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Abstract 

This work investigates the mechanical response of granular-microstructured solids (natural and 

synthetic) in static and dynamic problems. Firstly, a non-classical micromorphic theory of degree 

n based upon granular micromechanics approach is developed to model the mechanical behavior 

of granular materials. This model is derived based on Hamilton’s principle, and provides 

variationally consistent boundary conditions. Moreover, less expensive models, namely 

micromorphic model of degree one, micropolar model, and second gradient model, are derived.  

Secondly, the micromorphic model of degree one is specialized to describe one-dimensional 

granular structures and the effect of different material parameters and higher order inertia on the 

wave propagation characteristics of such systems is parametrically studied. This model is able to 

describe dispersion, negative group velocity, and frequency band gaps. Moreover, the proposed 

model is further extended to investigate the effect of external electric field on tuning the dispersive 

behavior of dielectric granular materials in quasi-electro-statics. The model shows that an external 

electric field can potentially create, remove, or change location and width of the stop band in the 

granular medium. In addition, the micromorphic model of degree one is specialized to describe 

and analyze the wave propagation characteristics in axially moving materials with granular 

microstructure by employing an Eulerian frame of reference. The model predicts elastic wave 

dispersion asymmetries and the emergence and removal of stop bands for non-vanishing axial 

velocity. 

Thirdly, the micromorphic model of degree one is used to study the static behavior of one-

dimensional materials with granular microstructure. The model predicts localization of 

deformation energy in the boundary layers for particular boundary conditions. The model is 

thereafter utilized to study the free vibration characteristics of one-dimensional granular-
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microstructured solids. The model predicts mode shapes similar to those of a classical rod, and 

natural frequencies different from those of a classical rod. The model also predicts length-scale 

effects such as stiffening of the material as the size of the structure shrinks. 

Finally, a micropolar model is developed to describe one-dimensional chiral granular (meta-) 

materials in a two-dimensional deformation plane. The proposed model is used to predict the 

behavior of chiral granular strings in tension. The domain of validity of the proposed model is 

thereafter investigated through parametric experimentation. To this end, particular chiral granular 

strings composed of 11 grains with varying geometrical parameters are considered. The granular 

strings are fabricated using 3D printing technology, and undergo tensile testing. The images taken 

from the experiment are analyzed using digital image correlation technique. The results are used 

to investigate the range of applicability of the model to predict the behavior of granular strings by 

comparing the predicted displacements and rotation fields by the model and the experimental 

results. 

 

  



v 

 

Acknowledgments 

First and foremost, I would like to express my gratitude to my advisor, Dr. Anil Misra, for the 

opportunity to work with him, and for his invaluable support throughout this research. His 

guidance helped me in all the time of research and writing of this dissertation. I could not have 

imagined having a better advisor and mentor for my Ph.D. study. 

I would like to thank the rest of my dissertation committee, Dr. Reza Barati, Dr. Mark Ewing, Dr. 

Francois Hild, Dr. Xianglin Li, and Dr. Candan Tamerler, for their insightful comments and 

encouragement. In particular, I would like to appreciate Dr. Hild for his support and help on digital 

image correlation development and analysis. I would also like to thank the research grant CMMI-

1727433 from National Science Foundation (NSF) for supporting this research. 

My sincere thanks goes to Dr. Luca Placidi and Dr. Maurizio Romeo for their valuable comments 

on wave propagation characteristics in solids. I also thank my fellow labmates Dr. Michele De 

Angelo, Dr. Rizacan Sarikaya, and Jacob Hammil for all the discussions and fun we have had in 

the last few years. 

I would like to express my deepest gratitude to my family who have always been supportive of my 

pursuits. To my parents, for their unparalleled love and support throughout my journey, and to my 

sister, Azin, for her support. 

Finally, I would like to thank my beautiful better half and best friend, Mahboobeh, for her 

unconditional love and support. This work would have not been possible without her, and hence, 

is dedicated to her.  



vi 

 

Table of Contents 

Abstract .......................................................................................................................................... iii 

Acknowledgments........................................................................................................................... v 

Chapter 1: Introduction ................................................................................................................... 1 

Significance ................................................................................................................................ 1 

Scope of Dissertation .................................................................................................................. 3 

Chapter 2: Granular Micromechanics Based Micromorphic Model ............................................... 6 

Chapter 3: Elastic Wave Propagation Characteristics in Granular Materials ................................. 8 

Chapter 4: On the Statics and Dynamics of Granular-Microstructured Rods with Higher Order 

Effects ........................................................................................................................................... 11 

Chapter 5: Investigating the domain of validity of one-dimensional micropolar chiral granular 

model through parametric experimentation .................................................................................. 14 

Chapter 6: Conclusions and Recommendations ........................................................................... 16 

Appendix A: Paper P1 .................................................................................................................. 19 

Appendix B: Paper P2 ................................................................................................................... 43 

Appendix C: Paper P3 ................................................................................................................... 65 

Appendix D: Paper P4 .................................................................................................................. 75 

Appendix E: Paper P5 ................................................................................................................... 85 

Appendix F: Paper P6 ................................................................................................................... 97 

Appendix G: Paper P7 ................................................................................................................ 142 

 

  



1 

 

Chapter 1: Introduction 

Significance 

Materials with granular microstructure are characterized as materials composed of many 

individual grains mediated by interfaces. Generally, granular materials exhibit a wide variety of 

behaviors. These range from fluid-like behavior at a low concentration of grains, to plastic solid-

like behavior in higher concentrations, as in soil, to elastic solid-like behavior in much higher 

concentrations or in consolidated granular media in which the grains could be bonded together, as 

in sedimentary rocks. In particular, granular solids span the spectrum from highly consolidated 

dense solids formed of particulate precursors to confined packings of non-cohesive particles. Many 

engineering and science disciplines such as material development, transportation and infrastructure 

systems, pharmaceuticals, drug delivery, and natural processes in geophysics encompass the 

applications of granular materials, suggesting a necessity to better understand how such materials 

behave. Moreover, granular-microstructured materials have also been widely used in the context 

of mechanical metamaterials to obtain desired unusual behavior that natural materials do not 

exhibit. In both natural and synthetic granular (meta-) materials, the grain-pair interfacial 

mechanisms play a key role in the macro-scale behavior. These micro-scale mechanisms influence 

the macro-scale behavior of the granular material and hence, should be taken into account in the 

description of granular media. 

Based on the scale of interest, different approaches can be utilized to model and analyze 

granular materials. At scales close to the size of grains, such materials can be considered an 

assembly of many individual grains in contact, where Newtonian mechanics can be applied to 

solve the n-body problem with n being the number of grains. Such an analysis results in an accurate 

and detailed description of the granular system provided that a complete information regarding the 
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position, geometry, and material properties of each grain, as well as grain-pair interactions is 

required. However, such complete information is rarely available for granular materials composed 

of many grains. As the number of grains within a granular material increases, and especially when 

the system is viewed at larger scales (for example hundred times greater than the grain size), 

continuum models remain the most efficient. Continuum models incorporate grain-scale 

information by considering the mean behavior of grain-pair interaction and translating it into the 

macro-scale behavior characteristics of the system. Continuum models often require model 

parameter identifications for the description of the macro-scale phenomena. Nevertheless, given 

the incomplete information and intractable details about the micro-mechano-morphological 

aspects of the granular system, continuum models provide good approximation for the collective 

behavior of grains. 

The classical form of continuum mechanics assumes each material point is independent of 

the others, and interacts with its surrounding by means of mass, moment, energy, and entropy 

equations. The size of a material point in classical continuum mechanics approaches zero, and 

rotation of material points is not accounted for. However, in granular media, grain rotation is an 

integral part of energy transfer, and therefore, classical continuum mechanics may not offer a good 

model especially in cases where grains within the granular medium undergo significant rotations. 

Moreover, classical continuum mechanics is only sufficient to characterize the immediate 

neighborhood (local) effects in the medium, while the description of granular structures requires 

consideration of not only local effects, but also nonlocal effects. As a result of the complexity of 

granular medium in both mechanical and morphological effects, a refined continuum model that 

overcomes the shortcomings of classical continuum mechanics deems necessary. 
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This dissertation aims to investigate/develop non-classical continuum models of granular 

materials and granular metamaterials with a goal to transforming how granular systems are 

analyzed. Overall, two objectives are followed: 

1. To develop non-classical continuum models of solids with granular microstructure 

using granular micromechanics approach. Such models are considered to be able to 

address the shortcomings of classical continuum models in both statics and dynamics, 

such as singularities and energy localization in static problems, and wave dispersion 

and size-effects in dynamic problems. 

2. To design and perform experiments for model validation and verification using 3D 

printing technology. 

The ultimate goal of this research is to develop refined, yet tractable, models that describe 

materials with granular microstructure and account for the micro-mechano-morphological effects 

of these complex systems. Such models are necessary to analyze natural granular materials and 

microstructured solids that are largely inaccessible through purely experimental techniques, and 

help novel (meta-) material development for particular applications. 

Scope of Dissertation 

In this dissertation, the following research problems are addressed: 

1. Develop a continuum model to describe the mechanical behavior of granular materials 

and granular metamaterials, accounting for the micro-mechano-morphological effects. 

To this end, in Paper P1, a non-classical micromorphic model of degree n is presented. 

This model is based upon granular micromechanics approach and accounts for the 

complex kinematics of granular media. Reduced versions of the proposed model, 
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namely a micromorphic model of degree two, a micromorphic model of degree one, a 

micropolar model, and a second gradient model are also presented. 

2. Study the elastic wave propagation characteristics of materials with granular 

microstructure utilizing the developed micromorphic model predictions. To this end, 

Paper P2 investigates the longitudinal wave propagation characteristics of a one-

dimensional granular material modeled as an infinite micromorphic medium, as well 

as the transverse wave propagation characteristics of a one-dimensional granular 

structure that has a two-dimensional microstructure. This paper studies the different 

intergranular stiffness effects on the dispersive behavior of granular structures through 

an extensive parametric study. Paper P3 develops upon Paper P2 by investigating the 

effect of external electric field on modulating the dispersive behavior of dielectric one-

dimensional granular materials in electrostatic case. Paper P4 specializes the analysis 

in paper P2 to the problem of axially moving media by considering the effect of axial 

velocity on the dispersive behavior of one-dimensional granular structures by 

describing the kinetic energy of the system in an Eulerian frame of reference. Finally, 

Paper P5 studies the effect of higher order inertia on the wave propagation 

characteristics of granular media, and shows how the grain density distribution in a 

granular system alters its dynamic properties. 

3. Study the static and dynamic behavior of one-dimensional granular structures modeled 

as a micromorphic model of degree one. Paper P6 specializes and builds upon Paper 

P1 to describe the mechanical behavior of one-dimensional materials with granular 

microstructure. This paper investigates the effect of different stiffnesses and boundary 

conditions on the static and dynamic (free vibration) behavior of the granular structures. 
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4. Develop a continuum model to describe chirality in granular media and validate the 

model through experimentation. Paper P7 specializes and builds upon Paper P1 to 

develop a chiral granular beam model that incorporates axial, transverse, rotational, and 

coupling stiffnesses. The developed model is used to predict the response of the 

granular material to tensile experiment, and is validated through experimentation where 

granular strings were 3D printed, tested, the full-field displacement field was obtained 

through digital image correlation technique, and compared with model predictions. 

The dissertation is presented in a summary style. Chapters 2-5 introduce the research 

problems mentioned above, and briefly present the key results of the published papers which 

constitute the dissertation and are provided in the Appendices. Finally, Chapter 6 presents the 

conclusions and recommendations.  
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Chapter 2: Granular Micromechanics Based Micromorphic Model 

Granular materials are ubiquitous in nature and are characterized as composed of distinct 

grains mediated by interfaces. The intricacy of the mechanics of interfaces between grains results 

in complex behavior of granular medium in response to an externally applied disturbance. 

Classical elasticity is unable to predict many aspects of such behavior in both statics and dynamics 

problems. In particular, classical continuum mechanics assumes that a continuum is composed of 

material points with their sizes approaching zero, and does not provide nonlocal effects in the 

medium. Moreover, classical continuum mechanics does not consider rotations as a degree of 

freedom to the material points, and hence is unable to account for grain rotations in a granular 

medium, which is an integral part of grain kinematics. Furthermore, classical elasticity does not 

consider the underlying microstructure of a material, and therefore micro-mechano-morphological 

effects are not accounted for. 

To model materials with granular microstructure, a refined model is required. The model 

should be able to capture the phenomena that classical elasticity overlooks, and must be based on 

the complex kinematics of granular systems. While it does not provide exact behavior of each 

grain within a granular system, the granular micromechanics based micromorphic model presented 

in Paper P1 attempts to provide a tractable model of the collective behavior of granular media. The 

presented continuum model is based on the kinematics of granular structures and accounts for 

different micro- and macro-scale deformation mechanisms. 

To set up the problem, we consider a granular medium of finite size. Each material point 

in the granular structure, in contrast to classical elasticity, is treated as a micro-volume composed 

of several grains, interacting with each other through some form of interaction. It is assumed that 

both the granular structure and the micro-volume are continuous media, and macro- and micro-
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scale displacement fields are both continuous up to desired order. Therefore, one can write the 

displacement of grains within the volume element using a polynomial expansion. The model 

presented in Paper P1 is a generalized micromorphic model of degree n and assumes that the terms 

in the expansion should be kept up to the order n+1. Paper P1 provides a systematic approach to 

obtain a micromorphic model of degree n to describe granular structures by recognizing the micro-

scale deformation measures pertinent to the assumed kinematic field. The paper thereafter links 

the micro- and macro-scale kinematic measures and provides the governing equations of motion 

for describing a granular material using an energy approach. The presented governing equations 

of motion are coupled partial differential equations and can be employed to investigate static and 

dynamic behavior of granular systems. 

In the remainder of Paper P1, reduced models are provided. The reduced models have less 

degrees of freedom and less material constants to be identified, compared to the micromorphic 

model of degree n. A micromorphic model of degree two is achieved if the polynomial expansion 

is done up to cubic term, and a micromorphic model of degree one is obtained for a polynomial 

expansion up to quadratic term. Other well-known models are also obtained if constraints are 

applied to the macro-scale kinematic measures. In particular, as a reduced micromorphic model of 

degree one, a micropolar model is obtained and presented. Moreover, a second gradient medium 

is obtained and presented where the deformation energy is not only a function of the first gradient 

of displacement field, but also the second gradient of displacement field.  
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Chapter 3: Elastic Wave Propagation Characteristics in Granular Materials 

Materials with granular microstructure show dispersion in elastic wave propagation. In 

other words, different frequency components of external disturbance propagate with different 

speeds in granular structures due to their underlying microstructure. In Paper P2, Paper P3, Paper 

P4, and Paper P5, we focus on the elastic wave propagation characteristics of one-dimensional 

materials with granular microstructure. Studying elastic wave propagation in granular media 

results in a better realization of how these materials react to external actions, and in general, 

promotes the understanding of such materials. Granular materials, due to their grain-scale 

mechano-morphological properties, have an inherent microstructural characteristic length with 

which the wavelength of excitation at high frequencies becomes comparable. As a result, effects 

of the micro-mechano-morphology become significant when the material experiences high 

frequency loads. Therefore, it becomes important to include information about the material’s 

micro-structure in wave propagation studies. Notably, in these cases, the classical wave equation 

of the form of a hyperbolic partial differential equation becomes complicated as additional terms 

are introduced to account for the micro-mechano-morphology. 

Paper P2 investigates dispersion in two infinite-length one-dimensional systems, 

longitudinal wave propagation characteristics in a one-dimensional granular material with one-

dimensional microstructure, and transverse wave propagation characteristics on a one-dimensional 

granular material with two-dimensional microstructure. To this end, the granular micromechancis 

based micromorphic model of degree one presented in Paper P1 is employed. The governing 

equations of motion are fed with plane wave solutions, and dispersive relation relating frequency 

and wavenumber is obtained. For a one-dimensional classical continuum, the frequency is a linear 

function of wavenumber, and therefore, wave speed is constant and independent of frequency. For 
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the one-dimensional granular structures studied, frequency is a nonlinear function of wavenumber, 

and therefore, each frequency component travels with a different speed. Moreover, in a classical 

one-dimensional model, there exists only one wave branch, while in the granular structures 

studied, there exists multiple wave branches, acoustic and optical, where acoustic wave branch 

starts from zero frequency and zero wavenumber and optical wave branch starts at nonzero 

frequency for zero wavenumber. The effect of different material parameters on the dispersive 

behavior of granular structures are investigated. In particular, Results predict the emergence of 

frequency band gaps (frequency range with no propagation in the medium) and negative group 

velocities for certain values of the parameters involved. 

Paper P3 studies wave propagation characteristics of a one-dimensional granular structure 

that is composed of dielectric grains in the presence of an external electric field in electro-statics. 

