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Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes,
however, the relative roles and strength of change of microbial components have not been identified. We measured the response
of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that
varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae,
Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one
family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that
all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal
pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi
that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots
but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial
diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or
richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for
decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant
composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community
structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in
restoration.

ISME Communications; https://doi.org/10.1038/s43705-023-00237-5

INTRODUCTION
Rapid biodiversity loss in the Anthropocene necessitates improved
understanding of the ecological processes and factors that
maintain biodiversity. While many gaps persist in our under-
standing of what drives biodiversity maintenance, accumulating
evidence suggests that microbes can mediate plant species
coexistence through feedbacks generated by host-specific differ-
entiation of the microbiome [1]. Such plant-microbiome feedbacks
have been shown to contribute to native plant diversity through
negative feedbacks often resulting from accumulation of host-
specific pathogens when plant diversity is low [2–6]. Alternatively,
microbiome differentiation can generate alternative stable states
through positive feedbacks, often through changes in density of
microbial mutualists such as mycorrhizal fungi and rhizobia [6–8].
Additionally, litter decomposition rates have been found to
differentiate among available plant species [9]. In this way,
microbial phylotype composition and diversity can drive plant-
soil feedback (PSF) dynamics, which can affect plant community
composition and productivity. Critical questions remain in under-
standing the importance of microbiome feedbacks, including the
patterns of differentiation amongst microbiome components, as
well as how quickly they can change.
Plant microbiome feedback can be driven by multiple

components of the plant and soil microbiome including

pathogens, mutualists, and saprotrophs [10, 11]. The relative
importance in generating feedback depends on microbiome
components’ differential impacts on hosts, and the time it takes
for differentiation on hosts [2, 12]. Most of our information on
rates of differentiation of the plant and soil microbiome on host
species comes from greenhouse assays. Greenhouse assays show,
for example, that pathogen differentiation and pathogen-driven
negative feedbacks can develop within a growing season [13, 14].
Similarly, greenhouse assays demonstrate that host-specific
differentiation of AMF can occur over a growing season [4, 15].
In the field, pathogen, AMF, and saprophyte composition has been
shown to vary with proximity to long-lived, mature plants such as
trees [16–18]. Monitoring rates of differentiation in the field,
however, requires manipulative experiments. The few such tests of
differentiation of microbiome components have spanned multiple
years and have targeted only a subset of the microbiome
components [16, 18, 19]. More work directly comparing rates of
host-species differentiation of microbiome components in the
field would guide inference on their potential importance in
generating rapid feedbacks.
The relative strength of host-specific differentiation of micro-

biome components are likely to be influenced by phylogenetic
similarity of the host plants. Plant microbiome feedbacks have
been shown to become increasingly negative with greater
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phylogenetic distance between hosts [3]. This is likely a result of
co-evolution and specialization of pathogens with plant host
defense mechanisms, as more closely related plant species are
more likely to share functional traits, including defenses [5, 20, 21].
While AMF associate with hosts indiscriminately, phylogenetic
signals have been detected in AMF impacts on host growth [22].
Thus, host phylogenetic patterns of AMF differentiation on hosts
may be likely, but have not been tested to date. Finally,
phylogenetic signals have also been found in saprotrophic
community composition [18, 23]. The relative strength of
phylogenetic structure on differentiation of each of these
microbial community components has yet to be explored.
Microbiome composition can also be impacted by the diversity

of plants within a community [24]. Specifically, microbiome
differentiation is expected to diminish with the richness of local
plant communities, potentially contributing to productivity
responses to plant diversity [25–28]. Reduced densities of host
specific pathogens with increasing plant diversity (i.e. dilution,
[29]) is a likely mechanism driving productivity gains with
increasing plant richness [1]. Mycorrhizal composition can also
respond to plant diversity [30], potentially mediating benefits to
neighbors and contributing to productivity gains with diversity
[25, 27]. Changes in saprotroph composition with plant richness
could potentially also contribute to greater productivity with high
plant species richness. Decomposition rates may also be enhanced
by increased plant diversity, reflecting changes in saprotroph
composition [31–33]. While multiple microbiome components can
contribute to changes in ecosystem function with plant biodi-
versity, their relative response to plant richness could determine
the time-lags in productivity responses to plant diversity
manipulation [25]. To date, we know little of the relative strength
of change in these microbiome components with plant richness.
Plant driven changes in microbiome composition will likely

