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Abstract 

The focus of this research is to assess the use of waypoints and their effects on spacecraft 

guidance for a lunar landing scenario, using the Zero-Effort Miss/Zero-Effort Velocity 

(ZEM/ZEV) method. The lunar landing scenario simplifies equations and places the focus on the 

waypoint’s effects. The goal of investigating using waypoints and how to evaluate them is to 

eventually provide the spacecraft guidance with a closed-loop solution that reduces 

computational demands in-flight and allow a spacecraft to compute an optimal path in-flight. By 

computing a path in-flight, mission fuel requirements related to path planning can be decreased, 

leading to significant savings across the industry. Other research in this area has not fully 

identified what parameters constitute a desirable waypoint and have typically chosen waypoints 

through a more brute force method. The solution to assess waypoint characteristics is to compute 

a path using the ZEM/ZEV method without a waypoint and then compare the path to a path with 

a single waypoint. When adding a single waypoint, characteristics are changed to see how much 

impact those characteristics have on the optimality of the path. Through these comparisons, it is 

found that the optimal path is not equivalent to a path with a waypoint inserted, regardless of 

what characteristic is changed. This shows that the ZEM/ZEV approach violates Bellman’s 

principle of optimality because when the path is calculated from the waypoint to the final target, 

it does not result in the same trajectory for the remaining time. This suggests that the ZEM/ZEV 

approach, despite being proven as the optimal control law that satisfies the problem, may not 

have an optimal substructure.  It is also found that gravity has a significant effect on the outcome 

of an optimal path and that when gravity is removed, the path with a waypoint is much closer to 

the optimal path.  
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1 Introduction 

The space industry is interested in lunar missions again. Countries such as China, India, 

and the United States are attempting to return to the surface of the Moon. Reasons for this 

interest is the discovery of water and it being a potential source for astronaut consumption or 

rocket propellant, which could allow the Moon to become a gateway for missions that plan to 

travel further beyond (Chang). Other missions are also interested in learning more about the 

Moon’s history and composition, which can teach us more about the early solar system. NASA 

has recently selected SpaceX to continue to develop Starship to take the next American 

astronauts to the Moon’s surface as a part of the Artemis lunar program (NASA, As Artemis 

Moves Forward, NASA Picks SpaceX to Land Next Americs on Moon). The Artemis program 

aims to land the first woman and first person of color on the Moon to explore more of the lunar 

surface through new instrumentation and experiments. The first Commercial Lunar Payload 

Services (CLPS) will deliver 16 new instruments to the lunar surface, which include 

investigating the lunar polar soil and performing applied science and technology demonstrations 

in different locations on the Moon (NASA, The Artemis Plan). These instruments and 

experiments which will help to inform future deliveries to the Moon to make the possibility of 

having the Moon become a spaceport a reality.  

China and India have also been active with their return to the Moon. In 2019, China 

landed a probe on the far side of the Moon and put the Yutu-2 rover to explore the Von Kármán 

crater during the Chang’e 4 mission (Society). A year later in 2020, China’s Chang’e 5 mission 

sent a spacecraft that collected 3.82 lbs of sample near Mons Rümker, a volcanic feature (Jones). 

The samples collected by China were returned to Earth, making them the first samples collected 

since the Soviet Union’s 1976 Luna 24 mission (Myers). India has been launching missions with 
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the intention of having a lunar lander. Their recent mission, Chandrayaan-2 began its’ lunar orbit 

in 2019 and attempted to deploy a lunar lander but was unsuccessful. However, the Indian Space 

Research Organization (ISRO) has approved Chandrayaan-3, which will attempt to deploy a 

moon lander and rover to the surface of the Moon in 2022 (Singh). India’s intentions with these 

missions are to demonstrate capability to land and eventually perform interplanetary missions. 

With this newfound interest in returning, researching, and utilizing the Moon, it is 

important that missions become more sustainable, efficient, and autonomous, which will allow 

visits to the Moon to become more frequent. One way to do this is by improving the guidance 

portion of the guidance, navigation, and control (GNC) that a spacecraft uses. Guidance is 

applicable to different mission phases, such as ascent, on-orbit, rendezvous, planetary approach, 

and landing. A typical GNC loop is seen in Figure 1, where the guidance is open-loop, indicating 

that it cannot adapt to what is actually happening. A common guidance method for spacecraft is 

to compute optimal trajectory to a landing target offline, which is computationally expensive and 

unfeasible in flight. This type of guidance was commonly used with intercontinental ballistic 

missiles (Siouris). A fundamental issue with this type of guidance is that it does not reflect the 

current conditions of the spacecraft and if it is still travelling along an optimal path. If some 

external disturbance, mechanism failure or other disruption displaces the spacecraft off the 

optimal path, then it would not have the capability to update and create a new optimal path; 

instead, it would attempt to go back to and continue the original optimal path. The issue with this 

is the path having been calculated offline may no longer be the optimal path for the spacecraft to 

follow and the spacecraft has now wasted valuable fuel resources to follow that path. 
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One method to solve this issue is to focus on computing the trajectory online in specific 

time increments. If the spacecraft is focusing on the optimal solution for the next ten seconds, for 

example, then it will always follow along an optimal path. However, for this to be successful, it 

is important to know how a good waypoint is chosen. There are certain factors that can be 

changed, assessed, and then compared to the optimal path to determine if a method of adding 

waypoints can still compute an optimal path or close to it with minimal computational power. 