In this paper, the electro-elastic coupling is due to bound charge micro-density in granular grains, 

and micro-strain is linked to electric dipole and quadrupole densities. The dispersive behavior is 

shown to be affected by the polarizability (dipole effect), intrinsic quadrupole density, and external 

electric field. Results predict an acoustic and an optical branch in the dispersive curve. 

Polarizability and external electric field are mainly affecting small wavenumber behavior of the 

wave branches, while quadrupole density alters the behavior of the material at large wavenumbers. 

Moreover, creating or removing stop-bands using the external electric field is discussed. 

Paper P4 studies the effect of axial velocity on the dispersive behavior of axially moving 

materials with granular microstructure. The mechanics of axially moving media is significant due 

to their broad applications, e.g. aerial tramways, mono-cable ropeways, ski lifts. As technological 

advancements have made it possible to fabricate microstructured solids, it is important to 

understand how the wave propagation characteristics of granular structures change due to nonzero 
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axial velocity. To this end, a one-dimensional granular string model based on the model presented 

in Paper P1 is further extended to account for the presence of axial velocity. For this problem, an 

Eulerian frame of reference is used and the kinetic energy is described using the notion of material 

derivative to account for the convective terms.  In the absence of microstructure, the axially 

moving material model shows non-dispersive non-symmetric forward and backward waves. In the 

case of axially moving materials with granular microstructure, the model predicts dispersive non-

symmetric waves. In this case, there are two acoustic and two optical wave branches. Axial 

velocity leads to narrowing and widening in the frequency band gaps in the forward and backward 

waves, respectively. Negative group velocity is also observed in certain wavenumber ranges. 

Paper P5 considers wave propagation characteristics in a one-dimensional granular 

medium and investigates the effect of higher order inertia terms. The higher order inertia terms are 

consequences of the assumed kinematic field and account for correcting the large wavenumber 

large frequency behavior of granular systems. It is shown that the micro-density distribution can 

have large effects on the dynamic mechanical response of the granular structures. Moreover, 

negative group velocity in optical branch can be obtained.  
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Chapter 4: On the Statics and Dynamics of Granular-Microstructured Rods with Higher 

Order Effects 

Materials with granular microstructure show strong dependence of grain-scale interactions 

in their macro-scale mechanical behavior in both static and dynamic problems. In Paper P6, the 

granular micromechanics based micromorphic model of degree one introduced in Paper P1 is 

utilized to investigate the static and free vibration behavior of one-dimensional materials with 

granular microstructure. To this end, the kinematic description of the problem is introduced, from 

which micro-scale deformation mechanisms are identified. Macro-scale deformation mechanisms 

are linked to their micro-scale counterparts, and constitutive relationships are obtained by 

assuming a quadratic form of deformation energy density. Hamilton’s principle is used to obtain 

the governing equations of motion for a one-dimensional material with granular microstructure. 

The governing equations of motion are two coupled partial differential equations. Moreover, the 

variationally consistent boundary conditions are obtained. The model is used to investigate the 

static and free vibration behavior of one-dimensional granular-microstructured solids. 

In the static case, three possible scenarios for the applied boundary conditions in order to 

explore the static behavior of the 1D granular rod are considered. In all the scenarios, a 

conventional displacement-control experimental setup is adopted, differing only in the application 

of the non-classical boundary conditions. This study promotes the understanding of how non-

classical boundary conditions alter the response of the material. The results of this study suggest 

that for imposing fixed and prescribed macro-scale displacements at left and right ends of the 

structure, respectively, one observes a classical-like behavior only if at each end, the contact 

double traction is held to be zero, or the micro-scale kinematic measure is assigned a value equal 

to the macro-scale displacement gradient (macro-scale strain). For the cases where the macro-scale 



12 

 

displacement gradient and micro-scale kinematic measure have non-equal values on the boundary, 

localized deformation energy density of finite thickness near that boundary is observed, while the 

deformation energy density in the rest of the domain of the problem is rather uniform. Second, for 

fixed macro-scale displacement applied at both boundaries and imposed double traction or micro-

scale kinematic measure at one end, we notice both compression and tension (negative and positive 

macro-scale displacement gradient) induced within the granular structure. Third, the gradients 

appearing because of the imposed field variables and at both ends only exist close to the outer 

boundaries of the structure, thereby signifying the existence of boundary layers. Finally, one 

notices the small change in the macro-scale displacement in response to the alterations in the 

imposed non-classical boundary conditions. Nevertheless, such small changes have large influence 

on the energy localization near the boundaries, and such energy localization becomes even more 

noticeable as the size of the rod shrinks. 

In the dynamic case, the free vibration characteristics of the one-dimensional granular rod 

is studied for different boundary conditions. In particular, for a rod fixed at both ends, the effect 

of non-classical boundary conditions on the mode shapes and natural frequencies is probed. To 

this end, the analytical solutions are obtained from the model, and the first three natural frequencies 

and mode shapes are obtained for different boundary conditions imposed on the system. It is shown 

that while the mode shapes corresponding to the macro-scale displacement are similar to that of a 

classical rod, microstructural properties of granular structures affect the value of their natural 

frequencies. Moreover, as the size of the structure shrinks, the natural frequencies grow, which 

show the stiffening effect. Finally, it is interesting to note that the higher mode frequencies are not 

integer multiples of the fundamental mode, which is a departure from the results for classical 1D 



13 

 

elastic rod under the considered boundary conditions, and seems to suggest an apparent internal 

damping. 

The results of Paper P6 promote the understanding of the complex behavior of granular-

microstructured solids, and are useful if experiments are to be devised. The model predicts 

measureable effects such that experimental approaches/protocols can be designed to detect these 

effects.  
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Chapter 5: Investigating the domain of validity of one-dimensional micropolar chiral 

granular model through parametric experimentation 

The significance of chirality lies in its wide range of applications in diverse branches of 

science, and hence, understanding the mechanisms leading to chirality deems necessary. The 

literature on lattice chirality offers comprehensive studies on the chiral properties of particular pre-

designed microstructural units using novel experimental and numerical schemes. However, to 

further enhance the understanding on mechanical chirality, a general analysis in determining the 

effect of different factors contributing to chirality proves essential. Paper P7 focuses upon chiral 

granular (meta-) materials and investigates the role of different micro-level deformation 

mechanisms on the macroscopic chiral behavior of the system by incorporating the coupling 

between the deformation mechanisms in different axes and rotations. To this end, a granular 

micromechanics based micropolar model is obtained through Hamilton’s principle to describe 

chirality in a one-dimensional chiral granular string in a two-dimensional deformation plane. The 

model is shown to reduce to Timoshenko beam model if particular inter-granular mechanisms 

vanish. Moreover, predictions of the behavior of chiral granular strings in tension is parametrically 

investigated. 

To investigate the domain of validity of the proposed model through experimentation, a 

particular chiral granular string composed of 11 grains is considered. Each grain is interacting with 

its neighboring grain through some form of mechanism that induces chirality. The granular string 

is varied in two geometrical parameters describing the interaction between the two grains, hence 

providing parametric spaces with respect to the considered geometrical parameters. The granular 

strings are fabricated using a Formlabs Form 3 3D printer in Durable resin, and undergo tensile 

experiment in an ElectroForce 3200, TA Instruments, uniaxial testing machine. The surface of 
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granular strings is sprayed in black to obtain a speckle pattern. A DSLR camera is used to obtain 

images from the experiment, which were thereafter analyzed using Digital Image Correlation 

(DIC) technique in three different scales. The DIC results are used to investigate the range of 

applicability of the model to predict the behavior of granular strings by comparing the predicted 

displacements and rotation fields by the model and the experimental results.  
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Chapter 6: Conclusions and Recommendations 

The granular micromechanics based models developed and analyzed in this research 

expand upon a classical continuum by incorporating additional degrees of freedom and different 

micro- and macro-scale deformation mechanisms. The proposed models were shown to predict 

phenomena in static and dynamic problems that classical elasticity is unable to, and can describe 

the observed behavior of granular-microstructured materials. In particular, the micromorphic 

model of degree one was shown to describe the dispersive behavior of granular materials. The 

model predicted the emergence of stop bands due to the specific material parameters, the effect of 

the external electric field, and the effect of the axial velocity. The model was also used to study 

the static behavior of granular rods. It was shown that the nature of the boundary conditions 

imposed on the system can have significant effect on the energy localization, especially in the 

boundary layers. It was also shown that the material parameters can affect the width of the 

boundary layers. The micromorphic model of degree one was further used to study the free 

vibration behavior of granular rods in different boundary conditions, where it was observed that 

the natural frequencies of the system are affected by the microstructural properties of the rod, and 

are different from those predicted by classical elasticity. The stiffening of the material was also 

predicted as the size of the structure shrinks. Finally, in an attempt to describe chirality in granular 

media, a one-dimensional chiral granular string in a two-dimensional deformation plane was 

described as a micropolar model, where the effect of material parameters on the response of the 

granular string in tension was studied. Moreover, digital image correlation technique was used to 

experimentally investigate the domain of validity of the model by comparing the theory predictions 

and experimental results. 
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The models and the analyses presented in this work can be used to describe natural granular 

materials as well as granular metamaterials. In fact, the predictive models discussed in this research 

can be adopted to help identify and link the observed macro-scale behavior to the underlying 

micro-scale grain pair interaction mechanisms. As a result, the proposed models can help design 

granular metamaterials that exhibit particular static and/or dynamic behavior to be used in 

engineering applications. 

During the course of addressing the objectives of this dissertation, several future 

investigation topics can be identified. Below, the research recommendations are discussed. 

1. In Chapter 3 of this research, the wave propagation characteristics of one-

dimensional granular-microstructured solids were predicted using a micromorphic 

model of degree one. It is interesting to further explore the dispersive behavior of 

higher dimensional granular materials using the proposed model. Moreover, 

experiments should be devised to validate the model’s predictions. 

2. In Chapter 4, the static and dynamic behavior of the one-dimensional granular 

microstructured solids were studied. It is recommended that the analysis is 

expanded to investigate the static and dynamic behavior of higher-dimensional 

structures, and to devise experiments to validate the model’s predictions. 

3. In chapter 5, the micropolar model to describe chirality in one-dimensional granular 

metamaterials was developed and examined using experimentation on granular 

strings and digital image correlation technique to obtain full-field deformation. It is 

suggested that nonlinearity in the grain-pair interactions are included in the 

mathematical model and the effect of nonlinearities is compared to the results 
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obtained in the current research, especially in large applied strains. Moreover, 

higher dimensional models to predict chirality accompanied by validation through 

experiments can be of great value. 

4. Finally, the physical interpretation of higher order boundary conditions is still not 

fully understood. More research in this avenue is highly suggested as it also paves 

the way to experimentally identification of material parameters in the proposed 

models.  
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Abstract  

Granular-microstructured rods show strong dependence of grain-scale interactions in their 

mechanical behavior, and therefore, their proper description requires theories beyond the classical 

theory of continuum mechanics. Recently, the authors have derived a micromorphic continuum 

theory of degree n based upon the granular micromechanics approach (GMA). Here, the GMA is 

further specialized for a one-dimensional material with granular microstructure that can be 

described as a micromorphic medium of degree 1. To this end, the constitutive relationships, 

governing equations of motion and variationally consistent boundary conditions are derived. 

Furthermore, the static and dynamic length scales are linked to the second gradient stiffness and 

micro-scale mass density distribution, respectively. The behavior of a one-dimensional granular 

structure for different boundary conditions is studied in both static and dynamic problems. The 

effect of material constants and the size effects on the response of the material is also investigated 

through parametric studies. In the static problem, the size-dependency of the system is observed 

in the width of the emergent boundary layers for certain imposed boundary conditions. In the 

dynamic problem, microstructural effects are always present and are manifested as deviations in 

the natural frequencies of the system from their classical counterparts. 

Keywords: free vibration; micromorphic theory; size effect; granular micromechanics; 

microstructured solids. 
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1. Introduction 

Small-sized structures are being increasingly utilized in applications such as nano- and micro-

electro-mechanical systems (NEMS/MEMS) and Atomic Force Microscopes (AFMs). In these 

structures, the effect of the microstructure on the behavior of the material is significant. Such a 

microstructure can be the constituent grains in a granular medium or a collection of beam elements 

in pantographic materials [1]. In addition, microstructured materials have also been widely used 

in the context of mechanical metamaterials to obtain desired unusual behavior that natural 

materials do not exhibit [2, 3]. For such materials (or structures depending on the scale of 

observation), there exists inconsistencies between the experimental findings and the classical 

continuum mechanics predictions [4–7]. Such variations in the observed behavior and classical 

continuum theory predictions pertain to the existence of the micro-mechano-morphological 

effects. These effects on the mechanical behavior of the materials become noticeable, especially 

in dynamic problems where the wavelengths of excitation are comparable to the characteristic 

lengths of such systems [8]. To account for the discrepancies between the theoretical predictions 

and experimental observations, and to overcome the inherent limitations of the classical continuum 

theory, non-classical continuum theories were developed, among which we refer to the works in 

[9–14]. 

To investigate the predictions of such non-classical theories, one-dimensional models are often 

utilized. A particular widely-studied example of such one-dimensional structures is rods. There 

have been several recently published articles on the analysis of one-dimensional rods utilizing non-

classical continuum theories such as stress gradient (also called nonlocal), strain gradient (also 

called gradient elasticity), and nonlocal strain gradient models to capture the microstructural 

effects in static and dynamic problems [15–32]. We note that these effects have also been reported 

in the studies concerned with the vibration and buckling phenomena in beams, e.g. in [33–36], 

small-scaled truss and frame models, e.g., in [37], two-dimensional problems, e.g., in [38, 39], and 

metamaterials [40]. 

In the present paper, we expound upon a particular form of a microstructured solid, namely a one-

dimensional material with granular microstructure, which is modeled as a micromorphic media of 

degree one using the granular micromechanics approach (GMA). GMA is a micromorphic theory 

equipped with an enriched kinematics to describe grain motion, in which the derived governing 
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equations of motion constituents are related to the granular mechano-structure of the material [41, 

42]. The mathematical model derived through GMA has shown interesting results in the prediction 

of acoustic (material deformation) and optical (internal deformation) wave branches in granular 

media undergoing excitation [43–45]. The dispersive behavior predicted by GMA reflects many 

aspects of granular structures dynamic behavior (e.g., existence of frequency band gaps and 

negative group velocity), and can potentially be employed to obtain the continuum material 

constants of granular media [46–48].  

It is notable that the dispersion analysis of infinite media does not fully reveal the effects of the 

length scale parameters and the applied boundary conditions on the behavior of the granular media. 

Therefore, it is our purpose here to further elucidate the contribution of different length scale 

parameters, stiffness and inertial measures (micro-mechano-morphology) to the behavior of finite 

length one-dimensional granular media in both static and dynamic uniaxial loading under different 

boundary conditions. Such analyses are essential for understanding the complex behavior of such 

media and to help designing suitable experimental setup to extract and identify the material 

parameters defining granular materials, which currently proves challenging, if not impossible. 

Moreover, the findings of the present paper help analyzing a myriad of granular materials found 

in nature, as well as serve as a design tool to conceive granular metamaterials that can be realized 

through additive manufacturing technologies for particular applications [49, 50]. 

The structure of the paper is as follows. Section 2 describes the granular micromechanics approach 

to model one-dimensional continua with granular microstructure. Section 3 is devoted to the static 

behavior analysis of one-dimensional continua with granular microstructure subjected to different 

boundary conditions. In section 4, the dynamic behavior of one-dimensional continua with 

granular microstructure is investigated through free vibration analysis. Finally, section 5 presents 

the summary of the work and the concluding remarks. 

2. GMA based micromorphic theory of degree 1 for a 1D rod 

This section introduces the continuum framework for GMA based micromorphic theory of degree 

1 to model a one-dimensional granular structure. The model adopted in the current paper assumes 

linear elastic mechanisms of deformation with no damping. The references [41, 42, 45] describe 
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the framework for a three-dimensional granular structure. The reader is referred to the mentioned 

articles for more detailed description. 

2.1. Kinematic variables 

Let us consider a one-dimensional object of length L with an underlying granular microstructure 

composed of many grains with random mechanical and inertial properties (hereafter referred as 

1D granular rod), as shown in Fig. 1. At the spatial scale, in which the object may be treated as a 

continuum, the material point P can be identified using the macro-scale coordinate system X. 

Material point P is considered to have the macro-scale linear mass density   (given as mass per 

unit length), differential length dX , and differential mass of dm dX=  in the initial 

configuration. We denote by X and ( , )x X t=   the position of the point P at initial and current 

configurations, respectively, where   is the macro-scale placement function and t denotes time. 

