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Abstract

The problem of the manipulation of remote data is typically solved used complex methods

to guarantee consistency. This is an instance of the remote bidirectional transformation problem.

From the inspiration that several versions of this problem have been addressed using lenses, we

now extend this technique of lenses to the Remote Procedure Calls setting, and provide a few

simple example implementations.

Taking the host side to be the strongly-typed language with lensing properties, and the client

side to be a weakly-typed language with minimal lensing properties, this work contributes to the

existing body of research that has brought lenses from the realm of math to the space of computer

science. This shall give a formal look on remote editing of data in type safety with Remote Monads

and their local variants.
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Chapter 1

Introduction

The origin of this work begins with looking for overall abstractions between remote object

systems and investigating whether adding an ordered lens-like structure was possible between

multiple systems. These remote systems could stimulate or in fact provide the simplicity of lenses

to an end user, such that these abstractions were representative of systems already in existence.

Due to the popularity of classical lenses, it was discovered that online applications attempt to bring

this boilerplate into their own code with different levels of effectiveness across their own systems.

To begin with, Foster et al. (2007), this field has been strictly derived from the premise of

database systems, with even this primary source having constrained itself to a strict representa-

tion in the fundamentals. The fact of this is not a surprise when considering that the original

well-behaved lens laws were first formulated by Benjamin C. Pierce in the context of database

manipulation, Pierce & Schmitt (2003); Foster et al. (2003). From this series of work, Lenses

originated from studying bidirectional transformations, as providing convenience to the end user

as well as layers of type safety. Most commonly in the functional programming community lenses

are popular abstractions to provide an object-oriented accessor notation to an object’s elements:

the functions that wrap data into structures are able to be acted on by functions that unwrap or re-

wrap data in a convenient way. There are extensional ideas that relate to this such as Traversable

Structures, see Figure 1.1, but that is not the primary focus of this research, although in the case of

Remote Monad, the Traversable is very much implementable — albeit with some extra efforts.

There are several types of lenses that bridge the gap between remote and local interactions

already in existence, with varying degrees of depth of implementation. From the broad categories

of c-lenses to the category of d-lenses, Johnson & Rosebrugh (2013) use the concepts of opfibra-
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Figure 1.1: Optics Hierarchy

tions to encapsulate the nature of transition information between a system and a database. The

previous work derives its motivation from database systems such as SQL and the manipulation

of table or record information, i.e. the original derivation of the c-lens from the categorical no-

tion of Grothendieck opfibration, Grothendieck (1971), for a solution to the view update problem

for functorial update processes, Johnson et al. (2011). From the idea that a host can only see a

certain amount of information from the client side’s database system, but both must maintain a

consistently updated view parameter, Ahman & Uustalu (2014).

In fact, the advancements in category theory are heavily rooted in earlier works that bridged

the gaps between algebraic topology and algebraic geometry, Grothendieck (1960). Which nearly

paralleled the formalization of Beck’s work in the formalization of the monadicity theorem which

established when a functor is monadic, Beck (1967). These and multiple many discoveries gave

rise to the derivation of several important concepts, including bifibrations and the monad itself, the

details of which are not in the scope of this manuscript. Which gives rise to the formality of lenses

despite their very humble beginnings, Foster et al. (2003). The notions of what can be considered

entirely a lens or a portion of the children a lens structure, is illustrated in Figure 1.2.

Much of the general theory has assumed a typical database relationship such as SQL or other

table based services, this is based from the hard coded implementations that preceded these con-
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Figure 1.2: Variety of Lenses

structed ideas, which are hand tailored in works such as Bohannon et al. (2006). Several of these

works are representative of these direct methods and their specific heritage in database problems

which would be too numerous to cite here, but an impactful reference on source-to-target and

target-to-source transformations is Fuxman et al. (2006). Including a wide range of work finding

uses for lenses outside of their typical domain, most notably Boomerang a bidirectional program-

ming language for textual strings, Barbosa et al. (2010), with further development in Optician,

Miltner et al. (2017).

Which is why there is still open space for pseudo-implementations of lenses that haven’t re-

ceived much coverage if any in literature, perhaps because they break from all of the much higher

level concepts and exert effort in the more rudimentary space of custom constructed Domain Spe-

cific Languages (DSLs). A DSL that is built over existing systems, not from the ground up with

an intention of being able to represent much deeper concepts. It is a focus on practical designing

patterns that are concerned with construction in the execution space. Since one doesn’t need more

than an understanding of the well-behaved lens laws to be able to put them into application for

remote and local systems.

