off test. 
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Experimental procedure). Please note that the mesh exhibited mechanical robustness against 

external stress because the cured adhesive can securely hold nanoparticles on the mesh surface 

(Figure 3.1b). We measured the adhesion strength of N-TiO2/F-SiO2 nanoparticles to the mesh 

surface by utilizing the standard ASTM D3359 Tape Peel-off test. The mass of the mesh before 

and after the test was measured by utilizing a high precision scale (Mettler Toledo XS105 DU, 

precision = 0.01 mg). Note that the mass of the as-purchased  mesh was 3349.5 mg ± 50 mg. The 

results show that the mass of the mesh coated with N-TiO2/F-SiO2 nanoparticles utilizing the 

ultraviolet (UV)-curable adhesive (NOA 61) remains almost unchanged. This can be attributed to 

the cured adhesive, which can hold the N-TiO2/F-SiO2 nanoparticles together and securely bind 

them to the mesh surface by forming an interlocking structure. In contrast, the mesh coated with 

N-TiO2/F-SiO2 nanoparticles without adhesive exhibited ≈89±2 % mass loss after the Tape Peel-

off test.  

 

 

Figure 3.2. (a) The measured in air advancing and receding apparent contact angles for water 

and oil (n-hexadecane) on the mesh surfaces coated with varied compositions of N-TiO2/F-

SiO2. (b) The measured advancing and receding apparent contact angles of oil (n-hexadecane) 

on the mesh submerged in water. 
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We6 have demonstrated that a commercial filter surface coated with N-TiO2/F-SiO2 mixture can 

exhibit varying wettability for water and oil depending on the composition of N-TiO2 and F-SiO2. 

Here, we measured in air apparent advancing (*
adv) and receding (*

rec) contact angles of water 

(lv = 72.1 mN m-1) and oil (n-hexadecane, lv = 27.5 mN m-1) on the mesh surfaces coated with 

various compositions of N-TiO2/F-SiO2 (Figure 3.2a). The results indicate that a mesh coated with 

N-TiO2/F-SiO2 with a lower N-TiO2 concentration exhibits higher contact angles for both water 

and oil. When the N-TiO2 concentration reached 50 wt%, the contact angles of water becomes 

lower than oil contact angles (i.e., *
 water,adv (in-air) = 55 2° and *

 water,rec (in-air) = 20 2° while 

those for oil measured as *
oil,adv (in-air) = 97° 2°, *

oil,rec (in-air) = 65° 2°). Note that a mesh coated 

with only N-TiO2 (i.e., N-TiO2/F-SiO2 (100 wt%)) exhibits both water and oil contact angles zero.  

We also measured the apparent advancing and receding contact angles of oil (n-hexadecane) on 

the mesh submerged in water (Figure 3.2b). The results indicate that a mesh exhibiting a lower 

water contact angle in air shows a higher underwater oil contact angle. For example, a mesh coated 

with N-TiO2/F-SiO2 (50 wt%) exhibits *
oil,adv (under water) = 171° 5° and *

oil,rec (under water) = 165° 

5° while that coated with N-TiO2/F-SiO2 (25 wt%) shows *
oil,adv (under water) = 168° 5° and *

oil,rec 

(under water) = 163° 4°. 

3.3.2. Time-dependent change of mesh surface wettability submerged in oil 

When a hydrophilic (or superhydrophilic) surface is fouled by oil, it often exhibits an increase in 

the water contact angles.22 To study the fouling behavior, we submerged our coated mesh in an oil 

(n-hexadecane) bath and measured the underoil apparent contact angles for water (*
w,o) as a 

function of submerging time. The results show that a mesh coated with a higher concentration of 

N-TiO2 shows a steeper increase in the values of *
w,o (Figure 3.3a). For example, a mesh coated 

with N-TiO2/F-SiO2 (100 wt%) shows *
w,o = 97°3° while those coated with N-TiO2/F-SiO2 (75 
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wt%) and N-TiO2/F-SiO2 (50 wt%) exhibits 88°3° and 107°3°, respectively, at t = 300 minutes. 

Please note that the values of *
w,o on as-prepared meshes coated with N-TiO2/F-SiO2 (100 wt%) 

and N-TiO2/F-SiO2 (75 wt%) were zero while we measured *
w,o =79°3° on an as-prepared mesh 

coated with N-TiO2/F-SiO2 (50 wt%). Such a transition to underoil hydrophobicity (i.e., *
w,o > 

90°) can be attributed to an increase in the area fraction of the oil adsorbed region on the coated 

mesh surface, which lowers the solid surface energy.22, 29 Note that the *
w,o values became constant 

at 176°2°, 171°4°, and 178°2° on a mesh coated with N-TiO2/F-SiO2 (50 wt%), N-TiO2/F-

SiO2 (75 wt%), and N-TiO2/F-SiO2 (100 wt%), respectively, at t = 1800 minutes. 

 

When an oil-contaminated photocatalytic mesh surface is illuminated by light, it can exhibit a 

conversion to underoil hydrophilic (or superhydrophilic) wettability due to photocatalytic 

 

Figure 3.3. (a) The measured apparent contact angles for water on the mesh surfaces coated 

with N-TiO2/F-SiO2 mixture with various N-TiO2 concentrations (50 wt%, 75 wt%, and 100 

wt%) that are submerged in an oil (n-hexadecane) bath as a function of submerging time. The 

inset images illustrate schematics of the time-dependent evolution of the water contact angles 

on a mesh surface submerged in oil. (b) The measured apparent contact angles for water on the 

mesh surfaces coated with N-TiO2/F-SiO2 mixture with various N-TiO2 concentrations (50 

wt%, 75 wt%, and 100 wt%) while being illuminated by visible light (Intensity (I) = 198 mW 

cm-2). Note that all meshes were precontaminated by oil for 600 minutes. 
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degradation of the surface adsorbed oil molecules which can lead to an increase in the area fraction 

of clean (i.e., high solid surface energy) regions.22, 29 We conducted in situ measurements for the 

*
w,o values on our mesh under visible light illumination (I  198 mW cm-2). All meshes were pre-

contaminated with oil for 600 minutes. Upon the onset of visible light illumination, the *
w,o values 

started to decrease rapidly and reached constant values after t  900 s (i.e., 15 minutes, see Figure 

3.3b). Note that a mesh coated with a N-TiO2/F-SiO2 mixture with a higher concentration of N-

TiO2 exhibits a more rapid decrease in the *
w,o values. For example, a mesh coated with N-TiO2/F-

SiO2 (75%) showed *
w,o = 51°3° whereas that coated with N-TiO2/F-SiO2 (50%) exhibited *

w,o 

= 75°3° at t  900 s. Note that a mesh coated with N-TiO2/F-SiO2 (100%) can completely recover 

its inherent hydrophilic wettability.  

 

We also demonstrated that visible light illumination with a higher intensity could result in a more 

rapid change in the *
w,o values. Figures 3.4a and 3.4b show the time-dependent *

w,o values 

measured on the meshes coated with various compositions of N-TiO2/F-SiO2 submerged in oil 

 

Figure 3.4. (a-b) The measured apparent contact angles of water on mesh surface submerged 

in oil while being illuminated by visible light with intensity of I = 30 mW cm-2 (a) and I = 100 

mW cm-2 (b). Note that all meshes were contaminated by oil for 600 mins. 
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while illuminated by visible light intensity of I = 100 mW cm−2 and 30 mW cm−2, respectively. 

Please note that we utilized the meshes contaminated by oil for 600 mins. The results show that 

the values of *
w,o decrease at a higher rate on a mesh surface irradiated by higher intensity visible 

light. For example, a mesh coated with N-TiO2/F-SiO2 (75 wt%) shows a decrease in the value of 

*
w,o to 62°3° in 600 s when irradiated by light with an intensity of I = 100 mW cm−2 whereas the 

*
w,o becomes 99°3° when I = 30 mW cm−2. 

3.3.3. Evolution of the water-rich permeate flux  

The selective wettability for water over oil, along with its photocatalytic degradation capability, 

enables our mesh to exhibit enhanced resistance to oil fouling and photocatalytic cleaning of the 

surface under light illumination when subjected to an oil-water mixture.22, 29 A continuous cross-

flow separation  apparatus6, 57 was utilized to conduct oil-water separation and in situ 

photocatalysis (Figure 3.5). Here, a feed oil-water mixture is continuously fed by a plunger pump, 

and the water-rich permeate passes through the mesh and is collected in a container. An n-

hexadecane-in-water emulsion (1:9 volumetric ratio, n-hexadecane: water) stabilized by a 

surfactant (sodium dodecyl sulfate, SDS) was utilized (See Experimental procedure). Note that 

a mesh was prewetted by SDS-dissolved water (SDS concentration = 0.015 wt% with respect to 

water weight) for 30 minutes (flow rate = 2.0 L s-1  0.2 L s-1) to obtain a constant flux (Jo) for the 

water-rich permeate before introducing a feed emulsion. The transmembrane pressure (∆p, i.e., the 

difference in pressure at two opposite sides of the mesh) was maintained at ∆p = 13.0 kPa  0.5 

kPa for prewetting process.  

When a feed oil-in-water emulsion was introduced (∆p = 13.0 kPa  0.7 kPa and flow rate = 2.0 L 

s-1  0.1 L s-1), the flux values (J) for the water-rich permeate rapidly decreased, which can be 

primarily attributed to fouling of the mesh surface by oil (Figure 3.6a).3, 6, 15, 39, 58 The results show 
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that a mesh coated with N-TiO2/F-SiO2 with a higher concentration of N-TiO2 exhibits a steeper 

decrease in the J values that eventually reaches lower values at t   90 minutes. For example, a 

mesh coated with N-TiO2/F-SiO2 (50 wt%) exhibits J  261 L m-2 h-1
 (LMH) while that coated 

with N-TiO2/F-SiO2 (75 wt%) shows J  253 LMH at t  90 minutes. Given that the Jo values were 

435 LMH and 441 LMH for a mesh coated with 50 wt% N-TiO2 and 75 wt% N-TiO2, 

respectively, they correspond to 60% and 57% of the respective Jo values. Please note that the 

J values were measured by a relation59, J = ∆m(Aρ∆t)-1. Here, ∆m represents the change in the 

water-rich permeate mass for a given time interval (∆t = 5 minutes), A is the projected area of the 

mesh (A = 42 cm2), and ρ is the density of the permeate (ρ  0.998 g cm−3).  

When the water-rich permeate flux exhibited a constant value at t  90 minutes (i.e., illumination 

time, ti = 0), we started illuminating the mesh surface with visible light (I  198 mW cm-2) while 

the mesh was continuously subjected to a fresh feed emulsion. Figure 3.6b shows that the J values 

start to increase upon visible light illumination. This indicates cleaning of the oil-contaminated 

mesh surface, which consequently results in a lower breakthrough pressure (i.e., a minimum 

applied pressure at which the water permeates through the mesh) for the water-rich permeate.3, 6 

Also, a mesh coated with a higher concentration of N-TiO2 exhibited a higher recovery rate of the 

permeate flux values. For example, a mesh coated with N-TiO2/F-SiO2 (50 wt%) showed J  291 

LMH after 60 minutes of visible light illumination (i.e., ti = 60 minutes), whereas that coated with 

N-TiO2/F-SiO2 (75 wt%) showed J  315 LMH. This corresponds to 17% and 30% recovery.  
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Also, note that the oil concentration in the water-rich permeate remains very low (i.e., < 0.2 wt%) 

despite a decrease in water-rich permeate flux. Thermogravimetric analyses (TGA, PerkinElmer 

PYRIS 1) were employed to measure the concentration of oil in the water-rich permeate obtained 

from the separation of SDS-stabilized n-hexadecane-in-water emulsion. Approximately 10 mg of 

the water-rich permeate was heated from room temperature (≈22 C) to 110 C at a rate of 5 C 

min-1 followed by maintaining the temperature (110 C) for 50 mins, given that the boiling points 

of water and oil (n-hexadecane60) are 100 C and ≈287 C, respectively, the remnant in the TGA 

can be assumed as pure n-hexadecane. Figure 3.7 shows the TGA data of the water-rich permeate 

through the mesh coated with N-TiO2/F-SiO2 with varied compositions. The results indicate that 

the oil concentrations in the water-rich permeate are very low (i.e., < 0.2 wt%). 

 

Figure 3.5. Photograph of the apparatus that enables continuous cross-flow separation of an 

oil-water mixture and in situ photocatalysis. (water is dyed blue and oil is dyed red). 
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Figure 3.6. (a) The measured flux values (J) of the water-rich permeate through the mesh 

coated with various N-TiO2 concentrations (50 wt%, 75 wt%, and 100 wt%) of N-TiO2/F-SiO2 

mixture during separation of SDS-stabilized n-hexadecane-in-water emulsion (1:9 n-

hexadecane:water volumetric ratio). The inset shows zoomed-in flux values in the time interval 

of 60-90 minutes. (b) The measured water-rich permeate flux values (J) while being illuminated 

by visible light (I  198 mW cm-2). Inset shows a photograph of the cross-flow setup during 

the test. 

 

Figure 3.7. TGA data of the water-rich permeates after the separation of SDS-stabilized n-

hexadecane-in-water emulsion by utilizing the mesh coated with various compositions of N-

TiO2/F-SiO2. 
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3.3.4. Mathematical representation of the permeate flux kinetics 

It is postulated that the extent of permeate flux recovery upon light illumination depends on various 

experimental parameters that include the incident light intensity (I) and the active surface area (A) 

of the N-TiO2/F-SiO2 coating, and the photocatalytic degradation rate (kp).
61 Here, we develop a 

mathematical model that can describe the time-dependent evolution of the water-rich permeate 

flux through a mesh coated with N-TiO2/F-SiO2 upon visible light illumination.  

When a photocatalytic mesh surface is subjected to oil submerged in water while being illuminated 

by visible light, three chemical reactions can take place: adsorption, desorption, and photocatalytic 

degradation of oil molecules.30, 62-64 We22 recently showed that these reactions obey the first-order 

kinetics. Assuming that N-TiO2 is photocatalytic65-67 while F-SiO2 is not6, the following 

differential equation can be obtained, which describes a time-dependent photocatalysis-driven 

evolution of the area fraction of the mesh surface contaminated with oil (fc(ti):  

(Equation 3.1)            
𝑑

𝑑𝑡
𝑓c(𝑡𝑖) = 𝑓T ×

𝑑

𝑑𝑡
𝑓c(T)(𝑡𝑖) + 𝑓F ×

𝑑

𝑑𝑡
𝑓c(F)(𝑡𝑖)                                                  

where f(T) and f(F) are the area fraction of N-TiO2 and F-SiO2, respectively. The subscripts T and F 

symbolize N-TiO2 and F-SiO2, respectively. Solving Equation 3.1 by substituting  
𝑑

𝑑𝑡
𝑓c(T)(𝑡𝑖) =

 𝑘a(T)𝑓nc(T) − 𝑘d(T)𝑓c(T) − 𝑘p(T)𝑓c(T) and 
𝑑

𝑑𝑡
𝑓c(F)(𝑡𝑖) =  𝑘a(F)𝑓nc(F) − 𝑘d(F)𝑓c(F), where ka, kd, 

and kp are the rate constant values for adsorption, desorption, and photocatalytic degradation of 

oil, respectively, on a particular phase (e.g., N-TiO2 or F-SiO2), and  𝑓nc(T) = 1 − 𝑓c(T) and  𝑓nc(F) 

= 1 − 𝑓c(F) (i.e., non-contaminated area fraction of each phase, fnc(T) or fnc(F)) results in: 

(Equation 3.2)     𝑓c(𝑡𝑖) = [ 
𝑘a(T)

𝐾(T)
− (

𝑘a(T)

𝐾(T)
− 𝑓c(T)(𝑡𝑖 = 0)) e

−(𝐾(T))𝑡𝑖] × 𝑓(T) + [
𝑘a(F) 

𝐾(F)
− (

𝑘a(F) 

𝐾(F)
−

𝑓𝑐(F)(𝑡𝑖 = 0)) e
−(𝐾(F))𝑡𝑖] × 𝑓(F)                                                                                               
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where fc(T)(ti = 0) and fc(F)(ti = 0) are the initial area fraction of the contaminated regions for N-

TiO2 and F-SiO2 at the start of visible light illumination, respectively, which are assumed to be 

zero. Here K(T) and K(F) are defined as 𝐾(T) =  𝑘a(T) + 𝑘d(T) + 𝑘p(T) and 𝐾(F) =  𝑘a(F) + 𝑘d(F), 

respectively.  

