# Highly Regio- and Diastereoselective Tethered Aza-Wacker Cyclizations of Alkenyl Phosphoramidates 

Anand H. Shinde ${ }^{\mathrm{a}, \dagger}$, Annu Anna Thomas ${ }^{\mathrm{a}, \dagger}$, Joel T. Mague ${ }^{\mathrm{b}}$, Shyam Sathyamoorthi ${ }^{*}, \mathrm{a}$<br>${ }^{\text {a Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA (66047) }}$<br>${ }^{\text {b }}$ Department of Chemistry, Tulane University, New Orleans, Louisiana, USA. (70118)


#### Abstract

We present highly diastereoselective tethered aza-Wacker cyclization reactions of alkenyl phosphoramidates. "Arming" the phosphoramidate tether with 5-chloro-8-quinolinol was essential to achieving $>20: 1$ diastereoselectivity in these reactions. The substrate scope with respect to alkenyl alcohols and phosphoramidate tether was extensively explored. The scalability of the oxidative cyclization was demonstrated, and the product cyclophosphoramidates were shown to be valuable synthons, including for tether removal. With chiral alkenyl precursors, enantiopure cyclic phosphoramidates were formed.


## Graphical Abstract



An unusual chloro-quinolinol arm allows for complete diastereocontrol.

## Introduction

The regioselective functionalization of olefins remains an area of intense research activity. ${ }^{1-10}$ While intermolecular olefin functionalization reactions often rely on subtle steric and electronic effects for selectivity, intramolecular reactions are generally much more predictable due to geometric constraints. A particularly powerful class of intramolecular olefin functionalization reactions is the tethered aza-Wacker cyclization. ${ }^{11-25}$ In such reactions, a nitrogen containing auxiliary ("the tether") is appended to an alkenyl alcohol prior to the cyclization event.

[^0]Tethered aza-Wacker cyclization reactions are enabling because they free the synthetic practitioner from the constraint of needing a pre-existing $\mathrm{C}-\mathrm{N}$ bond in order to forge a new one. ${ }^{26,27}$

Phosphoramidates are an important class of heteroatom-rich compounds, and its members have Found applications in diverse fields, ranging from asymmetric catalysis ${ }^{28}$ to medicinal chemistry ${ }^{29}$ (Figure 1). Cyclic phosphoramidates are traditionally assembled from condensation of amino-alcohols with phosphoryl chlorides, requiring precursor molecules with both amino and alcohol functionalities pre-installed. We envisioned developing a tethered aza-Wacker protocol for the synthesis of such heterocycles, allowing for the attachment of a phosphoramidate auxiliary to alkenyl alcohols and subsequent oxidative cyclization. There is sparse precedent for the use of oxidation reactions in cyclo-phosphoramidate construction. To date, such reactions have largely been restricted to phosphoryl azide decomposition with subsequent nitrene insertion ${ }^{30,31}$ and radical Suáreztype oxidations with $\mathrm{Pb}(\mathrm{OAc})_{4}$ or $\mathrm{PhI}(\mathrm{OAc})_{2} / \mathrm{I}_{2}$ (Scheme 1). ${ }^{32-35}$ Diastereocontrol remains a challenge with these reactions, with many of these protocols furnishing mixtures of diastereomers. We have Found that "arming" the phosphoramidate tether with an unusual chloro-quinolinol auxiliary allows for complete diastereocontrol during the cyclization event. The use of palladium-chelating auxiliaries is well known in the related field of $\mathrm{C}-\mathrm{H}$ activation, ${ }^{36-40}$ and the Engle group has shown that amino-quinolines appended to amides are excellent for regio-control in olefin mono- and di-functionalization reactions. ${ }^{41-44}$ To our knowledge, ours is the first example of the use of an auxiliary to control diastereoselectivity in an olefin functionalization process.

## Results and Discussion

We began optimizing the reaction with (E)-hex-3-en-1-yl phenyl (4methoxyphenyl)phosphoramidate, readily prepared from condensation of commercially available trans-3-hexen-1-ol and anisidine with phenyl dichlorophosphate (See Supplementary Information for more optimization conditions). Product formation was observed with $20 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ in MeCN (Table 1, Entry 1), giving us hope that our envisioned oxidative cyclization reaction was viable. We saw little improvement upon switching to $\mathrm{Pd}(\mathrm{TFA})_{2}$ (Table 1, Entry 2), but product formation did increase with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (Table 1, Entry 3). Solvents other than MeCN were invariably deleterious (Table 1, Entries 4-7). Increasing the reaction time led to the most marked improvement in performance (Table 1, Entries 8-10). Our optimized protocol involved heating substrate, 20 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and 1 equivalent of $\mathrm{Cu}(\mathrm{OAc})$ to $55^{\circ} \mathrm{C}$ in MeCN for 65 hours (Table 1, Entry 10). In all cases, product was furnished as a roughly 1:1 diastereomeric mixture.Our optimized protocol was not limited to phosphoramidates containing anisidine (Scheme 2). We were pleased to see reasonable yields with phosphoramidates constructed from 3,4-methylenedioxyaniline (Scheme 2, Entry 2), 3,4-dimethoxyaniline (Scheme 2, Entry 3), p-ethoxyaniline (Scheme 2, Entry 5), and toluidine (Scheme 2, Entry 7). From these structure-reactivity relationship studies, it was clear that electron rich anilines performed much better than electron neutral (Scheme 2, Entry 8) ones. Steric factors also played an important role, with 2,4-dimethoxyaniline performing poorly (Scheme 2, Entry 6). In all cases, diastereoselectivity ranged from $\sim 1: 1$ to $\sim 2: 1$.

A brief survey of alkenyl alcohols with our optimized protocol (Scheme 3) showed that substrates other than those derived from trans-hexen-3-ol were fully compatible. Nevertheless, each product was furnished as a mixture of diastereomers. Thus, we concluded that reaction diastereoselectivity was largely insensitive to the nature of the alkenyl alcohol.

We next explored the effect of changing the -OPh arm of the phosphoramidate auxiliary (Scheme 4). Product formation was viable with a variety of phenoxides and alkoxides. Electron-deficient phenoxides (Scheme 4, Entries 3-4) afforded better reactions than electron rich ones (Scheme 4, Entries 5-6). Even with a chiral auxiliary (Scheme 4, Entry 2) or with a secondary alkoxide (Scheme 4, Entry 7), we were unable to break a diastereomeric barrier of $\sim 3: 1$.

Collectively, these results informed us that we were unlikely to further optimize the diastereoselectivity of this oxidative cyclization by tuning simple steric and electronic factors. Inspired by the use of palladium-chelating auxiliaries in $\mathrm{C}-\mathrm{H}$ activation and Engle's work on regioselective alkene functionalization with amido-quinolines, we wondered if a chelate approach would resolve the diastereoselectivity problem. We hypothesized that a chelate as depicted in Scheme 5 would likely transform our diastereolabile reaction into a fully diastereoselective one. We heated one equivalent of $\mathrm{Pd}(\mathrm{OAc})_{2}$ with 21 to $55^{\circ} \mathrm{C}$ in acetonitrile and analyzed an aliquot of the reaction mixture by high resolution mass spectrometry. To our delight, we identified the molecular ion corresponding to our proposed chelate

We thus examined a range of quinolinol auxiliaries (Scheme 6). We Found that phosphoramidate tethers containing a 5-chloro-8-quinolinoxide arm afforded cyclized product in good yields and, most importantly, as a single diastereomer (Scheme 6, Entry 1). At present, the differential performance of 5-chloro-8-quinolinol relative to other quinolinol auxiliaries (Scheme 6, Entries 2-3) remains unexplained. The presence of a nitrogen, presumably critical for palladium chelation, was essential for diastereoselectivity. With naphthoxide (Scheme 6, Entry 4), a 1:1 mixture of diastereomers re-emerged.

The phosphoramidate tether containing a 5-chloro-8-quinolinoxide arm was compatible with a wide range of alkenyl alcohols (Scheme 7). Alkenyl alcohols containing aryl rings adorned with $-\mathrm{CF}_{3},-\mathrm{NMe}_{2}$, -OMe groups all reacted smoothly (Scheme 7, Entry 1). Heterocycles such as furan and thiophene (Scheme 7, Entry 1) were also well-tolerated. Cis-olefins were compatible (Scheme 7, Entry 2) but yielded product in slightly lower yields relative to the equivalent trans-olefins. Trans-olefins containing cyclohexyl, cyclopentyl, and Bocprotected alcohols (Scheme 7, Entry 4) furnished cyclized products in good yields. The phosphoramidate tether could be appended to phenols (Scheme 7, Entry 5) as well as to secondary alcohols (Scheme 7, Entry 6). In all cases, the reactions proceeded with perfect diastereocontrol with respect to the newly formed nitrogen containing stereocenter and the phosphorous stereocenter of the phosphoramidate tether.

Furthermore, the reaction could be scaled greater than ten-fold without much diminishment of product yields; in this larger-scale reaction, product was again furnished as a single diastereomer (Scheme 8). With the 5-chloro-8-quinolinoxide auxiliary, we were no longer
constrained to just using $p$-anisidine; a variety of anilines engaged in good yield and with greater than 20:1 diastereoselectivity (Scheme 9).

The product cyclophosphoramidates were quite versatile. The phosphorous auxiliary could be removed by reduction with lithium aluminum hydride (Scheme 10A). Upon heating with HCl in dioxane, alkenyl azetidine product formed in reasonable yield (Scheme 10B). Finally, epoxidation of the pendant alkene proceeded smoothly with mCPBA (Scheme 10C).

The power of a highly diastereoselective oxidative cyclization reaction is further illustrated in Scheme 11. Phosphoramidate 21 was separated into enantiomers using chiral reversedphase HPLC. Subjecting each to our optimized $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Cu}(\mathrm{OAc})_{2}$ protocol afforded enantiopure cyclic phosphoramidate products. The absolute structure and conformation of (-)-62 were determined by x-ray crystallography (CCDC: 2061647). As tether removal is possible with LAH (Scheme 10A), this allows for the synthesis of chiral amino alcohols from readily available acyclic precursors.

## Conclusion

In summary, we present a protocol for highly diastereoselective tethered aza-Wacker cyclization reactions of alkenyl phosphoramidates. We Found that phosphoramidate tethers containing a 5-chloro-8-quinolinoxide "arm" were essential for diastereoselective cyclizations. We hypothesize that such diastereoselectivity arises from a palladium chelation, and we have identified the molecular ion of a putative chelate using high resolution electrospray ionization mass spectrometry. The substrate scope with respect to the alkenyl alcohol and the phosphoramidate tether was extensively explored. In addition, the scalablility of the cyclization reaction was demonstrated, and the product cyclophosphoramidates were shown to be valuable synthons for a variety of further transformations, including tether removal. With chiral alkenyl precursors, enantiopure cyclic phosphoramidates were formed.

## Experimental Section

## I. General Considerations

All reagents were obtained commercially unless otherwise noted. Solvents were purified by passage under $10 \mathrm{psi} \mathrm{N}_{2}$ through activated alumina columns. Infrared (IR) spectra were recorded on a Thermo Scientific ${ }^{\mathrm{TM}}$ Nicolet $^{\mathrm{TM}}$ iS $^{\mathrm{TM}} 5$ FT-IR Spectrometer; data are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. NMR spectra were recorded on a Bruker Avance 400 operating at 400 and $100 \mathrm{MHz} .{ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz . Data are recorded as: chemical shift in ppm referenced internally using residue solvent peaks, multiplicity ( $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or overlap of nonequivalent resonances), integration, coupling constant ( Hz ). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz . Exact mass spectra were recorded using an electrospray ion source (ESI) either in positive mode or negative mode and with a time-of-flight (TOF) analyzer on a Waters LCT PremierTM mass spectrometer and are given in m/z. TLC was performed on pre-coated glass plates (Merck) and visualized either with a UV lamp (254 nm ) or by dipping into a solution of $\mathrm{KMnO}_{4}-\mathrm{K}_{2} \mathrm{CO}_{3}$ in water followed by heating. Flash
chromatography was performed on silica gel (230-400 mesh). Reversed phase HPLC was performed on a Hamilton PRP-1.7 $\mu \mathrm{m}, 21.2 \times 250 \mathrm{~mm}, \mathrm{C} 18$ column.

## II. Substrate Syntheses Procedures

General Procedure A: To a solution of homoallylic alcohol ( $10 \mathrm{mmol}, 1$ equiv) in dichloromethane ( 50 mL ) was added $\mathrm{Et}_{3} \mathrm{~N}\left(1.4 \mathrm{~mL}, 10 \mathrm{mmol}\right.$, 1 equiv) dropwise at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for $10 \mathrm{~min} . \mathrm{POCl}_{3}(0.93 \mathrm{~mL}, 10 \mathrm{mmol}, 1$ equiv) was added dropwise, and the mixture was warmed to room temperature over a period of 5 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Phenol or quinolinol ( $10 \mathrm{mmol}, 1$ equiv) in 20 ml dichloromethane was added dropwise followed by $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol}, 1$ equiv $)$. The reaction mixture was warmed to room temperature over a period of 12 h . Following this period, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of aniline derivative ( 10 mmol , 1 equiv) in 20 ml of dichloromethane was added dropwise followed by $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10$ mmol, 1 equiv). The reaction mixture was warmed to room temperature over a period of 9 h. Subsequently, the reaction was quenched by slow addition of 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was transferred to a separatory funnel and extracted with 3 portions of dichloromethane. The organic fractions were collected, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified by chromatography on silica gel (specific conditions are associated with each compound) to afford the corresponding products.

General Procedure B: $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol}, 1$ equiv) was added dropwise to a solution of aniline derivative ( $10 \mathrm{mmol}, 1$ equiv) in dichloromethane $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for $10 \mathrm{~min} . \mathrm{POCl}_{3}(0.93 \mathrm{~mL}, 10 \mathrm{mmol}, 1$ equiv) was added dropwise, and the reaction was warmed to room temperature over 6 h . Subsequently, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Phenol or quinolinol ( $10 \mathrm{mmol}, 1$ equiv) in 20 ml dichloromethane was added dropwise followed by $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol}, 1$ equiv $)$. The reaction mixture was warmed to room temperature over a period of 2 h . After cooling to 0 ${ }^{\circ} \mathrm{C}$, homoallylic alcohol ( $10 \mathrm{mmol}, 1$ equiv) in 20 ml dichloromethane was added dropwise followed by $\mathrm{Et}_{3} \mathrm{~N}$ ( $1.4 \mathrm{~mL}, 10 \mathrm{mmol}, 1$ equiv). The reaction mixture was warmed to room temperature over a period of 12 h . The reaction was quenched by slow addition of 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was transferred to a separatory funnel and extracted with 3 portions of dichloromethane. The organic fractions were collected, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified by chromatography on silica gel (specific conditions are associated with each compound) to afford the corresponding products.

## III. Characterization of Substrates


(E)-hex-3-en-1-yl phenyl (4-methoxyphenyl)phosphoramidate

Compound 1: Synthesized using Procedure A; Purified using 25\% ethyl acetate in hexane ;
(Colorless solid, $1.88 \mathrm{~g}, 52 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.0(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $2.0(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.4(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1(\mathrm{dq}, J=9.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.2$ (dq, $J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.3(\mathrm{dt}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.6(\mathrm{dt}, J=15.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.4$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.9-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 3 \mathrm{H}), 7.2-7.4$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,25.6,33.4(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 55.5,66.8(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}), 114.6,119.7(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 123.4,124.9(\mathrm{~d}, J=1.4 \mathrm{~Hz})$, $129.6,132.4,135.6,150.5(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 155.1 ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.4(\mathrm{q}, J$ $=8.2 \mathrm{~Hz}$ ); IR 3149, 2956, 1592, 1511, 1204, 1036, 923, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{PNa}^{+}$384.1341; Found 384.1326.

(E)-hex-3-en-1-yl phenyl benzo[d][1,3]dioxol-5-ylphosphoramidate

Compound 2: Synthesized using Procedure A; Purified using 20\% ethyl acetate in hexane; (Brown solid, $2.44 \mathrm{~g}, 65 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.99 (dtdd, $J=8.8,7.5,6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.28(\mathrm{~m}, 2 \mathrm{H}), 5.33$ (dtt, $J=15.2,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dtt}, J=15.4,6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=$ $8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.72(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.7,25.7,33.5(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 67.1(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 101.0(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}), 101.2,108.5,111.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 123.5,125.1,129.7$, $133.8,135.8,143.0,148.3,150.6(\mathrm{~d}, J=6.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.95$ (m);IR 3173, 2962, 1502, 1486, 1191, 1020, $934 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{PNa}^{+}$398.1133; Found 398.1146.

(E)-hex-3-en-1-yl phenyl (3,4-dimethoxyphenyl)phosphoramidate

Compound 3: Synthesized using Procedure A; Purified using 30\% ethyl acetate in hexane; (Colorless solid, $2.66 \mathrm{~g}, 68 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.93-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{dqd}, J=9.8$, $7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{pd}, J=7.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=14.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.60$ $(\mathrm{m}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H})$, $7.08-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 13.7, 25.7, $33.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 56.0,56.4,67.1(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 103.6(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 110.1(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}), 112.2,120.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 123.4,125.1,129.7,132.9,135.8,144.7,149.6,150.7$ (d, $J=6.4 \mathrm{~Hz}$ ); ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.7$ (d, $J=11.8 \mathrm{~Hz}$ ); IR 3157, 2960, 1512, 1224, 1199, 1014, $777 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{PNa}^{+}$ 414.1446; Found 414.1425.

(E)-hex-3-en-1-yl phenyl (3,5-dimethylphenyl)phosphoramidate

Compound 4: Synthesized using Procedure A; Purified using 25\% ethyl acetate in hexane; (Colorless solid, $1.0 \mathrm{~g}, 28 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94$ (td, $J=7.4,1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.39(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.14$ - $4.22(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ $(\mathrm{s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{dt}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.29(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 13.7,21.5,25.7,33.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 67.1$ (d, $J=5.2 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 123.5,124.0,125.2,129.7,135.7$, 139.1, 139.1, $150.6(\mathrm{~d}, J=6.4 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-2.0(\mathrm{~d}, J=9.7 \mathrm{~Hz}$ ); IR 3203, 2960, 1602, 1397, 1207, 1005, $768 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{PNa}^{+}$382.1548; Found 382.1537.

(E)-hex-3-en-1-yl phenyl (4-ethoxyphenyl)phosphoramidate

Compound 5: Synthesized using Procedure A; Purified using 22\% ethyl acetate in hexane; (Brown solid, $1.39 \mathrm{~g}, 37 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.39(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.98(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.06(\mathrm{ddt}, J=10.0,7.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dtd}, J=13.9,7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dt}$, $J=14.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dt}, J=14.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $13.7,15.0,25.7,33.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 63.9,66.9(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 115.4,119.8(\mathrm{~d}, J=7.2 \mathrm{~Hz})$, $120.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 123.6,125.0,129.7,132.4,135.7,150.7(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 154.5 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.32(\mathrm{~m})$; IR 3153, 2902, 1592, 1509, 1203, 1022, $779 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{P}^{+} 376.1678$; Found 376.1688.

(E)-hex-3-en-1-yl phenyl (2,4-dimethoxyphenyl)phosphoramidate

Compound 6: Synthesized using Procedure A; Purified using 20\% ethyl acetate in hexane; (Colorless solid, $2.54 \mathrm{~g}, 65 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.95 (dtdd, $J=8.8,7.4,6.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.46(\mathrm{~m}, 2 \mathrm{H}), 3.75$ (d, $J=0.7 \mathrm{~Hz}, 6 \mathrm{H}$ ), $4.03-4.22(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{dtt}, J=15.7,8.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (dddd, $J=12.6,6.3,2.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.38-6.44(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.29(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
(101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.7,25.64,33.5(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 55.6,55.7,67.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 99.1$, $104.1,117.3,120.5(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 122.2,123.5,123.0,129.6,135.6,149.0(\mathrm{~d}, J=10.2 \mathrm{~Hz})$, 150.6 (d, $J=6.1 \mathrm{~Hz}$ ), 155.4; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.57$; IR 3391, 2960, 1512, 1199, 1021, 929, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{P}^{+}$ 392.1627; Found 392.1629.

