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Abstract

Convolutional Neural Networks (CNNs) have achieved great success in broad computer vision

tasks. However, due to the lack of labeled data, many available CNN models cannot be widely

used in many real scenarios or suffer from significant performance drop. To solve the problem of

lack of correctly labeled data, we explored the capability of existing unsupervised domain adap-

tation (UDA) methods on image classification and proposed two new methods to improve the

performance.

1. An Unsupervised Domain Adaptation Model based on Dual-module Adversarial Train-

ing: we proposed a dual-module network architecture that employs a domain discriminative feature

module to encourage the domain invariant feature module to learn more domain invariant features.

The proposed architecture can be applied to any model that utilizes domain invariant features for

UDA to improve its ability to extract domain invariant features. Through the adversarial training

by maximizing the loss of their feature distribution and minimizing the discrepancy of their pre-

diction results, the two modules are encouraged to learn more domain discriminative and domain

invariant features respectively. Extensive comparative evaluations are conducted and the proposed

approach significantly outperforms the baseline method in all image classification tasks.

2. Exploiting maximum classifier discrepancy on multiple classifiers for unsupervised do-

main adaptation: The adversarial training method based on the maximum classifier discrepancy

between the two classifier structures has been applied to the unsupervised domain adaptation task

of image classification. This method is straightforward and has achieved very good results. How-

ever, based on our observation, we think the structure of two classifiers, though simple, may not

explore the full power of the algorithm. Thus, we propose to add more classifiers to the model. In

the proposed method, we construct a discrepancy loss function for multiple classifiers following

the principle that the classifiers are different from each other. By constructing this loss function,
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we can add any number of classifiers to the original framework. Extensive experiments show that

the proposed method achieves significant improvements over the baseline method.
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Chapter 1

Introduction

In the last ten years, with the emergence of the Activation function ReLU (which solves the prob-

lem of gradient disappearance in deep neural networks) and GPUs are used to accelerate network

computations, deep neural networks have been widely used in various fields of computer science.

As AlexNet won the ImageNet competition in 2012, people found that its powerful performance

far surpassed the second algorithm SVM at the time. Because of ALexNet, Convolutional Layer

and the deep Convolutional Neural Network (CNN) structures began to receive extensive attention

from researchers.

At present, thanks to the excellent ability of CNN in feature extraction, networks such as VG-

GNet and ResNet have achieved great success in image classification tasks. In addition to the

excellent network itself is a key factor, there is another important factor that is the labeled data.

Since most of the current methods are based on supervised learning, correctly labeled data has

become another key factor in whether these algorithms can be applied to real-world scenarios. If

we meet the above two factors at the same time, then our model can be used in almost all scenar-

ios. However, in practical applications, it is difficult for us to meet the conditions of the data. The

specific reasons often come from the following two aspects:

1. Scene changes. Scene changes are the easiest thing to happen in practical applications.

In addition to the changes caused by performing tasks in different places, there will also be the

changes in weather, movement of objects, withering of vegetation, etc., which can cause scene

changes in fixed views and locations. If we only use data from certain scenarios to train a model,

then the performance of the model will greatly reduce when we perform tasks in new scenarios.

Therefore, when a model performs tasks in a brand-new environment, we need to supplement the
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model with a large amount of labeled data of the new scene.

2. Labeled data in professional areas. In many professional fields, such as medical image

processing, agricultural image analysis, geological image analysis, deep-sea exploration and other

application fields, the task of labeling data will be much more difficult. The main reason is that the

people who can label these images can only be people in related fields, and this makes the labeled

data very precious and expensive.

Motivation & Challenge: In order to enable those existing excellent models to be used in more

scenarios and to reduce costs as much as possible, unsupervised domain adaptation has become an

important idea to solve the problem of labeling data. The core idea of the unsupervised domain

adaptation method is to fuse two different domains by aligning their distributions. In these two

distributions, we have a source domain dataset and a target domain dataset, and the classes in these

two data sets are the same. The data in the source domain dataset is labeled, while the data in

the target domain dataset is unlabeled. The two data sets will have some commonalities, so they

are not two completely different domains. Therefore, how to align the two domains to minimize

the domain shift has become one of the main challenges of the unsupervised domain adaptation

method. Under this kind of thinking, we hope that by using unlabeled data, the performance of the

model in processing the target domain tasks can reach a level close to or even beyond supervised

learning.

Contribution: In my thesis, we proposed two unsupervised domain adaptation methods, and

used these methods to solve image classification tasks. In the first chapter, we proposed a method

based on dual-module adversarial training. In the second chapter, we propose a method of maxi-

mum classifier discrepancy based on the structure of multiple classifiers. These two methods not

only have a significant performance improvement compared to the previous method, but also have

reached the state-of-the-art performance level.

2



Chapter 2

Related Works

Domain adaptation is a commonly used technique in many computer vision tasks to improve the

generalization ability of a model trained on a single domain. In this chapter, we describe some

existing domain adaptation methods.

2.1 Learn domain invariant features.

Recently, (Chen et al., 2020b) explored what enables the contrastive prediction tasks to learn useful

representations. (Carlucci et al., 2019) learns the semantic labels in a supervised fashion, and

broadens its understanding of the data by learning from self-supervised signals how to solve a

jigsaw puzzle on the same images.

2.2 Distance-based methods.

Aligning the distribution between the source domain and the target domain is a very common

method in solving unsupervised domain adaptation problems. Maximum Mean discrepancy (MMD)

(Gretton et al., 2012; Long et al., 2017; Tzeng et al., 2014; Long et al., 2015) is a method of measur-

ing the difference of two distributions. DAN (Long et al., 2015) explored the multi-core version of

MMD to define the distance between two distributions. JAN (Long et al., 2017) learned a transfer

network by aligning the joint distributions of multiple domain-specific layers across the domains

based on a joint maximum mean discrepancy (JMMD) criterion. (Long et al., 2016) enabled the

classifier adaptation by plugging several layers into the deep network to explicitly learn the resid-

ual function with reference to the target classifier. CMD (Zellinger et al., 2017) is a metric on the
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set of probability distributions on a compact interval.