Additionally, DSLs already have their own unique sub-field in the lensing community with
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respect to the bidirectional transformation problem Czarnecki et al. (2009). This topic focuses on

the API advancements provided by the Remote Monad design pattern for remote calls to external

systems for the purposes of Remote Procedure Calls that have their commands executed remotely

before returned locally, Gill et al. (2015). The Remote Lensing is in the same vein as database

lensing, but it distinguishes itself by being primarily focused on Remote Procedure Calls rather

than the typical database view update problem — of the latter this is not an attempt to expand on.

This manuscript is focused on bringing in the concepts of Remote Lenses which are neglected in

documented literature, to an explicit focus on their usability and ease of implementation from the

fundamental well-behaved rules, and the capacity to scaffold them onto existing API.
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Chapter 2

The Haskell Lens

Lenses are a restudy of the old problem of bidirectional transformations (bx) that were histor-

ically solved using dictionary and record systems. It is still an active field of study, with many

connections to different sub-fields of computer science. Explicitly described, “bx are a mechanism

for maintaining the consistency of two (or more) related sources of information”, Czarnecki et al.

(2009). The nature of bidirectional transformations allows them to be applied to domain specific

languages and the host language itself, as a means to translate between run-time values.

From the implementation of lenses in the bx programming community there has been in re-

cent years a new passion for their joint implementation in a larger variety of scenarios than they

were initially imagined for. The study has broadened to the attempt to abstract and simplify over

many sorts of structures, including their individual parts. The attempt at generality provides for

opportunities in anything that might be presentable as a meaningful bx.

Lenses are characterized by the satisfaction of abstract laws and rules, established fully in

Pierce & Schmitt (2003). Since there exist so called “not well-behaved” lenses that only follow

some proper subset of the well-behaved lens rules and arbitrarily apply bidirectional transforma-

tions in ways that aren’t consistent. Such “not well-behaved” lenses are beyond the scope of this

manuscript, we will only deal with well-behaved lenses and their applications.

Set
(
View(ob j), ob j

)
= ob j

View
(
Set(item, ob j)

)
= item (2.1)

Set
(
item′, Set(item, ob j)

)
= Set(item′, ob j)

It is an important note, that most definitions fix the direction of the lens operators a priori,

i.e. where the Set or View will traverse along a given object to reach the designated destination.

5



b⊕Focus

Structure

Figure 2.1: Lens Diagram

The only arguments to View are the structure itself, and with the only arguments to Set being

the structure and item. The definitions assume that the overall pattern-matching system, which

is the individually implemented lens for each focus in a structure, has been embedded before the

configuration of Set and View, respectively, in its descriptive rules. In use, the lens is an active and

changing argument that the programmer sets when they are establishing where they would like to

mutate a structure. It is also possible to define the lens laws with an extra argument to determine

the direction:

Set
(
acc, View(acc, ob j), ob j

)
= ob j ,

View
(
acc, Set(acc, item, ob j)

)
= item , (2.2)

Set
(
acc, item′, Set(acc, item, ob j)

)
= Set(acc, item′, ob j) .

This exposes some additional structure which the more instantiated definition in Equation (2.1)

had previously obfuscated.

Figure 2.1 illustrates a simplistic lens, showing a means to pattern match internally and a nav-

igation of that structure to the desired focus with the help of a lens. The diagram implies that it

is possible to navigate into the focus, provided that the focus is a similarly formatted structure.

This is true, provided that both the primary structure and all associated substructures have been

constructed in a way that allows for pattern-matching. If this is the case, then pattern-matching

over the entire structure is possible. This “stacking” of structures, enables lenses to be composed

so that it becomes possible to find a focus even if it is nested two or more structures deep. The
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Figure 2.2: Diagram of Lens Composition

embedding of a lens equipped structure into a larger lens equipped and the resulting composition

of lenses is illustrated in Figure 2.2.

There are some basic Haskell types as well as examples that show that the idea of lenses

applies to many sorts of structures, including modifications or inspections of two-tuple structures

as displayed in Figure 2.3. In simple cases, the general idea of pattern matching to obtain results

is explicit and summarized inside the code itself. However, Haskell’s compiler allows for implicit

pattern matching to take place as well. The implicit calls to focus on specific elements of the

two-tuple is handled in this manner, display in Figure 2.2. This holds true for both view_a and

set_a, where the inspection of the two-tuple is enough to view or set the contents of the structures

respectively.