(E)-hex-3-en-1-yl phenyl p-tolylphosphoramidate

Compound 7: Synthesized using Procedure A ; Purified using 18\% ethyl acetate in hexane; (Colorless solid, $967 \mathrm{mg}, 28 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.99$ (dtdd, $J=8.8,7.5,6.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.43(\mathrm{~m}, 2 \mathrm{H}), 3.97-4.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.11-4.22(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{dtt}, J=15.2,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dtt}, J=15.3,6.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.29(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,20.7,25.7,33.5(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 67.0(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 118.0(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 123.5,125.1,129.7,129.9,131.5,135.7,136.7,150.6$; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta-1.8(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$ ); IR 3157, 2962, 1224, 1202, 1021, 925, $780 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{PNa}^{+} 368.1392$; Found 368.1376.

(E)-hex-3-en-1-yl phenyl phenylphosphoramidate

Compound 8: Synthesized using Procedure A; Purified using 23\% ethyl acetate in hexane; (Colorless solid, $994 \mathrm{mg}, 30 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.98$ (dtdd, $J=8.8,7.5,6.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.39 (dt, $J=7.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.07-4.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J=9.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dtt}, J=15.3,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dtt}, J$ $=15.4,6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.19$ $(\mathrm{m}, 3 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.7,25.7,33.5(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}), 67.2(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 117.9,118.0,120.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 122.2,123.5,125.2$, 129.4, 129.7, 135.8, 139.3; ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$-2.06; IR 3166, 2964, 1590, 1486, 1202, 1018, $530 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}^{+}$ 332.1416; Found 332.1443.

(E)-pent-3-en-1-yl phenyl (4-methoxyphenyl)phosphoramidate

Compound 9: Synthesized using General Procedure A; purified using $25 \%$ ethyl acetate in hexane (Colorless solid, $2.60 \mathrm{~g}, 75 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.7$ (dt, $J=6.5$, $1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.4(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1(\mathrm{dq}, J=9.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.2(\mathrm{dq}, J$ $=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.4(\mathrm{dtd}, J=15.1,6.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.5-5.6(\mathrm{~m}, 1 \mathrm{H}), 5.8(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 3 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.0,33.5(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 55.5,66.8(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 114.6$, 119.7 (d, $J=7.0 \mathrm{~Hz}$ ), $120.5(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 124.9,125.7,128.5,129.6,132.3,150.5(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}), 155.1,{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-2.1(\mathrm{q}, J=8.1 \mathrm{~Hz}$ ); IR 3172, 2835, 1591, 1510, 1219, 1082, 923, 831, $750 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{PNa}^{+} 370.1184$; Found 370.1160 .

(E)-phenyl (5-phenylpent-3-en-1-yl) (4-methoxyphenyl)phosphoramidate

Compound 10: Synthesized using General Procedure A; purified using 30\% ethyl acetate in hexane. An analytical sample was purified by reversed phase HPLC (gradient of $100 \% \mathrm{H}_{2} \mathrm{O}$ with $0.1 \%$ TFA to $100 \%$ MeCN with $0.1 \%$ TFA over 45 minutes on a Hamilton PRP-1.7 $\mu \mathrm{m}, 21.2 \times 250 \mathrm{~mm}, \mathrm{C} 18$ column; (Colorless solid, $1.44 \mathrm{~g}, 34 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.4(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.3(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1-4.3(\mathrm{~m}, 2 \mathrm{H})$, $5.4-5.5(\mathrm{~m}, 1 \mathrm{H}), 5.6-5.7(\mathrm{~m}, 1 \mathrm{H}), 5.9(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.0$ $(\mathrm{m}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 6 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.7$ (d, $J=7.2 \mathrm{~Hz}), 39.3,55.8,66.9,114.9,120.0,120.8(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 125.3,126.3,126.4$, 128.7, 128.8, 129.9, 132.6, 132.7, 140.7, 150.8 (d, $J=6.3 \mathrm{~Hz}$ ), 156.2; ${ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-1.6(\mathrm{q}, J=8.2 \mathrm{~Hz})$; IR 3166, 2834, 1591, 1509, 1205, 1034, $910,779 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{P}^{+} 424.1678$; Found 424.1676.

(Z)-hex-3-en-1-yl phenyl (4-methoxyphenyl)phosphoramidate

Compound 11: Synthesized using Procedure A ; Purified using 25\% ethyl acetate in hexane; (Colorless solid, $1.52 \mathrm{~g}, 42 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.93(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.00(\mathrm{pd}, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ (qd, $J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.77 (s, 3H), 4.06 (dq, $J=9.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dq}, J=9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.45-$ $5.53(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.28$ $(\mathrm{m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.3,20.7,28.4(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 55.7,66.7(\mathrm{~d}$,
$J=5.2 \mathrm{~Hz}), 114.7,119.8(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 123.1,125.1,129.7,132.4$, $135.1,150.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 155.2 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.40(\mathrm{t}, J=8.5 \mathrm{~Hz}) ; \mathrm{IR}$ 3161, 2873, 1511, 1205, 1033, 922, 778,512 $\mathrm{cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{P}^{+}$362.1521; Found 362.1541.

(E)-5-(4-fluorophenyl)pent-3-en-1-yl phenyl (4-methoxyphenyl)phosphoramidate

Compound 12: Synthesized using General Procedure A; Purified using 30\% ethyl acetate in hexane (Colorless solid, $1.15 \mathrm{~g}, 26 \%$ yield); An analytical sample was purified by reversed phase HPLC (gradient of $100 \% \mathrm{H}_{2} \mathrm{O}$ with $0.1 \%$ TFA to $100 \% \mathrm{MeCN}$ with $0.1 \%$ TFA over 45 minutes on a Hamilton PRP-1.7 $\mu \mathrm{m}, 21.2 \times 250 \mathrm{~mm}, \mathrm{C} 18$ column; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.3(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.0-4.2(\mathrm{~m}, 2 \mathrm{H}), 5.3$ (dt, $J=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.5-5.6(\mathrm{~m}, 1 \mathrm{H}), 6.1(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.6-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.8$ $-6.9(\mathrm{~m}, 4 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 5 \mathrm{H}), 7.2(\mathrm{dd}, J=9.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 33.3(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 38.1,55.5,66.9(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 114.7,115.1(\mathrm{~d}, J=21.1 \mathrm{~Hz})$, 119.9 (d, $J=7.0 \mathrm{~Hz}$ ), 120.4 (d, $J=4.7 \mathrm{~Hz}$ ), $125.2,126.2,129.7,129.8$ (d, $J=7.8 \mathrm{~Hz}$ ), 131.8, $132.4,135.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 150.3,155.4,161.4(\mathrm{~d}, J=243.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\mathrm{CDCl}_{3}$ ) $\delta-1.5$; IR 3171, 2957, 1510, 1220, 1035, $937,771 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{PNa}^{+} 464.1403$; Found 464.1389.


Compound 13: Synthesized using Procedure B; Purified using 30\% ethyl acetate in hexane; (Deep Red oil, $1.47 \mathrm{~g}, 40 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}$ ), 1.97 (dtdd, $J=8.8,7.4,6.2,1.3 \mathrm{~Hz}, 4 \mathrm{H}$ ), 2.34 (dddd, $J=8.1,6.9,5.6,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 3.98(\mathrm{dq}, J=9.9,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{dq}, J=9.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{dtt}, J=15.2$, $6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{dtt}, J=15.3,6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.98(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,25.7,33.6(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 55.7,66.4(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}), 114.7,119.3(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 123.7,132.9,135.5,154.9 \cdot{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 3.14$; IR 3168, 2961, 1756, 1511, 1220, $995,828 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{PNa}^{+} 390.1810$; Found 390.1812.

(E)-hex-3-en-1-yl ((S)-2-methylbutyl) (4-methoxyphenyl)phosphoramidate

Compound 14: Synthesized using Procedure A; Purified using $20 \%$ ethyl acetate in hexane; Note: Single diastereomer but relative stereochemistry unassigned; (Brown oil, $1.47 \mathrm{~g}, 38 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.81$ (ddd, $\left.J=7.5,5.9,1.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.84-0.89(\mathrm{~m}$, $3 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{dtt}, J=13.2,7.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.61$ $-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.95$ (dtdd, $J=8.8,7.5,6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{qd}, J=6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.74$ $(\mathrm{s}, 3 \mathrm{H}), 3.80-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.90-4.01(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{dq}, J=9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dtt}$, $J=15.2,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dtt}, J=15.3,6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.92$ $-6.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 11.1(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 13.7,16.1(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}), 25.6,25.7(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 33.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 35.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 55.6,66.3$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}), 71.0(\mathrm{dd}, J=5.6,3.0 \mathrm{~Hz}), 114.6,119.1(\mathrm{dd}, J=6.9,2.9 \mathrm{~Hz}), 123.7,133.2$, 135.4, $154.7(\mathrm{~d}, J=2.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.13$; IR 3166, 2960, 1510, 1219, 1036, 998, $827 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{PNa}^{+}$ 378.1810; Found 378.1821.

(E)-4-chloro-3-(trifluoromethyl)phenyl hex-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 15: Synthesized using General Procedure A; Purified using 30\% ethyl acetate in hexane (Light brown oil, $1.58 \mathrm{~g}, 34 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.5$ (q, $J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.3(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1-4.3(\mathrm{~m}, 2 \mathrm{H}), 5.4-5.5(\mathrm{~m}, 1 \mathrm{H}), 5.6-5.8$ $(\mathrm{m}, 1 \mathrm{H}), 6.3(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.1(\mathrm{~m}, 4 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 3 \mathrm{H}), 7.3$ $-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.4(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,25.6$, 33.4 (d, $J=7.2 \mathrm{~Hz}$ ), 55.5, 67.3 (d, $J=5.5 \mathrm{~Hz}$ ), 114.7, 119.2 - 121.0 (m, 1C), 120.8, 123.1, $123.5,124.9$ (d, $J=4.4 \mathrm{~Hz}$ ), 128.3, 129.3, 131.5, 132.5, $135.9,149.0$ (d, $J=6.2 \mathrm{~Hz}), 155.6$; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.3(\mathrm{~d}, J=9.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.0$; IR 3170, 2962, 1510, 1418, 1141, 1034, 943, $749 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{PF}_{3} \mathrm{Na}^{+} 486.0825$; Found 486.0786.

(E)-hex-3-en-1-yl (4-nitrophenyl) (4-methoxyphenyl)phosphoramidate

Compound 16: Synthesized using General Procedure A; Purified using 30\% ethyl acetate in hexane (Light yellow solid, $935 \mathrm{mg}, 23 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.9(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 2 \mathrm{H}), 2.4(\mathrm{dddt}, J=7.9,6.8,5.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.0$ - $4.3(\mathrm{~m}, 2 \mathrm{H}), 5.3-5.4(\mathrm{~m}, 1 \mathrm{H}), 5.5-5.6(\mathrm{~m}, 2 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.0(\mathrm{~m}, 2 \mathrm{H})$, $7.3-7.3(\mathrm{~m}, 2 \mathrm{H}), 8.1-8.2(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,25.6,33.4$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}), 55.5,67.4(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 114.7,119.9(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=5.1$ $\mathrm{Hz}), 123.0,125.5,131.5,136.0,144.7,155.4(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 155.5 ;{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-2.1(\mathrm{q}, J=8.1 \mathrm{~Hz})$; IR 3167, 2963, 1591, 1511, 1219, 1009, $912,750 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PNa}^{+} 429.1191$; Found 429.1204.


Compound 17: Synthesized using General Procedure A; Purified using 27\% ethyl acetate in hexane; (Colorless solid, $1.05 \mathrm{~g}, 26 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.9(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.4(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.0(\mathrm{ddd}, J=7.6,6.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.3-2.5(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~s}$, $3 \mathrm{H}), 3.9(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.1(\mathrm{~m}, 2 \mathrm{H}), 5.3(\mathrm{~s}, 1 \mathrm{H}), 5.5(\mathrm{dtt}, J=15.2,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.5$ $(\mathrm{s}, 1 \mathrm{H}), 6.6-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.1(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,14.8,25.6,33.4(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 55.5,63.8$, $66.7(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 114.5,115.1,119.5(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 121.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 123.5,132.6$, $135.5,143.9(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 154.9,156.0(\mathrm{~d}, J=1.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -0.7 (d, $J=8.7 \mathrm{~Hz}$ ); IR 3169, 2962, 1505, 1198, 1006, $940,750 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{P}^{+} 406.1783$; Found 406.1769 .

(E)-4-ethylphenyl hex-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 18: Synthesized using General Procedure A; Purified using 27\% ethyl acetate in hexane (Light brown oil, $2.26 \mathrm{~g}, 58 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.9(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.2(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 2 \mathrm{H}), 2.4(\mathrm{dtd}, J=7.8,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.6$ $(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.0-4.2(\mathrm{~m}, 2 \mathrm{H}), 5.3(\mathrm{dtt}, J=15.2,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.5$ (dtt, $J=15.3,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.7(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.0(\mathrm{~m}, 2 \mathrm{H})$, $7.0-7.1(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,15.6,25.6,28.2,33.5(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}), 55.5,66.9(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 114.6,119.7(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 123.5$, $128.9,132.3,135.6,140.9,148.4,155.1 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.5(\mathrm{~d}, J=8.6$ Hz ) ; IR 3169, 2962, 1507, 1211, 929, $749 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M+Na] Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{PNa}^{+} 412.1654$; Found 412.1636 .

(E)-hex-3-en-1-yl isopropyl (4-methoxyphenyl)phosphoramidate

Compound 19: Synthesized using Procedure A; Purified using $22 \%$ ethyl acetate in hexane; (Brown oil, $458 \mathrm{mg}, 14 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.9(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.2$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.4(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.9(\mathrm{qdd}, J=7.5,6.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.3(\mathrm{qd}, J$ $=6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 3.9(\mathrm{dq}, J=9.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.1(\mathrm{dq}, J=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.7(\mathrm{dh}, J=7.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.3(\mathrm{dtt}, J=15.2,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{dtt}, J=15.3,6.3,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.0(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,23.8(\mathrm{dd}, J=25.2,4.6 \mathrm{~Hz}), 25.7,33.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 55.6,66.1(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}), 71.8(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 114.6,119.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 123.8,133.4,135.4,154.7 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.1$; IR 3166, 2961, 1510, 1240, 1219, 994, $828 \mathrm{~cm}^{-1}$;HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}$ : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{PNa}^{+}$350.1497; Found 350.1483.

(E)-hex-3-en-1-yl octyl (4-methoxyphenyl)phosphoramidate

Compound 20: Synthesized using Procedure A; Purified using $25 \%$ ethyl acetate in hexane; (Deep Red oil, $874 \mathrm{mg}, 22 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$ ), $0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.32(\mathrm{~m}, 10 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 2 \mathrm{H})$, $2.31-2.37(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{dqd}, J=10.1,6.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.06$ (dtd, $J=11.1$, $6.9,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.25-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{dt}, J=15.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.82(\mathrm{~m}, 2 \mathrm{H})$, 6.91 - $6.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 13.7,14.2,22.7,25.6,25.7,29.2$, $29.3,30.3(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 31.9,33.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 55.6,66.4(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 66.9(\mathrm{~d}, J$ $=5.1 \mathrm{~Hz}), 114.7,119.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 123.7,133.0,135.5,154.9 ;{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 3.16$;IR 3166, 2926, 1510, 1220, 1036, $998,827 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{P}^{+}$398.2460; Found 398.2478.

(E)-5-chloroquinolin-8-yl hex-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 21: Synthesized using General Procedure A; Purified using 33\% ethyl acetate in hexane (Colorless solid, $1.83 \mathrm{~g}, 41 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.9$ (t, $J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 2.0(\mathrm{tt}, J=7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.3-2.6(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{dt}, J=7.9,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.2-5.4(\mathrm{~m}, 1 \mathrm{H}), 5.4-5.7(\mathrm{~m}, 1 \mathrm{H}), 6.8(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.8(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.0(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.5-7.8(\mathrm{~m}, 3 \mathrm{H}), 8.6(\mathrm{dt}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,25.6,33.5(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 55.5,67.8(\mathrm{~d}$,
$J=6.5 \mathrm{~Hz}), 114.6(2 \mathrm{C}), 120.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 120.8,122.5,123.5,126.6(\mathrm{~d}, J=2.1 \mathrm{~Hz})$,
$127.6(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 132.3,133.6,135.5,141.8,145.8,150.6,155.2 ;{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\mathrm{CDCl}_{3}$ ) $\delta-0.9--0.4(\mathrm{~m})$; IR 3170, 2960, 1591, 1511, 1221, 1033, 874, $749 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+} 469.1060$; Found 469.1027.

(E)-hex-3-en-1-yl quinolin-8-yl (4-methoxyphenyl)phosphoramidate

Compound 22: Synthesized using General Procedure A; Purified using 70\% ethyl acetate in hexane (Brown semi-solid, $1.44 \mathrm{~g}, 35 \%$ yield); An analytical sample was purified by reversed phase HPLC (gradient of $100 \% \mathrm{H}_{2} \mathrm{O}$ with $0.1 \%$ TFA to $100 \% \mathrm{MeCN}$ with $0.1 \%$ TFA over 45 minutes on a Hamilton PRP-1.7 $\mu \mathrm{m}, 21.2 \times 250 \mathrm{~mm}, \mathrm{C} 18$ column; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.0(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.0(\mathrm{qdd}, J=7.5,6.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.4-2.5$ $(\mathrm{m}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{dtd}, J=8.4,7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.4(\mathrm{dtt}, J=15.2,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.6(\mathrm{dtt}, J=15.2,6.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.3(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.4-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.6-7.8(\mathrm{~m}, 2 \mathrm{H}), 8.2(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 13.6,25.6,33.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 55.6,67.7$ (d, $J=6.6 \mathrm{~Hz}), 114.6,119.9(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 121.4(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 121.8,123.6,125.0(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}), 126.9(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 129.9,132.7,135.4,136.6,141.3,146.6(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, 150.0, 155.0; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.6$ (q, $J=7.5 \mathrm{~Hz}$ ); IR 3169, 2959, 1510, 1225, 1012, $824,755 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$ 435.1450; Found 435.1473 .

(E)-5,7-dichloroquinolin-8-yl hex-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 23: Synthesized using General Procedure A; Purified using 35\% ethyl acetate in hexane (Yellow oil, $1.20 \mathrm{~g}, 25 \%$ yield); An analytical sample was purified by reversed phase HPLC (gradient of $100 \% \mathrm{H}_{2} \mathrm{O}$ with $0.1 \%$ TFA to $100 \% \mathrm{MeCN}$ with $0.1 \%$ TFA over 45 minutes on a Hamilton PRP-1.7 $\mu \mathrm{m}, 21.2 \times 250 \mathrm{~mm}, \mathrm{C} 18$ column; ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.93-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 4.37(\mathrm{dtt}, J=10.0,6.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.31-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dtd}, J=15.3,6.3,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (s, 1H), $8.60(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8,25.7,33.7(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 55.7,68.4(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 114.7,120.6(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}), 122.7,123.6,126.4,127.2,127.3(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 127.7,128.3,132.5,134.2$, 135.6, 142.4, 151.1, 155.4; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.13$ (d, $J=9.7 \mathrm{~Hz}$ ); IR 3170, 2960, 1774, 1586, 1511, 1203, 1091, $893 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+} 503.0670$; Found 503.0671.