To solve the problem of unbalanced datasets, Deep Asymmetric Transfer Network (DATN)

(Wang et al., 2018) proposed to learn a transfer function from the target domain to the source

domain and meanwhile adapting the source domain classifier with more discriminative power to

the target domain. DeepCORAL (Sun & Saenko, 2016) builds a specific deep neural network by

aligning the distribution of second-order statistics to limit the invariant domain of the top layer.

(Chen et al., 2020a) proposed a Higher-order Moment Matching (HoMM) method to minimize the

domain discrepancy.

2.3 Adversarial methods.

Adversarial training is another very effective method to transfer domain information. Inspired by

the work of gradient reversal layer (Ganin & Lempitsky, 2015), a group of domain adaptation

methods has been proposed based on adversarial learning. RevGrad (Ganin & Lempitsky, 2015)

proposed to learn the global invariant feature by using a discriminator that is used to reduce the dis-

criminative features in the domain. Deep Reconstruction-Classification Networks (DRCN) (Ghi-

fary et al., 2016) jointly learned a shared encoding representation for supervised classification of

the labeled source data, and unsupervised reconstruction of the unlabeled target data. (Bousmalis

et al., 2016) extracted image representations that are partitioned into two subspaces. Adversarial

Discriminative Domain Adaptation (ADDA) (Tzeng et al., 2017) trained two feature extractors for

the source and target domains respectively, to generate embeddings to fool the discriminator.

Maximum Classifier Discrepancy (MCD) (Saito et al., 2018) proposed to explore task-specific

decision boundaries. CyCADA (Hoffman et al., 2018) introduced a cycle-consistency loss to match

the pixel-level distribution. SimeNet (Pinheiro, 2018) solved this problem by learning the domain

invariant features and the categorical prototype representations. CAN (Kang et al., 2019) optimized

the network by considering the discrepancy of the intra-class domain and the inter-class domain.

Graph Convolutional Adversarial Network (GCAN) (Ma et al., 2019) realized the unsupervised

domain adaptation by jointly modeling data structure, domain label, and class label in a unified
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deep model. (Gong et al., 2019) proposed a domain flow generation (DLOW) model to bridge

two different domains by generating a continuous sequence of intermediate domains flowing from

one domain to the other. (Cai et al., 2019) employed a variational auto-encoder to reconstruct the

semantic latent variables and domain latent variables behind the data. Drop to Adapt (DTA) (Lee

et al., 2019) leveraged adversarial dropout to learn strongly discriminative features by enforcing

the cluster assumption. Instead of representing the classifier as a weight vector, (Lu et al., 2020)

modeled it as a Gaussian distribution with its variance representing the inter-classifier discrepancy.
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Chapter 3

Dual-Module Adversarial training

3.1 Introduction

With the advent of gradient reversal layers (GRL) from Domain-Adversarial Training of Neural

Networks (DANN) Ganin & Lempitsky (2015), more and more people realize that adversarial

training has a significant effect on aligning the feature of the source and target domains. DANN

Ganin & Lempitsky (2015) extracts the global invariant features by training a domain discriminator

to fool the feature extractor. The domain discriminator is a component composed of several fully

connected layers. Its function is to distinguish the input data from the source domain or the target

domain. If the discriminator could not recognize the extracted feature map, it means that the

extracted feature map comes from the common space of these two domains. The global invariant

features are from this space, and DANN utilizes a classifier for adversarial training to ensure the

effectiveness of the features learned by the network. In addition to the adversarial training method

based on GRL, there are many other adversarial training methods based on generative adversarial

nets (GANs) Goodfellow et al. (2014); Liu & Tuzel (2016); Tran et al. (2017); Hu et al. (2018).

Most of them have one thing in common, i.e., they adapt to the target domain by learning global

invariant features.

Taking DANN Ganin & Lempitsky (2015) as an example, although it has the advantage to use

a discriminator to encourage the model to learn invariant features, there is also a bottleneck. When

we only rely on the discriminator to control the extraction ability of the domain invariant features,

the conditions to extract domain invariant features will become very limited. When the extracted

domain invariant features are strong enough to fool the discriminator, it will become difficult for
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the model to further improve its ability to extract the domain invariant features. In addition, when

we only use the source domain labeled data to adjust the classifier, the extracted features will be

more biased towards the source domain, which further limits its performance on the target task.

This challenge also exists in other methods that employ the domain discriminator to extract the

domain invariant features.

In order to further improve the extraction ability of domain invariant features, we propose a

dual-module architecture to solve this challenge. The proposed network is composed of a discrim-

inative feature learning module and a domain invariant feature learning module, and the domain

discriminative feature module is employed to encourage a domain invariant feature module to learn

more domain invariant features.

3.2 Method

3.2.1 Network Structure

In this section, we will elaborate on the proposed network structure in detail. As shown in Figure

3.1, our network employs a dual-module structure. M1 is the domain invariant feature module,

and M2 is the domain discriminative feature module. M1 is composed of a feature extractor G1, a

discriminator D1, two classifiers C1 and C2, and a Linear transformation layer T1. M2 consists of

a feature extractor G2, a discriminator D2, two classifiers C3 and C4, and a Linear transformation

layer T2. Since the loss of our dual-module architecture needs to calculate the discrepancy of the

two feature distributions, we need an independent linear transformation layer to convert the feature

map into a feature distribution. For each module, We embed a linear transformation layer after the

feature extractor. For the linear transformation layer, we set its input and output sizes as that of the

feature extractor, so as to ensure that there is no information loss in this process.