There is optimization software that exists to find the best waypoint, but this requires more 

computation power and does not fundamentally explain what characteristics are being optimized.   

To implement the use of waypoints, a zero-effort-miss/zero-effort-velocity (ZEM/ZEV) 

guidance method can be used, which is an extension of optimal guidance laws. ZEM is the 

distance that a spacecraft misses the target if no further accelerations are made, after a certain 

time, t while ZEV is the velocity error at the end of the mission if no further accelerations are 

made after a certain time, t. ZEM has historically been used for ballistic missile problems and it 

was Ebrahimi et al. who further advanced the concept to also include ZEV (Ebrahimi, Bahrami 

Figure 1: General GNC Architecture 
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and Roshanian). The use of ZEV can typically be categorized as successful if the ZEV error 

outcome is zero if a mission has a required final velocity. For planetary landing missions, the 

final velocity is typically zero. This is also the case for rendezvous missions.    
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2 Background 

The modern trajectory optimization that is seen today was originally explored by Oberth, 

Hohmann, and Goddard (Oberth; Hohmann; Goddard) . The history of early trajectory 

optimization between 1950-1963 is detailed by Lawden (Lawden). Different versions of GNC 

have been used to achieve mission goals, such as with Apollo missions. According to a report 

written by Allan Klumpp on Apollo Guidance, Navigation, and Control, there are two ways to 

guide a spacecraft to a current state to a specified target state, either implicitly or explicitly. 

While it is unclear what each Apollo landing mission did (Apollo 11, 12, 14, 15, 16, and 17), 

Klumpp indicates in the paper that implicit guidance had not been developed when Apollo 11 

was coded and that although there were advantages to an implicit method, they were not enough 

to warrant recoding guidance for later missions (Klumpp). This indicates that the explicit method 

was used. The explicit method is when you repeat calculations as the mission progresses to find a 

vector polynomial function that intersects between the current and target state. Once that is 

found, the guidance method can then command a profile of acceleration vs. time. The explicit 

method is less robust to deviations that can occur in flight, and so is more affected by control 

errors. The equation shown in Figure 2 is the final explicit guidance equation used on Apollo, 

which is corrected to consider when to command an acceleration, where ACG is the commanded 

acceleration, RTG is the target position, RG is the current position, VTG is the target velocity, 

VG is the current velocity, and ATG is the target acceleration. The variables for time are TP and 

T, where TP is the predicted target reference time, which is the sum of the current time, T, and 

the leadtime, which is the delay that occurs from performing computation and command.  
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Figure 2. Apollo Explicit Guidance Method (Klumpp) 

During Apollo, although there was a designated landing site, it was still possible to 

redesignate the landing site while in-flight. Each time this is done, the guidance algorithm is 

rerun to compute a new thrust-acceleration command for the lander, and this continues until the 

lander is safely on the surface. The full algorithm, designated as P63 and P64 is shown in Figure 

3. 
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Figure 3. Apollo Guidance Algorithms (Klumpp) 

 

The research in optimal control theory spans several aerospace applications such as planetary 

landing, rendezvous and docking, asteroid intercept, and ballistic missile intercept. Although the 

concept of zero-effort-miss/zero-effort-velocity is newer, optimal control theory has been long 

used in aerospace applications (Bryson and Ho; Ben-Asher). It is important to note that 

ZEM/ZEV is not always an optimal solution, but Guo et al. showed in an environment with 

uniform gravitation, it is (Guo, Hawkins and Wie, Applications of Generalized Zero-Effort-

Miss/Zero-Effort-Velocity Feedback Guidance Algorithm). Prior to Guo, et al., D’Souza had 
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explored the use of an optimal control algorithm in a uniform field for a planetary landing 

(D'Souza). Bong Wie introduced the idea of a waypoint optimized ZEM/ZEV path using a 

waypoint as an intermediate target to avoid lander collision during a planetary landing (Wie). 

Sharma et al. also considered the waypoint concept to investigate solving optimal control 

problems that are nonlinear and have terminal constraints (Sharma, Hurtado and Vadali).  

Improving on previous guidance algorithms allows for less error and therefore less 

accelerations needed in flight. There have been different modifications to the ZEM/ZEV method, 

to improve it for specific applications. Waypoint optimized ZEM/ZEV for a Mars landing 

problem has shown results close to optimal performance, while still having the benefits of 

feedback control. Guo et al. performed a study of using a waypoint as an intermediate target and 

discovered that using only one waypoint allows for close to optimal flight performance (Guo, 

Hawkins and Wie, Waypoint-Optimized Zero-Effort-Miss/Zero-Effort-Velocity Feedback 

Guidance for Mars Landing). Figure 4 and Figure 5 shows how implementing the waypoint 

allows for the no subsurface flight constraint to be achieved.  However, the research done by 

Guo et al. only chose a waypoint by using trial and error methods until their desired outcome was 

achieved. In the paper, Guo et al. state that further research is needed to develop, “real-time 

computation of the optimal waypoint” (Guo, Hawkins and Wie, Waypoint-Optimized Zero-

Effort-Miss/Zero-Effort-Velocity Feedback Guidance for Mars Landing).  
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Figure 4: ZEM/ZEV Path Without Waypoint Constraints (Guo, Hawkins and Wie, Waypoint-Optimized Zero-

Effort-Miss/Zero-Effort-Velocity Feedback Guidance for Mars Landing) 

 

Figure 5: ZEM/ZEV Path with Waypoint Optimization (Guo, Hawkins and Wie, Waypoint-Optimized Zero-Effort-

Miss/Zero-Effort-Velocity Feedback Guidance for Mars Landing) 
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In Guo et al’s paper Optimized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance for 

Mars Landing, it is said that the method for choosing a waypoint is through trial and error. The 

research presented in this thesis attempts to move away from trial and error by exploring 

waypoint characteristics to determine how a good waypoint can be chosen. This eliminates the 

trial and error process and aims to provide a clear method for choosing a waypoint.    

