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Abstract

The abilities of feature learning, semantic understanding, cognitive reasoning, and

model generalization are the consistent pursuit for current deep learning-based com-

puter vision tasks. A variety of network structures and algorithms have been proposed

to learn effective features, extract contextual and semantic information, deduct the re-

lationships between objects and scenes, and achieve robust and generalized model.

Nevertheless, these challenges are still not well addressed. One issue lies in the ineffi-

cient feature learning and propagation, static single-dimension semantic memorizing,

leading to the difficulty of handling challenging situations, such as small objects, oc-

clusion, illumination, etc. The other issue is the robustness and generalization, espe-

cially when the data source has diversified feature distribution.

The study aims to explore classification and detection models based on hierarchical

semantic features ("transverse semantic" and "longitudinal semantic"), network ar-

chitectures, and regularization algorithm, so that the above issues could be improved

or solved. (1) A detector model is proposed to make full use of "transverse seman-

tic", the semantic information in space scene, which emphasizes on the effectiveness

of deep features produced in high-level layers for better detection of small and oc-

cluded objects. (2) We also explore the anchor-based detector algorithm and pro-

pose the location-aware reasoning (LAAR), where both the location and classifica-

tion confidences is considered for the bounding box quality criterion, so that the best-

qualified boxes can be picked up in Non-Maximum Suppression (NMS). (3) A seman-

tic clustering-based deduction learning is proposed, which explores the "longitudinal

semantic", realizing the high-level clustering in the semantic space, enabling the model

iv



to deduce the relations among various classes so as better classification performance

is expected. (4) We propose the near-orthogonality regularization by introducing an

implicit self-regularization to push the mean and variance of filter angles in a network

towards 90◦ and 0◦ simultaneously, revealing it helps stabilize the training process,

speed up convergence and improve robustness. (5) Inspired by the research that self-

attention networks possess a strong inductive bias which leads to the loss of feature

expression power, the transformer architecture with mitigatory attention mechanism

is proposed and applied with the state-of-the-art detectors, verifying the superiority of

detection enhancement.
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Chapter 1

Introduction

Recent development of the convolutional neural networks (CNNs) has brought significant progress

in computer vision, pattern recognition, and multimedia information processing (131; 16; 28; 161;

183; 48; 63; 146). As an important problem in computer vision, object detection has a large range

of applications, such as image retrieval, video surveillance, intelligent medical, and unmanned ve-

hicle (165; 131; 60). Since the breakthrough on image classification achieved by (83) in 2012, deep

learning has emerged as a powerful machine learning technique for computer vision tasks. In gen-

eral, the recent progress is mainly contributed by the efficient convolution network architecture,

multi-scaled multi-leveled data and feature representation, and effective learning, regularization

algorithms. These three factors play the dominant roles in solving the problems existed in current

deep learning based vision projects, especially for object detection and classification. The related

techniques have greatly advanced the performance of the state-of-the-art visual recognition sys-

tems, such as Faster-RCNN (133), YOLO (127), SSD (99), DenseNet huang2017densely, Feature

Pyramid Network (FPN) (95), and DETR (17), etc.

Object detection and classification has been extensively studied in the past decades. Re-

searchers have been working on improving model performance with respect to hard objects, com-

plicated scenes, good generalization, high efficiency and high-order intelligence. In my study,

we try to solve the existing object detection and classification problems by hierarchical semantic

1



features, including "transverse semantic" (spatial semantic features) and "longitudinal semantic"

(semantic space hierarchy) so that small scale, occlusion, deformation, viewpoint changes, illu-

mination, intra-classes variability could be better handled. We explore the deduction learning

algorithm to guide the network models automatically excavate semantic space structure so as to

enable themselves with basic cognitive learning ability. In order to reduce network learning re-

dundancy and enhance model robustness, we work on self-orthogonal regularization based on the

angle distribution of filters. Inspired by the attention mechanism and transformer which have the

best global feature association, I study the reason that leads to the feature expression loss inside

the transformer layer and propose a further improved model. I hope the proposed ideas and the

built technologies could be inspiring for further study in the literature.

1.1 Deep Learning and Vision Application

In this thesis, we study a series of problems in deep-learning based vision applications, ranging

from object detection, image classification, semantic and context learning, and regularization al-

gorithm. In the following part, related problems will be described. The existing challenges and the

proposed approaches will be discussed.

1.1.1 Object Detection

Figure 1.1: Examples of object detection by Single Shot MultiBox Detector (source: (99)).

Object detection in generic images contains recognition and localization towards the objects of
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multiple categories in unconstrained situations, which is an open and challenging problem (see ex-

amples in Figure 1.1). Precise localization and accurate object description are the ultimate goal for

scene understanding that determines What the objects are and Where they locate. Considering this

problem, we encode the classification and localization as two regression progresses, respectively.

The progress of most recent models can be attributed to the powerful feature extraction abil-

ity of CNN through building deeper or wider hierarchical structures given the great advancement

of computer hardware. The ideas of deep and residual connections (59; 67), network-in-network

and inception structures (149), multi-box and multi-scale techniques (99) and dense blocks (66)

consistently dedicate to enhancing the feature expression by multi-scale and wide-range feature

representation, especially the focus of details from shallow layers. This is beneficial to the precise

description towards objects (22) while is struggling for complicated situations with small and oc-

cluded objects. Efficient object detection depends not only on detail features, but also heavily on

semantic and contextual information, which is able to describe both the relationships among dif-

ferent objects and the correlation between objects and their contexts (22). In my study, we intend

to alleviate the above problem by making full use of deep features produced by the deep layers of a

network so that the contextual information could be adequately integrated into the learning process

through a single-shot framework. The details are discussed in Chapter 3. At the same time, I work

on the current deep learning based detection algorithms and find that the quality criterion towards

the bounding boxes entirely depends on the confidence of instance classification, regardless of the

fact that bounding boxes indicate the spatial relations as well. Given this problem, we propose the

location-aware box reasoning technique for anchor-based object detectors, referred in Chapter 4.

1.1.2 Deep Convolutional Neural Network and Regularization

As a fundamental step of many vision and multimedia process tasks, feature extraction and repre-

sentation has been widely studied (43; 149; 148), especially at the level of network structures, that

attracted a lot of attention in the deep learning field. Deep or wide networks amplify the differences

among architectures and give full play to improve feature extraction ability in many computer vi-
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Figure 1.2: Several examples of visual tracking (source: (167)).

sion applications (28; 161). The skip-connection technique (59) solved the problem of gradient

vanishing to a certain degree by propagating information across layers of different levels of the

network, shortening their connections, which stimulates the popular research in constructing much

deeper networks and has obtained improved performance. From the advent of LeNet5 (89) with 5

layers to VGGNet with 16 layers (137), to ResNet (59) which can reach over 1000 layers, the depth

of networks has dramatically increased. ResNet-101 (59) shows its advantage of feature extrac-

tion and representation, especially when being used as a base network for object detection tasks.

VGG network won second place in ImageNet Large Scale Visual Recognition Challenge(ILSVRC)

2014. It is shallow and thin with only 16 layers, which is another widely-used base network. Its

advantage lies in the provision with a trade-off between the accuracy and the running speed.

Another approach to enhancing the feature extraction ability is to increase the network width.

GoogleNet (149; 150) has realized the activation of multi-size receptive fields by introducing the

inception module, which outputs the concatenation of feature-maps produced by filters of different

sizes. GoogleNet ranked the first in ILSVRC 2014. It provided a feature expression scheme

of the inner layer, which has been widely adopted in later works. The residual-inception and

its variances (148; 150; 185) showed their advantage in error-rate over individual inception and
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residual technique. SqueezeDet (165) achieved state-of-the-art object detection accuracy on the

KITTI validation dataset with a very small and energy-efficient model, which is based on inner-

layer inception modules and continuous inter-layer bottleneck filtering units in the year 2017.

However, extracted features by convolution have the possibility of being changed, attenu-

ated, or merged through the long process of forward transmission in deep and complicated net-

works (94). Furthermore, by processing feature information through the complicated hierarchical

structure and transmitting it across multiple layers would reduce the efficiency of feature learning

and increase the computational load (164). The most pivotal is although the general feature ex-

traction ability especially for details is powerful enough for most popular CNN models, they suffer

from weak semantic expression and contextual inference, leading to poor performance when it

comes to small or occluded objects in intense or complicated scenes.

A general factor that determines the performance of deep neural networks in many applica-

tions, not just computer vision, but like natural language processing, is actually the regularization.

Regularization in deep learning plays an important role to help avoid the bad local minima on

the loss surface. In the literature researchers have made great efforts on this topic from different

perspectives, such as data (71; 91; 26), network architectures (187; 185; 59), losses (112), regu-

larizers (134; 5; 109), and optimization. Intuitively, orthogonal filters are expected to best span

the parameter space, since usually, the filter dimension is larger than the number of filters. How-

ever, with many noisy factors such as data samples and stochastic training, it may not be a good

idea to strictly preserve the filter orthogonality in deep learning. Recent work has demonstrated

that on benchmark datasets, classification accuracy using orthogonal filters (learned by PCA) is

inferior to that using learned filters by backpropagation (BP). Another recent work finds that hard

constraints on orthogonality can negatively affect the convergence speed and model performance

in the training of recurrent neural networks (RNNs), but soft orthogonality can improve the train-

ing. We notice that recently orthogonal filters (ORs) have attracted more attention but they are

evaluated together with other regularizers, such as weight decay, dropout, and batch normaliza-

tion. We argue that such experimental settings are hard to identify how much ORs contribute to the
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performance, compared with other regularizers. A similar argument has been addressed in where

the author showed that l2 regularization has no regularizing effect when combined with batch or

weight normalization, but has an influence on weights’ scale. These factors determine that most

previous regularization work would have a poor generalization and robust performance.

In this thesis, we propose the model that focuses on learning the deep features produced in high-

level layers of the network, which fully learns the semantic and contextual information expressed

by deep features. The proposed deep feature learning inception modules are able to simultaneously

activate multi-scale receptive fields within a single layer level, which equips them with the ability to

describe objects against various scenes. In contrast with previous regularization works, we firstly

propose transferring the angular prior distribution into deep learning as regularization, which is

demonstrated with better generalization than others. Moreover, the proposed method is directly

operated on activation, rather than filters, to compute the filter angles efficiently. This method is

more related to representation decorrelation and orthogonality regularizers in the literature. The

details are discussed in Chapter 3 and Chapter 6.

1.2 Object Detection with Transformer

Modern detectors (133; 128; 96) generate dense anchors using the sliding window method to es-

tablish connections between object predictions and the ground truth. Post-processing methods

like non-maximum suppression (NMS) is used to remove the redundancy of predictions. While

these are hand-crafted components that are unable to achieve the actual end-to-end object detec-

tion. Recently, DETR (17) is proposed to build an end-to-end framework based on an encoder-

decoder transformer (158) architecture with the bipartite matching loss, which directly predicts a

set of bounding boxes without post-processing techniques. Furthermore, the transformer network

is based on attention mechanism, which makes it the most general feature association technique

in terms of deep learning literature, such as CNN and Multi-Layer Perceptron (MLP) (36). This

versatile and powerful relation modeling capability of Transformers with the CNN backbone for

feature expression enable DETR to become a significant pipeline for future detectors.
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However, DETR comes with the challenges of training and optimization, where large-scale

training data and an extremely long training schedule are required. Specifically, DETR has two

issues: (1) It requires more training epochs to stable converge than previous modern detectors. (2)

DETR delivers relatively low performance when detecting objects with small scales. Deformable

DETR (197) tries to solve the two problems by replacing global scoped attention with local spatial

attention so as to accelerate the training convergence and introducing multi-scale feature maps for

better handling small objects. Up-detr (30) proposes the random query patch detection to pre-train

the transformers in DETR for a better trade-off between classification and localization preferences

in the pretext task and faster convergence and higher detection accuracy could be expected. While

these models all solve the existing problems from the data end by pre-training or the diverse scales

of feature maps, which are data-dependent and procedure-complicated for generalization. My

research works on solving the problem by Transformers’ inner working mechanism so that the

proposed model could be data-independent and easy for generalization and inspire further study.
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Chapter 2

Background and Literature Review

In this section, we introduce the basic background and review some of the state-of-the-art tech-

niques related to the topics in this dissertation. We, firstly, will briefly lead the fundamental devel-

opment of deep learning and discuss some import variants of deep neural networks for computer

vision. Next, we will review the progresses and challenges inspired by deep learning for the appli-

cations of object detection and network regularization.

2.1 Deep Neural Networks

Deep learning is so compelling today that it is more of a mental innovation than a mechanical one.

Deep learning seeks to automate intelligence bit by bit, and in the past few years it has achieved

enormous success and progress in this endeavor, exceeding previous records in Computer Vision,

Speech Recognition, and many other fields. Deep neural network is the powerful deep learning

technique, which makes use of multi-layers artificial neurons in hierarchical architectures. In this

section, we will discuss five main topics related to deep neural networks and computer vision,

including Deep forward Networks (64; 49; 114), Convolutional Neural Networks (CNNs) (89),

Inception Module (149), popular object detectors (128; 99), and Deep Learning Regularization (91;

52).
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2.1.1 Deep Forward Networks

Deep feedforward networks, also called feedforward neural networks, or multilayer percep-

trons (MLPs), are the quintessential deep learning models (52). The feedforward network aims to

approximate some function f ∗, like y = f ∗(x) which maps an input x to a category y. Thus, the

mapping that a feedforward network defines can be represented as below,

y = f (x;θ) (2.1)

which learns the parameters θ that determine the best function approximation. The so-called

feedforward refers to that information flows through the function being evaluated from x, through

the intermediate computations used to define f , and to the output y in the end. And there are

no feedback connections in which outputs of the model are fed back into the model itself. For

example, the convolutional networks used for object recognition from images are a specilized kind

of feedforward network. If considering the feedback connections, the feedforward neural networks

are called recurrent neural networks, which usually work for the natural language process.

The structures of neural networks are most commonly chain structures that can be expressed

by the following form,

f (x) = f n( f n−1( f n−2(... f 2( f 1(x))))) (2.2)

where each function f refers to one layer. Thus, in this case, f n indicates the nth layer, f n−1 the

n−1th layer, f 2 the second layer, and the f 1 the first layer. The overall length of the chain gives the

depth of the model. The final layer of the feedforward network is called the output layer. The other

layers except for the input and output layers are hidden layers, with which the learning algorithm

implement an approximation of f ∗. The dimensionality of these hidden layers determines the

width of the network.

Linear models, such as logistic regression and linear regression, can be fit efficiently and re-

liably, either in closed form or with convex optimization. But they have the obvious defect that

the model capacity is limited to linear functions that can not understand the interaction between
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any two input variables. Thus, we apply the linear model not to x itself but to a transformed input

gx, where g is a nonlinear transformation. We use the following nonlinear function to describe the

features,

h = g(WT x+ c) (2.3)

where W provides the weights of a linear transformation and c the biases. Now suppose we choose

the linear model with θ consisting of w and b, a vector of weights and a scalar bias parameter

respectively. The model is defined to be,

y = f (x;w,b) = wT x+b (2.4)

Then combining with the nonlinear function of h, the complete operation for a single layer of a

network can be specified as,

y = wT h+b = wT (g(WT x+ c))+b (2.5)

In modern neural networks, the default recommendation for function g is to use the rectified linear

unit, or ReLU (73; 114; 50).

2.1.1.1 Gradient-based Learning

To build a deep learning algorithm, we need to specify an optimization procedure, a cost function,

and a model family. The neural network is usually trained by using iterative, gradient-based opti-

mizer that merely drive the cost function to a very low value, rather than the linear equation solvers

used to train linear regression models or the convex optimization algorithms with global conver-

gence guarantees used to train logistic regression or SVMs. In the following sections, we will

come the details of how to obtain the gradient using the back-propagation algorithm and modern

generalizations of the back-propagation algorithm. To apply gradient-based learning, there should

be a defined cost function and a represented output of the network model.
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2.1.1.2 Cost Functions

In most cases, deep neural networks define a distribution p(y|x;θ) and use the principle of max-

imum likelihood. This means the cross-entropy between the training data and the predictions is

used as the cost function. The entire cost function used to train a neural network often combines

one of the primary cost functions described here with a regularization term. For the most common

training with maximum likelihood, the cost function is simply the negative log-likelihood, equiv-

alently described as the cross-entropy between the training data and the model distribution. This

cost function can be described as below.

J(θ) =−Ex,y log p(y|x) (2.6)

The specific form of the cost function changes with different models, depending on the definition

of log p. The advantage of deriving the cost function from maximum likelihood is that specifying

a model p(y|x) automatically determines a cost function log p(y|x). The disadvantage property of

the cross-entropy cost used to perform maximum likelihood estimation is it tends not to having

a minimum value when applied in practice. If the model can control the density of the output

distribution then it becomes possible to assign extremely high density to the correct training set

outputs, leading to cross-entropy approaching negative infinity. Regularization techniques in the

next section will discuss several ways of modifying the learning problem so as to avoid the related

problem mentioned above.

Besides learning a full probability distribution p(y|x;θ), we often want to learn just one condi-

tional statistic of y given x. Solving an optimization problem with respect to a function requires the

calculus of variations. One derived result using calculus of variations is to solve the optimization

problem,

f ∗ = argmin
f

Ex,y‖y− f (x)‖2 (2.7)

By minimizing the mean squared error cost function, it would give a function that predicts the
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mean of y for each value of x. The other result derived using calculus of variations is,

f ∗ = argmin
f

Ex,y‖y− f (x)‖1 (2.8)

which yields a function that predicts the median value of y for each x.

However, the two derived functions above easily lead to poor results when used with gradient-

based optimization, embodied by small gradients. This shows the reason that the cross-entropy cost

function is more popular than them , even though it is not necessary, in some cases, to estimate the

entire distribution p(y|x).

2.1.1.3 Back-Propagation

During training, forward propagation can continue onward until it produces a scalar cost J(θ).

The back-propagation algorithm( (136)) allows the information from the cost to flow backward

through the network for computing the gradient. Back-propagation refers only to the method for

computing the gradient, while other algorithms, like stochastic gradient descent, is to perform

learning using this gradient. The most often gradient is of the cost function with respect to the

parameters, ∇θ J(θ).

Chain Rule of Calculus. The chain rule of calculus is used to compute the derivatives of functions

by composing other functions whose derivatives are known. Back-propagation is an algorithm

that computes the chain rule, with a specific order of operations that is certified highly efficient.

Specifically, for the map that can be derived, we can use the variable parameters of the map to

deduct and use the gradient descent method to slowly make the variable parameters close to what

is expected which makes the loss smaller. Deep learning imposes multiple mappings and performs

multiple mapping operations on the input. In theory, the performance of multiple mapping will

be higher than a single mapping. After optimization, the loss can be made smaller. Suppose x

is the input of the network, which is usually a vector or a matrix in the field of computer vision,

and z represents the calculated loss from the cost function. Function net1, net2,..., netn−1, and netn
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represent mappings of different layers, and o1, o2,...,on−1, and on are their outputs respectively.

The x here refers to the input data, but the meaning of the input value is not significant, because

we can not change the data to make the target cost smaller. The actual situation is to change the

variable contained in each map, like the weights and bias. For example, if the θm is the variable in

map m, we can calculate ∂ z/∂θm by the following chain rule of calculus.

∂ z
∂θm

=
∂ z

∂on

∂on

∂on−1
...

∂om+1

∂om

∂om

∂θ f
(2.9)

2.1.2 Network Learning and Optimization

Deep neural networks learn a certain task by minimizing the loss value defined by the object

function. This process relies on updating and finding the parameters θ of a neural network that

significantly reduce the cost function J(θ). This is realized by an optimization technology, used as

the training algorithm in this deep learning case.

Stochastic gradient descent (SGD) is probably the most used optimization algorithm for deep

learning in general. It is possible to obtain an unbiased estimate of the gradient by taking the

average gradient on a mini-batch of m examples. As for the learning rate, the crucial parameter of

SGD, we usually gradually decrease it over iterations and denote it at iteration k as εk. It is common

to decay the learning rate linearly until iteration τ . After τ , it is usually to leave ε constant. Suppose

there is a mini-batch of m examples from the training set {x(1), ...,x(m)} with corresponding targets

y(i). Then the estimated gradient, ĝ can be expressed as below, and be updated right after the

iteration i,

ĝ =
1
m

∇θ ∑
i

L( f (x(i);θ),y(i)) (2.10)

θ = θ − εkĝ (2.11)

The property of SGD that really matters during training is that the computation time per update

does not grow with the number of training examples, which allows convergence even when the

number of training examples becomes much larger.
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2.2 Convolutional Neural Network (CNN)

Figure 2.1: The architecture of LeNet-5 network (source: (89)).

The evolution of convolutional neural network (CNN) is inspired by the progress in visual

perception mechanism of the living creatures (53). (42) introduced the concept of local receptive

fields (70) into their neocognitron. (88) proposed the modern framework of CNN and it was later

improved by (89). A classical CNN network LeNet-5 is shown in Figure 2.1.

Convolutional Neural Networks (CNN) process data that has a known grid-like topology, like

time-series data and image data. They use convolution in place of general matrix multiplication

in at least one of the layers. The convolutional layer is the core building block of a deep CNN.

It consists of a set of learning filters with weights and biases. The most important idea that CNN

leverages to improve the performance of deep learning system is parameter sharing, which pro-

vides a means for working with inputs of variable sizes and a solution for avoiding parameter

explosion of traditional neural networks.

Traditional neural network layers use matrix multiplication where each output unit interacts

with every input unit. This would introduce a huge burden of parameters by just several layers,

which is a challenge for memory storing and severely limits the representation ability of a neural

network. It is a reason why traditional neural networks hits its developing bottleneck decades ago.

The development of CNN broke this bottleneck and realized the efficient processing for large-

scale input data by parameter sharing. Parameter sharing uses the same parameter for more than

one convolutional filters in a model layer. Each filter (kernel) is used at every position of the input.

The parameter sharing used by the convolution operation means that rather than learning a separate
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set of parameters for every location, we learn only one set.

As shown in Fig. 2.1, the region against the original input image that the filter activates is

called the receptive filed. This is determined by the filter size. The third dimension of the filter is

called the channel number, which depends on the input volume. After convolution, each filter will

produce a 2-dimensional feature map as the activation response of a specific spatial location. An

element-wise nonlinear activation function is commonly used on the feature map.

Considering the operation efficiency and the learning towards semantic information by larger

receptive field, the pooling layer is usually introduced after several convolutional layers. This

pooling layer, also known as subsampling layer, does not consist of learnable parameters. It reduces

the spatial size of input volume by down-sampling. The typical subsampling methods are max

pooling or average pooling, which extracts the maximum value or the average value from the

subregion.

For final information fusion, the fully connected layer is usually introduced in the top part of

the network. It has dense connection with its input volume. As shown in Fig. 2.1, the F6 layer

has 84 neurons, and the output layer has 10 neurons. The 84 neurons on F6 layer are densely

connected with neurons on the output layer.