The time-dependent flux of the water-rich permeate under visible light illumination (J(ti)) can be 

written as54:  

(Equation 3.3)        𝐽(𝑡𝑖) = Δ𝑃/ [(𝑟𝑚 + 𝑅𝑐/𝐴(1 − 𝑓𝑐(𝑡𝑖))𝜇]   

where ∆P and A are the transmembrane pressure and the total surface area of the mesh, 

respectively. rm and Rc are the resistance per unit area of the mesh to the permeation of the water-

rich permeate originating from the mesh itself and oil contamination, respectively. µ is the dynamic 

viscosity of the water-rich permeate68 (≈0.953 mPa-s). By substituting 𝑓c(𝑡𝑖) in Equation 3.3, we 

obtain the following equation:  

(Equation 3.4)         𝐽(𝑡𝑖) = Δ𝑃/

[
 
 
 
 

{
 
 

 
 

𝑟𝑚 +
𝑅𝑐

𝐴
×

1

(1−(

 

𝑓(F)[ 
𝑘a(T)

𝐾(T)
−(

𝑘a(T)

𝐾(T)
−𝑓c(T)(𝑡𝑖=0))e

−(𝐾(T))𝑡𝑖]×𝑓(T)+[ 
𝑘a(F)

𝐾(F)
−(

𝑘a(F)

𝐾(F)
−𝑓c(F)(𝑡𝑖=0))e

−(𝐾(F))𝑡𝑖]×𝑓(𝐹)))

}
 
 

 
 

𝜇

]
 
 
 
 

 

This equation describes the time-dependent evolution of the water-rich permeate flux through the 

mesh subjected to oil upon illumination by visible light.  

3.3.5. Extraction of rm, Rc, fc(T), and fc(F)  

To predict the values of water-rich permeate flux using Equation 3.4 in the main text, we need to 

determine the values of the resistance per unit area of the mesh to the permeation of water-rich 
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permeate (rm), resistance by oil contamination (Rc), as well as the area fraction of the oil-

contaminated regions for N-TiO2 and F-SiO2 (fc(T) and fc(F)) at the time of visible light illumination.  

(i) Calculating rm values: A mesh was first subjected to DI water for 60 mins at ΔP = 13.0 kPa  

0.7 kPa by using the cross-flow apparatus. The J (t=60mins) values were measured. Given that the 

rm is expressed by  

(Equation 3.5)    𝑟𝑚 =
Δ𝑃

( 𝐽(𝑡))𝜇
       

we obtain the rm value by plugging in ΔP = 13.0 kPa and J (t). Note that the Rc and fc(t=60mins) 

are zero. Table 3.1 lists the rm values for the mesh coated with N-TiO2/F-SiO2 with varied 

compositions.  

Table 3.1. The measured rm values of the mesh coated with N-TiO2/F-SiO2 with varied 

compositions. 

N-TiO2/F-SiO2 composition rm (L-1 m2) 

N-TiO2/F-SiO2 (50 wt%) 43333 ± 500 

N-TiO2/F-SiO2 (75 wt%) 38172 ± 500 

N-TiO2/F-SiO2 (100 wt%) 29917 ± 300 

 

(ii) Rc values: A mesh was subjected to n-hexadecane-in-water emulsion (1:9 volumetric ratio, n-

hexadecane: water) that was stabilized by sodium dodecyl sulfate (SDS) for 60 mins at ΔP = 13.0 

kPa  0.7 kPa using a cross-flow apparatus. By rearranging Equation 3.3, the Rc is given as 
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(Equation 3.6)                                  𝑅𝑐  = 𝐴 (
Δ𝑃

(𝐽(𝑡))𝜇
− 𝑟𝑚)

(

 
 
 
1 −

(

 
 

 

𝑓(𝐅) [ 
𝑘a(𝐓)

𝑘a(𝐓)+𝑘d(𝐓)+𝑘p(𝐓)
− (

𝑘a(𝐓)

𝑘a(𝐓)+𝑘d(𝐓)+𝑘p(𝐓)
− 𝑓c(T)(0)) e

−(𝑘a(𝐓)+𝑘d(𝐓)+𝑘p(𝐓))𝑡] × 𝑓(𝐓)
 

+ [ 
𝑘a(𝐅)

𝑘a(𝐅)+𝑘d(𝐅)
− (

𝑘a(𝐅)

𝑘a(𝐅)+𝑘d(𝐅)
− 𝑓c(F)(0)) e

−(𝑘a(𝐅)+𝑘d(𝐅))𝑡] × 𝑓(𝐹)
)

 
 

)

 
 
 

             

We obtain the Rc values by plugging in the same variables that were used in Rc measurement (i.e., 

in ΔP = 13.0 kPa, A= 42 cm2, and rm  values of respective mesh). The Rc values listed in Table 3.1 

were also used. The calculated Rc values for the mesh coated with N-TiO2/F-SiO2 with varied 

compositions are in Table 3.2.  

Table 3.2. The measured Rc values of the mesh coated with varied compositions of N-TiO2/F-

SiO2. 

N-TiO2/F-SiO2 composition Rc (L-1 m4) 

N-TiO2/F-SiO2 (50 wt%) 16.9 ± 0.6 

N-TiO2/F-SiO2 (75 wt%) 20.4 ± 0.5 

N-TiO2/F-SiO2 (100 wt%) 23.4 ± 0.6 

 

(iii) fc(T)(t) and fc(F)(t) values: We determined the values of fc(T)(t) and fc(F)(t) at the time of visible 

light illumination by plugging the values of rate constants (i.e., ka, kd, and kp) and  *w,o in Equation 

3.7. Table 3.3 lists the computed values of fc(T) and fc(F) (t = 90 mins, at the time of light 

illumination), as well as the measured values of *w,o. 
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Table 3.3. The computed values of the fc(T) and fc(F), as well as the measured values of *w,o for the 

mesh coated with N-TiO2/F-SiO2 with varied compositions at the onset of visible light illumination 

(t = 90 mins).  

 

The values of ka and kd can be determined by analyzing the time-dependent evolution of the *
w,o 

values in the dark, whereas the kp values can be determined under visible light illumination. In our 

recent work22, we demonstrated that these rate constants (ka, kd, and kp) could be related to the 

measured *
w,o, values on a photocatalytic surface. Here, we develop a new relation by considering 

N-TiO2/F-SiO2 

composition 
θ*w,o 

fc(T) (t = 90 

minutes) 
fc(F) (t = 90 minutes) 

N-TiO2/F-SiO2 (50 wt%) 89°3° 0.80 0.1 

N-TiO2/F-SiO2 (75 wt%) 46°1° 0.80 0.1 

N-TiO2/F-SiO2 (100 wt%) 63°3° 0.80 - 

 

Figure 3.8. Plots of the cosine values of the measured apparent water contact angle (*
w,o) on 

an N-TiO2 surface and an F-SiO2 surface submerged in oil (n-hexadecane) as a function of 

submerging time. The values of ka and kd for oil on N-TiO2 and F-SiO2 surfaces were determined 

by fitting equation (5). Inset: Zoomed-in plot of the cos*
w,o data. 
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that our mesh surface is heterogeneous, consisting of photocatalytic N-TiO2 and inert (i.e., non-

catalytic) F-SiO2. By integrating the Langmuir–Hinshelwood kinetics for photocatalysis22, 30 and 

the Cassie–Baxter wettability analysis53 on a chemically heterogeneous mesh surface, we can 

obtain a relation given as: 

(Equation 3.7)     cos𝜃w,o
∗ = 1 − 2([ 

𝑘a(T)

𝐾(T)
− (

𝑘a(T)

𝐾(T)
− 𝑓c(T)(𝑡𝑖 = 0)) e

−(𝐾(T))𝑡𝑖] × 𝑓(T) + [
𝑘a(F)

𝐾(F)
−

(
𝑘a(F)

𝐾(F)
− 𝑓𝑐(F)(𝑡𝑖 = 0)) e

−(𝐾(F))𝑡𝑖] × 𝑓(F) )                                                                   

The values of ka, kd, and kp for a given phase (e.g., N-TiO2 or F-SiO2) can be obtained by fitting 

Equation 3.5 to the cosine values of the experimentally measured *
w,o values. Figure 3.8 shows a 

plot of the cosine values of the experimentally measured *
w,o on N-TiO2 and F-SiO2 surfaces 

submerged in oil as a function of submerging time. Note that we utilized the *
w,o values of N-

 

Figure 3.9. (a) A plot of the cosine values of the measured apparent water contact angle (*
w,o) 

on an N-TiO2 surface submerged in oil as a function of visible light illumination (I = 198 mW 

cm-2) time. The kp value for N-TiO2 was determined by fitting Equation 3.5. (b) Plot of the 

cosine values of the measured apparent water contact angle (*
w,o) on N-TiO2 surface 

submerged in oil as a function of visible light illumination (I = 30 and 100 mW cm-2) time. 



 

 

78 

 

TiO2/F-SiO2 (100%) shown in Figure 3.3. We obtained the values of ka and kd for oil on an N-

TiO2 surface as ka(T) = 4.65×10−5 s-1 and kd(T) = 2.3 × 10−7 s−1, respectively, while those on an F-

SiO2 surface were ka(F) = 9.54×10−6 s−1 and kd(F) = 4.06×10−7
 s

−1, respectively. Please note that the 

ka value for oil on an F-SiO2 surface is an order of magnitude lower than that on an N-TiO2 surface, 

which clearly indicates that F-SiO2 is more resistant to oil adsorption.  

Similarly, the kp value can be obtained by fitting Equation 3.5  to the cosine values of the 

experimentally measured time-dependent *
w,o on a surface that was submerged in oil and placed 

under visible light illumination (Figure 3.9a). Note that the *
w,o values of N-TiO2/F-SiO2 (100%) 

shown in Figure 3.3b were utilized. The kp(T) value for N-TiO2 is 9.8×10−3 s−1 which is two orders 

of magnitude higher than the ka(T) value (ka(T) = 4.65×10−5 s-1 ). Thus, it can be inferred that N-TiO2 

can rapidly clean itself upon visible light illumination despite being submerged in oil. Note that 

the kp value for the F-SiO2 surface (i.e., kp(F)) is zero. We also determined the kp values for the N-

TiO2 surface upon being irradiated by visible light with varying intensities (I = 30 and 100 mW 

cm-2) by fitting Equation 3.5 in the main text to the cosine values of the experimentally measured 

*
w,o values (Figure 3.9b). The kp values were obtained as and 3.5 × 10-4 s-1 and 8.9 × 10-3 s-1

 for I 

= 30 and 100 mW cm-2, respectively. Note that the highest intensity using our light source is I = 

198 mW cm-2.  



 

 

79 

 

 

3.3.6. Prediction of the flux 

Finally, we calculated the J(ti) values for the mesh coated with varied compositions of N-TiO2/F-

SiO2 by using the values of ka, kd, and kp in Equation 3.4 and compared them with the 

experimentally measured values. Figure 3.10 shows that they match reasonably well with a 

goodness of fit equal to 0.92. 

3.4. Conclusions 

In summary, a photocatalytic mesh with selective wettability for water over oil was developed by 

coating a mixture of N-TiO2/F-SiO2 onto a surface of a stainless steel mesh. The mesh was utilized 

to study the kinetics of the water-rich permeate flux as a result of the photocatalytic degradation 

of the surface-adsorbed oil under visible light illumination. A mathematical model was derived by 

integrating the Langmuir–Hinshelwood kinetics of photocatalysis and the Cassie–Baxter 

wettability analysis on a chemically heterogeneous surface into a permeate flux relation. Finally, 

 

Figure 3.10. The measured and the predicted values of water-rich permeate flux (J) by using 

Equation 3.4 through the meshes coated with varied compositions of N-TiO2/F-SiO2 under 

visible light illumination (I = 198 mW cm−2). 
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this model demonstrated that it could predict the evolution of the water-rich permeate flux through 

the photocatalytic mesh with a goodness of fit of 0.92. We envision that the outcomes of this study 

can find applicability in designing and optimizing photocatalytic membranes for multiphase 

interfacial engineering applications such as oil-water separation. 
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Chapter 4: Delamination-Free In-Air and Underwater Oil-Repellent Filters for Oil-Water 

Separation: Gravity-Driven and Cross-Flow Operations 

This chapter is adapted from Paper P3. 

Abstract: Separating oil-water mixtures is critical in a variety of practical applications, including 

the treatment of industrial wastewater, oil spill cleanups, as well as the purification of petroleum 

products. Among various methodologies that have been utilized, membranes are the most 

attractive technology for separating oil-water emulsions. In recent years, selective wettability 

membranes have attracted particular attention for oil-water separations. The membrane surfaces 

with hydrophilic and in-air oleophobic wettability have demonstrated enhanced effectiveness for 

oil-water separations in comparison with underwater oleophobic membranes. However, 

developing a hydrophilic and in-air oleophobic surface for a membrane is not a trivial task. The 

coating delamination process is a critical challenge when applying these membranes for 

separations. Inspired by the above, in this study, we utilize poly(ethylene glycol)diacrylate 

(PEGDA) and 1H,1H,2H,2H-heptadecafluorodecyl acrylate (F-acrylate) to fabricate a hydrophilic 

and in-air oleophobic coating on a filter. We utilize methacryloxypropyl trimethoxysilane 

(MEMO) as an adhesion promoter to enhance the adhesion of the coating to the filter. The filter 

demonstrates robust oil repellency preventing oil adhesion and oil fouling. Utilizing the filter, 

gravity-driven and continuous separations of surfactant-stabilized oil-water emulsions are 

demonstrated. Finally, we demonstrate that the filter can be reused multiple times upon rinsing for 

further oil-water separations. 

4.1. Introduction 

Oil-water separation is a crucial step in a wide variety of industries.1, 2 For example, 140,000 L of 

oil-contaminated water is produced during conventional mining operations on a daily basis.3 

Additionally, oil leakage and spillage during marine transportation not only pose a threat to the 

marine environment and ecosystem but are a waste of valuable natural resources.4, 5 Typically, an 

oil-water mixture can be classified into three categories based on the dispersed phase size 

(diameter, d)- free oil-water if d > 150 μm, as a dispersion if 20 μm < d < 150 μm, or as an emulsion 

if d < 20 μm.6 Oil-water emulsions are stable in the presence of the adsorbed interface-active 

chemicals (e.g., surfactant).7 Spontaneous separation of stable oil-water emulsions can be 

impractically time-consuming. Further, the separation process becomes more challenging with the 

decrease in the size of the dispersed phase.8 
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There have been extensive efforts devoted to developing effective separation technologies for oil-

water emulsions.8 Membrane-based technologies are the most attractive because they can separate 

oil and water without requiring chemical additives 9-14; thus, they are relatively energy-saving and 

applicable to a broad range of industrial effluents.15-17 The working principle and operation of these 

technologies are simple. A membrane can regulate the transportation of two phases (e.g., oil and 

water) by allowing the selective passage of one phase while inhibiting the permeation of another 

phase.18, 19 Various methods have been employed to enable the permeation of one phase through a 

membrane while repelling another phase. For example, a careful modulation of the applied 

pressure can overcome the hydraulic resistance of one phase while being insufficient for another 

phase.11, 14, 20, 21 Additionally, we20, 21, and others22-24 have demonstrated that a water-in-oil 

emulsion can be demulsified upon applying an electric field due to the coalescence of the dispersed 

water droplets. The resulting free oil and water can be readily separated under gravity. 

While membranes have become an industry benchmark to compare the performance of 

conventional separation technologies, they are limited by fouling when continuously operated.13, 

14, 25-27 When a membrane is subjected to an oil-water mixture, oils, and organic substances are 

deposited onto its surface. This membrane fouling can result in a decrease in permeability over 

time 28. To compensate for this compromised performance, membrane operation often requires an 

increase in the applied transmembrane pressure (i.e., TMP, the pressure gradient generated across 

the two opposite membrane sides 29), which results in an increase in the energy consumption.30 In 

some instances, the oil-water mixture treatment system becomes oversized to compensate for the 

permeate flux loss.30 Further, due to fouling, membranes undergo periodic cleaning protocols that 

include backwashing, forward washing, and chemically enhanced cleaning to restore membrane 

permeability.31 Although these cleaning protocols allow a membrane to restore its inherent 
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permeability and selectivity, they may shorten the membrane’s lifespan due to mechanical or 

chemical damage.32, 33 

The development of fouling-resistant membranes has been an active research topic for decades.34, 

35 A membrane with hydrophilic (i.e., water contact angle, θwater < 90°) or superhydrophilic (θwater 

= 0°) wettability can retain a hydration layer on its surface when subjected to water, which can 

reduce the adhesion of organic substances such as oil.20, 36 While these membranes show resistance 

to oil fouling, they become vulnerable when a hydration layer disappears.37 For example, the 

hydration layer can be evaporated or compromised due to a large exerted drag force (e.g., applied 

pressure), which results in direct contact and deposition of an oily phase on the membrane 

surface.38, 39 

Hydrophilic and in-air oleophobic (i.e., oil contact angle, θoil > 90°) membranes can overcome this 

limitation by providing oil repellency, not only underwater but also in the air 20, 40. This enables 

them to exhibit unique features in oil-water separations. For example, there is no need to prewet 

the membrane to introduce a hydration layer. Additionally, water-in-oil emulsions can be separated 

without prewetting as long as the breakthrough pressure for oil (Pb, i.e., the lowest applied pressure 

required to force a liquid permeation through a porous filter) is higher than the operating pressure. 