5-chloroquinolin-8-yl (5-phenylpent-3-en-1-yl) (4-methoxyphenyl)phosphoramidate
Compound 25: Synthesized using Procedure A; Purified using 30\% ethyl acetate in hexane; (isolated as a 1:0.16 mixture of trans:cis isomers) (Black oil, $661 \mathrm{mg}, 13 \%$ yield); Trans isomer characterization: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.46(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{dt}, J=8.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{dtt}, J=15.2,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.66 (dddd, $J=15.0,8.1,4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.11-$ $7.21(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.64(\mathrm{~m}, 3 \mathrm{H}), 8.59(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.98$ $(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 33.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 39.1$, $55.6,67.7(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 114.7,120.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.7,126.1(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}), 126.3,126.8,127.7,127.9$ (d, $J=2.7 \mathrm{~Hz}), 128.5,128.6(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 132.4$, $132.5,133.8,140.5,141.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 145.9(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 150.7,155.3 ;{ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}$ ); IR 3166, 3061, 1590, 1495, 1510, 1220, 1032, 874 $\mathrm{cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+} 531.1216$; Found 531.1209.


5-chloroquinolin-8-yl (5-(2-methoxyphenyl)pent-3-en-1-yl) (4methoxyphenyl)phosphoramidate

Compound 26: Synthesized using Procedure B; Purified using 35\% ethyl acetate in hexane; (Brown oil, $808 \mathrm{mg}, 15 \%$ yield) ( $2.5: 1$; trans:cis); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.40$ $2.49(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 6 \mathrm{H}), 4.29(\mathrm{dt}, J=8.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.42$ (dddd, $J=13.4,11.8,6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.73(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 7.00-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.67(\mathrm{~m}, 3 \mathrm{H}), 8.64$ (dd, $J=8.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 9.02(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.2,33.6(\mathrm{~d}, J=7.0$ $\mathrm{Hz}), 55.4,55.7,67.8(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 110.4,114.7,119.5,120.2(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 120.6,121.0$ (d, $J=3.8 \mathrm{~Hz}$ ), 122.7, 125.8, 125.9, 126.9, 127.4, 129.0, 129.8, 130.2, 131.9, 132.0, 132.4, 133.9, 150.6, 155.3, 157.3; ${ }^{1} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.55$ (d, $J=24.4 \mathrm{~Hz}$ ); IR 3168, 2954, 1589, 1510, 1240, 1029, 875, $752 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{PNa}^{+}$561.1322; Found 561.1332.

(E)-5-chloroquinolin-8-yl (5-(3-methoxyphenyl)pent-3-en-1-yl) (4methoxyphenyl)phosphoramidate

Compound 27: Synthesized using Procedure B; Purified using 35\% ethyl acetate in hexane; (Brown oil, $1.02 \mathrm{~g}, 19 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.20$ (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.99 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{qd}, J=6.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.24(\mathrm{~m}$, $1 \mathrm{H}), 5.38(\mathrm{dtt}, J=14.9,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39-6.53(\mathrm{~m}, 4 \mathrm{H}), 6.71-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J$ $=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 39.2,55.3,55.7$, $67.7(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 111.4,114.4,114.7,120.2(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 120.9(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 121.0$, 122.7, 126.4, 126.8, 127.6, 127.9, 129.5, 132.3, 132.4, 133.7, 141.9, 142.2, 145.9 (d, $J=7.1$ $\mathrm{Hz}), 150.70,155.29,159.82 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.68(\mathrm{t}, J=8.4 \mathrm{~Hz})$; IR 3167, $2954,1591,1511,1221,1034,875,734 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{PNa}^{+}$561.1322; Found 561.1306.

Compound 28: Synthesized using Procedure B; Purified using 35\% ethyl acetate in hexane; (Brown solid, $1.38 \mathrm{~g}, 24 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.53$ (q, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{dt}, J=8.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{dtt}, J=15.1,6.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.77(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.34(\mathrm{~m}$, $2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.70(\mathrm{~m}, 3 \mathrm{H}), 8.64(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.03$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 38.8,55.6,67.5$ (d, $J=6.2 \mathrm{~Hz}$ ), 114.7, 120.1 (d, $J=7.2 \mathrm{~Hz}$ ), 120.9 (d, $J=3.8 \mathrm{~Hz}), 122.7,123.1,125.4$ (q, $J$ $=3.9 \mathrm{~Hz}), 126.8,127.5,127.7,127.9,128.8,128.9,131.3,132.4,133.9,141.7,144.6,145.8$, 150.6, 155.3; ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-0.57 .{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-62.31$; IR 2253, 1383, 1264, 905, 1240, 729, $650 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$599.1090; Found 599.1086.

(E)-5-chloroquinolin-8-yl (5-(4-(dimethylamino)phenyl)pent-3-en-1-yl) (4-methoxyphenyl)phosphoramidate

Compound 29: Synthesized using General Procedure A; Purified using 52\% ethyl acetate in hexane; An analytical sample was purified by reversed phase HPLC (gradient of $100 \% \mathrm{H}_{2} \mathrm{O}$ with $0.1 \%$ TFA to $100 \%$ MeCN with $0.1 \%$ TFA over 45 minutes on a Hamilton PRP-1.7 $\mu \mathrm{m}, 21.2 \times 250 \mathrm{~mm}, \mathrm{C} 18$ column); (Light yellow oil, 1.43 g , Yield $26 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.4-2.5(\mathrm{~m}, 2 \mathrm{H}), 2.9(\mathrm{~s}, 6 \mathrm{H}), 3.2(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.3$ (dtd, $J=7.9,6.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.4(\mathrm{dtt}, J=15.1,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.6(\mathrm{dtt}, J=14.9,6.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.6-6.7(\mathrm{~m}, 2 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.1(\mathrm{~m}, 5 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.6(\mathrm{dd}$, $J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 33.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 38.1,41.0,55.5,67.6$ (d, $\left.J=6.3 \mathrm{~Hz}\right), 113.1$, $114.6,120.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 122.5,125.4,126.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 127.5$, 127.7 (d, $J=2.3 \mathrm{~Hz}$ ), 128.6, 129.1, 132.4, 133.2, 133.5, 141.8 (d, $J=4.2 \mathrm{~Hz}$ ), 145.8 (d, $J=$ $7.1 \mathrm{~Hz}), 149.2,150.6,155.1 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.6(\mathrm{q}, J=7.8 \mathrm{~Hz})$; IR 3168, 2894, 1612, 1510, 1219, 1012, 872, $749 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O}_{4} \mathrm{P}^{+}$552.1819; Found 552.1799.

(E)-5-chloroquinolin-8-yl (5-(furan-2-yl)pent-3-en-1-yl) (4-methoxyphenyl)phosphoramidate

Compound 30: Synthesized using General Procedure A; Purified using 46\% ethyl acetate in hexane; (Light yellow oil, 1.89 g , Yield $38 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.4-2.5(\mathrm{~m}$, 2 H ), 3.3 (dt, $J=6.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{dtd}, J=8.1,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.4-5.6$ $(\mathrm{m}, 1 \mathrm{H}), 5.6-5.7(\mathrm{~m}, 1 \mathrm{H}), 6.0(\mathrm{dq}, J=3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.3(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.6$ $-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.1(\mathrm{~m}, 3 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 1 \mathrm{H}), 7.5-7.7(\mathrm{~m}, 3 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.9$ - $9.1(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.4,33.4(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, $55.5,67.4(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 105.4,110.3,114.5,120.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=3.9 \mathrm{~Hz})$, $122.6,126.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 127.3,127.6(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 128.8,132.3,133.7,141.2,141.6$, $145.8,150.5,154.1,155.1 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.6(\mathrm{q}, J=8.0 \mathrm{~Hz}$ ); IR 3168, 2955, 1590, 1510, 1218, 1031, 872, $733 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{PNa}^{+}$521.1009; Found 521.0969.

(E)-5-chloroquinolin-8-yl (5-(thiophen-2-yl)pent-3-en-1-yl) (4-methoxyphenyl)phosphoramidate

Compound 31: Synthesized using General Procedure A; Purified using 45\% ethyl acetate in hexane; (Light yellow oil, 1.24 g , Yield $24 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.5(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 3.5 (dt, $J=6.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.7 (s, 3 H ), 4.3 (dtd, $J=7.9,6.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.5 (dtt, $J=15.0,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.7(\mathrm{dtt}, J=14.6,6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 3 \mathrm{H}), 6.9$ (dd, $J=5.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.6(\mathrm{dd}, J=$ $8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.0,33.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 55.5,67.4(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 114.5,120.0$ (d, $J=7.3 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 122.6,123.5,124.4,126.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 126.8,126.9$, $127.5,127.7$ (d, $J=2.2 \mathrm{~Hz}), 131.4,132.3,133.6,141.7(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 143.4,145.8$ (d, $J=$ 7.1 Hz ), 150.6, 155.1; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.6(\mathrm{q}, J=8.0 \mathrm{~Hz}$ ); IR 3169, 2955, 1590, 1510, 1219, 1032, 967, 837, $770 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{SO}_{4} \mathrm{PNa}^{+}$537.0781; Found 537.0757.

(Z)-5-chloroquinolin-8-yl hex-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 32: Synthesized using General Procedure A; Purified using 30\% ethyl acetate in hexane (Colorless oil, $2.68 \mathrm{~g}, 60 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.9(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 2.0(\mathrm{qd}, J=7.1,6.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.4-2.5(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.2-4.3(\mathrm{~m}, 2 \mathrm{H})$,
$5.2-5.3(\mathrm{~m}, 1 \mathrm{H}), 5.4-5.5(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H})$, $7.6-7.7(\mathrm{~m}, 2 \mathrm{H}), 7.7(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.7(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.1(\mathrm{dd}, J=$ $4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,20.6,28.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 55.5$, $67.6,114.6,120.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.6,122.9,127.1,127.6,127.7$, $132.1,134.8,135.0,140.5,145.2,150.1,155.3 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.5(\mathrm{~d}, J=$ 8.5 Hz ) $3130,2950,1593,1514,1230,1033,830,749$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+} 469.1060$; Found 469.1050.

(Z)-5-chloroquinolin-8-yl oct-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 33: Synthesized using Procedure A; Purified using 35\% ethyl acetate in hexane; (Colorless solid, 1.14 g , Yield 24\%); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.8-0.9$ (m, 3H), 1.2 $1.4(\mathrm{~m}, 4 \mathrm{H}), 1.8-2.1(\mathrm{~m}, 2 \mathrm{H}), 2.3-2.5(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.2-$ $5.4(\mathrm{~m}, 1 \mathrm{H}), 5.4-5.5(\mathrm{~m}, 1 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.8(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H})$, $7.5-7.7(\mathrm{~m}, 3 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.3,27.0,28.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 31.7,55.5,67.5(\mathrm{~d}, J=6.5 \mathrm{~Hz})$, $114.6,120.1(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.6,123.5,126.8(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 127.6$, $127.8,132.2,133.3,134.1,141.3,145.6,150.4,155.2 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.6$ (d, $J=8.5 \mathrm{~Hz}$ ); IR 3173, 2956, 1512, 1222, 1015, $749 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{ClN} 2 \mathrm{O}_{4} \mathrm{P}^{+} 475.1548$; Found 475.1510.

(E)-5-chloroquinolin-8-yl pent-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 34: Synthesized using General Procedure A; Purified using 33\% ethyl acetate in hexane; (Colorless solid, 2.16 g , Yield $50 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.6$ (dq, $J=6.3$, $1.3 \mathrm{~Hz}, 3 \mathrm{H}$ ), 2.4 (qt, $J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.7 (s, 3H), 4.3 (dtd, $J=7.9,6.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.4$ (dtq, $J=15.1,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.4-5.5(\mathrm{~m}, 1 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 2 \mathrm{H}), 7.0(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.6(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.0,33.5(\mathrm{~d}, J=7.1$ $\mathrm{Hz}), 55.5,67.7(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 114.5,120.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.5$, $125.8,126.6,127.5,127.7,128.4,132.4,133.6,141.8(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 145.8$ (d, $J=7.2 \mathrm{~Hz}$ ), 150.6, 155.1; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.7$ (d, $J=4.5 \mathrm{~Hz}$ ); IR 3171, 2957, 1511, 1219, 1011, 871, $785 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}^{+}$ 433.1084; Found 433.1097.

(E)-5-chloroquinolin-8-yl oct-3-en-1-yl (4-methoxyphenyl)phosphoramidate

Compound 35: Synthesized using General Procedure B; Purified using 27\% ethyl acetate in hexane; (Pale brown solid, $1.14 \mathrm{~g}, 24 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.82-0.91$ $(\mathrm{m}, 3 \mathrm{H}), 1.22-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.89-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 4.27 (dt, $J=8.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{dtt}, J=15.1,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dtt}, J=14.2,6.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.80(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.67(\mathrm{~m}, 3 \mathrm{H}), 8.59(\mathrm{dd}, J=8.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 9.00(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,22.3,31.6$, $32.4,33.7$ (d, $J=6.7 \mathrm{~Hz}), 55.7,67.9(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 114.7,120.2(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 121.1$ (d, $J=3.8 \mathrm{~Hz}$ ), 122.7, 124.5, 126.9, 127.7, 127.9, 132.4, 134.0, 134.2, 141.7, 145.9, 150.5, 155.3; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.57$; IR 3167, 2955, 1590, 1511, 1220, 1032, 875 $\mathrm{cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}+497.1373$; Found 497.1375.

(E)-tert-butyl ( $6-\left(\left(\left(\left(5\right.\right.\right.\right.$-chloroquinolin-8-y) oxy) ((4-methoxypheny) ${ }^{\text {amino }}$ )phosphoryl)oxy)hex-3-en-1-y) carbonate

Compound 36: Synthesized using General Procedure A; Purified using 45\% ethyl acetate in hexane; (Colorless solid, 1.80 g , Yield $32 \%$;); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.5(\mathrm{~s}, 9 \mathrm{H})$, 2.2 - 2.3 (m, 2H), $2.4-2.5(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.0(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.3$ (dtd, $J=8.3$, $6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.3-5.6(\mathrm{~m}, 2 \mathrm{H}), 6.6-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.5$ $-7.7(\mathrm{~m}, 3 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.8,32.0,33.5(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 55.5,66.3,67.3(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 81.9$, $114.5,120.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 122.6,126.6,127.5,127.7,127.9,128.5$, $132.3,133.6,141.6(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 145.7(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 150.6,153.5,155.1 ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.6(\mathrm{q}, J=7.8 \mathrm{~Hz})$; IR 3171, 2976, 1736, 1511, 1219, 1012, 823, 786 $\mathrm{cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{NaO}_{7} \mathrm{P}^{+} 585.1533$; Found 585.1528.

(E)-5-chloroquinolin-8-yl (5-cyclopentylpent-3-en-1-yl) (4-methoxyphenyl)phosphoramidate

Compound 37: Synthesized using General Procedure A; Purified using 37\% ethyl acetate in hexane; (Light yellow oil, 1.80 g , Yield $36 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.0-1.0$ $(\mathrm{m}, 2 \mathrm{H}), 1.3-1.5(\mathrm{~m}, 4 \mathrm{H}), 1.5-1.7(\mathrm{~m}, 3 \mathrm{H}), 1.9(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.3(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.7(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.2(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.3$ (dtd, $J=16.8,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.3-5.5(\mathrm{~m}, 1 \mathrm{H}), 6.6-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.0(\mathrm{td}, J=5.9,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.4-7.6(\mathrm{~m}, 3 \mathrm{H}), 8.5(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.8-9.1(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.1,32.2,33.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 39.0,39.8,55.5,67.8(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 114.5$, $120.0(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 120.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 122.5,124.8,126.8,127.5,127.7,132.3,133.4$, $133.9,141.5,145.7,150.4,155.1 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.6(\mathrm{~d}, J=7.5 \mathrm{~Hz}$ ); IR 3169, 2947, 1510, 1219, 1012, 872, $786 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{P}^{+}$523.1529; Found 523.1537.

(E)-5-chloroquinolin-8-yl (5-cyclohexylpent-3-en-1-yl) (4-methoxyphenyl)phosphoramidate

Compound 38: Synthesized using General Procedure A; Purified using 40\% ethyl acetate in hexane; (Light Brown oil, 1.44 g , Yield $28 \%$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.8$ (qd, $J=$ $11.6,10.9,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.9-1.3(\mathrm{~m}, 5 \mathrm{H}), 1.5-1.7(\mathrm{~m}, 4 \mathrm{H}), 1.8(\mathrm{td}, J=6.9,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.3-2.5(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{qd}, J=7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.2-5.4(\mathrm{~m}, 1 \mathrm{H}), 5.5(\mathrm{dtt}, J=$ $15.4,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.6-6.8(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.1(\mathrm{~m}, 3 \mathrm{H}), 7.4-7.7(\mathrm{~m}, 3 \mathrm{H}), 8.6(\mathrm{dd}, J=$ $8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.3$, 26.6, 33.1, $33.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 37.8,40.6,55.5,67.8(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 114.5,120.0(\mathrm{~d}, J=7.3$ $\mathrm{Hz}), 120.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.5,124.2,125.4,126.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=16.4 \mathrm{~Hz})$, $132.4,132.5,133.7,141.7,145.7,150.5,155.1 . ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.6$ (q, $J$ $=8.0 \mathrm{~Hz}$ ); IR 3168, 2920, 1590, 1511, 1220, 1013, 874, $786 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{P}^{+} 537.1686$; Found 537.1646.


5-chloroquinolin-8-yl (2-(prop-1-en-1-yl)phenyl) (4-methoxyphenyl)phosphoramidate

Compound 39: Synthesized using General Procedure A; Purified using 30\% ethyl acetate in hexane; An analytical sample was purified by reversed phase HPLC (gradient of $100 \% \mathrm{H}_{2} \mathrm{O}$ with $0.1 \%$ TFA to $100 \% \mathrm{MeCN}$ with $0.1 \%$ TFA over 45 minutes on a Hamilton PRP-1.7 $\mu \mathrm{m}, 21.2 \times 250 \mathrm{~mm}, \mathrm{C} 18$ column; (Brown oil , 1.01 g , Yield $21 \%$ ); 1H NMR ( 400 MHz , $\mathrm{CDCl} 3) \delta 1.5-1.9(\mathrm{~m}, 3 \mathrm{H}), 3.8(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.1(\mathrm{dq}, \mathrm{J}=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.5(\mathrm{dq}$, $\mathrm{J}=15.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 5 \mathrm{H}), 7.4(\mathrm{dt}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.5$ $(\mathrm{dt}, \mathrm{J}=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.5-7.7(\mathrm{~m}, 3 \mathrm{H}), 8.6(\mathrm{dt}, \mathrm{J}=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{td}, \mathrm{J}=5.3,4.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.6,55.5,114.4(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 120.6$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}), 121.0,121.1(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 122.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.5(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, 125.1, 126.4, 126.7, 127.5, 127.6, 127.7, 127.9 (d, $J=3.4 \mathrm{~Hz}$ ), 129.8 (d, $J=6.4 \mathrm{~Hz}), 131.8$, $133.8,141.4,145.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 147.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 150.5,155.5 ;{ }^{31} \mathrm{P}$ NMR ( 202 MHz ,
$\mathrm{CDCl}_{3}$ ) $\delta 4.7$; IR 3166, 1511, 1259, 994, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PK}$ 519.0643; Found 519.0626.


5-chloroquinolin-8-yl (1-phenylhept-5-en-3-yl) (4-
methoxyphenyl) phosphoramidate methoxyphenyl)phosphoramidate

Compound 40: Synthesized using General Procedure B; Purified using 30\% ethyl acetate in hexane; (Brown oil, $805 \mathrm{mg}, 15 \%$ yield, cis\& trans mixture); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.51-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.97$ (dddd, $J=14.3,12.2,7.9,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.77(\mathrm{~m}, 4 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 4.67-4.85(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.60(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.81(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.23(\mathrm{~m}, 6 \mathrm{H})$, $7.54-7.69(\mathrm{~m}, 3 \mathrm{H}), 8.52-8.71(\mathrm{~m}, 1 \mathrm{H}), 9.01(\mathrm{dq}, J=5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.2,31.3,32.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 38.5,55.7,79.5(\mathrm{~m}), 114.67(\mathrm{~d}, J=2.3$ $\mathrm{Hz}), 120.2$ (dd, $J=13.9,7.2 \mathrm{~Hz}$ ), 121.1, 122.7, 124.7 (d, $J=2.5 \mathrm{~Hz}$ ), 125.6, 125.9 (d, $J=3.1$ $\mathrm{Hz}), 126.9,127.2,127.2,127.7,127.8,128.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 129.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 132.6$, $133.9,141.8(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 150.5,155.2(\mathrm{~d}, J=7.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -1.33;IR 3166, 2934, 1610, 1590, 1510, 1219, 995, $866 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+} 559.1529$; Found 559.1530.