2.3 Object Detection with Convolutional Neural Network

The biologically-inspired convolutional networks have recently attracted lots of attention in the

computer vision community, where object classification and detection is one of the most popular

applications. Conventionally, features are extracted from input images by robust hand-craft method

(Harr by (119), SIFT by (102), HOG by (31)) for the task of object detection. There are two typical

approaches that are based on region proposal and sliding window, respectively. Before the advent

of deep neural networks, the state-of-the-art models for each approach are Selective search by (155)

and Deformable Parts model (DPM) by (40). Selective search integrates exhaustive search and

segmentation to generate all the possible object locations (155). DPM builds part representations

of objects in a graphical model and learns a discriminative part-based models for variety of objects
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classes (40).

The deep neural networks gained extensive attention since the success on large-scale image

classification task by (83). R-CNN (48), as a region-based approach, dramatically boosted the

performance improvement of object detection. R-CNN (48) leverages selective research to gener-

ate region proposals on a given image (155), and extracts features by a convolutional network. It

uses Support Vector Machine (SVM), a discriminative classifier, to score the bounding boxes, and

non-maximum suppression (NMS) to rank the proposed bounding boxes, eliminating duplicate

detection. R-CNN, nevertheless, is time-consuming. Later on, the spatial pyramid pooling (SPP)

layer is introduced to speed up the R-CNN by SPP-Net (58). It is able to adaptive to multi-scale

region proposals and to share the features computed over feature maps generated at multiple im-

age resolutions with the classification layers. (47) extends SPP-Net in Fast R-CNN, where we can

fine-tune the network end-to-end in the framework of multi-task learning by minimizing the loss

for both bounding box and confidence regressions.

The further development of object detection started from generating high quality region pro-

posals by deep neural networks. In Faster R-CNN, (133) proposes a Region proposal network

(RPN) by sharing the computation and generating the proposals using two neural networks. (16)

proposes a multi-scale deep CNN for fast object detection by integration of two sub-networks, one

is the proposal network and the other is the object detection network. (80) introduces a deep hier-

archical network to handle region proposal generation and object detection jointly by aggregating

hierarchical feature maps and compressing them into a uniform space. (186) learns a detector by

integrating hierarchical features with object context and DeepMask object proposals (123). (182)

proposes a cascaded rejection classifier to eliminate negative object proposals and to learn convo-

lutional features. (142) learns a region-based object detector using an online hard example mining

algorithm to simplify training.

We usually name the above methods by two-stage models. In OverFeat, (141) adopts the sliding

window approach in a convolutional neural network to perform classification, localization, which

adapts the localizer to predict bounding boxes directly for detection. YOLO (128) and SSD (99)
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formulate object detection as a regression problem in a single-shot deep neural network, optimized

via end-to-end training strategy. Those methods are usually called object-stage method. They are

based on grid approach, where each image is separated into several grids during both training and

test inference. YOLO predicts the confidences of multiple categories for each grad cell with an

object and the bounding boxes using the whole topmost feature map. SSD adopts a fixed set of

boxes for a certain possible object and predicts the confidence score of each object category within

a box. (115) regresses the bounding boxes in a multi-scale grid framework. (8) uses spatial recur-

rent neural network to integrate the contextual information and leverages skip pooling to exploit

the multi-scale representations of the objects. (10) learns a hierarchical object detector by a deep

reinforcement learning agent. RetinaNet (96) and RefineDet (189), as one-stage methods, obtain

the top object detection performances on the challenging benchmark COCO (97) in the recent two

years. RetinaNet addresses the class imbalance by reshaping the standard cross entropy loss so

as to down-weight the loss assigned to well-classified examples, and introduces the feature pyra-

mid network in its backbone for an efficient, rich, and multi-scale feature expression from a single

resolution input image. RefineDet proposes the anchor refinement by filtering negative anchors

and adjusting the locations and sizes of them, and the transfer connection block by transferring

the features in anchor refinement module to further improve the regression and multi-class label

prediction.

2.4 Feature Expression and Inception Technology

As a fundamental and vital step of vision and multimedia tasks, feature expression has been widely

studied (43; 149; 148), especially on the level of network structures. Deeper or wider networks

amplify the differences among architectures and gives full play to improve feature extraction abil-

ity (28; 161).

The skip-connection (59) solved the problem of gradient vanishing by propagating informa-

tion across different layers of the network, shortening their connections, which enables to con-

struct much deeper networks. From the advent of LeNet5 (89) with 5 layers to VGGNet with 16
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layers (137), to ResNet (59) reaching over 1000 layers, the depth of networks has dramatically

increased. The ideas of residual connections (59; 67), dense connection (66) dedicate to substan-

tially enhancing feature expression by strengthening feature propagation, and encouraging feature

reuse, especially the details from low-level layers.

Another approach to enhancing the feature expression ability is to increase the network width.

GoogleNet (149; 150) realizes the activation of multi-scale receptive fields by introducing the

inception module, which outputs the concatenation of feature-maps produced by filters of different

sizes. GoogleNet ranked the first in ILSVRC 2014. It provides a feature expression scheme of

inner layer. The residual-inception and its variances (148; 150; 185) show their advantage in error-

rate over simple inception and residual technique. SqueezeDet (165) achieves the state-of-the-art

object detection accuracy on the KITTI validation dataset with a very small and energy efficient

model, which is based on inner-layer inception and continuous inter-layer bottleneck filtering in

the year of 2017.

2.4.1 Inception Technology

To boost CNN performance simply by going deeper or wider would easily bring about following

problems:

• Explosive parameters which easily leads to over-fitting;

• Complex computation which tends to poor adaptation;

• Vanishing gradients which is liable to hard optimization.

Although reducing the number of parameters would solve the above problems, the change from

full connection to sparse connection will not substantially boost the computation performance as

the computation time towards sparse matrix is hard to decrease. The Inception proposed by GoogL-

leNet (149) is able to cluster sparse matrices to intense submatrices for efficient computation,

which is a new "basic neuron" architecture for building sparse and efficient networks.
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The initial inception deep convolutional architecture was named Inception-v1 (149). Later the

Inception architecture was refined in various ways, first by the introduction of batch normaliza-

tion (71) (Inception-v2), and second by additional factorization ideas in the third iteration (150)

which is referred to as Inception-v3, and third by more inception blocks than Inception-v3 in

Inception-v4 (148). Later the author combines the Inception architectures with residual connec-

tion to develop the Inception-ResNet (148) for further boosting the performance.

For Inception-v1 in Figure(a), it combines the common 1×1, 3×3, and 5×5 convolutions in the

same layer level, which increases the width of the network and improves the adaptation towards

scale variation at the same time. The pooling layer reduces data scale for alleviating over-fitting.

However, the filter kernel with large size means more parameters although it provides with larger

receptive field. For example, there are 25 parameters for 5× 5 convolution kernel while only

9 parameters for 3x3 convolution, where the former one is 2.78 times the latter one. Thus, in

Inception-v2 shown in Figure(b), GoogLeNet proposes leveraging 2 continuous 3x3 convolution

to replace the single 5×5 convolution, which maintains the scope of receptive field and reduces the

parameters. By intensive experiments, GoogLeNet certifies that this replacement will not loose the

ability of feature expression. For Inception-v3, it introduces the "Fraction", where 7×7 is replaced

by two 1D convolution, 1×7 and 7×1 as the illustration shows, similar operation for 3×3 as well.

This accelerates the computation and deepen this module with benefit of strengthening the non-

linear of the network. Inception-v4 combines inception and residual technique, bringing about

higher speed and better performance.

2.5 Regularization

Regularization in deep learning plays an important role to help avoid the bad local minima on

loss surface. In the literature researchers have made great efforts on this topic from different

perspectives, such as data (71; 2; 26), network architectures (187; 59; 185), losses ((112)), regular-

izers (52; 134; 191; 4; 110), and optimization (65; 140; 68). There are many specific regularization

techniques. For instance, weight decay is essentially an `2 regularizer over filters, dropout takes
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random neurons for update, and BN utilizes the statistics from mini-batches to normalize the fea-

tures. As our work is more related to representation decorrelation and orthogonality regularizers

in the literature, more details below will be about them.

Representation Decorrelation: Cogswell (26) proposed a regularizer, namely DeCov, to learn

non-redundant representations by minimizing the cross-covariance of hidden activation. Similarly,

Gu (54) proposed another regularizer, namely Ensemble-based Decorrelation Method (EDM), by

minimizing the covariance between all base learners (hidden activation) during training. Yadav and

Agarwal (181) proposed regularizing the training of RNNs by minimizing non-diagonal elements

of the correlation matrix computed over the hidden representation, leading to DeCov RNN loss and

DeCov Ensemble loss. Zhu (198) proposed another decorrelation regularizer based on Pearson

correlation coefficient matrix working together with group LASSO to learn sparse neural networks.

Orthogonality Regularizers: Harandi and Fernando (56) proposed a generalized BP algorithm

to update filters on the Riemannian manifolds as well as introducing a Stiefel layer to learn or-

thogonal filters. Vorontsov (160) verified the effect of learning orthogonal filters on RNN training

that is conducted on the Stiefel manifolds. Huang (68) proposed an orthogonal weight normaliza-

tion algorithm based on optimization over multiple dependent Stiefel manifolds (OMDSM). Xie

(173) proposed a family of orthogonality-promoting regularizer by encouraging the Gram matrix

of the functions in the reproducing kernel Hilbert spaces (RKHS) to be close to an identity matrix

where the closeness is measured by Bregman matrix divergences. Rodríguez (134) proposed a

regularizer called OrthoReg to enforce feature orthogonality locally based on cosine similarities

of filters. Bansal (4) proposed another two orthogonality regularizers based on mutual coherence

and restricted isometric property over filters, respectively, and evaluated their gain in training deep

models.

2.6 Attention Mechanism and Transformers

Attention mechanism is an integral part of compelling sequence modeling and transduction models

in various tasks. It allows modeling of dependencies without considering their distance in the input
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or output sequences (3; 77). The early most attention mechanisms are used in conjunction with a

recurrent network (120).

The attention function maps a query and a set of key-value pairs to an output, where the query,

keys, values, and output are all vectors. The output is the weighted sum of the values, where

the weight assigned to each value is computed by a compatibility function of the query with the

corresponding key (158).

Dot-Product Attention: Dot-Product Attention is particularly called "Scaled Dot-Product Atten-

tion". Its input consists of queries and keys with the dimension of dk, and values with the dimension

of dv. The query is used to compute the dot products with all keys, and then the dot product each

is divided by
√

dk, and finally a softmax function is applied to obtain the weights on the values.

In practice, the attention function is computed simultaneously on a set of queries, packed together

into a matrix Q. The keys and values are also packed together into matrices K and V . The output

matrix could be described as,

Attention(Q,K,V ) = so f tmax
(

QKT
√

dk

)
V (2.12)

Figure 2.2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel (source: (158)).
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Multi-Head Attention: It is found more beneficial to linearly project the queries, keys and val-

ues h times with different, learned linear projections to dk, dk and dv dimensions respectively, in

comparison with conducting a single attention function with dmodel-dimensional keys, values and

queries (158). The attention function then is performed in parallel on each of these projected ver-

sions of queries, keys and values, which yields dv-dimensional output values. These are concate-

nated and projected again, resulting in the final values, just as the depict in Figure 2.2. Multi-head

attention enables the model to jointly attend to information from different representation subspace

at different positions (158).

MultiHead(Q,K,V ) = Concat(head1, . . . ,headh)W O

where headi = Attention(QW Q
i ,KW K

i ,VWV
i )

(2.13)

where the parameter matrices W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and W O

i ∈

Rhdv×dmodel are the projections.

Self-attention: Self-attention is the attention mechanism that relates different positions of a single

sequence so as to compute a representation of the sequence (158). Self-attention has been success-

fully applied in a various tasks ranging from reading comprehension, abstractive summarization,

textual entailment, learning task-independent sentence representations, and detection related vision

tasks (24; 120; 122; 98; 158; 17).

Transformer: Transformer is a model architecture entirely relying on an attention mechanism to

draw global dependencies between input and output. The Transformer enables significantly more

parallel and can obtain a new state of the art in translation quality and a competitive detection

accuracy (158; 17).

Transformer applies multi-head attention in the encoder-decoder attention layers, the queries

coming from the previous decoder layer, and the memory keys and values produced from the

output of the encoder. This enables every position in the decoder to attend over all positions in

the input sequence. The encoder contains self-attention layer, where all of the queries, keys, and

values come from the same place, the output of the previous layer in the encoder in this case.

22



Figure 2.3: The Transformer - model architecture (source: (158)).

Each position in the encoder can attend to all positions in the previous layer of the encoder (158).

Similarly, self-attention layers in the decoder allow each position in the decoder to attend to all

positions in the decoder up to and including that position. The details of Transformer connection

architecture is depicted in Figure 2.3.
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Chapter 3

Multi-Scale Deep Feature Learning

Network for Object Detection

In this section, we discuss the transverse semantic, the spatial semantic features, exploring how

it influences the feature expression and vision application. We show some preliminary results of

deep feature learning based object detection and near-orthogonality regularization via angular prior

distribution transfer.

3.1 Multi-Scale Deep Feature Learning Network for Object Detection

In this section, we illustrate our results for object detection using the proposed deep feature learning

partly based on our paper by (106).

This paper proposes an innovative object detector by leveraging deep features learned in high-

level layers. Compared with features produced in low-level layers, the deep features are better

at expressing semantic and contextual information. The proposed deep feature learning scheme

shifts the focus from concrete features with details to abstract ones with semantic information.

It considers not only individual objects and local contexts but also their relationships by build-

ing multi-scale deep feature learning network (MDFN). MDFN efficiently detects the objects by

the proposed deep feature leanring inception modules into the high-level layers, which employ
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Figure 3.1: The flow-chart of the proposed fast object localization and tracking strategy.

parameter-sharing to enhance the computational efficiency. MDFN provides a multi-scale object

detector by integrating multi-box, multi-scale and multi-level technologies. MDFN achieves better

or competing detection results than those models with macro hierarchical structures, by building a

simple framework with a relatively small base network (VGG-16).

MDFN integrates the semantic and contextual information into the learning process through a

single-shot framework. As shown in Figure 3.1, the abstract features with semantic and contextual

expression can be activated by multi-scale receptive fields on feature maps. The red, yellow, blue

and green components represent four sizes of filters, which correspond to different object descrip-

tions. For example, the red one tends to be sensitive only to the red vehicle in the middle, while

the yellow and the blue ones also cover the small cars around it, providing the correlations among

different object cars. The green one has the largest activation range, and it not only detects all ve-

hicles but also the road, passing out the relationships between objects and their background. This

process that conveys various semantic expression can be realized in deep layers where the recep-

tive fields are able to cover larger scenes and the feature maps are equipped with strong abstract

ability (22; 94). Detail discuss and analysis are shown in the following sections.
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3.1.1 Deep Feature Learning

The feature maps produced in deep layers are believed to be used for removing irrelevant contents

and extracting semantic and the most important characteristics of objects against background. In

contrast, the activation towards feature maps from earlier layers are supposed to extract various

details, such as textures or contours of objects or concrete background description (143; 107).

Currently, most deep convolutional neural networks suffer from the detection of small and occluded

objects, which has not been well solved even with much more complicated models (99). In our

study, we claim that the detection of small and occluded objects depends not only on detail features

but also on sufficient semantic and contextual expression (163; 162). Deep features have better

expression towards the main characteristics of objects and more accurate semantic description of

the objects in the scenes (94; 164).

3.1.1.1 Deep Feature Extraction and Analysis

With the increase of layers, feature maps produced from the deep part of the network become

abstract and sparse, with less irrelevant contents, serving for the extraction of the main-body char-

acteristics of the objects (143; 107). These feature maps have smaller scales but correspond to

larger receptive fields. This determines their function of deep abstraction to distinguish various

objects with better robust abstraction so that features are relatively invariant to occlusion (130).

Since feature maps from intermediate levels retrieve contextual information either from their shal-

lower counterparts or from their deeper counterparts (130), the extraction of deep features from

consecutive layers is necessary. Our model will directly process high-resolution feature informa-

tion from base network and their outputs will be directly fed to the output layers for shortening the

path of feature propagation and enhancing the efficiency of feature usage. The following analysis

will provide the theoretical support for this scheme.

Feature extraction in CNN can be expressed as a series of non-linear filtering operations as

follows (130).

Ψn = fn(Ψn−1) = fn( fn−1(... f1(X))) (3.1)
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where Ψn refers to the feature map in layer n, and fn denotes the n-th nonlinear unit which trans-

forms the feature map from layer n−1 to the n layer.

Ô = O(Tn(Ψn), ...,Tn−l(Ψn−l)),n > l > 0 (3.2)

In equation (2), Tn is the operation transmitting the output feature maps from the n-th layer to

the final prediction layer. Thus, equation (2) is an operation of multi-scale output; and O stands for

the final operation that considers high-level outputs.

According to (130), equation (2) performs well relying on the strong assumption that each

feature map being fed into the final layer has to be sufficiently sophisticated to be helpful for

detection and accurate localization of the objects. This is based on the following assumptions: 1)

These feature maps should be able to provide fine details especially for those from earlier layers;

2) the function that transforms feature maps should be extended to the layers that are deep enough

so that the high-level abstract information of the objects can be built into feature maps; 3) the

feature maps should contain appropriate contextual information such that the occluded objects,

small objects, blurred or overlapping ones can be inferred exactly and localized robustly (130;

133; 144; 22; 94). Therefore, the features from both the shallow and deep layers play indispensable

roles for the object recognition and localization. Moreover, the feature maps from the intermediate

levels retrieve contextual information either from their shallower counterparts or from their deeper

counterparts (130). Thus, some work tries to make the full utilization of the features throughout

the entire network and realizes connections across layers as many as possible, so as to maximize

the probability of information fusion, like DenseNet (66).

Although maximizing information flow across the entire network would be able to make full

use of feature information, there is a possibility that this intense connection across layers does

not achieve the expected effectiveness as the negative information would also be accumulated

and passed during the transmission process, especially in the deep layers (159; 164). Moreover,

features with low intensity values are easy to be merged (100), and the heavy computation load
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can not be avoided. This analysis can be shown in the following equation.

Ψn +δn = fn(Ψn−1 +δn−1) = fn( fn−1(... fn−p(Ψn−p +δn−p))),n > p > 0 (3.3)

where δn is the accumulated redundancy and noise that existed in layer n, and δn−p is the corre-

sponding one in shallow layers.

Based on the above analysis, in order to efficiently exploit the detected feature information, an-

other constrained condition should be considered so as to prevent the features from being changed

or overridden. We claim that the feature transmission across layers should decrease the probabil-

ity of features being changed by drift errors or overridden by the irrelevant contents, and should

minimize the accumulation of the redundancy and noise especially in the deep layers. Thus, fea-

ture transmission within the local part of the network or direct feature-output should be a better

solution to effectively employ this information. To this end, we propose the following multi-scale

deep feature extraction and learning scheme, which will support the above strong assumptions and

satisfy the related constrained conditions.

Ψm = Fm(Ψm−1) = Fm(Fm−1(...Fm−k(Ψn))),m− k > n (3.4)

Fj = S( f j( f j( f j(Ψ j−1))), f j( f j(Ψ j−1)),

f j(Ψ j−1),Ψ j−1;Wj),m− k ≤ j ≤ m
(3.5)

Ô = O(Tm(Ψm),Tm−1(Ψm−1), ...,Tm−k(Ψm−k),Tm− j(Ψm− j)), j > k (3.6)

where m indicates high-level layers, Ψm is the corresponding output feature maps of layer m. The

function Fj maps Ψ j−1 to multi-scale spatial responses in the same layer j. F is functioned by S,

the feature transformation function, and weighted by W . All feature information produced in high-

level layers would be directly fed to the final detection layer by the function T . Ψm− j represents

the feature map from some shallow layer. The inputs of function O include feature maps from

low-level layers and those from high-level layers.

The above scheme considers feature maps produced from shallow layers which have high reso-
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lution to represent fine details of objects. This is in accordance with the first mentioned assumption.

Fm are designed for deep layers of the network to introduce deep abstraction into the output fea-

ture maps. Moreover, multi-scale receptive fields within a single deep layer are sensitive to most

important features and objects in the contexts of different sizes, which makes the output powerful

enough to support the detection and localization, and directly responds to the strong suggestion.

At the same time, several continuous deep inception units provide the probability that feature maps

from intermediate levels can retrieve contextual information from both lower and deeper counter-

parts. This is beneficial to detecting the exact locations of overlapped objects, occluded, small,

and even blurred or saturated ones which need to be inferred robustly (133; 144). This satisfies the

above assumptions 2) and 3).

Instead of building connections across layers, the consecutive deep inception realizes the same

function of multi-scale feature maps, abstraction and contextual information built-in and simul-

taneously avoids the problem of introducing redundancy and noise as described in the proposed

constrained condition. Moreover, the multi-scale inceptions would produce more variety of infor-

mation, rather than simply increase the information flow by connections across the layers. Based

on the above analysis, the proposed model makes the training smoother and achieves a better per-

formance of localization and classification.

3.1.1.2 Deep Feature Learning Inception Modules

Deep feature learning inception modules capture the direct outputs from the base network. Our

basic inception module makes full use of the deep feature maps by activating multi-scale receptive

fields. In each module, we directly utilize the output feature information from the immediate pre-

vious layer by 1× 1 filtering. Then, we conduct 3×3, 5×5 and 7×7 filtering to activate various

receptive fields on the feature maps so as to capture different scopes of the scenes on the corre-

sponding input images. We realize the multi-scale filtering only with the 1×1 and 3×3 filters in

practice to minimize the number of parameters (150; 106). We build two types of power operation

inception modules for the high-level layers: one is information square inception module, and the
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Figure 3.2: Deep feature learning inception modules. (a) The core and basic deep feature trans-
mission layer structure. (b) and (c) denote the two actual layer structures of information square
and cubic inception modules. Red and green arrows indicate the way of parameter sharing. Ψ j−1
represents feature maps from previous layer and Ψ j denotes the output feature maps from current
layer.

other is information cubic inception module, as shown in Figure 3.2. We build these two mod-

ules by assigning weights to different filters as given in the following equations, where the two

operations are denoted by F2
j and G3

j , respectively.

F2
j (Ψ j−1) = f j( f j(Ψ j−1))+2× f j(Ψ j−1)+Ψ j−1,m− k ≤ j ≤ m (3.7)

G3
j(Ψ j−1) =g j(g j(g j(Ψ j−1)))+3×g j(g j(Ψ j−1))+

3×g j(Ψ j−1)+Ψ j−1,m− k ≤ j ≤ m
(3.8)

where the 5×5 filer is replaced by two cascaded 3×3 filters and the 7×7 filter is replaced by three

cascaded 3×3 filters. This replacement operation has been verified to be efficient in (150). The

number of parameters of the two cascaded 3×3 filters only accounts for 18/25 of that of one single

5×5 filter (150). By manipulation, the expressions of (7) and (8) can be approximated by the

following information square and cubic operations, respectively.