Lenses represent such a large sub-field of bx, and have been so generalized that a full view is

well beyond the scope of this manuscript. The interested reader may refer to Czarnecki et al. (2009)

for a good survey. These and many more topics will be restricted to monomorphic occurrences

instead, whilst the rest will fall outside the scope of this thesis.
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view :: t -> u
set :: u -> t -> t

view_a :: (a,b) -> a
view_a (x,y) = x

set_a :: a -> (a,b) -> (a,b)
set_a x' (x,y) = (x',y)

bc bc

bc

(x, y) set_a
(

x′, (x, y)
)

= (x′, y)

view_a(x, y) = x

Figure 2.3: Elementary Haskell Lens

Expanding on how a lens may be implemented in Haskell, an important example to consider is

how building lenses and operating on a structure work. Not an implicit lens like in Figure 2.3, but

an explicit lens that allows access to a richer structure. One begins by initializing such a structure

as follows below.

data MyStructure = MyStructure {
MyName :: String
, MyAge :: Int}
deriving (Show, Eq)

The structure contains two important points of focus a String and an Int value, and one can make

a lens with the ability to access either of the two elements. In similarity the two-tuple example,

constructing an accessor to each element to view or set must be done individually. But in this case,

there isn’t a trick to get the Haskell compiler to do all the work, so a little bit of code is needed to

break inside.

type MyLens s a = forall f. Functor f => (a -> f a) -> s -> f s

item_name :: MyLens MyStructure String
item_name some_function (MyStructure l r) =

(\l'-> MyStructure l' r) <$> (some_function l)

From this, there is a general structure that represents how a lens may be formed by the type

abstraction of MyLens. Specifically instantiated the expansion for item_name would appear some-

thing along the lines of String -> f String) -> MyStructure -> f MyStructure. Which

allows a set or view implementation to provide some functor that renders the inspection or mod-

ification of the structure in compliance with the well-behaved features of lenses. Another way to
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see this, is that upon inspecting the instantiation of item_name, it is possible to spot out the initial

pattern matching of the structure. The leftmost argument having some_function applied to it,

before being injected back into the structure.

set :: forall s a. MyLens s a -> (a -> s -> s)
view :: MyLens s a -> (s -> a)

getName :: MyStructure -> String
getName = view item_name

setName :: MyStructure -> String -> MyStructure
setName = set item_name

The specifics of how Set and View are implementing their individual accesses to the structure

aren’t terribly important, they are only giving instantiation to the much more familiar usage and

format of the well-behaved lens laws in Equation (2.1). This is made more clear in the Name

functions and type definitions, where after applying the lens to the set or view, then only the

classic arguments are needed, since the lens has already focused on a specific area of the structure.
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Chapter 3

Extending Lenses

As described in the previous chapter, the two primary components of lenses are the Set and

View functions. That we will now discuss, produce a command referenced as Over as a result of

applying them both in sequence. When one applies View to the structure in Figure 3.1, an element

of that structure is retrieved. We may then modify that retrieved element with some function before

applying Set to that very same structure. This results in a new structure which accomplishes the

same result as having applied Over from the very beginning.

The application of View and Set in this sequence is equivalent to Over. For the a command

sequence to be equal to Over, it must directly perform a given function onto the focus whilst in

in the same singular injective process. This process of modeling the Over function can be best

described as the following composition, Set
(

ob j, F
(
View(ob j)

))
=: Over(ob j, F). For all valid

objects, applying the desired function to the viewed object and then setting that modified object

is equivalent to overing the object with that same function. That is to say, for any obj with the

corresponding application of Set, View, and F there will be an resulting obj’. A modeling of the

same result if for the same obj had been exposed to the application of Over and F, which would

result in the same obj’.

There exist many degrees of abstracting over elementary lenses such as those provided in Figure

2.3. It is outside the scope of this manuscript to focus on the fuller expanses of lensing mechanisms

inside of mathematics and programming, but it instead finds relevance in the most simple formation

of lenses which is now provided below.

data BasicLens a b = BasicLens {
viewer :: (a,b) -> a
, setter :: a -> (a,b) -> (a,b)}
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b⊕Focus
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Over(ob j, F) := Set
(

ob j, F
(

View(ob j)
)

)

Figure 3.1: Over Construction

This shows the capacity to build the lens datatype from a structure that contains the view and set

explicitly for a given focus. Additionally, the ability to retrieve both the viewer and the setter as

independent but composable functions is maintained.

applyview :: BasicLens a b -> (a, b) -> a
applyview (BasicLens viewer setter) s = viewer s

applyset :: BasicLens a b -> a -> (a,b) -> (a,b)
applyset (BasicLens viewer setter) s = setter s

As shown above, applyview and applyset both use pattern matching to expose the internals

of the elementary Haskell lens. The exposure of these components can also be accomplished

without the use of helper functions, but for the purposes of completeness with the standard lens

methodology this has been provided.

a_Lens :: BasicLens a b
a_Lens = BasicLens {

viewer = view_a
, setter = set_a}

The initialized version of this simplistic lens structure as shown above, performs its role for the

Set and View defined in Figure 2.3. This is the A-Lens, a parameterized structure over the view_a
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and the set_a from last chapter. Such a lens successfully encapsulates the full structure of both

the ability to view the a-element and to set the a-element with a new value. Whilst the A-Lens

maintaining the ability to recover the View and Set that were grouped into it’s larger structure. Al-

lowing one to preform both the operations over the a-element without needing to refer to anything

but this structure.