5-chloroquinolin-8-yl (2-phenylpent-3-en-1-yl) (4methoxyphenyl)phosphoramidate

Compound 41: Synthesized using Procedure B; Purified using $28 \%$ ethyl acetate in hexane; (Colorless solid, $865 \mathrm{mg}, 17 \%$ yield) (cis/trans mixture); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.54-1.66(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.52(\mathrm{~m}, 2 \mathrm{H}), 5.47-5.68$ (m, 2H), 6.72 (ddq, $J=10.8,6.8,4.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.89-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.43-7.62(\mathrm{~m}, 3 \mathrm{H}), 8.59(\mathrm{dt}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.3,43.9(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 55.7,71.0(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 114.6,120.4(\mathrm{t}$, $J=6.3 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 122.6,126.8,127.1(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 127.6,128.0,128.1$,
128.5, 128.6, 129.4 (d, $J=9.3 \mathrm{~Hz}), 130.1,132.3,134.5,141.0(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 145.5,150.1$, $155.3 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.75$; IR 3166, 3061, 1590, 1510, 1220, 1032, 875 $\mathrm{cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+} 531.1216$; Found 531.1214.

(E)-5-chloroquinolin-8-yl hex-3-en-1-yl (2,4-dimethoxyphenyl)phosphoramidate

Compound 83: Synthesized using Procedure A; Purified using 25\% ethyl acetate in hexane; (Red oil, $1.67 \mathrm{~g}, 35 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.89$ $2.05(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.49(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{dt}, J=7.9,6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.33(\mathrm{dtt}, J=15.2,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.54(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.43(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{ddd}, J=11.9,8.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.98$ (dd, $J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ );
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 13.7,25.6,33.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 55.6,55.7,67.8(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}), 99.1,104.2,117.9(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 122.5(\mathrm{~m}), 123.6,126.6(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}), 127.4(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 127.6(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 133.4,135.5,141.8(\mathrm{~d}, J=4.3 \mathrm{~Hz})$, 145.9 (d, $J=7.2 \mathrm{~Hz}$ ), 149.0, 149.1, 150.6, 155.2; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.40$ (q, $J=8.3 \mathrm{~Hz}$ ); IR 2961, 1590, 1515, 1207, 1034, $873 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{P}^{+} 477.1346$; Found 477.1342.

(E)-5-chloroquinolin-8-yl hex-3-en-1-yl p-tolylphosphoramidate

Compound 84: Synthesized using Procedure A; Purified using $25 \%$ ethyl acetate in hexane; (Colorless solid, $1.08 \mathrm{~g}, 25 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.96 (p, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{qt}, J=7.0,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.28-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{dt}, J=15.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.69$ (m, 3H), 8.56 (dd, $J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{dd}, J=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,20.7,25.7,33.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 67.8(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 118.1(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 122.6,123.5,126.7,127.5,127.7,129.8,131.3,133.7,135.6$, $136.8,141.7(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 145.7(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 150.6 ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -0.92 (q, $J=7.9 \mathrm{~Hz}$ ); IR 2961, 2242, 1615, 1568, 1124, $873 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{PNa}^{+} 453.1111$; Found 453.1112.

Compound 85: Synthesized using Procedure A; Purified using 25\% ethyl acetate in hexane; (Colorless oil, $833 \mathrm{mg}, 20 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.96 (qdd, $J=7.5,6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.43 (qd, $J=6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.30 (dt, $J=7.9,6.9$ Hz, 2H), 5.35 (dtt, $J=15.3,6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (dtt, $J=15.4,6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (tt, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dq}, J=7.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.64$ (m, 3H), $8.59(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,25.6,33.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 67.8(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=7.9$ Hz ), 120.7 (d, $J=3.7 \mathrm{~Hz}$ ), 121.8, 122.6, 123.4, 126.6 (d, $J=2.3 \mathrm{~Hz}$ ), 127.5, 127.7 (d, $J=$ $2.4 \mathrm{~Hz}), 129.2,133.6,135.6,139.5,141.6(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 145.7(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 150.6 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.14$ (d, $J=9.4 \mathrm{~Hz}$ ); IR 3170, 2963, 1604, 1497, 1230, 1069, $973 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{P}^{+} 417.1135$; Found 417.1134.

(E)-5-chloroquinolin-8-yl hex-3-en-1-yl (3,5-dimethylphenyl)phosphoramidate

Compound 86: Synthesized using Procedure A; Purified using $28 \%$ ethyl acetate in hexane; (Colorless solid, $1.11 \mathrm{~g}, 25 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.96 (p, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.43(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.30-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{dt}, J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H}), 7.53-7.67$ $(\mathrm{m}, 3 \mathrm{H}), 8.59(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.03(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,21.4,25.6,33.5(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 67.7(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=7.9$ $\mathrm{Hz}), 120.5(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 122.6,123.5,123.7,126.6,127.4,127.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 133.5$, $135.5,138.8,139.2,141.7(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 145.7(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 150.6 ;{ }^{31} \mathrm{P}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-1.01\left(\mathrm{q}, J=8.8 \mathrm{~Hz}\right.$ ); IR 3196, 2961, 1457, 1223, 1013, $873 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{P}^{+} 445.1448$; Found 445.1447.

(E)-5-chloroquinolin-8-yl hex-3-en-1-yl (4-ethoxyphenyl)phosphoramidate

Compound 87: Synthesized using Procedure A; Purified using 25\% ethyl acetate in hexane; (Colorless solid, $823 \mathrm{mg}, 18 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.27$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.30-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (t, $J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.65(\mathrm{~m}, 3 \mathrm{H}), 8.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.01$ (dd, $J=4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,15.0,25.7,33.6(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}), 63.8,67.8(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 115.3,120.0(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 120.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 122.7$, $123.5,126.8,127.6,127.8,132.3,133.9,135.6,141.7,145.8$ (d, $J=6.8 \mathrm{~Hz}), 150.6,154.5$; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-0.59$ (q, $J=8.2 \mathrm{~Hz}$ ); IR 3178, 2961, 1604, 1497, 1236, 1034, $883 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}^{+} 461.1397$; Found 461.1396.

## IV. General Procedure C: Oxidative Cyclization of alkenyl phosphoramidates

A 10 mL microwave vial with a magnetic stirring pellet was charged with phosphoramidate starting material ( $0.2 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.2$ mmol, 1 equiv) followed by acetonitrile ( 4 mL , final concentration: 0.05 M ). The reaction mixture was sparged with oxygen for fifteen minutes, and then the vial was sealed. The reaction vial was affixed with a balloon of $\mathrm{O}_{2}(\sim 1 \mathrm{~atm})$, submerged in an oil bath preheated to $55^{\circ} \mathrm{C}$, and kept at this temperature for 65 hours. Subsequently, the reaction mixture was filtered through a small plug of silica and evaporated to dryness under vacuum. The resulting crude mixture was then purified by chromatography on silica gel (specific conditions are associated with each product) to afford the corresponding products.

## V. Characterization of Cyclophosphoramidate Products

Note: In almost all cases, unless explicitly indicated, diastereomers have been fully separated and characterized individually. Combined yields and diastereomeric ratios are reported in the main text for the sake of clarity.

Compound 42

(E)-3-(4-methoxyphenyl)-2-phenoxy-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2 -oxide

Compound 42 and 52: Synthesized using General Procedure C; Purified using 25-45\% ethyl acetate in hexane; 52.5 mg , Yield $=73 \%, \mathrm{Dr}=1: 1.3$.

Data for major diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.5$ (dd, $J=6.5$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.1$ (dtdd, $J=14.3,4.1,2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.1-2.3(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.3$ (ddt, $J=12.2,8.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.3-4.5(\mathrm{~m}, 2 \mathrm{H}), 5.2(\mathrm{ddq}, J=15.2,8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.4$ - $5.6(\mathrm{~m}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 3 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,33.7(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 55.7,63.2(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 67.2(\mathrm{~d}, J=7.3 \mathrm{~Hz})$, 114.3 (d, $J=1.5 \mathrm{~Hz}$ ), 120.4 (d, $J=4.8 \mathrm{~Hz}$ ), 124.7, 129.7, 129.8, 130.2 (d, $J=3.4 \mathrm{~Hz}$ ), 130.7 (d, $J=7.7 \mathrm{~Hz}), 132.8,151.7(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 158.3 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.6(\mathrm{~d}$,
$J=20.6 \mathrm{~Hz}$ ); IR 2920, 1509, 1344, 1220, 943, $742 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{P}^{+} 360.1365$; Found 360.1361.

Data for minor diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.6$ (dd, $J=6.5$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.0(\mathrm{dtdd}, J=14.3,5.1,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.3-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1$ (ddd, $J=18.1,8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.4$ (dddd, $J=16.6,11.1,5.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.5-4.7$ (m, $1 \mathrm{H}), 5.3-5.5(\mathrm{~m}, 1 \mathrm{H}), 5.6-5.8(\mathrm{~m}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1(\mathrm{ddq}, J=8.5,6.8,1.1 \mathrm{~Hz}$, 1H), $7.2-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.7,32.4(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 55.4,64.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 65.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.4$, 120.3 (d, $J=4.9 \mathrm{~Hz}), 124.5,128.7,129.1(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.22,129.24,134.4(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}), 151.3(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 158.1 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.9(\mathrm{td}, J=17.3$, 7.8 Hz ); IR 2853, 1509, 1280, 914, $750 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H] Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{P}^{+} 360.1365$; Found 360.1364 .

(E)-3-(benzo[d][1,3]dioxol-5-yl)-2-phenoxy-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2 -oxide

Compound 43: Synthesized using General Procedure C; Purified using 18-25\% ethyl acetate in hexane; 42.6 mg , Yield $=57 \%, \mathrm{Dr}=1.73: 1$.

Data for major diastereomer: Yellow solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.54$ (dd, $J=6.3$, $1.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.27(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{tt}, J=8.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-$ $4.52(\mathrm{~m}, 2 \mathrm{H}), 5.21$ (ddq, $J=15.2,8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dq}, J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (s, $2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dt}, J=10.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ $7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.7,33.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 63.3,67.1(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}), 101.5,108.0,110.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 122.7(\mathrm{~d}, J=3.7 \mathrm{~Hz})$, $124.6,129.7$ (d, $J=2.9 \mathrm{~Hz}$ ), 130.3, 130.4, 133.7, 146.5, 147.8, 151.5; ${ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\mathrm{CDCl}_{3}$ ) $\delta$-4.79. IR 2918, 1591, 1502, 1485, 1284, 1191, $922 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{PNa}^{+}$396.0977; Found 396.0955.

Data for minor diastereomer: Yellow oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.66$ (dd, $J=6.4$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.52(\mathrm{~m}, 1 \mathrm{H}), 4.09$ (ddt, $J=19.1,9.1,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.42 (dddd, $J=16.7,11.1,5.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.63(\mathrm{~m}, 1 \mathrm{H}), 5.44$ (dq, $J=15.4,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74$ (ddq, $J=15.3,8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 6.69-6.78(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 17.8,32.5(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 64.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 66.1(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 101.6,108.3$, $109.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 121.9(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 124.7,129.4,129.5,129.8$, $135.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 146.4,148.0,151.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -5.09 (m).IR 2919, 1503, 1483, 1282, 1192, 1010, $915 \mathrm{~cm}^{-1}$; ; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{PNa}^{+}$396.0977; Found 396.0964.

(E)-3-(3,4-dimethoxyphenyl)-2-phenoxy-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 44: Synthesized using General Procedure C; Purified using 28-40\% ethyl acetate in hexane; 42.1 mg , Yield $=54 \%, \mathrm{Dr}=1.19: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.52$ (dd, $J=6.4$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}$ ), 2.09 (dd, $J=14.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.19 (dtd, $J=14.1,9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{td}, J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.55(\mathrm{~m}, 2 \mathrm{H}), 5.23$ (ddt, $J=$ $15.2,8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dq}, J=13.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-$ $6.83(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{dt}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7,33.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 56.1,63.2,67.1,67.1,111.0$, $112.9,120.2(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 121.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 124.6,129.56,129.7,130.4(\mathrm{~d}, J=7.8$ Hz ), 132.9, 148.1, 148.9, 151.20; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.73$ (d, $J=20.2 \mathrm{~Hz}$ ). IR $2960,1592,1512,1234,1026,920,764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PNa}^{+}$412.1290; Found 412.1298.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.65$ (dd, $J=6.5$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{dq}, J=11.9,4.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{ddt}, J=14.7,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{ddt}, J=18.1,9.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{tdd}, J=$ $10.4,7.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dq}, J=13.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.80(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.78(\mathrm{~m}$, $2 \mathrm{H}), 6.84(\mathrm{dt}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,32.5(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 55.9,56.1$, $64.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 66.1(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 111.3,112.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=3.7 \mathrm{~Hz})$, 120.5 (d, $J=5.0 \mathrm{~Hz}$ ), 124.7, 129.3, 129.7, 134.7 (d, $J=3.0 \mathrm{~Hz}$ ), 147.8, 149.1, 151.4, 151.5; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.04(\mathrm{t}, J=19.9 \mathrm{~Hz}$ ). IR 2921, 1592, 1513, 1278, 1024, 915, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PNa}^{+} 412.1290$; Found 412.1294.

(E)-3-(3,5-dimethylphenyl)-2-phenoxy-4-(prop-1-en-1-yl)-1,3,2oxazaphosphinane 2 -oxide

Compound 45: Synthesized using General Procedure C; Purified using 25-35\% ethyl acetate in hexane; 26.4 mg , Yield $=37 \%, \mathrm{Dr}=1.47: 1$.

Data for major diastereomer: Colorless solid; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.56$ (dd, $J=$ $6.7,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.10-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 4.35(\mathrm{ddd}, J=12.6,7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39-4.51(\mathrm{~m}, 2 \mathrm{H}), 5.27$ (ddd, $J=15.3,7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (dq, $J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7,21.4,33.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 62.5,67.0(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=5.1$ $\mathrm{Hz}), 124.7,125.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 128.1,129.4,129.7,130.1(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 138.4,139.9$, $151.5(\mathrm{~d}, J=8.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.27(\mathrm{~d}, J=18.6 \mathrm{~Hz})$. IR 2920, 2851, 1594, 1286, 1038, 915, 830, $690 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{PNa}^{+}$380.1392; Found 380.1375.

Data for minor diastereomer: Colorless solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.57$ (dd, $J$ $=6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{ddt}, J=15.0,10.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{ddt}, J=15.8,11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{tdd}, J=10.5,7.8$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dq}, J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{ddq}, J=15.3,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ $(\mathrm{s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.29(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,21.5,32.4(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 63.7,65.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=5.0$ $\mathrm{Hz}), 124.7,125.1,125.1,128.1,128.8,129.7(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 138.8,141.9(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, $151.5 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.29(\mathrm{td}, J=17.4,7.5 \mathrm{~Hz}$ ). IR 2916, 1667, 1594, 1488, 1206, 1284, 1070, 914, 828, $774 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{PNa}^{+}$380.1392; Found 380.1397.

(E)-3-(4-ethoxyphenyl)-2-phenoxy-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 46: Synthesized using General Procedure C; Purified using 22-30\% ethyl acetate in hexane; 45.6 mg , Yield $=61 \%, \mathrm{Dr}=1.44: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.53$ (dd, $J=6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.06-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dtd}, J=14.0,9.7,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{ddt}, J=12.3,8.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.54(\mathrm{~m}, 2 \mathrm{H})$, 5.22 (ddt, $J=15.3,8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dq}, J=15.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.84(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 14.9,17.6,33.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 63.1,63.7,67.1(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 114.7,120.2(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}), 124.5,129.6,129.6,130.1(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 132.4,151.6$ (d, $J=8.2 \mathrm{~Hz}$ ), 157.5; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.64(\mathrm{~d}, J=20.3 \mathrm{~Hz}$ ). IR 2981, 1591, 1507, 1490, 1204, 1047, 916, $733 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{PNa}^{+}$396.1341; Found 396.1344.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.62-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddt}, J=14.6,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{ddq}, J=18.4,9.2,5.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (dddd, $J=16.7,11.2,5.3$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{tdd}, J=10.6,8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.77(\mathrm{~m}, 1 \mathrm{H})$, $6.78-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.9,17.8,32.5(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 63.7,64.5(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $66.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 115.0,120.5(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 124.6,129.2,129.4(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.7$, $134.3(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 151.5(\mathrm{~d}, J=8 \mathrm{~Hz}), 157.6 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.85(\mathrm{~m})$. IR 2978, 2917, 1591, 1508, 1201, 1010, 912, $815 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{PNa}^{+} 396.1341$; Found 396.1339.

(E)-3-(2,4-dimethoxyphenyl)-2-phenoxy-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 47: Synthesized using General Procedure C; Purified using 20-30\% ethyl acetate in hexane; 28.04 mg , Yield $=36 \%, \mathrm{Dr}=2: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.50$ (dd, $J=6.6$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.98-2.18(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.36-4.58(\mathrm{~m}, 3 \mathrm{H}), 5.23$ (ddq, $J=15.1,8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dq}, J=15.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35-6.49(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.14$ $(\mathrm{m}, 2 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.5,33.2(\mathrm{~d}, J=4.2$ $\mathrm{Hz}), 55.4,61.6,67.1,67.2,99.4,103.9,119.9(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 120.8,123.9,128.6,129.3$, $130.2(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 132.8,151.8,158.1,159.8 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.75(\mathrm{~d}, J$ $=20.1 \mathrm{~Hz}$ ); IR 2918, 1607, 1587, 1507, 1205, 1041, 998, $916 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PNa}^{+} 412.1290$; Found 412.1295.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.61(\mathrm{dd}, 3 \mathrm{H}), 2.12$ (ddt, $J=14.4,6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.39(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dq}, J=$ $14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52$ (ddd, $J=12.0,5.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.33$ (ddt, $J=15.5,7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.59 (ddq, $J=15.2,8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7,31.7,55.6,56.0,62.8,66.7(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 100.2,104.1,120.6$ $(\mathrm{d}, J=5.0 \mathrm{~Hz}), 123.2,124.4,128.3,129.6,130.4,131.8,156.5,151.9,159.9 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.36(\mathrm{q}, J=13.0 \mathrm{~Hz}$ ); IR 2928, 1601, 1586, 1513, 1202, 1012, 908, $761 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PNa}^{+} 412.1290$; Found 412.1286.

(E)-2-phenoxy-4-(prop-1-en-1-yl)-3-(p-tolyl)-1,3,2-oxazaphosphinane 2-oxide

Compound 48: Synthesized using General Procedure C; Purified using 18-25\% ethyl acetate in hexane; 36.4 mg , Yield $=53 \%, \mathrm{Dr}=1.4: 1$.

Data for major diastereomer: Colorless solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53$ (dd, $J=$ $6.3,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.15$ (dddd, $J=27.0,14.6,9.7,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 4.36$ (tt, $J=8.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.51(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{ddt}, J=15.2,7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.60(\mathrm{~m}, 1 \mathrm{H})$, $7.09(\mathrm{~m}, J=8.4 \mathrm{~Hz}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.6,21.1,33.4(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 62.6,66.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=5.0$ $\mathrm{Hz}), 124.5,128.0(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.5,129.5,129.6,130.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 135.9,137.5$, 151.7; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.02(\mathrm{~d}, J=19.8 \mathrm{~Hz}$ ). IR 3028, 2918, 1590, 1489, 1283, 995, 916, $532 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{PNa}^{+}$ 366.1235; Found 366.1231.