depend upon the proximity of the microbes to roots. Host
selection during microbial colonization of roots can act as a filter
[34] and differences in root traits, including in root exudate
production, likely drives differentiation of microbiome composi-
tion between plant species. Therefore, the composition of
microbes in the roots may diverge more rapidly across plant
species than microbes in soil. As a corollary, we might expect that
pathogens and AMF, which interact with and colonize live root
tissues, would differentiate more quickly than saprotrophic
microbes, as they decompose dead and dying plant materials.
We therefore expect stronger differentiation of pathogens and
AMF in roots than in soil, and perhaps stronger differentiation of
symbionts in the soil than saprotrophs. To date, few studies have
measured the differentiation of microbiome components of plant
roots compared to that of the surrounding soil [35].
In this study, we tested for soil microbiome differentiation

across plant species of varying phylogenetic distance. We did this
in the context of an experimental manipulation of plant
biodiversity and composition in which positive productivity
responses have been observed to plant species richness
(Podzikowski, pers comm.). Specifically, we tested the response
of soil and root microbiomes to manipulations of plant diversity,
phylogenetic dispersion, and plant composition four months after
planting (see Appendix Fig. 1). Sequencing amplicons targeting
bacteria, fungi, AMF and oomycetes from roots and soil separately
across 120 plant community combinations allowed dissection of
relative strength of microbiome differentiation across microbial
functional and taxonomic groupings, and across soil and root
compartments. Under the expectations that host-specific patho-
gens drive plant community composition, we expect fungal
pathogens and oomycetes to differentiate more strongly than
other, less host-specific microbial groups. We also expected root
compartments to differentiate more strongly than soil compart-
ments. Lastly, we expected that more strongly differentiating

groups, i.e. groups with greater host specialization, would also
show stronger responses to manipulations of plant diversity.

METHODS
Study system
This study was conducted in the floristically diverse tallgrass prairie region
of North America. Plots were established in June 2018 at the KU Field
Station in Lawrence, KS, US (39.052462, −95.191656). Historically this land
was tallgrass prairie, followed by cropland and pasture, today considered
“post-agricultural” with predominantly cool-season nonnative grasses [36].
As part of the experiment setup, we tilled the resident soil and added soil
made available because of road widening construction from an unplowed
prairie remnant near Welda, KS, (38.179600, −95.265695) ~100 km south of
the experiment site. This provided experimental plots with an initial
microbial inocula of remnant prairie microbes.

Experimental design
A total of 240 plots (1.5 m × 1.5 m) were designed to equally represent
each of the 18 plant species (6 from each of the three plant families,
Poaceae, Fabaceae, and Asteraceae) within each combination of plant
species richness (1, 2, 3, and 6), phylogenetic dispersion (under or over),
and precipitation (50 or 150% ambient). Plots varied in plant diversity,
phylogenetic dispersion and composition across 72 monoculture plots, 72
with 2 species mixtures, 48 with 3 species mixtures, and 48 with 6 species
(Fig. 1; Supplementary Appendix Fig. 1). These plots represent two
replicates of the same 120 plant combinations, with half set up to receive
150% water treatment (150% of annual precipitation), while the other 120
replicated plots would receive 50% water (50% of annual precipitation).
However, this water treatment began after samples for this analysis were
collected and therefore precipitation effects will not be considered in these
analyses. We describe the full design here, so that data collected in
subsequent years can build off this initial analysis. Soil samples collected
from these replicate future precipitation treatments were pooled prior to
analysis, for a total of 120 pooled samples: 36 monocultures, 36 two-
species, 24 three-species, and 24 six-species. Two-species plots either
contained two plant families (Poaceae and Fabaceae, Poaceae and
Asteraceae, or Fabaceae and Asteraceae) to represent over-dispersion;
three- and six-species plots either contained all three families (over-