We realized that a much stronger case for this can be made, if it is possible to make the inherent

pattern matching explicit such that this case may be generalized to the abstractions provided in the

previous chapter’s MyLens. The effort does not surprise, as the result below shows that it is possible

without any loss of type information.

a_ln :: MyLens (a,b) a
a_ln my_functor (a,b) = (\a'-> (a',b)) <$> (my_functor a)

a_view :: (a,b) -> a
a_view = view' a_ln

a_set :: a -> (a,b) -> (a,b)
a_set = set' a_ln

In the provided case, the MyLens abstraction results in an explicit reference to the a-element and

allows for specialization in it’s behavior depending on what functor is applied. This code results

in leaving for both view_a and set_a to be recreated from earlier in a_view and a_set, with no

great alterations.

This leads to the assertion that although defined in heavy detail and with great investment

in the proofing of algebraic geometry, category theory, and homotopy type theory — the hard

coded versions of lenses do not need to subject themselves to these rigorous abstractions. In fact,

the levels of proofing abstract away what lenses can be defined to do, such as when shoving a

lens into a monadic container. Which is why only the well-behaved lens laws in Equation (2.2),

are considered for the details of the manuscript’s later chapters. Those who have a curiosity if

the pseudo-implementations of lenses discussed may be represented as standard lenses, then the

continued reading is deeply recommended for those interested.

Additionally, in practice a certain amount of syntactical sugar is commonly used to make lens

operations more natural. This is referred to as “point-style” as a homage to the natural way of
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accessing a object-oriented structure’s fields, such as in C. The primary parts are (^.) for the

necessity of abstracting away the viewer function and (.) for the composability between lenses.

Despite the best intentions, this does not perfectly mirror object-oriented styles since only the

singular “.” is needed for all accesses into the structure, since there is no viewer or other functions

to abstract away. This way of adding sugar still provides for many programmers a degree of

comfort to the lens methods, hence the continued popularity with its imperfections.
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Chapter 4

Remote Lenses and The Remote Monad

In this chapter, we detail a novel extension of lenses to remote structures making use of the

Remote Monad. The definitions provided in the previous chapters allow for one to describe a

variation of lenses that copies the syntactical sugar and programmatic intent of these operators

over a remote connection between a client and a host device, the host running Haskell and the

client running some other language. We refer to this variation from standard local lenses and other

classical variants as the Remote Lens.

We now extend the abstract identities in Equation (2.2) to the Remote Lens setting, obtaining

the Remote Lens Identities,

RemoteSet
(
acc, RemoteView(acc, ob j), ob j

)
≡ ob j ,

RemoteView
(
acc, RemoteSet(acc, item, ob j)

)
≡ item , (4.1)

RemoteSet(acc, item, ob j) ; RemoteSet(acc, item2, ob j) ≡ RemoteSet(acc, item2, ob j) .

Whereas a lens interacts with a structure, a Remote Lens interacts with a Remote Structure. The

“;” in the equations above denotes the sequence of operations and “≡” denotes equivalence but

not equality. The fundamental distinction for why classical equality is not used is that operations

on either side of the “≡” are not identical in all respects. Equivalence is narrowly interpreted to

abstract away the individual operations that take place between the host and client when executing

remote commands. The process of wrapping and sending commands then receiving and unpacking

them is equivalent to the process being carried out by the remote system without interaction from

the local system. A correct analogy would be taking the maintained connection to be a pointer

to an object, then dereferencing the pointer and preforming some operations to the object which

ultimately results in no change to the object. This procedure it is the same as having never started
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the pointer dereference in the first place. Precisely, the left and right sides of Equations (4.1) are

Observably Equivalent, Milner (1984), so they do not produce a different result from one another

given the same input, though they are not formally identical.

The essentials of what is required to construct the Remote Lens Identities inside of Haskell

is similar to the Haskell lenses given in the elementary Prelude constructions of Chapters 2 and

3. The first argument typically taken by any lens operator, acc as shown above, is a function

that will access a deep-rooted parameter inside of a structure. In the same vein, the Remote Lens

accomplishes this with an abstraction of the Remote Structure’s nested fields that are to be queried

once the command is sent from host to client. The primary difference is in how this is handled

by Haskell. Rather than simply pattern matching into the already existing structure, a completely

different approach is needed instead due to to the structure being remote. To define the individual

components of Remote Lenses for an arbitrary type system we begin by providing the relevant

abstract type definitions below.