Data for minor diastereomer: Yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.65$ (dd, $J=$ $6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.93-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{ddt}, J=14.6,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.19 (ddt, $J=18.0,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.49$ (m, 1H), 4.59 (tdd, $J=10.6,7.9,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45(\mathrm{dq}, J=15.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddq}, J=15.3,8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.8,21.1,32.5(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 63.8(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 66.0$
(d, $J=7.3 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 124.6,127.3(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 129.0,129.7,129.8$, $135.9,139.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 151.4,151.5 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.22(\mathrm{~m})$. IR 2918, 1591, 1489, 1283, 1202, 915, $813 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M+Na] Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{PNa}^{+} 366.1235$; Found 366.1223 .

(E)-2-phenoxy-3-phenyl-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 49: Synthesized using General Procedure C; Purified using 23-30\% ethyl acetate in hexane; 19.1 mg , Yield $=29 \%, \mathrm{Dr}=1.4: 1$.

Data for major diastereomer: Colorless solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52-1.58(\mathrm{~m}$, $3 \mathrm{H}), 2.10-2.30(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.55(\mathrm{~m}, 3 \mathrm{H}), 5.19-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.57$ (ddt, $J=15.6$, $7.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{ddq}, J=7.2,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.44(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 17.6,33.3(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 62.4,67.0(\mathrm{~d}, J=7.5$ $\mathrm{Hz}), 120.2(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 124.6,126.1,127.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 128.9,129.7,130.1,130.2$, 140.4, 151.6; ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-5.39$ (d, $J=20.2 \mathrm{~Hz}$ ). IR 3045, 2986, 2305, 1592, 1490, 1264, 1007, 925, 815, 703 $\mathrm{cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{PNa}^{+}$352.1079; Found 352.1079.

Data for minor diastereomer :Colorless solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.65$ (dd, $J=$ $6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{ddt}, J=14.6,9.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.34(\mathrm{~m}$, $1 \mathrm{H}), 4.45$ (ddt, $J=16.0,11.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{tdd}, J=10.8,8.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (dq, $J=$ $15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{ddq}, J=15.4,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.26$ (m, 2H), 7.29 - $7.35(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 17.8,32.4(\mathrm{~d}, J=6.1 \mathrm{~Hz})$, $63.6,66.1(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 124.8,126.1,127.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 129.1$, $129.2,129.6,129.8,142.2,151.5 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.47(\mathrm{td}, J=17.3,7.7$ Hz). IR 2918, 1732, 1592, 1488, 1279, 1201, 1012, 915, $758 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{PNa}^{+} 352.1079$; Found 352.1070.


3-(4-methoxyphenyl)-2-phenoxy-4-vinyl-1,3,2-oxazaphosphinane 2-oxide

Compound 50 Synthesized using General Procedure C; Purified using 25-40\% ethyl acetate in hexane; 35.9 mg , Yield $=52 \%, \mathrm{Dr}=1: 1.3$.

Data for major diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.0-2.2(\mathrm{~m}, 1 \mathrm{H})$, $2.2-2.3(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.3-4.6(\mathrm{~m}, 3 \mathrm{H}), 5.0(\mathrm{dq}, J=10.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.1(\mathrm{dt}, J=$ $17.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.6(\mathrm{ddd}, J=17.1,10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.1(\mathrm{~m}, 3 \mathrm{H})$, 7.2 - $7.3(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.2(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 55.4,63.5(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}), 66.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.1,118.2,120.1(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 124.5,129.6,129.8$ (d, $J=3.5 \mathrm{~Hz}), 132.4,137.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 151.4,158.1 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.0$
(d, $J=20.7 \mathrm{~Hz}$ ); IR 3054, 2917, 1507, 1227, 1040, $914,807 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{PNa}^{+}$368.1028 Found 368.1008.

Data for minor diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.0-2.1(\mathrm{~m}, 1 \mathrm{H})$, $2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1-4.3(\mathrm{~m}, 1 \mathrm{H}), 4.4$ (dddd, $J=16.6,11.1,5.3,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.6 (dddd, $J=10.9,9.7,8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.1(\mathrm{dt}, J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.1(\mathrm{dt}, J=10.4,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.1$ (ddd, $J=17.1,10.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 1 \mathrm{H}), 7.2-7.3$ $(\mathrm{m}, 4 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.9(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 55.4$, $64.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 65.9(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 114.5,117.9,120.3(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 124.6,129.1(\mathrm{~d}$, $J=3.5 \mathrm{~Hz}), 129.6,134.3,136.8,151.3,158.1 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.1(\mathrm{td}, J=$ $17.0,7.7 \mathrm{~Hz}$ ); IR 3070, 1508, 1280, 1004, 911, 809, 690; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$ Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{PNa}^{+} 368.1028$ Found 368.1010.

(E)-3-(4-methoxyphenyl)-2-phenoxy-4-styryl-1,3,2-oxazaphosphinane 2-oxide

Compound 51: Synthesized using General Procedure C; Purified using 30-40\% ethyl acetate in hexane; 50.6 mg , Yield $=60 \%, \mathrm{Dr}=2.2: 1$.

Data for major diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.2$ (dq, $J=14.3$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.2-2.3(\mathrm{~m}, 1 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.4-4.6$ (m, 3H), 5.9 (dd, $J=15.8,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.3(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 3 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 3 \mathrm{H}), 7.2$ $-7.2(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.3(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 55.3,63.4(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}), 67.1(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 114.3(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 124.8,126.4$, 128.0, 128.45 (d, $J=7.2 \mathrm{~Hz}), 128.52,129.6,129.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 131.9,133.2$ (d, $J=1.6$ $\mathrm{Hz}), 136.0,151.2(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 158.3 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.0$ (d, $J=19.8$ Hz); IR 2960, 1508, 1279, 917, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NNaO}_{4} \mathrm{P}^{+} 444.1335$ Found 444.1383.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.0-2.1(\mathrm{~m}, 1 \mathrm{H})$, $2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 4.2-4.3(\mathrm{~m}, 1 \mathrm{H}), 4.3-4.5(\mathrm{~m}, 1 \mathrm{H}), 4.5-4.7(\mathrm{~m}, 1 \mathrm{H}), 6.3$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.4 (dd, $J=15.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.7-6.8(\mathrm{~m}, 2 \mathrm{H}), 7.1$ (ddt, $J=8.2,6.0$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.6(\mathrm{~d}, J=5.9 \mathrm{~Hz})$, $55.7,64.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 66.2(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.8,120.6(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 124.9,126.8$, $128.2,128.3,129.0,129.6$ (d, $J=3.5 \mathrm{~Hz}), 130.0,133.1,134.6,136.5,151.6$ (d, $J=8.0 \mathrm{~Hz}$ ), $158.5 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.1$ (td, $J=17.1,8.0 \mathrm{~Hz}$ ); IR 2928, 1508, 1280, 912 , $807 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NNaO}_{4} \mathrm{P}^{+} 444.1335$; Found 444.1374.

(E)-4-(4-fluorostyryl)-3-(4-methoxyphenyl)-2-phenoxy-1,3,2-oxazaphosphinane 2-oxide

Compound 53: Synthesized using General Procedure C; Purified using 30-40\% ethyl acetate in hexane; 54.5 mg , Yield $=62 \%, \mathrm{Dr}=1: 1.1$.

Data for major diastereomer: Light yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.1-2.4$ (m, 2H), 3.7 (s, 3H), $4.4-4.7$ (m, 3H), 5.9 (dd, $J=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.4(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.0(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.2(\mathrm{~m}, 5 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 33.4$ (d, $J=4.7 \mathrm{~Hz}$ ), 55.4, 63.1, 66.9 (d, $J=7.2 \mathrm{~Hz}$ ), 114.3 (d, $J=1.5 \mathrm{~Hz}), 115.4,115.6,120.1$ (d, $J=4.8 \mathrm{~Hz}), 124.5,128.0$ (d, $J=8.1 \mathrm{~Hz}), 128.6$ (d, $J$ $=9.1 \mathrm{~Hz}), 129.6,129.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 131.8,132.4,151.4(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 158.2$, 162.5 (d, $J=245 \mathrm{~Hz}$ ); ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.0\left(\mathrm{~d}, J=20.4 \mathrm{~Hz}\right.$ ); ${ }^{19} \mathrm{~F}$ NMR ( 471 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-113.8$ (td, $J=8.6,4.3 \mathrm{~Hz}$ ); IR 2921, 1594, 1508, 1229, 1279, 1027, 919, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + K] Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NFKO}_{4} \mathrm{P}^{+} 478.0986$; Found 478.0992 .

Data for minor diastereomer: Light brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) 8.0 - 2.2 ( m , $1 \mathrm{H}), 2.6$ (ddt, $J=14.3,9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.8$ (s, 3H), 4.3 (ddt, $J=17.3,7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.4$ $-4.6(\mathrm{~m}, 1 \mathrm{H}), 4.6-4.7(\mathrm{~m}, 1 \mathrm{H}), 6.2-6.4(\mathrm{~m}, 2 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 6.9-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.1$ - $7.2(\mathrm{~m}, 1 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 6 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 32.3 (d, $J=6.1 \mathrm{~Hz}), 55.4,64.4$ (d, $J=3.0 \mathrm{~Hz}$ ), 66.0 (d, $J=7.4 \mathrm{~Hz}$ ), 114.5, 115.6 (d, $J=21.6$ $\mathrm{Hz}), 120.3$ (d, $J=5.0 \mathrm{~Hz}), 124.7,127.6,128.0$ (d, $J=8.0 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.7$, $131.6,132.3$ (d, $J=3.5 \mathrm{~Hz}), 134.2,151.3$ (d, $J=8.1 \mathrm{~Hz}$ ), $158.2,162.6$ (d, $J=247.6 \mathrm{~Hz}$ ); ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.1$ (td, $J=16.9,8.1 \mathrm{~Hz}$ ); ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ -113.6 (m); IR 2959, 1594, 1507, 1281, 1202, 1011, 914, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NFKO}_{4} \mathrm{P}^{+} 478.0986$; Found 478.1005.

$2 \cdot(((E)$-hex-3-en-1-yl) oxy)-3-(4-methoxyphenyl)-4-((E)-prop-1-en-1-y $)$-1,3,2-oxazaphosphinane 2-oxide
Compound 54: Synthesized using General Procedure C; Purified using 30-40\% ethyl acetate in hexane; 46 mg , Yield $=63 \%, \mathrm{Dr}=2.4: 1$.

Data for major diastereomer: Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 3 H ), 1.62 (dd, $J=6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.88$ (dt, $J=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.33$ $-2.44(\mathrm{~m}, 3 \mathrm{H}), 3.77$ (s, 3H), 4.04 (ddp, $J=12.2,6.4,3.1 \mathrm{~Hz}, 3 \mathrm{H}), 4.29-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.39$ - $4.46(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.46(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.71(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.20$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8,17.6,25.8,33.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 33.8(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}), 55.5,62.9,66.2(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 66.7(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 114.0,124.2,129.1,129.8$ (d, $J=2.9 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 133.3,135.2,157.9 ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
0.42 (d, $J=18.1 \mathrm{~Hz}$ ). IR 2960, 1607, 1508, 1236, 1021, $994 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{PNa}^{+}$388.1654; Found 388.1653.

Data for minor diastereomer: Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 3 H ), 1.49 (dd, $J=6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.99(\mathrm{tt}, J=9.0,5.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.04-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.24$ $-2.29(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{tt}, J=8.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (ddd, $J$ $=17.2,7.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.28-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.52$ (dtt, $J=15.6,6.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.81(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8,17.8,25.8,32.81(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 33.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 55.52$, $64.14(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 65.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 66.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 114.34,124.43,128.73$, $129.28(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 130.19,134.88(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 135.27,157.89 ;{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.62(\mathrm{q}, J=11.8,9.7 \mathrm{~Hz})$. ). IR 2960, 1734, 1508, 1243, 1009, 810, $792 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{PNa}^{+} 388.1654$; Found 388.1659.


Compound 55: Synthesized using General Procedure C; Purified using 20-25\% ethyl acetate in hexane; 42.4 mg , Yield $=55 \%, \mathrm{Dr}=2.4: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 0.85$ (ddd, $J=9.3$, $7.0,1.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.05-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.39$ (dddd, $J=13.2,8.0,5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dd}$, $J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.14(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.74(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{tt}, \mathrm{J}=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.41(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.24(\mathrm{~m}, 1 \mathrm{H}), 5.44$ (dq, J = 15.4, 6.5 Hz, 1H), 6.78-6.81 (m, 2H), 7.15-7.19 (m, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.3,16.2(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 17.6,25.8,33.7(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 35.6(\mathrm{~d}, J=6.6$ $\mathrm{Hz}), 55.5,62.9,66.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 71.5(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.0,129.1,129.8(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, $130.9(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 133.3,157.9 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 0.47(\mathrm{~d}, \mathrm{~J}=18.9 \mathrm{~Hz}$ ). IR 2932, 1736, 1508, 1234, 1020, 992, $809 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{PNa}^{+} 376.1654$; Found 376.1662.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 0.90-0.99(\mathrm{~m}$, $6 \mathrm{H}), 1.21$ (ddd, J = 13.6, 7.9, 1.9 Hz, 1H), 1.49 (dddd, $J=12.5,9.5,4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.63 (dd, $J=6.4,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{dt}, J=12.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dt}, J=14.6,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{td}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.80-4.07(\mathrm{~m}, 3 \mathrm{H}), 4.38(\mathrm{dtd}, J=22.6,11.3$, $10.5,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{dq}, J=15.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.72(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.84(\mathrm{~m}, 2 \mathrm{H})$, 7.14 - $7.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl3) $\delta 11.3(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 16.4,17.8$, $25.9(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 32.7(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 35.6(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 55.5,63.9(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, $65.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 71.4(\mathrm{dd}, J=7.1,3.0 \mathrm{~Hz}), 114.4,128.7,129.2(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 130.2$, $134.9,157.8 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl} 3$ ) $\delta 0.69(\mathrm{~d}, J=18.5 \mathrm{~Hz}$ ); IR 2253, 1509, 1464, 1247, 1018, 904, $728 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{PNa}^{+}$ 376.1654; Found 376.1650.

(E)-2-(4-chloro-3-(trifluoromethyl)phenoxy)-3-(4-methoxyphenyl)-4-(prop-1-en-1-yl)-1,3,2oxazaphosphinane 2 -oxide

Compound 56:
Synthesized using General Procedure C; Purified using 30-40\% ethyl acetate in hexane; 63.7 mg , Yield $=69 \%$, $\mathrm{Dr}=1.1: 1$.

Data for major diastereomer: Colorless solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.5(\mathrm{dd}, J=$ $6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.0-2.3(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{tt}, J=8.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.4-4.6$ (m, 2H), 5.2 (ddq, $J=15.2,8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{dtd}, J=15.0,6.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-$ $6.9(\mathrm{~m}, 2 \mathrm{H}), 7.2$ (ddd, $J=10.6,8.9,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.5,33.3(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 55.4,63.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 67.3(\mathrm{~d}, J=7.4 \mathrm{~Hz})$, $114.2(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 119.5-119.8(\mathrm{~m}), 120.9,123.6,124.6(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 127.4,129.1$, $129.4,130.0(\mathrm{dd}, J=7.2,2.7 \mathrm{~Hz}), 131.7,132.5,150.1(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 158.3(\mathrm{~d}, J=1.8 \mathrm{~Hz})$; ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-4.9--4.6(\mathrm{~m}) ;{ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-63.0$; IR 2920, 1508, 1253, 1034, 988, $809 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NNaO}_{4} \mathrm{P}^{+}$484.0663; Found 484.0681.

Data for minor diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.7$ (dd, $J=6.5$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.0-4.2(\mathrm{~m}, 1 \mathrm{H}), 4.5$ (dddd, $J=16.6,11.2,5.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.6$ (dddd, $J=11.0,9.8,8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.3-5.5(\mathrm{~m}$, $1 \mathrm{H}), 5.6-5.8(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.5(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.51$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7,32.3(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 55.4,64.4(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}), 66.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 114.5,119.5-120.5(\mathrm{~m}), 120.9,123.6,124.9(\mathrm{~d}, J=4.3 \mathrm{~Hz})$, $127.6,129.2,129.5(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 129.7,132.6,133.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 149.9(\mathrm{~d}, J=7.7$ Hz ), 158.4; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.8\left(\mathrm{td}, J=17.2,8.2 \mathrm{~Hz}\right.$ ); ${ }^{19} \mathrm{~F}$ NMR ( 471 MHz , $\mathrm{CDCl}_{3}$ ) $\delta$-62.9; IR 2920, 1509, 1285, $937,811 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NNaO}_{4} \mathrm{P}^{+}$484.0663; Found 484.0698.

(E)-3-(4-methoxyphenyl)-2-(4-nitrophenoxy)-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 57: Synthesized using General Procedure C; Purified using 30-40\% ethyl acetate in hexane; 56.6 mg , Yield $=70 \%, \mathrm{Dr}=1: 1.1$.

Data for major diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.5$ (dd, $J=6.5$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.0-2.3(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{tt}, J=8.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.4-4.6(\mathrm{~m}, 2 \mathrm{H})$, 5.2 (ddq, $J=15.2,8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.4-5.6(\mathrm{~m}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 4 \mathrm{H})$, $8.0-8.2(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.5,33.3(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 55.4$, $63.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 67.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 125.4$,
129.79 (d, $J=7.7 \mathrm{~Hz}$ ), 129.86, 129.99, 130.0, 130.0, 131.5, $144.1,156.6$ (d, $J=8.2 \mathrm{~Hz}$ ), 158.3 (d, $J=1.8 \mathrm{~Hz}$ ); ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-5.3--5.0(\mathrm{~m})$; IR 2855, 1509, 1344, 1220, 913, $742 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}^{+} 405.1216$; Found 405.1230.

Data for minor diastereomer: light yellow oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.7$ (dd, $J=$ $6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1$ (ddd, $J=18.0,8.5,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.5$ (dddd, $J=16.7,11.1,5.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.5-4.7(\mathrm{~m}, 1 \mathrm{H}), 5.4-5.5(\mathrm{~m}, 1 \mathrm{H}), 5.7$ (ddq, $J=15.2,8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 2 \mathrm{H}), 8.1$ $-8.3(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.0,31.5(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 54.7,63.8$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}), 65.8(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 113.8,120.0(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 124.8,128.3,128.8(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}), 129.0,132.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 143.5,155.7(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 157.7 ;{ }^{31} \mathrm{P}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3(\mathrm{td}, J=17.5,8.0 \mathrm{~Hz})$; IR 2931, $1509,1218,905,741 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PNa}^{+}$427.1035; Found 427.1037.

(E)-2-(4-ethoxyphenoxy)-3-(4-methoxyphenyl)-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 58: Synthesized using General Procedure C; Purified using 25-40\% ethyl acetate in hexane; 27.4 mg , Yield $=34 \%, \mathrm{Dr}=1.4: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.4(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.5(\mathrm{dd}, J=6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.0-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.1-2.2(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.0(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.2-4.4(\mathrm{~m}, 1 \mathrm{H}), 4.4-4.5(\mathrm{~m}, 2 \mathrm{H}), 5.2(\mathrm{ddd}, J=15.3,8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.4$ $-5.5(\mathrm{~m}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 4 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.2(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.8,17.5,33.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 55.4,62.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 63.9,66.8(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 115.2,120.9(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 129.9$ (d, $J=3.5 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 132.6,144.9(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 155.6,157.9 ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-4.2\left(\mathrm{~d}, J=20.3 \mathrm{~Hz}\right.$ ); IR 2922, 1502, 1197, $915,823 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{P}^{+}$404.1627; Found 404.1617.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.4(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.6(\mathrm{dd}, J=6.3,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.4-2.5(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.0(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.0-4.2(\mathrm{~m}, 1 \mathrm{H}), 4.4(\mathrm{dddd}, J=16.6,11.1,5.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.6(\mathrm{dddd}, J=$ $11.0,9.6,8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.4(\mathrm{dqd}, J=15.3,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.7(\mathrm{ddq}, J=15.1,8.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 4 \mathrm{H}), 7.0-7.2(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.1$, $18.0,32.7(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 55.7,64.2,64.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 66.2(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 114.6,115.5$, $121.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 129.3,129.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 130.0,134.7,145.2(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 156.1$, 158.3; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.4$ (td, $J=16.5,7.8 \mathrm{~Hz}$ ); IR 2986, 1504, 1275, 1199, 912, $764 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{P}^{+}$404.1627; Found 404.1614.