F2
j (Ψ j−1) = ( f 2

j +2× f j +1)(Ψ j−1) = (( f j +1)2)(Ψ j−1) (3.9)
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G3
j(Ψ j−1) = (g3

j +3×g2
j +3×g j +1)(Ψ j−1) = ((g j +1)3)(Ψ j−1) (3.10)

3.1.1.3 Parameter Sharing

The proposed information square and cubic inception modules can be implemented efficiently

by sharing parameters. For example, we share parameters between the 3×3 and 5×5 filtering

units by extracting outputs from the first 3×3 filter of the 5×5 unit and concatenate it with the

parallel outputs from the 3×3 filtering unit. Then, the number of output tunnels of the 3×3 filtering

operation is implicitly doubled while the set of filters are only used once, as indicated by the

red arrows in Figure 3.2 (b). This parameter-sharing can be further used in the cubic inception

module as shown in Figure 3.2 (c). The outputs of the 3×3 filtering operation come from the 3×3,

5×5, and 7×7 filtering unit respectively as indicated by the three red arrows in Figure 3.2 (c).

Similarly, those outputs of the 5×5 filtering operation come from the 5×5 and the 7×7 filtering

unit respectively as shown by the two green arrows.

3.1.2 Multi-Scale Object Detection Scheme

deep feature learning inception modules
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Figure 3.3: The architecture of MDFN. The proposed deep feature learning inception modules
are introduced in the layers of Conv_6, Conv_7, Conv_8 (and Conv_9 in MDFN_I2). Each one
employs filters of multiple sizes, which are represented by the red, yellow, blue and green boxes.
The white boxes refer to classification and localization regression layers for the jointly learning of
multi-scale detection (99).

Single shot multi-box detector (SSD) (99) is a popular and effective object detection model.
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One of the key techniques proposed in SSD is multi-box matching and sifting, which discretizes

the output space of bounding boxes into a group of default boxes with various aspect ratios and

scales per feature map location (99). In the test process, SSD produces scores for the presence of

every object category in each default box and generates several choices of the bounding boxes to

better match the object shape. Specifically, the offsets relative to the default boxes and the scores

of every classes, in each feature map cell, indicating the existence of object class instance in each

box are predicted.

Inspired by SSD, we propose a multi-scale object detection scheme. In our model, given k

boxes to each given location, calculates c class scores and four offsets of the four vertexes of each

box relative to the default box. This ends up with a total of k(c+4) filters serving for each location

inside the feature map. Thus, the number of outputs should be k(c+4)mn for each feature map with

the dimension of m× n. It has been verified in (99) that using various default box shapes would

facilitate the task of predicting boxes for the single-shot network, which increases the accuracy of

object localization and classification. We adopt this multi-box technique as the first property of our

multi-scale scheme.

MDFN combines feature maps with different resolutions from both shallow and deep layers of

the network, as shown in Figure 3.3. Our deep feature learning inception modules are applied in

the four consecutive high-level layer units so that the extracted abstract information from each unit

will be naturally built in the current layer outputs. These four layer units transmit their outputs

directly to the final prediction layer. From the perspective of training, these shortened connections

make the input and output ends of the network closer to each other, which benefits the model

training (66). The direct connection between the high-level layers and the final prediction layer

alleviates the problem of vanishing gradient and strengthens the feature propagation (66). This

process is the second property of our multi-scale scheme.

Besides, we use the multi-scale filters to active the receptive fields of various sizes, aimming

to enhance the extraction of the semantic and contextual information from high-level layers. As

in most networks, feature maps would be downsampled gradually with the increase of depth, our
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incepted deep feature learning modules will have less computational burden as the resolutions of

feature maps in high-level part are much smaller than those in earlier layers. This is the third

property of the proposed multi-scale scheme.

To quantitatively analysize the influence from inception depth, we propose two deep feature

learning network architectures, referred as MDFN-I1 and MDFN-I2 respectively. we introduce

the proposed information cubic inception modules into the first two layers, layer conv_6 and layer

conv_7, in both the two MDFN models, of which the output feature maps are with the resolutions

of 19×19, 10×10 respectively. Thus, considering the input feature maps’ sizes of the next two

layers are already relatively small, we introduce the information square module both into the latter

two high-level layers, layer conv_8 and layer conv_9 in MDFN-I2 and only introduce information

square module into layer conv_8 in MDFN-I1. We will compare the performances of the two

models and analyze the impact on the deep feature learning ability. The specific configuration of

inception modules are shown in Table 3.1.

Model MDFN-I1 MDFN-I2 

Conv_6 

1×1,200 1×1,200 

1×1,200 3×3,200 

3×3,200 
3×3,200 

1×1,200 3×3,200 

3×3,200 
3×3,200 

3×3,200 3×3,200 

3×3,400 3×3,400 
3×3,200 3×3,200 

Conv_7 

1×1,100 1×1,100 

1×1,100 3×3,100 

3×3,100 
3×3,100 

1×1,100 3×3,100 

3×3,100 
3×3,100 

3×3,100 3×3,100 

3×3,200 3×3,200 
3×3,100 3×3,100 

Conv_8 

1×1,128 1×1,128 

1×1,128 3×3,128 
3×3,128 

1×1,128 3×3,128 
3×3,128 

3×3,128 3×3,128 

Conv_9 

1×1,128 1×1,128 

3×3,256 1×1,128 3×3,128 
3×3,128 

3×3,128  

Table 3.1: Layer structure of deep inception module layout in MDFN-I1 and MDFN-I2
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3.1.3 Experimental Evaluations

We employ the VGG-16 pre-trained on ImageNet as the base network of our proposed MDFN

models. Then the models are fine-tuned on target dataset: KITTI, PASCAL VOC2007 or COCO.

The training was conducted on a computing cluster environment. The proposed MDFN em-

ploys the stochastic gradient descent (SGD) algorithm for training (14; 194). Due to the limit of

GPU memory, our models are trained with the mini-batch size of 16 on KITTI and 32 on PASCAL

VOC and COCO. The momentum is set to 0.9, and the weight decay is 0.0005 for all the datasets,

which are identical to the training approach of Liu et al. (99). The overall number of training

iterations is set to 120,000 for KITTI and PASCAL VOC and 400000 for COCO. We maintain a

constant learning rate decay factor, which multiplies the current learning rate by 0.1 at 80,000 and

100,000 iterations for KITTI and PASCAL VOC, and at 280000, 360000 for COCO. MDFN-I1

and MDFN-I2 models adopt the learning rate of 0.0006, 0.0007 respectively on KITTI and COCO,

and 0.0008, 0.0007 respectively on Pascal VOC2007.

MDFN matches the default boxes to any ground truth box with the Jaccard overlap higher than

the threshold of 0.5. MDFN imposes the set of aspect ratios for default boxes as {1,2,3,1/2,1/3}.

We minimize the joint localization loss by smooth L1 loss (47) and confidence loss by Softmax

loss, shown as below.

L(x,c, l,g) =
1
N
(Lcon f +αLloc) (3.11)

where N refers to the number of matched default boxes and the weight term α is set to 1 (99).

Lcon f and Lloc stand for the confidence loss and localization loss, respectively.

For data augmentation, we adopt the same method as the original SSD model (99). We do not

use the recent random expansion augmentation trick used by the latest SSD related frameworks (41;

99).

We empirically demonstrate the effectiveness of MDFN on the prevailing KITTI (44), PAS-

CAL VOC (38) and Microsoft COCO (97) benchmarks. We analyze the object detection accuracy
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in terms of average precision (AP), and object detection efficiency in terms of speed and model

sizes. We also perform a thorough comparison between the MDFN and the state-of-the-art models

on these datasets. The proposed framework is implemented using Caffe (75), compiled with the

cuDNN (25) computational kernels. The test speed is obtained under Titan XP GPU.

3.1.3.1 Dataset

KITTI: KITTI object detection dataset is designed for autonomous driving, which contains chal-

lenging objects like small and occluded cars, pedestrians and cyclists. KITTI for object detection

contains 7,481 images for training and validation, and 7,518 images for testing, providing around

40,000 object labels classified as easy, moderate, and hard ones based on how much objects are

occluded and truncated. Since the ground truth of the test set is not publicly available, we follow

the way in (170; 165), randomly splitting the 7,481 training and validation images evenly into a

training and a validation set. We evaluate the proposed MDFN models on the validation set and

report the average precision (AP) on it at the three difficulty levels following the suggestion in

(44; 170). For KITTI experiments, we scale all the input images to 1242×375 and use the batch

size of 16. Our models are trained to detect 3 categories of objects, including car (merged with

motors), pedestrian, and cyclist. The thresholds for car, pedestrian, and cyclist are 70%, 50% and

50%, respectively. All methods shown in Table 3.2 are obtained with the same rules described

above.

PASCAL VOC 2007: In VOC experiments, we follow the normal practice in the literature, the

models are trained on the union of PASCAL VOC 2007 and 2012 trainval set (16,551 images) and

tested on PASCAL VOC 2007 test set (4,952 images). We scale all the input images to 500×500.

Our models are trained to detect 20 categories of objects on VOC. The overlap threshold for each

category in VOC is set to 0.5. All the methods listed in Table 3.6 follow the same rules as above

except for the scale of input images.
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COCO: Microsoft COCO (97) is a widely used visual recognition dataset focusing on full scene

understanding. Objects in COCO contains multifarious scales and occlusion situations, where

objects are smaller scaled than PASCAL VOC. We utilize the trainval35k (8) for training and

follow the strategy in (99). Experiments are implemented on two image scales, 300×300 and

512×512. The results are shown on COCO test-dev2015 and are evaluated based on the COCO-

style average precision (AP).

3.1.4 Detection Results on KITTI

Model Car Pedestrian Cyclist mAPEasy Moderate Hard Easy Moderate Hard Easy Moderate Hard
RPN 82.91 77.83 66.25 83.31 68.39 62.56 56.36 46.36 42.77 -

SubCNN 95.77 86.64 74.07 86.43 69.95 64.03 74.92 59.13 55.03 -
MS-CNN 90.0 89.0 76.1 83.9 73.7 68.3 84.1 75.5 66.1 78.5

PNET 81.8 83.6 74.2 77.2 64.7 60.4 74.3 58.6 51.7 69.6
Pie 89.4 89.2 74.2 84.9 73.2 67.6 84.6 76.3 67.6 78.6

SqueezeDet 90.2 84.7 73.9 77.1 68.3 65.8 82.9 75.4 72.1 76.7
SqueezeDet+ 90.4 87.1 78.9 81.4 71.3 68.5 87.6 80.3 78.1 80.4

VGG16 + ConvDet 93.5 88.1 79.2 77.9 69.1 65.1 85.2 78.4 75.2 79.1
ResNet50 + ConvDet 92.9 87.9 79.4 67.3 61.6 55.6 85.0 78.5 76.6 76.1

SSD 86.6 86.0 80.5 75.7 71.8 69.3 83.7 83.0 77.1 81.6
MDFN-I1 (ours) 88.5 87.7 80.7 77.2 74.6 72.4 86.5 86.2 83.5 83.9
MDFN-I2 (ours) 87.9 87.1 80.5 77.5 74.7 73.0 86.0 85.8 79.5 83.8

Table 3.2: Average precision(%) on KITTI validation set. The best and second best results are
highlighted in bold-face and underline fonts, respectively.

Average Precision: Table 3.2 shows the average precision (AP) of object detection on KITTI

from the proposed frameworks as well as the 10 state-of-the-art models, including RPN (47; 133),

SubCNN (170), MS-CNN (16), PNET (165), Pie (165), SqueezeDet (165), SqueezeDet+ (165),

VGG16 + ConvDet (165), ResNet50 + ConvDet (165) and SSD (99). From Table 3.2, the proposed

MDFN-I1 and MDFN-I2 networks obtain the significant improvements in terms of AP, especially

for the detection of pedestrian and cyclist. It is noticeable that MDFN models perform the best

in detecting objects that belong to moderate and hard levels for all the three categories, and the

increased performance for the moderate and hard objects contributes to the best final mAP. The
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average precision for pedestrian by MDFN surpasses the SqueezeDet+ by over 4%, and the AP

for cyclist exceeds the SqueezeDet+ by over 5%. Based on the above experiment, it is evident that

MDFN performs better in the detection of small and occluded objects in cluttered scenes.

Figure 3.7 shows some detection examples of SSD, MDFN-I1, and MDFN-I2 on KITTI dataset.

There are four sets of images from four different scenes. In each set, the top image is the original

image and the other three, from top to bottom, represent the results of SSD, MDFN-I1 and MDFN-

I2, respectively. These four examples demonstrate the superior ability of MDFN in detecting small

and occluded objects in a visualized way.

Performance under Multiple IoU: We adopt mAP with different IoU thresholds for further

evaluation. In Table 3.3, Table 3.4 and Table 3.5, we provide the performances of SSD and MDFN

models with IoU from 0.5 to 0.8 (in steps of 0.05) for Car, Pedestrian and Cyclist, respectively. It

is evident that MDFN-I2 has significant advantage when the IoUs are higher than 0.65 for Cyclist

and Pedestrian. This experiment further demonstrates that the proposed MDFN models have more

accurate and robust detection performance.

Methods Network 0.5 0.55 0.6 0.65 0.7 0.75 0.8
SSD VGG 89.6 89.5 89.4 89.0 87.4 80.3 78.0

MDFN-I1 VGG 90.0 90.0 89.8 89.6 88.6 80.4 78.5
MDFN-I2 VGG 90.0 90.0 89.9 89.5 88.5 80.3 78.5

Table 3.3: Mean average precision on KITTI Car validation set for different IoU thresholds.

Methods Network 0.5 0.55 0.6 0.65 0.7 0.75 0.8
SSD VGG 74.8 72.4 66.1 60.8 51.8 38.2 26.7

MDFN-I1 VGG 76.9 75.3 70.2 64.5 54.8 43.4 26.4
MDFN-I2 VGG 77.2 75.2 70.2 64.8 55.4 44.1 25.9

Table 3.4: Mean average precision on KITTI Pedestrian validation set for different IoU thresholds.
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Methods Network 0.5 0.55 0.6 0.65 0.7 0.75 0.8
SSD VGG 82.6 81.7 77.6 76.1 68.8 61.9 46.4

MDFN-I1 VGG 86.2 85.8 82.7 78.4 77.4 66.7 53.8
MDFN-I2 VGG 85.8 84.7 79.1 78.8 77.5 68.0 54.5

Table 3.5: Mean average precision on KITTI Cyclist validation set for different IoU thresholds.

3.1.5 Detection Results on PASCAL VOC Dataset

Table 3.6 shows the average precision of detection on the PASCAL VOC 2007 test benchmark.

The leaderboard provides current state-of-the-art detection results, including Faster I (133), Faster

II (59), ION (8), MR-CNN (46), R-FCN (29), YOLOv2 352×352 (129), SSD300∗ (99), SSD

321 (41), SSD512∗ (99), SSD300 (99), SSD500 (99), YOLOv2 544×544 (129), CC-Net (118)

and BlitzNet512(s8) (37). From this result we can see that the MDFN models obtain leading

performance in terms of mAP and achieve top average precision in the object class of train. MDFN

models are the only ones that exceed 88% in the detection of trains. MDFN-I1 ranks the second

in detecting plant. The proposed models also achieve very competing performance, though not

the best, in other categories. Please note that some methods that outperform ours adopt very deep

ResNet as their base network. Figure 3.4 shows some comparative detection examples from the

VOC dataset. It can be seen that the MDFN models perform better in the complicated scenes.

Model Network mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster I VGG 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
Faster II Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0

ION VGG 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
MR-CNN VGG 78.2 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 80.52 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0

R-FCN Residual-101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
YOLOv2 352×352 Darknet 73.7 - - - - - - - - - - - - - - - - - - - -

SSD300∗ VGG 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 83.97 79.4 52.3 77.9 79.5 87.6 76.8
SSD512∗ VGG 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0
SSD300 VGG 72.1 75.2 79.8 70.5 62.5 41.3 81.1 80.8 86.4 51.5 74.3 72.3 83.5 84.6 80.6 74.5 46.0 71.4 73.8 83.0 69.1
SSD500 VGG 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5
SSD321 Residual-101 74.8 76.0 84.9 74.6 62.4 44.8 84.9 82.9 86.2 57.6 79.9 71.2 86.2 87.4 83.4 77.0 45.5 74.1 75.9 86.1 75.4

MDFN-I1-321 (ours) Residual-101 75.9 76.8 83.5 74.7 65.8 46.5 85.2 83.7 88.2 59.9 78.3 74.3 86.7 87.4 83.8 78.1 47.4 76.1 81.0 86.2 74.3
MDFN-I2-321 (ours) Residual-101 77.0 78.0 86.0 78.0 67.5 49.4 86.2 83.8 87.6 59.7 80.8 76.6 86.8 87.5 85.0 78.5 49.6 75.5 80.3 86.3 76.3
YOLOv2 544×544 Darknet 78.6 - - - - - - - - - - - - - - - - - - - -

CC-Net CC-Net 80.4 83.0 85.8 80.0 73.4 64.6 88.3 88.3 89.2 63.2 86.0 76.8 87.6 88.2 83.4 84.1 54.9 83.7 77.7 86.0 83.6
BlitzNet512(s8) ResNet-50 80.7 87.7 85.4 83.6 73.3 58.5 86.6 87.9 88.5 63.7 87.3 77.6 87.3 88.1 86.2 81.3 57.1 84.9 79.8 87.9 81.5
MDFN-I1 (ours) VGG 79.3 81.2 87.0 79.2 72.3 57.0 87.3 87.1 87.5 63.1 84.2 76.7 87.6 88.8 85.6 81.0 56.0 80.4 79.9 88.0 77.0
MDFN-I2 (ours) VGG 78.3 82.5 85.9 78.0 70.5 54.0 87.9 87.4 88.6 60.3 82.6 73.7 86.7 87.5 85.0 80.6 52.3 77.9 80.6 88.1 76.6

Table 3.6: PASCAL VOC2007 test detection results.
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Figure 3.4: Four sets of comparative detection examples of SSD and MDFN models on
VOC2007 dataset. In each set, the three images, from left to right, represent the results from
SSD, MDFN-I1 and MDFN-I2, respectively.

3.1.6 Detection Results on COCO

The average precision of detection on COCO benchmark is shown in Table 3.7, where comparative

results of mainstream detection models are provided as well, including Faster I (133; 99), Faster

II (99), YOLOv2 (129), SSD300 (99) and SSD512 (99). The proposed MDFN-I2 model with

the image resolution of 512 leads the board with the highest average precision under the three

criteria of AP, AP50 and AP75, where AP refers to the average precision over 10 IoU levels on 80

categories (AP@[.50:.05:.95]: start from 0.5 to 0.95 with a step size of 0.05). It is clear that on
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both image scales of 300 and 512, MDFN obtains consistent better performance in comparison

with SSD and other counterparts. The results of SSD and MDFN support the viewpoint that deep

features are semantically abstract and suitable for extracting global visual primitives. Specifically,

MDFN-I2 performs better than MDFN-I1, due to the deeper multi-scale feature learning. This is

more obvious for higher IoU threshold, like the significant improvement of 4.6% from SSD300 to

MDFN-I2-300 at 0.75 IoU compared with the 2.2% improvement at 0.5 IoU. For image scale of

500, MDFN show the same advantage. Such results agreed with the theoretical analysis in Section

III and match the performance on the other two benchmarks.

Method Data Backbone AP AP50 AP75
Faster I trainval VGG 21.9 42.7 -
Faster II trainval ResNet-101 24.2 45.3 23.5
YOLOv2 trainval35k DarkNet-19 21.6 44.0 19.2
SSD300 trainval35k VGG 23.2 41.2 23.4

MDFN-I1-300 (ours) trainval35k VGG 26.3 42.9 26.9
MDFN-I2-300 (ours) trianval35k VGG 27.1 43.4 28.0

SSD512 trainval35k VGG 26.8 46.5 27.8
MDFN-I1-512 (ours) trainval35k VGG 28.9 47.6 29.9
MDFN-I2-512 (ours) trainval35k VGG 29.6 48.1 30.8

Table 3.7: Detection results on COCO test-dev

3.1.7 Efficiency Discussion

In Table 3.8, we show a comparison of the inference time on KITTI, VOC2007 and COCO datasets.

The compared frameworks include SSD (99), Faster I (133) with VGG-16, Faster II (59) with

Residual-101, R-FCN (29), YOLOv2 (129), SSD300∗ (99), SSD512∗ (99), and SSD321 (41). For

KITTI and COCO, although the introduction of deep feature learning modules brings around 10%

increase of the number of parameters, the running speed of the MDFN models only decrease less

than 4% and the Flops only increase around 2%. As shown in Figure 3.5, MDFN makes a good

trade-off between the accuracy and speed on all the three benchmarks, where notations A,B and

C form the similar pattern like a triangle on each benchmark and B,C are not far from A along
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Method Data Resolution network #Params GPU FPS FLOPS
SSD KITTI 1242×375 VGG-16 24.0M Titan Xp 30 157.4G

MDFN-I1 KITTI 1242×375 VGG-16 26.8M Titan Xp 28 158.2G
MDFN-I2 KITTI 1242×375 VGG-16 27.0M Titan Xp 27 158.3G

Faster I VOC2007 1000×600 VGG-16 144.8M Titan X 7 184.0G
Faster II VOC2007 1000×600 Residual-101 734.7M K40 2.4 93.0G
R-FCN VOC2007 1000×600 Residual-101 - Titan X 9 -

YOLOv2 VOC2007 352×352 Darknet 21.8M Titan X 81 977.9M
YOLOv2 VOC2007 544×544 Darknet 21.8M Titan X 40 2.3G
SSD300∗ VOC2007 300×300 VGG-16 - Titan X 46 -
SSD512∗ VOC2007 512×512 VGG-16 - Titan X 19 -
SSD300 VOC2007 300×300 VGG-16 26.3M Titan Xp 84 31.4G
SSD321 VOC2007 321×321 Residual-101 52.7M Titan Xp 30 22.1G

MDFN-I1-321 VOC2007 321×321 Residual-101 61.6M Titan Xp 26 22.55G
MDFN-I2-321 VOC2007 321×321 Residual-101 64.2M Titan Xp 26 22.56G

SSD VOC2007 500×500 VGG-16 26.3M Titan Xp 45 87.2G
MDFN-I1 VOC2007 500×500 VGG-16 30.8M Titan Xp 39 87.9G
MDFN-I2 VOC2007 500×500 VGG-16 31.1M Titan Xp 38 88.0G

SSD COCO 300×300 VGG-16 34.3M Titan Xp 75 34.4G
MDFN-I1 COCO 300×300 VGG-16 44.6M Titan Xp 60 35.1G
MDFN-I2 COCO 300×300 VGG-16 45.6M Titan Xp 58 35.1G

SSD COCO 500×500 VGG-16 34.3M Titan Xp 41 98.7G
MDFN-I1 COCO 500×500 VGG-16 44.6M Titan Xp 35 100.4G
MDFN-I2 COCO 500×500 VGG-16 45.6M Titan Xp 35 100.6G

Table 3.8: Comparison of inference time on KITTI, VOC2007 and COCO test datasets.

the speed axis, indicating the robustness and stability of MDFN and the prominent speed and

accuracy trade-off. This supports our claim in Section III that the processing towards deep features

contributes less computational load compared with the processing for feature maps from earlier

layers. Therefore, enhancing the learning ability for deep features is definitely a high-productive

choice.