In addition, the domain discriminators in these two modules have completely different func-

tions. The discriminator D1 plays the same role as the discriminator in DANN to fuse the two

domains. However, the discriminator D2 is employed to separate the two domains. Therefore, M1
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C2

D1
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C4
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D2

T1
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max min

Figure 3.1: Network Structure.
The proposed network architecture has two modules. M1 learns the domain invariant features,
and M2 learns the domain discriminative features. G1 is the feature extractor of M1, and G2 is
the feature extractor of M2. T1 and T2 are learner transformation layers. D1 and D2 are domain
discriminators. C1, C2, C3, and C4 are classifiers. Orange lines denote the backward process of
training steps 1 and 2, and Green lines denote the backward process of training step 3.
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learns domain invariant features, while M2 learns the domain discrimination features. Please note

that the sub-components used in our two modules have exactly the same structure. For example,

G1 and G2 have the same structure, D1 and D2 are the same, and C1, C2, C3, and C4 are the same.

3.2.2 Training Steps

Step 1: Our model learns the decision boundary by using MCD Saito et al. (2018). Learning

the decision boundary is essential to learning the discriminative feature. The main reason we put

this as the first step is to avoid conflict between the learning process of the decision boundary

and the domain invariant feature learning. In order to bring our model closer to the ideal state of

domain fusion, our subsequent steps can effectively reduce the redundant domain discriminative

features obtained from the decision boundary, thereby reducing the negative impact of the conflict.

Following the setting of Saito et al. (2018), we fix the number of iterations to 4 for learning the

boundary in target domain in all our experiments. Since the function of the linear transformation

layer T is to convert the feature map into a feature distribution, our linear transformation layer only

updates the parameters when the feature extractor updates the parameters.

Step 2: In this step, we continue to train the two modules separately. Taking the M1 module as

an example, we use the adversarial loss of DANN for training. In other words, we train the model

according to the training method from the original algorithm. After this step, the two modules

begin to have some differences. This step is necessary for the proposed dual-module structure.

For the algorithms that do not use MCD for pre-processing, this will be the first step in the entire

training process.

For M1, we conduct adversarial training through gradient reversal layer (grl) to learn the do-

main invariant features.

LC = LC1( fθ (Xs),Ys)+LC2( fθ (Xs),Ys) (3.1)

LM1 = LC +grl(LD1( fθ (Xs)))+grl(LD1( fθ (Xt))) (3.2)

where LM1 is the total loss of the whole M1 module, LC is the total loss of two classifiers, LC1, LC2,
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and LD1 are the cross-entropy loss for the classifiers and discriminator.

For M2, we don not apply gradient reversal layer, so the discriminator will prompt the feature

extractor to learn the domain discriminative feature.

LC = LC3( fθ (Xs),Ys)+LC4( fθ (Xs),Ys) (3.3)

LM2 = LC +LD2( fθ (Xs))+LD2( fθ (Xt)) (3.4)

where LM2 is the total loss of the whole M2 module, LC is the total loss of the two classifiers, LC3,

LC4, and LD2 are the cross-entropy loss for the classifiers and discriminator.

Step 3: In this step, we conduct an adversarial loss function L for our two modules. We

input the same set of data into the two modules and extract the output from the transformation

layer T and the classifier C. We use the linear transformation layer to convert the feature maps

into feature distributions, and calculate the discrepancy between the two modules. At the same

time, we use C1 and C3 to predict the results for the same input and calculate the discrepancy

between the two modules. We use a gradient reversal layer (grl) to maximize the discrepancy of

the feature distributions. At the same time, we minimize the discrepancy of the prediction results.

Our adversarial loss function is to play a Min-Max game with these two discrepancies.

grl(dis(t)) = max(dis(ts
1, t

s
2)+dis(tt

1, t
t
2)) (3.5)

dis(c) = min(dis(cs
1,c

s
3)+dis(ct

1,c
t
3)) (3.6)

L = grl(dis(t))+dis(c) (3.7)

where L is the total loss, dis() is the discrepancy loss. ts
1 means the output is from T1 and the input

is from the source domain, and ts
2 means the output from T2 and input from the source domain.

tt
1 means the output from T1 and input from the target domain, and tt

2 means the output from T2

and input from the target domain. cs
1 means the probability output from C1 and takes input from

the source domain, and ct
1 means the probability output from C1 and takes input from the target
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domain. cs
3 means the probability output from C3 and takes input from the source domain, and ct

3

means the probability output from C3 and takes input from the target domain.

3.3 Experiments

We conducted extensive experiments to evaluate the proposed architecture and the effect of dif-

ferent components in the architecture. We conduct our experiments on three digits datasets, two

traffic sign datasets, and one object classification dataset. In the following, OURS mentioned in

the results refers to the case where only the dual-module structure is used. MCD+DANN refers to

the case where MCD is directly employed to solve the imbalance problem in DANN. OURS+1M

refers to the case where MCD is only used by the M1 module. OURS+2M refers to the case where

MCD is used by both M1 and M2 modules. We also compare the performance with DANN and

MCD as the baselines.

3.3.1 Experiments on Digits and Traffic Signs Datasets

In this section, we evaluate our model using the following five datasets: MNIST LeCun & Cortes

(2010), Street View House Numbers (SVHN) Netzer et al. (2011), USPS Hull (1994), Synthetic

Traffic Signs (SYN SIGNS) Moiseev et al. (2013), and the German Traffic Signs Recognition

Benchmark (GTSRB) Stallkamp et al. (2011).