The PhD dissertation of Matt Hawkins further explored the use of waypoints as an 

intermediate target for a Mars landing problem. Hawkins focuses more on selecting a specific 

waypoint time and chooses to use a waypoint time corresponding to the minimum altitude across 

the mission time.  Hawkins also explores two different versions of a waypoint-optimized 

ZEM/ZEV method. The first version focuses on enforcing a no-subsurface flight constraint, 

while the second version focuses on maintaining a glide slope above four degrees while using a 

waypoint. When Hawkins compares the original ZEM/ZEV method to the waypoint optimized 

ZEM/ZEV paths, it is shown that the fuel usage of the waypoint-optimized schemes to the 

original ZEM/ZEV method are extremely close, with the waypoint path with a no subsurface 

constraint being almost identical to the original ZEM/ZEV path without a waypoint and the 

waypoint path with a glide slope constraint needing only slightly more fuel than the original 

ZEM/ZEV path (Hawkins). Hawkins also compared adjusting the ZEM/ZEV method time of 

flight to satisfy no subsurface constraints and found that when using the waypoint optimized 

method to avoid subsurface flight, it outperforms simply adjusting the time of flight for the 

ZEM/ZEV method. In fact, the waypoint optimized ZEM/ZEV method not only satisfies the no 

subsurface constraint, but also achieves close to optimal performance. These results come from 

the work focused on a power-limited engine, but Hawkins also does explore a thrust-limited 

engine.  
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 While Hawkins does explore the use of waypoints in a landing problem and focuses on 

optimization, the waypoints in these instances are found using optimization software. The 

waypoint optimization problem is solved through using software that solves a standard quadratic 

programming problem. Using optimization software gives an optimal waypoint, but does not 

allow for understanding why that specific waypoint is optimal. The research in this thesis is 

exploring the individual characteristics of a waypoint to understand what can make a waypoint 

an optimal waypoint, as opposed to a software producing it.  

The thesis of Armando Alvarez Rolins also explores using a single waypoint driven 

trajectory, but for a rendezvous with a rotating target. The goal of Alvarez Rolins using a 

waypoint is to avoid collision with the rotating target. While Alvarez Rolins does explore the use 

of LQR, Mixed, and ZEM/ZEV methods with a waypoint, for the purpose of this research, only 

the results of the ZEM/ZEV methods with a waypoint will be discussed (Alvarez Rolins). While 

implementing the waypoint constraint does increase cost, it also avoids collision with the target, 

which is of primary importance. Alvarez Rolins investigated which combination of using a 

waypoint would yield the least added cost. Alvarez Rolins finds that for a rendezvous with a 

rotating target, a single waypoint implemented toward the later portion of the flight avoids 

collision and is less cost than a waypoint implemented in the earlier flight time.  

 Alvarez Rolins chooses the waypoint based on a certain percentage of flight. This does 

provide some insight and is more informative than brute trial and error, but Alvarez Rolins stops 

there. Only the metric of percentage of flight is used to choose the waypoint and it does not 

provide a global answer for choosing an optimal waypoint. It is important to note that the method 

of a waypoint as a percentage of the flight time is explored as part of the thesis presented here, 

but the primary difference is that it is only one test case in the process of examining an optimal 
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waypoint’s characteristics. Several other characteristics are examined and presented later in the 

research to determine an optimal waypoint’s characteristics.  
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3 Mathematical Model 

3.1 ZEM/ZEV Equations  

The main mathematical model that is focused on in this research is the ZEM/ZEV 

feedback guidance. The zero-effort miss (ZEM) is the position at the end if no further -

acceleration is applied, while the zero-effort velocity (ZEV) is the velocity at the end if no 

further acceleration is applied. This numerical setup is for finding a path with a waypoint. This is 

because the research focuses on calculating new paths when an external disturbance or 

mechanism failure causes a spacecraft to be offset from the original desired path. The use of 

waypoints allows the spacecraft to travel along a new path that still reaches the desired target, 

instead of wasting resources to travel back to the original path. The dynamic equations of 

motions for the spacecraft are 

 �̇� = 𝐯 (3.1) 

 �̇� = 𝐠 + 𝐚 (3.2) 

where r represents the position vector; v represents the velocity vector; g represents gravitational 

acceleration acting on the spacecraft; and a represents the acceleration vector. Gravitational 

acceleration can be a function of position, but because this is a lunar landing mission, it remains 

constant with the Moon’s gravity.  Both r and v vectors are represented as 2x1 column vectors. 