Compound 59: Synthesized using General Procedure C; Purified using 30-40\% ethyl acetate in hexane; 42.6 mg , Yield $=55 \%, \mathrm{Dr}=1.4: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.2(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.5(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.0-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.1-2.2(\mathrm{~m}, 1 \mathrm{H}), 2.6(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.3(\mathrm{tt}, J=8.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.4-4.5(\mathrm{~m}, 2 \mathrm{H}), 5.1-5.3(\mathrm{~m}, 1 \mathrm{H}), 5.4-5.6$ $(\mathrm{m}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.0(\mathrm{~m}, 2 \mathrm{H}), 7.0-7.1(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.3(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 15.7,17.5,28.2,33.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 55.4,62.9(\mathrm{~d}, J=2.0 \mathrm{~Hz})$, $66.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 119.9(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 128.8,129.4(\mathrm{~d}, J=1.6 \mathrm{~Hz})$, 129.9 (d, $J=3.5 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 132.6,140.4,149.3(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 158.0(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.4(\mathrm{~d}, J=20.7 \mathrm{~Hz}$ ); IR 2964, 1507, 1277, 916, $750 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{PNa}^{+} 410.1497$; Found 410.1498.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.2(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.6(\mathrm{dd}, J=6.4,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.0(\mathrm{~m}, 1 \mathrm{H}), 2.4-2.5(\mathrm{~m}, 1 \mathrm{H}), 2.6(\mathrm{q}, J=7.6 \mathrm{~Hz}$, 2 H ), 3.8 ( $\mathrm{s}, 3 \mathrm{H}$ ), 4.1 (ddd, $J=17.7,9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.4 (dddd, $J=16.6,11.1,5.3,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.5-4.6(\mathrm{~m}, 1 \mathrm{H}), 5.3-5.5(\mathrm{~m}, 1 \mathrm{H}), 5.7-5.8(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1(\mathrm{~s}, 4 \mathrm{H})$, 7.2 - $7.2(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 16.0,18.0,28.5,32.7(\mathrm{~d}, J=5.9$ $\mathrm{Hz}), 55.7,64.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 66.1(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 114.6,120.4(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 129.1$, $129.3,129.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 129.9,134.7,140.8,149.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 158.3 ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-4.7$ (td, $J=17.1,7.9 \mathrm{~Hz}$ ); IR 2963, 1505, 1279, 1011, 910, $750 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{PNa}^{+} 410.1497$; Found 410.1498.

(E)-2-isopropoxy-3-(4-methoxyphenyl)-4-(prop-1-en-1-yl)-1,3,2oxazaphosphinane 2-oxide

Compound 60: Synthesized using General Procedure C; Purified using 30-40\% ethyl acetate in hexane; 39.7 mg , Yield $=61 \%$, $\mathrm{Dr}=3: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{dd}, J=6.5,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 4.14$ (tt, $J=8.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (ddd, $J=15.8,7.9,3.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.54 (ddd, $J=12.2$, $6.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{ddt}, J=15.3,8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dq}, J=15.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $-6.80(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl3) $\delta 17.6,23.8(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}), 33.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 55.5,62.9,66.1(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 71.6(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 113.9$, $128.9,129.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=7 \mathrm{~Hz}), 133.4,157.8 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl} 3$ )

ס-0.37; IR 3454, 2976, 1607, 1508, 1234, 984, 817, $571 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{PNa}^{+}$348.1341; Found 348.1352.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{dq}, J=15.3,4.1,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39$ (ddt, $J=14.1,9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3 H ), 4.04 (ddt, $J=13.9,8.9,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.64$ (dhept, $J=7.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dq}, J=15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.61-5.69(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.8,24.1(\mathrm{t}, J=5.1 \mathrm{~Hz}), 32.9(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 55.5,64.0,65.1(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, $71.7(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 114.3,128.6,129.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 130.3,135.0,157.9 ;{ }^{31} \mathrm{P}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{t}, J=13.4 \mathrm{~Hz})$. IR 3433, 2976, 1668, 1508, 1243, $977,811,564 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{PNa}^{+}$348.1341; Found 348.1334.

(E)-3-(4-methoxyphenyl)-2-(octyloxy)-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 61: Synthesized using General Procedure C; Purified using 25-30\% ethyl acetate in hexane; 43.5 mg , Yield $=55 \%, \mathrm{Dr}=2.4: 1$.

Data for major diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19-1.34(\mathrm{~m}, 10 \mathrm{H}), 1.50(\mathrm{dt}, J=6.6,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~h}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-$ $2.15(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{tt}, J=8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-$ $4.43(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{ddt}, J=15.3,8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dq}, J=15.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,17.6,22.8$, $25.6,29.2,29.3,30.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 31.8,33.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 55.5,63.3(\mathrm{~d}, J=2.7 \mathrm{~Hz})$, $66.6(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 67.9,114.2,129.6,130.1(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 132.4$, 158.3; IR 2924, 1771, 1509, 1236, 1159, 1031, $829 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H $]^{+}$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{P}^{+} 396.2304$; Found 396.2322.

Data for minor diastereomer: Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.24-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.39$ (ddt, $J=15.0,11.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{dd}, J=6.5,1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.64-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.89$ (dtd, $J=14.3,5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (ddt, $J=14.3,9.5,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.95-4.12(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.49(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{dq}, J=15.4,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59-5.71(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,17.8,22.8,25.9,29.3,29.4,30.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 31.9,32.8(\mathrm{~d}, J=5.4$ $\mathrm{Hz}), 55.5,64.0,65.3(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 67.1(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 114.4,128.7,129.2(\mathrm{~d}, J=3.6 \mathrm{~Hz})$, 130.3, 134.9, 157.9; IR 2924, 1581, 1509, 1272, 1244, 1011, $811 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{PNa}^{+} 418.2123$; Found 418.2112.


2-((5-chloroquinolin-8-yl)oxy)-3-(4-methoxyphenyl)-4-((E)-prop-1-en-1-y)-1,3,2-oxazaphosphinane 2 -oxide

Compound 62: Synthesized using General Procedure C; Purified using 33\% ethyl acetate in hexane; $66.7 \mathrm{mg}, 75 \%$ (in case of trans substrate) and $51 \mathrm{mg}, 57 \%$ (in case of cis substrate); single diastereomer; Colorless solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.7$ (dd, $J=6.5,1.7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.1-2.2(\mathrm{~m}, 1 \mathrm{H}), 2.5-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1(\mathrm{ddt}, J=18.9,9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.3$ (ddt, $J=19.6,11.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.0(\mathrm{tdd}, J=10.9,5.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.4-5.5(\mathrm{~m}, 1 \mathrm{H}), 6.4-$ $6.5(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.8(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 17.7,32.7(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 55.4,65.4(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 66.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.3$, $119.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.3,126.5(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 126.6,127.3,128.9,129.8(\mathrm{~d}, J=3.7 \mathrm{~Hz})$, $130.4,133.0,134.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 141.8(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 146.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 150.4,158.2$; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.0(\mathrm{td}, J=19.6,5.7 \mathrm{~Hz}$ ); IR 2915, 1509, 1279, 1034, 851 $\mathrm{cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{P}^{+} 467.0898$; Found 467.0908.

(E)-3-(4-methoxyphenyl)-2-(naphthalen-1-yloxy)-4-(prop-1-en-1-yl)-1,3,2-oxazaphosphinane 2-oxide

Compound 65: Synthesized using General Procedure C; Purified using 30\% ethyl acetate in hexane; 38.5 mg , Yield $=47 \%$, $\mathrm{Dr}=1: 1.1$.

Data for major diastereomer: Beige solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.5$ (dd, $J=6.5$, $1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.1$ (dtdd, $J=14.6,4.3,2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.2-2.3(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.4$ $-4.6(\mathrm{~m}, 3 \mathrm{H}), 5.2(\mathrm{ddq}, J=15.2,8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{dqd}, J=15.3,6.5,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.4(\mathrm{~m}, 3 \mathrm{H}), 7.4(\mathrm{dt}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.4-7.5(\mathrm{~m}, 2 \mathrm{H}), 7.6$ (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.8-7.9(\mathrm{~m}, 1 \mathrm{H}), 7.9-8.1(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.5,33.6(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 55.4,63.0(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 67.1(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 114.1$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 121.3,124.1,125.8,126.2(\mathrm{~d}, J=27.8 \mathrm{~Hz}), 126.5$, $126.5,127.8,129.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 132.4,134.7$, $147.2(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 158.1(\mathrm{~d}, J=1.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7(\mathrm{~d}, J=21.0$ Hz ); IR 2917, 1508, 1228, 1041, 915, $773 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{P}^{+} 410.1521$; Found 410.1527.

Data for minor diastereomer: Light brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.7$ (ddd, $J=$ $6.5,1.7,0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.2(\mathrm{~m}, 1 \mathrm{H}), 2.5-2.7(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1-4.3(\mathrm{~m}, 1 \mathrm{H})$, $4.4-4.6(\mathrm{~m}, 1 \mathrm{H}), 4.6$ (dddd, $J=12.6,10.3,7.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.5(\mathrm{dqd}, J=15.3,6.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.8$ (ddq, $J=15.3,8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.4(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 3 \mathrm{H}), 7.6-7.7(\mathrm{~m}, 1 \mathrm{H}), 7.8-7.9(\mathrm{~m}, 1 \mathrm{H}), 8.1-8.3(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7,32.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 55.4,64.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 66.1$ (d, $J=7.4 \mathrm{~Hz}), 114.4,114.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 121.7,124.0,125.8,126.0,126.3,127.9,129.1$, 129.5 (d, $J=3.7 \mathrm{~Hz}$ ), 129.7, 134.4, 134.8, 147.3, 147.4, 158.1; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.8$ (td, $J=17.5,7.6 \mathrm{~Hz}$ ); IR 2917, 1507, 1225, 1011, $909,770 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{PNa}^{+} 432.1341$; Found 432.1329.


2-((5-chloroquinolin-8-yl)oxy)-3-(4-methoxyphenyl)-4-((E)-styryl)-1,3,2-oxazaphosphinane 2-oxide

Compound 66: Synthesized using General Procedure C; Purified using 28\% ethyl acetate in hexane; 81.1 mg , Yield $=80 \%$, $\mathrm{Dr}>20: 1$;Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.12$ (ddt, $J=14.1,3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.19$ $-4.40(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{tdd}, J=11.4,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.59-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.07$ (dd, $J=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.1(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 55.5,65.8$ (d, $J=2.2 \mathrm{~Hz}), 66.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.6,119.6(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 122.6,126.7,126.7,127.6$, $127.9,128.7,129.2,129.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 132.7,133.3,134.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 136.9,141.9$ (d, $J=6.7 \mathrm{~Hz}$ ), 146.9, 146.9, 150.6, 158.5; ${ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.15(\mathrm{t}, J=20.4$ Hz). IR 2927, 2835, 1589, 1508, 1218, 1064, 1011, $807 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$529.1060; Found 529.1060.


Compound 67: Synthesized using General Procedure C; Purified using 30\% ethyl acetate in hexane; 65.5 mg , Yield $=61 \%$, $\mathrm{Dr}>20: 1$; Yellow Powder; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.06 (dtt, $J=14.0,3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 6 \mathrm{H}), 4.16-$ $4.29(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{tdd}, J=11.4,4.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.76$ $(\mathrm{m}, 3 \mathrm{H}), 6.80(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}$, $J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{dd}, J=4.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.2(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 55.5(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $66.1,66.7,66.8,111.0,114.6,120.8,122.5,125.9,126.7,126.8,126.9,127.1,127.5,128.9$, $129.3,129.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 133.4,134.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 141.9,146.8,146.9,150.6,156.7$, 158.4; ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-4.03(\mathrm{t}, J=20.4 \mathrm{~Hz}$ ). IR 2253, 1509, 1384, 1195, 1163, 905, $729 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{PNa}^{+}$ 559.1166; Found 559.1174.

Compound 68: Synthesized using General Procedure C; Purified using 30\% ethyl acetate in hexane; 69.8 mg , Yield $=65 \%$, $\mathrm{Dr}>20: 1$; Yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.04$ (ddq, $J=14.4,3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.66(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=3.9,1.2 \mathrm{~Hz}, 6 \mathrm{H}), 4.21$ (dddd, $J=24.9,13.6,8.4,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{ddt}, J=13.2,11.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.48-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{dt}, J=8.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.03$ (dd, $J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 33.0(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 55.4$, $55.5,65.8,66.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 112.8,113.0,114.6,119.5,119.7(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 122.5$, $126.8,127.5,129.6,129.6,129.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 132.6,133.4,134.5,138.3,141.8,146.8$, $146.9,150.8,158.5,159.9 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.12(\mathrm{t}, J=20.5 \mathrm{~Hz})$. IR 2961, 2238, 1509, 1274, 1062, 1019, 860, $778 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{P}^{+}$537.1346; Found 537.1343.


2-((5-chloroquinolin-8-yl)oxy)-3-(4-methoxyphenyl)-4-((E)-4-(trifluoromethyl)styryl)-1,3,2-oxazaphosphinane 2-oxide

Compound 69: Synthesized using General Procedure C; Purified using 32\% ethyl acetate in hexane; 56.3 mg , Yield $=49 \%$, $\mathrm{Dr}>20: 1$; Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.12$ (ddt, $J=13.9,3.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.31$ (ddt, $J=21.1,11.1$, $3.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.05(\mathrm{tdd}, J=11.6,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.86$ (m, 2H), $7.30-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J$ $=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=15.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.65$ (dd, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{dd}, J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.8(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 55.5,65.6,66.6(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 114.7,119.8(\mathrm{~d}, J=2.9$ $\mathrm{Hz}), 122.7,122.9,125.6(\mathrm{q}, J=4.1 \mathrm{~Hz}), 126.9,127.0,127.6,129.8,128.9,129.5,129.8(\mathrm{~d}$, $J=3.7 \mathrm{~Hz}), 131.4,131.9,133.7,134.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 140.4,146.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 150.5$, 158.6; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.25\left(\mathrm{t}, J=20.9 \mathrm{~Hz}\right.$ ). ${ }^{19} \mathrm{~F}$ NMR ( $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
$\delta$-62.48. IR 2933, 1590, 1509, 1322, 1064, 852, $733 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M +
$\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$597.0934; Found 597.0939.

$2 \cdot((5$-chloroquinolin-8-y) oxy)-4-((E)-4-(dimethylamino)styry) -3 -(4-methoxypheny) $-1,3,2$-oxazaphosphinane 2 -oxide
Compound 70: Synthesized using General Procedure C; Purified using 50\% ethyl acetate in hexane; 58.3 mg , Yield $=53 \%$, dr $>20: 1$; Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.0$ (ddt, $J=13.9,4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.5-2.6(\mathrm{~m}, 1 \mathrm{H}), 2.9(\mathrm{~s}, 6 \mathrm{H}), 3.6(\mathrm{~s}, 3 \mathrm{H}), 4.0-4.3(\mathrm{~m}, 2 \mathrm{H})$, $5.0(\mathrm{tdd}, J=11.4,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.1(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.5-6.6(\mathrm{~m}, 2 \mathrm{H}), 6.7-6.8(\mathrm{~m}$, $2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 3 \mathrm{H}), 7.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.5(\mathrm{dd}, J=8.6,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.8(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.5(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 33.3(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 40.5,55.4,66.1(\mathrm{~d}, J=2.2 \mathrm{~Hz})$, $66.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 112.4,114.4,119.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.4,124.6,125.2,126.6,126.6(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}), 127.4,127.7,129.9(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 132.5,133.1,134.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 141.8(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}), 146.9(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 150.2,150.6,158.3 . ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-3.9$ (t, $J=20.3 \mathrm{~Hz}$ ); IR 2923, 1607, 1508, 1218, 1010, $807,776 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClN}_{3} \mathrm{NaO}_{4} \mathrm{P}^{+} 572.1482$ Found 572.1456.

$2-((5$-chloroquinolin-8-yl) cxy$)-4-((E)-2$-(furan-3-yl)vinyl)-3-(4-methoxyphenyl)-1,3.2-oxazaphosphinane 2 -oxide

Compound 71: Synthesized using General Procedure C; Purified using 40\% ethyl acetate in hexane; 53.7 mg , Yield $=54 \%$, single diastereomer. Colorless solid; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.1-2.3(\mathrm{~m}, 1 \mathrm{H}), 2.6(\mathrm{ddt}, J=15.2,10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.3$ (dddd, $J=$ $29.2,18.9,10.2,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.0$ (dddd, $J=13.7,10.4,5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.1-6.3(\mathrm{~m}, 2 \mathrm{H})$, 6.3 (dd, $J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.2(\mathrm{dd}, J=15.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.3-7.4(\mathrm{~m}$, $3 \mathrm{H}), 7.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{dd}, J=8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.6$ (dd, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.1(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 32.7$ (d, $J=5.5 \mathrm{~Hz}), 55.4,65.4(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 66.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 108.3,111.4,114.5$, $119.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 121.1,122.4,126.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 126.7,127.3,127.5$, 129.7 (d, $J$ $=3.6 \mathrm{~Hz}), 133.2,134.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 141.6,142.1,146.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 150.6,152.3$, 158.3; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.4$ (td, $J=19.5,5.1 \mathrm{~Hz}$ ); IR 2950, 1508, 1560, 1237, 1063, 857, $749 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{KO}_{5} \mathrm{P}^{+}$ 535.0592; Found 535.0612.


2-((5-chloroquinolin-8-yl)oxy)-3-(4-methoxypheny $)^{\prime}-4-((E)-2$-(thiophen- - -yl)viny $)$-1,3.2-oxazaphosphinane 2 -oxide

Compound 72: Synthesized using General Procedure C; Purified using $40 \%$ ethyl acetate in hexane; 65.6 mg , Yield $=64 \%$, $\mathrm{Dr}>20: 1$; Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.1$ - 2.2 (m, 1H), 2.7 (ddt, $J=15.9,10.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.8 (s, 3H), 4.3 (dddd, $J=29.6,19.0$, $8.5,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.1$ (tdd, $J=11.3,5.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.5(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9$ (m, 2H), $6.9-7.0(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 1 \mathrm{H}), 7.3(\mathrm{dd}, J=15.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.3-7.4(\mathrm{~m}$, $2 \mathrm{H}), 7.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{dd}, J=8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.9(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.6$ $(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.1(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 32.7$ (d, $J=5.3 \mathrm{~Hz}), 55.4,65.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 66.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.5,119.6(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}), 122.5,124.7,125.9,126.1,126.6(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 127.4$, $127.4,128.3,129.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 133.1,134.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 141.7,141.8,146.7(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}), 150.8,158.4 ;{ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-4.2(\mathrm{td}, J=20.6,4.9 \mathrm{~Hz})$; IR 2989, $1590,1508,1267,1010,905,854,732 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{NaSO}_{4} \mathrm{P}^{+}$535.0624; Found 535.0605.