The macro-scale displacement is defined as u x X= − . At a finer spatial scale, material point P is 

a collection of grains and is referred to as a volume element (VE) with length L dX = . For a 

periodic granular structure, such as a granular composite made of several grains repeating 

periodically, the VE is identical to the notion of a unit cell, and for non-periodic granular structures, 

it is the volume of the granular material over which the local (micro-scale) deformation is 

homogenized. In the latter case, the VE is chosen as per the requirement of the mechanical problem 

and such that it contains sufficiently large number of grains to justify the continuity assumption. 

The position of each grain within the VE is identified using the micro-scale coordinate system X’ 

of the finer spatial scale. This coordinate system is attached to the center of mass (COM) of the 

material point P, is taken to be parallel to the macro-scale coordinate system X, and displaces in 

consonance with the macro-scale displacement u. The micro-scale displacement u’ is expressed as 

u x X  = −  where X’ and ( , , )x X X t  =   denote the position vectors of a grain centroid at initial 

and current configurations, respectively, and   is the micro-scale placement function. We assume 

that both the micro- and macro-scale deformations are infinitesimal, and are continuous and 

differentiable functions of the micro- and macro-scale coordinates up to the desired order, such 

that we can write  

( ) ( ), , , ,u u x t u u x x t  = = .         (1) 
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For a micromorphic theory of degree 1, the micro-scale displacement u’ can be written in the form 

below using a polynomial expansion with respect to x’ about the COM of the VE [41]. 

( )
2

11 111u x x   = + .          (2) 

In Eq. (2), 
11  and 

111  are functions of x and t only, and account for the local deformation within 

the VE. We note that although for systems with small number of particles (or layers in composites 

modeled as one dimensional) a more accurate approximation of displacement can be made by 

subdividing the VE into different regions with different strain regimes (e.g., see [51, 52]), for large 

number of particles (or layers), such approaches become increasingly complicated and a linear or 

quadratic approximation within the whole domain of VE remains the most feasible (e.g., see [53]). 

We note here that efforts at formal homogenization (continualization) of mass-spring systems, 

such as in [54, 55], also propose multiscale decomposition of displacement field among the 

possible approaches for developing continuum models. Using Eq. (2), the total displacement vector 

for the grains within the VE are written as 

( )
2

11 111u u x x     = + = + + .        (3) 

where u =  is adopted such that the variable names are in harmony with previous publications 

[41, 42]. For a micromorphic theory of degree one, we utilize the following relative deformation 

measures [12, 13, 41] 

11 , 11 111 11, 111,x x     = − = − ,        (4) 

where, hereafter, differentiation with respect to the spatial coordinates is denoted by a comma in 

the subscript. In Eq. (4), the differentiation is performed with respect to the macro-scale coordinate 

system. For a micromorphic theory of degree 1, and as a constitutive choice, we assume here that 

the relative deformation measure 
111  vanishes, therefore we have 111 11,x = . Note that if we 

further assume that the relative deformation measure 
11  vanishes, a second gradient model is 

obtained [41]. 

The relative displacement between two neighboring grains n and p, np , can be written, using Eq. 

(3) and Eq. (4), as 
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np p n M m g     = − = − + ,         (5) 

where the following micro-scale kinematic measures are introduced 

M np m np np

, 1 11 1 11, 2, , g

x xJ J J     = = = .       (6) 

In Eq. (6), M  signifies the portion of the relative displacement due to the macro-scale 

displacement gradient ,x , m  represents the portion of the relative displacement due to the 

fluctuation between the macro-scale displacement gradient ,x  and the micro-scale kinematic 

measure 11 , and g  denotes the portion of the relative displacement due to the second gradient 

term. Furthermore, we have defined the geometry moment measures 
np p n

1J l l= −  and 

np p p n n

2J l l l l= − , where 
ql  represents the vector joining the COM of the VE to the grain q centroid. 

Note that ( )( ) ( )np p n p n np p n

2 1J l l l l J l l= − + = + which implies that for grains n and p, the farther 

they are from the COM of the VE, the higher the second gradient contribution to the relative 

displacement, g .  

2.2. Constitutive equations 

We assume the macro-scale deformation energy density to be a function of the continuum 

kinematic measures ,x , 11 , and 11,x , i.e., of the form , 11 11,( , , )x xW W   = . Macro-scale stress 

measures, namely, Cauchy stress, 
11 , relative stress, 

11 , and double stress, 111 , are defined as 

conjugates to the continuum kinematic measures, and expressed as 

11 11 111

, 11 11,

, ,
x x

W W W
  

  

  
= = =
  

.       (7) 

The macro-scale deformation energy density can also be expressed in terms of the micro-scale 

deformation energy density as 

( )α αM αm αg

α

1
, ,W W

L
  =


 ,        (8) 
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where αW  represents the micro-scale deformation energy for the αth interacting pair of grains 

within the VE. Intergranular forces can be defined as conjugates to the micro-scale kinematic 

measures as 

αM αm αg

αM αm αg
, , .

W W W
f f f

  

  

  
= = =

  
       (9) 

Substituting Eq. (8) in Eq. (7) and employing Eq. (6) and Eq. (9), the macro-scale stress measures 

are expressed as 

αM α αm α αg α

11 1 11 1 111 2

α α α

1 1 1
, ,f J f J f J

L L L
  = = =

  
   .    (10) 

Eq. (10) defines the macro-scale stress measures in terms of micro-scale force measures and 

geometry moment measures, where α

1J  and α

2J  for the αth grain pair for interacting grains n and p 

are evaluated as np

1J  and np

2J , respectively. 

For formulating micro-scale constitutive equations relating micro-scale kinematic measures to 

their conjugate intergranular force measures, the following form for the micro-scale deformation 

energy for the αth grain pair is considered 

( ) ( ) ( )
2 2 2

α αM αM αm αm αMm αM αm αg αg1 1 1

2 2 2
W K K K K    = + + + .    (11) 

Based on Eq. (11), there are four linear mechanisms involved in the deformation of a grain pair in 

contact, each quadratic in form. α , M,m,Mm,giK i =  are the stiffnesses associated with their 

corresponding mechanisms. 

Intergranular forces introduced in Eq. (9) are obtained, using Eq. (11), as 

α
αM αM αM αMm αm

αM

α
αm αm αm αMm αM

αm

α
αg αg αg

αg

,

,

.

W
f K K

W
f K K

W
f K

 


 






= = +



= = +



= =


        (12) 

Finally, using Eq. (12), the macro-scale constitutive relationships in Eq. (10) are described as 
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( )

( )

M Mm Mm

11 , 11

Mm m m

11 , 11

g

111 11,

,

,

,

x

x

x

C C C

C C C

C

  

  

 

= + −

= + −

=

        (13) 

where the macro-scale stiffnesses MC , mC , MmC , and 
gC  are expressed as 

M αM α α m αm α α

1 1 1 1

α α

Mm αMm α α g α α

1 1 2 2

α α

1 1
, ,

1 1
, .g

C K J J C K J J
L L

C K J J C K J J
L L



= =
 

= =
 

 

 
       (14) 

For the stiffnesses introduced in Eq. (14), the superscript M denotes the stiffness due to macro-

scale deformation, the superscript m denotes the micro-scale (relative deformation) stiffness that 

acts analogous to the shear rigidity in Timoshenko beam model, the superscript Mm denotes the 

coupling (cross-linking) stiffness between the macro- and micro-scale deformations, and the 

superscript g denotes the second gradient stiffness. We note here that the stiffness measures in Eq. 

(14) possess inherent length scales within their definitions that are natural consequences of the 

assumed kinematic field of motion for the grains. Accordingly, 

g

M

C

C
 is considered as the static 

length scale for the current problem. 

2.3. Governing equations of motion 

Hamilton’s principle is used to obtain equations of motion for the 1D granular rod. Hamilton’s 

principle requires the action functional to be minimum, and is expressed as 

( )
1

0

0
t

ext
t

T W W dt  − + = ,          (15) 

where   is the variation symbol and the terms T , W , and extW  are defined in the following. The 

term 
L

T Tdx=   is the total kinetic energy of the granular structure, in which T is the kinetic energy 

density, utilizing König's theorem [56] defined and expanded as [41] 

11 11 11 111 11 11, 1111 11, 11,

1 1 1 1 1

2 2 2 2
x x x

L
T dx

L
           


 = = + + +

 
.   (16) 
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In Eq. (16),   is the micro-scale mass density per unit macro-volume, and over-dots here and 

henceforward represent differentiation with respect to time. The following inertia measures have 

been defined [41] 

( ) ( ) ( )
2 3 4

11 111 1111

1 1 1 1
, , ,

L L L L
dx x dx x dx x dx

L L L L
       

   
          = = = =

       .(17) 

The term   represents the macro-scale mass density and is an average of the micro-scale mass 

density   within the VE. On the other hand, the other inertia measures introduced in Eq. (17) are 

functions of the micro-scale mass density and its spatial distribution and inherently include the 

length scales existing in the dynamic problem. In particular, the inertia measure 111  is due to non-

symmetric micro-scale mass density distribution in the VE, e.g., for a graded granular material in 

micro-scale, and vanishes for symmetric micro-scale mass density distributions [45]. Interestingly, 

and as a consequence of Eq. (17), these length scales are not independent, but are related to each 

other through the micro-scale mass density   distribution. In other words, for a known micro-

scale mass density   distribution within the VE, these length scales are fixed [45]. The kinetic 

energy introduced in Eq. (16) results from the assumed kinematic field in Eq. (3). We note that the 

additional velocity gradient terms appearing in Eq. (16) are not postulated a priori as often done 

in higher order continuum modeling (which are typically introduced to improve the dispersion 

predictions). This form of kinetic energy includes terms that are absent in classical continuum 

mechanics formulation to account for the non-uniform distribution of velocity in the VE, and 

expands upon the terms currently postulated in nonlocal strain gradient elasticity (e.g. in [31]). The 

existence of velocity gradient terms in the description of the kinetic energy has also been observed 

in gradient elasticity models to describe lattices with distributed mass properties [15] and in works 

concerning modeling the effect of micro-inertia in heterogeneous materials, e.g., in [57]. 

Moreover, velocity gradient terms have been also adopted to model wave dispersion in nonlinear 

pantographic beams and related to the distributed masses along the rigid links [58]. For the kinetic 

energy in Eq. (16) to be positive definite, the inequality 2

11 1111 111 0  −   must hold. This 

inequality is obtained by rewriting Eq. (16) in the form 
1

2
T = T

x Ax , where 
T

11 11,x   =
 

x , 

and requiring that the matrix A  be positive definite. 
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In Eq. (15), 
L

W Wdx =   represents the variation of total macro-scale deformation energy, 

expressed as 

( ) ( ) ( )11 11 111, 11 11 11 11 111 11, 00

x L x L

xx xxL L
W dx dx           

= =

==
= − + − + + + +  . (18) 

Finally, the term extW  in Eq. (15) corresponds to the variation of total external energy defined as 

11 11 00

x L x L

ext xxL L
W f dx dx t T    

= =

==
= +  + +  .     (19) 

In Eq. (19), f  is the non-contact body force per unit length, t  is the contact traction,   is the 

non-contact body double force per unit length, and T  is the contact double traction. Substituting 

Eq. (16), Eq. (18), and Eq. (19) in the expression for Hamilton’s principle in Eq. (15) results in 

( )

( ) ( )

( ) ( )

1

0

1

0

1 1

0 0

11 11 ,

11 111, 11 11 1111 11, 111 11 1111 11, 11, ,

11 11 111 11 1111 11, 111 110 0
0

t

xL
t

t

x xx xx xL
t

t t
x Lx L

xx x
t t

f dxdt

dxdt

t dt T dt

   

          

        
==

= =

 + + −
 

 + + + − + + +
 

  + − − + − − − =   

 

 

 

  (20) 

From Eq. (20) it follows that, after assuming zero non-contact body forces and double forces, using 

the constitutive equations in Eq. (13), and assuming spatial independence of the macro-scale 

stiffnesses, the equations of motion for the problem domain 0 x L   are expressed as 

( ) ( )M m Mm m Mm

, 11,2 xx xC C C C C  + + − + = ,      (21a) 

( ) ( ) ( )g Mm m m

11, , 11 11 11 1111 11, 111 11 1111 11,, ,xx x xx xx x
C C C C          + + − = − − − .  (21b) 

From Eq. (20), the boundary conditions are stated as 

( ) ( )( )M m Mm m Mm

, 112 0 at 0 andxt C C C C C x L  − + + + + = = ,   (22a) 

( )g

111 11 1111 11, 11, 11 0 at 0 andx xT C x L     − − − = = .     (22b) 
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We remark the presence of terms with time derivative in the boundary conditions in Eq. (22b). The 

existence of time derivative terms in the boundary conditions are also discussed in the analysis of 

nonlocal strain gradient rods [31]. 

In this paper, we assume that the micro-scale mass density,  , is constant in both micro- and 

macro-scale coordinate systems. Consequently, the equations of motion reduce to 

( ) ( )M m Mm m Mm

, 11,2 xx xC C C C C  + + − + = ,      (23a) 

( )g Mm m m

11, , 11 11 11 1111 11,xx x xxC C C C      + + − = − .     (23b) 

Moreover, the boundary conditions in Eq. (22) reduce to 

( ) ( )( )M m Mm m Mm

, 112 0 at 0 andxt C C C C C x L  − + + + + = = ,   (24a) 

( )g

1111 11, 11, 11 0 at 0 andx xT C x L   − − = = .      (24b) 

2.4. Dimensionless form of the governing equations 

For further discussion, it is useful to reduce the number of parameters by nondimensionalizing the 

equations of motion in Eq. (23) to exclude the explicit physical parameters of the system. To this 

end, we first define three dynamic length scales 1l , 2l , and 3l  as 

2 3 411 111 1111
1 2 3, ,l l l

  

  
= = = ,        (25) 

which, for the constant micro-scale mass density,  , lead to 
( ) ( )

2 4

2 3 4

1 2 3, 0,
12 80

L L
l l l

 
= = = , 

where L’ is the VE size [45]. Additionally, we introduce the following dimensionless variables 

and parameters 

m Mm g

11 11 M M M2

M

1
, , , , , , ,m Mm s

x t C C C L
x t l n

L L C C L C LL

C


    


= = = = = = = =


. (26) 
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It is understood that the parameter m  gives the ratio of the micro-scale (relative deformation) 

stiffness to the macro-scale stiffness, Mm  represents the ratio of the cross-linking stiffness to the 

macro-scale stiffness, and sl  is the dimensionless static length scale, where it is clear that larger 

values for sl  signify more noticeable second gradient effects. Moreover, n shows how large the 

macro-scale structure length is compared to the VE length. Now, using Eq. (25) and Eq. (26), the 

dimensionless form of the equations of motion in Eq. (23) is stated as  

( ) ( ), 11,1 2m Mm xx m Mm x      + + − + = ,       (27a) 

( )2

11, , 11 11 11,2 4

1 1

12 80
s xx m Mm x m xxl

n n
       + + − = − .     (27b) 

The dimensionless spatial domain of the problem is 0 1x  . We emphasize that the coefficients 

on the right hand side of Eq. (27b) are not arbitrary, but are natural consequences of the assumed 

micro-scale mass density,  , distribution. Indeed, these coefficients differ if one considers a 

different distribution for the micro-scale mass density,  , within the VE [45]. We note that the 

dimensionless material constants m  and Mm  must satisfy the positive definiteness of the macro-

scale deformation energy density. This necessitates the inequality 2 0m Mm −   to hold. 

The dimensionless form of the boundary conditions in Eq. (24) is expressed as 

( ) ( )( ), 111 2 0 at 0 and 1m Mm x m Mmt x      − + + + + = = ,    (28a) 

2

11, 11, 114

1
0 at 0 and 1

80
x s xT l x

n
  

 
− − = = 

 
.      (28b) 

where 
M

t
t

C
=  and 

M

T
T

C L
=  are dimensionless contact traction and contact double traction, 

respectively. 

The governing equations of motion in Eq. (27) result from the assumption of the existence of the 

relative deformation field 11 , i.e., the macro-scale displacement gradient ,x  is different from the 

micro-scale kinematic measure 11 . They are also predicated on the assumption of the existence 
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of a VE with a finite size, yet very small, compared to the macroscopic length of the structure. For 

the case of vanishing coupling stiffness Mm , if we also assume that m → , or equivalently, if 

the relative deformation measure 11  is zero, i.e., 11 ,x = , we obtain the governing equation of 

motion of the form 
2 4 2

2

,2 2 4 4 2

1 1
1 1

12 80
s xxl

n x n x x
 

     
− + = −   

     
. The derived equation has a 

more general form although it has similarities with the nonlocal strain gradient models presented 

in [27, 31] and the model presented in [59], where the term 
1

12n
 can be considered to be the 

dimensionless typical nonlocal parameter, and the term 
2

1

80n
 is considered as an additional 

higher gradient nonlocal parameter. Note that the model presented in [31] can be deemed as a 

special case of the present model with only one term as the nonlocal parameter, and the model in 

[59] treats the dynamic length scales as independent constants without an explicit relation to the 

micro-scale mass density distribution. If we further assume 0
L

L


→  (equivalently, if n→ ), we 

recover the equation of motion of a rod based on strain-gradient elasticity of the dimensionless 

form 
2

2

,2
1 s xxl

x
 

 
= − 

 
, similar to the form reported in [30]. This approximation, in the limit as 

n→ , shows that for practical cases, with finite n, the small scale effects described by the 

vanishing terms cannot be assumed to be insignificant although they may not be easily detectable 

in large-scale structures. Finally, in the absence of the static length scale sl , the classical form of 

the governing equation is retrieved. 