MNIST: The dataset contains images of digits 0 to 9 in different styles. It is composed of

60,000 training and 10,000 testing images.

USPS: This is also a digit dataset with 7,291 training and 2,007 testing images.

SVHN: Another digit dataset with 73,257 training, 26,032 testing, and 53,1131 extra training

images.

SYN SIGNS: This is a synthetic traffic sign dataset, which contains 100,000 labeled images,

and 43 classes.

GTSRB: A dataset for German traffic signs recognition benchmark. The training set contains
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39,209 labeled images and the test set contains 12,630 images. It also contains 43 classes.

We evaluate the unsupervised domain adaptation model on the following four transfer scenar-

ios:

• SVHN −→MNIST

• USPS −→MNIST

• MNIST −→USPS

• SYNSIG −→ GTSRB

During the experiments, we employ the CNN architecture and the input size used in Saito et al.

(2018). We used mini-batch stochastic gradient descent (SGD) to optimize our model and set

the learning rate at 0.002 in all experiments. We follow DANN Ganin & Lempitsky (2015) and

employ the SGD training schedule for the part of learning domain invariant feature: the learning

rate adjusted by ηp =
η0

(1+α p)β
, where p denotes the process of training iterations that is normalized

in [0, 1], and we set η0 = 0.002, α = 10, and β = 0.75; the hyper-parameter λ is initialized at 0

and is gradually increased to 1 by λp = 2
1+exp(−γ p) − 1, where we set γ = 10. For the maximun

classifier discrepancy, we set the hyper-parameter k = 4 in all experiments. We set the batch size to

128 in all experiments. We follow the protocol of unsupervised domain adaptation and do not use

validation samples to tune the hyper-parameters.

We present the digit classification and sign classification performance in Table 4.1. From the

table, it is clear that the proposed method outperforms previous models in all settings, where

OURS+2M is the top-performing variant. In order to explore the direct impact of MCD on

DANN, we combined them and compared the experimental results with the state-of-the-art. We

can find that the performance of MCD+DANN is lower than MCD in both SVHN−→MNIST and

SYNSIG−→GTSRB tasks. The result demonstrates that when MCD acts directly on DANN, it

sometimes may cause conflict with DANN, while the structure of OURS+2M can effectively

resolve this conflict. Compared with MCD (baseline), we obtain an improvement of 3.1% in
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SVHN MNIST USPS SYNSIG
Method to to to to

MNIST USPS MNIST GTSRB
Source only 67.1 79.4 63.4 85.1

DANN Ganin & Lempitsky (2015) 71.1 85.1 73.0±0.2 88.7
ADDA Tzeng et al. (2017) 76.0±1.8 - 90.1±0.8 -
CoGAN Liu & Tuzel (2016) - - 89.1±0.8 -

PixelDA Bousmalis et al. (2017) - 95.9 - -
ASSC Haeusser et al. (2017) 95.7±1.5 - - 82.8±1.3

UNIT Liu et al. (2017) 90.5 96.0 93.6 -
CyCADA Hoffman et al. (2018) 90.4±0.4 95.6±0.2 96.5±0.1 -

GTA Sankaranarayanan et al. (2018) 92.4±0.9 95.3±0.7 90.8±1.3 -
DeepJDOT Bhushan Damodaran et al. (2018) 96.7 95.7 96.4 -

SimNet Pinheiro (2018) - 96.4 95.6 -
GICT Qin et al. (2019) 98.7 96.2 96.6 -
STAR Lu et al. (2020) 98.8±0.05 97.8±0.1 97.7±0.05 95.8±0.2

MCD Saito et al. (2018) 96.2±0.4 96.5±0.3 94.1±0.3 94.4±0.3
MCD+DANN 91.4±0.2 97.3±0.3 96.8±0.1 90.7±0.2

ours 98.9±0.1 95.1±0.4 96.1±0.2 91.1±0.2
ours+1M 98.3±0.1 97.1±0.2 97.0±0.1 90.8±0.2
ours+2M 99.3±0.1 98.0±0.4 97.7±0.1 97.0±0.2

Table 3.1: The performance on digit classification and sign classification.
We report the mean and the standard deviation of the accuracy obtained over 5 trials.

SVHN−→MNIST, 1.5% in MNIST−→USPS, 3.6% in USPS−→MNIST, and 2.6% in SYNSIG−→GTSRB.

In addition, our model outperforms the state-of-the-art methods on all tasks.

3.3.2 Experiments on VisDA Classification Dataset

We further evaluate our model on the large VisDA-2017 dataset Peng et al. (2017). The VisDA-

2017 image classification is a 12-class domain adaptation dataset used to evaluate the adaptation

from synthetic-object to real-object images. The source domain consists of 152,397 synthetic

images, where 3D CAD models are rendered from various conditions. The target domain consists

of 55,388 real images taken from the MS-COCO dataset Lin et al. (2014).

In this experiment, we employ Resnet-18 He et al. (2016) as our feature extractor and the pa-

rameters are adopted from the ImageNet pre-trained model. The pre-trained model of our Resnet-
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Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean
Source Only 30.2 4.3 27.9 60.6 31.0 2.1 82.7 7.4 67.7 12.9 79.4 2.3 40.3

DANN Ganin & Lempitsky (2015) 72.3 53.1 64.7 31.8 58.2 14.3 80.7 60.0 70.0 41.4 89.7 20.7 55.9
MCD Saito et al. (2018) 82.2 18.7 86.6 62.1 73.6 41.0 89.1 58.9 80.7 64.3 74.2 12.5 63.1

OURS 83.6 60.0 64.1 56.4 65.8 12.5 91.4 39.3 66.7 55.0 78.3 31.2 60.1
OURS + 1M 85.2 58.5 76.5 47.1 73.5 24.7 89.3 58.9 75.0 62.2 80.1 32.0 63.4
OURS + 2M 86.0 61.5 88.3 61.6 83.8 6.7 92.9 56.8 89.9 68.8 87.3 23.0 69.2

Table 3.2: The performance on VisDA-2017.
Results of unsupervised domain adaptation on VisDA2017 Peng et al. (2017) image classification track. The accuracy is obtained by fine-tuning
ResNet-18 He et al. (2016) model pre-trained on ImageNet Deng et al. (2009). This task evaluates the adaptation capability from synthetic CAD

model images to real-world MS COCO Lin et al. (2014) images. Our model achieves the best performance in most categories.