The boundary conditions for ZEM/ZEV are as follows  

 𝐫(𝑡0) = 𝐫0     𝐫(𝑡𝑓) = 𝐫𝑡 

𝐯(𝑡0) = 𝐯0     𝐯(𝑡𝑓) = 𝐯𝑡 

(3.3) 

where r0 and v0 are the initial position and velocity, respectively, while rt and vt are the target 

position and velocity, respectively and t0 and tf are initial and final time, respectively. 
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The formulation of the Hamiltonian below and subsequent equations is with respect to 

optimizing the objective function, J, which is 

 
𝐽 =

1

2
∫ 𝒂𝑇𝒂 𝑑𝑡

𝑡𝑓

𝑡𝑜

 
(3.4) 

 

The Hamiltonian function is  

 
𝐻 =

1

2
𝒂𝑇𝒂 + 𝒑𝑟

𝑇𝑣 + 𝒑𝑣
𝑇(𝒈 + 𝒂) (3.5) 

 where pr is the costate vector associated with position and pv is the costate vector associated 

with velocity.  The costate equations are then found by taking partial derivatives from Eq. 3.5, 

with respect to position, velocity, and acceleration. Once the costate equations are found, it is 

important to define the time-to-go. The time-to-go is calculated as follows 

 𝑡𝑔𝑜 = 𝑡𝑓 − 𝑡𝑝 (3.6) 

where tf  is final time and tp is current time. The relation in Eq. 3.3 is used to make substitutions 

into the costate equations and further define the optimal control law as  

 𝒑𝑟 = 𝒑𝑟(𝑡𝑓) 

𝑝𝑣 = 𝑡𝑔𝑜𝒑𝑟(𝑡𝑓) + 𝒑𝑣(𝑡𝑓) 

𝑎 =  −𝑡𝑔𝑜 𝒑𝑟(𝑡𝑓) − 𝒑𝑣(𝑡𝑓) 

(3.7) 

(3.8) 

(3.9) 

By substituting into the dynamic equations and then solving for pr and pv, the optimal 

control law can now be defined as  

 
𝒂 =

6[𝒓𝑡 − (𝒓 + 𝑡𝑔𝑜𝒗)]

𝑡𝑔𝑜
2

−
2(𝒗𝑡 − 𝒗)

𝑡𝑔𝑜
 (3.10) 

The current position and current velocity can explicitly be defined as  
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𝐫𝑝 = 𝐫 + 𝑡𝑔𝑜𝐯 +

1

2
𝐠moon(𝑡𝑔𝑜

2 ) 
(3.11) 

 𝐯𝑝 = 𝐯 + 𝐠moon𝑡𝑔𝑜 (3.12) 

where rp is the current position; vp is the current velocity; gmoon is the Moon’s gravity; r is the 

position vector; v is the velocity vector and tgo is the time-to-go. The current position, current 

velocity, and Moon’s gravity are 2x1 column vectors. Next, the ZEM and ZEV expressions are 

found with the following equations (Ebrahimi, Bahrami and Roshanian; Furfaro, Cupples and 

Cribb) 

 𝐙𝐄𝐌 = 𝐫𝑡 − 𝐫𝑝 (3.13) 

 𝐙𝐄𝐕 = 𝐯𝑡 − 𝐯𝑝 (3.14) 

where rt is the target or final position and vt is the target or final velocity. By simplifying and 

substituting in Eq. 3.13 and 3.14, acceleration is then defined as the following equation (Guo, 

Hawkins and Wie, Optimal Feedback Guidance Algorithms for Planetary Landing and Asteroid 

Intercept; Braun and Manning) 

 
𝐚 =

6

𝑡𝑔𝑜
2

𝐙𝐄𝐌 −
2

𝑡𝑔𝑜
𝐙𝐄𝐕 − 𝐠 

(3.15) 

where a is a 2x1 column vector, comprised of the x and y components. The total acceleration is 

found by taking the norm of the acceleration vector components.  

 

3.2 Genetic Algorithm 

The genetic algorithm uses the equations in the test driver, which are 3.11 – 3.15. The only 

additional equation needed to assess the results of the genetic algorithm is the derivative between 

the ZEM/ZEV driver results and the genetic algorithm results. To find the derivative, the 

equation is  
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 𝑑𝑎

𝑑𝑥
=  

𝑎𝑍𝐸𝑀−𝑂 − 𝑎𝐺𝐴

𝑥𝑍𝐸𝑀−𝑂 − 𝑥𝐺𝐴
  (3.16) 

where aZEM-O and aGA are the total acceleration values for the ZEM/ZEV optimal path (without a 

waypoint) and the genetic algorithm, respectively. The xZEM-O and the xGA are the x positions for 

the ZEM/ZEV optimal path (without a waypoint) and the genetic algorithm, respectively.  
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4 Numerical Simulations 

Simulations provide necessary insight to the problem being investigated. In this case, 

numerical results show quantitative differences between the optimal solution and a solution with 

a waypoint. Different types of numerical simulations, as well as iterations to specific simulations 

are utilized to try and identify what causes the optimal solution to differ from a solution with a 

waypoint.  

Section 4.1 shows numerical results from the ZEM/ZEV method. First, the optimal path 

is calculated using the ZEM/ZEV method with no waypoint. Then, the same script is modified to 

include a waypoint that is chosen in one of two ways: 1.) A waypoint inserted at a certain 

percentage of the path, such as 50%, or 2.) An arbitrary waypoint defined by the x and y 

position, and the x and y velocity. The modified ZEM/ZEV method serves as the main test driver 

for the waypoint driven results.  