$2-((5$-chloroquinolin-8-y $y$ )oxy $)$-3-(4-methoxypheny $)$ )-4-((E)-pent-1-en-1-y $)-1,3,2$-oxazaphosphinane 2 -oxide
Compound 74 and 76: Synthesized using General Procedure C; Purified using 35\% ethyl acetate in hexane; 62.4 mg , Yield $=66 \%$ (in case of trans substrate) and $44 \%$ (in case of cis substrate), single diastereomer, Colorless solid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.8(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.3(\mathrm{~h}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.8-2.1(\mathrm{~m}, 2 \mathrm{H}), 2.2(\mathrm{dtdd}, J=13.1,3.9,2.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.1(\mathrm{ddt}, J=18.6,9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.4$ (ddt, $J=$ $19.4,11.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.9-5.1(\mathrm{~m}, 1 \mathrm{H}), 5.4$ (dt, $J=15.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.3$ (ddt, $J=15.2$, $9.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.4(\mathrm{~m}, 2 \mathrm{H}), 7.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.6$ (dd, $J$ $=8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.1(\mathrm{dd}, J$ $=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.2,21.7,32.3(\mathrm{~d}, J=5.8 \mathrm{~Hz})$, $33.8,55.1,65.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 66.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.0,119.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 122.1$, $126.4,126.5,127.0,128.7,129.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 132.7-133.8(\mathrm{~m}), 134.1,137.0,140.2$, 145.9 (d, $J=8.2 \mathrm{~Hz}$ ), 149.8, $158.0 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.0(\mathrm{td}, J=19.2,5.8$ Hz); IR 2958, 1509, 1246, 1035, 810, $787 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{P}^{+} 495.1211$; Found 495.1177 .


2-((5-chloroquinolin-8-yl)oxy)-3-(4-methoxyphenyl)-4-vinyl-1,3,2-oxazaphosphinane 2 -oxide

Compound 75: Synthesized using General Procedure C; Purified using 33\% ethyl acetate in hexane; 66.3 mg , Yield $=77 \%$; single diastereomer; Colorless solid; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.2(\mathrm{dtdd}, J=14.5,4.5,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.2(\mathrm{ddt}, J=$ $18.7,9.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.3(\mathrm{ddt}, J=19.5,11.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.0-5.1(\mathrm{~m}, 2 \mathrm{H}), 5.1(\mathrm{dt}, J=$ $10.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.8$ (ddd, $J=17.0,10.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 2 \mathrm{H})$, $7.4-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.8(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=$
$4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 32.3(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 55.4,66.0,66.5$ (d, $J=7.3 \mathrm{~Hz}$ ), 114.4, 117.9, 119.9, 122.4, 126.5, 126.8, 127.3, 129.6 (d, $J=3.8 \mathrm{~Hz}$ ), 133.1, $134.3,137.5,141.8(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 146.6(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 150.6,158.2 ;{ }^{31} \mathrm{P}$ NMR ( 202 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.2(\mathrm{td}, J=18.9,5.9 \mathrm{~Hz})$; IR 2932, $1589,1246,1063,852,749 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{P}^{+} 453.0741$; Found 453.0788.

ter-butyl $((E)-2 \cdot((5$-chloroquinolin-8-y)oxy)-3-(4-methoxypheny) -2 -oxido- $1,3,2$-oxazaphosphinan -4 -y)ally $)$ cartonate

Compound 77: Synthesized using General Procedure C; Purified using 45\% ethyl acetate in hexane; 69.6 mg , Yield $=62 \%$, single diastereomer; Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.4(\mathrm{~s}, 9 \mathrm{H}), 2.0-2.2(\mathrm{~m}, 1 \mathrm{H}), 2.6(\mathrm{ddt}, J=15.5,10.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.0-4.4$ (m, 2H), 4.6 (dd, $J=6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.0(\mathrm{tdd}, J=11.3,5.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.5-5.7(\mathrm{~m}, 1 \mathrm{H})$, $6.7-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0(\mathrm{ddt}, J=15.4,9.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 2 \mathrm{H})$, $7.8(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.1(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.7,32.3(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 55.4,64.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 66.4$ (d, $J=7.3 \mathrm{~Hz}), 66.7,82.2,114.5,119.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.4,126.5$ (d, $J=1.6 \mathrm{~Hz}), 126.7$, $127.2,127.3,129.6$ (d, $J=3.7 \mathrm{~Hz}), 133.1,134.1,134.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 141.6$ (d, $J=6.5 \mathrm{~Hz})$, $146.6(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 150.6,153.2,158.3 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.4$ (td, $J=20.4$, $19.9,4.8 \mathrm{~Hz}$ ); IR 2933, 1737, 1509, 1248, 1034, 852, $788 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M $+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{KO}_{7} \mathrm{P}^{+}$599.1116; Found 599.1093.


2-((5-chloroquinolin-8-yl)oxy)-4-((E)-2-cyclopentylvinyl)-3-(4-methoxyphenyl)-1,3,2-
oxazaphosphinane 2 -oxide

Compound 78: Synthesized using General Procedure C; Purified using 35\% ethyl acetate in hexane; 74.8 mg , Yield $=75 \%$, Single diastereomer, Light brown oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.1-1.3(\mathrm{~m}, 3 \mathrm{H}), 1.5-1.6(\mathrm{~m}, 3 \mathrm{H}), 1.6-1.8(\mathrm{~m}, 2 \mathrm{H}), 2.0-2.2(\mathrm{~m}, 1 \mathrm{H}), 2.3-$ $2.4(\mathrm{~m}, 1 \mathrm{H}), 2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 4.0(\mathrm{ddt}, J=19.0,9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.3(\mathrm{ddq}, J$ $=18.7,11.7,3.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.0(\mathrm{tdt}, J=11.8,5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.3(\mathrm{dd}, J=15.3,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.4$ (ddd, $J=15.2,9.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.5-7.6(\mathrm{~m}$, $2 \mathrm{H}), 7.8(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}, J=4.1,1.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.0(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 32.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 32.7$, $42.6,55.4,65.7(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 66.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.2,114.5,119.7(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, $122.4,126.5(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 126.7,127.3,130.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 133.0,134.3(\mathrm{~d}, J=2.8 \mathrm{~Hz})$, $139.1,141.8(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 146.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 150.4,158.3(\mathrm{~d}, J=1.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.0\left(\mathrm{td}, J=19.7,5.6 \mathrm{~Hz}\right.$ ); IR 2865, 1509, 1276, 1064, $854,770 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{KO}_{4} \mathrm{P}^{+}$537.1112; Found 537.1112.


Compound 79: Synthesized using General Procedure C; Purified using 40\% ethyl acetate in hexane; 66.7 mg , Yield $=65 \%$, $\mathrm{Dr}>20: 1$; Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.9$ $1.0(\mathrm{~m}, 2 \mathrm{H}), 1.0-1.3(\mathrm{~m}, 3 \mathrm{H}), 1.5-1.8(\mathrm{~m}, 5 \mathrm{H}), 1.9(\mathrm{qd}, J=9.7,8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.0-2.2$ $(\mathrm{m}, 1 \mathrm{H}), 2.5(\mathrm{ddt}, J=15.1,9.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.8(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.0(\mathrm{ddt}, J=19.1,9.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.3(\mathrm{ddt}, J=19.6,10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.0(\mathrm{td}, J=10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.3(\mathrm{dd}, J=$ $15.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.3-6.4(\mathrm{~m}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.3(\mathrm{~m}, 2 \mathrm{H}), 7.5(\mathrm{dd}, J=8.4$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.6(\mathrm{ddd}, J=8.6,4.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.8(\mathrm{dt}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dt}, J=8.6$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.0-9.1(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.9,26.1,32.5,32.6$, $40.1,55.4,65.7(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 66.6(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.2,119.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 122.3$, $126.4,126.5(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 127.3,130.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 133.0,134.3(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 140.2$, $141.8(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 146.7,146.8,150.4,158.2 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.0(\mathrm{td}$, $J=19.6,5.7 \mathrm{~Hz}$ ); IR 2922, 1508, 1278, 1063, $775 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + K] ${ }^{+}$ Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{KO}_{4} \mathrm{P}^{+} 551.1269$; Found 551.1260.


2 -((5-chloroquinolin-8-y)oxy)-3-(4-methoxyphenyl)-4-vinyl-3,4-dihydrobenzo[e][1,3,2]oxazaphosphinine 2 -oxide
Compound 80: Synthesized using General Procedure C; Purified using 30\% ethyl acetate in hexane; 35.4 mg , Yield $=37 \%$, single diastereomer; Brown oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.8(\mathrm{~s}, 3 \mathrm{H}), 5.1(\mathrm{dd}, J=21.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.1-5.2(\mathrm{~m}, 2 \mathrm{H}), 6.7$ (ddd, $J=16.9,10.0,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.0(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.1-7.2(\mathrm{~m}, 2 \mathrm{H}), 7.2-7.3(\mathrm{~m}$, $1 \mathrm{H}), 7.4-7.5(\mathrm{~m}, 3 \mathrm{H}), 7.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.7(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.5(\mathrm{dd}, J=$ $8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.8(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.5$, $69.6,114.6,117.7,119.2,119.3,119.5,122.4,124.1,125.3(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 126.2,127.3$, 127.9, 129.1, 129.7, 132.8, 133.6, 137.4, 141.6, 146.4, 149.4 (d, $J=7.8 \mathrm{~Hz}), 150.6,158.5$; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-8.1(\mathrm{~d}, J=22.0 \mathrm{~Hz}$ ); IR 2932, 1611, 1510, 1225, 1065, $864,758 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{NaO}_{4} \mathrm{P}^{+} 501.0741$; Found 501.0742.


Compound 81 (trans ds): Synthesized using General Procedure C; Purified using 25\% ethyl acetate in hexane; 36.4 mg , Yield $=34 \%$; Brown oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
1.81 (dddt, $J=14.3,10.4,6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.06$ (m, 2H), 2.34 (ddd, $J=13.9,10.1$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (ddd, $J=14.2,11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=13.7,10.4,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.15$ (dddd, $J=21.7,8.5,5.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=17.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (dd, $J=10.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ (dddd, $J=10.8,8.8,3.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.89(\mathrm{~m}, 2 \mathrm{H})$, 6.96 (ddt, $J=8.0,4.7,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.09-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=$ $8.5,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{dd}, J=$ $4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 31.0,38.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 38.3,55.5$, 65.8 (d, $J=3.7 \mathrm{~Hz}$ ), 76.7, 114.6, 117.9, $120.1(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.5,126.0,126.7,126.8$, $127.4,128.3,128.5,129.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 133.3,134.5(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 137.9,141.2,141.7$, $146.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 150.5,158.4 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.57(\mathrm{~d}, J=21.6 \mathrm{~Hz})$. IR 3019, 2253, 1555, 1465, 1020, 905, $730 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$557.1373; Found 557.1384.


2-((5-chloroquinolin-8-yl)oxy)-3-(4-methoxyphenyl)-6-phenethyl-4-vinyl-1,3,2oxazaphosphinane 2 -oxide

Compound 81 (cis diastereomer): Synthesized using General Procedure C; Purified using $25 \%$ ethyl acetate in hexane; 33.2 mg , Yield $=31 \%$; Brown oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{ddp}, J=13.7,10.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.85(\mathrm{~m}, 2 \mathrm{H})$, $3.07(\mathrm{dt}, J=14.9,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.13-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{ddp}, J=12.4,5.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.93(\mathrm{~m}, 2 \mathrm{H}), 5.79$ (ddd, $J=17.1,10.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.82(\mathrm{~m}$, $2 \mathrm{H}), 7.10$ (ddt, $J=10.2,7.0,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.53$ - 7.61 (m, 2H), 7.83 (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59$ (dd, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{dd}, J=$ $4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.0,36.7,38.0(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 55.5$, 64.7 (d, $J=4.5 \mathrm{~Hz}$ ), 78.9 (d, $J=7.2 \mathrm{~Hz}$ ), 114.4, 117.7, 120.2 (d, $J=3.2 \mathrm{~Hz}), 122.5,126.2$, 126.7, 126.8, 127.5, 128.6, 130.2 (d, $J=3.5 \mathrm{~Hz}$ ), 133.1 (d, $J=3.9 \mathrm{~Hz}$ ), 133.4, 138.5, 141.2, $146.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 150.6,158.2 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-3.43(\mathrm{~d}, J=10.4 \mathrm{~Hz}$ ); IR 3026, 2238, 1509, 1242, 1008, 830, $700 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$557.1373; Found 557.1386.

(2R,4S)-2-((5-chloroquinolin-8-yl)oxy)-3-(4-methoxyphenyl)-5-phenyl-4-vinyl-
1,3,2-oxazaphosphinane 2-oxide

Compound 82: Synthesized using General Procedure C; Purified using 25\% ethyl acetate in hexane; $47.7 \mathrm{mg}, 47 \%$ yield as a mixture of 2 diastereomers; Yellow oil; Characterization shown is for one of the two diastereomers. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.83$ (td, $J=7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (ddd, $J=16.3,8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{td}, J=11.1,7.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.61(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (ddd, $J=12.7,11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=10.2,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.27$ (ddd, $J=17.1,10.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.74(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.12(\mathrm{~m}, 2 \mathrm{H})$, $7.16-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.47-8.54(\mathrm{~m}$, $1 \mathrm{H}), 8.99(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 46.6,55.5,71.1(\mathrm{~d}, J=7.1 \mathrm{~Hz})$, 72.3 (d, $J=3.4 \mathrm{~Hz}$ ), 114.6, 119.0, 120.4, 122.6, 126.9, 127.0, 127.6, 127.8, 128.5, 128.6, $129.0,130.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 133.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 134.0,137.0,138.9,146.2,150.5,158.4 ;$ ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta-4.06(\mathrm{q}, J=13.9,13.4 \mathrm{~Hz})$. IR 2253, 1510, 1384, 1264, 905, $729,650 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{PNa}^{+}$ 529.1060; Found 529.1047.


Compound 88: Synthesized using Procedure C; Purified using 35\% ethyl acetate in hexane; (Yellow solid, $61.7 \mathrm{mg}, 65 \%$ yield), single diastereomer; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$ $1.53(\mathrm{dd}, J=6.4,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.31-2.49(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{ddt}, J=$ $15.4,9.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.44 (dddd, $J=14.1,10.6,6.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.80 (tdd, $J=10.5,7.6$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (dtd, $J=15.5,6.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ (ddq, $J=15.0,9.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ (dd, $J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.61$ (m, 2H), 7.86 (dd, $J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.05(\mathrm{dd}, J=4.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 17.7,31.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 55.5,56.0,63.6$, $67.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 100.1,104.0,119.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.4,122.8,126.4,126.6(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}), 127.4,128.2,130.7,131.9(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 133.1,141.9(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 146.9(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}), 150.5,157.3(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 159.9(\mathrm{~d}, J=1.3 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-3.61(\mathrm{q}, J=14.0 \mathrm{~Hz})$; IR 2934, 1734, 1652, 1558, 1457, 1280, 1036, $852 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{P}^{+} 475.1190$; Found 475.1194.


2-((5-chloroquinolin-8-yl)oxy)-4-((E)-prop-1-en-1-yl)-3-(p-tolyl)-1,3,2oxazaphosphinane 2 -oxide

Compound 89: Synthesized using Procedure C; Purified using 30\% ethyl acetate in hexane; (Yellow solid, $65.2 \mathrm{mg}, 76 \%$ yield); single diastereomer; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 1.66 (dd, $J=6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.12$ (dtdd, $J=14.3,4.1,2.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.48$ $-2.61(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{tdd}, J=11.0,5.6,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45$ (dqd, $J=15.3,6.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ (ddq, $J=15.2,9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}$, $J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
17.8, 21.1, 32.9 (d, $J=5.8 \mathrm{~Hz}), 65.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 66.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 119.9(\mathrm{~d}, J=3.1$ $\mathrm{Hz}), 122.4,126.6(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 126.7,127.4,128.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 128.8,129.9,130.6$, 133.1, 136.3, $139.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 141.9(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 146.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 150.5 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.17(\mathrm{td}, J=19.8,5.1 \mathrm{~Hz}$ ). IR 2919, 1511, 1464, 1218, 1013, $904 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H ] ${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{P}^{+} 429.1135$; Found 429.1134.


Compound 90: Synthesized using Procedure C; Purified using 30\% ethyl acetate in hexane; (Yellow solid, $62.2 \mathrm{mg}, 75 \%$ yield); single diastereomer; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.52(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{ddt}, J=15.2,10.1,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.85$ (tdd, $J=11.0,5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.32-6.43(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ (dd, $J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.89$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 17.8,32.9(\mathrm{~d}, J=5.7 \mathrm{~Hz}$ ), $64.9(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 66.8(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 119.9(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 122.5,126.4,126.6(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}), 126.8,127.5,127.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 128.9,129.2,130.5,133.2,142.2(\mathrm{~d}, J=3.5$ $\mathrm{Hz}), 146.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 150.6 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.42(\mathrm{td}, J=19.6,5.2$ Hz). IR 2919, 2359, 1652, 1558, 1507, 1281, 1061, $856 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{P}^{+} 415.0978$; Found 415.0979.


2-((5-chloroquinolin-8-yl)oxy)-3-(3,5-dimethylphenyl)-4-((E)-prop-1-en-1-yl)-
1,3,2-oxazaphosphinane 2 -oxide

Compound 91: Synthesized using Procedure C; Purified using 30\% ethyl acetate in hexane; (Yellow solid, $63.8 \mathrm{mg}, 72 \%$ yield); single diastereomer; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.67(\mathrm{dd}, J=6.4,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.55(\mathrm{ddt}, J=15.2,10.1$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{tdd}, J=11.0,5.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.53(\mathrm{~m}, 1 \mathrm{H})$, 6.50 (ddq, $J=15.1,8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.84$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{dd}, J=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.9,21.4,32.9(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 64.9(\mathrm{~d}, J=2.1 \mathrm{~Hz})$, $66.6(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 119.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 122.4,125.8(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 126.7,126.8,127.5$, $128.4,128.7,130.5,133.2,138.7,141.8,141.9$ (d, $J=6.4 \mathrm{~Hz}$ ), 146.9 (d, $J=8.5 \mathrm{~Hz}$ ), 150.5 ; ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$-4.26 (td, $\left.J=19.9,5.1 \mathrm{~Hz}\right)$. IR 2917, 1558, 1457, 1297,

1037, $914 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{P}^{+} 443.1291$;


Compound 92: Synthesized using Procedure C; Purified using 30\% ethyl acetate in hexane; (Yellow solid, $64.2 \mathrm{mg}, 70 \%$ yield); single diastereomer; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.03-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.51$ (ddtd, $J$ $=14.8,9.5,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.35(\mathrm{~m}$, $1 \mathrm{H}), 4.96$ (tdd, $J=10.9,5.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dqd, $J=13.7,6.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (ddq, $J=15.1,9.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.86(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.59(\mathrm{~m}, 2 \mathrm{H})$, 7.78 (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{dd}, J=4.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.9,17.8,32.8(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 63.7,65.5(\mathrm{~d}, J=2.5$ $\mathrm{Hz}), 66.7(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 114.9,119.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 122.4,126.7(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz})$, $127.4,128.9,129.8(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 130.5,133.1,134.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 141.9,141.9,146.9$ (d, $J=8.4 \mathrm{~Hz}$ ), $150.5,157.7 ;{ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-3.96$ (td, $J=19.5,5.4 \mathrm{~Hz}$ ). IR 2978, 2359, 1590, 1495, 1283, 1012, $901 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}^{+} 459.1240$; Found 459.1239.

## VI. Gram Scale Procedure

A 100 mL round bottom flask with a magnetic stirring pellet was charged with phosphoramidate 21 ( $1.00 \mathrm{~g}, 2.24 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(101 \mathrm{mg}, 0.45 \mathrm{mmol}, 20$ $\mathrm{mol} \%$ ) and $\mathrm{Cu}(\mathrm{OAc})_{2}$ ( $408 \mathrm{mg}, 2.24 \mathrm{mmol}, 1$ equiv) followed by acetonitrile ( 45 mL , final concentration: 0.05 M ). The mixture was sparged with $\mathrm{O}_{2}$ for fifteen minutes, and then the flask was sealed with a rubber septum. The reaction vessel was submerged in an oil bath preheated to $55^{\circ} \mathrm{C}$ and kept at this temperature under a balloon of $\mathrm{O}_{2}$ ( $\sim 1 \mathrm{~atm}$ ) for 65 hours. Subsequently, the reaction mixture was filtered through a plug of silica and evaporated to dryness under vacuum. The resulting crude mixture was then purified by chromatography on silica gel using $33 \%$ ethyl acetate in hexane as to afford the product $\mathbf{6 2}$ in $82 \%$ ( 816 mg ) yield as a single diastereomer.