18 comes from Pytorch Paszke et al. (2017) and all experimental implementations are based on

Pytorch.

The input images are of the size 224× 224. First, we resize of the input image to 256, and

then crop the image to 224× 224 in the center. When we train the model using only the source

domain, we just modify the output size of the original last fully connected layer to a size that

conforms to VisDA-2017 Peng et al. (2017). In other tasks, we utilize a three-layer fully connected

layer structure to replace the one-layer fully connected layer structure of the original classifier.

For algorithms that require a discriminator, we employ a discriminator with a three-layer fully

connected layer structure. In order to eliminate the interference factors, except for the source only,

all other algorithms use the same classifier and the same discriminator. We uniformly use SGD as

the optimizer for training, and use 1×10−3 for the learning rate of all methods. We use 64 as the

batch size for training.

The results on VisDA-2017 are shown in Table 3.2. We can see that our model achieves an

accuracy much higher than previous methods. In addition, our method performs better than the

source only model in all classes, whereas MCD and DANN perform worse than the source only

model in some classes such as train, motorcycle, and car. Same as the last experiment, OURS+2M

is the top-performing variant. On average, we obtain an improvement of 6.1% compared with

MCD, and 13.3% compared with DANN. Our model also achieves the best performance in eight

out of the twelve categories in this experiment.
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dif-Module ddf-Module dif-MCD ddf-MCD S−→M M−→U U−→M S-SIG−→GTSRB Avg√
71.1 85.1 73.0±0.2 88.7 79.5√ √

91.4±0.2 97.3±0.3 96.8±0.1 90.7±0.2 94.1√ √
98.9±0.1 95.1±0.4 96.1±0.2 91.1±0.2 95.3√ √ √
98.3±0.1 97.1±0.2 97.0±0.1 90.8±0.2 95.8√ √ √ √
99.3±0.1 98.0±0.4 97.7±0.1 97.0±0.2 98.0

Table 3.3: Ablation study
Ablation study of our method for unsupervised domain adaptation on digital and traffic sign datasets.

3.3.3 Ablation Study

We conducted ablation studies based on digital and traffic sign datasets with the same unsupervised

domain adaptation setting as subsection 4.1. The algorithm we proposed has two modules, and

each module has two partial components, namely dif-module, ddf-module, dif-MCD and ddf-

MCD. Therefore, we design the ablation study to test the influence of each component on the

overall algorithm performance. dif-module refers to the component used to learn domain invariant

features in the model. This is a necessary module in the algorithm and also our baseline. ddf-

module refers to the component used to learn domain discriminative features in the model. The

function of this module is to expand the discrepancy in feature distribution during training. dif-

MCD refers to the use of MCD to align the class distribution of domain invariant feature module

classifiers, and ddf-MCD refers to the use of MCD to align to align the class distribution of domain

discriminative feature module classifiers.

As the table 3.3 shows, the performance of dual-module adversarial training has a significant

improvement over using a single domain adaptation method. There are two most intuitive exam-

ples. 1. the performance of DANN with dual-module adversarial training is 18.5% higher than

the one without dual-module adversarial training. 2. the performance of DANN +MCD with

dual-module adversarial training is 3.9% higher than the original single module.

3.3.4 Visualization

In Figure 3.2, we used T-SNE van der Maaten & Hinton (2008) to visualize the models we trained.

We chose the task that transfer SYN SIGNS Moiseev et al. (2013) to GTSRB Stallkamp et al.

(2011). SYN SIGNS is the source domain, and GTSRB is the target domain. After training, we
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Source Only Adapted: Ours Adapted: Ours+2M

Figure 3.2: Visualization by using T-SNE.
We take 2000 images from the task SYN SIGNS −→ GTSRB. Through visualization, we can easily find that our
proposed method can fuse the source domain with the target domain well.

selected 2000 data for visualization, where 1000 images from the source domain and 1000 images

from the target domain. It can be clearly seen from the figures that, compared to the Source Only

method, our proposed model has a significant effect on reducing the domain shift, especially for

the OURS+M2 variant.
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Chapter 4

Multi-Classifier Discrepancy

4.1 Introduction

Recently, Maximum Classifier Discrepancy (MCD) Saito et al. (2018) was proposed as an adver-

sarial training framework. In this framework, the two classifiers are trained by using the maximum

classifier discrepancy, and the feature extractor parameters are adjusted inversely through the de-

cision boundary of the two classifiers so that the source domain and the target domain are fused

together. In MCD, only two classifiers are used. Is it possible to employ more classifiers and will

the performance benefit from multiple classifiers? The paper will answer this question and explore

an approach to adding multiple classifiers to the system.

In this study, we propose a very straightforward method to train multiple classifiers based on

the MCD Saito et al. (2018) framework. We also compare the performance difference between the

multi-classifier structure and the 2-classifier structure.