From the performance on the VOC2007 dataset, the base network plays a key role in determin-

ing the running speed. Models with Residual-101 as base network consistently run much slower

than those with VGG-16 base. From Table 3.6 and Table 3.8, the MDFN models significantly out-

perform those which do not adopt Residual-101, while the mAP of MDFN is very closed to those

with Residual-101. The results demonstrate that, by introducing deep feature learning, MDFN has

achieved a better balance between the higher detection accuracy and more efficient operational

capability.
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Figure 3.5: The trade-off between the accuracy and speed.

3.1.8 Limitation

Here different network depth is defined as the maximum layer depth that deep multi-scale features

are extracted from, where the deep layers refer to those after the base network. For MDFN-I1,

its multi-scale feature depth is 3 and for MDFN-I2, it is 4. Theoretically, MDFN-I2 is supposed

to enhance the ability of feature expression and scene understanding. However, according to the

mAP results on both KTTII and VOC2007 datasets, MDFN-I2 does not surpass MDFN-I1. While

if we increase the threshold of IoU, MDFN-I2 shows its advantage of higher accuracy, which can

be evidenced especially from Table 3.4 and Table 3.5.

(a) (b)

(c) (d)

Figure 3.6: Comparative detection examples by the two MDFN models. In each set, the left
and right images refer to the detection results of MDFN-I1 and MDFN-I2 respectively.
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From Figure 3.6 (a) and (b), MDFN-I2 is capable of detecting the reflected objects, like the

airplane in (a) and the displayed lady on the screen in (b). This is one reason that would lower the

final mAP. From Figure 3.6 (c), MDFN-I2 yields multiple choices for some uncertain objects like

the sheep at the back, which was detected as sheep or cow. This also leads to some decrease of

mAP, which may be due to the overfitting. Nevertheless, MDFN-I2, by considering more context

information, brings about more accurate localization in most situations like the bandsman in (d),

where MDFN-I2 locates his figure completely compared to the part localization given by MDFN-

I1. As the limited space, we do not show other examples. But MDFN-I2 occasionally fails to detect

the partially occluded person, like the man behind the flowering shrubs only showing his head,

whose lower half is occluded by flowers, or a lady only showing her head. This leak detection is

more likely for MDFN-I2 which considers the context information more than MDFN-I1. It reveals

the limited generalization ability.

3.1.9 Conclusion

In this work, we propose a novel multi-scale deep feature learning convolution neural network

(MDFN) for object detection. It makes full use of highly abstract along with abundant seman-

tic and contextual expression of deep features by integrating the proposed deep feature learning

inception modules into the high-level layers of the network. Extensive experiments show that

MDFN achieves more accurate localization and classification results on general object detection

task (VOC), autonomous driving task (KITTI) and full scene understanding task (COCO), resulting

in consistent and robust semantic representation. To our best knowledge, MDFN is the first sin-

gle shot object detector that specifically focuses on deep feature learning. The proposed approach

advances the state-of-the-art techniques in object detection and classification.
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Figure 3.7: Four sets of comparative detection examples of SSD and MDFN on KITTI dataset.
In each set, the four images, from top to bottom, represent the original image and the results from
SSD, MDFN-I1 and MDFN-I2 respectively.
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Chapter 4

Location-Aware Box Reasoning for

Anchor-Based Single-Shot Object Detection

4.1 Introduction

Deep networks have been dramatically driving the progress of computer vision, bringing out a

series of popular models for different vision tasks (192)(179), like image classification (18)(168),

object detection (180)(92), crowd counting (139), depth estimation (60), and image translation

(177). Object detection plays an important role and serves as a prerequisite for numerous com-

puter vision applications, such as instance segmentation, face recognition, autonomous driving,

and video analysis (61; 106; 11; 57; 69). In recent years, the performance of object detectors has

been dramatically improved due to the advancement of deep network structure, well-annotated

datasets, and effective optimization algorithms (96; 190).

In this paper, we aim at single-shot object detectors that yield a better trade-off between accu-

racy and speed, indicating a trend for future frameworks (99; 105). We reveal the problem of an

inadequate quality criterion for anchor-based bounding box candidates, which is very important

for model optimization and detection evaluation. The reason lies in that the quality of bounding

boxes should reflect both the spatial location accuracy and the classification probability. While as

far as we know, in current deep learning-based object detection pipelines, the scores of the bound-
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Figure 4.1: Demonstrative detection results on MS COCO (97). The predicted bounding boxes
have high classification scores while the localization is misplaced or interceptive. The left two
images show misplaced cases in which the zebra is located by a much larger region, and the car is
not an actual object. The airplanes in the right two images are partially located, while all of them
have high confidence scores. Our method predicts the spatial relation between box proposals and
their possible targets so that the interception and misplacement can be minimized.

ing boxes are shared with box-level classification confidence, which is predicted on the proposed

features by the classifier. Most importantly, we cannot obtain the location assessment during the

inference stage due to the deficiency of labels. It is insufficient to use the classification confidence

to measure the bounding box quality since it only serves for distinguishing the semantic categories

of proposals, while it is not aware of the assessment towards localization accuracy. The misalign-

ment between classification confidence and bounding box quality is illustrated in Figure 4.1, from

which we can see that, although the object instances obtain a high classification confidence score,

the box-level localization is not unanimously accurate. If a predicted object is not scored properly,

it might be mistaken as a false positive or negative, affecting the NMS process and leading to a

decrease of average precision (AP). It is evident that the lack of effective scoring metrics towards

the localization quality tends to impair the evaluation.

In this work, we focus on a more reasonable and effective scoring metric for anchor-based

bounding box proposals. Different from most previous works that either pursue high-quality classi-
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fication boxes or focus on score correction working on two-stage object detectors, we demonstrate

that there is room of further improvement for popular anchor-based single-shot object detection

models by introducing calibrated quality scores that take the location confidence into considera-

tion. Compared with RPN-based frameworks, single-shot object detectors highly depend on qual-

ified box proposals as there is no pre-sift scheme. As anchor-based methods, they are sensitive to

location information, which brings challenges for box sifting. To solve this issue, we propose a

calibrated quality score (CQS) for each box proposal to realize the location awareness. The lo-

calization score indicates the spatial relation to its most-probable target ground truth and ranks the

proposals based on the calibrated quality score rather than the classification confidence.

In anchor-based single-shot object detection, the bounding box proposals are regressed by the

space shift relative to the anchors. Thus, the spatial relationship of an anchor and an object ground

truth depicts an expectation or estimation of the location relationship between the corresponding

box proposal and the target, as depicted in Figure 4.2. Inspired by the Average Precision (AP)

metric of object detection using pixel-level Intersection-over-Union (IoU) between the predicted

bounding box and its ground truth to describe the quality of predictions, we propose a network

module to learn the IoU between the anchors and the ground truth directly. For the convenience of

discussion, we call it AIoU. We adopt the proposed locscore to learn this AIoU during the training

time, and when given the locscore in the test phase, the quality of bounding boxes is reevaluated by

integrating locscore into the classification confidence so that the reasoned box proposals are aware

of both the location information and the semantic categories.

Compared with localization and classification regressions that take the ground truths from the

labeled dataset, the learning for AIoU only needs to calculate the IoU between the anchors and

the ground truths as a target, without further labeling the dataset. Within a detection model, we

implement the locscore prediction network as the locscore head, which takes the feature outputs

and the calculated AIoU as inputs, and is trained with a common regression loss. We implement

object detection experiments with the proposed location-aware anchor-based box reasoning mod-

ule on popular single-shot object detectors. The results demonstrate that our method can promote
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the performance of object detection and yield consistent and robust detection results. The main

contributions of our paper include:

C1. We propose a novel bounding box reasoning method that is aware of the spatial relation-

ship between the box proposals and the probable target ground truth. It is one of the first

algorithms that address the issue caused by scoring bounding box proposals only by the

classification probability.

C2. This is the first location-aware detection framework designed for the single-shot networks

that naturally take the pools of anchor-based box proposals as candidates, ensuring a one-

shot learning fashion.

C3. The proposed plug-in locscore head can be integrated with any single-shot detection net-

works and regressed easily in an end-to-end fashion. By calibrating the detection quality

with locscore, the bounding boxes can be penalized if it has high classification confidence

while relatively poor localization accuracy.

C4. We demonstrate the effectiveness of the location-aware anchor-based box reasoning scheme

through extensive experiments. By introducing the proposed calibrated quality score into the

evaluation metric of box proposals, the detection performance is further improved.

4.2 Related Work

4.2.1 Object Detection

Multiclass object detection is a core task in the context of deep learning based computer vision

projects, which is the joint work of the classification towards contents and the localization towards

bounding boxes of instances. Most of these methods adopt the CNN (89) based bounding box

and classification regressions, followed by a Non-Max Suppression (NMS) algorithm to sift best-

qualified box proposals.
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AIoU=0.214 AIoU=0.214 AIoU=0.286

AIoU=0.071 AIoU=0.107 AIoU=0.143

Box Proposals with Predicted Locscore

Ground Truth

Loss

Figure 4.2: AIoU Definition and the Locscore illustration. AIoU as the target of the proposed
locscore only needs the input image and its corresponding ground truth. In the fashion of convo-
lution, we evaluate the default boxes with multiple scales at different anchor bases, as the yellow
and purple color lumps shown in this figure. For each default box (represented by the blue dotted
rectangular), in addition to predicting the shape offsets and the confidence scores as conventional
detectors, we also predict the locscore which assesses the possibility of how close the object is to
the ground truth. The locscore is learned towards the AIoU calculated by the anchor box and the
ground truth, which is denoted by the red angular box in this figure. Specifically, the locscore of
a box proposal is learned to match the AIoU between its corresponding anchor box and a certain
ground truth box.

Bounding box regression was first introduced in R-NN (48). It enables regions of interest (ROI)

to estimate the updated bounding boxes with the purpose of better matching the nearest object

instance. Prior works, from Fast R-CNN, Faster R-CNN (133), R-FCN (29), to YOLO (128),

SSD (99), RetinaNet (96), and RefineDet (189), have demonstrated that the detection task can be

improved with multiple bounding box regression stages (46), flexible anchor matching (190), the

increase of the number of anchors, and the enlargement of the input image resolution, including

image pyramids (95). Among them, the most widely-used and efficient technique is the anchor-

based multibox algorithm that can handle scale variation, one of the challenging problems for

one-shot object detection. Anchor boxes are designed for discretizing the continuous space of all

possible instance boxes into a finite number of boxes with predefined locations, scales, and aspect

ratios (196). The created instance boxes are regressed to match the ground truth bounding boxes

based on the Intersection-over-Union (IoU) overlap, by location shift at certain base anchor with

the predefined locations.
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However, there exist underlying limitations. On one hand, the quality of the proposed bounding

boxes is only measured by the classification score, leading to the misalignment between the box

score and box quality. Due to the unreliability of the box score, a proposal with higher IoU against

the ground truth will be ranked with low priority if it obtains lower classification confidence. In

this situation, the Average Precision (AP) can be degraded. On the other hand, compared with

RPN (133), the anchor-based technique is more sensitive to box quality especially for the consis-

tency of classification confidence and location accuracy since there is no pre-sift scheme for box

proposals in the one-stage case.

4.2.2 Detection Scoring and Correction

The misalignment of the box score and actual quality has aroused much attention and several cor-

rection methods have been proposed in recent years. Tychsen-smith et al. (154) presented a Fitness

NMS that corrects the detection score by learning the statistics of best matching detected bounding

boxes with the ground truth as a corrective factor. It formulates box IoU statistics prediction as

the classification task. It is specifically designed for Denet (153), which restrains its application to

arbitrary object detection frameworks.

Jiang et al. (76) proposed a standalone IoU-Net which is based on a similar R-CNN structure

with a proposal pre-sift scheme to predict IoU between the predicted boxes and the ground truths.

It manually designs bounding box filtering as an addition to the data pool of box proposals. The

IoU-guided NMS ranks bounding boxes by the predicted localization confidence rather than the

conventional classification confidence. Cheng et al. adopted a separate network to correct the

scores of samples by processing false-positive samples (23). SoftMax (12) proposed to use the

overlap between two boxes to correct the low score box. Neumann et al. (116) proposed a relaxed

softmax to predict the temperature scaling factor in standard softmax for safety-critical pedestrian

detection. Both of the two approaches are designed for the two-stage R-FCN based models, relying

on the clean proposal data pool. Wu et al. proposed the IoU-aware approach scores the location

results while it is merely a RetinaNet based detector (166), not an arbitrary method.
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Figure 4.3: The network architecture of object detection with location-aware anchor-based rea-
soning. The input image is fed into the backbone network to generate feature maps with RoI
information. The Locscore Branch is the standard component of the improved model. It takes the
output features from the backbone network as inputs and provides a predictive locscore at the end,
where its layer structure just follows the one of the classification branch or the localization branch.

Different from the above methods, this study focuses on the essence of the evaluation towards

anchor-based box reasoning in single-shot frameworks. We assign each predicted box with a lo-

cation score by taking aware of the spatial relation between its based anchor and the ground truth.

The proposed approach takes both the classification confidence and the location accuracy into con-

sideration to create a complete evaluation of instance box quality so as to narrow the gap between

the box score and the actual quality. Furthermore, we build an independent regression branch in the

single-shot object detection framework that learns the location confidence specifically and merges

this information into the box quality evaluation metric of NMS so as to obtain a more reliable

priority ranking.

4.3 Location-Aware Box Reasoning

4.3.1 Motivation

In current object detection frameworks, the classification and localization regressions are taken as

two independent processes. The evaluation towards a detection hypothesis, the detected bounding

box, is determined by the highest-ranked element in the classification scores. However, there exist
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certain situations where the predicted box with a high classification score has low localization

accuracy. This kind of hypothesis is harmful in most detection evaluation protocols, such as MS

COCO. It is important that a detector can determine when the detection results are trust-worthy

and when they are not. This motivates us to integrate the localization score by location-aware

anchor-based reasoning for every predicted bounding box based on an anchor position.

Most previous methods do not consider location confidence as one of the evaluation factors that

contribute to the box quality (154)(23) (12)(116) and the majority of them are designed as specific

detectors or merely applied for two-stage detectors with the pre-sift scheme. Although IoUNet

obtains competing results with the proposed IoU-guide NMS algorithm that takes localization

confidence into consideration, it ranks the boxes only by the localization confidence which highly

relies on the clean data pool of proposals produced by two-stage detection models. It is hard to

apply it in a single-shot fashion. We propose the location-aware anchor-based box reasoning that

focuses on arbitrary single-shot detectors for a better trade-off between accuracy and efficiency.

We instantiate the location-aware reasoning module by showing how to apply it to the anchor-

based single-shot detectors. Without loss of generality, we apply the proposed module to the

state-of-the-art RetinaNet and SSD with an additional Locscore head that learns the IoU between

the anchor and ground truth, and demonstrates our design from the following aspects: 1) how to

realize location awareness for anchors; 2) how to create the branch of location score in the network;

and 3) how to generate location-aware anchor-based reasoning during inference time.

4.3.2 Location Awareness

From the perspective of conception, location awareness is simple. In anchor-based detectors, the

introduction of location awareness supplements the evaluation towards the quality of the bounding

boxes from the perspective of location accuracy. It is realized by learning the IoU between the

anchors and ground truths, producing the localization scores.
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Localization Score We begin with briefly reviewing the evaluation metric towards the bounding

box proposals. Following the anchor-based detection, the proposals are created based on anchors

with various scales at different positions on the feature maps. The network extracts features from

the backbone and performs proposal classification and bounding box regressions respectively. The

former one yields confidence scores regardless of the location reference, while the latter one re-

gresses the space migration of candidates. Although the predicted bounding boxes with classifi-

cation confidence and location prediction, the quality of the box candidates can only be evaluated

by the confidence score, without localization assessment. This is due to the lack of ground truth

as a reference during the inference stage. Thus, there is a gap between the current metrics and the

actual need for evaluating the quality of box proposals.

We define P(lc|a j) as the localization score by learning the pixel-level IoU between bounding

box a j and any object ground truth b j. We define it as "AIoU".

AIoU = IoU(a j,b j) (4.1)

In ideal anchor-based detectors, the object is detected by three elements: anchor, box proposal,

and object ground truth. Conventionally, we build the direct correspondence between the anchors

and the boxes by regressing space shift, and the relations between the boxes and the object ground

truths by matching features. However, there is no direct depiction of the relationship between the

anchors and object ground truths, where an underlying location link exists. The introduction of

the location score complements the relational structure of the three essential elements and further

calibrates the quality criterion of bounding box proposals by the definition expressed as below.

S(a j) = P(c|a j) ·P(lc|a j) (4.2)

where P(c|a j) denotes the confidence score, and S(a j) is defined as the calibrated quality criterion

of the bounding box proposals. Thus, S(a j) should work well on two tasks: indicating the right

category that the box belongs to and regressing the IoU of the proposals and the foreground objects.
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4.3.3 Localization Score Regression

Locscore Head Conventionally, classification and regression are two independent branches for

all object categories. Without loss of generality, we introduce the Locscore Head as the third

independent branch to predict the IoU between anchors and object ground truths. This head simply

follows the layer structure of the other two existing heads so as to save the network characteristics

and the advantages of the framework. Thus, it can be implemented as a plug-in module and be

integrated with any arbitrary single-shot object detection model.

The Locscore Head receives the concatenation of features from the output layer of the network

as its inputs. It predicts the localization score for each anchor box on the feature maps, which

depicts the location relations between the box and the target ground truth. In anchor-based object

detection, each predicted bounding box is created based on a certain anchor and regressed loca-

tion migration. Thus, according to this correspondence among the three elements, each predicted

bounding box proposal is corresponding to one anchor so that the box would be assigned a local-

ization score indicating the maximum possibility that it is related to an object from the perspective

of localization.

Based on the analysis above, since the Locscore Head shares the same concatenated features

with the other two Heads, classification, and box regression, the predicted three elements have an

inner congruent relationship. The Locscore Head, thus, can be taken as an independent regression

branch and treated as an individual learning task.

We define the Locscore Loss to regress the Localization Score. It follows the loss definition

for classification regression. Then the Locscore Head is integrated into an anchor-based object

detection framework, and the whole network can be trained end-to-end. Specifically, we define the

classification loss and box regression loss as Lcl and Lbb, respectively. In addition, we introduce

locscore loss Llc as another penalty item to the cost function, as shown below,

L∗ = λ1 ∗Lcl +λ2 ∗Lbb +λ3 ∗Llc (4.3)
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where L∗ denotes the final loss function. In all experiments, we adopt equal weights for the three

loss items in consideration for stability, so that λ1 = λ2 = λ3 = 1. The locscore loss forms a lower

bound in the space localization, and by training, we further pull down this lower bound.

4.3.4 Box Reasoning during Inference

Calibrated Quality Score (CQS) We define and propose a calibrated quality score by introduc-

ing the localization confidence into the assessment of the predicted bounding box proposals. Thus,

the quality score is disintegrated into two data spaces, where both classification confidence and lo-

cation accuracy are taken into consideration, as shown in Equation 4.2. This CQS during inference

time becomes a new criterion for the sifting of qualified candidates. It complements the defect

of independent classification and location regressions that lead to the deficiency of localization

reference during inference time.

Inference At the inference stage, the proposed candidates with coordinates, conferences, and

localization scores are integrated into the non-maximum suppression (NMS) algorithm. Different

from its classical counterparts, the NMS in our model does not rank the box proposals merely by

classification probabilities in the first step. Instead, we use the CQS as the ranking criterion so as

to push the box candidates to indicate the spatial relations with potential objects, in terms of the

initial idea that the quality of bounding boxes is tightly correlated to both the spatial information

and classification confidence. We assume the saved boxes after the above sifting are qualified

candidates. But in order to weaken the sensitivity towards the less qualified proposals for the

single-shot models, we adopt the confidence cluster (76) to further enhance the reliability of the

sifted boxes by updating the confidence score Si of box i with Si = max(Si,S j), where j indicates

box j that is deleted by box i in NMS. Details are shown in Algorithm 1.

Specifically, suppose the network outputs N bounding boxes, the NMS firstly rank them by the

proposed CQS , then we follow the same procedure to remove the candidate boxes which overlap

each other over a threshold of ε = 0.5. At last, the top-k scored boxes are selected and fed into the
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output head to generate multi-class boxes.

Algorithm 1 Location-Aware Box Reasoning. Classification confidence and localization score
are independently regressed during the training time but the two values are taken as combined
consideration during the inference time when evaluating the anchor-based box proposals.
Input: B, Pc, Plc, ε .
B: set of anchor-based bounding box proposals.
Pc: classification confidence by mapping fc.
Plc: localization score by mapping flc.
ε: IoU threshold in NMS.
Output: D, set of detected boxes with classification confidence Pc.

1: D←∅
2: while B 6= ∅ do
3: S← Pc × Plc
4: bm← argmaxi S(bi)
5: Sm← S(bi)
6: Pm← Pc(bi)
7: B← B\bm
8: for b j ∈ B do
9: if IoU(bm, b j) > ε then

10: B← B\b j
11: if classification cluster then
12: Pm← max(Pc(b j),Pm).

13: D← D∪{〈bm,Pm〉}

4.4 Experiments

We conduct experiments on the detection tasks of the MS COCO (97) and PASCAL VOC (39)

datasets. MS COCO contains 80 object categories, we follow COCO 2017 settings, using the

115k images train split for training, 5k validation split for results analysis. The COCO results are

reported by its evaluation metrics AP (Average Precision over IoU thresholds), including, AP@0.5

(IoU equals to 0.5), AP@0.75 (IoU equals to 0.75), AP (averaged on AP over IoU thresholds from

0.5-0.95 with a step size of 0.05), APS, APM, APL (AP at different scales of objects). In the VOC

experiments, we follow the same practice as in the literature, the models are trained on the union

of PASCAL VOC2007 and 2012 trainval set (16,551 images) and tested on PASCAL VOC 2007

test set (4952 images). The overlap threshold for each one of the 20 categories in VOC is set to
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0.5.

4.4.1 Implementation Details

We adopt the consistent location-aware box reasoning (LAAR) framework for all experiments.

We use the ResNet-50 based FPN network and VGG-16 based SSD network for ablation study,

respectively. For ResNet-50 FPN, the input images are resized with a minimum 608px along the

short axis and a maximum of 1024px along the long axis for both training and test. We train the

network and choose the model at the epoch that yields the best performance. The learning rate

is reduced by the Plateau strategy, the same as that of the original RetinaNet. For SSD, the input

images are resized to 300×300 for both training and test, as the common rule in literature. The

rest of all configurations are identical to the realization in (99). We train the network for 120,000

iterations and decrease the learning rate after 80,000 and 100,000 iterations. The optimizer for

RetinaNet experiments is Adam with an initial learning rate of 0.00001, and for SSD experiments

is SGD with momentum 0.9. In the test, all the results are evaluated by the NMS, where the top-100

score detection is retained for each image.