4.1 ZEM/ZEV Method and Test Driver 

The initial test driver used to compare the optimal path to a path with a waypoint is done 

using ode45 in Matlab, which calls a function that includes a traditional ZEM/ZEV method. The 

Matlab function ode45 solves ordinary differential equations (ODE) and uses the Runge-Kutta 

method to efficiently compute results. The ode45 function accepts the function or equation of 

interest and the initial conditions to solve the mathematical problem. The ZEM/ZEV method 

uses Eq. 3.6, 3.11 – 3.15 and has the boundary conditions defined in Eq. 3.3.  

The input to the ZEM/ZEV function is the TOF and the target position and velocity. For 

this simulator, the time of flight (TOF) is consistently 100 seconds, with a target position, 𝐫𝒕 =

[0 𝑚, 0 𝑚]𝑇 in the x and y directions, respectively and the target velocity, 𝐯𝒕 = [0 𝑚/𝑠, 0 𝑚/𝑠]𝑇 

in the x and y directions, respectively. To simulate a Moon lander problem, the gravity of the 
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moon is applied to the ZEM/ZEV equations inside the function.  The gravity of the moon is [0, -

1.62 m/s2], with the downward direction being the negative orientation. The input to the ode45 

function is the range for TOF, starting at zero and incrementally increasing to the final TOF, as 

well as the initial position and velocity. The initial position is, 𝐫𝟎 =  [−100𝑚, 100𝑚] 𝑇 in the x 

and y direction, respectively, while the initial velocity is, 𝐯𝟎 =  [100𝑚/𝑠, −5𝑚/𝑠] 𝑇  in the x and 

y direction, respectively. Figure 6 shows the output for the optimal path using the ZEM/ZEV 

method without a waypoint. The green asterisk indicates the starting position of the path and the 

red asterisk indicates the end point of the path. The total acceleration this path requires is 

216.9971 m/s2.  

 

Figure 6: Optimal Path Using ZEM/ZEV Method Without a Waypoint 
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The simulated problem presented in this research and the use of waypoints is for 

recovering from an external disturbance or mechanism failure. The goal of calculating a new 

path after a disturbance has happened through using waypoints is to provide a path that takes less 

total acceleration than going back and following the original calculated path, which is now out of 

the way. By using a waypoint, the spacecraft can now start from a new initial position, but still 

achieve the same target position. There are two different methods that a waypoint is 

implemented with this test driver. The first method is inserting a waypoint onto the original 

optimal path at a certain percentage of that path. In this case, the waypoint characteristics 

(position in x and y, velocity in x and y, and waypoint time) are all specified as a percentage of 

the previously calculated optimal path. The second method is choosing an arbitrary waypoint by 

providing the position and velocity in the x and y direction, as well as the time of the waypoint. 

A main outcome of this test driver is the total acceleration that a path requires. Differences in 

total acceleration show which path requires more energy and the less energy required, the more 

optimal a path is. The total acceleration serves as a cost function for this research.  

From testing percentages off the original optimal path, the results presented in Table 1 

show that there is likely a minimum existing between a waypoint existing at 50% and a waypoint 

existing at 60%. This is because the acceleration for a path with a waypoint at 50% reaches a 

minimum value before starting to increase again for a path with a waypoint at 60%. Figure 7- 

Figure 9 show the position in the x and y direction plotted against the original optimal ZEM/ZEV 

path. Figure 8 is a representation of what the path with a waypoint and the lowest total 

acceleration looks like. The other paths with a waypoint essentially undershoot and overshoot 

this minimum acceleration. It also should be noted that the path with a waypoint at 50% shows 

less total acceleration needed than the original optimal ZEM/ZEV path. It also important that the 
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highest total acceleration for a path with a waypoint appears for the paths when the waypoint 

occurs later in the path, such as a path with a waypoint at 80% or 90%.   

 

Figure 7: Comparison of Position for Optimal Path and Path with a Waypoint at 10% 
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Figure 8: Comparison of Position for Optimal Path and Path with a Waypoint at 50% 

 

Figure 9: Comparison of Position for Optimal Path and Path with a Waypoint at 80% 
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Table 1: Comparison of Total Acceleration from Different Path Configurations Pulled Off Original Optimal Path 

Path Description Total Acceleration (m/s2) 

Original optimal path 216.9971 

Path with a waypoint at 10% 217.7369 

Path with a waypoint at 20% 216.5945 

Path with a waypoint at 30%  215.1787 

Path with a waypoint at 40%  213.9899 

Path with a waypoint at 50% 213.6398 

Path with a waypoint at 60% 215.2954 

Path with a waypoint at 70% 225.0829 

Path with a waypoint at 80%  243.1986 

Path with a waypoint at 90%  255.1346 

  

As expected, when the acceleration throughout the entire TOF is plotted, in Figure 10 - 

Figure 12, the paths that have the most similar total acceleration to the original optimal path 

show the same trends throughout. For the paths when the total acceleration is less than the total 

acceleration for the original optimal path (i.e. paths with a waypoint at 50%), it shows trends of 

higher acceleration toward the midpoint of the path and then slightly lower toward the end. For 

the paths when the total acceleration is higher than the total acceleration for the original path (i.e. 

paths with a waypoint at 80%), the acceleration is highest toward the end of the path, indicating 

that for a planetary landing, having a waypoint at the end of the path requires more effort.  
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Figure 10: Total Acceleration Across Time of Flight for Waypoint at 10% 

 