Fabricating a hydrophilic and in-air oleophobic membrane requires one to reconcile two 

conflicting design criteria. It should possess low solid surface energy to repel oil, while water 

should wet the surface. Given that the water surface tension (γlv = 72.1 mN m−1, T = 22 °C) is 

higher than that of oils (γlv = 20-30 mN m−1, T = 22 °C), a large volume of reports9, 41-46 have 

utilized materials composed of a low surface energy component along with a hydrogen-bond-

capable hydrophilic moiety as the membrane coating to achieve selective wettability for water over 

oil 20, 47-51. For example, Brown et al. 52 utilized a fluorosurfactant as a low surface energy material 
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and poly(diallyl dimethylammonium chloride) (PDDA) for hydrophilic moieties. Yang et al.49 

fabricated a membrane coated with a mixture of PDDA, chitosan, and perfluorooctanoic acid 

(PFOA). These surfaces often exhibit selective reconfiguration of the coating components. Upon 

contact with water, a hydrophilic component will expand to the surface for enthalpic gain, while a 

low surface energy material (e.g., fluorinated moiety) minimizes its contact with water.20, 47 When 

oil comes into contact, the surface reverts back to its inherent configuration to lower the overall 

free energy. 

Utilizing surface reconfiguration, herein, we report on a superhydrophilic and in-air oleophobic 

filter by grafting a composite mixture of poly(ethylene glycol)diacrylate (PEGDA) and 

1H,1H,2H,2H-heptadecafluorodecyl acrylate (F-acrylate) via silane chemistry. This enables the 

resulting coating (F-PEGDA) to firmly attach to the filter surface. The filter exhibits ultralow oil 

adhesion forces, both in air and underwater, which results in resistance to oil fouling during oil-

water separation. Utilizing this filter, separation of surfactant-stabilized oil-in-water and water-in-

oil emulsions is demonstrated. Finally, we demonstrate that the filter can be reused multiple times 

upon cleansing for further oil-water separations. 

4.2. Experimental procedure 

4.2.1. Grafting MEMO on the filter surface. 

The filters  with pore size of 6 µm (Whatman Grade 3, Whatman, Marlborough, MA, US) and 2 

µm (Whatman Grade 602h)) were rinsed with DI water followed by drying at room temperature. 

They were dip-coated in a 10 wt.% methacryloxypropyl trimethoxysilane (MEMO) solution in 

methanol for 30 min. Subsequently, the dip-coated filters were heated using a hot plate at 60° C 

for 1 h. Finally, the filters were thoroughly rinsed using DI water and ethanol to remove any 

unreacted MEMO molecules. 
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4.2.2. Coating F-PEGDA on filter. 

A solution of F-PEGDA was prepared by adding PEGDA, F-acrylate, and Darokur 1173 (Photo-

initiator) to water with an overall concentration of 30 mg ml−1. The MEMO-grafted filters were 

then dip-coated in F-PEGDA solution for 30 min. Varying compositions of PEGDA and F-acrylate 

(i.e., 0, 20, 40, 60, 80, and 100 wt.% of F-acrylate) were utilized. Note that the concentration of 

Darocur 1173 was maintained at 5.0 wt.% with respect to the PEGDA and F-acrylate mixture. 

Consequently, the filters were removed and exposed to UV light (100 W, λ = 365 nm, 

Analytikjena, Upland, CA, USA) for 5 min. 

4.2.3. Measuring pore size of filters. 

A capillary flow porometer (Particle Technology Labs, Downers Grove, IL, USA) was utilized to 

measure the nominal size and the distribution of the filter pores, as described elsewhere 53. A 

commercial wetting liquid (Porefil) was utilized to wet the filter. The nitrogen gas pressure and 

flow were controlled and recorded using a pressure transducer and a flow meter, respectively. 

4.2.4. Determining the nominal pore size of the mesh. 

Filter retention analysis9, 54 was utilized to determine the nominal pore size of the mesh. We 

sequentially fed monodisperse SiO2 particles with various diameters to the mesh in the order of 

the lowest to the highest diameter. We calculated the proportion of the particles retained on the 

mesh for each diameter according to %R = MR/MT, where MR and MT are the mass of SiO2 retained 

on the mesh and the total mass of that introduced to the mesh, respectively. We assigned the 

diameter of SiO2 as the nominal pore size of the mesh if %R exceeds 50% for that particular 

diameter. Note that we used SiO2 particles with diameters of 120, 150, 200, 300, 400, 500, 600, 

and 750 nm and prepared suspensions in ethanol with a concentration of 50 mg mL−1. We 

measured the %R as 66, 69, and 71%, with the SiO2 possessing a diameter of 400 nm for meshes 
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coated with N-TiO2/F-SiO2 mixture with 50, 75, and 100 wt% of N-TiO2, respectively. Therefore, 

400 nm was assigned as the nominal pore size of meshes. 

4.2.5. Contact angle measurement. 

A Ramé-Hart 200-F1 goniometer (Ramé-Hart, Succasunna, NJ, USA) was employed to measure 

the advancing and receding contact angles of liquid droplets ( 5 μL) on the filter surfaces. The 

initial advancing contact angle for water was measured based on the instantaneous value observed 

when a water droplet first contacted a filter surface, while the initial receding water contact angle 

was measured by gradually withdrawing a small volume of water from the same droplet. The time-

dependent advancing and receding water contact angle measurements were conducted in a 

controlled environment (T = 22° ± 1°, relative humidity = 79% ± 4%) to minimize the evaporation 

effect. A sessile water droplet was placed on a filter surface, followed by periodic measurements 

of contact angles. The measurements were conducted three times to ensure the accuracy of the 

values. The typical error in the goniometry was ±2°.  

4.2.6. Zeta potential measurements. 

Zeta potential measurements were conducted using a Brookhaven ZetaPALS instrument, 

Holtsville, NY, USA.55 The electrophoretic velocity was calculated using a laser light-scattering 

phase analyzer. Then, the Smoluchowski model was utilized to calculate the zeta potential values. 

4.2.7. Synthesis of oil-water emulsions. 

An optical profiler (Veeco Wyko NT 1100) was utilized to measure the root mean square (RMS) 

surface roughness of coated meshes. The scan rate was set to 50 nm s−1. The scanned area was 5 

µm × 5 µm. 
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4.2.8. Dispersed phase size measurements: 

The average size of the dispersed phase in an emulsion was characterized using dynamic light 

scattering (DLS) (ZetaPALS, Brookhaven Instruments, Holtsville, NY, USA). 

4.2.9. Filter surface topology characterization 

The PEGDA-coated filter surface’s morphology was characterized using an SEM (FEI Versa 3D 

DualBeam, Hillsboro, OR, USA). A thin layer of gold (≈7 nm) was applied to the filter surface. 

4.2.10. Underwater adhesion force measurements 

A small piece of a filter (4 cm2) was attached to the bottom of the container. The container was 

filled with DI water. Subsequently, a needle tip holding a droplet of n-hexadecane ( 5 𝜇L) was 

immersed in the water (3 cm below the water surface). Then, the entire container was gradually 

elevated at a constant speed (6.0 mm min−1) until the filter contacted the oil droplet. Subsequently, 

the container was gradually descended to detach the oil droplet from the filter. The force between 

the oil and filter surface was recorded using Data-Physics DCAT 11(Data Physics, Filderstadt, 

Germany). The adhesion force was determined by force at the detachment point. 

4.2.11. Thermogravimetric analyses (TGA). 

PerkinElmer PYRIS 1 (PerkinElmer, Waltham, MA, USA) was utilized for TGA measurements. 

A sample ( 50 mg) was heated to 110 °C at a rate of 5 °C per minute, then the temperature was 

maintained for 60 min. The TGA data were compared with the data for DI water and as-obtained 

n-hexadecane to measure the purity of the permeate or retentate after the separation. 

4.2.12. Continuous separation apparatus. 

We utilized a custom-made apparatus9, 10 for the continuous separation experiments. The apparatus 

consisted of a cross-flow cell CF042A, Sterlitech, Kent, WA, USA) connected to a container that 

stored the feed emulsion, a peristaltic pump (Model 2002, Vector, Minneapolis, MN, USA), a 
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differential pressure gauge (DPG409-500DWU, OMEGA, Stamford, CT, USA), and a permeate 

tank. A filter (surface area ≈42 cm2) was mounted to the cell. The feed oil-water emulsion was 

supplied from one side (feed-in) of the apparatus while the permeate was collected at the opposite 

side of the apparatus. Note that the raffinate was readded to the feed emulsion storage container. 

4.3. Results and discussion 

4.3.1. Fabrication of a hydrophilic and in-air oleophobic filter. 

We fabricated a hydrophilic and in-air oleophobic filter by coating it with F-PEGDA, utilizing 

filters with nominal pore sizes of 6.0 µm and 2.0 µm (Experimental procedure). Note that we 

utilized varying compositions of PEGDA and F-acrylate, while the photo-initiator concentration 

remained at 5.0 wt.% with respect to the mass of the PEGDA and F-acrylate mixture. The filters 

were irradiated by a long-wavelength ultraviolet (UV) light, which resulted in the grafting of F-

PEGDA to the MEMO-treated filter surface (Figure 4.1a).   

 
Figure 4.1. Schematic demonstrating the grafting of the filter surface with MEMO and the 

subsequent coating with F-PEGDA. (b) FT-IR survey spectra of F-PEGDA prepared with 

varied compositions of F-acrylate. 
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To verify the chemical structure of F-PEGDA, the FT-IR analysis was conducted using a Perkin 

Elmer Spectrum 400 Spectrometer. The FT-IR spectra were recorded at a resolution of 4 cm-1 for 

16 scans. Figure 4.1b demonstrates the survey spectra of F-PEGDA prepared with varied 

compositions of F-acrylate. Peaks appearing at ≈1205 cm-1 and 1149 cm-1 (pink shade) confirm 

the presence of fluorine moieties (-CF2).
56 The fluorine moieties are critical for lowering the 

overall solid surface free energy. Note that these peaks become more prominent as the F-acrylate 

concentration increases in the F-PEGDA. Peaks corresponding to the hydroxyl group (-OH, 948 

cm-1, blue shade) and carbonyl group (-CO, 1440-1395 cm-1and 1720 cm-1, green shades) are also 

shown in FT-IR spectra.57, 58  

 We analyzed the filter surface’s morphology using scanning electron microscopy (SEM) (Figure 

4.2). It was clear that the surface morphology remained nearly unaffected after coating with F-

PEGDA. Additionally, the uniform coating of F-PEGDA on the filter surface was verified by the 

 
Figure 4.2. SEM image showing the morphology of the filter after coating with F-PEGDA (20 

wt.%). Inset shows the elemental EDS spectrum and the elemental mappings for fluorine, 

carb0n and oxygen.  
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energy-dispersive spectroscopy (EDS) analysis. The EDS elemental mapping demonstrated a 

uniform coverage of fluorine (F) across the filter surface (Figure 4.2, insets). 

4.3.2. Pore size measurement 

It is critical to ensure that the F-PEGDA coating has a negligible effect on the pore size of the 

filters. We measured the nominal pore size of the filters after coating with F-PEGDA (Table 4. 1).  

The results indicated that filters coated with F-PEGDA with a higher PEGDA composition 

demonstrate more decreased pore sizes. For example, the filter coated with F-PEGDA with 20 

wt.% F-acrylate (F-PEGDA (20 wt.%)) exhibited a pore size of 5.0 µm ± 0.5 µm, while the filter 

coated with F-PEGDA (80 wt.%) showed 5.5 µm ± 0.5 µm. We attributed this to an increase in 

the viscosity of the coating solution with an increase in the PEGDA composition (i.e., a decrease 

in the F-acrylate composition), which resulted in an increase in the coating thickness.  

Table 4.1. The pore size of as-purchased filters and those coated with F-PEGDA with various F-

acrylate compositions. 

Filter Pore size 

As-purchased 6.0 µm 2.0 µm 

F-PEGDA (0) 4.8 ± 0.5 µm 0.9 ± 0.2 µm 

F-PEGDA (5 wt.%) 4.8 ± 0.3 µm 0.9 ± 0.1 µm 

F-PEGDA (10 wt.%) 4.9 ± 0.3 µm 1.0 ± 0.1 µm 

F-PEGDA (15 wt.%) 5.0 ± 0.4 µm 1.0 ± 0.3 µm 

F-PEGDA (20 wt.%) 5.0 ± 0.3 µm 1.0 ± 0.4 µm 

F-PEGDA (40 wt.%) 5.2 ± 0.5 µm 1.2 ± 0.2 µm 

F-PEGDA (60 wt.%) 5.3 ± 0.5 µm 1.4 ± 0.3 µm 

F-PEGDA (80 wt.%) 5.5 ± 0.4 µm 1.5 ± 0.5 µm 

F-PEGDA (100 wt.%) 5.6 ± 0.1 µm 1.6 ± 0.5 µm  
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Figure 4.3a demonstrates a plot of the viscosity as a function of F-acrylate composition in the F-

PEGDA solution. The viscosity of the solution increases with a decrease in the F-acrylate 

composition. We attribute this to a higher viscosity value of PEGDA in comparison to F-acrylate. 

We also found that an F-PEGDA coating solution with higher viscosity results in a coating with a 

higher thickness (Figure 4.3b). As a consequence, the effective pore size of a filter is also affected 

by the coating solution viscosity. Figure 4.3c shows that as F-acrylate composition decreases in 

the F-PEGDA coating solution, the nominal pore size of the resulting filter decreases as well. 

Based on these measurements, we anticipate that our F-PEGDA coating can be applied to a filter 

with a pore size of 1 m or greater without resulting in a complete pore-clogging.  

4.3.3. Wettability, surface energy, underwater oil adhesion force, and breakthrough pressure 

measurement 

The wettability of our F-PEGDA-coated filters was analyzed by measuring the apparent contact 

angles for water (deionized (DI) water, γlv =72.1 mN m−1, T = 22 °C) and oil (n-hexadecane, γlv = 

27.5 mN m−1, T = 22 °C) in the air (Figure 4.4). The results showed that the filter (inherent nominal 

pore size = 6.0 µm) coated with F-PEGDA with a higher F-acrylate composition exhibited higher 

oil apparent contact angles. When the composition reached 20 wt.%, the advancing (θ*
oil,adv) 

 
Figure 4.3. (a) The measured viscosity values of F-PEGDA solutions as a function of F-

acrylate compositions. (b) The thickness of F-PEGDA coating as a function of F-acrylate 

compositions. (c) The nominal pore size of the resulting filters after F-PEGDA coating. 
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(𝜃oil,adv
∗ ) and receding (θ*

oil,rec) (𝜃oil,rec
∗ ) apparent contact angles for oil were measured as 131°± 

3° and 108° ± 3°, respectively, while those for water remained at zero (θ*
water,adv = 0 and θ*

water,rec = 

0). Further increases in the F-acrylate composition in F-PEGDA had a negligible effect on the oil's 

apparent contact angles, which can be attributed to the complete coverage of the filter surface by 

F-acrylate. When the F-acrylate composition reached 80 wt.% in the F-PEGDA coating, the value 

for θ*
water,adv reached 25° ± 3°. We attributed this to the reduced presence of -OH moieties, which 

are responsible for inducing hydrophilicity and creating more fluorine moieties, which are 

responsible for omniphobic wettability. 

In previous reports, we 20 and others47, 59, 60 have shown that a water droplet can gradually wet the 

surface with hydrophilic and in-air oleophobic wettability due to surface reconfiguration. The 

required time for a water droplet to completely spread on a given reconfigurable surface is defined 

as the time of wetting (ToW).20 When our F-PEGDA surface is subjected to water, it reconfigures 

by enabling the hydrophilic moieties (e.g., -OH groups) to emerge on the surface. This is a kinetic 

process that is manifested by the so-called Time of Wetting (ToW, see also main text). On our F-

 
Figure 4.4. The measured apparent advancing and receding contact angles of water and oil (n-

hexadecane) on F-PEGDA-coated filter surface with varied compositions of F-acrylate. A filter 

with a 6.0 µm inherent nominal pore size was used. 
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PEGDA surfaces, a sessile water droplet exhibits a finite initial contact angle upon being placed. 