Fig. 1 A factorial description of plot design. Number of plant
species denotes the plant species richness treatments (monoculture,
2, 3, or 6 species). Phylogenetically under-dispersed combinations of
plants are all within one plant family (e.g. 2 grasses, or 3 legumes, or
6 asters). Phylogenetically over-dispersed combinations of plants are
from more than one plant family (e.g. 1 grass and 1 aster, or
1 species from each family, or 2 species from each family).
Monocultures are inherently under-dispersed. The sets describe
the combinations in which each of the 18 plant species are
represented once (i.e. within sets species are randomly chosen
without replacement from the pool of 18 plant species). There are 18
monocultures, two sets of 9 under-dispersed 2-plant plots, two sets
of 9 over-dispersed 2-plant plots, two set of 6 under-dispersed 3-
plant plots, two sets of 6 over-dispersed 3-plant plots, three sets of
under-dispersed 6-plant plots, and three sets of over-dispersed 6-
plant plots. This approach equally represents each plant species in
each richness treatment by phylogenetic dispersion combination.
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dispersion) or species all within one plant family (under-dispersion) (Fig. 1).
We analyzed phylogenetic dispersion by creating 4 categories: multi-
family, under-dispersed Poaceae, under-dispersed Fabaceae, and under-
dispersed Asteraceae.

Experiment details
Prairie seedlings from the three most common plant families (Poaceae,
Fabaceae, Asteraceae) were planted in May 2018. A total of 18 species
were used (Supplementary Appendix Table 1). Seeds were purchased from
producers located near eastern Kansas: Hamilton Native Outpost, Stock
Seed, Missouri Wildflowers, and Prairie Moon. Each plot was seeded with
each plant species being equally represented by pre-weighing 100 seeds
per species and evenly dividing the final mix of species by weight,
resulting in 1800 seeds per blend. Resident soil microbes were augmented
with soil microbes in two ways: we tilled the resident soil to a depth of
15 cm, as well as added an average of 3.8 cm of soil from an unplowed
native prairie soil from Welda, KS to each plant plug.
In addition, 18 seedlings previously inoculated with native Welda soil

were planted into each plot. Seeds were sowed into flats with autoclaved
sterile potting soil and placed in cold-moist stratification for 4 weeks prior
to germination. When large enough, the seedlings were transplanted into
Stuewe and Sons groove tubes (GT51D) with 98mL of Welda soil and
grown in a greenhouse for 5 weeks prior to being planted into a hexagonal
array within each plot. Plugs were planted following the experimental
design May 2018 and each plot was weeded according to the treatment
during the summer months. Prior to sampling, only one round of weeding
was accomplished, removing all forbs but leaving any grasses below 3
inches.

Soil collection & DNA extraction
In September 2018, approximately 4 months after planting, soil was
collected from each of the 240 plots. A total of two 20 cm soil cores were
taken from each plot, added to a sample bag, and then paired plots of
matched plant composition were pooled between the future rainfall
treatments (i.e., 1,21; 2,22; 3,23; etc.; Supplementary Appendix Fig. 1).
Coring devices were rinsed of dirt in a water bucket, then sterilized in 10%
bleach bucket and wiped with 80% ethanol between plots. Immediately
following soil collection, samples were kept on ice, then later transferred to
a -20 °C freezer within 5 h [37]. Homogenized samples were thawed to
sieve out roots and, following the Qiagen DNeasy PowerSoil kit, 0.25 g of
the remaining soil was weighed for DNA extraction, as well as 0.25 g of
roots separate from soil.