 

3. Static behavior 

3.1. General solution 

Here we focus on the static deformation of the 1D granular rod. The governing equations in Eq. 

(27) for the static case reduce to the following balance equations 
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( ) ( ), 11,1 2 0m Mm xx m Mm x     + + − + = ,       (29a) 

( )2

11, , 11 0s xx m Mm x ml      + + − = ,        (29b) 

where the spatial domain for the problem is 0 1x  . Using Eq. (28), the boundary conditions for 

the static case are written as 

( ) ( )( ), 111 2 0 at 0 and 1m Mm x m Mmt x      − + + + + = = ,    (30a) 

( )2

11, 11 0 at 0 and 1s xT l x − = = .        (30b) 

Here, an analytical solution for Eq. (29) is sought. To this end, Eq. (29b) is differentiated with 

respect to the spatial variable to obtain 

( )2

11, , 11, 0s xxx m Mm xx m xl      + + − = .       (31) 

Substituting for ,xx  from Eq. (29a) into Eq. (31) gives 

( )

2
2 2

11, 11, 2
0,

1 2

m Mm
xxx x

s m Mml

 
   

 

−
− = =

+ +
.      (32) 

Eq. (32) can be readily solved to obtain a solution for the micro-scale kinematic measure, 11 , 

expressed as 

( ) ( )11 1 2 3cosh sinhC x C x C  = + + ,       (33) 

where 1C , 2C , and 3C  are constants of integration. From substituting Eq. (33) in Eq. (29a) it 

follows that 

( )
( )

( )
( )1 2 5 4sinh cosh

1 2 1 2

m Mm m Mm

m Mm m Mm

C x C x C x C
   

  
     

+ +
= + + +

+ + + +
,  (34) 

where 4C  and 5C  are additional constants of integration to be determined. The solution for the 

macro-scale displacement   expressed in Eq. (34) bears similarities with the solution obtained 
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following the strain gradient theory for a microbar in [30], and for the gradient-elastic bar in [25]. 

Substituting Eq. (33) and Eq. (34) in Eq. (29b) results in 5 3C C= , thereby reducing the number of 

unknown constants from five to four. 

We here consider three possible scenarios for the applied boundary conditions in order to explore 

the static behavior of the 1D granular rod. These boundary conditions are all following the 

conventional macro-scale displacement-control experimental setup where the macro-scale 

displacement is fixed at one end and prescribed at the other end. The three considered experiments 

are different in terms of the boundary conditions imposed on the micro-scale kinematic measure 

11  where either the value for 11  (geometrical boundary condition) or the value for 11,x  (natural 

boundary condition, i.e., the double traction) is prescribed at the ends (boundaries) of the structure. 

Such experiments, although performed computationally here, may help devise experiments to 

observe and extract micro-scale phenomena for materials with granular microstructure by 

demonstrating the level of the effect of the non-classical boundary conditions on the response of 

the system in a static case. For illustration of the predicted behavior, we consider a material with 

constants 0.5m = , 0.4Mm = − , and 0.05sl = , for all three scenarios. This choice of parameters 

is known to yield interesting dynamic behavior of granular structures, namely the emergence of 

frequency band gaps and negative group velocity, while the deformation energy remains positive 

definite [43, 45]. In addition, certain micro-morphologies (e.g., see structure C in [60]) yield elastic 

constants of similar type. 

3.2. Scenario 1 

In the first scenario, demonstrated in Fig. 2(a), we consider the geometric boundary conditions of 

the form 

( ) ( ) ( ) ( )11 110 0, 0 0, 1 , 1r r     = = = = .      (35) 

Eq. (35) implies that on the left end of the domain, both kinematic measures are fixed, and on the 

right end, both kinematic measures have prescribed values. Imposing the boundary conditions in 

Eq. (35) results in the following system of linear equations from which the constants 

1 2 3 4, , , andC C C C  are readily calculated 
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( )

( )
( )

( )
( )

( ) ( )

1

2

3

4

0 0 1
1 2 0

1 0 1 0 0

sinh cosh 1 1
1 2 1 2

cosh sinh 1 0

m Mm

m Mm

m Mm m Mm r

m Mm m Mm r

C

C

C

C

 

  

    
 

      

 

+ 
 + +     

        
=     

+ +     
     + + + +    
  

.  (36) 

Moreover, the dimensionless macro-scale deformation energy density 
M

W
W

C
=  is calculated as 

( ) ( )
2

2 2 2

, , 11 , , 11 11,

1 1 1

2 2 2
x m x Mm x x s xW l        = + − + − + .     (37) 

Fig. 3(a) corresponds to the case where 0.01r =  and 0r = , Fig. 3(b) corresponds to the case 

where  0r =  and 0.01r = , and Fig. 3(c) shows the results for the case where 0.01r =  and 

0.01r = . According to the results in Fig. 3(a), having the kinematic measure 11  fixed has 

negligible observable contribution on the behavior of the macro-scale displacement  , however, 

results in larger energy stored in the boundary layers. From the results shown in Fig. 3(b) for the 

case of zero macro-scale displacement   and imposed nonzero micro-scale kinematic measure 

11  at the right end, we observe that while macroscopically the length of the structure has not 

changed, regions undergoing compression and tension exist within the material. Also, due to the 

difference in values between the macro-scale displacement gradient ,x  and micro-scale kinematic 

measure 11 , high deformation energy concentration is observed in the right boundary layer, while 

the rest of the material experiences negligible stored deformation energy. Fig. 3(c) results are the 

superposition of the two results in Fig. 3(a) and Fig. 3(b), which in terms of the macro-scale 

displacement   shows near linear trend, and in terms of the deformation energy density reveals 

localization in the left end and uniform deformation energy density in the rest of the domain. 

3.3. Scenario 2 

In the second scenario with results given in Fig. 4, we consider the following boundary conditions  
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( ) ( ) ( ) ( )11, 11,0 0, 0 0, 1 , 1x r x r      = = = = ,      (38) 

which, in addition to the macro-scale displacement boundary conditions, imposes zero double 

traction on the left end, and a prescribed double traction on the right end. Such boundary conditions 

lead to the following system of linear equations for the constants 1 2 3 4, , , andC C C C , 

( )

( )
( )

( )
( )

( ) ( )

1

2

3

4

0 0 1
1 2 0

0 0 0 0

sinh cosh 1 1
1 2 1 2

sinh cosh 0 0

m Mm

m Mm

m Mm m Mm r

m Mm m Mm r

C

C

C

C

 

  



    
 

      

   

+ 
 + +     

        
=     

+ +     
     + + + +    
  

.  (39) 

Fig. 4(a) corresponds to the case where 0.01r =  and 0r  = , Fig. 4(b) corresponds to the case 

where  0r =  and 0.01r  = , and Fig. 4(c) shows the results for the case where 0.01r =  and 

0.01r  = . According to the results in Fig. 4(a), having the double traction zero at both ends results 

in a solution equal to a classical continuum. The macro-scale displacement   is perfectly linear 

and there is no contribution of energy due to the relative motion and second gradient deformation. 

Specifying a nonzero double traction on the right end, for which case the results are shown in Fig. 

4(b), follows the same behavior as of the one in Fig. 3(b). For the superposition of the cases in Fig. 

4(a) and Fig. 4(b), shown in Fig. 4(c), except for the right boundary layer, the energy content 

within the structure is equal to the classical case and the macro-scale displacement   follows an 

almost linear regime. 

3.4. Scenario 3 

In the third scenario with results presented in Fig. 5, we consider the mixed boundary conditions 

expressed as 

( ) ( ) ( ) ( )11, 110 0, 0 0, 1 , 1x r r     = = = = .      (40) 
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Similar to the approach taken in previous scenarios, the constants 1 2 3 4, , , andC C C C  are obtained 

by solving the following system of linear equations 

( )

( )
( )

( )
( )

( ) ( )

1

2

3

4

0 0 1
1 2 0

0 0 0 0

sinh cosh 1 1
1 2 1 2

cosh sinh 1 0

m Mm

m Mm

m Mm m Mm r

m Mm m Mm r

C

C

C

C

 

  



    
 

      

 

+ 
 + +     

        
=     

+ +     
     + + + +    
  

.  (41) 

Fig. 5(a) corresponds to the case where 0.01r =  and 0r = , Fig. 5(b) corresponds to the case 

where  0r =  and 0.01r = , and Fig. 5(c) shows the results for the case where 0.01r =  and 

0.01r = . A fixed micro-scale kinematic measure at the right end in Fig. 5(a) results in large 

deformation energy stored in the right boundary layer and uniform energy density distribution in 

the rest of the domain. This stored energy can be attributed to the difference in value between the 

imposed macro-scale displacement gradient ,x  and the micro-scale kinematic measure 11  at the 

right end. The results in Fig. (5b) are qualitatively similar to those in Fig. 3(b) and Fig. 4(b) and 

follow the same discussion. Interestingly, the results in Fig. 5(c) are similar to the ones in Fig. 4(a). 

This case corresponds to a zero double traction at the left end and a prescribed value for the micro-

scale kinematic measure 11  equal to the macro-scale strain at the right end. In this case, similar 

to the one in Fig. 4(a), the macro-scale displacement   is linear and the deformation energy 

density due to the macro-scale displacement gradient is the sole contributor to the total deformation 

energy density. 

Based on the observations from the results in Figs. 3-5, the following conclusions can be drawn. 

First, imposing fixed and prescribed macro-scale displacements   at left and right ends of the 

structure, respectively, one observes a classical-like behavior only if at each end, the contact 

double traction is held to be zero, or the micro-scale kinematic measure 11  is assigned a value 

equal to the macro-scale displacement gradient ,x  (macro-scale strain). For the cases where the 

macro-scale displacement gradient ,x  and micro-scale kinematic measure 11  have non-equal 
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values on the boundary, localized deformation energy density of finite thickness near that 

boundary is observed, while the deformation energy density in the rest of the domain of the 

problem is rather uniform. Second, for fixed macro-scale displacement   applied at both 

boundaries and imposed double traction or micro-scale kinematic measure 11  at one end, we 

notice both compression and tension (negative and positive macro-scale displacement gradient ,x

) induced within the granular structure. Third, the gradients appearing because of the imposed field 

variables   and 11  at both ends only exist close to the outer boundaries of the structure, thereby 

signifying the existence of boundary layers. Finally, one notices the small change in the macro-

scale displacement   in response to the alterations in the imposed non-classical boundary 

conditions. Nevertheless, such small changes have large influence on the energy localization near 

the boundaries, and such energy localization becomes even more noticeable as the size of the rod 

shrinks. 

3.5. Parametric study 

To further explore the effect of the material constants m , Mm , and sl  on the behavior of the field 

variables   and 11 , a parametric study is performed. We consider two cases of boundary 

conditions for this investigation. Fig. 6 shows the results for the following applied boundary 

conditions 

( ) ( ) ( ) ( )11 110 0, 0 0, 1 0.01, 1 0   = = = = ,      (42) 

and Fig. 7 shows the results for the following boundary conditions 

( ) ( ) ( ) ( )11 110 0, 0 0, 1 0, 1 0.01   = = = = .      (43) 

In both studies, the baseline material constants are taken as 0.5m = , 0.4Mm = −  and 0.05sl = . 

In Fig. 6(a) and Fig. 7(a) the material constant m  is varied, in Fig. 6(b) and Fig. 7(b) the material 

constant Mm  is varied, and in Fig. 6(c) and Fig. 7(c) the material constant sl  is varied. We here 
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recognize that a growth in the material constant sl  can be interpreted as either an increase in the 

second gradient stiffness of the material, or as a decrease in the size of the rod under study. 

For the case of boundary conditions in Eq. (42) with the results shown in Fig. 6, a change in the 

values of the parameters m , Mm , and sl  has small effect on the solution for the macro-scale 

displacement  . However, it is evident that increasing m  or Mm  alters the solution for 11  

significantly. Moreover, increasing m  and Mm , decreases and increases the size of the boundary 

layer, respectively. An increase in the value of sl  reduces the maximum for 11  and increases the 

size of the boundary layer. The change of the size of the boundary layer due the value of the 

parameter sl  may be explained using the definition of the parameter  . A larger value for the 

parameter sl  results in smaller value for   which consequently leads to larger boundary layer.  

For the case of the boundary conditions in Eq. (43) with the results shown in Fig. 7, increasing m  

results in a change from positive to negative sign for the macro-scale displacement  , which 

switches the regions of compression and tension (see Fig. 7(a)). According to Fig. 7(a), the micro-

scale kinematic measure 11  follows the same trend, although the sign of the solution for 11  

becomes negative as m  increases while the boundary layer thickness decreases somewhat. Fig. 

7(b) shows the results for the change in the value of Mm . Increasing Mm  also changes the sign 

of the macro-scale displacement  . Furthermore, as the value of Mm  increases, the boundary 

layer size increases by a small amount. Fig. 7(c) shows that increasing sl  results in an increase in 

the magnitude of the macro-scale displacement   as well as an increase in the size of the boundary 

layer. 

The size effect of the rod can be observed in Fig. 6(c) and Fig. 7(c), where a decrease in the size 

of the sample (increase in the value of sl ) results in a larger boundary layer which implies that the 

localization zone of the strain energy has grown and spread towards the center of the rod. In this 

case, the average deformation energy density absorbed by the material has increased compared to 

the same material with larger size, thus suggesting a stiffening effect. 
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4. Free vibration behavior  

4.1. General solution 

In this section, we analyze the free vibration characteristics of the 1D granular rod. The 

dimensionless form of the governing equations of motion are stated in Eq. (27) with the boundary 

conditions expressed in Eq. (28). For small harmonic vibration, the following form of solution 

(plane wave solution) is assumed 

( ) ( ) ( ) ( )11, , ,i t i tx t x e x t x e  = = ,       (44) 

where   and   are the dimensionless space parts of the solutions and   is the dimensionless 

angular natural frequency. Substitution of Eq. (44) into the governing equations of motion in Eq. 

(27) results in the following equations 

( ) ( ) 2

, ,1 2m Mm xx m Mm x    + +  − +  = −  ,      (45a) 

( )
2 2

2

, , ,2 412 80
s xx m Mm x m xxl

n n

 
   + +  −  = −  +  .     (45b) 

The above equations can be uncoupled to obtain two fourth order homogenous linear ordinary 

differential equations with constant coefficients as follows 

1 , 2 , 3 0xxxx xxz z z +  +  = ,         (46a) 

1 , 2 , 3 0xxxx xxz z z +  +  = ,         (46b) 

where 

( )( )

( ) ( )

( )

2 2 4

1

4 2 2 2 2 2 4

2

2 2 2 2

3

3 80 1 2 ,

240 20 1 2 3 ,

20 12 .

s m Mm

m Mm s m Mm

m

z l n

z n l n

z n n

  

      

  

= − + +

= − − − + + +

= −

    (47) 

The general solutions for the differential equations in Eq. (46) can be presented as 
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( ) ( ) ( ) ( )1 1 2 1 3 2 4 2cos sin cosh sinhk x k x k x k x =  + + + ,    (48a) 

( ) ( ) ( ) ( )1 1 2 1 3 2 4 2cos sin cosh sinhk x k x k x k x =  + + + ,    (48b) 

where 

1 1

2 22 2

2 2 1 3 2 2 1 3

1 2

1 1

4 4
,

2 2

z z z z z z z z
k k

z z

   − − − − −
   = =
   
   

.     (49) 

In Eq. (48), 1k  and 2k  are the dimensionless angular wavenumbers, and are functions of the 

material parameters and the angular frequency  . Also, , , 1, , 4i i i  =  are constant to be 

determined by the appropriate boundary conditions, which, using Eq. (45a), are related as 

( )

( )

( )

( )

2 2

1

1 2 2 1

1

2 2

2

3 4 4 3

2

1 2
, , where = ,

1 2
, where = .

m Mm

m Mm

m Mm

m Mm

k

k

k

k

  
  

 

  
  

 

+ + −
 =   = − 

+

+ + +
 =   = 

+

    (50) 

In what follows, we study the free vibration characteristics of the 1D granular rod subjected to four 

types of boundary conditions. The first three types of boundary conditions are examined following 

the same motivation discussed in the static case: for identical classical boundary conditions, how 

does a change in the non-classical boundary conditions affect the response of the system. The 

fourth type of boundary conditions is investigated to have a more complete comparison with the 

results of the models found in the literature. For the analyses to follow, we consider the same 

material constants as for the static case, namely, 0.5m = , 0.4Mm = − , 0.05sl = , and 100n = , 

and compare the resulting natural frequencies and mode shapes with the solutions of a classical 

rod problem. We note that, in the following results, the mode shapes of the classical rod have been 

scaled such that they have the same amplitude as the macro-scale displacement   amplitude for 

the mode shapes of the present model. 