Then, it gradually wets the surface. Table 4.2 lists the measured initial contact angle values for 

water on F-PEGDA surfaces. Figure 4.5 shows the measured ToW values. It should be noted that 

a water droplet shows a final contact angle of 25°± 3° on the F-PEGDA (80 wt%) surface (also 

see Figure 4.4). We determined the final contact angle when it remained unchanged (< 2°) for 10 

mins. 

Table 4.2. The measured initial contact angles for a sessile water droplet (5 l) on F-PEGDA 

surfaces with varying F-Acrylate compositions.  

Surface 𝜽𝒘𝒂𝒕𝒆𝒓,𝒂𝒅𝒗
∗  (t=0) 𝜽𝒘𝒂𝒕𝒆𝒓,𝒓𝒆𝒄

∗ (t=0) 

F-PEGDA (0) 43°± 3° 0° 

F-PEGDA (5 wt%) 62°± 2° 0° 

F-PEGDA (10 wt%) 75°± 3° 0° 

F-PEGDA (15 wt%) 82°± 2° 0° 

F-PEGDA (20 wt%) 89°± 4° 0° 

F-PEGDA (40 wt%) 95°± 5° 15°± 4° 

F-PEGDA (60 wt%) 102°± 2° 25°± 3° 

F-PEGDA (80 wt%)  110°± 3° 49°± 4° 

 

We also calculated the solid surface energy (γsv) values of the F-PEGDA surfaces. We have utilized 

the Owens and Wendt approach 61 to calculate the solid surface energy (𝛾𝑠𝑣
 ) of F-PEGDA surfaces 

with varying F-acrylate compositions. Note that we fabricated a smooth surface of F-PEGDA by 

spincasting. Two probe liquids, n-hexadecane (𝛾𝑙𝑣
  =27.5 mN/m) and water (𝛾𝑙𝑣

𝑑=21.1 mN/m and 

𝛾𝑙𝑣
𝑝

=51.0 mN/m) were used as a non-polar liquid and a polar liquid, respectively. Table 4.3 lists 
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the calculated solids surface energy values of F-PEGDA surfaces with varying F-acrylate 

compositions.  

 

Table 4.3. The calculated solid surface energy values of F-PEGDA surfaces.  

Surface 𝜸𝒔𝒗
𝒑

 (mN m-1) 𝜸𝒔𝒗
𝒅  (mN m-1) 𝜸𝒔𝒗

  (mN m-1) 

F-PEGDA (0) 39.5 35.2 74.7 

F-PEGDA (5 wt%) 24.6 15.3 39.9 

F-PEGDA (10 wt%) 13.8 13.2 27.0 

F-PEGDA (15 wt%) 6.2 11.2 17.4 

F-PEGDA (20 wt%) 3.1 10.1 13.2 

F-PEGDA (40 wt%) 0.9 9.9 10.8 

F-PEGDA (60 wt%) 0.5 9.9 10.4 

F-PEGDA (80 wt%) 0.5 9.9 10.4 

 

 
Figure 4.5. The measured ToW values for a sessile water droplet on the F-PEGDA surfaces 

with varying F-acrylate compositions. 
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Similar to the results for the 6.0 µm filter (see Figure 4.4 in the main text), the apparent contact 

angles of oil increase with an increase in the composition of F-acrylate (Figure 4.6). At 20 wt.% 

of F-acrylate composition, the advancing (*oil, adv) and receding (*oil, rec) apparent contact angles 

for oil were measured as 135°± 3° and 111°±3°, respectively, while those for water remained zero 

(*water, adv = 0 and *water, rec = 0). When the F-acrylate composition becomes 80 wt.% in F-

PEGDA coating, the value of *water, adv is measured as 18°± 3°. Based on these results, a filter 

coated with 20 wt.% of F-acrylate (F-PEGDA (20 wt.%)) was utilized for the rest of the study. 

We measured the adhesion force of a sessile oil droplet on the filters submerged in DI water using 

a high-precision microelectromechanical system (Figure 4.7a, see also Experimental 

procedure). The results showed that the adhesion force values were nearly constant ( 1.32 µN ± 

0.10 µN) on filters with an inherent nominal pore size of 6.0 µm, which were coated with F-

PEGDA, irrespective of the F-acrylate composition. Note that the adhesion force value measured 

on the neat PEGDA-coated filter was slightly lower (1.27 µN ± 0.10 µN), while that measured on 

 
Figure 4.6. Advancing and receding apparent contact angles for water and oil (n-

hexadecane) on F-PEGDA surface with varied compositions of F-acrylate for the filter with 

2.0 µm of inherent nominal pore size. 
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the neat F-acrylate-coated filter was slightly higher (1.45 µN ± 0.10 µN). The measured adhesion 

forces of an oil droplet on a filter with an inherent nominal pore size of 2.0 µm are also 

demonstrated in Figure 4.7a. This ultralow oil adhesion was a direct consequence of the 

underwater superoleophobic wettability (i.e., apparent oil contact angle >150° on a surface 

submerged in water). Figure 4.7b demonstrates a plot of advancing and receding apparent contact 

angles for oil (n-hexadecane) on filters coated with F-PEGDA with various F-acrylate 

compositions submerged in DI water. The results show that the filters coated with F-PEGDA 

exhibited very high underwater apparent oil contact angles (i.e., underwater superoleophobic 

wettability). Further, a filter coated with F-PEGDA with a lower F-acrylate composition exhibits 

a higher underwater oil contact angle. For example, a filter coated with F-PEGDA (20 wt.%) 

exhibited contact angles of θ*oil, adv (under water) = 169°± 2° and θ*oil, rec (under water) = 161°± 3°, whereas 

the one coated with F-PEGDA (80 wt.%) exhibited θ*oil, adv (under water) = 174°± 3° and θ*oil, rec (under 

water) = 171°±2°. Additionally, the experimental results regarding water uptake by F-PEGDA-

 
 

Figure 4.7. (a)The measured adhesion force of a sessile oil (n-hexadecane) droplet on the 

filter surfaces coated with F-PEGDA with various F-acrylate concentrations. (b) The 

measured apparent contact angles of an oil on the F-PEGDA (20 wt.%), which was prepared 

with MEMO before and after being submerged in water for 1 h. For comparison, the data for 

F-PEGDA (20 wt.%) prepared without MEMO are also shown. 
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coated filters are provided Table 4.4. The water uptake is calculated by subtracting the weight of 

an as-prepared filter from that of a wet filter. 

Table 4.4. The measured weight values of F-PEGDA (20 wt%) coated filters and calculated 

water uptake. 

Filter Dry filter (mg) Wet filter (mg) Water uptake (mg) 

6.0 µm 160 365 205 

2.0 µm 162 381 219 

 

Filters exhibiting hydrophilic and in-air oleophobic wettability do not need to undergo prewetting 

in order to introduce a hydration layer before conducting oil-water separation. This is because the 

in-air superoleophobic wettability plays a key role in resistance to oil adhesion on the surface by 

repelling it 38. In contrast, an in-air superoleophilic surface such as a neat PEGDA-coated filter or 

an unmodified filter allows oil to wet and adhere to the surface. 

 
Figure 4.8. The breakthrough pressure of oil on prewetted and dry filters coated with F-

PEGDA (20 wt.%). The data obtained from a filter coated with neat PEGDA are also 

provided for comparison. 
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We measured the breakthrough pressure (Pb) for oil of an F-PEGDA-coated filter. It was observed 

that filters coated with F-PEGDA (20 wt.%) and with neat PEGDA (i.e., F-PEGDA (0)) could both 

exhibit high Pb values for oil. For example, a filter coated with F-PEGDA (20 wt.%) exhibited Pb 

= 1.35 ± 0.2 kPa, while another filter coated with neat PEGDA showed Pb = 1.25 ± 0.1 kPa when 

they were prewetted (Figure 4.8). When the filters were dry, the neat PEGDA-coated filter 

immediately allowed oil to pass through (Pb ≈ 0), whereas the filter coated with F-PEGDA (20 

wt.%) maintained a breakthrough pressure of Pb = 0.87 ± 0.2 kPa. 

 

Figure 4.9. The measured apparent contact angles of an oil on the F-PEGDA (20 wt.%), which 

was prepared with MEMO before and after being submerged in water for 1 h. For comparison, 

the data for F-PEGDA (20 wt.%) prepared without MEMO are also shown. 
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4.3.4. Coating robustness measurement 

Filters grafted with MEMO can prevent delamination of the F-PEGDA coating from the surface 

after being submerged in water. To test this, we measured the apparent contact angles of in-air oil 

on a filter coated with F-PEGDA after being submerged in DI water for 1 h. For comparison, we 

conducted the same experiment using a filter without MEMO grafting. The results showed that the 

apparent contact angles of oil remained almost unchanged on the filters coated with MEMO and 

F-PEGDA, while those on the filter without MEMO grafting equaled zero (Figure 4.9). This was 

the direct consequence of the delamination of the F-PEGDA coating from the filter surface. 

Grafting MEMO to a filter surface can prevent the delamination of F-PEGDA coating. Figure 

4.10a and 4.10b show SEM images with the EDS data (e.g., elemental mapping) of a filter coated 

with F-PEGDA (20 wt.%) without MEMO grafting before and after submersion in water for 1 

hour, respectively. The results show that the Fluorine (F) element nearly disappeared after 1 hour 

of submersion, indicating that the F-PEGDA coating is delaminated (see Figure 4.10b). 

Consequently, the oil droplet contacts the underlying filter surface and completely wets it due to 

the absence of fluorine on the filter surface. 

 
Figure 4.10. (a-b) SEM images and the EDS data (elemental mapping) showing a filter surface 

coated with F-PEGDA without MEMO before (a) and after submersion in water for 1 hour (b). 
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4.3.5. Gravity assisted oil-water separation 

Using our hydrophilic and in-air oleophobic filter, we separated oil-water mixtures under gravity. 

Here, we utilized a surfactant-stabilized oil-in-water emulsion (10 vol% n-hexadecane in water) 

and a water-in-oil emulsion (90 vol% water in n-hexadecane). Figure 4.11a and 4.11b show that 

the average size of the oil droplets dispersed in water is ≈19 μm, whereas the average size of the 

water droplets dispersed in the oil phase is ≈16 μm.  The separation apparatus consisted of two 

vertical tubes and a filter coated with F-PEGDA (20 wt.%), which was sandwiched between them. 

 Here, we utilized a filter with an inherent nominal pore size of 6.0 µm μm. Upon introducing an 

emulsion (15 mL) into an upper tube, a filter allows the water-rich phase to permeate through, 

while the oil-rich phase is retained above it within 11.2 ± 2 min (Figure 4.12a). We also calculated 

the flux (J = ∆m(Aρ∆t)−1, where ∆m is the mass change of the water-rich permeate in a given time 

interval (i.e., ∆t = 1 min), A is the projected area of the filter surface, and ρ is the permeate density) 

values by periodically measuring the volume of the water-rich permeate through filters prewetted 

with water for 30 min. The results for the oil-in-water emulsion showed that the permeate flux 

 
Figure 4.11. (a) SDS-stabilized oil-in-water emulsion and (b) dispersed water droplets in 

Tween 80-stabilized water-in-oil emulsion. The insets show the optical microscopy images of 

dispersed phases. 
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gradually declined from J (t = 0) = 261 ± 10 L m−2 h−1 and reached J (t = 10 min) = 245 ± 10 L 

m−2 h−1. This can be attributed to the decreased height of the emulsion column as the water-rich 

phase permeated through the filter, which resulted in a decrease in the exerted pressure. The filter 

also separated the water-in-oil emulsion in 13.1 ± 2 min. Similarly, the permeate flux values were 

determined as J (t = 0) = 242 ± 10 L m−2 h−1 and J (t = 10 min) = 225 ± 10 L m−2 h−1. Note that 

almost all water droplets dispersed in an emulsion can come into contact with the filter surface 

under gravity. For comparison, we conducted the same experiments using a filter coated with F-

PEGDA (0) after prewetting with water for 30 min. The results showed that the filter could separate 

both oil-in-water and water-in-oil emulsions in 11.9 ± 2 min and 13.5 ± 2 min, respectively (Figure 

4.12a). The permeate flux values were measured as J (t = 10 min) = 239 ± 10 L m−2 h−1 and J (t = 

10 min) = 219 ± 10 L m−2 h−1 for the separation of the oil-in-water and water-in-oil emulsions, 

respectively. 

 
 Figure 4.12. (a-b) Time-dependent flux measurements during the separation of oil-water 

mixtures under gravity by (a) prewetted and (b) dry filters coated with F-PEGDA (20 wt.%) 

and neat PEGDA. The inset shows images of the oil-water separation experiments with oil-

in-water emulsions by utilizing a filter coated with F-PEGDA (20 wt.%). 
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When a filter coated with F-PEGDA (0) is subjected to a water-in-oil emulsion without prewetting, 

both oil and water immediately pass through. Note that the filter exhibited similar separation 

performance for the oil-in-water emulsion (Figure 4.12b). This is attributed to the water as a 

continuous medium in the emulsion, which provides a hydration layer on the filter surface and 

prevents oil droplets from permeating. The filter coated with F-PEGDA (20 wt.%) exhibited 

similar water-rich permeate flux values for both oil-in-water and water-in-oil emulsions (J (t = 10 

min) = 231 ± 10 L m−2 h−1 and J (t = 10 min) = 222 ± 20 L m−2 h−1). Figure 4.13 shows the TGA 

plots of the permeates and retentates after the separation experiments for oil-in-water and water-

in-oil emulsions using a filter coated with F-PEGDA (20 wt.%).  

The results showed that our filter could separate both oil-in-water and water-in-oil emulsions with 

very high efficiency (>98%). Please note that our F-PEGDA filter surfaces after the separation 

remained clean (i.e., no fouling). We attributed this to a combinatorial effect of fouling resistance 

due to hydrophilic wettability and a relatively lower surfactant concentration (0.03 wt.%, See 

 
Figure 4.13. The TGA plots of the permeate and retentates after the separation of both oil-in-

water and water-in-oil emulsions using a filter coated with F-PEGDA (20 wt.%). The TGA 

data for pure water and oil are also shown for comparison. 
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Experimental Procedure). It is anticipated that our F-PEGDA-coated filter surface may suffer 

from a cake layer when it is subjected to emulsions stabilized by high-concentration surfactants 62-

64. Additionally, it should be noted that the surfactants used in this study were either anionic 

(sodium dodecyl sulfate for the oil-in-water emulsion) or nonionic (Tween 80 for the water-in-oil 

emulsion). Given that the seta potential (ξ) value of our F-PEGDA (20 wt.%)-coated filter surface 

was measured as −0.83 mV ± 0.19 mV, it is anticipated that our filter may be fouled by emulsions 

stabilized with cationic or amphoteric surfactants.62, 65, 66 

4.3.6. Continuous oil-water separation 

Finally, we continuously separated an oil-in-water emulsion utilizing a cross-flow apparatus 

(Experimental procedure). An emulsion (total volume = 20 L) was gradually introduced into a 

cell in which a filter (inherent nominal pore size = 6.0 µm μm) coated with F-PEGDA (20 wt.%) 

was mounted. We measured the volume of the water-rich permeates every 5 min for the entire 60 

 
Figure 4.14. (a) Time-dependent flux measurements during the continuous separation of 

oil-water mixtures using prewetted filters with various inherent nominal pore sizes, which 

were coated with F-PEGDA (20 wt.%). The inset demonstrates the separation experiment 

using a cross-flow apparatus. (b) Time-dependent flux measurements during the continuous 

separation of oil-in-water emulsion with cleaning steps in between. 
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min of operation. The TMP value was maintained at 0.90 kPa ± 0.20 kPa. The results showed that 

J (t = 0) = 285 ± 10 L m−2 h−1, after which it declined and reached J (t = 60 min) = 210 ± 10 L m−2 

h−1 (Figure 4.14a).  

We conducted the same experiments using a filter with an inherent nominal pore size of 2.0 µm. 

The results showed that J (t = 0) = 245 ± 10 L m−2 h−1, after which it declined over time and reached 

J (t = 60 min) = 176 ± 10 L m−2 h−1. Unlike the flux decline during batch separation, which was 

primarily caused by a decrease in the exerted pressure (see Figure 4.12a-b), the continuous 

separation was conducted at a constant TMP. Therefore, we attributed the flux decline to the oil 

droplet accumulation above the membrane surface.4 Although our filter exhibits very low oil 

adhesion force, oil can still accumulate on the surfaces and pore walls due to transmembrane 

pressure. The accumulation of oil can cause pore blockages. As a consequence, the volume of 

water passing through the filter in a given period of time (i.e., permeate flux) decreases. This results 

in a decline in the flux. We cleaned the filter by first rinsing it with ethanol for 10 s, followed by 

washing it with DI water for 30 s (flow rate ≈ 20.0 L min−1). The cleansed filter was subjected to 

 
Figure 4.15. TGA analysis of the permeates and pure water for cross-flow apparatus-based 

separation. 
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the same separation experiments. The results showed that the filter nearly recovered its inherent 

flux values (Figure 4.14b).  