Figure 11: Total Acceleration Across Time of Flight for Waypoint at 50% 
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Figure 12: Total Acceleration Across Time of Flight for Waypoint at 80% 

Small changes on a waypoint are also investigated. After a waypoint is inserted into the 

path, changes to the x and y position are applied. These changes are only applied to either the x 

position or the y position and are not applied simultaneously to both. This helps isolate the 

changes and allows a direct comparison between a path with a waypoint and a path with an 

adjusted waypoint position. Through altering the position, the derivative is found, which if the 

derivative is zero, it indicates a sign of an optimal solution. The equation to find the derivative is 

 𝑑𝑎

𝑑𝑥
=

𝑎𝑤𝑝 − 𝑎𝑤𝑝𝑎

𝑥𝑤𝑝 − 𝑥𝑤𝑝𝑎
 (4.2) 

where awp and awpa represent the acceleration for the path with a waypoint and the acceleration 

for a path with a waypoint that is adjusted, respectively; and xwp  and xwpa represent the position 

in the x direction at the waypoint for the path with a waypoint and the position in the x direction 
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at the waypoint for a path with an adjusted waypoint. The other version of this equation adjusts 

the y position instead of the x position and is 

 𝑑𝑎

𝑑𝑦
=

𝑎𝑤𝑝 − 𝑎𝑤𝑝𝑎

𝑦𝑤𝑝 − 𝑦𝑤𝑝𝑎
 (4.3) 

where ywp  and ywpa  represent the position in the y direction at the waypoint for the path with a 

waypoint and the position in the y direction at the waypoint for the path with an adjusted 

waypoint, respectively. It is important to note that these adjustments come from adjusting the 

waypoint that has been pulled off the optimal path, instead of choosing different combinations of 

waypoints, like in Table 4 - Table 7. 

 Table 2 and Table 3 show the accelerations when the waypoint path is adjusted in the x 

and y direction, respectively. The original acceleration for a path with a waypoint at 25% is 

215.8927 and the derivatives directly show how much impact adjusting the waypoint position 

has. Table 2 indicates that changing the waypoint position in the x direction has more of an 

impact than changing the waypoint in the y direction, as the derivative is higher for x 

adjustments. It is also shown that adding to the x position results in a higher derivative than 

subtracting from the x position. Table 3 shows that the most impact for adjusting a waypoint in 

the y direction is when it is added, as it results in the highest derivative.  

 

Table 2: Comparison of Total Acceleration for Adjusted X Position for Waypoint Pulled Off Optimal Path 

Path Description Adjustment Total Acceleration (m/s2) Derivative 

Path with a waypoint at 25% +1 in the X 

direction 

215.941 0.0486 
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Path with a waypoint at 25% -1 in the X 

direction 

215.844 0.0485 

Path with a waypoint at 25% +10 in the X 

direction 

216.380 0.0487 

Path with a waypoint at 25% -10 in the X 

direction 

215.409 0.0484 

 

Table 3: Comparison of Total Acceleration for Adjusted Y Position for Waypoint Pulled Off Optimal Path 

Path Description Adjustment  Total Acceleration (m/s2) Derivative 

Path with a waypoint at 25% +1 in the Y 

direction 

215.938 0.0459 

Path with a waypoint at 25% -1 in the Y 

direction  

215.846 0.0457 

Path with a waypoint at 25% +10 in the Y 

direction  

216.358 0.0466 

Path with a waypoint at 25% -10 in the Y 

direction  

215.442 0.0450 

 

The results from the second method of trying different combinations of a waypoint not 

from the optimal path help to show if certain parameters, such as x or y position, have a greater 

impact on a waypoint’s success. These changes are applied to a waypoint time of 50 seconds, as 

previous calculations showed the lowest total acceleration with a waypoint at 50% of the time of 

flight, which is 100 seconds. Table 4 - Table 7 show different combinations of x position, y 

position, x velocity, and y velocity, respectively. Table 4 shows that the value that yields the 
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lowest total acceleration is when the x position is approximately 500 meters. When it is increased 

or decreased away from that value, the acceleration increases, especially when decreased.   

Table 4: Comparison of Different X Position Values for a Waypoint 

X, Y Position 

(m) 

X, Y Velocity 

(m/s) 

Waypoint Time 

(sec) 

Total 

Acceleration 

(m/s2) 

[-500, 80] [20, -1] 50 273.8732 

[250, 80] [20, -1]  50 225.0857 

[500,80] [20, -1] 50 221.5494 

[1000, 80] [20, -1] 50 224.2484 

[1500, 80] [20, -1] 50 234.2606 

  

 Table 5 shows that the value that yields the lowest total acceleration is when the y 

position is approximately 500. When it is increased or decreased away from that value, the 

acceleration increases, especially when increased.    

Table 5: Comparison of Different Y Position Values for a Waypoint 

X, Y Position 

(m) 

X, Y Velocity 

(m/s) 

Waypoint Time 

(sec) 

Total 

Acceleration 

(m/s2) 

[500, -500] [20, -1] 50 238.9957 

[500, 30] [20, -1] 50 222.4239 

[500, 120] [20, -1] 50 220.9472 

[500, 500] [20, -1] 50 220.3222 
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[500, 1000] [20, -1] 50 238.2286 

[500, 1500] [20, -1] 50 275.8049 

 

 Table 6 shows that the value that yields the lowest total acceleration is when the x 

velocity is extremely small and close to 0.5 m/s. When it is increased or decreased away from 

that value, the acceleration increases, especially when increased.    