RemoteView :: (String -> String) -> (Wrapped a) -> (ReturnType b)
RemoteSet :: (String -> String) -> String -> (Wrapped a) ->

ReturnType (Wrapped a)↪→

RemoteOver :: (String -> String) -> (t -> a) -> (Wrapped a) ->
ReturnType (Wrapped a)↪→

This approach is best summarized as a melding between the fundamental methods used in

typical lens methods that rely strongly on internal pattern matching for the composability of lens,

and the existence of a remote connection that prevents that internal pattern matching to take place.

This is relevant to any scenario where accessing a structure isn’t possible inside of the host system,

and it is necessary to query a client system. This is illustrated in Figure 4.1, which should be

distinguished and contrasted with the much similar local implementation in Figure 2.2.

Remote Lenses will involve internally forming a conjointment of the parameters such that

each of the parameters that normally would be accessed with a composition of pattern matching

functions, must instead be accessed with a composition of the Remote Object’s internal parameters.

This is equivalent to representing the target object as a remote record with the means to access the

contents completely dependent on how that record is implemented inside of the client’s language.
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Figure 4.1: Remote Diagrams. The left diagram illustrates Remote View, while the right illustrates
the Remote Set. Solid lines are local executions, dashed lines are remote transactions, dotted lines
are the continuing connection.

The obj argument in Equation (4.1) represents a reference to the location of what is to be

accessed upon sending the constructed command. Since one is manipulating only a reference to

the actual object on the client’s side, this implies that directly accessing the information is not

possible. That is, the conjointment method described in the former paragraph is needed to focus

in on the remote structure. Bundling the reference to the Remote Object along with the preformed

command to operate on the Remote Object is necessary, otherwise none of the methods to view or

alter the contents of that structure can be accomplished. As anytime that one wishes to operate on

a Remote Object, the host side needs to know where in the client side it is accessing and what it is

going to do once it arrives there.

The final common parameter of Equations (2.2) and (4.1) is the returned item from the result

of applying a lens operator to the structure that is being inspected. Where RemoteView returns the

queried item wrapped in the remote operator that allowed for the operation to take place and for

RemoteSet/RemoteOver the returned item will be the reference to the altered structure wrapped

up in the same remote operator. The only major consideration when manipulating the returned
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structure, is that one must assign the type of the expected viewed parameter or trust that there is

sufficient information that Haskell can self-interpret the type for itself.

Now it is possible to introduce the primary example that this manuscript will cover, specif-

ically the Remote Lens as it relates to the Remote Monad. This has been selected because the

Javascript RPCs are representative of a weakly typed client language and Haskell is able to repre-

sent a strongly typed host language, Gill et al. (2015). Additionally, the Remote Monad provides

all of the functionality necessary to implement the desired lens functions. Now given below is the

construction of the Remote Lens’ key functions.

RemoteView :: (FromJSON b) => (String -> String) -> (RemoteValue a) ->
(RemoteMonad b)↪→

RemoteSet :: (String -> String) -> String -> (RemoteValue a) ->
RemoteMonad (RemoteValue a)↪→

RemoteOver :: (FromJSON t, Show a) => (String -> String) -> (t -> a) ->
(RemoteValue a) -> RemoteMonad (RemoteValue a)↪→

These are the types for the set of functions that seek to emulate the methods of View, Set, and

Over that have been defined specifically for a Remote Lens based on using the Remote Monad.

Though they emulate View, Set, and Over — they do not share the same internal structure. These

definitions are specific to the Remote Monad but they demonstrate a universal design pattern. This

example shows that for any client-host system in which there is a an interaction between a host

language, a client language, and a remote structure, that a fully formed method of communicating

between the two is presentable as a Remote Lens in this way, implemented in Haskell below.

RemoteView accessor object = do{
g <- constructor $ JavaScript $ pack $ accessor (var_text object)
procedure $ var g

}

RemoteSet accessor new_item object = constructor $ JavaScript $ pack $
(accessor (var_text objectName)) ++ " = " ++ new_item↪→

RemoteOver accessor my_function object = do{
item <- RemoteView accessor object
let new_item = show $ my_function item
RemoteSet accessor new_item object

}

17



It is worth noting that due to the fact that we are dealing with a remote connection, the con-

nection must be passed as a parameter in addition to the structure that one wants to manipulate,

the accessor to the individual segment of the structure, and a value if using the RemoteSet func-

tion. While in Haskell one normally manipulates and creates new objects every time one runs a

function or assigns a value, in Javascript new objects are never created within the Remote Monad

implementation. Thus, any code one would want to write with these methods on the Haskell side

would need to keep in mind that one is never dealing with a fresh object. The connection will

always make sure one is pointing to the one and only original Javascript object one is trying to

manipulate.