4.2 Method

We only consider the close-set unsupervised domain adaptation problem. Suppose we have a

source domain Ds = {(Xs,Ys)} = {(xi
s,y

i
s)}

ns
i=1 with ns labeled samples and a target domain Dt =

{(Xt)} = {(xi
t)}

nt
i=1 with nt unlabeled samples. The two domains share the same label space Y =

{1,2,3, ...,K}, where K is the number of categories. We assume that the source sample xs belongs

to the source distribution Ps, and the target sample xt belongs to the target distribution Pt , where

Ps 6= Pt . Our goal is to train a classifier fθ (x) that can minimize the target risk εt = Ex∈Dt [ fθ (x) 6=
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yt ], where fθ (x) represents the output of the deep neural network, and θ represents the model

parameters to be learned.

4.2.1 Discrepancy Loss for 2-classifier

We follow the discrepancy loss in Saito et al. (2018) and use the absolute value of the difference

between the probability outputs of the two classifiers as the discrepancy loss:

dis(p1, p2) =
1
K

K

∑
k=1
|p1

k− p2
k | (4.1)

where p1 and p2 are the probability outputs of the two classifiers respectively, which are the predic-

tion scores for all the categories, and K is the number of categories, and p1
k and p2

k are the specific

values of their kth category.

4.2.2 Discrepancy Loss for multi-classifier

We conduct the Discrepancy Loss of the multi-classifiers Dis() based on the principle that the

classifiers are different from each other. In our training step, we need to maximize the difference

between the classifiers. If our classifiers cannot maintain the principle of mutual difference, then

there will be a situation where the overall discrepancy is maximized but some local discrepancy is

close to zero. Some classifier parameters will become the same as some classifiers in this process.

If the parameters of multiple classifiers tend to be the same when training multi-classifiers, this will

lead to the collapse of the model training. This conflict will make the performance of the model

even worse.

The following three Discrepancy Losses are designed for the cases of 3 classifiers, 4 classifiers,

and n classifiers.

For 3 classifiers:

Dis(p1, p2, p3) = dis(p1, p2)+dis(p1, p3)+dis(p2, p3)
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For 4 classifiers:

Dis(p1, p2, p3, p4) = dis(p1, p2)+dis(p1, p3)+dis(p1, p4)

+dis(p2, p3)+dis(p2, p4)

+dis(p3, p4)

For n classifiers:

Dis(p1, . . . , pn)=dis(p1, p2)+dis(p1, p3)+· · ·+dis(p1, pn)

+dis(p2, p3)+· · ·+dis(p2, pn)

+dis(p3, p4)+· · ·+dis(p3, pn)

+· · ·+dis(pn−1, pn)

where n is the number of classifiers, and p1, p2,. . ., pn are the probability outputs of the n classifiers

respectively.

4.2.3 Training Steps

Our proposed improvement is based on the framework of two classifiers. Therefore, when we use

multiple classifiers, we replace the original discrepancy loss with the multi-classifier discrepancy

loss under the original framework.

Step 1: We directly use the source domain data to train the model once so that the model can

initially get some source domain information (features). After this step, the decision boundary

from each classifier can classify the features extracted from the source domain.

Loss1 = LC1( fθ1(Xs),Ys)+LC2( fθ2(Xs),Ys)+ · · ·

+LCn( fθn(Xs),Ys)

(4.2)

where C1,C2, . . . ,Cn denote the 1st, 2nd, and nth classifiers, respectively. L() is the CrossEntropy

Loss function.
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Step 2: In this step, we use both the source and target domain data to train our model. During

the training, we fix the parameters of the feature extractor and only adjust the parameters of the

classifiers. When we train using the source domain data, we follow the same way as the first step.

When we train using the target domain data, we cannot perform supervised training since they

have no labels. We employ the discrepancy loss for the target domain training at this step. We use

the n-classifier discrepancy loss to maximizes the discrepancy between the results of the classifiers

predicting the target domain. We maximize the discrepancy by reverse the gradient.

For the source data:

Losss = LC1( fθ1(Xs),Ys)+LC2( fθ2(Xs),Ys)+ · · ·

+LCn( fθn(Xs),Ys)

(4.3)

For the target data:

Losst = Dis( fθ1(Xt), . . . , fθn(Xt)) (4.4)

For joint training:

Loss2 = Losss−Losst (4.5)

Step 3: In this step, we minimize the discrepancy in the prediction results of the features of

the target domain extracted by the feature extractor. During this process, we fix the n-classifier

parameters and update the CNN’s parameters by back-propagation. Since the parameters of the

classifiers are fixed, in order to minimize the prediction discrepancy of the n-classifier, the CNN

must adjust the parameters so that the features extracted from the target domain are consistent with

the features obtained from the source domain, then they can achieve similar prediction results with

totally different parameters.

Loss3 = Dis( fθ1(Xt), ..., fθn(Xt)) (4.6)

The source domain is trained by the labeled data, even when the classifier has the maximum

discrepancy to the target domain, it will not have much impact when detecting the source domain.
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a) Source Only b) Adapted: MCD c) Adapted: Ours

Figure 4.1: Experiments on the toy dataset.
The red points and the green points are the two classes of source domain data, and the blue points
are the target domain data. The dividing line in the middle is the decision boundary. We can
clearly see that the method we proposed is more effective than others. a) is the model trained only
on source samples. b) is the original MCD Lu et al. (2020) with the 2-classifier structure. c) is our
proposed method with a 3-classifier structure.

4.3 Experiments

4.3.1 Experiments on the Toy Dataset

In this experiment, we compared our proposed method with MCD Lu et al. (2020) and the Source

Only method. The purpose is to compare the decision boundaries of different methods under the

same task. We followed the same experimental setting as MCD Lu et al. (2020). We generated 300

source and target domain data and only gave labels to the source domain data. In Fig 4.1, it is very

obvious that the decision boundary under multi-classifiers has better unsupervised classification

capabilities than MCD with a 2-classifier structure and the Source Only method. The decision

boundaries are drawn considering both the source and target samples. The outputs of three or

multiple classifiers make nearly the same prediction for the target samples, and they classified

most target samples correctly, so we randomly pick one of them for illustration in Fig 4.1.