Learning Scenarios In order to identify the gains of locscore regression constraint and location-

aware box reasoning respectively, we intentionally design independent learning scenarios where

we do solo locscore regression constraint without quality score calibration, the complete LAAR

detection framework with CQS, and the complete LAAR detection with CQS and confidence clus-

ter. We list them as follows:

• Independent Locscore Constraint (ILC): We introduce the locscore regression during train-

ing time while do not consider the predicted locscore to calibrate the classification score

during the inference period.

• Locscore Constraint with CQS (LC): We conduct complete location-aware box reasoning

with the given detector, which means we add locscore regression constraint during training

and introduce the calibrated quality score by the predicted locscore during the test time.
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• Locscore Constraint with CQS and classification cluster (LC+CS): Based on LC, we in-

troduce the classification cluster after calibrating quality score by the predicted locscore, as

shown in Algorithm 1.

4.4.2 Ablation Studies

We evaluate the contribution of one important element to our location-aware box reasoning for

object detection, the constraint brought by the Localization Score Regression.

Locscore constraint for better optimization Compared with conventional object detection frame-

works, we introduce the additional constraint term in the loss function by doing the localization

score regression. As far as we know, this is the first time to directly explore the relationship

between the anchors and the ground truths in single-shot fashions. The proposed procedure ex-

plores the predefined prior information of anchor boxes and the ground truths from the perspective

of spatial location. As is known, anchor-based fashion defines fixed anchor positions and their

multiple-ratio variations on a feature map, which means for a certain image, there exist predefined

location relations between the anchor boxes and the ground truths. We introduce this relation in the

penalty function to help constrain the classification and localization regressions. Especially for the

latter one during training, when the coordinates are learned in a deflected direction, there exists a

correction by the locscore regression. This constraint results in better optimization as demonstrated

in Table 4.1 and 4.2.

In Table 4.1, the ILC version leads the original RetinaNet in most cases. For AP0.75, ILC im-

proves the detection accuracy by a rough 1% than the original ResNet. Although the ILC falls

behind APS, it leads by large margins in both APM and APL. In Table 4.2, we obtain consistent

results. In this VOC setting, we list the AP results for all the 20 categories. The ILC shows better

mAP than the original SSD and yields clearly higher AP for most categories. These results support

the idea that the introduction of locscore regression yields effectively positive constraint towards

the other two regressions. Thus, the locscore branch boosts the mutual promotion of classification
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R-Net R-Net+ILC R-Net+LC R-Net+LC+CS
Backbone R-50 R-50 R-50 R-50

AP 30.4 % 30.9 % 30.7 % 30.9 %
AP0.5 47.3% 47.7 % 47.2% 47.4 %
AP0.75 32.1 % 33.0 % 32.9% 33.2 %
APS 13.9% 13.0 % 12.9 % 13.0 %
APM 33.1 % 34.0 % 33.8% 33.9 %
APL 43.7% 44.1 % 44.2% 44.3 %

Table 4.1: The mAP of RetinaNet on COCO val2017. R-50 indicates ResNet50 with FPN and R-Net refers to
RetinaNet.

Figure 4.4: COCO cases compared between RetinaNet (1st row) and RetineNet+LC (2nd row),
where LC version achieves higher localization accuracy.

and localization, helping to improve the situation when confidence score and localization accuracy

are opposite, such as when confidence score is 0.6 and localization accuracy is 0.2 compared to

that when confidence score is 0.2 and localization accuracy is 0.6, which guarantees the feasibility

of the proposed approach.

4.4.3 Quantitative Results

We extensively evaluated the proposed method with two popular detectors, SSD and RetinaNet,

on Pascal VOC 2007 and COCO val2017, respectively. We also compared the proposed algorithm

with state-of-the-art methods, SoftMax (154) and IoUNet (76). Since these methods are confined

to the application of R-CNN based two-stage frameworks, they are highly dependent on the pre-sift
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SSD SSD+ILC SSD+LC SSD+LC+CS
Backbone VGG-16 VGG-16 VGG-16 VGG-16
aeroplane 82.97 % 81.87 % 82.43 % 82.41 %

bicycle 84.18% 83.61 % 83.13% 83.18 %
bird 75.34 % 75.23 % 74.23% 75.56 %
boat 70.98% 70.35 % 70.62 % 70.71 %

bottle 50.44 % 51.97 % 51.62% 51.90 %
bus 84.29% 86.05 % 84.49% 86.03 %
car 86.32% 85.30 % 84.60% 85.53 %
cat 88.12% 88.36 % 87.45% 88.26 %

chair 61.54% 62.18 % 58.82% 62.02 %
cow 79.94% 83.03 % 82.28% 83.18 %

diningtable 77.12% 75.80 % 72.40% 76.20 %
dog 85.05% 84.31 % 82.38% 84.13 %

horse 87.60% 87.03 % 85.92% 87.68 %
motorbike 82.84% 82.95 % 81.83% 83.50 %

person 78.98% 79.09 % 77.71% 79.12 %
pottedplant 52.17% 51.94 % 50.27% 51.45 %

sheep 78.61% 77.40 % 75.40% 77.05 %
sofa 78.33% 80.29 % 77.49% 80.12%
train 87.88% 86.65 % 84.80% 87.71%

tvmonitor 76.33% 77.29 % 74.93% 77.10%
mAP 77.45% 77.53 % 76.14% 77.64%

Table 4.2: mAP of SSD on VOC2017. The category name indicates its corresponding AP result.

scheme by RPN, where the proposal pool could already be regarded as clean data. The proposed

method aims at anchor-based single-shot detection models without the pre-sift scheme, where

the anchor-based produced boxes can be regarded as rough candidates. We conduct experiments

and verify that we can not directly introduce the above algorithms in the single-shot fashion as a

comparison, like the one proposed by IoUNet by ranking the boxes using localization confidence.

It leads to a sharp drop in mAP. It is understandable that the produced boxes by anchors are rough

candidates that are unreliable for quality ranking. Therefore, these methods can not be directly

applied to single-shot models.

To make a fair comparison, we integrate the core idea of IoU-guided NMS produced by IoUNet

to merge the classification cluster into our algorithm and form the ‘LC+CS’, described in lines 11

and 12 of Algorithm 1. We then conduct comparison and show quantitative results in Table 4.1

and 4.2. From Table 4.1 we can see that, compared with RetinaNet, LC model achieves stable im-

provement in most cases. Specifically, LC obtains better AP, AP0.75, APM, and APL. For AP0.75,

LC achieves an enhancement of 0.8%, and for APM, LC improves by a margin of 0.7%. We can
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Figure 4.5: COCO cases compared between RetinaNet (1st row) and RetineNet+LC (2nd row),
where LC version performs better for hard objects.

Figure 4.6: COCO cases compared between RetinaNet (1st row) and RetinaNet+LC (2nd row),
where LC version has better filtering for low-quality boxes.

conclude that, for the detection accuracy with high request and objects with the most common

sizes, our method exhibits clear advantages. In Table 4.2, the LC version does not lead the rank-

ing although its corresponding ILC version performs better than the original SSD model. This

reflects the fact that the anchor-based single-shot models are sensitive to location accuracy and the

produced rough candidates have less reliable location outputs than the expectation. From Tables

4.1 and 4.2 we can see that ‘LC+CS’ achieves the best results in both experiments, with over 1%

enhancement in some cases, such as in RetinaNet at AP0.75. The results demonstrate that the in-

troduction of classification clustering could compensate for the uncertainty caused by the location
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outputs.

4.4.4 Comparison and Discussion

In this section, we first discuss the quality of the predicted bounding boxes and investigate the upper

bound of the performance of the LAAR model, and analyze the benefits of locscore learning. Here,

all the results are evaluated on COCO2017 validation set using RetinaNet and ReinaNet with the

LC models.

4.4.4.1 Fitter and tighter bounding boxes

In Figure 4.4, It is evident that the LC model predicts higher-qualified boxes than RetinaNet, and

most of the boxes are tighter. Specifically, the boxes for the vase, the eagle, and the truck, are more

accurate, and the box for the chair shows better performance in occluded cases. This demonstrates

that the introduction of locscore learning can improve the accuracy of bounding boxes, and help

select the best proposals that have the maximum alignment between the quality score and box

quality. Tighter boxes in practice can help clear up some current dilemmas in industry.

4.4.4.2 Better for hard objects

In Figure 4.5, it can be seen that the LC model is able to detect harder objects, like the small

backpacks, the occluded cellphone, and the persons in the audience. These small or occluded

objects are easy to be overlooked during the suppression process, as their classification scores can

be small due to the deficiency of the effective features. While with the locscore, the detection

score can be calibrated as these hard objects could probably have high localization scores if they

are labeled. Thus, the actual detection accuracy can be raised by calibrating the box quality score

especially when the original classification confidence is low.
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4.4.4.3 Waiving low-quality boxes

In addition, from Figure 4.6, we can see the LC model is better at sifting out some low-qualified

boxes, like the smaller bus box, the redundant cake, and zebra box. Similarly, this can be explained

by the calibrated quality score. Although some boxes’ classification scores are high, if their lo-

cation scores are low, these boxes can still be regarded as low-quality objects, which could be

disregarded in NMS.

4.5 Conclusion

This paper reveals the problem of object detection score as one of the primary limitations of current

anchor-based single-shot object detectors. To address this issue, we have proposed the localiza-

tion score (locscore) regression and location-aware box reasoning, where the classification score

is aligned with the predicted locsocre so that the localization accuracy is taken into the assessment

of the quality of the bounding box proposals, which has been overlooked in most popular object

detection frameworks. Extensive experimental results show that the proposed approach can consis-

tently improve the detector’s performance to yield reliable bounding boxes. The proposed module

can be directly applied to any single-shot object detection models to improve their performance in

both classification and localization.
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Chapter 5

Semantic Clustering based Deduction

Learning for Image Recognition and

Classification

In this section, we discuss the longitudinal semantic, realizing the high-level clustering in the

semantic space, enabling the model to deduce the relations among various classes so as better

classification performance is expected.

5.1 Introduction

The powerful ability for feature expression and semantic extraction of deep Convolutional Neural

Networks (CNNs) has dramatically pushed the flourishing development of computer vision (66) (59) (60).

At the same time, large-scale labeled data samples ensure the effectiveness of supervised learning,

which enables the deep learning models to efficiently extract abstract but highly-semantic informa-

tion for complicated vision tasks (105) (178) (192). Undoubtedly, future learning models should

be complex, robust, knowledge-driven, and cognition-based (108) (19). This defines them with the

cognitive ability of self-enhancing, synthesizing knowledge from multiple sources, and deducing

based on knowledge and experiences (108).
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Figure 5.1: The deduction progress of semantic clustering. Prior and Guide works as the prior
information that is combined with the labels as the labeling input data. The Learning Timeline is
the same as the normal classification learning process, but our model provides the possibility of
doing high-level semantic clustering by the deduction progress as the aid for the classification task.
The model, at the end of the learning timeline, is expected to provide better classification accuracy.

Some complementary and weak supervision information has been exploited to boost the learn-

ing performance of models (93) (104). Such complementary supervision includes early side

information(175), privileged information (157), and weak supervision based on semi-supervised

data (87) (55), noisy labeled data (51) (113), and complementary labels (72) (184) (78). Most

of these methods supplement extra direct labeling information or replace expensive accurate la-

bels with cheap labeling information. These complementary labels, in fact, increase the labeling

cost as a direct mapping from label space to sample space, named as “hard labeling" in the later

sections. Most importantly, these methods are unable to equip deep models with the ability of

self-enhancement, synthesis, and deduction.

In this paper, we leverage the wide-applied but fundamental supervised image classification

and propose deduction learning by semantic clustering. We introduce semantic prior, high-level

clustering information, represented by different colors in Figure 5.1, although no names are given

for each color. For example, we expect the model know the cat and the dog should be closed

to each other, though the model would never know they should be called “animal". Semantic

prior (Prior and Guide to Label Space in Figure 5.1) is thus introduced into the classification

learning models, guiding them to form effective semantic clustering so that they are able to deduce

high-level semantic expression (Same color cells go attached together in Figure 5.1), as shown in

Figure 5.1.
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Inspired by the idea of negative learning (78) (184), we propose to guide the classifier to learn

the opposite class that does not belong to the same cluster with the accurate label. For example, if

a sample is labeled by “cat", then our algorithm will tell the classifier that the image is not “car"

or any other random label that belongs to a different cluster other than “cat", during one learning

shot.

This random search for the opposite label is in accordance with the semantic prior that is fed

into the model along with other inputs that specifically refer to the images and their corresponding

labels in this work. Statistically, the opposite semantic labels corresponding to a certain accurate

label should be chosen with equal probability given the number of learning periods (epochs) is

large enough. Theoretically, this proposed method enables a smooth clustering in the semantic

space and an effective deduction, which makes the model able to deduce that “cat" should be one

element of an abstract cluster, although the model would never know it can be called “animal", as

shown in the second stage of Figure 5.1, where the colors “Green, Grey, Yellow", each represents a

higher hierarchical category. Each specific class, like the cat, would be learning that if it belongs to

“Green", then it is totally on the opposite side of other classes that belong to “Yellow" and “Grey".

Finally, it is noticed that the proposed method does not give up the conventional label learning

by introducing one composite loss function. This ensures the label learning and the semantic

clustering in the same timeline during the learning process. It conforms to the requirement of

cognition learning (108). By this setting, the model could finish high-level semantic expressions,

capturing the concepts, similar to “animal", “vehicle", “buildings", etc., as shown in the third stage

in Figure 5.1, where sample classes accomplish clusters.

The major contributions of this paper are summarized below:

• Semantic Clustering: We propose a high-level semantic mapping within semantic space,

enhancing the semantic expression and providing a certain level of independence for over-

coming the limitation of convolution operation at the pixel level. It is realized by introducing

a semantic prior which could guide the model to find the opposite semantic label that is not

from the same semantic colony with the given true label.
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• Deduction Learning: Deduction learning is realized by the semantic prior and the proposed

random search for opposite semantic, which ensures the smoothness of semantic clustering

and the robustness of classification. It could be implemented as a plug-in module that could

play in arbitrary classification models by introducing a composite loss function.

• Robust Improvement: We achieved stable convergence and robust classification performance

on mainstream classification models. It is also verified by working on noisy data environment

where there exists a certain ratio of incorrect labels.

• Wide Applicability: In the proposed method, label learning and semantic clustering follow

the same learning timeline, equipping the model with the ability of deduction and cognition.

It can be taken as a plug-in module for broad deep learning applications, such as few-shot

learning, zero-shot learning or even semi-supervised learning.

5.2 Related Work

5.2.1 Hierarchical Semantic Information

At first, the research in this field focuses on exploring or utilizing the inherent relations among

label classes, or looking for the intermediate representations between classes. (1) formed a label-

embedding problem where each class is embedded in the space of attribute vectors so that the

attributes act as intermediate representations that enable parameter sharing between classes. An-

other research in (32) uses a label relation graph to encode flexible relations between class labels

by building the rich structure of real-world labels. The idea of incremental learning by hierarchical

label training has been explored recently by a few other papers. Progressive Neural Networks (138)

learn to solve complex sequences of task by leveraging prior knowledge with lateral connections.

“iCaRL” allows learning in a class incremental way: only the training data for a small number

of classes is present at the same time and new classes can be added progressively (126). Tree-

CNN (135), proposes training root network by general classes and then learning the fine classes
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by corresponding growth-network (mainly learned by leaf structure of the network). While this

research direction solves hierarchical semantic learning based on an independent timeline for each

stage. Our proposed idea shares the same timeline with the normal classification task through-

out the entire learning process which works as an exploration towards cognitive learning. At the

same time, the methods above directly provide concrete class relation structure on the basis of the

original class labels for training, without exploring the deduction ability of the networks.

Learning with real, concrete complementary labeling information was proposed by (72) for

the image classification task. It was based on an assumption that the transition probability for

complementary labels is equal to each other. It modified the traditional one-versus-all (OVA)

and pairwise-comparison (PC) losses so that it is suitable for the uniform probability distribution,

working as an unbiased estimator for the expected risk of true-labeled classification. Later on, the

work (184) argued that there are two unsolved problems in the previous work. The first one lies

in the fact that the complementary labels tend to be affected by annotators’ experience and limited

cognition. The other one is the proposed modified OVA and PC losses can not be generalized

to more popular losses, such as the cross-entropy loss. Thus, they proposed the transition matrix

setting to fix the bias from the biased complementary labels. At the same time, they provided inten-

sive mathematical analysis to prove their proposed setting can be generalized to many losses which

directly provides an unbiased estimator for minimizing expectation risk. These works expect better

semantic learning by introducing intensive complementary labeling while they do not explore the

deduction ability of the networks themselves as well. They are essentially regular label learning.

The work in (78) automatically generated complementary labels from the given noisy labels and

utilized them for the proposed negative learning, incorporating the complementary labeling into

noisy label learning.

5.2.2 Semantic Labeling in Noisy Cases

Some researchers attempt to aid learning in noisy cases by introducing effective semantic label

learning. Some attempt to create noise-robust losses by introducing transition probabilities to the
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field of classification and transfer learning (45) (193). Some propose to use the transition layer

to modify deep neural network (62). In other studies, researchers try to re-weight the training

sample based on the reliability of the given label (132) (90). Some other approaches try to prune

the correct samples from the softmax outputs (34) (151). Different from them, this paper dedicates

to the research on how self-clustering and deduction learning ability of networks would influence

the robustness in noisy labeling cases.

This paper tries to explore the self-deduction ability of networks in the semantic space and fo-

cuses on guiding the models to fetch effective hierarchical semantic information in a self-learning

way by semantic clustering and cognitive accumulation. First, it could completely free the con-

finement problem of transition probabilities. The proposed semantic prior based random search

for opposite semantic ensures the equal probability, providing the mapping independence in se-

mantic space. Second, the semantic clustering boosts positive label learning. For example, if the

sample “cat" has a low classification probability, the semantic clustering could help enhance this

confidence by guiding this model to realize that the object is at least an animal, not a “car". Third,

our proposed method shares the same timeline with conventional label learning, enabling effective

cognitive accumulation. Moreover, there is no need for specifically defining loss functions for the

proposed models. Following the loss formations of the original label learning in specific models is

all we need, potentially leading to better generalization.

5.3 Problem Setup

People can make deduction independent of the actual vision behavior. Thus, in deep learning,

we expect the model with similar independence to ensure the realization of high-level mapping in

semantic space.

Semantic Space for Image Classification Semantic space is originally proposed in the natural

language domain, aiming to create representations of natural language that are capable of capturing

meanings (6). In computer vision, the concept of semantic space is much more abstract. Current
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semantic extraction is limited both by spatial size and by the individual data sample. However, it

should aim to overcome the limitations of convolution-based or receptive-field based approaches

operating at the pixel level. Convolution-based deep learning models are fixed at the pixel level

and are poor for generalization, which would easily break down if the individual image differs

from or is strange to those in the training materials used for the statistical models. Compared to

spatial feature learning that performs at the pixel level, semantic learning should be a relatively

independent process that works on the semantic element, which is the common description for

a class of objects. Moreover, the semantic expression could have multi-levels that describe the

relevant or diverging characters of semantic elements. For example, the “cat" as a semantic element

could be clustered to the high-level semantic expression, something similar to an “animal".

[Semantic Space] Without loss of generality, let C be the semantic space, c∈Z+ be the seman-

tic element in C that appears as one semantic label indicating a specific object class. The semantic

relation of different c is defined by r. [c] = {1,...,c} signifies the set of semantic labels. Then, we

have

C
de f
= 〈[c],r〉 (5.1)

where element c is uniformly sampled from C . Tuple 〈[c],r〉 expresses the fact that semantic

elements c ∈ [c] are linked to each other by the relation r, forming the abstract spatial distribution

in C .

Semantic Cell In order to better describe the abstract relation distribution in C , we propose

Semantic Cell as the semantic unit that could label a group of objects that have similar features in

feature space X , which corresponds to the element c ∈ [c] in Definition 6.2. It realizes a multi-

to-one mapping that bridges the link between feature space X and semantic space C . [Semantic

Mapping] Let g(x) be the mapping function of a given multi-class classification learning model

that estimates the classification probabilities based on the input sample x in feature space X . f (x)

predicts the classification label y based on the maximum probability principle, mapping the feature
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sample x to the corresponding semantic cell c in C .

f (x) de f
= argmax

i∈[c]
gi(x) (5.2)

where f : X → C , the maximum probability of g and f (x) ∈ C . gi(x) realizes the estimation

towards P(y = i|x).

Semantic Colony Semantic Colony θ takes semantic cell c as individual sample. It clusters

c ∈ C that hold related semantic information as θ . Based on which, it defines the intra-class

relation and inner-class differentiation to realize clustering in semantic space C with high-order

semantic expression. [Semantic Clustering] Without loss of generality, let Θ be the distribution

of semantic colonies θ in C . H conducts clustering for semantic cell c ∈ C into semantic colony

θ ∼Θ. c is the vector with the elements of semantic cells c ∈ [c]. Then, we have

θ
de f
= H(c,rc) (5.3)

where H : [c]→Θ, c consists of semantic cells c in [c] that are semantically related, and H maps c

to θ ∼Θ in accordance with the corresponding semantic relation rc.

5.4 Methodology

In this section, we first introduce the general approach that deep neural networks learn optimal

classification with hard labels. Then, we discuss the learning with semantic deduction and propose

corresponding training and test model.

5.4.1 Conventional Classification Learning

In multi-class classification, we aim to learn a classifier f (x) that predicts the classification label y

for a given observation sample x. Typically, the classifier directly maps x into the label space Y
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by the following function:

f (x) = argmax
i∈Y

W T
i x (5.4)

where f : X → Y and Wi refers to the learning parameters of the classifier f , with the estimation

of P(y = i|x).

In supervised learning, loss functions are proposed to measure the expectation of the predicting

f (x) for y (7). It is typically defined as the expected risk (184) for various loss functions.

R(g) = Ex,y∼P(x,y)[`( f (x),y)] (5.5)

A well-trained classifier f ∗ minimizes this expected risk R(g),

f ∗ = arg min
f∈F

R( f ) (5.6)

where F is the distribution space of f .