Figure 4.15 shows the TGA plots of the water-rich permeates through the filters with 2.0 μm and 

6.0 μm of inherent nominal pore size coated with F-PEGDA (20 wt.%) after continuous separation 

of oil-in-water emulsion using a cross-flow cell. It is observed that a 2.0 µm pore size filter was 

able to separate oil and water at a high efficiency of ≈98%, while the one with a 6.0 µm of pore 

size demonstrated a separation efficiency of ≈96%. Figure 4.16 shows the measured flux values 

for the water-rich permeates during the continuous separation of oil-in-water emulsion utilizing F-

PEGDA (20wt%) coated filters. The results show that the flux values were maintained at 204 ± 4 

L m-2 h-1 (6.0 m filter) and 172 ± 5 L m-2 h-1 (2.0 m filter) over 50 hours of continuous separation. 

4.4. Conclusions 

In this work, we prepared robust hydrophilic and in-air oleophobic F-PEGDA-coated filters to 

separate oil-water mixtures. We utilized MEMO as an adhesion promoter to enhance coating 

adhesion to the filter. The prepared surfaces were then subjected to fouling conditions 

 
Figure 4.16. Measured flux values for the water-rich permeates as a function of time. 
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representative of conventional oil-water separation applications. The results of the study 

demonstrated that the F-PEGDA-coated filter showed low oil adhesion forces and was able to 

withstand fouling conditions without delamination. Subsequently, gravity-driven oil-water 

separations were conducted by utilizing oil-in-water and water-in-oil emulsions. The F-PEGDA-

coated filter was able to separate both emulsions and maintained high flux values, while the filter 

with underwater oleophobicity failed to separate the water-in-oil emulsion, highlighting the 

advantages of in-air oleophobicity. Further, the F-PEGDA surface demonstrated good reusability 

upon cleansing. 
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Chapter 5: Reversible adsorption and desorption of PFAS on inexpensive graphite 

adsorbents via alternating electric field 

This chapter is adapted from Paper P4. 

Abstract: Per- and polyfluoroalkyl substances (PFAS) have been extensively utilized in practical 

applications that include surfactants, lubricants, and firefighting foams due to their thermal 

stability and chemical inertness. Recent studies have revealed that PFAS were detected in 

groundwater and even drinking water systems which can cause severe environmental and health 

issues. While adsorbents with a large specific surface area have demonstrated effective removal of 

PFAS from water, their capability in desorbing the retained PFAS has been often neglected despite 

its critical role in regeneration for reuse. Further, they have demonstrated a relatively lower 

adsorption capacity for PFAS with a short fluoroalkyl chain length. To overcome these limitations, 

electric field-aided adsorption has been explored. In this work, reversible adsorption and 

desorption of PFAS dissolved in water upon alternating voltage is reported. An inexpensive 

graphite adsorbent is fabricated by using a simple press, resulting in a mesoporous structure with 

a BET surface area of 132.910.0 m2 g-1. Electric field-aided adsorption and desorption 

experiments are conducted by using a custom-made cell consisting of two graphite electrodes 

placed in parallel in a polydimethylsiloxane container. Unlike the conventional sorption process, 

a graphite electrode exhibits a higher adsorption capacity for PFAS with a short fluoroalkyl chain 

(perfluoropentanoic acid, PFPA) in comparison to that with a long fluoroalkyl chain 

(perfluorooctanoic acid, PFOA). Upon alternating the voltage to a negative value, the retained 

PFPA or PFOA is released into the surrounding water. Finally, we engineered a device module 

mounted to a gravity-assisted apparatus to demonstrate electrosorption of PFAS and collection of 

high purity water. 

 

5.1. Introduction 

Per- and polyfluoroalkyl substances (PFAS)1-6 are a group of organofluorine compounds that 

possess functional groups such as carboxylic acid and sulfonic acid attached at one end while a 

fluoroalkyl chain is attached to the other end. Due to fluoroalkyl chain’s excellent thermal 

stability7, 8and chemical durability8, 9, PFAS have been used in a wide range of practical 

applications, including surfactants10, 11, lubricants12, 13, firefighting foams14, 15, and insulations.16, 

17 Extensive usage of PFAS over past decades has resulted in unexpected environmental 

contamination.5, 18, 19 A recent study20 has revealed that groundwater near a PFAS manufacturing 

facility was contaminated by more than 20 different types of PFAS. Further, PFAS have been 

detected in drinking water systems21-23 which has raised health concerns because they can 
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accumulate in the human body.24, 25 Thus, environmental agencies have made regulatory actions 

to hamper the production of PFAS26, and major manufacturing companies have voluntarily agreed 

to phase out the PFAS.27  While these actions have resulted in a decrease in the total amount of 

PFAS manufacturing in past years28, and there has been a drastic increase in the production of 

PFAS with a short fluoroalkyl chain (e.g., (CF2)5 or shorter).29 This is because most regulations 

have targeted PFAS with a long fluoroalkyl chain30 such as perfluorooctanoic acid (PFOA) and 

pefluorooctanesulfonic acid (PFOS).31  

Remediation of PFAS contaminated water has been tested by various technologies.3, 32-34 

Conventional coagulation or flocculation has demonstrated a limited performance due to the 

chemical inertness of PFAS, which makes the adsorption to the coagulant ineffective.3, 32 While 

physico-chemical processes such as plasma-based oxidation33 and chemical oxidation34 can 

decompose PFAS, and they often result in secondary pollution by fragmented parts after the 

process.33 Membrane-based technologies6 (e.g., reverse osmosis and nanofiltration) are relatively 

effective in removing PFAS from water by size exclusion. However, they often require high 

operating pressure to collect water-rich permeate.6  

Sorption is perhaps the most promising technology to remove PFAS from water. Various 

adsorbents, including metal-organic frameworks (MOF)35, 36, zeolites37, 38, activated carbons39, 40, 

and anion exchange resins41-43, have been utilized. Carbonaceous adsorbents39, 40, 44-46 (e.g., 

activated carbon, graphene, carbon nanotubes) are attractive due to their chemical durability and 

thermal stability47, and a large specific surface area that can accelerate the adsorption kinetics.48 

However, most carbonaceous adsorbents exhibit a relatively low adsorption capacity (i.e., the 

amount of contaminant taken up by the unit mass of adsorbent)49 for PFAS with a short fluoroalkyl 
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chain length.50-54 Further, these absorbents often suffer from a decrease in the adsorption capacity 

over time because the residual PFAS remains even after the regeneration process.55 

Electric-field aided sorption (i.e., electrosorption) is an emerging technology to remove ionized 

contaminants from water. When an external electric field is applied across the electrodes 

submerged in water, the ionized contaminants are attracted and adsorb to an electrode surface with 

an opposite charge.44, 45, 56, 57 Thus, PFAS dissolved in water can adsorb to an anode upon 

application of an electric field. For example, Li et al.44 demonstrated that PFOA adsorbed to a 

multiwalled carbon nanotube electrode upon application of voltage (V = 0.6 V), resulting in a 150-

fold increase in adsorption capacity compared to that without an electric field. Niu et al.45 reported 

that the adsorption rate and capacity for PFOA to a carbon nanotube/graphene anode became 12 

times and 3 times higher than the results of adsorption without an electric field. Recently, Saeidi 

et al.46 demonstrated reversible adsorption and desorption for PFOA and perfluorobutanoic acid 

upon reversing the voltage across the activated carbon electrode.  

Herein, we demonstrate an inexpensive graphite adsorbent that enables reversible adsorption and 

desorption of PFAS with both short and long fluoroalkyl chain lengths (perfluoropentanoic acid 

(PFPA) and PFOA) in water upon alternating the voltage. The PFAS readily adsorbs to the graphite 

adsorbent upon application of a positive voltage within ≈10 s. We demonstrate that the adsorbed 

PFAS can be released into water with a high desorption efficiency of ≈96% and ≈94% for PFPA 

and PFOA, respectively, upon alternating voltage to a negative value. We also establish a 

quantitative relation to describe the kinetics of electrosorption for PFAS on a graphite adsorbent 

surface by utilizing a pseudo-second-order kinetic model. Finally, we engineer a device module 

that can be mounted to a gravity-assisted apparatus and demonstrate electrosorption of PFAS and 

collection of high purity water. 
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5.2. Experimental procedure 

5.2.1. Materials. 

Graphite powder (particle size < 20 µm), PFPA, perfluorohexanoic acid (PFHxA), 

perfluoroheptanoic acid (PFHtA), PFOA, perfluorononanoic acid (PFNA), and perfluorodecanoic 

acid (PFDA) were purchased from Sigma Aldrich. Teflonized acetylene black was purchased from 

Denka Co. Ltd. polydimethylsiloxane (PDMS) Sylgard 184 was purchased from Dow Corning. 

5.2.2. Fabrication of graphite adsorbents. 

We fabricated graphite adsorbents by mixing the graphite powder and teflonized acetylene black 

(conductive binder) at a ratio of 4:1 by weight. The mixture was pressed utilizing a vice to a final 

thickness of 0.2 cm. The resulting graphite film was then cut into the squares (2.5 × 2.5 cm2) 

utilizing a blade, followed by drying in an oven at 100 C for 24 hours. 

5.2.3. Characterization of graphite adsorbents. 

5.2.3.1. Surface morphology, surface area, and pore size distribution 

The surface morphology of a graphite adsorbent was analyzed by scanning electron microscopy 

(SEM, FEI Versa 3D DualBeam). A graphite adsorbent was cut into a small piece size 1.0 cm × 

1.0 cm. Then it was attached to a mount with the aid of carbon tape. SEM images were obtained 

at an accelerating voltage of 10 kV. Please note that metal sputtering was not involved. The 

Brunauer Emmett and Teller (BET) surface area and pore size distribution (PSD) were analyzed 

by measuring the isotherms of nitrogen (N2) adsorption-desorption utilizing a BET analyzer 

(TriStar II 3020 surface analyzer) at -196.15 °C. The pore size distribution was measured by using 

the BJH methodology to the desorption section of the isotherms of nitrogen at -196.15 °C, 

assuming the pores to be cylindrical in shape.58 
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5.2.3.2. Electrochemical analyses 

 The electrochemical analyses were performed by utilizing a three-electrode cell setup (Model 

760E Series Bipotentiostat workstation). The setup included a square-shaped graphite adsorbent 

(2.5 × 2.5 cm2, thickness = 0.2 cm), platinum (Pt), an Ag/AgCl as a working electrode, a counter 

electrode, and a reference electrode, respectively. Utilizing this setup, we performed cyclic 

voltammetry to measure the capacitance of our graphite adsorbent. The cyclic voltammetry was 

performed at 10 mV s-1 scan rates with the cyclic voltage of -0.6 V and + 0.6 V. Please note that 

electrodes were conditioned by running 100 cyclic voltammetry with a scan rate of 20 mV s−1 and 

cyclic voltage of -0.6 V and +0.6 V. Also, we carried out the electrochemical impedance 

spectroscopy (EIS) to measure the conductivity dynamics of PFAS dissolved in water by applying 

10 mV amplitude sinusoidal potential perturbation scanned over a frequency range from 200 kHz 

to 10 MHz at open circuit potential. Please note that all measurements were conducted at a constant 

temperature (T = 25.0 °C ± 1.4 °C). The specific capacitance (C) was calculated by59:  

(Equation 5.1)     𝐶 =  ∫
𝐼𝑑𝑉

2𝑈𝑉𝑚
  

5.2.4. Reversible adsorption and desorption of PFAS. 

The adsorption experiments for PFAS on a graphite adsorbent were conducted by utilizing a 

custom-made cell consisting of two graphite adsorbents (2.5 × 2.5 × 0.2 cm3) placed in parallel at 

a distance = 0.5 cm in a PDMS container. Please note that we fabricated two PDMS containers 

with dimensions of 2.5 × 2.5 × 1.2 cm3 and 3.0 × 3.0 × 3.0 cm3. A power supply (TP3016M, 

Tekpower) was connected to the electrodes. A 20 mL of deionized (DI) water dissolved with PFAS 

(e.g., PFPA, PFHxA, PFHtA, PFOA, PFNA, and PFDA) was injected at the inlet of the cell with 

a flow rate of  3 mL min-1 by a syringe pump (KDS-230, KD Scientific). While injecting PFAS 

solution, a positive voltage (V) was applied across the electrodes. The solution was collected at the 
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outlet of the cell. The temperature was maintained at T = 22.0 °C ± 1.4 °C. The desorption 

experiments were conducted by utilizing the same custom-made cell. A 20 mL of DI water was 

injected at the inlet of the cell with a flow rate of  3 mL min-1 while applying a negative voltage 

across the graphite electrodes that were adsorbed with PFAS. The DI water containing desorbed 

PFAS was collected at the outlet of the cell at T = 22.0 °C ± 1.4 °C. The adsorption capacity (α) 

is defined as49:  

(Equation 5.2)    𝛼 = (𝐶𝑜 − 𝐶𝑡)𝑄/𝑚   

where C0 and Ct (in ppm) are the concentration of PFAS solution at t = 0 and t, respectively. Q and 

m are the volume of the solution collected at the outlet of the cell and the mass of the anode, 

respectively.  

The adsorption rate (Ra) was measured by49: 

(Equation 5.3)     𝑅𝑎 = (𝐶𝑜 − 𝐶𝑡)𝑄/𝑡𝐴   

where t and A are the time and the total surface area of the anode.  

5.2.5. Fabrication of a device module for electrosorption of PFAS and gravity-assisted 

collection of high purity water. 

The device module was fabricated by alternatively stacking two pairs of graphite electrodes (two 

anodes and two cathodes) with a circular shape (diameter = 2.0 cm and thickness = 0.3 cm). Please 

note that nylon mesh was utilized as the spacer between the electrodes. The stacked electrodes 

were sandwiched between two cylindrical tubes (diameter = 2.0 cm and length = 15 cm) to form a 

gravity-assisted separation apparatus. Of note, the device module and tubes were sealed with a 

silicone sealant to prevent leakage.  
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5.2.6. PFAS concentration measurements. 

The concentration of PFAS was assessed by measuring the electrical conductivity of the solution. 

We measured the electrical conductivity by submerging two probes of a multimeter (Gardner 

Bender GDT-3190) with an offset distance of 2.0 cm in a PFAS solution. The multimeter measured 

the values of electrical resistance (R). The electrical resistivity (r) was then calculated by using the 

equation R = rL/A. Here, L and A are the offset distance between two probes (i.e., 2.0 cm) and the 

surface area of the probe (i.e., 1.5 cm2), respectively. The electrical conductivity (s) of the PFAS 

solution was obtained by the equation s = 1/r. The electrical conductivity values were compared 

with a calibration curve of the electrical conductivity as a function of PFAS concentration. 

5.3. Results and discussion 

5.3.1. Characterization of surface morphology, surface area, and pore size distribution of 

graphite adsorbents 

We characterized the surface morphology of a graphite adsorbent by SEM (Figure 5.1). It shows 

that graphite adsorbent possesses interconnected and overlapped planar sheets. Please note that 

such stacked sheets enable a large surface area for transport and diffusion of ionized species.  

 
Figure 5.1.  Scanning electron microscopy (SEM) image of a graphite adsorbent. 
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The BET surface area was measured as approximately 132.910.0 m2 g-1 which is comparable to 

those reported in the literature.45, 60, 61 The BET measurements also show that our graphite 

adsorbent exhibits a type IV isotherm with a hysteresis loop in the relative pressure (i.e., P/Po, Po 

is the saturation pressure of N2 at -195.15 °C) range of 0.4 – 0.9 indicating that it possesses 

mesopores62 (i.e., pores size = 2.0 – 50.0 nm) (Figure 5.2a). This was further corroborated by the 

pore size distribution (PSD) (Figure 5.2b). The average pore size was measured at 18 nm, and a 

total pore volume was measured as 0.1645 cm3 g-1. A large surface area along with a wide range 

of pore size (e.g., 3.0 nm – 130.0 nm) makes our graphite adsorbent suitable for an electrode in 

the electrosorption for PFAS as it helps relieve steric hindrance for adsorption of PFAS molecules. 