4.3.2 Experiments on Digits and Signed Datasets

In this section, we evaluate our model using the following five datasets: MNIST LeCun & Cortes

(2010), Street View House Numbers (SVHN) Netzer et al. (2011), USPS Hull (1994), Synthetic

Traffic Signs (SYN SIGNS) Moiseev et al. (2013), and the German Traffic Signs Recognition
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SVHN MNIST USPS SYNSIG
Method to to to to

MNIST USPS MNIST GTSRB
Source only 67.1 79.4 63.4 85.1

DANN Ganin & Lempitsky (2015) 71.1 85.1 73.0±0.2 88.7
ADDA Tzeng et al. (2017) 76.0±1.8 - 90.1±0.8 -
CoGAN Liu & Tuzel (2016) - - 89.1±0.8 -

PixelDA Bousmalis et al. (2017) - 95.9 - -
ASSC Haeusser et al. (2017) 95.7±1.5 - - 82.8±1.3

UNIT Liu et al. (2017) 90.5 96.0 93.6 -
CyCADA Hoffman et al. (2018) 90.4±0.4 95.6±0.2 96.5±0.1 -

GTA Sankaranarayanan et al. (2018) 92.4±0.9 95.3±0.7 90.8±1.3 -
DeepJDOT Bhushan Damodaran et al. (2018) 96.7 95.7 96.4 -

SimNet Pinheiro (2018) - 96.4 95.6 -
GICT Qin et al. (2019) 98.7 96.2 96.6 -

MCD Saito et al. (2018) 96.2±0.4 96.5±0.3 94.1±0.3 94.4±0.3
ours (n = 3) 98.2±0.1 98.5±0.2 97.0±0.1 95.0±0.2
ours (n = 4) 98.6±0.1 98.4±0.3 97.1±0.1 95.1±0.1
ours (n = 5) 98.8±0.2 98.1±0.1 96.1±0.3 95.5±0.2
ours (n = 6) 98.9±0.1 98.0±0.1 96.6±0.3 95.3±0.3

Table 4.1: The performance on digit classification and sign classification.
The variable n refers to the number of classifiers. We report the mean and the standard deviation
of the accuracy obtained over 5 trials.
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Benchmark (GTSRB) Stallkamp et al. (2011).

MNIST: The dataset contains images of digits 0 to 9 in different styles. It is composed of

60,000 training and 10,000 testing images.

USPS: This is also a digit dataset with 7,291 training and 2,007 testing images.

SVHN: Another digit dataset with 73,257 training, 26,032 testing, and 53,1131 extra training

images.

SYN SIGNS: This is a synthetic traffic sign dataset, which contains 100,000 labeled images,

and 43 classes.

GTSRB: A dataset for German traffic signs recognition benchmark. The training set contains

39,209 labeled images and the test set contains 12,630 images. It also contains 43 classes.

We evaluate the unsupervised domain adaptation model on the following four transfer scenar-

ios:

• SVHN −→MNIST

• USPS −→MNIST

• MNIST −→USPS

• SYNSIG −→ GTSRB

Results: The experimental results are shown in Table 4.1. We can clearly see that our proposed

method has a significant improvement over the original MCD model. In the SVHN−→MNIST task,

our method has improved the performance by a margin of 2.7%. In the MNIST −→USPS task, our

method improved by 2.0%. In the task of USPS −→MNIST, our method improved by 3.0%. In the

SYNSIG −→ GTSRB task, our method improved by 1.1%.

It can also be seen from Table 4.1 that blindly adding classifiers does not increase the model

performance indefinitely. As the number of classifiers increases, the growth rate of the model’s

performance will decrease and the model’s performance will approach a peak range. When the

model reaches this peak range, adding more classifiers will cause a decrease in its performance.
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The most significant increase happens when we increase the number of classifiers from 2 to 3. For

example, for USPS-MNIST, the accuracy is increased by 2.0% when 3 classifiers are employed,

however, the performance is only improved by 0.1% when the number of classifiers is increased

from 3 to 4.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean
Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MMD 72.3 53.1 64.7 31.8 58.2 14.3 80.7 60.0 70.0 41.4 89.7 20.7 55.9
DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

OURS (n = 3) 91.1 70.0 84.1 68.8 93.5 85.3 88.2 76.7 89.2 75.0 86.2 31.2 78.3
OURS (n = 4) 93.3 77.6 85.3 77.4 91.8 90.2 86.4 79.3 89.5 80.4 88.5 33.1 81.1
OURS (n = 5) 95.2 81.4 82.9 82.7 91.9 89.6 86.7 79.3 91.0 66.6 88.1 35.7 80.9
OURS (n = 6) 95.0 80.1 85.5 83.1 90.5 89.9 85.9 79.2 92.8 85.3 88.3 33.9 82.5

Table 4.2: The performance on VisDA-2017.
Results of unsupervised domain adaptation on VisDA2017 Peng et al. (2017) image classification task. The accuracy
is obtained by fine-tuning ResNet-101 He et al. (2016) model pre-trained on ImageNet Deng et al. (2009). This task

evaluates the adaptation capability from synthetic CAD model images to real-world MS COCO Lin et al. (2014)
images. Our model achieves the best performance in most categories.