5.4.2 Learning with Semantic Deduction

In semantic space, the description of hard labels towards objects is limited. To better describe an

object or a scene, people usually enumerate related features and associate their prior cognition and

experience for a reasonable deduction. Current deep learning models realize feature sensing and

learning but lack the proper deduction that could enrich the description of objects. Our previous

analysis shows that hard labels in semantic space could potentially build more links, as the dis-

cussion in Section 2.1. We introduce the semantic prior, guiding the model to learn the semantic

links by deduction. The overview of our method is depicted in Figure 7.2. The overall inputs

include training sample images, corresponding labels, and the semantic prior information which

provides the high-level semantic hierarchy of current classification labels. The classification model

is trained in the same way as the original network. For the green part in Figure 7.2, given label y,

the model finds the corresponding opposite semantic label for the sample image according to the
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Figure 5.2: An overview of the proposed method. We use semantic prior based random search to
produce opposite semantic so as to form the composite loss function, guiding the model to form
semantic colonies.

semantic prior by an equal-probability random search, shown as the yellow block. Then both the

true label and the opposite semantic label are fed into the composite loss we defined. The output

of the proposed method is expected of better classification performance in the way of classification

accuracy.

First, the semantic prior works as the criterion for colonies’ formation in semantic space C .

For example, a cat labeled by ci ∈ [c] should be grouped into “animal" colony, if denoted by

θm. Similarly, a car labeled by c j could be grouped into the “vehicle" colony θn. Second, the

semantic deduction is fully performed in semantic space C , instead of defining complementary

labels as weak supervision. Thus, we do not need any tedious and laborious labeling work, which

would avoid labeling bias from human beings’ bias (184), and the problem that the complementary

labeling is essentially non-uniformly selected from the c−1 classes other than the true label class

(c > 2).

5.4.3 Equal-Probability Search for Opposite Semantic.

We assume that the variables (x,c,θ) are defined in the space (X × [c]×Θ), with the joint prob-

ability measure P(x,c,θ).
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Given a sample (x,c,θ)∈ (X × [c]×Θ), its opposite classification label c̄ is randomly selected

from [c]\θ . When the sampling frequency in a complete learning period is greatly larger than the

class number n[c], the probability for each c̄ ∈ [c]\θ that indicates how likely it is selected can be

expressed as

Pi(Ȳ = c̄|X = x,Y = c) =
1

n([c]\θ)
(5.7)

where n([c]\θ) is the number of semantic cells in [c]\θ . This conclusion verifies that the proposed

semantic-prior based random search method for the opposite semantic label c̄ is statistically con-

sistent, and it realizes the independency of c̄ with respective to feature space X conditioned on c

and θ . Thus we have,

P(Ȳ = c̄|X = x,Y = c) = P(Ȳ = c̄|Y = c) (5.8)

The optimal classifier can be found under the uniform assumption, which has been proven

in previous work (72). Meanwhile, the uniform selection means equal probability, ensuring the

smooth clustering and the stability and robustness of the learning process. While for man-made

complementary labels, they are confined by the fact that Ȳ is assumed to be independent of feature

X (184) (72).

Based on the exist of independence, the complete mapping from x to ȳ can be set up as the

following formula, ∀i, j ∈ [c],

P(ȳ|x) = ∑
i∈θi, j/∈θi

P(ȳ = j,y = i|x)

= ∑
i∈θi, j/∈θi

P(ȳ = j|y = i,x)P(y = i|x)

= ∑
i∈θi, j/∈θi

P(ȳ = j|y = i)P(y = i|x)

(5.9)

5.4.4 Learning with Smooth Semantic Clustering

Conventionally, the classifier is trained to learn that the input image belongs to a specific, single

class label. Let x ∈X be the input image, y ∈ [c] denotes its label. f (x,W ) maps the input x to
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the score space: X → Rc, as equation (5.4) shows. The training process is guided by the cross

entropy loss (most popular classification cost function) of f as

LP( f ,y) =−
c

∑
m=1

ym logpm (5.10)

where y ∈ {0,1}c is the one-hot vector form of y. pm is the mth element of probability vector p.

The conventional learning process is to optimize the probability pm according to the given exact

label ym so that pm→ 1. Based on which, we propose a learning algorithm with smooth high-level

clustering by guiding f to learn the semantic prior from the opposite label. Inspired by (78), the

opposite semantic should push f to optimize the corresponding classification probability p̄m→ 0.

LO( f ,y) =−
c

∑
m=1

ȳm log(1− p̄m) (5.11)

where ym ∈ θm, ȳm ∈ [c] and ȳm /∈ θm. p̄m is the corresponding classification possibility of label

ȳm in vector p. Thus, the random selection of ȳm comes from [c]\θ in every iteration during the

training process, shown in Algorithm 1.

Algorithm 2 Smooth Semantic Clustering

Input: Training label y ∈ Y = [c], semantic prior θ̂ ∼ Θ̂

1: while iteration do
2: if y ∈ θ̂i then
3: ȳ = Select randomly from [c]\θ̂i

4: There exists another semantic colony θ j
5: if ȳ ∈ θ j then
6: y /∈ θ j

Output: Opposite semantic label ȳ and the learned semantic colony θ ∼Θ

From Algorithm 1, we can observe that the learning for clustering in the semantic space C

is synchronous with image classification. Thus, we can define a composite loss function for an
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end-to-end semantic clustering classifier.

L = α1LP+α2LO

=−α1

c

∑
m=1

ym logpm−α2

c

∑
m=1

ȳm log(1− p̄m)
(5.12)

where α1 and α2 are weights defining the ratio of LP and LO respectively.

For a specific input image, there is not only a semantic label y but also other semantic descrip-

tion θ ∼ Θ, and θ is the high-level semantic expression corresponding to y, which builds a new

semantic attribute with a larger range. Since the opposite semantic is randomly selected with equal

probability, the clustering hyperplane in C can be smooth.

5.4.5 Optimal Learning

In the case of L , we define the expected risk R̄( f ) with the mapping f : X →{[c],Θ}. If we can

find an optimal f ∗ such that f ∗ = P(Y = i|X),∀i ∈ [c], then in theory, we expect that we can find

the optimal f̄ ∗ such that f̄ ∗ = P(Ȳ = i|X),∀i ∈ [c], where P(Ȳ |X) = ∑i∈θi, j/∈θi P(Ȳ = j,Y = i|X)

according to equation (5.9). If the above idea can be proved, with sufficient training samples,

the proposed algorithm with R̄( f ) is capable of simultaneously learning a good classification and

clustering for (X ,Y,θ).

Following (184), we will prove that the proposed semantic clustering learning with its corre-

sponding loss function L is able to identify the optimal classifier. First, we introduce the following

assumption (184), The optimal learning with mapping f ∗ satisfies f ∗i (X) = P(Y = i|X),∀i ∈ [c] by

minimizing the expected risk R( f ).

Based on this assumption, we are able to prove that f̄ ∗ = f ∗ following the theorem below

(184).

Theorem 1 Suppose that Assumption 1 is satisfied, then the minimum solution f̄ ∗ of R̄( f ) is also

the minimum solution f ∗ of R( f ), i.e., f̄ ∗= f ∗.

Based on Assumption 1, loss function L , and function (5.9) for the learning in the proposed
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smooth semantic clustering, we have

f ∗i (X) = P(Ȳ = j|X)

= ∑
i∈θi

P(Ȳ = j,Y = i|X),∀i, j ∈ [c], j /∈ θi
(5.13)

Let s̄(X) = [P(Ȳ = 1|X), · · · ,P(Ȳ = c)|X)] and s(X) = [P(Y = 1|X), · · · ,P(Y = c)|X)]. According

to the discussion of (184), we rewrite R̄( f ) as

R̄( f ) =
ˆ

X

c

∑
j=1

P(Ȳ = j)P(X |Ȳ = j)L ( f (X),Ȳ = j)dX

=
c

∑
j=1

P(Ȳ = j)
ˆ

X
P(X |Ȳ = j)L ( f (X),Ȳ = j)dX

=
c

∑
j=1

P(Ȳ = j)R̄ j( f )

(5.14)

where P(Ȳ = j) is given when we have Y = i, distributed as P(Ȳ = j|Y = i) according to Algorithm

1. R̄ j( f ) =
´

X P(X |Ȳ = j)L ( f (X),Ȳ = j)dX . Thus, if we use C to denote the operation form of

P(Ȳ = j|Y = i), according to function (5.9) and the above convergence analysis, we have

s̄(X) = CT s(X) (5.15)

where P(Ȳ = j|Y = i) is realized based on the random search with semantic prior. Equation (5.15)

ensures that

f̄ ∗(X) = argmax
i

CT si(X) = CT argmax
i

si(X) = CT f ∗(X) (5.16)

where i ∈ [1,c]. Thus, we have f̄ ∗⇐⇒ f ∗. The proof is completed.

5.5 Experiment

In this section, we study the impact of the proposed semantic deduction algorithm on popular

image classifiers using mainstream benchmark datasets. In order to show that our algorithm is
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able to generalize to complex or disordered data environment with better robustness, we follow

each specific experimental setting of the baseline methods, and only vary the data environment by

producing noisy labels at certain ratios.

Learning Scenarios To identify the gain of the proposed deduction learning algorithm, we de-

sign fairly comparable learning scenarios where only the deduction related hyper-parameters are

changed from the default original setting while keeping all the rest unchanged. The assignment for

the weights of α1 and α2 in equation5.12 is based on the experiment performance. We introduce

the most core algorithm idea of the current state-of-the-art works of complementary supervision

information designed for various fields (78) (184) (72) into our experiment setting as one of the

baselines. Details are listed below:

• Default Setting (OT): In this setting, we train the original baseline classification models and

keep all the hyper-parameters unchanged as in the corresponding published papers and pub-

lic code. We take both classical and state-of-the-art CNN classifier networks into considera-

tion, including Multilayer Perceptron (MLP)(117), VGG (117), ResNet(59), DenseNet (66),

Wresnet (185), ResNext(174). All of them are trained and compared with our proposed

methods fairly.

• Random Opposite Semantic (RT): Under this setting, we exploit the opposite semantic label

ȳ∈ [c] that corresponds to the original accurate label y∈ [c], satisfying ȳ 6= y. We use random

search for the opposite label in the label pools [c] (78) instead of hard labeling so as to avoid

bias (184) (78). Thus, this setting does not refer to the semantic prior when looking for the

opposite semantic label ȳ. All other settings follow the Default Setting.

• Semantic Deduction (SD): We implement the proposed deduction learning by semantic clus-

tering. The opposite semantic label ȳ is randomly selected from [c]\θ̂i, where [c] is the set

of semantic labels. θ̂i is the i_th semantic colony (details in Algorithm 1). Thus, it naturally

satisfies ȳ 6= y, y referring to the original accurate label y ∈ [c]. It strictly follows the training

setting with the identical hyper-parameters to those in the Default Setting.
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Data Sets

• Fashion-MNIST: Fashion-MNIST is a new image classification benchmark with different

data classes of clothing(171). The dataset has an image size of 28×28, input channels of 1,

and the number of classes of 10. In our SD setting, we provide the semantic prior for it to

group the 10 classes fashion clothing into three groups: “clothes", “shoes", and “bags".

• CIFAR10: CIFAR10 consists of 50,000 training images and 10,000 test images of dimension

32×32. It has a total of 10 general classes(81). In the SD setting, we group the 10 classes

into two groups, “vehicles" and “animals".

• CIFAR100: CIFAR100 has 50,000 training images and 10,000 test images of the resolution

of 32× 32. It has a total of 100 classes, with 500 training images in each class (81). For

the SD setting, we provide two schemes, “SD_v1" and “SD_v2. The former one divides

classes into “7" groups, including “people", “animal", “man-made stuff", “transportation",

“plants", “building", and “nature". The latter contains 8 groups: “people", “animal", “life

appliances", “transportation", “food", “plants", “building", and “nature", isolating “food"

from the “man-made" as an independent expression.

5.5.1 Results in Original Data Environment

We first evaluate our proposed algorithm in the original data environment, directly using the images

from the data sources. From the mathematical analysis in Section 4, the identification of optimal

learning depends on stable convergence performance. Thus, we summarize the learning behaviors

of each approach on CIFAR10 and CIFAR100 in Figure 5.3 and Figure 5.4, respectively.

Convergence Performance To obtain a fair comparison, we normalize the loss distribution to

[0,1] for all scenarios. (a) Our algorithm generally shows consistent convergence with different

classifiers, as shown in the red or yellow solid lines in Figure 5.3 and 5.4. We can see that SD

usually converges faster than RT as the black arrows shown in almost every case. This consistent
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Figure 5.3: Convergence performance of different models by training loss on CIFAR10.

performance verifies that the proposed self-clustering learning process helps speed up convergence,

assisting the classifier to execute the right decision, although there is no additional labeling infor-

mation fed into these models. (b) From all the sub-figures in both Figure 5.3 and 5.4, although

SD converges a little bit slower than the original baseline (solid blue line) at the first stage, they

finally obtain similar stability. This is due to the introduction of the additional learning process,

semantic clustering. (c) Although we design two semantic prior schemes, SD_v1 and SD_v2, they

both show very consistent convergence, where the red and black solid lines even overlap with each

other in Figure 5.4. (d) The fluctuation in ResNext is due to the non-averaged loss value in the

original code for each epoch. From the above observation, it is evident that the introduction of se-

mantic clustering achieves stable and fast convergence, theoretically qualified to yield an optimal

classification mapping.
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Figure 5.4: Convergence performance comparison by training loss on CIFAR100.

Method Solver α1 α2 OT RT SD(ours)
MLP-3(117) adam 1 0.5 91.5 91.77 91.78

VGG8b (117) adam 1 0.3 95.45 95.47 95.53
VGG8b(multi=2.0) (117) adam 1 0.3 95.33 95.52 95.54

Table 5.1: Classification accuracy on FashionMNIST.

Method Solver α1 α2 OT RT SD(ours)
VGG8b (117) adam 1 0.5 94.12 94.14 94.32
ResNet18(59) adam 1 0.5 93.45 93.57 93.62

DenseNet-40-12 (66) sgd 1 0.5 94.68 94.79 94.92
Wresnet-28-10 (185) sgd 1 0.5 94.52 94.58 94.80

ResNext (174) sgd 1 0.5 96.16 96.26 96.30

Table 5.2: Classification accuracy on CIFAR10.
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Classification Accuracy We summarize the classification accuracy in Table 5.1, 5.2, and 5.3.

(a) Generally, SD obtains almost the highest classification accuracy across the three benchmarks

for all the compared classifiers. These classifiers include two mainstream solvers, adam (79) and

sgd (15), but SD leads the performances in both situations. (b) Although the improvement brought

by SD is limited for Fashion MNIST, this is mainly due to the relatively simple classification task

and the limited number of classes. When it comes to CIFAR100 as shown in Table 5.3, SD always

yields 1-3% increase in accuracy compared with OT. (c) We can observe that RT in some special

situations achieves high performance, such as RT winning SD in the case of Wresnet-28-10. How-

ever, its performance is not as stable as SD, which even yields lower classification accuracy than

OT, such as that in the case of ResNet101. These observations imply that the proposed smooth

semantic clustering algorithm can effectively enhance the performance of state-of-the-art classi-

fiers, preserving a very stable learning state at the same time, potentially leading to its broader

applicability.

Compared with the recent publication (135), which proposes a network learning algorithm

that organizes the incrementally learning data into feature-driven super-class and improves upon

existing hierarchical CNN models by introducing the capability of self-growth, so that the finer

classification is done. This idea, to a certain degree, shares a similar concept with our idea, except

that we do not need to label data with super-class and keep the same hierarchical structure during

the learning process. We compare its results with ours in Table 5.4 and Table 5.5, respectively. It

can be seen from them that, although the Tree-CNN models provide a competitive accuracy with its

base network VGG-11, it shows no advantages over our SD models. SD models obtain a more than

4% advantage over incremental learning methods (VGG11 and Tree-CNN in Table 5.4) on CIFAR

10 and averagely 5% higher than incremental learning methods on CIFAR100 considering the test

classification accuracy. It demonstrates that our proposed high-level semantic clustering algorithm,

in a direct supervised learning, could further improve the adaptive ability towards data, and keep

a stable learning process, which is further verified in the following sections. Most importantly, we

focus on the exploration towards the self-deducing ability of CNN models, which is different from
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Method Solver α1 α2 OT RT SD_v1 SD_v2
VGG8b (117) adam 1 0.5 73.85 74.78 74.95 74.83
ResNet50 (59) sgd 1 0.5 73.78 76.36 75.59 76.64

DenseNet-40-12 (66) sgd 1 0.5 74.89 75.82 76.26 75.73
Wresnet-28-10 (185) sgd 1 0.5 76.98 77.62 77.54 77.59

ResNet101 (59) sgd 1 0.5 75.3 74.45 75.51 76.29
ResNet152 (59) sgd 1 0.3 72.21 73.25 74.38 74.40

Table 5.3: Classification accuracy on CIFAR100.

Model VGG11 Tree-CNN VGG8b ResNet18-SD DenseNet-SD WresNet-SD
Test Accuracy 90.51 86.24 94.32 93.62 94.92 94.80

Table 5.4: Comparison with Tree-CNN on Cifar10, where SD refers to models that are applied
with our proposed algorithm. VGG11 and Tree-CNN are trained by "old" and "new" data in an
incremental way (135).

all the above-mentioned ideas.

5.5.2 Results in Noisy Data Environment

In this section, we evaluate the proposed algorithm in noisy data environments. We produce a noisy

data environment by adding noise labels to the original data sources. Specifically, we implement

this operation on CIFAR10 and CIFAR100, where 10% of the training data in each data set are

randomly labeled by incorrect labels that belong to the same colony with the correct labels. For

example, if the image is labeled correctly by “cat", then we randomly search another class label in

the “animal" cluster such as “dog" as the replacement of the label “cat".

Convergence Performance The comparative results are shown in Figures 5.3 and 5.4, from

which we can see that (a) SD maintains the same learning stability as that in original environment.

Model VGG11 Tree-CNN5 Tree-CNN10 Tree-CNN20 VGG8b-SD Wresnet-28-10-SD
Test-Acc 72.23 69.85 69.53 68.49 74.95 77.54

Table 5.5: Comparison with Tree-CNN on Cifar100, where Test-Acc stands for the Test Accuracy.
SD refers to the corresponding models that are applied with our proposed algorithm. VGG11 and
Tree-CNN are trained by "old" and "new" data in an incremental way (135).
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Method Solver α1 α2 OT RT SD(ours)
VGG8b (117) adam 1 0.3 89.71 90.52 90.33
ResNet18 (59) adam 1 0.3 89.22 90.71 90.32

DenseNet-40-12 (66) sgd 1 0.5 91.47 92.16 92.25
wresnet-28-10(185) sgd 1 0.5 89.07 87.67 89.21

ResNext(174) sgd 1 0.3 91.29 92.17 92.53

Table 5.6: Classification on CIFAR10 with noisy labels.

Method Solver α1 α2 OT RT SD_v1 SD_v2
VGG8b (117) adam 1 0.5 67.68 68.72 68.89 68.95
ResNext (59) sgd 1 0.5 75.48 74.51 75.03 75.65

DenseNet-40-12 (66) sgd 1 0.5 70.25 72.80 72.61 72.09
wresnet-28-10 (185) sgd 1 0.5 71.42 71.79 71.60 72.59

ResNet101(59) sgd 1 0.5 68.93 67.97 68.71 69.75

Table 5.7: Classification on CIFAR100 with noisy labels.

It even surpasses the baseline OT by convergence speed in some cases, such as DenseNet-40-12

and Wresnet-28-10 on CIFAR10. (b) SD generally converges faster than RT, especially in the case

of Wresnet-28-10. It shows SD works better assisting the classifier to execute reasonable classifi-

cation decisions in noisy situations, which exhibits good robustness of the proposed algorithm. (c)

SD with the composite loss function “L " shows perfect robustness across both shallow and deep

networks. Thus, SD is expected to identify the optimal classification theoretically.

Classification Accuracy The comparative results are shown in Tables 5.6 and 5.7. We can ob-

serve that (a) SD, in general, surpasses OT by 1-2%. (b) Although RT surpasses SD in some cases,

their results are very close. SD is always consistent for all the compared models. (c) RT is less

robust than SD for its poor performance in some cases with much lower accuracy than OT, such as

Wresnet-28-10 on CIFAR10, and ResNext and ResNet101 on CIFAR100.

These observations indicate that the proposed deduction learning by semantic clustering not

only enhances the classification performance but also improves the generalization for a given clas-

sifier. From the above experiments, it is evident that the proposed semantic clustering method can

help the model achieve more accurate classification decisions. Although the semantic prior-based
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opposite label search provides rough information, it can aid the model to deduce high-level seman-

tic expression along with the entire learning process, realizing the experience accumulation and

basic cognitive learning. Thus, it could be an excellent plug-in module that could be applied in

other supervised learning, few-shot learning, zero-shot learning, or even semi-supervised learning

where each learning stage could be a better fit, generalized, and becoming much more robust. In

the meanwhile, from the perspective of calculation, the proposed mechanism of deduction learn-

ing by the opposite semantic constraint only introduces one more loss item, which is only the tenth

level of the order of magnitudes. Compared with matrix multiplication of any two layers during

the training process which has the million level of the order of magnitudes, our proposed model is

capable of keeping the time complexity of calculation, while its superior stability and robustness

make it easy to be generalized to other computer vision tasks.

5.6 Conclusion

In this paper, we have proposed a deduction learning approach to boost the gain of high-level

semantic clustering. We have demonstrated that if a classifier can perform further independent

mapping in the semantic space, it will help the model achieve higher classification performance

with better generalization ability and robustness. The proposed smooth semantic clustering algo-

rithm ensures label learning and semantic deduction being processed in the same timeline so as

to form a basic cognition. Extensive experiments across various classifiers on different datasets

demonstrate the superiority of the proposed method toward further enhancing state-of-the-art clas-

sification performance.
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Chapter 6

Self-Orthogonality Module:A Network

Architecture Plug-in for Learning

Orthogonal Filters

6.1 Introduction

Nowadays deep learning has been achieving the state-of-the-art performance in many applications

such as computer vision and natural language processing. Regularization in deep learning plays an

important role to help avoid bad solutions. In the literature researchers have made great efforts on

this topic from different perspectives, such as data (71; 2; 26), network architectures (187; 59; 185),

losses (112), regularizers (52; 134; 191; 4; 110), and optimization (Bottou; 65; 140; 68). Please

refer to (84) for a review.

To better understand the effects of regularization in deep learning, our work in this paper is

mainly motivated by the following two basic yet important questions:

Q1. With the help of regularization, what structural properties among the learned filters (weights

for convolutional and full-connected (FC) layers1) are good deep models supposed to have?

1For simplicity, in the rest of the paper we refer to a convolutional or FC layer as a hidden layer.
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Figure 6.1: Illustration of the angular distributions of pretrained models with no OR.

To answer this question (partially), we try to explore the angular properties among learned

filters. We compute the angles of all filter pairs at each hidden layer in different deep models

and plot these angular distributions in Fig. 6.1. To generate each distribution, we first uniformly

and randomly draw a sample from the angle pool per hidden layer, and average all the samples

to generate a model-level angular sample. We then repeat this procedure for 106 times, leading

to 106 samples based on which we compute a (normalized) histogram as the angular distribution

by quantization from 0 to 180, step by 0.1. All the 23 deep models2 are properly pretrained on

different data sets with weight decay (52), dropout (65), and batch normalization (BN) (71).