4.2. Clamped strained-clamped strained (CS-CS) 
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The boundary conditions associated with the CS-CS case are defined as 

( ) ( ) ( ) ( )0 0, 0 0, 1 0, 1 0 =  =  =  = .      (51) 

Eq. (51) enforces that the macro-scale displacement   and the micro-scale kinematic measure 11  

are identically fixed at both ends. Enforcing Eq. (51), and by using Eq. (50), the following set of 

algebraic equations result from Eq. (48) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

1 1 2 2
3

1 1 2 2

4

1 0 1 0 0

0 0 0

cos sin cosh sinh 0

sin cos sinh cosh 0

k k k k

k k k k

 

   

     
         =   
     
 

   −      

.    (52) 

The necessary condition to have non-zero solutions for Eq. (52) is that the determinant of the 

coefficient matrix is zero, i.e. 

( ) ( ) ( ) ( ) ( )( )2 2

1 2 1 2sin sinh 2 cos cosh 1 0k k k k  − + − = .     (53) 

Eq. (53) is a transcendental equation denoting the general characteristic equation for the CS-CS 

boundary conditions and is equivalent to the characteristic equation for the clamped-clamped case 

of the nonlocal strain gradient rod in [31] for 1k =  and 2k = . 

Fig. 8(a-c) show the first three mode shapes and natural frequencies. The mode shapes 

corresponding to the macro-scale displacement   are similar to that’s for the classical one-

dimensional continua for the material parameters considered here. Denoting by i  and 
c

i , 

respectively, the ith natural frequency of the current model and the classical continuum model, the 

first three natural frequencies in the CS-CS boundary condition case for the chosen material 

parameters are smaller than their classical continuum counterparts and are evaluated as 

1 10.8283 c = , 2 20.8290 c = , and 3 30.8300 c = . 

4.3. Clamped strained-clamped forcing (CS-CF) 
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The boundary conditions associated with the CS-CF case are obtained by having the macro-scale 

displacement   at both ends fixed, the micro-scale kinematic measure 11  fixed at the left end, 

and the double traction zero (free) at the right end. Explicitly, the boundary conditions are stated 

as 

( ) ( ) ( ) ( ),0 0, 0 0, 1 0, 1 0x =  =  =  = ,      (54) 

where the last condition is obtained by introducing the solution in Eq. (44) into the boundary 

condition in Eq. (28b). Enforcing Eq. (54), and by using Eq. (50), the following set of algebraic 

equations result from Eq. (48) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

1 1 2 2
3

1 1 1 1 2 2 2 2

4

1 0 1 0 0

0 0 0

cos sin cosh sinh 0

cos sin cosh sinh 0

k k k k

k k k k k k k k

 

   

     
         =   
     
 

   − −      

.  (55) 

The characteristic equation corresponding to Eq. (55) is 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2cos sinh sin cosh 0k k k k k k   + − =   .     (56) 

Eq. (56) is the general characteristic equation for the CS-CF boundary conditions and for 1k =  

and 2k =  it becomes equivalent to the characteristic equation for the clamped-simply supported 

case of the nonlocal strain gradient rod described in [31]. 

Fig. 8(d-f) show the first three mode shapes and natural frequencies. Similar to the results for the 

CS-CS case, the mode shapes corresponding to the macro-scale displacement   for the CS-CF 

case are approximately same as the mode shapes of classical 1D bar. The first three natural 

frequencies in the CS-CF boundary condition case are smaller than their classical continuum 

counterparts for the material parameters considered here, and have values of 1 10.8267 c = , 

2 20.8278 c = , and 3 30.8292 c = , respectively. 

4.4. Clamped forcing-clamped forcing (CF-CF) 
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The boundary conditions associated with the CF-CF case are expressed as 

( ) ( ) ( ) ( ), ,0 0, 0 0, 1 0, 1 0x x =  =  =  = .      (57) 

Enforcing the boundary conditions in Eq. (57), the following set of algebraic equations result from 

Eq. (48) 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 2 2

1 1 2 2
3

1 1 1 1 2 2 2 2

4

1 0 1 0 0

0 0 0

cos sin cosh sinh 0

cos sin cosh sinh 0

k k

k k k k

k k k k k k k k

 

   

     
    −      =   
     
 

   − −      

.  (58) 

The characteristic equation corresponding to Eq. (58) is 

( ) ( ) ( )
2

1 2 1 2sin sinh 0k k k k + = .        (59) 

Eq. (59) is the general characteristic equation for the CF-CF boundary conditions, and for 1k =  

and 2k = , it becomes of similar form to the characteristic equation for the simply supported-

simply supported case of the nonlocal strain gradient rod in [31], the nonlocal strain gradient rod 

in [27], and the strain gradient rod in [30]. 

Fig. 8(g-i) show the first three mode shapes and natural frequencies. Similar to previous cases, the 

mode shapes corresponding to the macro-scale displacement   for the CF-CF case are similar to 

that of the classical 1D continua. The first three natural frequencies in the CF-CF boundary 

condition case are smaller than their classical continuum counterparts for the material parameters 

chosen in this study, and have values of 1 10.8252 c = , 2 20.8266 c = , and 3 30.8283 c = , 

respectively. 

4.5. Clamped forcing-free strained (CF-FS) 

The boundary conditions associated with the CF-FS case are expressed as 

( ) ( ) ( ) ( ), ,0 0, 0 0, 1 0, 1 0x x =  =  =  = .      (60) 
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With regards to Eq. (60), Eq. (48) results in the following set of algebraic equations 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 2 2

1 1 1 1 2 2 2 2
3

1 1 2 2

4

1 0 1 0 0

0 0 0

sin cos sinh cosh 0

sin cos sinh cosh 0

k k

k k k k k k k k

k k k k

 

   

     
    −      =   
 −    
 

   −      

.    (61) 

The characteristic equation corresponding to Eq. (61) is 

( )( ) ( ) ( )1 2 2 1 1 2cos cosh 0k k k k k k   + − = .      (62) 

Eq. (62) is the general characteristic equation for the CF-FS boundary conditions and for 1k =  

and 2k =  it becomes of similar form to the characteristic equation for the CF-FS case of the 

nonlocal strain gradient rod in [27].The first three natural frequencies for the CF-FS case are 

1 10.8247 c = , 2 20.8258 c = , and 3 30.8275 c = , respectively, which are lower than classical 

continuum predictions for the material parameters considered. In addition, the macro-scale 

displacement   mode shapes are close to the classical continuum predictions. 

Based on the results of the four different examples studied above, several observations and 

conclusions can be made. Firstly, the mode shapes of the macro-scale displacement   are similar 

to that of a classical continuum, although for a different choice of material parameters (for example 

if we had 0Mm = ), small deviations from the mode shapes of classical rod are observed (results 

not shown). Such a deviation is the result of the presence of terms containing the second 

wavenumber 
2k  in Eq. (48), which, for the problems studied here, had negligible amplitude 

compared to the leading term containing 
1k . Moreover, one concludes from the first three visited 

examples that even when the double traction is prescribed as zero on the boundaries, the 

microstructural effects alter the natural frequency of the system. This is in contradistinction to the 

results from the static problem where a classical form of solution is obtained if the non-classical 

terms are not excited. This distinction in the behavior of the system in static and dynamic problems 
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are due to the presence of the terms containing dynamic length scales in the governing equations 

of motion. 

4.6. Parametric study 

In order to study the effect of different material constants on the dynamic behavior of one-

dimensional materials with granular microstructure, we have plotted the ratio of the first three 

natural frequencies for the three CS-CS, CS-CF, and CF-CF cases to their classical counterparts 

for different material parameters with the base material constants at 0.5m = , 0Mm = , 0.05sl =

, and 100n =  in Fig. 9. Based on the results in Fig. 9, the following conclusions can be drawn. 

First, an increase in the micro-scale (relative deformation) stiffness, m , leads to larger natural 

frequencies (Fig. 9(a)). This result is expected as additional stiffness increases the natural 

frequency of the system. Second, contrary to the trend observed for the effect of the parameter m

, an increase in the cross-linking stiffness Mm  is accompanied by an initial increase in the value 

of the natural frequencies, followed by a decrease (Fig. 9(b)). Therefore, the effect of the parameter 

Mm  can be either softening or stiffening. Third, increasing the length scale parameter sl  results in 

an increase in the value of the natural frequencies (Fig. 9(f)), hence implying stiffening of the 

material when either the second gradient stiffness becomes larger or when the rod size becomes 

smaller. For sl  values large enough, an asymptotic value for the natural frequencies are obtained. 

Similar observation has been made for the rod modeled using nonlocal strain gradient theory [31]. 

Fourth, the natural frequencies can be smaller or larger than their classical counterparts, depending 

on the material constants. Fifth, one observes that the effect of different boundary conditions on 

the natural frequencies is rather small for a wide range of material parameters. For higher modes, 

however, the effect of different boundary conditions on the results becomes increasingly 

significant. Finally, it is interesting to note that the higher mode frequencies are not integer 

multiples of the fundamental mode, which is a departure from the results for classical 1D elastic 

rod under the considered boundary conditions, and seems to suggest an apparent internal damping. 

 

5. Conclusion and Summary (prognosis towards experimental design) 
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Mechanical response of materials with granular microstructures are known to be influenced by the 

grain-scale mechano-morphology. Here we have utilized the granular micromechanics approach 

(GMA) based continuum theory to reveal certain peculiar aspects of the mechanical behavior of a 

material with granular microstructure. To keep the development tractable and understandable, we 

have focused upon a 1D rod composed of granular materials. To this end, the governing equations 

of motion and the variationally consistent boundary conditions for a one-dimensional material with 

granular microstructure were obtained using the principle of least action. Closed-form solutions 

for both the static and dynamic problems were obtained and the effect of different boundary 

conditions and material parameters on the response of the material were investigated. The key 

findings of the presented work are: 

1. That micromorphicity due to micro-mechano-morphological properties has a significant 

influence on the static and free vibration response of rods with granular microstructure. 

2. In the static case, we observe that the dependency of the structural response on the imposed 

boundary conditions is most obvious near the boundaries of the structure where gradients 

of strain are large. In addition, the size-dependency effects are manifested in the width of 

the emergent boundary layers. 

3. In the dynamic case, the length scale parameter has stiffening effect, i.e., as the size of the 

structure shrinks, the behavior is predicted to be stiffer, a finding which classical theory 

does not predict. 

4. The mode shapes corresponding to the micro-scale kinematic measure 11  are not identical 

to that of the macro-scale displacement gradient 
,x , as distinct from that for a second 

gradient model and account for the energy due to the relative deformation in macro- and 

micro-scales. 

5. Additional kinematic constraints and simplifications imposed on the presented model leads 

to several (nonlocal) strain gradient models introduced in the literature, and therefore, the 

current model, encompasses such models as special cases. 
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6. While the cases studied in the static problem show microstructural effects of the system 

under certain boundary conditions, the effect of the microstructure is always present in the 

dynamic problem for any form of applied boundary conditions. 

7. The dynamic length scale parameters (referred to as nonlocal parameters in the literature) 

in the current model are directly linked to the micro-scale mass density distribution of the 

system under study and do not take arbitrary values. 

8. The model predicts measureable effects such that experimental approaches/protocols can 

be designed to detect these effects. 

9. While a 1D system is helpful in understanding the underlying physics behind the observed 

phenomena, many engineering applications are concerned with higher dimensional 

systems. GMA based micromorphic model of degree one presented here can be 

systematically expanded to include 2D and 3D systems [41], or to model deflection in 

beams [61]. 

To conclude, appreciating the complexity of the materials with granular microstructure and the 

limitations on the current experimental prescriptions to observe and extract microstructural effects, 

the results of the current paper can promote the understanding of such complex systems and what 

to expect if experiments are to be devised. Furthermore, the results of the current paper will serve 

as a prelude to our future work on static deformation, vibration and elastic wave propagation 

simulations of initial/boundary value problems for structures made of granular media. 
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List of Figures 

Fig 1. Schematic of a one-dimensional granular structure modeled as a one-dimensional 

continuum, and the material point P and its granular microstructure magnified for better 

visualization. 

Fig 2. Schematic of the applied boundary conditions for the static problem describing the behavior 

of a 1D granular rod in (a) the first scenario, (b) the second scenario, and (c) the third scenario. 

Fig 3. Results for the static behavior of a 1D granular rod with material constants 0.5m = , 

0.4Mm = − , and 0.05sl =  with imposed boundary conditions (a) 0.01r =  and 0r = , (b) 0r =  

and 0.01r = , and (c) 0.01r =  and 0.01r =  in the first scenario. 

Fig 4. Results for the static behavior of a 1D granular rod with material constants 0.5m = , 

0.4Mm = − , and 0.05sl =  with imposed boundary conditions (a) 0.01r =  and 0r  = , (b) 0r =  

and 0.01r  = , and (c) 0.01r =  and 0.01r  =  in the second scenario. 

Fig 5. Results for the static behavior of a 1D granular rod with material constants 0.5m = , 

0.4Mm = − , and 0.05sl =  with imposed boundary conditions (a) 0.01r =  and 0r = , (b) 0r =  

and 0.01r = , and (c) 0.01r =  and 0.01r =  in the third scenario. 

Fig 6. Results comparing the effect of the material constants (a) m , (b) Mm , and (c) sl  on the 

behavior of a 1D granular rod with material constants based at 0.5m = , 0.4Mm = − , and 

0.05sl = , for the imposed boundary conditions ( ) ( ) ( ) ( )11 110 0 1 0, 1 0.01   = = = = . 

Fig 7. Results comparing the effect of the material constants (a) m , (b) Mm , and (c) sl  on the 

behavior of a 1D granular rod with material constants based at 0.5m = , 0.4Mm = − , and 

0.05sl = , for the imposed boundary conditions ( ) ( ) ( ) ( )11 110 0 1 0, 1 0.01   = = = = . 

Fig 8. First, second, and third natural frequencies and their corresponding mode shapes for the (a-

c) CS-CS case, (d-f) CS-CF case, (g-i) CF-CF case, and (j-l) CF-FS case of boundary conditions 

for a 1D granular rod with material constants 0.5m = , 0.4Mm = − , 0.05sl = , and 100n = . 



133 

 

Fig 9. Effect of the material constants (a) m , (b) Mm , and (c) sl  on the first three natural 

frequencies for a 1D granular rod with material constants based at 0.5m = , 0Mm = , 0.05sl = , 

and 100n = . 
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Fig 1. Schematic of a one-dimensional granular structure modeled as a one-dimensional 

continuum, and the material point P and its granular microstructure magnified for better 

visualization. 

 

Fig 2. Schematic of the applied boundary conditions for the static problem describing the 

behavior of a 1D granular rod in (a) the first scenario, (b) the second scenario, and (c) the third 

scenario. 
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Fig 3. Results for the static behavior of a 1D granular rod with material constants 0.5m = , 

0.4Mm = − , and 0.05sl =  with imposed boundary conditions (a) 0.01r =  and 0r = , (b) 

0r =  and 0.01r = , and (c) 0.01r =  and 0.01r =  in the first scenario. 
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Fig 4. Results for the static behavior of a 1D granular rod with material constants 0.5m = , 

0.4Mm = − , and 0.05sl =  with imposed boundary conditions (a) 0.01r =  and 0r  = , (b) 

0r =  and 0.01r  = , and (c) 0.01r =  and 0.01r  =  in the second scenario. 
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Fig 5. Results for the static behavior of a 1D granular rod with material constants 0.5m = , 

0.4Mm = − , and 0.05sl =  with imposed boundary conditions (a) 0.01r =  and 0r = , (b) 

0r =  and 0.01r = , and (c) 0.01r =  and 0.01r =  in the third scenario. 
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Fig 6. Results comparing the effect of the material constants (a) m , (b) Mm , and (c) sl  on the 

behavior of a 1D granular rod with material constants based at 0.5m = , 0.4Mm = − , and 

0.05sl = , for the imposed boundary conditions ( ) ( ) ( ) ( )11 110 0 1 0, 1 0.01   = = = = . 
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Fig 7. Results comparing the effect of the material constants (a) m , (b) Mm , and (c) sl  on the 

behavior of a 1D granular rod with material constants based at 0.5m = , 0.4Mm = − , and 

0.05sl = , for the imposed boundary conditions ( ) ( ) ( ) ( )11 110 0 1 0, 1 0.01   = = = = . 
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Fig 8. First, second, and third natural frequencies and their corresponding mode shapes for the 

(a-c) CS-CS case, (d-f) CS-CF case, (g-i) CF-CF case, and (j-l) CF-FS case of boundary 

conditions for a 1D granular rod with material constants 0.5m = , 0.4Mm = − , 0.05sl = , and 

100n = . 
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Fig 9. Effect of the material constants (a) m , (b) Mm , and (c) sl  on the first three natural 

frequencies for a 1D granular rod with material constants based at 0.5m = , 0Mm = , 0.05sl = , 

and 100n = . 
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Abstract  

The significance of chirality lies in its wide range of applications in diverse branches of science, 

and hence, understanding the mechanisms leading to chirality deems necessary. This paper focuses 

upon chiral granular (meta-) materials and investigates the role of different micro-level 

deformation mechanisms on the macroscopic chiral behavior of the system incorporating the 

coupling between the deformation mechanisms in different axes and rotations. To this end, a 

granular micromechanics based micropolar model is obtained through Hamilton’s principle to 

describe chirality in a one-dimensional chiral granular string in a two-dimensional deformation 

plane. The domain of validity of the proposed model is thereafter investigated through parametric 

experimentation by considering a particular chiral granular string composed of 11 grains with each 

grain interacting with its neighboring grains through some form of mechanism that induces 

chirality. The granular string is varied in two geometrical parameters that describe the interaction 

between the two grains, hence providing parametric spaces with respect to the considered 

geometrical parameters. Digital image correlation is used to analyze the results of tensile 

experimentation on the granular strings and to investigate the range of applicability of the model 

to predict the behavior of granular strings by comparing the predicted displacements and rotation 

fields by the model and the experimental results. 