We consider this Remote Lens implementation to be an improvement on the typical ad-hoc

methods involving backend coding, where the programmer is directly manipulating the delicate

Remote Monad commands. In this version of structuring modifications to Remote Objects, the

programmer instead has a predefined way of accessing, editing, and setting values with minimal

contact to the command structure beneath. One gets abstraction and type safety on every compo-

nent of the command, and modularity that clearly expresses intent to anyone reviewing the code.

The following examples, highlight similarities and contrasts between Remote Lenses and Local

Lenses.

Basic syntactical sugar, with RemoteView as (^.) and composition of remote lens fields as

>>>, results in very readable code that is easily understood. The traditional point-style notation

of local lenses discussed in Chapter 3 is mostly maintained along with a slight alteration to the

composability of “.” to the “>>>”. The code below shows that for the Remote Object of myobject,

one is accessing two layers into its fields to retrieve a Double value from num3.

f :: Double <- myobject ^. nest >>> nest2 >> num3

The normal unsugared syntax for this would be represented as the following nested structure.

RemoteView (num3(nest2(nest))) myobject

This expands out fully instantiated and unwrapped as a more obscure structure, requiring more

knowledge of the underlying construction.
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g <- constructor $ JavaScript $ pack $ (num3(nest2(nest))) (var_text
myobject)↪→

procedure $ var g

This way of writing code is especially undesirable, particularly when abstractions exist for the

purpose of making the legibility easier to the trained and untrained reader. The code above shows

the virtualization of machinery from each layer to the next in this system, and that while the

syntactical sugar for RemoteSet and RemoteOver has not been shown, these share the same levels

of abstractions. For completeness we now give examples of their basic calling is provided.

RemoteSet (num3(nest2(nest))) "4" myobject

RemoteOver (num3(nest2(nest))) (\ x -> (x + 1::Double)) myobject

There is a particularly complete example from the first exercise on Haskell lensing from the

webiste FP Complete, Lenses (n.d.), that we will subsequently adapt to the Remote Monad and

Remote Lens in order to clearly illustrate some of the major similarities and differences between

remote and local implementations. Starting off, the simple construction of the “lens” arguments is

provided, in the case of the Javascript backend this can be viewed as using the point-styled object-

oriented accessor methods, see the end of Chapter 3, common in non-functional programming

languages.

address objectName = objectName ++ ".address"
street objectName = objectName ++ ".street"
city objectName = objectName ++ ".city"
name objectName = objectName ++ ".name"
age objectName = objectName ++ ".age"

We now provide a series of example constructions for normal lens-like syntax, in particular calls

to view the age of a person as well as the street they live on. Additionally, a function to modify the

street name via RemoteSet and a function to modify the age via RemoteOver are both provided.

wilshire :: String
wilshire = "\"Wilshire Blvd\""

aliceWilshire :: RemoteValue a -> RemoteMonad (RemoteValue a)
aliceWilshire newperson = RemoteSet (address >>> street) wilshire newperson

getStreet :: RemoteValue a -> (RemoteMonad String)
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getStreet newperson = RemoteView (address >>> street) newperson

birthday :: RemoteValue Int -> RemoteMonad (RemoteValue Int)
birthday newperson = RemoteOver age (\ x -> (x + 1::Int)) newperson

getAge :: RemoteValue a -> (RemoteMonad Int)
getAge newperson = RemoteView age newperson

We now give the last component to show the effective usage of the lens-like functions and how

they provide a clear flow with each action they take on the client side once the host has sent them.

exercise1 :: Engine -> IO ()
exercise1 eng = do

send eng $ do
command $ call "console.log" [string "starting..."]
render $ "Exercise1"
newperson <- initializeObjectAbstraction2 "alice" alice
aliceWilshire newperson
mystreet_person <- getStreet newperson
birthday newperson
herNewAge <- getAge newperson
render $ "mystreet_person: " ++ mystreet_person
render $ "herNewAge: " ++ show herNewAge

These examples demonstrate the neccessity of using abstractions as well as make the case for

why Remote Lenses are useful tools. While it isn’t possible to provide every single amenity that

the classical lenses are able to give programmers, many can be offered with the right levels of

abstraction.
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Chapter 5

Extending Remote Lenses

This chapter deals with a compare and contrast to the earlier Extended Lenses chapter, along

with any additional information that was out of place in the Remote Monad Chapter. The end goal

is a reasonable intuition if Remote Lenses are indeed Lenses. One having paid careful attention

in the detailing of implementation and theory discussed about the Remote Lenses, should have

come to a question about the exact degree of resemblance that these structures have to their locally

designed counterparts. In fact, keeping in mind the methods of creating a total lens structure, a way

to show the closeness between Local Lenses and Remote Lenses would be to attempt expressing

their remote nature in the style of the local abstractions. Now we will start with attempting to shape

the structure of RemoteView and RemoteSet into a data structure.