As shown in Fig. 6.1, all the angular distributions overlap with each other heavily and behave

similarly in Gaussian-like shapes with centers near 90 with small variances. Intuitively orthogonal

filters are expected to best span the parameter space, especially in the high dimensional spaces

where the filter dimensions are larger than the number of filters. Empirically, however, with many

noisy factors such as data samples and stochastic training it may not be a good idea to strictly

preserve the filter orthogonality in deep learning. In fact, the recent work in (85) has demonstrated

that on benchmark data sets, classification accuracy using orthogonal filters (learned by PCA) is

2See http://www.robots.ox.ac.uk/~albanie/mcn-models.html.
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inferior to that using learned filters by backpropagation (BP). Similarly another recent work in

(160) finds that hard constraints on orthogonality can negatively affect the convergence speed and

model performance in training of recurrent neural networks (RNNs), but soft orthogonality can

improve the training.

In summary, the comparison on the angular distributions of pretrained deep models in Fig. 6.1

reveal that deep learning itself may have some internal mechanism to learn nearly orthogonal filters

due to its high dimensional parameter spaces, even without any external orthogonal regularization

(OR).

Q2. What are the intrinsic benefits from learning orthogonal filters in deep learning based on OR?

We notice that recently OR has been attracting more and more attention (134; 188; 160; 68; 4;

85), some of which (134; 160; 68) have released their code. Interestingly, from their code we find

that the proposed OR is evaluated together with other regularizers such as weight decay, dropout,

and BN. We argue that such experimental settings cannot help identify how much OR contributes to

the performance, compared with other regularizers, especially as we observe that the performances

with or without OR are very close. Similar argument has been addressed in (156) recently where

the author showed that `2 regularization has no regularizing effect when combined with batch or

weight normalization, but has an influence on the scale of weights, and thereby on the effective

learning rate.

In summary, it is unclear to us from existing works what is the real gain from OR in deep

learning.

Contributions: This paper aims to identify the real gain from OR in training different deep models

on different tasks. To do so, we conduct comprehensive experiments on point cloud classification.

In contrast to previous works, we separate OR from other regularization techniques to train the

same networks respectively. We observe that, however, no significant improvement in accuracy

occurs from existing OR techniques, statistically speaking, compared with the conventional train-

ing algorithm based on weight decay, dropout, and batch normalization. In fact, we find that,

even without any regularization, a workable deep model can achieve the near orthogonality among
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learned filters, indicating that OR may not be necessarily useful in deep learning to improve accu-

racy.

What we do observe is that sometimes the training stability using OR is improved, leading to

faster convergence in training and better accuracy at test time. We manage to identify this by in-

tentionally designing experiments in extreme learning scenarios such as large learning rate, limited

training samples, and small batch sizes. Such observation, however, is not strong overall. We con-

jecture that this is mainly because existing OR techniques influence the deep learning externally

and cannot be integrated as a part of network architectures internally.

To verify our conjecture, we propose a self-regularization technique as a plug-in to the net-

work architectures so that they are able to learn (nearly) orthogonal filters even without any other

regularization. We borrow the idea from locality sensitive hashing (LSH) (21) to approximately

measure the filter angles at each hidden layer using filter responses from the network. We then

push the statistics of such angles (mean and variance) towards 90 and 0, respectively, as an orthog-

onality regularizer. We demonstrate that our internal self-regularization significantly improves the

training stability, leading to faster convergence and better generalization.

6.1.1 Related Work

As summarized in (84), there are many regularization techniques in deep learning. For instance,

weight decay is essentially an `2 regularizer over filters, dropout takes random neurons for update,

and BN utilizes the statistics from mini-batches to normalize the features. Our work is more related

to representation decorrelation and orthogonality regularizers in the literature.

Representation Decorrelation: Cogswell (26) proposed a regularizer, namely DeCov, to learn

non-redundant representations by minimizing the cross-covariance of hidden activations. Simi-

larly, Gu (54) proposed another regularizer, namely Ensemble-based Decorrelation Method (EDM),

by minimizing the covariance between all base learners (hidden activations) during training. Yadav

and Agarwal (181) proposed regularizing the training of RNNs by minimizing non-diagonal ele-

ments of the correlation matrix computed over the hidden representation, leading to DeCov RNN
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loss and DeCov Ensemble loss. Zhu (198) proposed another decorrelation regularizer based on

Pearson correlation coefficient matrix working together with group LASSO to learn sparse neu-

ral networks. None of these works, however, guarantee that the learned filters should be (nearly)

orthogonal.

Orthogonality Regularizers: Harandi and Fernando (56) proposed a generalized BP algorithm

to update filters on the Riemannian manifolds as well as introducing a Stiefel layer to learn or-

thogonal filters. Vorontsov (160) verified the effect of learning orthogonal filters on RNN training

that is conducted on the Stiefel manifolds. Huang (68) proposed an orthogonal weight normaliza-

tion algorithm based on optimization over multiple dependent Stiefel manifolds (OMDSM). Xie

(173) proposed a family of orthogonality-promoting regularizer by encouraging the Gram matrix

of the functions in the reproducing kernel Hilbert spaces (RKHS) to be close to an identity matrix

where the closeness is measured by Bregman matrix divergences. Rodríguez (134) proposed a

regularizer called OrthoReg to enforce feature orthogonality locally based on cosine similarities

of filters. Bansal (4) proposed another two orthogonality regularizers based on mutual coherence

and restricted isometry property over filters, respectively, and evaluated their gain in training deep

models. Xie (172) demonstrated that orthonormality among filters helps alleviate the vanishing

or exploring gradient issue in training extremely deep networks. Jia (74) proposed the algorithms

of Orthogonal Deep Neural Networks (OrthDNNs) to connect with recent interest of spectrally

regularized deep learning methods.

Self-Regularization: Xu (176) proposed a self-regularized neural networks (SRNN) by arguing

that the sample-wise soft targets of a neural network may have potentials to drag its own neural

network out of its local optimum. Martin & Mahoney (109) proposed interpreting deep neural

networks (DNN) from the perspective of random matrix theory (RMT) by analyzing the weight

matrices in DNN. They claimed that empirical and theoretical results clearly indicate that the DNN

training process itself implicitly implements a form of self-regularization, implicitly sculpting a

more regularized energy or penalty landscape.

Differently, we propose introducing self-regularization into the design of OR for better un-
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derstanding the truly impact of OR in deep learning. In contrast to (109) we discover the self-

regularization in convolutional neural networks (CNNs) by considering their angular distributions

among learned filters in the context of OR. We propose a novel efficient activation function to

compute these angles.

6.2 Self-Regularization as Internal Orthogonality Regularizer

To better present our experimental results, let us first introduce our self-regularization method.

Recall that inspired by the angular distributions of pretrained deep models, we aim to learn deep

models with mean and variance of their angular distributions close to 90 and 0 as well. Intuitively

we could use θ = arccos wT
n wn

‖wm‖‖wn‖ ∈ [0,π] to directly compute the angle between two filters wm

and wn, where (·)T denotes the matrix transpose operator, and ‖ ·‖ denotes the `2 norm of a vector.

Empirically we observe similar behavior of this arccos based regularization to that of SRIP-v1 and

SRIP-v2 (see Sec. 6.3 for more details). We argue that all the existing orthogonality regularizers

are designed data independently, and thus lack of the ability of data adaptation in regularization.

In contrast to the literature, we propose introducing implicit self-regularization into OR to

embed the regularizer into the network architectures directly so that it can be updated data depen-

dently during training. To this end, we actively seek for a means that can be used to estimate filter

angles based on input data. Only in this way we can naturally incorporate self-regularization with

network architectures. Such requirement reminds us of the connection between LSH and angle

estimation, leading to the following claim: [ϑ -Space] Without loss of generality, let θ ∈ [0,π] be

the angle between two vectors wm,wn ∈ Rd , and X be the unit ball in the d-dimensional space.

We then have

ϑ
de f
= Ex∼X

[
(xT wm)(xT wn)

]
= 1− 2θ

π
, (6.1)

where E is the expectation operator, sample x is uniformly sampled from X , : R→ {±1} is the

sign function returning 1 for positives, otherwise -1. In fact (xT w) defines a random hyperplane
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based hash function for LSH (21). Therefore,

Px∼X

[
(xT wm) = (xT wn)

]
= 1− θ

π
=

1+ϑ

2
, (6.2)

which is equivalent to Eq. 6.1. We then complete our proof.

6.2.1 Formulation

Lemma 6.2 opens a door for us to estimate filter angles (θ ) using filter responses (xT w). Due

to linear transformation, both mean and variance in the θ -space, 90 and 0, are converted to 0 in

the ϑ -space. Now based on the statistical relation between mean and variance, we can define our

self-regularizer, Rϑ , as follows:

Rϑ

de f
= ∑

i
λ1Eϑ∼Θi(ϑ)2 +λ2Eϑ∼Θi(ϑ

2), (6.3)

where Θi,∀i denotes the filter angle pool in the ϑ -space at the i-th hidden layer, and λ1,λ2 ≥ 0 are

two predefined constants. Here we choose the least square loss for its simplicity, and other proper

loss functions can be employed as well. In our experiments we choose λ1 = 100,λ2 = 1 by cross-

validation using grid search. We observe that λ2 has much larger impact than λ1 on performance,

achieving similar accuracy with λ1 ∈ [0,1000] and λ2 ∈ [1,10]. This makes sense because the mean

of an angular distribution in deep learning is close to 90 anyway, but the variance should be small.

6.2.2 Implementation

Computing ϑ in Eq. 6.1 is challenging because of the expectation over all possible samples in

X . To approximate ϑ , we introduce the notion of normalized approximate binary activation as

follows: [Normalized Approximate Binary Activation3 (NABA)] Letting w ∈ Rd be a vector and

3We tested different sign approximation functions such as softsign, and observed that their performances are very
close. Therefore, by referring to (20) in this paper we utilize tanh only.
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X ∈ Rd×D be a projection matrix, then we define an NABA vector, z ∈ RD, for w as

z =
tanh

(
γXT w

)
‖ tanh(γXT w)‖

⇒ ϑ(wm,wn)≈ zT
mzn,∀m 6= n (6.4)

where tanh is an entry-wise function, and γ ≥ 0 is a scalar so that limγ→+∞ tanh(γx) = (x) ,∀x ∈R

as used in (20).

Based on the consideration of accuracy and running speed, in our experiments we set γ =

10,D = 16 for Eq. 6.4. Larger γ brings more difficulty in optimization, as demonstrated in (20).

Larger D does approximate the expectation in Eq. 6.1 better, but has marginal effect on training

loss and test accuracy, as well as leading to higher computational burden.

Implementing Eq. 6.4 using networks is simple, as illustrated in Fig. 6.2 where now X denotes

the input features to each convolutional (conv) or fully-connected (FC) hidden layer and w denotes

the weights of a filter at the hidden layer. In this way our regularization can be easily integrated

with an arbitrary network seamlessly as a plug-in so that the network itself can automatically

regularize its weights internally and explicitly, leading to self-regularization.

Compared with existing OR algorithms, our self-regularization takes the advantage of the de-

pendency between input features and filters so that the weights are learned more specifically to

better fit the data. From this perspective, our self-regularization is similar to a family of batch

normalization algorithms. As a consequence, we may not need any external regularization to help
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Figure 6.3: Result comparison on ModelNet40: (left->right) default setting, lr = 0.01, ts = 440, and bs = 2.

default setting lr = 0.01 ts = 440 bs = 2 ave. of 4 settings
avg. cls overall avg. cls overall avg. cls overall avg. cls overall avg. cls overall

NT 0.800 0.840 0.025 0.041 0.336 0.416 0.025 0.041 0.297 0.335
SRIP-v1+NT 0.815 0.849 0.025 0.041 0.428 0.495 0.025 0.041 0.340 0.357
SRIP-v2+NT 0.822 0.858 0.025 0.041 0.290 0.371 0.025 0.041 0.309 0.328

Ours+NT 0.814 0.850 0.712 0.770 0.520 0.571 0.793 0.829 0.732 0.755
CT 0.819 0.860 0.767 0.818 0.591 0.666 0.242 0.369 0.642 0.678

SRIP-v1+CT 0.812 0.856 0.719 0.780 0.598 0.673 0.088 0.143 0.554 0.613
SRIP-v2+CT 0.824 0.863 0.787 0.839 0.612 0.682 0.138 0.223 0.590 0.652

Ours+CT 0.821 0.862 0.775 0.832 0.638 0.685 0.132 0.214 0.620 0.648

Table 6.1: Best test accuracy comparison on ModelNet40.

training.

6.3 Experiments

We study the impact of OR on deep learning using the task of point cloud classification.

Learning Scenarios: In order to identify the gain of OR, we intentionally design some extreme

learning scenarios where we only change one hyper-parameter from the default setting while keep-

ing the rest unchanged, and list them as follows:

• Default Setting: Under this setting, we train each model using the full training data set and then

test it on the full testing data set. We keep all the hyper-parameters unchanged in the public
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Figure 6.4: Result comparison on MNIST: (left->right) default setting, lr = 0.01, ts = 200, and bs = 2.

default setting lr = 0.01 ts = 200 bs = 2 ave. of 4 settings
avg. cls overall avg. cls overall avg. cls overall avg. cls overall avg. cls overall

NT 0.977 0.977 0.967 0.967 0.398 0.389 0.114 0.100 0.614 0.608
SRIP-v1+NT 0.934 0.934 0.934 0.933 0.204 0.204 0.114 0.100 0.547 0.543
SRIP-v2+NT 0.928 0.927 0.928 0.927 0.119 0.116 0.928 0.927 0.726 0.724

Ours+NT 0.978 0.978 0.978 0.978 0.223 0.217 0.963 0.963 0.786 0.784
CT 0.967 0.967 0.976 0.976 0.741 0.734 0.481 0.470 0.791 0.787

SRIP-v1+CT 0.975 0.975 0.975 0.975 0.713 0.705 0.222 0.206 0.721 0.715
SRIP-v2+CT 0.974 0.973 0.974 0.973 0.751 0.748 0.181 0.166 0.720 0.715

Ours+CT 0.976 0.976 0.977 0.977 0.752 0.746 0.433 0.421 0.785 0.780

Table 6.2: Best test accuracy comparison on 2D point clouds of MNIST.

code.

• Large Initial Learning Rate (lr): Here we only change the initial learning rate to 0.01.

• Limited Training Samples (ts): Here we only use small number of training samples uniformly

selected from the entire training set at random.

• Small Batch Size (bs): Here we only change the batch size to 2.

Baselines: In order to do comparison fairly, we consider the OR algorithms whose code is publicly

available and can run in our task. In this sense, we finally have the following baseline algorithms4:

• Naive Training (NT): In this baseline, we train a network without any regularization.

4We fail to integrate OrthoReg (134) with our point cloud classification task, neither using their code nor reimple-
menting it, because we realize that it is so difficult to modify SGD to achieve reasonable performance or even make it
work.
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Figure 6.5: Comparison of the learned angular distributions on ModelNet40: (left->right) default setting, lr = 0.01,
ts = 440, and bs = 2.

• Conventional Training (CT): In this baseline, we train a network with weight decay (5e-4),

dropout (keep-ratio 0.7), and batch normalization (BN).

• Spectral Restricted Isometry Property (SRIP-v1 & SRIP-v2) (4) 5: This regularizer is defined as

R = λ ·σ
(
WT W− I

)
, where W is the network weight matrix, I is an identity matrix, σ(·) is

the spectral norm, and λ is a constant. Currently this is the state-of-the-art OR in the literature.

In the sequel we will present our results for different types of networks on different data sets.

6.3.1 Multilayer Perceptron (MLP): PointNet

Data Sets: We conduct comparison on two benchmark data sets, ModelNet40 (169) and 2D point

clouds of MNIST (89). ModelNet40 (169) has 12,311 CAD models for 40 object categories, and is

split into 9,840 for training and 2,468 for testing. We uniformly sample 1024 points from meshes

to obtain 3D point clouds, and normalize them into a unit ball. MNIST is a handwritten digit

data sets, consisting of 60,000 training images and 10,000 testing images with 28×28 = 784 gray

pixels. We convert each image to 2D point clouds by taking image coordinates of all non-zero

pixels.

Networks: We choose PointNet-vanilla (124) (an MLP(64, 64, 64, 128, 1024, 512, 256, 40)

without T-nets) as the backbone network and integrate different regularization techniques with it

to verify the effects of OR. During training we conduct data augmentation on-the-fly by randomly

5From https://github.com/nbansal90/Can-we-Gain-More-from-Orthogonality/, we find that there
are two implementations of the approach, under the folders “Wide-Resnet” and “SVHN”, respectively. We there-
fore name them as “v1” and “v2”.
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rotating the points along the up-axis and jittering the coordinates of each point by a Gaussian noise

with zero mean and 0.01 std. We use the PyTorch code from https://github.com/meder411/

PointNet-PyTorch as our testbed and the same training and evaluation protocols as the original

PointNet code. We tune each approach to report the best performance.

In order to demonstrate that our findings are common across different MLP, on MNIST we

slightly modify the architecture of original PointNet to another MLP(64, 64, 64, 128, 512, 256,

128, 10).

Training Stability: We summarize the training and testing behavior of each approach on Model-

Net40 in Fig. 6.3. (a) Under the default setting, our regularizer help the naive training converge

much faster than the others which are appreciated, while with the conventional training it seems

that such effect is neutralized by the other regularization. In testing, the overall behavior of each

approach is similar to each other with no significant performance gap. (b) Under the setting of

lr = 0.01, naive training and both SRIPs fail to work, while our regularizer still works reasonably

well so that it still converges faster than the others in training and with conventional training, it

achieves the best performance. (c) Under the setting of ts = 440, the performances of different

algorithms differ significantly, even though all the competitors work. Our regularizer with conven-

tional training achieves the best performance, converging around 100 epochs which is much faster

than the others. Our regularizer outperforms SRIP significantly as well. (d) Under the setting of

bs = 2, only our regularization with naive training works, and surprisingly achieves the very good

performance similar to that under the default setting. For conventional training, the regularization

dominates the training behavior so strongly that even our regularizer cannot make it work. This

is expected as usually conventional regularization techniques cannot work well using very small

batch size. In Fig. 6.4 we summarize the training and testing behavior of each approach on MNIST.

Similar observations can be made here in both training and testing.

In summary, for MLP we do not observe any significant gain on accuracy using SRIP, statis-

tically speaking on average, but some improvement on convergence in training under the default

setting. Our self-regularization, however, improves both naive training and conventional train-
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Figure 6.6: Result comparison on ModelNet10: (left->right) default setting, lr = 0.01, ts = 400, and bs = 2.

ing significantly on both convergence and accuracy, indicating better training stability from our

method.

Accuracy: We summarize in Table 6.1 and Table 6.2 the best accuracy of each approach per

setting in Fig. 6.3 and Fig. 6.4, respectively. Compared with other regularization techniques, we

conclude that our regularizer can work well not only under well-defined setting but also under

extreme learning cases. For instance, the naive training with our self-regularization works as well

as, or even better than, the conventional training. These observations imply that our regularizer

has much better generalization ability for optimizing deep networks, potentially leading to broader

applications.

Angular Distributions: We illustrate the learned angular distributions in Fig. 6.5. First of all,

it seems that all the well-trained models under the default setting form Gaussian-like distribu-

tions with mean around 90. The variances of these distributions, however, are larger than those

in Fig. 6.1. We conjecture that the main reason for this is that in PointNet the input dimen-

sion is usually smaller than the number of filters per hidden layer so that it is hard to achieve

(near) orthogonality among all the filters. Next, our self-regularization with naive training always

learns Gaussian-like distributions, while conventional training sometimes has negative effects on

our learned distributions such as shifting. This is probably due to BN as it normalizes the statistics

in gradients. Finally, it seems that spike-shape distributions tend to produce bad models. This

observation has also been made in the angular distributions with random weights.
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Figure 6.7: Comparison of the learned angular distributions on ModelNet10: (left->right) default setting, lr = 0.01,
ts = 400, and bs = 2.

def. s. lr(0.01) ts(400) bs(2) ave.
NT 0.898 0.910 0.797 0.908 0.878

SRIP-v1+NT 0.898 0.910 0.781 0.911 0.875
SRIP-v2+NT 0.897 0.910 0.800 0.912 0.880

Ours+NT 0.899 0.907 0.810 0.906 0.881
CT 0.894 0.914 0.776 0.913 0.874

SRIP-v1+CT 0.894 0.909 0.779 0.915 0.874
SRIP-v2+CT 0.889 0.911 0.776 0.917 0.873

Ours+CT 0.896 0.914 0.796 0.918 0.881

Table 6.3: Best test accuracy comparison on ModelNet10.

6.3.2 Convolutional Neural Networks (CNNs): VoxNet

Data Set: We use Modelnet10 (111) for our comparison. In the data set there are 3D models as

well as voxelized versions, which have been augmented by rotating in 12 rotations. We use the

provided voxelizations and follow the train/test splits for evaluation.

Networks: We use VoxNet (111) for comparison, which is a network architecture to efficiently

dealing with large amount of point cloud data by integrating a volumetric occupancy grid rep-

resentation with a supervised 3D CNN. We use the PyTorch code from https://github.com/

Durant35/VoxNet as our testbed, and tune each approach to report the best accuracy averaged per

class.

Training Stability & Accuracy: We illustrate the training and testing behavior of each algorithm

on ModelNet10 in Fig. 6.6. As we see, unlike for PointNet, there is no significant difference

in both training and testing for VoxNet. To further verify the performance, we summarize the

best test accuracy in Table 6.3, where our improvement is marginal. Interestingly, we find similar

observations in image classification that all the OR algorithms perform equally well, and no big

advantage over conventional training with careful tuning. For instance, we list our classification

99

https://github.com/Durant35/VoxNet
https://github.com/Durant35/VoxNet


lr acc.
NT 0.001 0.888

SRIP-v1+NT 0.001 0.893
OrthoReg+NT - -

Ours+NT 0.001 0.898
CT 0.1 0.963

SRIP-v1+CT 0.1 0.962
OrthoReg+CT 0.1 0.962

Ours+CT 0.1 0.965

Table 6.4: Test accuracy comparison on CIFAR-10. Here “-” indicates that we cannot make OrthoReg work.

results on CIFAR-10 (82) in Table 6.4.

In summary, we observe that OR is more useful for MLP than for CNNs to improve the train-

ing stability. We believe that one of the key reasons is because the filters in CNNs are much

better structured due to the input data such as images and 3D volumes, so that learning orthogonal

filters becomes unnecessary. In contrast, the input data for MLP is much less structured indi-

vidually where orthogonal filters can better cover the feature space. In both cases, however, our

self-regularization outperforms the state-of-the-art OR algorithms.

Angular Distributions: We also illustrate the angular distributions of learned models on Mondel-

Net10 in Fig. 6.7. Again all the distributions form Gaussian-like shapes with mean close to 90 and

relatively small variance. Together with Fig. 6.5, we conclude that angular distributions may not be

a good indicator for selecting good deep models, but their statistics are good for self-regularization.