Table 6: Comparison of Different X Velocity Values for a Waypoint 

X, Y Position 

(m) 

X, Y Velocity 

(m/s) 

Waypoint Time 

(sec) 

Total 

Acceleration 

(m/s2) 

[500, 80] [0.5, -1] 50 205.8236 

[500, 80] [5, -1] 50 208.2240 

[500, 80] [10, -1] 50 211.9543 

[500, 80] [20, -1] 50 221.5494 

[500, 80] [40, -1] 50 246.7542 

  

 Table 7 shows that the value that yields the lowest total acceleration is when the y 

velocity is close to 20 m/s. When it is increased or decreased away from that value, the 

acceleration increases, especially when increased.    

Table 7: Comparison of Different Y Velocity Values for a Waypoint 

X, Y Position 

(m) 

X, Y Velocity 

(m/s) 

Waypoint Time 

(sec) 

Total 

Acceleration 

(m/s2) 
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[500, 80] [20, -10] 50 230.3498 

[500, 80] [20, -1] 50 221.5494 

[500, 80] [20, 20] 50 208.6634 

[500, 80] [20, 40] 50 211.6704 

[500, 80] [20, 80] 50 258.9972 

 

Another important factor in implementing a waypoint is the switching time. When the 

path is being calculated with a waypoint, it includes a set amount of time to allow the path to 

reach the waypoint and then continue along to the target. The effects of changing this switching 

time are investigated as part of this numerical simulation. Table 8 shows that a local minimum 

likely exists for a switching time of 4 seconds. However, the difference in lowering the switching 

time from 5 seconds to 3 seconds is very minimal, while increasing the switching time has more 

impact on the total acceleration.  

Table 8: Comparing Switching Time for a Path with a Waypoint at 50% 

Switching Time (sec) Total Acceleration (m/s2) 

3 213.4450 

4 213.2629 

5 213.6398 

7 214.9028 

8 215.6168 

 

 The following result shows that when lunar gravity is removed from the problem, it is 

easy to achieve similar total acceleration. However, Chapter 2 mentions that without a uniform 
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constant gravity vector, that optimality for a ZEM/ZEV method should not be achieved. Figure 

13 shows the similarity between the paths, but even more important is the total acceleration. For 

this case, the total acceleration of the original optimal path is 201.6055 m/s2, while the total 

acceleration for the path with a waypoint at 10% is 201.6275 m/s2. These results are almost 

identical and this should not be the case.   

 

Figure 13: Comparison of Position for Optimal Path and Path with a Waypoint at 10% with No Gravity 

Section 4.2 presents results that come from using the genetic algorithm within Matlab. The 

outcome of the genetic algorithm are waypoint characteristics (x and y position, x and y velocity, 

and waypoint time). The goal of this section is to compare what the genetic algorithm finds as 

the optimal waypoint to the results in Section 4.1. To do this, the genetic algorithm 

characteristics are changed. Characteristics that can be changed are population size, and bounds 

for position, velocity, and time of flight.  
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4.2 Genetic Algorithm  

A genetic algorithm (GA) is a method for solving an optimization problem that is like the 

natural selection process. This genetic algorithm is executed in Matlab and at each step, the 

algorithm selects a result from the population to produce new results for a new generation 

(Matlab). Through each of these generations, the genetic algorithm reaches an optimal solution.  

The GA accepts a function that runs the ZEM/ZEV method through the ODE45 and has the same 

initial and target position and velocities. By setting up the GA this way, the results of the GA are 

directly compared to the results from the original test driver that runs ODE45 with the 

ZEM/ZEV method. The derivative is also found. If a derivative is equivalent to zero, it indicates 

optimality. The equation to find the derivative is Eq. 3.15. 

There are different parameters that change when implementing the GA, such as population 

size and bounds for function inputs. It is better to run a larger population size and Table 9 shows 

the outcome of different population sizes and the effect it has on the total acceleration and 

waypoint time. To show the effect of population size, the input bounds in remain constant. The x 

position ranges from [-2000, 2000] meters, the y position ranges from [-2000, 2000] meters, the 

x velocity ranges from [0, 100] meters/sec, the y velocity ranges from [-100, 100] meters/sec and 

the waypoint time ranges from [6, 99] sec. The waypoint time range must start at six seconds 

because the waypoint switching time is five seconds.  

Table 9: Genetic Algorithm Results with Different Population Sizes 

Population Size Generations Total Acceleration (m/s2) Waypoint Time (sec) 

100 25 193.5 7.31 

1,000 21 188 70.84 

10,000 13 184.3 36.97 
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The results in Table 9 are iterated until the fitness of the GA levels out for a given 

population size, as shown in Figure 14. This means that the number of generations needed to 

reach a conclusive answer can differ, if there are no spikes in the fitness.   