Keywords: Granular metamaterial, Chirality, Generalized continua, tensile experiment, Digital 

image correlation. 
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1. Introduction 

Materials with chiral behavior are not invariant to coordinate inversion. Explicitly, Chirality is an 

example of non-centrosymmetry where the plane-mirrored image of a geometry cannot be mapped 

into itself by rotations and translations alone. Its significance lies in its applications in diverse 

branches of science, including physics, biology, and optics (Nguyen et al., 2006; Ni et al., 2019; 

Nieves et al., 2018; Takane et al., 2019). In chiral metamaterials, exemplars of applications include 

vibration attenuation and negative coefficient of thermal expansion. For a comprehensive list of 

applications of chiral metamaterials, we refer to the review paper (Wu et al., 2019). 

Chiral lattices have extensively been studied in terms of their phononic properties (Chen et al., 

2020; Liu et al., 2011; Rosi and Auffray, 2016; Spadoni et al., 2009). In particular, the Reference 

(Spadoni et al., 2009) investigated the effect of different geometrical parameters on the band 

structure of such lattices, and the Reference (Rosi and Auffray, 2016) studied the wave propagation 

characteristics of hexagonal chiral lattices modeled as second gradient media. In Addition, the 

acoustical activity in mechanical metamaterials with chirality was recently experimentally studied 

(Frenzel et al., 2019). The concept of chirality in lattices has been extended to chiral 

metacomposites by including inclusions in order to obtain low-frequency stop bands in their band 

structure (Liu et al., 2011). 

Chiral effects are also present in static mechanical systems. Several recent researches have 

attempted to address the static deformation characteristics of chiral media. For instance, the work 

in (Alderson et al., 2010) relates the classical elastic constants to the in-plane deformation of 

different chiral honeycombs through finite element modeling and experiment. Moreover, the work 

in (Dirrenberger et al., 2011) utilizes a homogenization scheme implemented in finite element 

method to obtain the effective mechanical properties over a unit-cell. However, as it was 

experimentally shown recently by analyzing the deformation of a 2D non-centro-symmetric lattice 

under static load, classical Cauchy elasticity is not enough to fully predict chirality (Poncelet et 

al., 2018). In recent years, generalized continuum mechanics theories such as micropolar elasticity, 

micromorphic elasticity, and Willis equations have been adopted to address the shortcomings of 

classical continuum mechanics in describing chirality (Biswas et al., 2020; Chen and Huang, 2019; 

Chen et al., 2020, 2014; Duan et al., 2018; Frenzel et al., 2017; Giorgio et al., 2020; Ha et al., 
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2016; Kadic et al., 2019; Lakes, 2001; Liu and Hu, 2016; Liu et al., 2012; Misra et al., 2020; Reasa 

and Lakes, 2019). 

The literature on lattice chirality offers comprehensive studies on the chiral properties of particular 

pre-designed microstructural units using novel experimental and numerical schemes (see for 

example (Chen et al., 2014; Duan et al., 2018; Fernandez‐Corbaton et al., 2019; Jiang and Li, 2018; 

Spadoni and Ruzzene, 2012)). Indeed, to further enhance the understanding on mechanical 

chirality, a general analysis in determining the effect of different factors contributing to chirality 

proves essential. Such an analysis seeks the role of different micro-level deformation mechanisms 

on the macroscopic chiral behavior of the system by incorporating the coupling between the 

deformation mechanisms in different axes and rotations. 

To this end, in section 2 of the paper, we specialize the granular micromechanics approach (GMA) 

introduced earlier in (Nejadsadeghi and Misra, 2020a) to a micropolar model with the lowest 

dimension capable of showing chirality, namely, a 1D granular string in a 2D deformation plane. 

This consideration enables a tractable model, yet opens an avenue for rigorous analysis of the role 

different deformation mechanisms on chirality. In section 3, an example of a chiral granular string 

with a particular grain-pair interaction is proposed. The proposed granular string is studied through 

parametric experimentation by altering the geometrical parameters describing the grain-pair 

interaction mechanism. Thereafter, the digital image correlation (DIC) technique is overviewed 

and adopted to obtain full-field deformation measurement from the experiments.  In section 4, the 

model parameters are fitted to the experimental results, where the effect of the alteration in grain-

pair interactions and the range of validity of the micropolar model are discussed. Finally, section 

5 summarizes the work and provides concluding remarks. 

2. GMA based micropolar chiral model 

2.1. Kinematic variables 

For a micromorphic model of degree 1 describing a 3D material with granular microstructure, the 

displacement of grains within a volume element, adopting summation convention over repeated 

indices, is described as (Nejadsadeghi and Misra, 2020a, 2020b) 

i i ij j ijk j kx x x     = + + ,         (1) 
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where i  is the displacement of the center of mass of the volume element in the macro-scale 

coordinate system ix , and ij  and ijk  are second and third rank micro-deformation tensors, 

respectively. In Eq. (1), i , ij , and ijk  are all functions of ix  only, and ix  is a micro-scale 

coordinate system parallel to the macro-scale coordinate system ix  and attached to the center of 

mass of the volume element. Note that the construction of Eq. (1) is predicated upon the 

assumption of infinitesimal deformation and continuity in both macro- and micro-scale 

(Nejadsadeghi and Misra, 2020a). 

The kinematic description in Eq. (1) is rich and can model randomly-packed granular materials 

and (tailored) metamaterials with granular microstructure. Certain assumptions on the nature of 

the micro-deformation tensors  ij  and ijk  has been shown to result in micropolar and second 

gradient theories (Nejadsadeghi and Misra, 2020a). In the current paper, we specialize the 

kinematic description in Eq. (1) to describe a 1D granular-microstructured solid (called a granular 

string) in the 2D 1 2x x  deformation plane. Therefore, terms accompanying only 1x  remain. As a 

result, Eq. (1) is written in components as 

1 1 11 1 111 1 1x x x     = + + ,  2 2 21 1 211 1 1x x x     = + + .    (2) 

We proceed by defining the relative measures (Giorgio et al., 2020; Nejadsadeghi and Misra, 

2020a) 

11 1,1 11 111 11,1 111 21 2,1 21 211 21,1 211, , ,           = − = − = − = − ,   (3) 

where, hereafter, differentiation with respect to the spatial coordinates is denoted by a comma in 

the subscript. For the kinematic description of 1 , assuming 111 0 =  results in a micromorphic rod 

model (Nejadsadeghi and Misra, 2020a). This form can account for micro-macro transfer of energy 

(coupling) and length scale effects in axial deformation of rods. A further assumption of 11 0 =  

results in a second gradient model of a rod incorporating length scale effects. Within the scope of 

the current paper, however, we consider the case where the kinematic measure 111  vanishes in 

the description of 1  (as if the polynomial expansion of 1  is up to linear term instead of quadratic), 
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and assume 11 0 = , which leads to 11 1,1 = . This consideration yields the simplest model in 1x  

direction (the classical model) that is needed for modeling chirality in a micropolar medium. For 

the kinematic description of the system in 2x  direction ( 2 ), we impose that 

211 211 21,10  = → = . As a result, there remains only one independent micro-scale kinematic 

measure, 21 . Considering Eq. (3) and the mentioned simplifications on the kinematic description 

of the system, Eq. (2) takes the form 

1 1 1,1 1x   = + ,  2 2 21 1 21,1 1 1x x x     = + + .      (3) 

We note that the considered kinematics of motion in Eq. (3) is general from which recognized 

models kinematics can be derived. In particular, neglecting any macro-scale motion in 1x  direction 

results in the Timoshenko beam kinematics, while further constraining the system to have 

21 21 2,10  = → =  yields to the Euler-Bernoulli beam kinematics. 

The relative displacement of the two neighboring grains n and p using Eq. (3) is written as 

np

1 1 1 1,1 1

np np np np np

2 2 2 21 1 21,1 2 2,1 1 21 1 21,1 2

,

,

np p n

np p n

J

J J J J J

   

       

= − =

= − = + = − +
     (4) 

where 
np p n

1 1 1J l l= −  and 
np p p n n

2 1 1 1 1J l l l l= −  are geometry moment measures, and 
q

1l  represents the 

vector joining the center of mass of the volume element to the grain q centroid in 1x  direction. In 

Eq. (4), one identifies three different micro-scale kinematic measures as 

np np np

n 1,1 1 s 21 1 θ 21,1 2, ,J J J     = = = ,       (5) 

where n  resembles the classical continuum relative displacement in 1x  direction, s  represents 

a portion of the relative displacement in 2x  direction due to the fluctuations between the macro-

scale displacement gradient 2,1  and the micro-scale kinematic measure 21 , and θ  shows a 

portion of the relative displacement in 2x  direction due to the second gradient effect. 

2.2. Constitutive equations 
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We consider the macro-scale deformation energy density W to be a function of the continuum 

kinematic measures, i.e., 1,1 21 21,1( , , )W W   = . Note that the macro-scale deformation energy 

density W needs to be invariant to rigid body motion, and hence, the term 2,1  alone cannot be a 

part of its description.  

Conjugates to the continuum kinematic measures, macro-scale stress measures are introduced 

11 21 211

1,1 21 21,1

, ,
W W W

  
  

  
= = =
  

,       (6) 

where we recognize 11  as Cauchy stress, 21  as relative stress, and 211  as double stress. The 

macro-scale deformation energy density W can also be expressed in terms of the micro-scale 

deformation energy density as 

( )α

n s θ

α

1
, ,W W

L
  =


 ,         (7) 

where αW  is the micro-scale deformation energy for the αth interacting grain pair in the volume 

element. Conjugates to the micro-scale kinematic measures, intergranular forces (and moments)  

n s θ, , andf f f are defined as 

α α α

n s θ

n s θ

, , .
W W W

f f f
  

  
= = =
  

       (8) 

Substituting Eq. (7) in Eq. (6) and employing Eq. (5) and Eq. (8), the macro-scale stress measures 

are linked to the force measures in micro-scale through 

α α α α α α

11 n 1 21 s 1 211 θ 2

α α α

1 1 1
, ,f J f J f J

L L L
  = = =

  
   .     (10) 

In Eq. (10) we note that 
α

1J  and 
α

2J  for the αth grain pair for interacting grains n and p are evaluated 

as 
np

1J  and 
np

2J , respectively. 

To obtain constitutive equations in both micro- and macro-scales, one needs to postulate an 

expression for the micro-scale deformation energy αW . As a first approximation towards linking 
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the micro-mechano-morphology of a granular-microstructured solid to its manifesting 

macroscopic chiral behavior, we limit ourselves to linear elastic mechanisms of deformation. 

Therefore, the below quadratic expression of the micro-scale deformation energy αW  for the αth 

grain pair is considered. 

( ) ( ) ( )
2 2 2

α α α α α α α α α α α α α α α α

n n s s θ θ ns n s nθ n θ sθ s θ

1 1 1

2 2 2
W K K K K K K        = + + + + + .  (11) 

In Eq. (11), 
α , n,s,θ,ns,nθ,sθiK i =  are the stiffnesses associated with their corresponding 

mechanisms for the αth grain pair, all having the dimension of force per length. In particular, 
α

nK  

is the axial (normal) stiffness, 
α

sK  is the shear stiffness, and 
α

θK  is the rotational stiffness between 

two grains in contact. The term 
α

nsK  couples normal and shear deformations, while 
α

nθK  and 
α

sθK  

couple the normal and rotational, and shear and rotational deformations, respectively, and are 

included inspired by the experimental and discrete simulation observations in Ref. (Misra et al., 

2020) and for completeness. We note that keeping only the first term in the micro-scale 

deformation energy description results in a classical rod model, keeping only the third term results 

in Euler Bernoulli beam model, keeping only second and third terms yields Timoshenko beam 

model, and keeping the first four terms leads to a model equivalent to the non-standard 

Timoshenko beam model in (Angelo et al., 2019) to describe chirality. 

Intergranular forces introduced in Eq. (8) are obtained, using Eq. (11) as 

α α α α α α

n n n ns s nθ θ

α α α α α α

s s s ns n sθ θ

α α α α α α

θ θ θ nθ n sθ s

,

,

.

f K K K

f K K K

f K K K

  

  

  

= + +

= + +

= + +

        (12) 

Using Eq. (12), the macro-scale constitutive relations in Eq. (10) are written as 

n ns nθ

11 1,1 21 21,1

s ns sθ

21 21 1,1 21,1

θ nθ sθ

211 21,1 1,1 21

,

,

,

C C C

C C C

C C C

   

   

   

= + +

= + +

= + +

        (13) 

where the macro-scale stiffnesses  
n s ns nθ sθ, , , , andC C C C C  are defined as 
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n α α α s α α α θ α α α

n 1 1 s 1 1 θ 2 2

α α α

ns α α α nθ α α α sθ α α α

ns 1 1 nθ 1 2 sθ 1 2

α α α

1 1 1
, , ,

1 1 1
, , .

C K J J C K J J C K J J
L L L

C K J J C K J J C K J J
L L L

= = =
  

= = =
  

  

  

   (14) 

Lastly, the corresponding macro-scale deformation energy density, following Eq. (11) and using 

Eq. (6) and Eq. (13) can be written as 

( ) ( ) ( )
2 22n s θ ns nθ sθ

1,1 21 21,1 1,1 21 1,1 21,1 21 21,1

1 1 1

2 2 2
W C C C C C C        = + + + + + ,  (15) 

with positive definiteness of energy requiring that 

( ) ( ) ( ) ( )
2 2 2 2

n n s ns n s θ ns nθ sθ n sθ s nθ θ ns0, , 2C C C C C C C C C C C C C C C C  +  + + . (16) 

2.3 Governing equations 

The principle of virtual work, neglecting inertia terms, states that 

0extW W − + = ,          (17) 

where   is the variation symbol, and the terms W , and extW  are defined in the following. In Eq. 

(17), 
L

W Wdx =   represents the variation of total macro-scale deformation energy, expressed 

as 

( )11,1 1 21,1 2 211,1 21 21 11 1 21 2 211 21 00 0

x L x L x L

xx xL L L
W dx dx dx             

= = =

== =
= − − − + + + +  

.(18) 

The term extW  in Eq. (17) corresponds to the variation of total external energy. Considering non-

contact volumic terms, it is defined as 

1 1 2 2 21 21 00 0

x L x L x L

ext xx x
W t t T   

= = =

== =
= + + .       (19) 

In Eq. (19), 1t  and 2t  are the contact tractions in 1x  and 2x  directions, respectively, and 21T  is the 

contact double traction. Substituting Eq. (18) and Eq. (19) in Eq. (17) results in the balance 

equations 
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11,1 21,1 211,1 210, 0, 0   = = + = .        (20) 

Finally, for the constitutive relations in Eq. (13), and assuming the macro-scale stiffnesses to have 

spatial independence, the balance equations in Eq. (20) are recast as 

n ns ns nθ

1,11 2,11 21,1 21,11

ns s s sθ

1,11 2,11 21,1 21,11

nθ ns sθ s s θ

1,11 1,1 2,11 2,1 21 21,11

0,

0,

0.