data RemoteLens a b = RemoteLens {
remote_view :: (FromJSON b) => (String -> String) -> (RemoteValue a) ->

(RemoteMonad b)↪→

, remote_set :: (String -> String) -> String -> (RemoteValue a) ->
RemoteMonad (RemoteValue a)}↪→

applyview :: FromJSON b => RemoteLens2 a b -> (String -> String) ->
RemoteValue a -> RemoteMonad b↪→

applyview (RemoteLens2 remote_view remote_set) = remote_view

applyset :: RemoteLens2 a b -> (String -> String) -> String -> RemoteValue a
-> RemoteMonad (RemoteValue a)↪→

applyset (RemoteLens2 remote_view remote_set) = remote_set

a_Lens :: RemoteLens a b
a_Lens = RemoteLens {

remote_view = RemoteView
, remote_set = RemoteSet}

Whilst the nature of being able to neatly wrap the generalized Remote Lens commands together
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is easily implemented, this immediate approach doesn’t come close to the meaning held in the local

variation in Chapter 3. The meaning of wrapping the View and Set together in a Local Lens, is to

wrap together the means of accessing a specific focus. In this case, we have wrapped together

a general RemoteView and RemoteSet, that can be specialized to access anywhere in the larger

Remote Structure. Essentially this form of abstraction only complicates the use of the original

commands, while pointlessly obfuscating the underlying ease of use that the composability of the

pseudo-accessor functions were supposed to provide.

Not to easily give up hope just yet that an equivalent method exists, the next significant attempt

is to instantiate a far less general Remote Lens data type and the way to do this is to start talking

about the primary example from Chapter 4. The abstraction will be directly over the accessor meth-

ods, similar to the abstractions that are attempted on a per element basis in the normal, automatic

generation of Local Lens constructions.

data RL_ObjectA = RL_ObjectA {
rl_address :: String -> String
, rl_street :: String -> String
, rl_city :: String -> String
, rl_name :: String -> String
, rl_age :: String -> String}
deriving (Show)

a_Object :: RL_ObjectA a_Object = RL_ObjectA {
rl_address = address
, rl_street = street
, rl_city = city
, rl_name = name
, rl_age = age}

This does not provide anything but a formalization of the ways that Remote Lenses were already

being handled. Which surprisingly, only adds unnecessary bulk to the already clear methods of

invoking the remote calls. The following code shows how this specialization maintains the ability

to write generalized accessors, that would act on any properly instantiated Remote Lens Object.

remote_view :: FromJSON b => RL_ObjectA -> RemoteValue a -> RemoteMonad b
remote_view object newperson = RemoteView (rl_name object) newperson

remote_set :: RL_ObjectA -> String -> RemoteValue a -> RemoteMonad b
remote_set object item newperson = RemoteView (rl_name object) item

newperson↪→
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Another perspective would be to take the valid alternative construction approach from Chapter

3 to it’s full conclusion with this specific case in Remote Lenses. Rather than one specializing the

accessors, providing them bundled together just like A-lens will allow for a safer and clear means

of using these commands. In the provided implementation below, the first introduced method is

now having it’s RemoteView and RemoteSet instantiated with the focus of name.

data RemoteLens a b = RemoteLens {
remote_view :: FromJSON b => (RemoteValue a) -> (RemoteMonad b)
, remote_set :: String -> (RemoteValue a) -> RemoteMonad (RemoteValue

a)}↪→

applyview :: FromJSON b => RemoteLens a b -> RemoteValue a -> RemoteMonad b
applyview (RemoteLens2 remote_view remote_set) = remote_view

applyset :: RemoteLens a b -> String -> RemoteValue a -> RemoteMonad
(RemoteValue a)↪→

applyset (RemoteLens2 remote_view remote_set) = remote_set

a_Lens :: RemoteLens a b
a_Lens = RemoteLens {

remote_view = RemoteView name
, remote_set = RemoteSet name}

The full exposure provided in this method resembles the closest to the nature of the two-tuple

example provided in the previous chapters, but it lacks certain properties that one would define in

a classically constructed lens.

Now, it is finally time to deal with the largest question posed in this manuscript, are Remote

Lenses truly Lenses? An assessment that will be argued over in multiple parts, starting with the

meaning of the generalized lens type signature and its relationship to the Remote Lens and ending

with an exploration of the mechanical work being accomplished irregardless of the type signature.