6.4 Conclusion

In this paper, we manage to identify that the real gain of orthogonality regularization (OR) in deep

learning is to better stabilize the training, leading to faster convergence and better generalization.

In terms of accuracy, existing OR algorithms perform no better than the conventional training

algorithm with weight decay, dropout, and batch normalization, statistically speaking. Instead,

we propose a self-regularization method as an architectural plug-in that can be easily integrated

with an arbitrary network to learn orthogonal filters. We utilize LSH to compute the filter angles

approximately based on the filter responses, and push the mean and variance of such angles towards
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90◦ and 0◦, respectively. Empirical results on point cloud classification demonstrate the superiority

of self-regularization.
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Chapter 7

Miti-Detr: Object Detection based on

Transformers with Mitigatory

Self-Attention Convergence

Object Detection with Transformers (DETR) and related works reach or even surpass the highly-

optimized Faster-RCNN baseline with self-attention network architectures. Inspired by the proof

that pure self-attention possesses a strong inductive bias that leads to transformer losing the ex-

pressive power with respect to network depth, we propose the transformer architecture with a miti-

gatory self-attention mechanism by applying possible direct mapping connections in self-attention

networks to mitigate the convergence to rank collapse so as to counteract feature expression loss

and enhance model performance. We apply this proposal in object detection tasks and provide

the model named Miti-Detr. Miti-Detr reserves the inputs of each single attention layer to the

outputs of this layer so as the "non-attention" information has participated in any attention prop-

agation. This formed residual self-attention network that helps address two critical issues: (1)

stop the self-attention networks from degenerating to rank-1 to the maximized degree; (2) further

diversify the path distribution of parameter update so that easier attention learning is expected.

Miti-Detr demonstrates significant enhancement of average detection precision and convergence
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speed towards existing DETR based models on the challenging COCO object detection dataset.

Moreover, the proposed transformer with residual self-attention network could be easily general-

ized or plugged in other related task models without specific customization.

7.1 Introduction

The attention mechanism has been found effective use in transformer networks (158), not only in

the application of long-range sequential knowledge, such as natural language processing (33),

speech recognition (103), but also in computer vision tasks (17; 30; 197), where DETR has

achieved competitive performance as an end-to-end object detector (17). Attention mechanism,

transformer networks and DETR, thus, have become the research focuses, where the inner work-

ings of transformers and attention, the training and optimization challenge of DETR, etc, have

been regarded shedding light for the future works.

The attention-mechanism based transformer networks realize the the most generalized deep

learning model in terms of computer vision and image tasks. For transformer networks, one pixel

in an image cares about all the other pixels in that image so that any single region obtains and

integrates relevance with all other regions, which is in comparison with CNN that any one pixel

cares about its immediate neighbourhood and then what the neighbourhood as a whole cares about

is its immediate neighbourhood. This could be a good explanation why DETR can be on par with

state-of-the-art classifier in terms of classification accuracy. It also explains the strong inductive

bias of self-attention. While the research in (35) demonstrates that pure self-attention networks

(SANs) would lead to the loss of expressive power doubly exponentially with respect to network

depth, and the output converges with a cubic rate to a rank one matrix that has identical rows.

Inspired by the analysis that skip connections play a key role in mitigating rank collapse in

transformer, we propose the Miti-Detr detector model where residual self-attention network ar-

chitecture is introduced. Specifically, the inputs of a multi-head self-attention layer are short

connected to its outputs, as shown in Figure 7.1. This connection skips the Multi-layer percep-

tions (MLP), which is usually considered rendering the model less sensitive to its input perturba-
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Figure 7.1: Residual Attention Network in Transformer

tions (27). Thus, the relative "non-attention" features are integrated to avoid the outputs dramati-

cally converge to rank one matrix. Generally, this work provides two critical contributions to the

current Detr models:

• (1) The training and optimization challenges of DETR could be better solved based on the

network model itself, which is data-independent and could be easily applied in related mod-

els. It is verified the proposed model could significantly speed up the training convergence

so as to avoid the extremely long time training schedule.

• (2) Further enhance the object detection performance of DETR models. From the perspective

of models themselves, we address the limitations of DETR models whose transformer net-

works tend to lose efficient feature expression power by proposing the residual self-attention

network. Thus, the proposed Miti-Detr could better stop the outputs from degeneration and

gain nearly 3% higher performance than the original DETR models.

We evaluate Miti-Detr on one of the most popular and challenging object detection datasets,

COCO, and compare its performance with the traditional DETR-related models. Our experiments

show that our model is capable of further enhancing the DETR models’ current performance.

Specifically, Miti-Detr brings the superiority of DETR detecting large objects into full play, results

likely enabled by the protection of global expression power.
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7.2 Related Work

This work builds on prior researches of attention mechanism (158), feature mapping and propaga-

tion (59) and object detection with transformer (17).

7.2.1 Attention Mechanism

Attention-based architectures have become ubiquitous in machine learning, which brings about the

better learning for long-sequence and large-range knowledge (3) (125). They have permeated ma-

chine learning applications across data domains, such as natural language processing (33), speech

recognition (103) and computer vision (9) (17). Attention mechanisms are neural network layers

that aggregate information from the entire input sequence (3). They allow modeling of dependen-

cies without regard to their distance in the input or output sequences (3) (77) and the early such

attention mechanisms models mostly are applied in conjunction with the recurrent network (120).

Self-attention is an attention mechanism that relates different positions in a single sequence so

as to compute a sequence representation (24) (98). End-to-end memory networks are based on a

recurrent attention mechanism rather than sequence aligned recurrence, which shows advantage on

simple-language question answering and language modeling tasks (145). Transformer, currently, is

the first transduction model which entirely relies on self-attention to compute representations of its

input and output without using sequence aligned RNNs or convolution (158). They introduce self-

attention layers to Non-Local Neural Networks (164). One advantage of attention-based models is

the global computations and superior memory, making them more suitable compared with RNNs

on long sequences. Transformers now have shown its replacing role then RNNs in many problems

in natural language processing, speech processing and computer vision (121) (147).

Recently, researchers find that pure self-attention networks (SANs), for example, transformers

with skip connections and multi-layer perceptrons (MLPs) disabled, lose expressive power doubly

exponentially with respect to network depth. They prove that the output converges with a cubic

rate to a rank one matrix with identical rows (35). Their analysis verifies that skip connections are
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the key in mitigating rank collapse, and MLPs can slow down the convergence by increasing their

Lipschitz constant. This research inspires our deep thoughts towards the current object detection

models with transformer. We try to excavate the inner specialty of transformer so as to solve the

existing problem, especially in object detection applications.

7.2.2 Object Detection with Transformer

Previously, the mainstream object detection models make predictions relative to some initial guesses.

Two-stage detectors (133) predict bounding boxes relative to proposals, and single-stage methods

make predictions based on anchors (105) (104) (99) or other possible object key points (152) (195).

While the performance of these models heavily depends on how the initial guesses are set (). There

are Anchor-free detection technologies that assign positive and negative samples to feature maps

by a grid of object centers (86).

DETR is recently proposed that successfully apply transformer in object detection that is con-

ceptually simpler without handcrafted process by direct set prediction (17). DETR utilizes a sim-

ple architecture, by combining convolutional neural networks (CNNs) and Transformer encoder-

decoders. Deformable DETR is proposed to improve the problems of slow-convergence and lim-

ited feature spatial resolution by making its attention modules only attend to a small set of key

points around a reference (197). UP-DETR is inspired by the pre-training transformers in natural

language processing and proposes the random query patch detection to unsupervisedly pre-train

the transformer of DETR (30), which boosts the performance significantly. While these two mod-

els both solve the problem from the data end, one by ImageNet pre-training, the other through

multi-scale feature representation. Compared with the previous works, Miti-DETR tries to solve

the existing problems from the inner property of transformer so that it is data-independent and

more practical.
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Figure 7.2: Architecture Streamline of Miti-DETR

7.3 Miti-DETR

The proposed Miti-DETR model maintains the pretty simple architecture as the original DETR,

depicted in Figure 7.2. It contains three main components: a CNN working as the feature extractor;

the transformer encoder and decoder with the proposed residual self-attention network; and the

final feed-forward networks (FFN) working for the object detection prediction. We still adopt the

effective bipartite matching loss for direct prediction (17). In this section, we mainly discuss why

we need to introduce the proposed residual connection, and how to build up the corresponding

transformer architecture, and finally, we show the proof why this new architecture could bring

about mitigatory self-attention convergence.

7.3.1 Attention Network Loses Rank

The attention mechanism has become ubiquitous by its outstanding performance of learning long-

range knowledge both in timing and spatial sequence (3) (158). However, it has been certified

that the pure-attention networks (SANs), with the skip connections and multi-layer perceptions

(MLPs) disabled, tend to lose expressive power with respect to network depth, leading to the

output converging with cubic rate to a rank one matrix that has identical rows (35). This theorem

can be expressed as below.
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Theorem 2 For any single-head SAN consisting of L layers where ‖Wl
QK‖1‖Wl

V‖1,∞ ≤ β , we have

that

‖res(SAN(X))‖1,∞ ≤

(
4β√
dqk

) 3L−1
2

‖res(X)‖3L

1,∞ (7.1)

which amounts to a doubly exponential rate of convergence.

In Theorem 2, the residual item works as,

res(X) = X−1xT ,where x = argminx‖X−1xT‖, (7.2)

X is the n× din input matrix consisting of n tokens. Wl
QK and Wl

V are the corresponding value

weight matrixes. It is noted that the bound in Equation 7.3 guarantees ‖res(SAN(X))‖1,∞ conver-

gence for all the small residual’s inputs whenever 4β ≤
√

dqk. The detailed proofs can be found

in (35).

Theorem 3 Consider a depth L and width H self-attention network. Supposing ‖Wl
QK,h‖1‖Wl

h‖1,∞

≤ β for all heads h ∈ [H] and layers l ∈ [L], then we have

‖res(SAN(X))‖1,∞ ≤

(
4βH√

dqk

) 3L−1
2

‖res(X)‖3L

1,∞ (7.3)

which amounts to a doubly exponential rate of convergence.

From Theorem 3, it conforms the same convergence condition with Theorem 2 for multi-head self-

attention network. The bound guarantees convergence of SAN(X) to rank one when 4βH <
√

dqk.

7.3.2 Skip Connection and MLP Counteract Degeneration

There is a natural but pertinent question then: if the (pure) attention network degenerate to a rank

one matrix doubly exponentially with depth, why do attention-based transformer networks work

in practice? It is verified that the presence of skip connections is crucial that stops the SAN from
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degenerating to rank one and the Multi-layer perceptrons (MLP) help control the convergence

rate (35).

The lower bound on the residual to conform with the practice that SANs with skip connections

neutralize the rank collapse is presented as below, which could be referred to with proof in (35).

Claim 1 Given a depth L and width H self-attention network with skip connections. There exists

infinitely many parameterizations for which ‖res(XL)‖ ≥ ‖res(X)‖. This holds even for L→∞ and

β arbitrary small.

Considering the MLP, we use fl to denote the MLP as well as the output bias. Its corresponding

output expression can be written as

Xl+1 = fl

(
∑

h∈[H]

PhXlWh

)
, (7.4)

where Ph is the n×n row-stochastic matrix. Wh is the weights matrix.

We use λl,1,∞ to denote the Lipschitz constant of fl with respect to l1,∞ norm. The upper bound

for the residual is derived in the following (35):

Corollary 1 Consider a SAN with MLP of depth L and width H. Supposing that ‖Wl
QK,h‖1‖Wl

h‖1,∞≤

β for all h ∈ [H] and l ∈ [L] and fix λl,1,∞ ≤ λ , then we have

‖res(XL)‖1,∞ ≤

(
4βHλ√

dqk

) 3L−1
2

‖res(X)‖3L

1,∞ (7.5)

which amounts to a doubly exponential rate of convergence.

As seen in Corollary 1, the convergence rate can be controlled by the Lipschitz constants λ f ,1,∞

of the MLPs, which indicates that more powerful MLPs bring about slower convergence. This

reveals the tug-of-war between self-attention layers and the MLPs whose nonlinearity contributes

to increasing the rank (35).
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7.3.3 Residual Self-attention Network

By the observation towards the current transformer network, we find that the skip connections

are across "independent modules". Here the "independent modules" refer to the multi-head self-

attention network and the feed-forward fully connection network in transformer encoder and de-

coder layer architectures. Based on the analysis towards the functions of SANs, skip-connection

and MLPs, we can define the features’ attention levels and provide the sequence. Considering one

single transformer layer, we use Xl to denote its inputs, SAN(Xl) to denote the outputs of SAN

network, and Xl+1 as the outputs after MLPs. If g is defined as the mapping function of features’

attention level, we can derive the following conclusion,

g(SAN(Xl))≥ g(Xl+1)≥ g(Xl) (7.6)

Combined with the advantage brought by skip connections, we believe that the skip connec-

tions that dramatically diversify the path distribution are the structural factor that explains the

degeneration counteraction. This structural factor brings in the diversity of attention levels. Es-

sentially, we believe that it is the diversity of features’ attention levels that mitigate the strong

inductive bias towards "token uniformity" of the self-attention networks. Inspired by this idea, we

propose the residual self-attention network, in which we reserve the inputs of each single attention

layer to the outputs of this layer so that the "non-attention" information could participate in the

feature attention propagation. Thus, the diversity of feature attention levels is maximized. The

corresponding architecture is depicted in Figure 7.1. In the sequence, we provide proof for the

convergence property of the new self-attention network with the proposed residual connection.

The output of the lth layer attention network, in this case, can be expressed as

Xl+1 = fl

(
∑

h∈[H]

PhXlWh

)
+Xl, (7.7)
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then the lth layer output not considering the residual connection is,

Xl+1−Xl = fl

(
∑

h∈[H]

PhXlWh

)
. (7.8)

We follow the definition of the residual in Theorem 2,

res(Xl+1−Xl) = (Xl+1−Xl)−1xT ,where x = argminx‖(Xl+1−Xl)−1xT‖, (7.9)

while the proposed residual connection skips both the multi-head attention layer and the MLPs,

the actual output residual should be,

res(Xl+1) = Xl+1−1xT ,where x = argminx‖(Xl+1−Xl)−1xT‖, (7.10)

thus, res(Xl+1) can also be expressed in the following equation

res(Xl+1) = Xl + ε,where ε < Xlandε = argminε‖Xl+1−Xl− ε ‖. (7.11)

With the introduced residual connection, res(Xl+1) anchors at the inputs Xl of the current layer. Its

fluctuation depends on the perturbance ε of the inputs and the original convergence performance

of the attention network. We compare the above three equations, res(Xl+1−Xl) still satisfies the

Corollary 1 by a convergence upper bound, and

‖res(Xl+1)‖> ‖res(Xl+1−Xl)‖. (7.12)

Thus, the proposed residual self-attention network brings about an anchor for the convergence of

each attention layer, which propagates through all attention layers in the transformer architecture

and helps render the model keep sensitive to the input perturbation, which further slows down the

convergence and counteracts the rank collapse. This research conclusion is verified by concrete

learning performance in the experiment section.
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7.3.4 Transformer with Mitigatory Convergence in Object Detection

Based on the above analysis, the proposed residual attention architecture enables the transformer to

have mitigatory convergence performance theoretically. We follow the same architecture stream-

line as the DETR model but apply our proposed transformer network as the corresponding encoder-

decoder transformer. Specifically, Midi-DETR consists of a convolutional CNN backbone, self-

encoder and decoder attention network (17) and prediction feed-forward network (FFNs). In this

work, we design the residual self-attention network in every transformer encoder and decoder layer,

as the illustration shows in the transformer block in Figure 2. The residual connection bridges the

inputs and outputs of a single transformer layer in a short connection way. This path bypasses

the composite module of multi-head self-attention network and the feed-forward fully connection

network, forming the new "non-attention" feature propagation. Then we concatenate the original

inputs of the current layer and the outputs from the MLPs and normalization layer at the top of the

transformer layer. Thus, this proposed new transformer network works as an independent module

that can be implemented in any deep learning framework that provides a common CNN backbone

and a transformer architecture implementation.

7.4 Experiments

We show that Miti-DETR achieves competitive results compared to the original DETR in quan-

titative evaluation on COCO (97). Then we provide a detailed analysis towards the training and

learning progress, with insights and qualitative results. Then, we provide the detection accuracy re-

sults of Miti-DETR on COCO and shows its leading performance at multiple measuring criterion.

To show the advantage of speeding up convergence and effective optimization, we will compare

Miti-DETR and UP-DETR (30) and present the detection results and analysis as well in the future

work. The corresponding experimental settings and implementation details come below.

112



7.4.1 Implementation Details

We train the related models in the work with AdamW (101). The transformer weights are initialized

with Xavier init (49) and the backbone is the ImageNet-pretrained ResNet model (59). In this work,

we report the results with the backbone of ResNet-50, which is a relatively basal option. All the

other hyperparameters in this experiment strictly follow the setting of DETR (17).

We use the training schedule of 300 epochs with a learning rate drop of 10 after 200 epochs.

All the training images are passed over the model for a single epoch. We train the related models

on 4 P100 GPUs. We apply the pretrained backbone network of DETR R50 provided by DETR

official code at https://github.com/facebookresearch/detr.

7.4.2 Dataset

We conduct the experiments on COCO2017 detection dataset (97), containing 118K training im-

ages and 5K validation images. Averagely, there are 7 instances, up to 63 instances in a single

image in the training set, including small and large objects on the same images (17). We report Av-

erage Precision (AP) as bounding box AP, under the integral metric with multiple thresholds. For

the comparison with state-of-the-art models, we report the validation AP from the highest epoch

performance.

7.4.3 Training and Learning

Typically, transformers are trained with Adam or Adagrad optimizers with very long training

schedules and dropout, which is true for DETR models as well. Despite this disadvantage, Miti-

DETR is designed to make a faster transformer-based detector. We report the training loss curves

and test error curves of all the experimental models during the learning process.
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Figure 7.3: Comparison of the learning process distributions on COCO: (left->right) Learning Loss, Test Error, and
Average Recall.

7.4.4 Detection Results

Set up. The models in the experiment settings are fine-tuned on COCO train2017 (approximate of

118k images) and evaluated on val2017. A comprehensive comparison, including AP, AP50, AP75,

APS, APM and APL, is reported. Moreover, we also show the curves of training loss, test error, and

average recall in the learning process and make a comparison among the related models.

Results. In Figure 7.3, Miti-DETR outperforms DETR for the entire learning process in terms

of the convergence speed, showing a clear advantage, especially after the 150 epoch schedule.

The statistic of test error in the middle figure in Figure 7.3 is the remaining value after deducting

Average Precision (AP) from 1 at each epoch. Moreover, DETR shows unstable learning state,

even divergence, between epoch 150 and epoch 200, the end of the first learning rate schedule.

While Miti-DETR appears very stable convergence procedure during the entire process and all of

the loss, test error and recall curves show a consistent trend. This is in accord with the theory that

the original transformer tends to rank collapse. Although DETR returns to the normal track of fast

convergence after the 200 epoch schedule, the unstable state could be the reason that lowers down

the final convergence performance. After reducing the learning rate at epoch 200, the Miti-DETR

averagely keeps the 0.9 test error of that of DETR. A similar situation applies to the average

recall curves. This experiment suggests that the proposed residual self-attention network could

effectively improve the convergence problem of DETR, where the unstable learning procedure

caused by the rank-1 trend is avoided by the residual connection across composite network modules

in transformer.
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Model Backbone Epoch AP AP50 AP75 APS APM APL
DETR R50 300 37.6 57.8 39.3 18.0 40.6 55.7

Miti-DETR R50 300 40.5 60.4 42.7 19.7 43.9 59.3

Table 7.1: Detection accuracy on COCO.

Table 7.1 shows the AP statistic results of both DETR and the proposed Miti-DETR. As shown

in this table, Miti-DETR generally leads DETR by 3% in terms of AP. For AP75, the highest

threshold, Miti-DETR even surpasses DETR by nearly 4%. This indicates that Miti-DETR gen-

erally prominently improves the detection quality of DETR. More detected bounding boxes have

higher IoU with the ground truth. Considering the size property of objects, Miti-DETR shows

all-round advantage over DETR, ranging from small, medium, and large thresholds. Although

Miti-DETR has no more than 2% higher than DETR in terms of APS, this is still a big enhance-

ment considering small objects are hard to handle for current object detectors, and it’s an existing

problem of DETR as well. Combined with Figure 7.3, it is worth noting the stable learning pro-

cess effectively contributes to the final detection accuracy of DETR and the Miti-DETR shows a

promising research direction for future research based on transformer network itself.

7.5 Conclusion

We presented Miti-DETR, a DETR object detector based on Transformer with mitigatory self-

attention convergence. The model outperforms DETR by a big advantage. The proposed core

technique, residual self-attention network is verified capable of preventing the attention network

from losing rank based on the transformer network itself. Miti-DETR is straightforward to im-

plement and has a flexible structure where the residual self-attention network could be extensible

to other attention-mechanism models or tasks. In addition, it achieves significantly better per-

formance on small objects than DETR, likely thanks to the effective processing towards global

information and the stable convergence procedure. We hope this work could be inspiring for fur-

ther research towards the working principles of attention mechanism and transformer network,

especially for the effective and efficient processing towards the global attention. Accordingly,
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the current models could be more productive with the training process and a more comprehensive

method of combining global information and local features based on the transformer network itself

is expected.
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Chapter 8

Conclusion and Future Work

For the research towards deep learning based object detection and classification, we have been

working on better handling hard scenes, easier detecting small objects, more straightforward gen-

eralization and further intelligence. I have been working on improving the above problems from

the perspectives of feature learning, semantic understanding, cognitive reasoning, regularization.

We believe this research is based on network working theory itself, which would obtain maxi-

mum adaptability. Thus, my research starts from feature learning, especially for the extraction

and representation of contextual information and abstract semantic. So we design and propose the

deep feature learning module which explores the relationship semantic between objects and scenes

so that the detectors obtain better processing over small objects. From the perspective of feature

learning, I believe the essence is to maximize the combination of abstract and detailed features.

Since the CNN networks are good at extracting details, I focus on the attention mechanism and

transformer network. They realize the most generalized compute model in terms of deep learn-

ing literature, which attends global information effectively. We propose the Miti-DETR and the

residual transformer network and solved the unstable learning procedure and rank-1 convergence

problems of current DETR models. Considering DETR related models currently have the most

reasonable network architecture, with CNN as the backbone and Transformer as the global cor-

relation module, I will continue my current work in searching for the solutions to the training
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struggle of transformer and excavating the attention mechanism for lighter correlation computa-

tion and exploring techniques for better detection towards small objects. In addition to feature

learning, algorithm design, another key point in my research is cognitive learning. We propose

the first-step work by presenting the semantic clustering-based deduction learning, where the clas-

sification model is guided to notice and find the high-level semantic relations in semantic space,

enabling the model to deduce the semantic knowledge at the cognitive level. I believe cognitive

learning will be a developing trend in the deep learning literature and I will focus on this field in

my future work.
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