## VII. Procedures for Tether Removal, Azetidine Synthesis, and Epoxidation Tether Removal-



## 93

To a stirred suspension of LAH ( $23 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.) in THF ( 4 mL ) at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathbf{6 2}(89 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) in THF ( 1 mL ) dropwise. The reaction was heated to $60^{\circ} \mathrm{C}$ for 6 h . Then the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with careful dropwise addition of $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL}), 15 \%$ aqueous $\mathrm{NaOH}(0.4 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}$ $(0.6 \mathrm{~mL})$. The solution was stirred for 30 min . The mixture was transferred to a separatory funnel and extracted with 3 portions of ethyl acetate. The organic fractions were collected, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified by chromatography on silica gel ( $30 \% \mathrm{EtOAC}$ in hexanes) to afford compound $\mathbf{9 3}$ as a brown oil.
( $42 \mathrm{mg}, 95 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.7$ (ddd, $J=6.5,1.6,0.8 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.8 (td, $J=6.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}), 3.8-3.9(\mathrm{~m}, 2 \mathrm{H}), 3.9-3.9(\mathrm{~m}, 1 \mathrm{H}), 5.4(\mathrm{ddq}, J=$ $15.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.6(\mathrm{dqd}, J=15.4,6.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.6-6.7(\mathrm{~m}, 2 \mathrm{H}), 6.7-6.8(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 17.7,38.0,55.8,56.2,61.2,114.8,116.2,126.5$, 132.6, 141.0, 152.8; IR 3366, 2932, 1511, 1234, 1037, $820 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}$ 222.1494; Found 222.1526.

## Azetidine Synthesis-



## 94

To a stirred solution of $\mathbf{6 2}$ ( $89 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) in 1,4-dioxane ( 4 mL ) was added HCl solution ( 4 M in dioxane, $0.1 \mathrm{~mL}, 2$ equiv.) dropwise at room temperature. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 5 h . Then, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with saturated aqueous sodium bicarbonate. The mixture was transferred to a
separatory funnel and extracted with 3 portions of ethyl acetate. The organic fractions were collected, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resulting residue was purified by chromatography on silica gel (gradient of 5-10\% EtOAC in hexanes) to afford compound 94 as dark brown oil in $42 \%$ ( 20 mg ) yield.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.7(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.9-2.0(\mathrm{~m}, 1 \mathrm{H}), 2.1(\mathrm{dq}, J=$ $13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.6$ (ddd, $J=10.9,7.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.7$ (dt, $J=10.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.7$ (s, $3 \mathrm{H}), 4.0(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.3$ (ddq, $J=15.3,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.7$ (dqd, $J=13.9,6.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.6(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.7-6.8(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $17.8,38.5,41.9,54.1,55.8,114.9,115.3,127.5,131.8,141.2,152.4$; IR 3388, 2934, 1508, 1231, 1036, 966, 818, $654 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}^{+}$ 204.1388; Found 204.1395.

## Epoxidation-



A 10 ml round bottom flask was charged with compound $62(89 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) and 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The flask was cooled to $0{ }^{\circ} \mathrm{C}$, and mCPBA ( $70 \mathrm{wt} \%$ ) ( $98 \mathrm{mg}, 0.4$ $\mathrm{mmol}, 2$ equiv) was added in portions. Over a period of 5 hours, the reaction mixture was warmed to room temperature under an atmosphere of $\mathrm{N}_{2}$. Following this time, the reaction was quenched with aqueous sodium thiosulfate and transferred to a separatory funnel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was collected, and the aqueous layer was extracted with two additional portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic portions were pooled, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The resulting crude residue was purified by chromatography on silica gel ( $35 \%$ ethyl acetate in hexanes) to yield $95 \%$ as a brown solid ( $56 \mathrm{mg}, 61 \%$ ).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.2(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.4(\mathrm{tdd}, J=7.9,3.5,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.0-3.2(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.0(\mathrm{dd}, J=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.3(\mathrm{ddt}, J=$ $20.0,11.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.1(\mathrm{tdd}, J=11.4,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.8-6.9(\mathrm{~m}, 2 \mathrm{H}), 7.3-7.4(\mathrm{~m}$, $2 \mathrm{H}), 7.5-7.6(\mathrm{~m}, 2 \mathrm{H}), 7.8(\mathrm{dd}, J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.6(\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.0(\mathrm{dd}$, $J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.3,28.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 55.5$,
$56.6,57.3,65.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 66.6(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 114.7,119.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 122.5$, $126.6(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 126.8,127.4,129.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 133.1,134.1(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 141.5$, 146.5 (d, $J=8.3 \mathrm{~Hz}$ ), 150.6, 158.7; ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-4.6(\mathrm{td}, J=20.4,19.9$, 4.6 Hz ); IR 2961, 1509, 1238, 1059, 853, $\mathrm{cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{P}^{+} 461.1033$; Found 461.1001.

## Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

## Acknowledgements


#### Abstract

This work was supported by start-up funding provided jointly by the University of Kansas Office of the Provost and the Department of Medicinal Chemistry, an NIH COBRE Chemical Biology of Infectious Diseases Research Project Grant (P20GM113117), and a New Faculty General Research Fund Grant. We gratefully acknowledge Tracy Hartlage and Dr. Weston Umstead of Chiral Technologies, Inc. for timely donation of a CHIRALPAK-IJ column for separation of phosphoramidate enantiomers.


## References

1. Cristina Silva Costa D, Additions to non-activated alkenes: Recent advances. Arab. J. Chem 2020, 13, 799-834.
2. Beller M; Seayad J; Tillack A; Jiao H, Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angew. Chem. Int. Ed 2004, 43, 3368-3398.
3. Choi GJ; Knowles RR, Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer. J. Am. Chem. Soc 2015, 137, 9226-9229. [PubMed: 26166022]
4. Quinn RK; Schmidt VA; Alexanian EJ, Radical carbooxygenations of alkenes using hydroxamic acids. Chem. Sci 2013, 4, 4030-4034.
5. Trend RM; Ramtohul YK; Ferreira EM; Stoltz BM, Palladium-Catalyzed Oxidative Wacker Cyclizations in Nonpolar Organic Solvents with Molecular Oxygen: A Stepping Stone to Asymmetric Aerobic Cyclizations. Angew. Chem. Int. Ed 2003, 42, 2892-2895.
6. Ma K; Martin BS; Yin X; Dai M, Natural product syntheses via carbonylative cyclizations. Nat. Prod. Rep 2019, 36, 174-219. [PubMed: 29923586]
7. O'Duill ML; Engle KM, Protodepalladation as a Strategic Elementary Step in Catalysis. Synthesis 2018, 50, 4699-4714. [PubMed: 31105348]
8. White DR; Bornowski EC; Wolfe JP, Pd-Catalyzed C-C, C-N, and C-O Bond-Forming Difunctionalization Reactions of Alkenes Bearing Tethered Aryl/Alkenyl Triflates. Isr. J. Chem 2020, 60, 259-267. [PubMed: 33664525]
9. Kotov V; Scarborough CC; Stahl SS, Palladium-Catalyzed Aerobic Oxidative Amination of Alkenes: Development of Intra- and Intermolecular Aza-Wacker Reactions. Inorg. Chem 2007, 46, 1910-1923. [PubMed: 17348722]
10. Thomas AA; Nagamalla S; Sathyamoorthi S, Salient features of the aza-Wacker cyclization reaction. Chem. Sci 2020, 11, 8073-8088. [PubMed: 34123081]
11. Shinde AH; Sathyamoorthi S, Tethered Silanoxymercuration of Allylic Alcohols. Org. Lett 2020, 22, 8665-8669. [PubMed: 33095992]
12. Kou X; Shao Q; Ye C; Yang G; Zhang W, Asymmetric Aza-Wacker-Type Cyclization of N-Ts Hydrazine-Tethered Tetrasubstituted Olefins: Synthesis of Pyrazolines Bearing One Quaternary or Two Vicinal Stereocenters. J. Am. Chem. Soc 2018, 140, 7587-7597. [PubMed: 29804449]
13. Borelli T; Brenna S; Broggini G; Oble J; Poli G, (Diacyloxyiodo)benzenes-Driven PalladiumCatalyzed Cyclizations of Unsaturated N -Sulfonylamides: Opportunities of Path Selection. Adv. Synth. Cat 2017, 359, 623-628.
14. van Benthem RATM; Hiemstra H; Longarela GR; Speckamp WN, Formamide as a superior nitrogen nucleophile in palladium(II) mediated synthesis of imidazolidines. Tetrahedron Lett. 1994, 35, 9281-9284.
15. Beccalli EM; Broggini G; Paladino G; Penoni A; Zoni C, Regioselective Formation of Six- and Seven-Membered Ring by Intramolecular Pd-Catalyzed Amination of N-Allyl-anthranilamides. J. Org. Chem 2004, 69, 5627-5630. [PubMed: 15307732]
16. McDonald RI; Stahl SS, Modular Synthesis of 1,2-Diamine Derivatives by Palladium-Catalyzed Aerobic Oxidative Cyclization of Allylic Sulfamides. Angew. Chem. Int. Ed 2010, 49, 5529-5532.
17. Joosten A; Persson AKÅ; Millet R; Johnson MT; Bäckvall J-E, Palladium(II)-Catalyzed Oxidative Cyclization of Allylic Tosylcarbamates: Scope, Derivatization, and Mechanistic Aspects. Chem. Eur. J 2012, 18, 15151-15157. [PubMed: 23033176]
18. Weinstein AB; Schuman DP; Tan ZX; Stahl SS, Synthesis of Vicinal Aminoalcohols by Stereoselective Aza-Wacker Cyclizations: Access to (-)-Acosamine by Redox Relay. Angew. Chem. Int. Ed 2013, 52, 11867-11870.
19. Du W; Gu Q; Li Y; Lin Z; Yang D, Enantioselective Palladium-Catalyzed Oxidative Cascade Cyclization of Aliphatic Alkenyl Amides. Org. Lett 2017, 19, 316-319. [PubMed: 28068102]
20. Xie C; Luo J; Zhang Y; Huang S-H; Zhu L; Hong R, Catalytic Aza-Wacker Annulation: Tuning Mechanism by the Activation Mode of Amide and Enantioselective Syntheses of Melinonine-E and Strychnoxanthine. Org. Lett 2018, 20, 2386-2390. [PubMed: 29595983]
21. Luo J; Xie C; Zhang Y; Huang S-H; Zhu L; Hong R, Total syntheses of melinonine-E and strychnoxanthine: Evolution of the synthetic strategy enabled by novel method development. Tetrahedron 2018, 74, 5791-5803.
22. Xie C; Luo J; Zhang Y; Zhu L; Hong R, A Chiral Pentenolide-Based Unified Strategy toward Dihydrocorynantheal, Dihydrocorynantheol, Protoemetine, Protoemetinol, and Yohimbane. Org. Lett 2017, 19, 3592-3595. [PubMed: 28636402]
23. Nie W; Gong J; Chen Z; Liu J; Tian D; Song H; Liu X-Y; Qin Y, Enantioselective Total Synthesis of (-)-Arcutinine. J. Am. Chem. Soc 2019, 141, 9712-9718. [PubMed: 31136168]
24. Yip K-T; Yang M; Law K-L; Zhu N-Y; Yang D, Pd(II)-Catalyzed Enantioselective Oxidative Tandem Cyclization Reactions. Synthesis of Indolines through C-N and C-C Bond Formation. J. Am. Chem. Soc 2006, 128, 3130-3131. [PubMed: 16522078]
25. He W; Yip K-T; Zhu N-Y; Yang D, Pd(II)/tBu-quinolineoxazoline: An Air-Stable and Modular Chiral Catalyst System for Enantioselective Oxidative Cascade Cyclization. Org. Lett 2009, 11, 5626-5628. [PubMed: 19905004]
26. Shinde AH; Sathyamoorthi S, Oxidative Cyclization of Sulfamates onto Pendant Alkenes. Org. Lett 2020, 22, 896-901. [PubMed: 31927967]
27. Shinde AH; Nagamalla S; Sathyamoorthi S, N-arylated oxathiazinane heterocycles are convenient synthons for 1,3-amino ethers and 1,3-amino thioethers. Med. Chem. Res 2020, 29, 1223-1229.
28. Cheon CH; Yamamoto H, Super Brønsted acid catalysis. Chem. Commun 2011, 47, 3043-3056.
29. Oliveira FM; Barbosa LCA; Ismail FMD, The diverse pharmacology and medicinal chemistry of phosphoramidates - a review. RSC Adv. 2014, 4, 18998-19012.
30. Lu H; Tao J; Jones JE; Wojtas L; Zhang XP, Cobalt(II)-Catalyzed Intramolecular C-H Amination with Phosphoryl Azides: Formation of 6- and 7-Membered Cyclophosphoramidates. Org. Lett 2010, 12, 1248-1251. [PubMed: 20184343]
31. Xiao W; Wei J; Zhou C-Y; Che C-M, [RuIV(F20-TPP)C12] efficiently catalysed inter- and intramolecular nitrene insertion into $\mathrm{sp} 3 \mathrm{C}-\mathrm{H}$ bonds of hydrocarbons using phosphoryl azides as nitrene sources. Chem. Commun 2013, 49, 4619-4621.
32. Betancor C; Concepcion JI; Hernandez R; Salazar JA; Suarez E, Intramolecular functionalization of nonactivated carbons by amidylphosphate radicals. Synthesis of 1,4-epimine compounds. J. Org. Chem 1983, 48, 4430-4432.
33. Francisco CG; Herrera AJ; Martín Á; Pérez-Martín I; Suárez E, Intramolecular 1,5-hydrogen atom transfer reaction promoted by phosphoramidyl and carbamoyl radicals: synthesis of 2-amino-C-glycosides. Tetrahedron Lett. 2007, 48, 6384-6388.
34. Francisco CG; Herrera AJ; Suárez E, Intramolecular Hydrogen Abstraction Reaction Promoted by N-Radicals in Carbohydrates. Synthesis of Chiral 7-Oxa-2-azabicyclo[2.2.1]heptane and 8-Oxa-6azabicyclo[3.2.1]octane Ring Systems. J. Org. Chem 2003, 68, 1012-1017. [PubMed: 12558429]
35. Martín A; Pérez-Martín I; Suárez E, Synthesis of oxa-aza spirobicycles by intramolecular hydrogen atom transfer promoted by N-radicals in carbohydrate systems. Tetrahedron 2009, 65, 6147-6155.
36. He J; Wasa M; Chan KSL; Shao Q; Yu J-Q, Palladium-Catalyzed Transformations of Alkyl C-H Bonds. Chem. Rev 2017, 117, 8754-8786. [PubMed: 28697604]
37. Lyons TW; Sanford MS, Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chem. Rev 2010, 110, 1147-1169. [PubMed: 20078038]
38. Dey A; Agasti S; Maiti D, Palladium catalysed meta-C-H functionalization reactions. Org. Biomol. Chem 2016, 14, 5440-5453. [PubMed: 27120353]
39. Chen X; Engle KM; Wang D-H; Yu J-Q, Palladium(II)-Catalyzed C-H Activation/C-C CrossCoupling Reactions: Versatility and Practicality. Angew. Chem. Int. Ed 2009, 48, 5094-5115.
40. Giri R; Shi B-F; Engle KM; Maugel N; Yu J-Q, Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. Chem. Soc. Rev 2009, 38, 3242-3272. [PubMed: 19847354]
41. Derosa J; Tran VT; Boulous MN; Chen JS; Engle KM, Nickel-Catalyzed $\beta, \gamma-$ Dicarbofunctionalization of Alkenyl Carbonyl Compounds via Conjunctive Cross-Coupling. J. Am. Chem. Soc 2017, 139, 10657-10660. [PubMed: 28738150]
42. Gurak JA; Yang KS; Liu Z; Engle KM, Directed, Regiocontrolled Hydroamination of Unactivated Alkenes via Protodepalladation. J. Am. Chem. Soc 2016, 138, 5805-5808. [PubMed: 27093112]
43. Liu Z; Zeng T; Yang KS; Engle KM, $\beta, \gamma$-Vicinal Dicarbofunctionalization of Alkenyl Carbonyl Compounds via Directed Nucleopalladation. J. Am. Chem. Soc 2016, 138, 15122-15125. [PubMed: 27779861]
44. Yang KS; Gurak JA; Liu Z; Engle KM, Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes with Diverse C-H Nucleophiles. J. Am. Chem. Soc 2016, 138, 14705-14712. [PubMed: 27709911]



Figure 1.
Phosphoramidates are indispensable to catalysis and medicine．

Suárez: radical chemistry


Che and Zhang: nitrene chemistry


This Work: chelate-controlled tethered aza-Wacker chemistry


Scheme 1.
Oxidative Strategies for Phosphoramidate Construction.


Scheme 2.
Aniline-reactivity relationship.
Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ (1 equiv.), $\mathrm{O}_{2}(1 \mathrm{~atm}), \mathrm{CH}_{3} \mathrm{CN}, 55^{\circ} \mathrm{C}$, 65 h


Scheme 3.
Substrate Scope with -Oph containing phosphoramidates.
Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ ( 1 equiv.), $\mathrm{O}_{2}$ ( 1 atm ), $\mathrm{CH}_{3} \mathrm{CN}, 55^{\circ} \mathrm{C}$, 65 h


Scheme 4.
Changing the alkoxy substituent.
Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ (1 equiv.), $\mathrm{O}_{2}$ ( 1 atm ), $\mathrm{CH}_{3} \mathrm{CN}, 55^{\circ} \mathrm{C}$, 65 h

## Diastereocontrolled



Diastereolabile
calculated: 633.0650
found: 633.0684, 5 ppm error




Scheme 5.
HRMS analysis identifies a putative chelate for diastereocontrol in the oxidative cyclization.


Scheme 6.
Chelate Comparison
Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ (1 equiv.), $\mathrm{O}_{2}$ ( 1 atm ), $\mathrm{CH}_{3} \mathrm{CN}, 55^{\circ} \mathrm{C}$, 65 h



Scheme 7.
Substrate Scope with Auxiliary-Induced Diastereocontrol
Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ (1 equiv.), $\mathrm{O}_{2}$ ( 1 atm ), $\mathrm{CH}_{3} \mathrm{CN}, 55^{\circ} \mathrm{C}$, 65 h


## Scheme 8.

Oxidative cyclization scales successfully.




89
3




5

Scheme 9.
Aniline Scope with Auxiliary-Induced Diasterocontrol.
Reaction conditions: $\mathrm{Pd}(\mathrm{OAc})_{2}(20 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}$ (1 equiv.), $\mathrm{O}_{2}$ ( 1 atm ), $\mathrm{CH}_{3} \mathrm{CN}, 55^{\circ} \mathrm{C}$, 65 h



C.


Scheme 10.
A. Removal of the phosphorous tether using LAH reduction. B. Treatment with HCI/

Dioxane led to azetidine formation. C. Epoxidation proceeded smoothly with mCPBA.
Please note that $\mathbf{9 5}$ is a single diasteromer, but the relative stereochemistry is unassigned.


Scheme 11.
Chiral resolution and highly diastereoselective oxidative cyclization reactions afford enantiopure cyclic phosphoramidated. Note: CCDC 2061647

Table 1.
Reaction Optimization.


[^1]
[^0]:    * ssathyam@ku.edu.
    $\dagger$ equal contribution
    Supporting Information
    The Supporting Information is available free of charge on the ACS Publications website. It includes additional experimental details, materials, and methods; ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR spectra; Single- molecule X-ray diffraction data for compound (-)-62 (CIF)

[^1]:    ${ }^{\text {a }}$ Percent product estimated from ${ }^{1} \mathrm{H}$ NMR integration with 1,3,5-trimethoxybenzene as an internal standard.