Microbial community library preparation
Bacterial, fungal, oomycete, and AM fungal communities were sequenced
from both soil and root DNA. For all communities, we used a two-step PCR
process: the first PCR reactions use community-specific primers to amplify
those regions of rDNA, followed by a clean-up using AMPure XP beads
(Beckman Coulter, Brea, CA, USA), then a second PCR to bind unique
barcode combinations using Nextera XT Index Kit v2 (Illumina, San Diego,
CA, USA), and finally another AMPure XP bead clean-up. Following each
PCR, PCR product were checked on 1.5% (w/v) agarose gel to estimate the
quality of PCR products. PCR products concentration was measured by
Invitrogen Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA). Adaptor ligation and sequencing was performed by Illumina MiSeq
v3 PE300 Next-Gen Sequencer in Genome Sequencing Core (GSC) at the
University of Kansas. Raw sequencing data are available at NCBI Sequence
Read Archive, BIOPROJECT #PRJNA863284.
For fungi, AMF, and bacteria, the first PCR used a mixture of 1 μl sample

DNA, 10.5 μl ddH2O, 0.5 μl each of forward and reverse primer and 12.5 μl
of Master Mix Phusion (Thermo Fisher Scientific, Waltham, MA, USA), for a
total PCR volume of 25 μl. For these communities the second barcoding
PCR used 5 μl cleaned up sample DNA from the first PCR, 10.5 μl ddH2O,
2.5 μl each of forward and reverse barcode primers, and 25 μl of Master Mix
Phusion, for a total volume of 45 μl.
The primers used for fungi target the internal transcribed spacer (ITS)

regions forward fITS7 (5’-GTGAGTCATCGAATCTTTG-3’) and reverse ITS4 (5’-
TCCTCCGCTTATTGATATGC-3’) [38]. The first PCR cycle for fungi began at
94 °C for 5 min, followed by 35× (94 °C for 30 s, 57 °C for 30 s, 72 °C for 30 s),
72 °C for 7 min, ending on 4 °C until retrieved from the thermocycler. The
barcode PCR cycle began at 98 °C for 30 s, followed by 10× (98 °C for 10 s,
55 °C for 30 s, 72 °C for 30 s), 72 °C for 5 min, ending on 4 °C until retrieved
from the thermocycler.

We used forward fLROR (5’-ACCCGCTGAACTTAAGC-3’) and reverse FLR2
(5’- TCGTTTAAAGCCATTACGTC-3’) primers to target the large subunit (LSU)
region of AM fungi [39, 40]. The first PCR cycle for AMF began at 94 °C for
5 min, followed by 35x (94 °C for 30 s, 48 °C for 30 s, 72 °C for 30 s), 72 °C for
10min, ending on 4 °C until retrieved from the thermocycler. The barcode
PCR cycle was the same as for fungi.
For bacteria, we used primers that target the V4 region of 16S small

subunit (SSU) of ribosomal RNA, forward 515F (5’-GTGYCAGCMGCCGCGG-
TAA-3’) and reverse 806R (5’-GGACTACNVGGGTWTCTAAT-3’) [41]. The first
PCR cycle and the barcode PCR cycles were the same for bacteria as
for fungi.
For oomycetes, we targeted ITS using forward ITS300 (5’-AGTATGYYTG-

TATCAGTGTC-3’) and reverse ITS4 (5’-TCCTCCGCTTATTGATATGC-3’). The
first PCR used a mixture of 1 μl sample DNA, 17 μl ddH2O, 1 μl each of
forward and reverse primer and 5 μl of HOT FIREPol (Solis Biodyne, Tartu,
Estonia), for a total volume of 25 μl. The first PCR cycle for oomycetes
began at 95 °C for 15min, followed by 35x (95 °C for 30 s, 55 °C for 30 s,
72 °C for 1 min), 72 °C for 10min, ending on 4 °C until retrieved from the
thermocycler. The second barcoding PCR used 1 μl cleaned up sample
DNA from the first PCR, 18 μl ddH2O, 0.5 μl each of forward and reverse
barcode primers, and 5 μl of HOT FIREPol, for a total volume of 45 μl. The
oomycete barcode PCR cycle began at 95 °C for 15min, followed by 35×
(95 °C for 30 s, 55 °C for 30 s, 72 °C for 1 min), 72 °C for 10min, ending on
4 °C until retrieved from the thermocycler.