 

Figure 14: Fitness for GA at Final Generation 

 When the input bounds for the waypoint time are changed from [6, 99] sec to [20, 99] sec 

using a population size of 1,000, a similar outcome to the test case using a population size of 

10,000 and 13 generations from Table 9 occurs. Figure 15 shows the position for the test case 

using a population size of 10,000.  
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Figure 15: Position in X and Y for Genetic Algorithm (Population Size: 10000, Waypoint range: [6,99] sec) 

It only takes 20 iterations using a population size of 1,000 for the fitness to level out and 

reach a total acceleration of 184.5 m/s2 with a waypoint time of 38.18 seconds. Figure 16 show 

the outcome in terms of x and y position.  
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Figure 16: Position in X and Y for Genetic Algorithm (Population Size: 1000, Waypoint range: [20,99] sec) 

 It is seen that the graph outcome between Figure 15 and Figure 16 have similar trends 

and values, despite having different waypoint time range and different population sizes.  This 

indicates that the waypoint time range has an impact on results. Changing the waypoint bounds is 

also explored to see the effects on the outcome.  

 Table 1 shows the differences in changing waypoint bounds. The position and velocity 

bounds remain the same throughout each test, as well as the population size. The population size 

is 1,000, the x and y position bounds are [-2000,2000] meters, the x velocity bound is [0,100] 

m/sec, and the y velocity bound is [-100,100] m/sec.  
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Table 10: Effects of Changing Waypoint Bounds for GA 

Waypoint 

Time 

Bounds 

(sec) 

Total 

Acceleration 

Determined 

(m/s2) 

Waypoint 

Time 

Determined 

(sec) 

[6,99] 188 70.83 

[20,99] 184.5 38.17 

[30,99] 184.8 37.60 

[50,99] 187.6 76.98 

 

 While no result from the GA directly matched the optimal path found only using the 

ZEM/ZEV method, when the results from the GA are plugged into the ZEM/ZEV method, the 

same acceleration is achieved. This indicates that the ZEM/ZEV method can achieve the same 

result, provided it is given the optimized waypoint position, velocity, and time.  

Section 4.2 presents results from calculating the L2 norm for all possible waypoints. The 

goal of this section is to evaluate waypoints using a different metric from the total acceleration.  
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5 Conclusion  

Many different methods are used to explore the characteristics that dictate what makes a 

waypoint an ideal waypoint. A waypoint consists of x and y position, x and y velocity, and a 

given time. By comparing different values for these variables, as well as comparing to different 

optimal solutions, the results help to show what makes a good waypoint for a lunar landing 

mission. The percentage of the waypoint for a given path is one of the first parameters 

investigated and shows that when the waypoint is placed at 30% - 50% of the path, it exhibits 

lower total acceleration and when it is placed toward 80-90% of the path, it exhibits much higher 

total acceleration, according to Table 1. The reasoning for the waypoint exhibiting lower total 

acceleration around 30% - 50% is likely due to the switching time, as the having the waypoint be 

too early along the path does not allow much time for the spacecraft to transition to the waypoint 

and continue along the path.  

Next, the method of choosing different combinations of waypoint, which is not pulled off the 

optimal path is explored, as presented in Table 4 - Table 7.  The arbitrary waypoint choices show 

that for this case of a lunar landing mission, the waypoint shows less total acceleration when the 

x position is around 500 meters, the y position around 500 meters, the x velocity around 0.5 m/s 

and the y velocity around 20 m/s. These values correspond to having a waypoint in the range of 

approximately 30% - 50% of the path, which further verifies that whether the waypoint is pulled 

off the optimal path or is chosen arbitrarily, the results are similar.  

The switching time is also investigated and shows that while it does have an impact on the 

total acceleration when tested in the regular ZEM/ZEV method with a waypoint, it is very 

minimal. Table 8 shows that the total acceleration only varies by up to 2 m/s2 when the switching 
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time is varied. When the switching time is decreased, it changes by only one tenth of a m/s2 and 

when it is increased, typically changes by 1 m/s2.  

The results from the genetic algorithm also further verify the waypoint positions and 

velocities that are found in the earlier tests of running the regular ZEM/ZEV method with 

different waypoints. However, it is important to note that the genetic algorithm achieves a lower 

total acceleration, at approximately 184 m/s2, while the lowest total acceleration from the 

ZEM/ZEV method with waypoints is closer to 213 m/s2. This discrepancy indicates that the 

genetic algorithm is calculating waypoint characteristics in a different way than the regular 

ZEM/ZEV method with a waypoint. However, the waypoint ZEM/ZEV method can output the 

same path as the genetic algorithm if it is fed those waypoint x and y positions, x and y 

velocities, and time of waypoint. Not only did the genetic algorithm produce lower total 

accelerations, but there are also several other path combinations that result in a lower total 

acceleration than what the original optimal path with the ZEM/ZEV method is achieving. These 

results show that a path with a waypoint can achieve better results than a path without a 

waypoint. Evidence provided in this work shows that the ZEM/ZEV approach violates Bellman’s 

principle of optimality because when the path is calculated from the waypoint to the final target, 

it does not result in the same trajectory for the remaining time. This suggests that the ZEM/ZEV 

approach, despite being proven as the optimal control law that satisfies the problem, may not 

have an optimal substructure.  

There is also simulation-based evidence that the optimality of the ZEM/ZEV method without 

a gravity being a constant vector can be achieved and shows issues with statements made from 

similar research discussed in Chapter 2. Figure 13 shows this when the same total acceleration 
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can be achieved with the original optimal path and a path with a waypoint at 10% when gravity 

is not present.  

Future work includes developing a functioning algorithm that uses this information to select 

the best waypoint for a given time increment until the spacecraft has reached its’ target. It is 

important to note that the application is of key importance, and the characteristics that may be 

important for a planetary landing problem are not necessarily the same for a different 

application, such as rendezvous.  
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