C C C C

C C C C

C C C C C C

   

   

     

+ − + =

+ − + =

+ + + − + =

     (21) 

Moreover, the boundary conditions are evaluated as 

( )

( )

( )

n ns ns nθ

1 1,1 2,1 21 21,1 1

s s ns sθ

2 2,1 21 1,1 21,1 2

θ nθ sθ sθ

21 21,1 1,1 2,1 21 21

0, at 0, ,

0, at 0, ,

0, at 0, .

t C C C C x x L

t C C C C x x L

T C C C C x x L

    

    

    

− − + − = = =

− + − − = = =

− − − + = = =

    (22) 

Before examining the current model, let us compare it with the classical Timoshenko beam model 

with constant parameters. In the classical Timoshenko beam model, there is no axial effect of the 

beam, and therefore, the first equation in Eq. (21) vanishes. Moreover, there does not exist any 

coupling between different deformation modes, hence ns nθ sθ 0C C C= = = . In this case, Eq. (21) 

takes the simplified form 

 
θ

2,11 21,1 2,1 21 21,11s
0, 0,

C

C
    − = − + =        (23) 

and the natural boundary conditions in Eq. (22) simplify to 

s θ

2 21 21 21,1, .t C T C = =          (24) 

One recognizes that the ratio 

θ

s

C

C
 is equivalent to the term 

EI

AG
 in formulation of classical 

Timoshenko beam, where A is the cross section area (in the current paper we have assumed unity 

for cross section area), E is the elastic modulus, G is the shear modulus, I is the second moment of 

area, and   is called the Timoshenko shear coefficient. Moreover, 21  represents the angle of 

rotation of the normal to the mid-surface of the beam,  
2t  is the shear force, and 21T  is the bending 

moment. 
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2.4. Dimensionless form of the governing equations 

It is convenient to reduce the number of parameters involved in the problem by 

nondimensionalizing the governing equations in Eq. (21). To this end, we introduce the following 

dimensionless variables and parameters 

1 2
1 2 21 21

s ns nθ sθ θ

s ns nθ sθ θn n n n n

, , , ,

1 1 1
, , ,

x
x

L L L

C C C C C
l l l

C C L C L C L C

 
   

 

= = = =

= = = = =

    (25). 

It is understood that the parameter s  is the ratio of the shear stiffness to the normal (axial) 

stiffness, and ns  represents the ratio of the normal-shear coupling stiffness to the normal 

stiffness. Moreover, nθl , sθl , and θl  are dimensionless lengths related to the effective magnitude of 

normal-rotation coupling stiffness, shear-rotation coupling, and rotational stiffnesses, respectively. 

With regards to Eq. (25), the dimensionless form of the governing equations in Eq. (21) is 

1,11 ns 2,11 ns 21,1 nθ 21,11

ns 1,11 s 2,11 s 21,1 sθ 21,11

2

nθ 1,11 ns 1,1 sθ 2,11 s 2,1 s 21 θ 21,11

0,

0,

0.

l

l

l l l

     

     

       

+ − + =

+ − + =

+ + + − + =

      (26) 

The dimensionless spatial domain of the problem is 0 1x  , with dimensionless boundary 

conditions expressed as 

( )

( )

( )

1 1,1 ns 2,1 ns 21 nθ 21,1 1

2 s 2,1 s 21 ns 1,1 sθ 21,1 2

2

21 θ 21,1 nθ 1,1 sθ 2,1 sθ 21 21

0, at 0, 1,

0, at 0, 1,

0, at 0, 1,

t l x x

t l x x

T l l l l x x

      

      

    

− − + − = = =

− + − − = = =

− − − + = = =

    (27) 

where 1
1 n

t
t

C
= , 2

2 n

t
t

C
= , and 21

21 n

T
T

C L
=  are dimensionless normal traction (axial force), shear 

traction (shear force), and contact double traction (bending moment), respectively. 
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2.5. Analytical solution for tensile testing 

We here focus on the general solution of Eq. (26). After some straightforward mathematical 

manipulation, one obtains the following form of solution 

2

1 0 1 2

2 3

2 0 1 2 3

2

21 0 1 2

,

,

,

a a x a x

b b x b x b x

e e x e x







= + +

= + + +

= + +

         (28) 

where , 0,1,2,3, , , 0,1,2i i ib i a e i= =  are 10 unknown coefficients to be determined. Substituting the 

solutions in Eq. (28) into the governing equations in Eq. (26) results in 

ns sθ s nθ ns nθ sθ 2
2 2 2 1 2 32 2

s ns s ns

2 2 2 2 2

s θ sθ ns θ ns nθ sθ nθ s
ns 1 s 1 s 0 sθ 1 22

s ns

1
, , ,

2 3

2 2 2 4 2
0.

l l l l e
a e b e e b

l l l l l l
a b e l e e

  

   

   
  

 

− −
= = + =

− −

− − + −
+ − + + =

−

   (29) 

Eq. (29) reduces the number of unknowns from 10 to 6. The remaining 6 unknowns are determined 

from the imposed boundary conditions. In the current paper, we focus on the uniaxial tensile test 

with boundary conditions  

 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 21 210 0, 1 , 0 1 0, 0 1 0.rx x x x x x      = = = = = = = = = = = =   (30) 

Based on Eq. (30), rotation, transverse displacement, and axial displacement are fixed at the left 

end, while rotation and transverse displacement are fixed at the right end and the axial 

displacement r  is imposed. Imposing Eq. (30) on Eq. (28) results 

 

0 0 1 2

0 0 1 2 3

0 0 1 2

0, ,

0, 0,

0, 0.

ra a a a

b b b b b

e e e e

= + + =

= + + + =

= + + =

         (31) 

Eq. (31), together with Eq. (29) is solved for the unknown coefficients in Eq. (28), resulting in 
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( )( )

( )

( )

( )

( )

2 2 2 2 2

s θ s ns s ns nθ s nθ ns sθ ns nθ sθ sθ

1

ns s nθ ns sθ

2 1

2

ns s ns ns nθ sθ

1

2

ns s ns ns nθ sθ

2

2
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3 1 2

1 3 2

12 6 12 6 24 12
,

6
,

6 6
,
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,

2
,

3 , 3

r

r r

r

r

r

l l l l l l l
a

l l
a a

l l
b

l l
b

b b b

e b e

       




  
 



   




   




  




− − − + + − − +
=

− −
= = −

− − +
=

− − − +
=

−
= = − −

= − = 3 0 0 0

2 2 2 2 2 2 2

s s ns s nθ s θ ns θ ns nθ sθ sθ

, 0,

where 12 12 12 24 12 .

b a b e

l l l l l l       

= = =

= − + + − + − +

  (32) 

To illustrate the model predictions, we consider three granular strings with stiffness constants 

s 0.5 = , ns 0.5 = , and θ 0.1l = , with different nθl  and sθl  values as stated in the legend of Fig. 1. 

The axial displacement 1  is in general quadratic with respect to x , and for the case of nθ sθ 0l l= =

, the axial displacement behavior reduces to linear. The transverse displacement 2  is a cubic 

function of x , and in the particular case of nθ sθ 0l l= = , the midpoint of the granular string overlaps 

with the inflection point of the transverse displacement function. This symmetry-like behavior is 

broken for non-vanishing nθl  or sθl , where the inflection point is moved to some other point within 

or outside of the problem domain depending on the values the parameters nθl  and sθl  take. The 

rotation of particles, 21 , within the granular string follows a quadratic behavior, with its 

maximum value occurring at the midpoint of the granular string. The magnitude of rotation is 

affected by the magnitude of the parameters  nθl  and sθl . 

3. Parametric Experimentation 

It was discussed in section 2 that the proposed micropolar model based upon GMA predicts 

chirality in granular media tied to the deformation mechanisms between the interacting grains. In 

this section, we present the parametric experimentation on 3D printed chiral granular strings. 
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3.1. Prototypical model realization 

Motivated by the predictions of the mathematical model presented in section 2, a chiral granular 

string is conceptualized. A schematic of the model is shown in Fig. 2(a) where the set of solid 

beams connecting two grains is considered as the mechanical (rheological) analog of the grain-

pair interaction. To investigate the effect of deformation mechanisms, the geometrical parameters 

t and b associated with the mechanical analog of grain-pair interactions were varied, thus enabling 

a parametric study. This is shown in Fig. 2(a) where each sample with its unique set of parameters 

t and b is shown with a marker within the domain of geometrical parameters. With regards to the 

considered granular strings, the sample with the largest weight has almost 16% more weight than 

the samples with the least weight.  

The CAD software SolidWorks (Dassault Systems SolidWorks Corporation, Waltham, MA, USA) 

was used to generate the granular string geometries based on Fig. 2(a). Each granular string is 

composed of 11 grains with out of plane thickness of 4 mm (Fig. 2(b)). The out of plane thickness 

value was chosen to admit 2D planar deformation analysis, while preventing warpage in the 

fabrication process. The granular strings were terminated at both ends with flat extensions 

designed to facilitate gripping in tensile experiments. The conceived granular strings were realized 

via the Low Force Stereolithography 3D printer Form 3 (FormLabs, USA), using the monomer 

“Durable Resin”, with XY resolution and layer thickness of 50 μm . The Young’s modulus of 

the cured Durable resin is 1.0 GPa. The printed samples had a maximum of 0.1 mm variation in b 

and t parameters with respect to the nominal values. We note that for each granular string 

geometry, two samples were 3D printed and tested. 

3.2. Experimental prescription 

An ElectroForce 3200 (TA Instruments) testing machine was utilized to conduct tensile testing on 

the 3D printed granular strings. The testing machine is equipped with a load cell of capacity ±450 

N, a measurement uncertainty of 0.1%, and precision of 0.001 N, and a displacement transducer 

with a range of ±6.5 mm, a measurement uncertainty of 0.1%, and precision of 0.001 mm. Fig. 

2(b) shows a snapshot of a granular string being attached to the testing machine via the grips and 

being tested. The boundary conditions imposed by the grips on the sample resemble that of Eq. 

(30), and therefore, a comparison can be made between the theory’s predictions and experimental 
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results. A total extension of 10 mm (axial strain of ~0.095) was imposed on the granular string 

specimens at a rate of 0.05 mm/s. 

To extract grain kinematics data from the experiments, speckle pattern was applied on the surface 

of the granular string samples using black and white paint sprays (see Fig, 2(b)). Using a camera, 

ten images were taken in the reference configuration for the purpose of uncertainty quantifications, 

and consecutive images were taken from the samples during the experiment. The image acquisition 

setup is shown in Fig. 2(c) with the specifications listed in Table 1. To facilitate the image 

acquisition, a red background was adopted, and soft boxes were used to generate diffusive lighting. 

The captured images were transformed into black and white for performing DIC. 

Table 1. DIC hardware parameters. 

Camera NIKON D300 

Definition 4288×2848 pixels (RGB image) 

Gray levels amplitude 8 bits 

Lens AF-S VR Micro-Nikkor 105mm f/2.8G ED 

Aperture f/4.5 

Field of view 111×74 mm2 

Image scale 60 μm/px (B&W image) 

Stand-off distance ≈ 90cm 

Image acquisition rate 1/5 fps 

Exposure time 20 ms 

Patterning technique Sprayed black paint 

Pattern feature size 2.6 px 

 

3.3. Digital Image Correlation (DIC) 

The captured images of the experiments were post-processed using DIC to obtain full-field 

deformation information in different scales of observation. Correli 3.0 DIC framework was used 

in which Hencky-elastic regularization was implemented (Leclerc et al., n.d.). The DIC technique 

is based on the registration of the image 0I  in the reference configuration and the image tI  in the 
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deformed configuration. The framework is constructed upon the conservation of gray level 

between the two images, and is stated as 

( ) ( )( )0 tI I +x x u x ,          (33) 

where x is the position vector of each pixel within the domain of study, and u is the unknown 

displacement field. The problem is to find a displacement vector u such that the squared differences 

between the reference image ( )0I x  and the corrected deformed image ( )( )tI +x u x  is minimized. 

Let us consider a displacement field u with the following form 

( ) ( ), ,i i

i

a=u x a Ν x ,         (34) 

where summation convention is not exercised, and ia  is the associated degree of freedom with 

the i-th trial displacement field vector ( ),i iaN x . We note that the expression for u in Eq. (34) can 

be linear or nonlinear function of the degrees of freedoms ia  depending on the assumed 

kinematics. The registration minimizes the mean square of the pixel-wise gray level residual   

over a region of interest (ROI), ( )2 a , defined as 

( ) ( )2 2

ROI

, =a x a ,          (35) 

where 

( ) ( )( ) ( )0, ,tI I = + −x a x u x a x .        (36) 

We note that the minimization scheme in Eq. (35) is nonlinear and the degrees of freedom vector 

a  is obtained by iteration using Gauss-Newton method. To this end, let us assume that the degrees 

of freedom (nodal displacements) vector a  is close to the solution. Using Taylor expansion we 

write 
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( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

2
2

0

2

0

,

, . , ,

t

t t

I I

I I I

  



+ = + + −

 + +  + −





x

x

a a x u x a a x

x u x a aN x x u x a x
   (37) 

where  a  is a small change to be added to the values in the degrees of freedom 
( )n

a  in the nth 

iteration as follows 

( ) ( )1
.

n n


+
= +a a a           (38) 

The minimization is therefore stated as 

( )
( )

2





=


a 0

a
,          (39) 

which can be reshaped to take the form 

ij j iM a b = ,           (40) 

with 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )0

. , . , ,

. , , .

ij i t j t

x

i i t t

x

M I I

b I I I

=  

=  −





N x x a N x x a

N x x a x x a
      (41) 

To quantify the uncertainty levels of the DIC, all possible combinations of the reference images 

taken before the execution of each experiment were analyzed using DIC. For a value of 10 as the 

number of reference images, the total number of DIC analyses is 45. To account for the small 

fluctuations of displacement caused by the actuator of the machine, the linear macro-scale axial 

displacement of each analysis is subtracted from the displacements in axial direction, and the mean 

displacement/rotation values of the analyses in other directions were subtracted from their 

corresponding displacement/rotation components in those directions. Standard deviation values 

were then calculated for each degree of freedom with respect to the 45 DIC analyses. Table 2 gives 

the uncertainties for the DIC analyses performed at different levels (introduced in the following). 

Table 2. Standard uncertainties for the DIC analyses at different levels. 
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 Axial direction Transverse direction Rotation 

Macro-scale 0.024 px (1.5 × 10−3 mm) 0.024 px (1.5 × 10−3 mm) - 

Micro-scale 0.024 px (1.5 × 10−3 mm) 0.024 px (1.5 × 10−3 mm) - 

Meso-scale 0.021 px (1.3 × 10−3 mm) 0.021 px (1.3 × 10−3 mm) 1.5 × 10−4 

 

Fig. 3(a) shows the first, three intermediate, and the last images of a sample granular string with 

t=1.2 mm and b=1 mm under tensile experiment. Different levels of DIC were performed on the 

images and are discussed here. The first level of DIC, here referred to as the macro-scale DIC, is 

when the granular string is deemed as a continuous bar of homogenous cross-section. The macro-

scale DIC assumes that the granular string is a small finite volume of a larger body with 

indistinguishable grains, and as a result, is useful when macro-scale continuum models are to be 

developed. It serves a second purpose as well, as its results provide a good initialization for the 

solution of other levels of DIC (and hence lowering the number of iterations significantly). Fig. 

3(b) shows the finite element-wise spatial discretization of the domain for the macro-scale DIC 

analysis using T3 elements with element size of 33 px (about 2 mm). It was observed that no 

significant gain is obtained by using a finer mesh, and the discretization shown in Fig. 3(b) is good 

enough to represent some aspects of the system behavior. Fig. 3(d) and Fig. 3(f), show, 

respectively, the transverse and axial displacement for the macro-scale analysis considering the 

full range of applied deformation. One observes the chiral behavior of the granular string with 

resemblance to the theoretical predictions in Fig. 1. With regards to Fig. 3(h), an observed increase 

in the root mean square (RMS) value of the gray level residuals suggests that the macro-scale 

analysis becomes less accurate as the deformation progresses. The increase in the RMS value can 

be partly attributed to the kinematic assumption not being accurate enough when deformation in 

the grain-pair interaction mechanisms (beams and bars) becomes large. This issue is amplified by 

the fact that the macro-scale DIC discretization does not differentiate the granular string from the 

background. Therefore, one requires to define a domain encompassing the structure of interest 

with the minimum inclusion of the background to better capture the deformation kinematics. 

Accordingly, the nominal geometry of the granular string, called the mask, was created, and using 

DIC a registration was performed to backtrack the mask to the image of the granular string in its 

initial configuration (Hild et al., 2021). This process results in obtaining the domain wherein the 
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structure of interest resides, with significantly lower amount of background, if any (see Fig. 3(c)). 