Bioinformatics
After sequencing, the primary analysis of raw FASTQ data was processed
with the QIIME2 pipeline [42]. After sequences were demultiplexed and
primers removed, they were quality filtered, trimmed, de-noised, and
merged using DADA2 [43]. Chimeric sequences were identified and
removed via the consensus method in dada2. The OTUs that only
appeared 5 times or fewer across all samples were discarded to preclude
inclusion of sequences from potential contamination or sequencing errors.
Taxonomy was assigned to all ribosomal sequence variants in QIIME2 using
a feature classifier trained with the SILVA 99% OTU database for bacteria
[44] and the UNITE 99% database for fungi (Version 18.11.2018). This
resulted in 2022 bacteria OTUs in the roots and 1261 in the soil. We used
the FUNGuild database to identify putative pathogens, those labeled
trophic mode “Pathotroph” and guild “plant pathogen” from the fungal
sequences [45]. For saprotrophs, we filtered all trophic modes that include
“Saprotroph” but do not include “Pathotroph” and removed all guilds that
did not include saprotrophs of plant materials. For both putative
pathogens and saprobes, we removed confidence rankings “possible,” as
per the authors’ recommendations [45]. For soil, 1904 out of 7272 OTUs
were matched to a guild, 254 of which were putative pathogens and 727
were putative saprotrophs. For roots, 964 of 3650 OTUs were matched to a
guild, 133 of which were putative pathogens and 346 were saprotrophs.
For AMF LSU amplicons, we excluded non-AMF sequences by building a
phylogenetic tree using the curated database base of AMF [46] using
Mortierella elongata sequences as the outgroup [39, 40]. This resulted in
2395 AMF OTUs in the roots and 8230 in soil. For oomycetes, we checked
the identity of resulting OTUs either against a database containing all NCBI
oomycote ITS2 sequence results using the Basic Local Alignment Search
Tool, BLAST v. 2.6.0 [47], using default parameters, or by placing OTUs in
the oomycete clade, as oomycota are thought to have arisen from a
common ancestor forming a conserved clade [48]. This resulted in 141
oomycete OTUs in the roots and 460 in soil. We make the generalization
that terrestrial oomycetes are primarily parasites of vascular plants [49, 50]
and those found in our plots are likely to function as plant pathogens.

Statistical analysis
To investigate co-occurrence patterns among different groups of microbial
community in roots and soil, a correlation matrix was constructed by
calculating all possible pairwise Spearman’s rank correlations among the
OTUs. Network analysis was performed in R environment (version 4.0.2)
using vegan, igraph and hmisc packages and the visualization was
conducted on the interactive platform of Gephi 0.9.1. A correlation
between two items was considered statistically robust if the Spearman’s
correlation coefficient (ρ) was >0.7 and the P value was <0.001 [51]. To
reduce the chances of obtaining false-positive results, the P values were
adjusted with a multiple testing correction using the Benjamini-Hochberg
method [52]. The number of connections between each pair of OTUs were
counted, and the proportion of interactions within and between groups
were calculated and visualized using corrplot package (Fig. 2).
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Microbial diversity. To assess planting effects on microbial diversity, we ran
general linear models for each community diversity (H’) with the
experimental design model: using block, planted species richness, phyloge-
netic dispersion, as well as planted proportions of each of the 18 plant
species as fixed effects, with one interaction term for plant species richness
and phylogenetic dispersion. Using the vegan package, we calculated
Shannon-Wiener diversity [53]. We used the Shannon-wiener index for
relative abundance of OTUs, as it accounts for both richness and evenness
which thus allows for detection of more rare OTUs; see Supplementary
Appendix Fig. 2 for rarefaction curves created using the adiv package in R
[54]. A regression Fig. was created in ggplot2 to visualize significant
responses of microbial groups to plant species richness treatments (Fig. 3).