Starting off with the first part, it is now time to look at broad difference between the type

signature of anything that is remotely similar to a lens and the type signature of the Remote Lens

itself. Abstracting away the finer details, if this were to be valid code shown below, one might

imagine the following generalizations.

LocalLensView :: MyObject -> MyItem
LocalLensSet :: MyItem -> MyObject -> MyObject
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RemoteLensView :: PointerToObject -> ReturningData
RemoteLensSet :: ValueToBeSent -> PointerToObject -> ReturningData

To a careful reader, there is a stern contrast that likely might have sat in the background of the

mind for a long while: wondering what is so off about the usage of the syntactical sugar, despite

how closely it appeared to mimic the familiar counterpart. That is, in a Local Lens the input object

and the output object from the definition of Set is always the same. If given a two-tuple, then a

two-tuple is what will be returned. Fundamentally, a mechanical difference between Local Lenses

and Remote Lenses, results from the fact that in Remote Lenses the returning information from a

Set operation is simply an indication of a job done, not the pointer to the changed object. If one

was inclined, asserting that they are not lenses would be a fair judgment on the nature of these

two distinct structures. In fact, it wouldn’t make sense, the Local Lens abstraction to begin with

is based on the capacity to abstract cleverly with a functor. Here we are dealing with a situation

where it isn’t abstractable in a sensible way to a functor.

The one thing left that might save this from being merely a design pattern would be if on the

client side an act of lensing was taking place to have it’s result retrieved and decoded on the host

side. This is in fact the case, as the accessing of the client’s objects fields via point-styled references

is a synonymous to using lens methodology. As one might remember, the major motivation for

lenses is to provide an abstraction in the bx field. The oldest and least type-safe method of handling

this in the context of objects, is directly calling on their parameterized accessors. If the client and

host are interacting in a method such as in the Remote Monad, then it is possible to make the

Remote Lens use the Local Lens on the client’s side.

Ultimately, while the Remote Lens does not type check as a Local Lens, the Remote Lens can

promise to the user that it is acting as if it were a Local Lens. This fits squarely in what a DSL

provides, i.e. abstraction of commands for the sake of usability and convenience. If forced to pick

a binary choice, the Remote Lens is not a Lens — rather it is a means to an end of being able to

use a Lens.
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Chapter 6

Conclusion

We have examined Lenses in multiple ways from the elementary mathematical definition to the

Haskell representation. Extending this concept to Remote Procedure Calls was established both

in theory and in implementation with respect to the Remote Monad, cumulative with the Remote

Lens DSL in a novel contribution. The method of design remained focused on bringing some

of the functional niceties from the host language of Haskell to the client language of Javascript,

giving a successful means to lens into Remote Objects. While the Remote Lens was implemented

without issue as a DSL, we saw from Chapter 5 that it was not formally a lens. This DSL is quite a

convenient construction but it is not a implementation of a generically formed Lens as was initially

hoped.

In future work, exploration of the difference between Remote Procedure Calls and database

systems such as MySQL will be explored, unpublished work done by the author extending the

Remote Lens DSL to MySQL was ultimately a far worse implementation of the pre-existing work

in the field. Similarly, extending RPCs and the Remote Lenses in a simpler bridge environment

with Python was also not a strong case for the guarantees of this Remote Lens interface.

There is the potential for more hopeful work, given the ability to implement a generalization

of lenses called Traversals with the Remote Monad for the Remote Lens DSL, as shown below.

trav_view :: (FromJSON b) => [(String -> String)] -> RemoteValue a ->
RemoteMonad [RemoteMonad b]↪→

trav_view list obj = case list of
x:[] -> do

pure [view2 x obj]
x:xs -> do

y <- trav_view xs obj
pure $ [view2 x obj] ++ y
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trav_set :: [(String -> String)] -> String -> (RemoteValue a) ->
RemoteMonad (RemoteValue a)↪→

trav_set list item obj = case list of
x:[] -> do

set2 x item obj
x:xs -> do

trav_set xs item obj
set2 x item obj

As the Remote Monad demonstrates, there is potential it and for similarly structured APIs to allow

for implementing richer Remote Lenses. The existence of a popular command in the Control.Lens

API called makeLenses has also been explored for convenience of abstracting over Remote Object

automatically, and there is little doubt that on a per Remote Lens implementations, that the ability

to makeRemoteLenses would be constructible within Haskell’s TemplateHaskell library.

However, the Remote Lens Identities, Equation (4.1), are only Observably Equivalent and are

heavily dependent on trusting the programmer of the DSL to ensure proper results. It is an open

question whether a properly defined Remote View and Remote Set can closely model View and

Set, allowing for us replace Observational Equivalence with Behavioral Equivalence. All told,

there are many future avenues of research to pursue on this newly defined topic of Remote Lenses.
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