Similar to the macro-scale DIC, the domain was spatially discretized using T3 elements with 

element size of 10 px (about 0.63 mm). The mesh is shown in Fig. 3(c). We call the DIC analysis 

corresponding to this mesh a micro-scale DIC. The micro-scale DIC solution was initialized using 

the macro-scale DIC solution. Fig. 3(e) and Fig. 3(g) show the transverse and axial displacements 

in the granular string, respectively, using the micro-scale DIC. One observes a noticeable similarity 

between the displacement fields obtained from the macro- and micro-scale DIC analyses. 

However, the RMS of gray level residuals for the micro-scale DIC shown in Fig. 3(i) suggests 

more accuracy compared to the macro-scale DIC as the deformation progresses, since the relative 

increase in the RMS value is lower. 

The results from the macro- and micro-scale analyses provide interesting evidence of the presence 

of chirality. While the realized granular string in the current research can be viewed as a chiral 

lattice structure (similar to chiral lattices proposed in the literature where deformable/rigid nodes 

are connected via different beam/rod elements), it can also be deemed as a granular (meta-) 

material with a series of rigid grains interacting with each other through some specific grain-pair 

interaction mechanisms. To authenticate this hypothesis, one can assess the strain distribution 

(which is proportional to stress distribution for assumed linear constituent material as a first order 

approximation) within the granular string. Figs. 3(j-l) show, respectively, the normal strain field 

in transverse direction, normal strain field in axial direction, and shear strain field for the full range 

of applied deformation. It is understood from the figures that grains experience negligible 

deformation compared to the interactions. Moreover, Fig. 3(m) shows the results for the 

dimensionless form of the strain energy measure (strain energy divided by half of the Young’s 

modulus of the constituent material). This plot also confirms that the energy expenditure is mainly 

localized in the grain-pair interaction mechanism, and not in the grains. Therefore, in what follows, 

we mainly focus on the kinematics of grains induced by their interaction mechanisms. 

To this end, a called meso-scale DIC analysis with three degrees of freedom for each grain can be 

performed to extract the motion of grains, namely the axial displacement, 1t , the transverse 

displacement, 2t , and the rotation,  , of each grain about their center of masses. In this case, Eq. 

(34) is written as 
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( ) ( )( ), , = + −u x t t R I x ,         (42) 

where 

( )
( ) ( )

( ) ( )
1

2

cos 1 sin
,

sin cos 1

t

t

 


 

− −  
= =   

−   
t R .       (43) 

It is noteworthy to mention that for the meso-scale analysis, each grain is considered a separate 

region of interest, and therefore, DIC with initialized solutions from micro-scale analysis was 

performed on each grain independently. For the purpose of illustration, consider the granular string 

with t=1.2 mm and b=1 mm, with results shown in Fig. 4. Fig. 4(a) shows the RMS of the gray 

level residuals corresponding to the 11 grains under study for all DIC calculations (images). Grain 

1 corresponds to the grain attached to the fixed grip, and grain 11 is attached to the moving grip. 

Fig. 4(b) shows the axial displacement of grains. The transverse displacement of grains can be 

seen in Fig. 4(c), and the rigid rotation of grains is plotted in Fig. 4(d). We note the qualitative 

agreement between the results shown in Fig. 4 and the theoretical predictions in Fig. 1. 

4. Results and discussion 

A quantitative evaluation of the granular strings behavior based on the proposed micropolar model 

can be made by comparing the displacements and rotation fields of the model and those of the 

experiments. This approach enables us to evaluate the effect of geometric parameters b and t on 

the behavior of the system, without needing to identify the stiffnesses associated with each granular 

string. Moreover, it serves as a tool to assess the domain of validity of the model predictions in 

terms of the resultant deformation fields. To this end, the grain positions, and axial and transverse 

displacements were nondimensionalized with respect to the length of the granular string to 

harmonize the experimental results with the expressions in Eq. (28). 

To obtain the model parameters , , 0,1,2, , 0,1,2,3i i ia e i b i= = , a least squares optimization with 

equality constraints is adopted. Explicitly, we intend to minimize the function 
2( )f = −x Ax b  

subject to linear constraints =Cx d . In this problem, x  is a column vector of length 10 and is 

composed of the model parameters , , 0,1,2, , 0,1,2,3i i ia e i b i= =  (to be solved for). A  is a 33-by-
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10 matrix with its nonzero components functions of the location of grains according to Eq. (28), 

and b  is a column vector of length 33 with its components being the experimentally obtained 

displacements and rotations of grains. The matrix C  is 7-by-10 and together with the 7-vector d  

provide the linear constraints below 

0

0 1 2

0

measured axial displacement of grain adjacent to fixed grip,

measured axial displacement of grain adjacent to moving grip,

measured transverse displacement of grain adjacent to fixed grip

a

a a a

b

=

+ + =

=

0 1 2 3

0

0 1 2

,

measured transverse displacement of grain adjacent to moving grip,

measured rotation of grain adjacent to fixed grip,

measured rotation of grain adjacent to moving grip,

b b b b

e

e e e

+ + + =

=

+ + =

 (44) 

and the relation 1 33 0e b+ = . Introducing the Lagrange multiplier vector z , setting up the 

Lagrangian function, and requiring it to be minimized, one needs to solve the following matrix to 

obtain the parameters 

T T T    
=    

    

xA A C A b

zC 0 d
.         (44) 

Moreover, each row of A  and b  corresponding to displacements was divided by the length-

nondimensionalized value of the uncertainties associated with that displacement, and each row of 

A  and b  corresponding rotations was divided by the value of the rotational uncertainty. Finally, 

to improve the conditioning of the system of equations in Eq. (44), C  and d  were multiplied by 

( )
( )

norm

norm

A

C
. 

Due to the linear constraints, the model parameters 0a , 0b , and 0e  assume very negligible values, 

and the other model parameters follow the relations in Eq. (32). Therefore, after introducing 

normalized form of model parameters 
r

= , where  represents a model parameter, it is enough 

to report only the normalized model parameters 1a , 1b , and 2b . Moreover, the axial displacement, 
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1 , transverse displacement, 2 , and rotation, 21 , are related to the noted normalized model 

parameters through the following relations 

( )

( )

( )

21
1 1

2 32
1 2 1 2

2

21
1 2

1 ,

,

1 1
3 .

4 2

r

r

r

a x a x

b x b x b b x

b b x













= + −

= + − +

  
= + − −     

        (45) 

We here consider two cases to study, where in one case we focus on the deformation of the granular 

string with an imposed axial strain of ~0.035 and in the other case the full deformation (axial strain 

of 0.095) is considered. Fig. 5 shows the fitted normalized model parameters 1a , 1b , and 2b  for 

the considered granular strings for axial strains of 0.035 (two left columns) and 0.095 (two right 

columns), respectively. Moreover, Fig. 6 shows the goodness of the fits for the considered granular 

strings for axial strains of 0.035 (two top rows) and 0.095 (two bottom rows), respectively. The 

goodness of the fits are shown with the symbol   and are plotted for the axial and transverse 

displacement fields, rotation field, and for the global behavior of the model. The goodness of the 

fits for different fields are calculated as RMS of the residuals for each grain within the granular 

structure, divided by the dimensionless uncertainty, where the residuals are defined as the 

dimensionless difference between the model prediction and the experimental observations. 

Moreover, the global goodness of the fit, global , is computed as the RMS of the goodness of the 

fits in axial, transverse, and rotation components and is a representative of the global quality of the 

model. From the results in Fig. 5 and Fig. 6, the following comments can be made. 

It is observed that 1a  does not assume the value of unity, although close to it, for all the 

configurations of the grain-pair interaction and for the both considered axial strains. Moreover, the 

value of 1a  for each configuration is almost constant in both axial strains and therefore, is 

independent of the imposed axial strain. Given the scatter observed in the plots corresponding to 

1a  for all b and t values, an average value of 1 0.982a =  can be reported to describe all the samples 
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at all axial strains. Since based on the model the quadratic term with coefficient 2 11a a= −  in the 

axial displacement emerges only if normal-rotational and shear-rotational stiffnesses are present, 

it is deduced that such mechanisms exist in the studied chiral granular string. However, their 

corresponding stiffness values are rather small. Moreover, having similar 1a  values for all the 

samples allows us to conclude that the change in the geometrical parameters t and b has minimal 

effect on the axial behavior of the sample under tension predicted by the model. This statement is 

supported by considering the goodness of the fits for the axial displacement where all axial  values 

are within a narrow range, and therefore suggest that all fits are of the same quality for each 

considered axial strain. Nevertheless, the average value of axial  at axial strain of 0.095 is almost 

two times larger than its counterpart at axial strain of 0.035, which suggests some degradation in 

the quality of the model at larger strains to predict the axial behavior of the system. 

Regarding the parameters 1b  and 2b , we note that a large scatter is observed for the samples with 

𝑡 = 0.3 mm and 𝑡 = 0.6 mm due to having soft grain-pair interaction mechanisms with very thin 

beams. Based on Fig. 5, and observing close values with small fluctuations for 1b  and 2b  with 

respect to the geometrical parameters t and b at axial strain of 0.035 (except for the two mentioned 

samples), the average values of 1 0.902b = −  and 2 2.338b =  can be reported for all the samples at 

this axial strain. This statement is also supported by the values of transverse  and rotational  at axial 

strain of 0.035 where except for the two samples with 𝑡 = 0.3 mm and 𝑡 = 0.6 mm, close values 

with small scatters are observed for each group of varying b and t samples. We also note, 

comparing transverse  and rotational  values of the two groups of varying b and t at axial strain of 0.035, 

that the samples in the group of varying b are better described using the proposed model. 

Furthermore, comparing different axial strains results, we observe a decrease in the magnitude of 

both 1b  and 2b , with the average values of 1 0.647b = −  and 2 1.813b =  for the axial strain of 0.095. 

However, we must note that transverse  and rotational  values at axial strain of 0.095 has increased 

compared to the axial strain of 0.035, which is suggestive of degradation in the quality of the model 

in predicting the transverse displacement and rotation of grains at larger strains. Moreover, the 
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change observed in the values of 1b  and 2b  with respect to the imposed axial strain suggests a 

change in the intergranular stiffnesses as the deformation progresses, which is mainly due to the 

significance of nonlinearities in the grain-pair interaction mechanisms. It is also observed that at 

both axial strains and almost all samples, the quality of the model to predict transverse 

displacement is slightly better than its quality to model the rotation of grains. 

In general, and for both the axials strains considered, transverse  and rotational  assume larger values 

than axial . This is partly due to the fact that the model fitting schemes for the transverse 

displacement and rotation are coupled (and hence more constrained) than the uncoupled axial 

displacement model fitting. It is also observed that all   values increase as the deformation 

progresses, and therefore, the model is less able to correctly predict the behavior of the system at 

larger strains. This is mainly due to the fact that the nonlinearities in the grain-pair interaction 

become significant, while the model is predicated upon linear interaction mechanisms between the 

grains. Moreover, an increase in transverse  and rotational  values is observed as the geometrical 

parameter t increases in axial strain of 0.095. This increase suggests that the model is less 

predictive in granular systems with larger geometrical parameter t in large strains. 

To seek more insight on the emergence of nonlinearities in grain-pair interactions, we remark the 

transition between different deformation mechanisms within the range of the geometrical 

parameters b and t considered. Fig. 7 and Fig. 8 show the dimensionless strain energy density 

distribution for the samples at axial strains of 0.035 and 0.095, respectively. While the strain 

energy density magnitude is different in granular strings between the two axial strains (as is 

expected), a similar deformation mechanism is observed for each granular string in both axial 

strains. Moreover, as the geometrical parameter b increases, the main deformation mechanism 

shifts from the two beams identified with b to the middle beam identified with t. Conversely, for 

small values of the geometrical parameter t, the middle beam identified with t undergoes the 

maximum deformation, and as t increases, the deformation of the two beams identified with their 

thickness b becomes dominant. We here note that the observed trends of transverse  and rotational  at 

axial strain of 0.095 can be explained using Fig. 8 results. In particular, for samples with very 

small b, it is the geometric nonlinearity, and for samples with very large b, the material nonlinearity 
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is the main cause for lower model quality (larger transverse  and rotational  values). This contributes to 

having large transverse  and rotational  values in both ends of the spectrum and lower values for the 

samples in the middle of the range. On the other hand, for samples with very small t, it is the 

material nonlinearity, and for samples with very large t, the geometrical nonlinearity is the primary 

reason lower model quality (larger transverse  and rotational  values). In particular, we note that since 

the model quality decreases considerably as the geometrical parameter t increases, the geometrical 

nonlinearity has a more pronounced effect on the capability of the model. 

5. Summary and conclusions 

In the present paper, a theoretical micropolar model based on GMA was developed to describe the 

chiral behavior of a 1D granular string in a 2D deformation plane. The introduced model 

incorporated normal, shear, and rotational stiffnesses, along with normal-shear, normal-rotational, 

and shear-rotational coupling stiffnesses, all modeled as linear deformation mechanisms. The 

model was studied to predict the behavior of chiral granular strings in uniaxial tension and the 

effects of normal-rotational and shear-rotational coupling stiffnesses were explored. Inspired by 

the theoretical model, chiral granular strings with particular interaction mechanisms were realized 

through 3D printing and were tested in a uniaxial testing machine, providing a parametric 

experimental study by varying two geometrical parameters defining the interaction between grains. 

To access the full-field deformation in the samples, DIC at different scales was applied, where it 

was shown that the 3D printed granular strings can be representatives of granular media composed 

of rigid grains interacting with each other through some grain-pair interaction mechanisms. To 

evaluate the model predictions, the model parameters were obtained through fitting to the 

experimentally obtained displacements and rotation fields of the granular strings. The results 

showed independence of the axial displacement to the values of the geometrical parameters. 

Moreover, the analysis showed that material and geometrical nonlinearities in the grain-pair 

interaction mechanisms become significant in larger axial strains, thus giving the limit of 

applicability of the model with respect to the applied strain. 

Within the scope of the presented work, several uncertainties were present that are worth noting. 

These uncertainties can, in a broad sense, be categorized into two different groups of aleatoric and 
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epistemic uncertainties. Examples of aleatoric uncertainty in the present work are the measurement 

uncertainties in DIC and the experimental uncertainties due to the application of the boundary 

conditions on the granular strings, which may have added/suppressed other forms of deformation 

to/from experimental observations, and may differ from one sample to the other. Another aleatoric 

uncertainty in this work is the parametric variability of the 3D printed specimens. In particular, the 

3D printed granular strings had small deviations in their printed values of t and b from their 

nominal ones. This variation is present in different grain-pair mechanisms for each granular string, 

and in the two identically printed samples. An example of epistemic uncertainty involved in the 

present work are the limited number of samples for each granular string with particular geometrical 

parameter values. Moreover, structural uncertainties in both the theoretical micropolar model and 

the interpolation functions assumptions in DIC are acknowledged. Additionally, numerical 

uncertainties due to the implementation of the DIC and other optimization algorithms were present. 

The micropolar model presented here incorporates coupling between all deformation mechanisms, 

and therefore, accounts for the complex phenomena that occur in the interacting grain pairs. This 

was shown by comparing the model prediction results and the experimental results. However, 

similar to what is typified in Fig. (4), the experimental results of the displacements and rotations 

of grains in large applied strains have peculiarities that cannot be addressed fully by the proposed 

micropolar model predictions. While the transverse displacement of grains follow a field similar 

to the model’s predictions, large transverse displacements are observed in the grains nearest to the 

boundaries of the granular strings. The same argument holds for the rotation of grains, where large 

values of rotations are observed near the ends of the structure as opposed to a quadratic field 

predicted by the model. These responses are not predicted in the linear micropolar model presented 

here, and may be due to the effect of boundary layer and nonlinear interaction between the grains. 

Therefore, for a rather simple 1D granular string, the presented micropolar model with linear 

interaction mechanisms can adequately describe the overall behavior of the system far from the 

boundaries and in small axial strains. 
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Fig 1. Micropolar model prediction of displacement and rotation fields of a one-dimensional 

chiral granular material under uniaxial tension. 

 

Fig 2. The proposed granular string with (a) its geometrical structure and the space of specimens 

with different geometrical parameters, (b) the speckle pattern on the surface of the specimens, 

and (c) the experimental and picture acquisition setup. 
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Fig 3. The macro- and micro-scale DIC analyses results for a granular string with t=1.2 mm and 

b=1 mm.
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Fig 4. The meso-scale DIC analysis results for a granular string with t=1.2 mm and b=1 mm. 
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Fig 5. Fitted model parameters for applied axial strain of 0.035 (two left columns) and applied 

axial strain of 0.095 (two right columns). 
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Fig 6. Goodness of fits for applied axial strain of 0.035 (two top rows) and applied axial strain of 

0.095 (two bottom rows). 
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Fig 7. Strain energy density distribution in granular strings with different geometrical parameters 

for applied axial strain of 0.035. 

 

Fig 8. Strain energy density distribution in granular strings with different geometrical parameters 

for applied axial strain of 0.095. 

 