This has been verified in previous reports. For example, Cao et al.63 have demonstrated that a silica 

gel with a widened pore size (i.e., 6 nm) can facilitate the PFAS diffusion. Similarly, Sasi et al.64 

have shown that an adsorbent with a wide range of pore sizes (e.g., mesopore, 2 nm – 50 nm) with 

an average pore size of 9 nm can overcome the steric hindrance. An adsorbent with a wide range 

 
Figure 5.2. (a) Brunauer Emmett and Teller (BET) plot obtained by utilizing N2 adsorption-

desorption isotherms at -196.15 °C. Inset shows isotherms in the relative pressure (P/Po) range 

of 0.55-0.85. (b) Pore size distribution (PSD) data of a graphite adsorbent. Inset shows the PSD 

data of the pore diameter range of 2.0-10.0 nm. 
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of pore sizes can take advantage of both large and small pores. Pores of large size can facilitate 

the diffusion of PFAS molecules, while small pores can contribute to a larger surface area that can 

provide adsorption sites. In contrast, an adsorbent with a narrow pore size distribution may 

compromise either its diffusion kinetics or the surface area. For example, when an adsorbent 

possesses a small pore size with narrow distribution, it may suffer from steric hindrance and exhibit 

slow diffusion kinetics. If an adsorbent possesses large pores with narrow distribution, its surface 

area is low which can limit its adsorption capacity. 

5.3.2. Electrochemical analysis 

Electrosorption for PFAS can be facilitated when an electrode (i.e., anode) exhibits a high specific 

capacitance (i.e., capacitance per unit mass).65 We measured a specific capacitance (C) of our 

graphite adsorbent (electrode) by conducting cyclic voltammetry (CV) measurements at a scan 

rate of 10 mV s-1 (see Experimental procedure). Figures 5.3a and b show the measured CV 

curves for PFPA and PFOA, respectively, by applying a cyclic voltage between -1.2 V and +1.2 

V. Here, we utilized PFPA and PFOA as representative PFAS with a short and a long fluoroalkyl 

 
Figure 5.3. (a)-(b). Cyclic voltammetry measurements of graphite adsorbent (electrode) for 

PFPA (a) and PFOA (b) solutions with varying concentrations at a scan rate of 10 mV s-1. The 

temperature was maintained at 25.0 °C ± 1.4 °C during the measurements. 
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chain length, respectively. The specific capacitance values were determined by calculating the 

enclosed area of a CV curve (Equation 5.1). Table 5.1 lists the specific capacitance values for 

PFPA and PFOA with varied concentrations. The results show that the C values for PFPA are 

higher than those of PFOA at a given concentration. This can be attributed to a higher resistivity 

and lower polarization of PFOA in comparison to PFPA.66 Also, it was observed that the C values 

are higher for solutions with higher concentrations. This was attributed to the fact that a larger 

number of PFAS can participate in the electrical double layer on a graphite electrode surface.67  

Table 5.1. Specific capacitance values calculated for PFPA and PFOA at varied concentrations.  

 

Concentration (mM) PFPA (F g-1) PFOA (F g-1) 

10  45.44  43.37  

2.5  30.25  29.06  

0.625  24.08  23.91  

 
Figure 5.4. Photographs of the custom-made cell for electrosorption of PFAS. 
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5.3.3. Reversible adsorption and desorption of PFAS upon alternating electric field 

We utilized a custom-made cell (Figure 5.4, see also Experimental procedure) to conduct 

adsorption and desorption experiments. The adsorption capacity (α, i.e., mass of the adsorbed 

PFAS on one gram of anode, Equation 5.2) was measured at varied voltage. The results show that 

a higher value of α was obtained upon applying a higher voltage. For example, the α value for 

PFPA at V = +0.8 V is 3.6 mg g-1 while α = 13.1 mg g-1 at V = +1.4 V (Figure 5.5a). This can be 

attributed to an increase in the charge density on the electrode surface. Also, the α value for PFPA 

is higher than that for PFOA at a given applied voltage. For example, the α value for PFPA is 10.2 

mg g-1 while α = 2.15 mg g-1 for PFOA at V = +1.2 V, which can be attributed to higher mobility 

and a higher diffusion coefficient for PFPA due to its higher polarity along with its lower molecular 

weight.68 Please note that the α values for PFHxA, PFHtA, PFNA, and PFDA are provided in 

 
Figure 5.5. (a) The measured adsorption capacity for PFPA and PFOA aqueous solutions (Co 

= 0.01 M for both solutions) at varied applied voltages, (b) The measured adsorption capacity 

values for PFHxA, PFHtA, PFNA, and PFDA aqueous solutions at varied voltages. Note that 

the concentration (Co) for each solution was 0.01 M. The adsorption capacity values are lower 

for PFAS with a longer fluoroalkyl chain. 
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Figure 5.5b). It should be noted that the α values for PFPA or PFOA without applying voltage 

were almost 50-fold higher compared to those without applying voltage (Table 5.2).  

 

Table 5.2. The adsorption capacity (α) values of our graphite electrode for PFPA, PFHxA, PFHtA, 

PFOA, PFNA, and PFDA upon application of voltage (V = + 1.2 V). Note that all solutions are at 

the same concentrations (Co = 0.01 M). For comparison, the adsorption capacity values measured 

without application of voltage (i.e., conventional sorption) are also shown.  

PFAS 

Adsorption capacity (mg g-1) 

With voltage Without voltage 

PFPA 10.20 0.20 

PFHxA 4.87 0.12 

PFHtA 3.36 0.07 

PFOA 2.15 0.04 

PFNA 1.56 0.031 

PFDA 0.75 0.028 

 

 
Figure 5.6. (a) and (b). The calibration curves established by calculating the electrical 

conductivity of DI water dissolved with PFPA (a) and PFOA (b) as a function of concentrations. 
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The concentration of PFAS in water can affect the adsorption capacity at a given applied voltage. 

The results show that the α values decrease with a decrease in the concentration (Figure 5.7). For 

example, the α value for PFPA solution with a concentration of Co = 4000 ppm was measured as 

17.08 mg g-1 while that for a solution with Co = 2000 ppm is 9.80 mg g-1 at V = +1.2 V. This is a 

consequence of a decrease in the capacitance which can result in a lower mass transfer rate for 

PFAS (see also Figure 5.3a).66 We have also conducted Langmuir isotherm studies (Figure 5.7 

and Table 5.3). The results show that Langmuir isotherm for PFOA reasonably matches well with 

the experimental data while that for PFPA deviates at a higher concentration. Such a discrepancy 

of PFPA isotherm can be attributed to its lower molecular weight, which in turn results in higher 

ionic strength. Consequently, it is possible that PFPA exhibits multilayer deposition at a higher 

concentration. 

Table 5.3. Langmuir isotherm parameters for PFPA and PFOA adsorption. 

PFAS qm (mg g-1) b (ml mg-1)  R2 

PFPA 13.58 0.99 0.85  

PFOA 2.52 0.57 0.99  

 
Figure 5.7. The measured adsorption capacity for PFPA and PFOA aqueous solutions (Co = 

0.01 M for both solutions) at varied concentrations (V = ± 1.2 V). 
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Our electrosorption technique enables reversible adsorption and desorption of PFAS by alternating 

the applied voltage. A 20 mL of PFPA (or PFOA) solution with an initial concentration (Co) of 30 

ppm was poured into a custom-made cell. We continuously measured the electrical conductivity 

values of the solution by recording them. The measured values were compared to those in a 

calibration curve (see Figure 5.6) to determine the concentrations. Please note that the voltage was 

alternated between +1.2 V and -1.2 V every 10 s. The results show that PFOA concentration 

becomes 17.6 ± 2.4 ppm and 28.1 ± 2.1 ppm at V = +1.2 V (adsorption) and V = -1.2 V (desorption), 

respectively (Figure 5.8). Similarly, PFPA concentration was measured as 9.8 ± 2.5 ppm and 29.3 

± 1.7 ppm at V = +1.2 V and V = -1.2 V, respectively. These results indicate that our graphite 

electrode can adsorb and desorb PFAS upon alternating the voltage. The adsorption and desorption 

efficiency per cycle is provided in Figure 5.9. Please note that such on-demand reversibility is 

critical for regenerating the electrode.  

 
Figure 5.8. The measured concentration of PFPA and PFOA aqueous solutions upon reversible 

adsorption and desorption (Co = 30 ppm for both solutions) on graphite electrode by alternating 

the applied voltage between +1.2 V and -1.2 V. Note that the voltage alternated every 10 s. 
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5.3.4.  Kinetics of the reversible electrosorption for PFAS 

We investigated the kinetics of electrosorption for PFAS. Figure 5.10a shows the time-dependent 

change in the concentration of PFOA and PFPA solutions at V = +1.2 V. Note that we utilized the 

same concentration values (different molar concentrations) that are shown in Figure 5.8. The 

results show that the concentration of PFOA and PFPA solutions rapidly decreased and reached 

constant values of 0.0426  0.004 mM and 0.03714  0.006 mM, respectively, after  5 s of voltage 

application, indicating that the equilibrium condition was attained. Electrosorption is a kinetic 

process that can be described by a pseudo-second-order kinetic model, which is given as: 

(Equation 5.4)     𝐶 (𝑡) = 𝐶𝑜 −
𝑘1𝑞𝑒

2𝑡

1+𝑘1𝑞𝑒𝑡
 

where C (t) and Co are the concentration of PFAS in a solution at time t and t = 0 (i.e., the initial 

concentration). qe is the amount of PFAS adsorbed on the electrode at equilibrium, and k1 is the 

adsorption rate constant. By fitting Equation 5.4 to the experimentally measured values(Figure 

5.10a), we obtained the k1 values for PFPA and PFOA as 84.44 s-1 and 101.30 s-1, respectively. 

This indicates that the adsorption rate for PFPA is higher than that of PFOA, which can be 

 
Figure 5.9. The measured adsorption and desorption efficiency as a function of cycles. 
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attributed to the higher mobility of the PFPA in comparison to PFOA due to its lower molecular 

weight.68 

Upon alternating the voltage (V = -1.2 V), the concentration of PFPA and PFOA started to 

increase and reached constant values of 0.111  0.004 mM and 0.106  0.004 mM, respectively, 

after  10 s of voltage application (Figure 5.10b). This can also be described by the pseudo-second 

order kinetic model, which is given as: 

(Equation 5.5)    𝐶 (𝑡) = 𝐶𝑓 +
𝑘2𝑞′

𝑒

2

𝑡

1+𝑘2𝑞′
𝑒
𝑡
 

where Cf is the concentration of PFAS in a solution after the adsorption experiment, q’e is the 

amount of PFAS desorbed from the electrode at equilibrium, and k2 is a desorption rate constant. 

We determined the k2 values as 90.68 s-1 and 118.6 s-1 for PFPA and PFOA, respectively, by fitting 

Equation 5.5 to the experimentally measured values (Figure 5.10b). The time-dependent 

 
Figure 5.10. (a) and (b) The measured concentrations for PFPA and PFOA aqueous solutions 

upon applying voltage of V = +1.2 V (a) or V = −1.2 V (b). The fitted values of concentration 

utilizing pseudo-second order kinetic model for adsorption (Equation 5.4) and desorption 

(Equation 5.5) are also provided. 
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adsorption and desorption of PFPA and PFOA at varied voltages are provided in Figure 5.11a and 

Figure 5.11b, respectively.  

5.3.5. Electrosorption of PFAS and gravity-assisted collection of high purity water 

The module for electrosorption for PFAS and gravity-assisted collection of clean water consists of 

two pairs of alternatively stacked graphite electrodes (two anodes and two cathodes) with a circular 

shape that is separated by nylon mesh as a spacer. We found that a spacer with a width of 0.2 cm 

can result in the highest adsorption rate for both PFPA and PFOA (Figure 5.12 and Equation 5.3). 

The module was sandwiched between two cylindrical tubes to form a gravity-assisted apparatus 

(Figure 5.13). Upon pouring PFOA solution (Co = 10 ppm, 10 mL) into the upper tube, it started 

to permeate through the module under gravity, and the permeate was collected in the bottom tube. 

 
Figure 5.11. (a) The measured concentrations for PFPA and PFOA aqueous solutions upon 

applying voltage of V = +0.6 V or V = +0.8 V. The fitted values of concentration utilizing 

pseudo-second order kinetic model for adsorption (Equation 5.4) are also provided. The rate 

constants for adsorption (k1) are determined as k1 = 0.3424 s-1 (V = +0.6 V) and k1 = 0.5521 s-1 

(V = +0.8 V) for PFPA. For PFOA, we found k1 = 0.6723s-1 (V = +0.6 V) and k1 = 1.012 s-1 (V 

= +0.8 V). (b) The measured concentrations for PFPA and PFOA aqueous solutions upon 

applying voltage of V = -0.6 V or V = -0.8 V. The fitted values of concentration utilizing pseudo-

second order kinetic model for desorption (Equation 5.5) are also provided. The rate constants 

for desorption (k2) are determined as k2 = 0.5553 s-1 (V = -0.6 V) and k2 = 0.9591 s-1 (V = -0.8 

V) for PFPA. For PFOA, we found k2 = 0.417 s-1 (V = -0.6 V) and k2 = 1.19 s-1 (V = -0.8 V). 
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A voltage of V = +1.2 V was continuously applied across a cathode and an anode during 

permeation. Please note that the entire solution passes through the module in approximately 300 s 

 12 s. The concentration of PFOA in the permeate was measured as 1.1  0.1 ppm. We conducted 

the same experiments using PFOA solution with varying concentrations (e.g., Co = 20 ppm and Co 

 
Figure 5.12. The measured adsorption rate (Ra) values of the module for PFPA and PFOA 

aqueous solutions (Co =0.01 M) as a function of the spacer width. It is observed that a spacer 

width of 0.2 cm exhibits the highest Ra values for both PFPA and PFOA. 
 

 
Figure 5.13. Photographs showing a device module utilized for gravity-assisted electro-

sorption for PFOA from water. 

 



 

 

134 

 

= 30 ppm). The results show that the permeate contains 8.0 ppm  1.0 ppm (Co = 20 ppm) and 

12.1 ppm  2.2 ppm (Co = 30 ppm), respectively (Figure 5.14a).  

We conducted desorption experiments by submerging the module in DI water and applying a 

voltage of V = -1.2 V for 300 s. The results show that the water contained 9.45 ppm of PFOA (Co 

= 10 ppm), indicating that nearly all PFOA was released from graphite anodes. Please note that 

the water contained 19.1 ppm (Co = 20 ppm) and 28.2 ppm (Co = 30 ppm) of PFOA after desorption 

experiments (Figure 5.14b). The experimental data of adsorption and desorption for PFPA 

solutions by using the device module are provided in Figures 5.15a and 15b, respectively. We 

believe that our module has the potential for a portable water purification device that can remove 

the dissolved contaminants and generate clean water at a low voltage (e.g., 1.2V). 

 

 

 
Figure 5.14. (a) The measured concentrations of PFOA in the permeate after introducing 10 

mL of feed PFOA solutions with varying concentrations (Co = 30 ppm, 20 ppm, and 10 ppm) 

to the device module. (b) The measured concentrations of PFOA after desorption for solutions 

with varying initial concentrations (Co = 30 ppm, 20 ppm, and 10 ppm) utilizing the device 

module. 
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5.4. Conclusions 

 

We demonstrated reversible adsorption and desorption of PFAS in water by an electric-field aided 

process utilizing an inexpensive graphite adsorbent as the electrode. A large BET surface area 

along with mesopores of graphite enabled a large adsorption capacity for PFAS with both short 

and long fluoroalkyl chain lengths (e.g., PFPA and PFOA, respectively) upon application of the 

voltage. We demonstrated that an adsorption capacity value increases with an increase in the 

applied voltage as well as with the increase in the PFAS concentration. We also showed multiple 

adsorption-desorption cycles by alternating the voltage that can result in highly efficient adsorption 

and desorption of PFAS from the graphite electrode surface. The kinetics of electric-field aided 

adsorption and desorption of PFAS in water were investigated by utilizing a pseudo-second-order 

model. Finally, a device module was engineered that can be mounted to a gravity-assisted 

apparatus for electrosorption of PFAS and obtaining water with high purity.  