4.3.3 Experiments on VisDA Classification Dataset

We further evaluate our method on the large VisDA-2017 dataset Peng et al. (2017). The VisDA-

2017 image classification is a 12-class domain adaptation dataset used to evaluate the adaptation

from synthetic-object to real-object images. The source domain consists of 152,397 synthetic

images, where 3D CAD models are rendered from various conditions. The target domain consists

of 55,388 real images taken from the MS-COCO dataset Lin et al. (2014).

In this experiment, we employ Resnet-101 He et al. (2016) as our feature extractor, and the pa-

rameters are adopted from the ImageNet pre-trained model. The pre-trained model of our Resnet-

18 comes from Pytorch Paszke et al. (2017) and all experimental implementations are based on

Pytorch. The input images are of the size 224×224. First, we resize the input image to 256, and

then crop the image to 224× 224 in the center. When we train the model using only the source

domain, we just modify the output size of the original last fully connected layer to a size that con-

forms to VisDA-2017 Peng et al. (2017). In other tasks, we utilize a three-layer fully connected
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Figure 4.2: Result of the ablation study

layer structure to replace the one-layer fully connected layer structure of the original classifier. In

order to eliminate the interference factors, except for the source only, all other algorithms use the

same classifier. We uniformly use SGD as the optimizer for training, and use 1× 10−3 for the

learning rate of all methods. We use 16 as the batch size for training.

Results: The experimental results of this part are shown in Table 4.2. In this experiment, we

achieve similar experimental results with the digits dataset. Compared with the original MCD

Lu et al. (2020) method, our proposed multi-classifier implementation method significantly im-

proves the performance in all experiments in comparison with the 2-classifier structure. The most

prominent increase happens when the number of classifiers is increased from 2 to 3 with the mean

accuracy promoted from 71.9% to 78.3%.
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4.3.4 Ablation Study

We conducted the ablation study based on the digital datasets (SVHN −→ MNIST) with the same

unsupervised domain adaptation setting as Section 4.3.2. Since our proposed method can add any

number of classifiers, in order to simplify the work, we only use the structure with 3 classifiers as

an example in this experiment. We compare our proposed method under three different situations:

(i) the original MCD; (ii) arbitrarily remove a pair of discrepancy loss from our Loss; and (iii)

arbitrarily replace a discrepancy loss with any existing discrepancy loss. The latter two cases

simulate the situation where there is a gap in the loss closed loop we proposed. The first one is

caused by the missing, and the second is caused by duplication. In this regard, we hope to prove

the necessity of the closed structure of the loss function.

The results of the experiment are shown in Figure 4.2. It can be seen from the figure that

whether it is missing or duplicated, both cases will cause a significant drop in the performance of

our proposed method, even lower than the baseline MCD. In the case of repetition, the repeated

sub-loss conflicts between the training of the two classifiers, which makes the function difficult to

fit, and therefore all classifiers are affected.

4.3.5 Convergence and Efficiency Analysis

In this section, we make further analysis on the convergence and efficiency of the models. First,

we explore the effect of the number of classifiers on the convergence speed of the model using the

USPS-MNIST dataset as an example. We record the changes in the model’s average discrepancy

loss with iterations and presented them in Fig 4.3. From this experiment, we find that the con-

vergence speeds of different models are roughly close to each other. As the number of classifiers

increases, the convergence speed of the model will slightly increase.

Second, we compare the average time required to train an epoch with different numbers of

classifier structures. We record the training time complexity in the USPS-MNIST experiment and

show the result in Fig 4.4. From this figure, we can see that, as the number of classifiers increases,

the time complexity will increase accordingly. However, the time increase is not too prominent
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Figure 4.3: Convergence
The convergence of different numbers of classifier structures for the USPS-MNIST task. The

convergence speed of discrepancy loss will be a little bit faster for more classifiers.

when the number of classifiers is increased from 2 to 3.

Based on the above experiments, we can see that the classification accuracy is boosted dramati-

cally for all datasets when we increase the number of classifiers from 2 to 3, while the computation

time only increases slightly. Therefore, as a trade-off between performance and efficiency, we

believe the structure with 3 classifiers is the best choice in practice for most unsupervised domain

adaptation tasks.
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Figure 4.4: Time Complexity
The time complexity of our proposed method for the task of USPS-MNIST. The experiment is

conducted using a RTX 2070 single GPU, and set the batch size to 256, and the other settings are
the same as Section 4.3.2. From the data, we can see that the time complexity increases with the

increase of the number of classifiers, however, the time it takes under the structure of
three-classifier is close to that of two-classifier.
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Chapter 5

Conclusion

In this thesis, we proposed two new unsupervised domain adaptation method for image classifica-

tion tasks.

1. we have proposed a dual-module network architecture that can strongly encourage domain

invariant feature learning. The network architecture is composed of a discriminative feature learn-

ing module and a domain invariant feature learning module. We have proposed an adversarial

loss function using the difference between the feature distributions of the two modules and the

similarity of their predicted results. The two modules will compete with each other to maximize

the difference in feature distribution. The proposed model employs the maximum classifier dis-

crepancy to solve the imbalance problem of domain discriminative feature extraction in the target

domain in the two modules. Extensive experiments demonstrate that the proposed method achieves

state-of-the-art performance on the standard unsupervised domain adaptation benchmarks and sig-

nificantly improves its performance.

2. we proposed a straightforward method of adding classifiers for the adversarial training

framework of the maximum classifier discrepancy of the multi-classifier structure. In order to pre-

vent conflicts during training of multiple classifiers, we propose a discrepancy loss function based

on the principle that the classifiers are different from each other. This loss function allows us to add

any number of classifiers under the original Maximum classifier discrepancy framework. Through

experiments, we found that the multi-classifier structure has obvious performance advantages over

the original 2-classifier structure. In all classification tasks, even if only the structure of three

classifiers is used, its performance will be much higher than the original method.
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