  

 
Figure 5.15. (a) The measured concentrations of PFPA in the permeate after introducing 10 

mL of feed PFPA solutions with varied concentrations (Co = 30 ppm, 20 ppm, and 10 ppm) to 

the device module. (b) The measured concentrations of PFPA after desorption for solutions 

with varied initial concentrations (Co = 30 ppm, 20 ppm, and 10 ppm) utilizing the device 

module. 
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Chapter 6: Electrosorption-driven remediation of PFAS-contaminated water with 

Engineered MXene/PEDOT:PSS Adsorbents 

Abstract: Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals that have been 

used in a wide range of applications. Recent studies have revealed that PFAS are persistent and 

accumulative both in the environment and the human body. The technologies that are currently in 

use for PFAS removal from water rely on physisorption. While it is effective for removing PFAS 

with a longer fluoroalkyl chain (e.g., (CH2)7 or longer), its efficacy for those with a shorter chain 

(e.g., (CH2)6 or shorter) is an issue. Electric-field aided sorption (i.e., electrosorption) has been 

explored as an alternative to overcome such limitations. Herein, we demonstrate electrosorption 

of PFAS with varied fluoroalkyl chains by utilizing MXene-PEDOT:PSS absorbent. Intercalation 

of PEDOT:PSS to the MXene help enhance the capacitive property of MXene, increasing the 

electrosorption of PFAS. Using the adsorbent, we demonstrate electrosorption of PFAS with 

varied fluoroalkyl chain lengths from water upon applying a voltage of V = 1.0 V. Also, the 

adsorbent can desorb the PFAS from its surface when applying a voltage of V = - 1.0 V, which 

regenerates the adsorbent for further operations. Finally, a pseudo-second-order kinetic model that 

describes the reversible electrosorption of PFAS from MXene-PEDOT:PSS adsorbent is proposed. 

 

6.1. Introduction 

Perfluoroalkyl substances (PFAS), as a group of organofluorine materials1-6, have been employed 

extensively in a range of practical applications, including lubricants7, surfactants8, 9, and 

firefighting foams.10-12 PFAS can exhibit excellent chemical and thermal stability, which can be 

attributed to their fluoroalkyl chains with a strong carbon−fluorine bond.13-15 The widespread 

utilization of PFAS has resulted in their ingress into the environment (e.g., surface and 

groundwaters, soils)5, 16, 17. Recently, PFAS has been detected in the drinking water which has 

raised serious health concerns.11, 18 It has been revealed that PFAS accumulation in the body can 

cause several health disorders including cancer, high blood pressure, and weak immune system.19, 

20 Thus, the government and environmental agencies have implemented regulations to decrease 

the manufacturing of PFAS. For example, the United States Environmental Protection Agency 

(US EPA) has entered into an agreement with PFAS manufacturers over the voluntary "phase-out" 

of certain PFAS types by January 2024.21 Despite these efforts, a drastic increase in the production 

of short-chain PFAS (i.e., -(CH2)6- and shorter) has been reported.22 Given that the short-chain 



 

 

142 

 

PFAS are more persistent and mobile23 as well as challenging to remove24 compared to those with 

long-chain, there is a dire need for developing remediation technologies that can enable the 

removal of PFAS with long as well as short-chain lengths.  

Various technologies for remediating PFAS-contaminated water have been implemented.3, 25-27 

Electrochemical or plasma-based oxidation processes can degrade PFAS dissolved in water.3, 25 

For example, Zhuo et al.,28 demonstrated electrochemical oxidation of perfluorooctanoic acid 

(PFOA) in water. The process results in approximately 90 % removal of PFOA. Singh et al.,29 

demonstrated that Argon plasma treatment could result in the decomposition of PFOA and 

perfluorooctane sulfonic acid (PFOS) with very high efficiency. While these destructive 

technologies are effective for long-chain PFAS, their performance in the removal of short-chain 

PFAS is limited.24 Also, these processes can produce byproducts resulting in secondary pollution.29 

Adsorption is a non-destructive technology to decontaminate the water from PFAS.30-33 For 

example, McCleaf et al.34 have demonstrated that the activated carbons can remove various PFAS 

from water with a reasonable (>70%) removal efficiency. Various reports have shown that ion 

exchange resins can demonstrate a high-efficiency removal of PFAS from water.35 Despite their 

relatively lower cost of operation and lower energy consumption, adsorption-based technologies 

can be limited by poor removal efficiency for short-chain PFAS.36 Also, most adsorbents undergo 

a decrease in the adsorption capacity over time due to the residual PFAS that remains even after 

the regeneration process.37 

Electric-field aided sorption (i.e., electrosorption) has been identified as a promising technology 

that can overcome the abovementioned limitations of the conventional adsorption process.38 Upon 

application of electric field across the two electrodes (i.e., adsorbents), anionic PFAS gets attracted 

and adsorbed to an anode surface.38-41 Considering that electrosorption employs the electrostatic 
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and coulombic force of attraction between an electrode and ionized species, it can effectively 

remove PFAS with both long and short fluoroalkyl chain lengths. In contrast, conventional 

adsorbents primarily rely on hydrophobic interaction with PFAS, which makes them less effective 

for removing short-chain PFAS. 41, 42  

An effective electrosorption process requires the adsorbent to fulfill the following design criteria. 

First, it should possess a large specific surface area that serves as adsorption sites. Also, it should 

exhibit durability against chemically and thermally aggressive environments.38-41 Furthermore, it 

should demonstrate high capacitance and electrical conductivity. Recently, a new class of two-

dimensional metal carbide, carbonitride, and nitride (i.e., MXene) has emerged as a competitive 

adsorbent for the electrosorption process due to MXene's high capacitance and electrical 

conductivity.43 The layered structure of MXene allows the dissolved ions to be readily inserted 

and adsorbed to the surface (i.e., ion intercalation).44 

The electrochemical performance of MXene can be improved by increasing the interfacial area 

between the MXene surface and the electrolyte or by decreasing the ion diffusion length.45 

Recently, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has been 

employed in MXene due to its elasticity and facile fabrication process46, 47.45 The resulting MXene-

PEDOT adsorbent exhibited enhanced specific surface area and high volumetric capacitance. 

However, PSS is an insulator that impedes charge transport on the polymer. Previous reports have 

shown that strong acid treatment can remove the insulating PSS from the MXene-PEDOT:PSS 

resulting in increased electrical conductivity.45  

Herein, we report electrosorption of PFAS with varied fluoroalkyl chain lengths by utilizing 

Mxene-PEDOT:PSS adsorbent upon application of electric voltage. The adsorbent is fabricated by 

facile mixing of MXene, and PEDOT:PSS. Using the adsorbent, we demonstrate electrosorption 
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of PFAS with varied fluoroalkyl chain lengths from water upon applying a voltage of V = 1.0 V. 

Also, the adsorbent can desorb the PFAS from its surface when applying a voltage of V = - 1.0 V, 

which regenerates the adsorbent for further operations. Finally, a pseudo-second-order kinetic 

model that describes the reversible electrosorption of PFAS from MXene-PEDOT:PSS adsorbent 

is proposed.  

6.2. Experimental procedure 

6.2.1. Synthesis of MXene. 

A 1.98 g of lithium fluoride (LiF) was added to 30 ml of 6 M hydrochloric acid (HCl). The solution 

was stirred for 5 mins to dissolve the LiF. Subsequently, 3.0 g of MAX ( Mn+1AXn, where n = 1 to 

3, and M is an early transition metal, A is an A-group (mostly IIIA and IVA, or groups 13 and 14) 

element and X is either carbon and/or nitrogen phase titanium aluminum carbide) was gradually 

added to the solution over the course of 10 mins to avoid initial overheating of the solution. The 

solution was then held at 40 °C for 45 hours, followed by washing through 5 cycles of DI water 

addition, centrifugation (5 mins for each cycle), and decanting until the supernatant reached a pH 

of approximately 6.0. The final product (MXene) was filtered, followed by drying in ambient 

conditions for 24 hours. 

6.2.2. Preparation of MXene-PEDOT:PSS adsorbent. 

The MXene was first dispersed in DI water to reach a concentration of 1.5 mg ml-1. A desirable 

quantity of PEDOT:PSS (Sigma Aldrich) was added to the dispersion to fabricate varied 

compositions of MXene and PEDOT PSS (95:5, 90:10, 80:20, 70:30, and 60:40, MXene: 

(PEDOT:PSS) by weight). The dispersion was stirred for 24 hours and was filtered using filter 

paper (Watman Grade 6, 2 µm) under negative pressure (600 torrs). The obtained a clay-like 
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MXene-PEDOT:PSS was applied to a glass slide with required thickness and was dried, followed 

by being soaked in H2SO4 for 24 hours and subsequently drying at 40 °C for 24 hours. 

6.2.3. Characterization of surface morphology, chemistry, and interlayer spacing of MXene-

PEDOT:PSS. 

The surface morphology was characterized by scanning electron microscopy (SEM, FEI Versa 3D 

DualBeam) at an accelerating voltage of 10 kV. A PerkinElmer Spectrum 400 FTIR spectrometer 

was utilized in the attenuated total reflectance (ATR) mode in the wavenumber range of 600 cm-1 

– 4000 cm-1 to analyze the chemical structure. The FTIR spectra were recorded at a resolution of 

4 cm-1 for 16 scans. The interlayer spacing was studied by powder X-ray diffraction (XRD) with 

a PANalytical Model X'Pert PRO diffractometer with Cu Kα radiation (k = 1.54 Å) by scanning 

at a rate of 2° (2θ) min-1. 

6.2.4. Characterization of electrochemical properties of MXene-PEDOT:PSS. 

Cyclic voltammetry measurements were performed on a Model 760E Series Bipotentiostat 

workstation with a three-electrode cell setup at room temperature ( 22 °C). The MXene-

PEDOT:PSS (size = 2 cm × 2 cm, thickness = 0.5 cm), a platinum (Pt) wire electrode, and an 

Ag/AgCl electrode were used as a working electrode, counter electrode, and reference electrode, 

respectively. The sweep potential range was adjusted from -1.4 V to +1.4 V (vs. Ag/AgCl 

electrode) and scanned at a rate of 10 mV s-1. We chose this range based on previous reports.48 

The electrolytes were 0.01 M PFOA and PFBA-water mixture. Volumetric capacitance (Cv) is 

calculated utilizing following equation: 

(Equation 6.1)   𝐶𝑣 =  𝜌
∫ 𝐼d𝑉

2𝑚𝑣∆𝑉
   

Where 𝜌 is electrode density, I is the response current (A), V is the potential vs. reference electrode 

(V), m is mass (mg), ν is the scan rate (mV s-1), ΔV is the potential window (V). 
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6.2.5. Adsorption and desorption tests. 

We utilized a custom-made batch separation cell for adsorption and desorption tests, which was 

reported in our previous work.48 The feed solution was continuously fed into the channel between 

the two adsorbents at a constant flow rate of   3 ml min−1. A total of 20 ml of solution was used. 

Note that all solutions concentration was 4 mg ml-1. While a voltage was applied across the 

electrodes, electrical conductivity was monitored by a multimeter (Gardner Bender GDT-3190). 

The correlation of the electrical conductivity of a solution and the concentration of PFAS was 

established prior to the test. The adsorption capacity () was calculated by: 

(Equation 6.2)      

where C0 and Ct (mg ml-1) represent the initial and final PFAS concentrations, respectively. Q is 

the volume of the solution. M is the mass of electrode. Note that all experiments were conducted 

at room temperature ( 22 °C). The desorption experiments were conducted by utilizing the same 

custom-made cell. A 20 ml of DI water was injected at the inlet of the cell with a flow rate of  3 

ml min−1 while applying a negative voltage across the electrodes with adsorbed PFAS. The DI 

water containing desorbed PFAS was collected at the outlet of the cell at T = 22.0 ± 1.4 °C. 

6.3. Results and discussion 

6.3.1. Characterization of surface and its morphology 

Figure 6.1 illustrates the procedure of synthesizing MXene-PEDOT:PSS electrode for 

electrosorption of PFAS from water (see Experimental procedure). The resulting electrode's 



 

 

147 

 

surface morphology was analyzed by scanning electron microscopy (SEM) (Figure 6.2). The SEM 

image shows that the surface possesses an open-edged and layered structure. The layered structure 

demonstrates smoother morphology with an increase in the PEDOT:PSS concentration. By 

comparing the SEM image of MXene-PEDOT:PSS prepared without the acid etching process 

(Figure 6.2 inset), it is clear that acid etching can enable an increased interlayer spacing which 

can be attributed to the dissolution of PSS.45 To verify this, we conducted Fourier transform 

infrared (FT-IR) spectroscopy for as-prepared and acid-etched MXene-PEDOT:PSS (Figure 

6.3a). Both spectra exhibit several characteristic peaks of MXene, including C–O (1051 cm−1), 

C–F (1090 cm−1), –OH (1600 cm−1), and Ti-O (665 cm−1). However, the spectrum of the 

 
Figure 6.1. Schematic demonstrating the preparation of the MXene:PEDOT:PSS electrode for 

the electrosorption process. 

 

 

Figure 6.2. Schematic demonstrating the preparation of the MXene:PEDOT:PSS electrode 

for the electrosorption process. 

 

 
Figure 6.2. Cross-section morphology of the MXene intercalate with PEDOT:PSS. Inset shows 

the cross-sectional view of the MXene-PEDOT:PSS without acid etching. 
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electrode after acid etching exhibits diminished FT-IR bands at 1630 cm−1, 1420 cm−1, and 1170 

cm−1
, which are mainly due to C-C and C=C stretching of the polymeric PSS indicating partial 

removal. This can be attributed to partial etching of PSS and PMMA from the electrode. Further, 

the FT-IR results demonstrate that PEDOT:PSS was intercalated between the MXene layers, which 

can expand the interlayer spacing and prevent the re-stacking of layers. Upon acid etching, the 

polymer (e.g., PSS) was dissolved, which results in a larger surface area for adsorption of anionic 

PFAS.  

The change in the interlayer spacing was further confirmed by x-ray diffraction (XRD) 

(Experimental procedure). Figure 6.3b shows the XRD patterns of as-prepared MXene-

PEDOT:PSS, and acid-etched MXene-PEDOT:PSS. An as-prepared MXene-PEDOT:PSS does 

not show the peak at 2θ < 12°, indicating that PEDOT:PSS is intercalated. After acid treatment, it 

a peak appears at 2θ = 5.8°, which corresponds to an interlayer spacing value of 15.2 Å due to 

partial removal of PSS. Note that no notable diffraction peaks related to PEDOT:PSS were 

distinguished in the XRD patterns due to their amorphous structure.  

 
Figure 6.3. (a) Comparison of the FTIR spectra of acid-etched and unetched MXene-

PEDOT:PSS. (b) Comparison of the XRD patterns of acid-etched and unetched MXene-

PEDOT:PSS. 
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6.3.2. Electrochemical characterization 

We measured a volumetric capacitance (Cv) of MXene-PEDOT:PSS by conducting cyclic 

voltammetry (CV) measurements with a scan rate of 2 mV s-1 (Experimental procedure). Here 

we utilized MXene-PEDOT:PSS with varied PEDOT:PSS compositions. Figure 6.4a shows the 

measured CV plots for perfluorooctanoic acid (PFOA) solution (concentration = 0.1 M) by 

applying a cyclic voltage between -1.0 V and +1.0 V. The shape of the CV curve is a slightly 

distorted rectangular shape. The distortion can be attributed to a high resistivity of the PFAS 

solution and polarization effects. It should be noted that a higher capacitance was obtained at a 

higher composition of MXene, indicating an excellent capacitive behavior. The intercalation and 

confinement of the polymer between MXene flakes enhanced the cationic intercalation, offering 

remarkable volumetric capacitance. An increase in polymer composition impedes charge transport 

within the electrode resulting in a decrease in capacitance.45 Utilizing the measured CV plots, we 

calculated the Cv values by Equation 6.1. The results show that MXene-PEDOT:PSS with a higher 

PEDOT:PSS composition shows a lower Cv value (Table 6.1) at 20 mV s-1. For example, MXene-

 
Figure 6.4. (a) Cyclic voltammetry (CV) curves of MXene-PEDOT:PSS electrodes with 

varied compositions. (b) CV curves for MXene-PEDOT:PSS (5 wt%) electrodes with and 

without H2SO4 treatment. 
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PEDOT:PSS (5 wt%) demonstrates the Cv value of 410 F cm−3 while that with 20 wt% shows Cv 

= 114 F cm−3. When MXene-PEDOT:PSS undergoes acid treatment, it shows a significantly higher 

Cv value (Figure 6.4b). An MXene-PEDOT:PSS (5 wt%) without acid treatment demonstrates the 

Cv value of 98 F cm−3 while that treated with acid shows Cv = 410 F cm−3. Note that the etched 

MXene-PEDOT:PSS shows a density of 3.72 g cm−3, which is comparable to that of a neat MXene 

(3.95 g cm−3). The capacitance values of MXene-PEDOT:PSS (5 wt%) at different scan rates are 

provided in Figure 6.5. 

Table 6.1. Capacitance value for MXene-PEDOT:PSS electrodes with and without acid treatment. 

Sample Non-acid treated Acid treated 

MXene-PEDOT:PSS (0) 252 + 5 F cm−3 252+ 11F cm−3 

MXene-PEDOT:PSS (5 wt%) 98+ 4 F cm−3 410+ 10 F cm−3 

MXene-PEDOT:PSS (10 wt%) 54+ 3F cm−3 298+ 6 F cm−3 

MXene-PEDOT:PSS (20 wt%) 32+ 3 F cm−3 114+ 5 F cm−3 

MXene-PEDOT:PSS (30 wt%) 18+ 4 F cm−3 95+ 5 F cm−3 

 
Figure 6.5. Capacitance of MXene-PEDOT:PSS (5%) at varied scan rate. 
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To test MXene-PEDOT: PSS's reversibility of the redox reactions and low equivalent series 

resistance, we conducted a gravimetric charge-discharge (GCD) analysis (Figure 6.6). The 

measured GCD curves exhibit a triangular shape with linear lines45 indicating reversibility of the 

redox reactions and low equivalent series resistance with negligible voltage drop. Based on the CV 

measurements, we utilized MXene-PEDOT:PSS (5 wt%) as the adsorbent for electrosorption of 

PFAS for the rest of this report. 

6.3.3. Adsorption and desorption of PFAS 

Electrosorption of PFAS using MXene-PEDOT:PSS was conducted by using a custom-made cell 

(Figure 6.7 and see also Experimental procedure). In this setup, the PFAS solution in water is 

introduced at a flow rate of 3 ml min-1 to the electrodes (anode and cathode, MXene-PEDOT:PSS) 

separated by 5 mm.   

 

 
Figure 6.6. Gravimetric charge-discharge (GCD) curves of Mxene-PEDOT:PSS electrodes 

with varied compositions. 



 

 

152 

 

Upon application of a voltage across the electrodes, anionic PFAS and the cations intercalate into 

the anode and cathode, respectively. Here we tested PFAS with different fluoroalkyl chain lengths, 

including perfluorobutyric acid (PFBA), perfluoropentanoic acid (PFPA), perfluorohexanoic acid 

(PFHxA), perfluorooctanoic acid (PFOA), and perfluorononaoic acid (PFNA) at varied 

concentrations (e.g., 0.01 M, 0.005 M, 0.0025 M, 0.00125 M, and 0.000625 M). Please note that 

the applied voltage was V = 1.0 V. The concentration of PFAS following the electrosorption was 

determined by measuring the electrical conductivity and comparing it with the calibration curves 

of standard concentrations. An MXene-PEDOT:PSS shows a higher adsorption capacity (, the 

mass of the adsorbed PFAS on one gram of MXene-PEDOT:PSS, see Experimental procedure) 

value for a PFAS with a shorter fluoroalkyl chain length at a given concentration (Figure 6.8a). 

For example, the  value for PFNA (-(CF2)7CF3) was measured as  = 22.5 mg g-1 while that for 

PFBA (-(CF2)2CF3) was  = 59.4 mg g-1, respectively, at a concentration of 0.01 M. This is a direct 

consequence of the difference in the molecular size (i.e., fluoroalkyl chain length) which results in 

the association of more PFBA anions with the charges on the anode surface compared to PFNA 

anions. Also, the results show that a PFAS solution with a higher concentration exhibits a higher 

 

 
Figure 6.7. Schematic illustrating the working principle of the custom-made cell utilized for 

capacitive electrosorption and removal of PFAS. 
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 value. For example, the  value for PFNA at a concentration of 0.01 M was measured as  = 

22.5 mg g-1 while that with a concentration of 0.0025 M was  = 4.2 mg g-1. This can be attributed 

to a higher mass transfer rate of anionic PFAS in an MXene-PEDOT:PSS with an increase in the 

overlapping effect.49 We measured the adsorption capacity for PFAS solutions (concentration = 

0.01 M) at different voltages (Figure 6.8b). The results show that the adsorption capacity for all 

PFAS increased at higher values of voltage. Further, at a given voltage, the adsorption capacity for 

a PFAS with a shorter fluoroalkyl chain length (e.g., PFBA) is significantly higher than that of a 

long chain PFAS (e.g., PFOA). This can be attributed to a higher mobility50 of anionic PFBA 

compared to PFOA, which can contribute to a greater decrease in the electrical conductivity as the 

electrosorption process proceeds. We also measured the adsorption and desorption rate for PFBA 

and PFOA as representative short and long-chain PFAS, respectively. The result of the 

experiments is demonstrated in Figures 6.9a and 9b. The results indicate a higher adsorption and 

 

  
Figure 6.8. (a) Adsorption capacity for various PFAS with different concentrations at a given 

voltage of V = 1.0 V. (b) Adsorption capacity for various PFAS at different voltages when the 

concentration is 0.01 M. 
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desorption rate for the long-chain PFBA compared with short-chain PFOA at all applied 

voltages.48  

6.3.4. Kinetics of adsorption and desorption 

Finally, we investigated the kinetics of electrosorption by MXene-PEDOT:PSS. Here we also 

utilized PFBA, PFPA, PFHxA, PFOA, and PFNA solutions (concentration = 0.01 M). Please note 

that the same custom-made cell was utilized for the kinetics studies as well. Figure 6.10a shows 

the time-dependent change in the concentration of the solutions upon application of a voltage of V 

= +1.0 V across the MXene-PEDOT:PSS electrodes. The results show that the concentration of 

the solutions rapidly decreases upon the application of voltage. For example, the concentration of 

PFBA and PFNA solutions reached a nearly constant value (0.0072 ± 0.0010 M and 0.0027 ± 

0.0005 M, respectively) after 30 s of voltage application, which indicates that the equilibrium 

condition was attained. Please note that the electrosorption process can be described by the pseudo-

second-order kinetic model, which is given as:  

(Equation 6.3)      𝜎(𝑡) = 𝜎𝑜 −
𝑘2𝑞𝑒

2𝑡

1+𝑘2𝑞𝑒𝑡
 

 

 
Figure 6.9. Adsorption (a) and desorption (b) rates for PFBA and PFOA at different voltages. 
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where σ(t) and σo are the concentration of PFAS solution at time t and t = 0 (i.e., the initial 

concentration). qe is the amount of PFAS adsorbed on the electrode at equilibrium, and k2 is the 

adsorption rate constant. By fitting Equation 6.3 to the experimentally measured values, we 

obtained the k2 values as 38.91 s-1, 34.22, 30.32, 30.21, and 10.66 s-1 for PFNA, PFOA, PFHxA, 

PFPA, and PFBA, respectively.  

When the applied voltage is reversed (V = -1.0 V), the adsorbent starts to desorb the PFAS to the 

surrounding water. Consequently, the concentration of a solution started to increase and reached a 

constant value (Figure 6.10b). For example, the concentration of PFBA and PFNA solutions 

reached a constant value (0.01 ± 0.0010 M) after 20 s. The kinetics for the desorption process can 

also be described by a pseudo-second-order kinetic model:  

(Equation 6.4)     𝜎(𝑡) = 𝜎𝑓 +
𝑘2
, 𝑞′𝑒

2𝑡

1+𝑘2
, 𝑞′𝑒𝑡

 

where σf is the concentration of a solution after the adsorption experiment, q'e is the amount of 

PFAS desorbed from the electrode at equilibrium, and k2' is a desorption rate constant. By fitting 

 
Figure 6. 10. (a-b) Time-dependent plots demonstrating the change in the concentration of the 

PFAS solutions upon applying a voltage of (a) V = +1.0 V during the adsorption, and (b) V = -

1.0 V during the desorption. The fitted values of concentration by pseudo-second order kinetic 

model are also provided. 
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the experimentally measured data, we determined the k2' values as 42.91 s-1, 37.22, 33.32, 31.92, 

and 12.92 s-1 for PFNA, PFOA, PFHxA, PFPA, and PFBA, respectively.  

6.4. Conclusions 

We demonstrated electrosorption of PFAS from water utilizing an MXene-PEDOT:PSS as an 

electrode. The electrode was fabricated by intercalating PEDOT:PSS in MXene layers followed 

by acid etching. The resulting MXene-PEDOT:PSS electrodes exhibited 410 F cm-3 as the 

volumetric capacitance, which can result in a higher adsorption capacity value for PFAS with both 

long and short fluoroalkyl chain lengths. Finally, the kinetics of electrosorption of PFAS in water 

was investigated by utilizing a pseudo-second-order model. 
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Chapter 7: Dissertation Summary and Future Outlook 

7.1. Dissertation Summary 

Freshwater contamination is one of the crucial problems the world is facing right now.1, 2  With 

rapid urbanization, population growth, and industrialization, the situation is getting worst.3-5 

Agricultural and industrial wastewater are major sources of contamination. It is essential to treat 

the wastewater before it is discharged into the environment. General constituents of the wastewater 

can be classified into two types, namely dissolved and suspended contaminants.6-8 Various 

remediation technologies have been developed to treat these dissolved and suspended 

contaminants.9, 10 Membrane-based technology11, 12 is the most preferred one for treating 

suspended contaminant while electrosorption13 is an emerging technology for treating dissolved 

contaminants. My dissertation mainly focuses on improving these two technologies for better 

remediation of wastewater. 

The first topic of my dissertation is the development of a photocatalytic coating with 

hydrophilic and oleophobic wettability by intercalating a mixture of visible light-responsive N-

TiO2 and low surface energy F-SiO2 nanoparticles.14 The chemically heterogeneous surface with 

intercalating high surface energy (N-TiO2) and low surface energy (F-SiO2) regions along with 

photocatalysis can in-situ recover the flux upon visible light irradiation. We attributed this to the 

photocatalytic degradation of the surface adsorbed oil when placed under visible light irradiation. 

Further due to the decoupling of photocatalysis and wettability, photocatalytic degradation did not 

compromise the wettability or integrity of the membrane due to the robust chemistry of the 

adhesive. We also engineered an apparatus that enabled the continuous separation and desalination 

of a surfactant-stabilized oil-in-water emulsion that was dissolved with salt and the photocatalytic 
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degradation of organic substances that were adsorbed on the coated membrane surface when it was 

exposed to visible light irradiation.  

In the second part of my dissertation, we utilized a photocatalytic mesh with selective 

wettability for water over oil to study the kinetics of the water-rich permeate flux as a result of the 

photocatalytic degradation of the surface-adsorbed oil under visible light illumination.15 A 

mathematical model was derived by integrating the Langmuir–Hinshelwood kinetics of 

photocatalysis and the Cassie–Baxter wettability analysis on a chemically heterogeneous surface 

into a permeate flux relation. The model demonstrated that it can predict the evolution of the water-

rich permeate flux through the photocatalytic mesh with a goodness of fit of 0.92.  

In the third part16, we developed robust hydrophilic and in-air oleophobic F-PEGDA-

coated filters to separate oil-water mixtures utilizing  MEMO as an adhesion promoter. F-PEGDA-

coated filter showed significantly low oil adhesion forces and was able to withstand fouling 

conditions without delamination. The filter was able to separate both water-in-oil and oil-in-water 

emulsions and maintained high flux values under both gravity-assisted as well as continuous 

separation setup with high oil separation efficiency.  Further, the F-PEGDA surface demonstrated 

good reusability upon cleansing. 

In the fourth and fifth parts,17 we demonstrated reversible adsorption and desorption of 

PFAS in water by an electric-field aided process utilizing two different carbonaceous (graphite 

and MXene-PEDOT:PSS) electrodes. We demonstrated that an adsorption capacity value 

increases with an increased capacitance of the electrode material, applied voltage, the PFAS 

concentration. We also showed multiple adsorption–desorption cycles by alternating the voltage 

that can result in highly efficient adsorption and desorption of PFAS from the graphite electrode 

surface. The kinetics of electric-field aided adsorption and desorption of PFAS in water were also 
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investigated by utilizing a pseudo-second-order model. We also engineered a device module that 

can be mounted to a gravity-assisted apparatus for electrosorption of PFAS and obtaining water 

with high purity. 

7.2. Future Outlook 

7.2.1. Photocatalytic and selective wettable membrane for wastewater remediation 

Membrane based wastewater remediation technologies have demonstrated that they are effective 

in removing suspended contaminants from the wastewater. Nevertheless, there still remains a few 

more challenges that need to be addressed. Kamali et al.18 established 17 criteria (treatment 

efficiency (TE), ease of implementation (EI), combination with other methods (CM), process 

stability (PS), and health and safety risks (HSR), economic (i.e., initial investments (II), operating 

costs (OC), maintenance costs (MC)), environmental (i.e., solid waste generation (SWG), release 

of chemical substances (RCS), CO2 emission (CE), water reuse potential (WRP), potential to 

recover by-products (PRB)), social (i.e., odor impact (OI), noise impact (NI), visual impact (VI), 

and public acceptance (PA)) for an ideal membrane for wastewater treatment. Based on these 

criteria, an inexpensive membrane with robust antifouling characteristic is still lacking.  To address 

this issues, photocatalytic membrane with selective wettability membranes have been proposed.19  

In this dissertation, we also have developed such membranes with decoupled 

functionalities (i.e., selective wettability and photocatalysis). The membrane can exhibit recovery 

of the permeate flux upon visible light illumination after being fouled. While it is promising, the 

flux recovery rate can be further improved. Note that the current rate is approximately 27%. We 

attribute this to poor quantum yield of N-TiO2 upon visible light irradiation.20, 21 We envision two 

pathways. First, we can employ a better quantum yield photocatalytic materials.22 Second, we can 

use UV light to enhance the photocatalytic efficeincy.23  
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Also, we have developed robust in-air oleophobic and hydrophilic filter using 

commercially available materials with a simple copolymerization technique. While it shows 

selective wettability of water over oil, its wettability contrast can further be enhanced by using a 

lower surface energy material such as fluorinated polyhedral oligomeric silsesquioxanes (F‐

POSS)24. This can result in a hither oil-water separation efficiency as it can repel oils with even 

lower surface tension. Further, our copolymerization technique can be tested for various porous 

media including mesh, fabric, paper, and foams.  

7.2.2. Electric field aided sorption for wastewater remediation 

The primary limitation of the adsorption-based remediation technologies is their poor selectivity 

to contaminants. Upon application of an electric field across the electrodes submerged into a 

contaminated water, all charged ions are attracted to an electrode with oppositely charged. This 

can result in a lower adsorption capacity for a target contaminant (e.g., PFAS). In this dissertation, 

we partly verified that a larger quantity of PFAS with longer fluoroalkyl chain length adsorbs to 

an electrode compared to that with a shorter chain length at a given voltage. Thus, we envision 

that selective PFAS electroorption can be achieved by careful modulation of electric field.  

Another challenge is a relatively poor adsorption capacity which is in the order of 

milligram of PFAS per one gram of electrode material (graphite or MXene). Although this value 

is comparable or even higher than other adsorbent that are currently in use,25, 26 it can be further 

improved by increasing a surface area (i.e., porosity). We envision that this can be achieved by 

introducing nano- and micro-scale hierarchical topography to an adsorbent.  
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Paper P1 

Engineered nanoparticles with decoupled photocatalysis and wettability for membrane-

based desalination and separation of oil-saline water mixtures 

Reproduced with permission from [Shrestha, Bishwash, Mohammadamin Ezazi, and Gibum 

Kwon], [Nanomaterials]; published by [Multidisciplinary Digital Publishing Institute], [2021]. 



 

 

168 

 



 

 

169 

 

 



 

 

170 

 



 

 

171 

 



 

 

172 

 



 

 

173 

 



 

 

174 

 



 

 

175 

 



 

 

176 

 



 

 

177 

 



 

 

178 

 



 

 

179 

 



 

 

180 

 



 

 

181 

 

 



 

 

182 

 

Paper P2 

Predicting kinetics of water-rich permeate flux through photocatalytic mesh under visible 

light illumination 

Reproduced with the permission from [Shrestha, Bishwash, Mohammadamin Ezazi, Seyed 

Vahid Rad, and Gibum Kwon. "Predicting kinetics of water-rich permeate flux through 

photocatalytic mesh under visible light illumination." Scientific reports 11, no. 1 (2021): 1-9]is 

licensed under CC BY-ND 2.0 
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Paper P3 

Delamination-Free In-Air and Underwater Oil-Repellent Filters for Oil-Water Separation: 

Gravity-Driven and Cross-Flow Operations 

Reproduced with permission from [Shrestha, Bishwash, Mohammadamin Ezazi, and Gibum 

Kwon], [Energies]; published by [Multidisciplinary Digital Publishing Institute], [2021].  
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Paper P4 

Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents via 

alternating electric field 

Reproduced from [Shrestha, Bishwash, Mohammadamin Ezazi, Sanjay Ajayan, and Gibum 

Kwon. "Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents via 

alternating electric field." RSC Advances 11, no. 55 (2021): 34652-34659.] with permission 

from the Royal Society of Chemistry. 
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