Microbial composition. First, OTU tables were centered log-ratio trans-
formed, using the transform function in r [55]. Then, we created a Bray-Curtis
dissimilarity matrix using the diversity function in the vegan package [53].
Using the dissimilarity matrices of non-pathogenic fungi, putative fungal
pathogens, bacteria, oomycetes, and AMF, in both soil and roots, we
performed PERMANOVA tests to assess the variance explained by block (for
spatial non-independence), planted species richness (“PlntDiv”), phyloge-
netic dispersion (“PhyloFam”), the planted proportions of each of the
18 species per plot, as well as an interaction term for plant species richness
and phylogenetic dispersion (see Supplementary Appendix Table 1). We ran
analyses for beta dispersion (spread of microbial community composition
within samples) using the vegan betadisper function for all significant
responses to plant species richness and plant family composition.
In order to understand what may be driving the significant effects seen in

the PERMANOVA analyses of microbial communities, we ran Principle
Coordinate Analyses using the pco function in the ecodist package in R
(version 4.0.3) [56]. We ran the full model with each PC axis as a response
variable for each community to indicate whether each axis may be driving
significant differences in the multi-categorical phylogenetic dispersion.
To assess the response of groups to plant family composition, we

calculated the relative abundance of soil fungal pathogens and root fungal
pathogens within taxonomic groups using usearch10 [57]. This uses the
taxonomic databases of the groups to assign OTUs to phyla, family, genus,
and some to species. Then it calculates relative abundance of each
taxonomic group, based on the raw OTU reads from the bioinformatics
pipeline output. We ran the model in a general linear model to detect the
response of relative abundances of putative pathogen OTUs within each
detected fungal genera to plant family composition and we report genera
with significantly different relative abundances.

RESULTS
Roots vs. soil
In our co-occurrence network analyses, the only group that had
significant correlation between root and soil community

composition was bacteria (Fig. 2). We therefore proceed to report
results for roots and soil communities separately.

Microbial diversity
Fungal pathogen diversity in the soil had a positive response to
plant species richness (Table 1, Fig. 3C; F1,93= 4.89, p= 0.03), but
oomycete diversity in the soil decreased with plant species
richness (Table 1, Fig. 3E; F1,93= 6.22, p= 0.01). Neither bacteria
nor AMF diversity in the soil responded significantly to plant
species richness.
In roots, both fungal pathogen (Table 1, Fig. 3D; F1,92= 3.88,

p= 0.05) and fungal saprobe (Table 1, Fig. 3B; F1,92= 6.77,
p= 0.01) diversity increased with plant species richness. Root
oomycete diversity (Table 1, Fig. 3F; F1,92= 3.41, p= 0.07) and
AMF diversity (Table 1, Fig. 3J; F1,92= 3.00, p= 0.09) had margin-
ally significant increase with plant species richness. However, root
bacteria diversity decreased with plant species richness (Table 1,
Fig. 3H; F1,92= 3.94, p= 0.05).

Microbial community response
The composition of all microbial communities responded to the
planting design; however, only fungal pathogens and root
bacteria responded significantly to plant family composition
and/or diversity (Table 2). Soil fungal pathogen community
composition was significantly differentiated among plant species
richness (Table 2, p= 0.03), and planted proportion of Fabaceae
species C. fasciculata (Table 2, p= 0.01). We also highlight that
there were marginal responses to planted proportions of Poaceae
species S. scoparium (Table 2, p= 0.05) and Asteraceae species C.
tinctoria (Table 2, p= 0.06). Soil fungal saprobes had a significant
response to the planted proportion of Fabaceae species C.
fasciculata (Table 2, p= 0.05), as well as marginally significant
response to other Fabaceae species A. canescens (Table 2,
p= 0.09), D. canadense (Table 2, p= 0.09), and Poaceae species
E. canadensis (Table 2, p= 0.07). Additionally, soil oomycete
composition was significantly different in response to planted
proportions of E. pallida (Table 2, p= 0.05), and root bacteria
composition had a significant response to the interaction of plant
family composition and plant species richness treatments (Table 2,
p= 0.02).
Root fungal saprobe composition differentiated by the planted

proportion of H. mollis (Table 2, p= 0.05), D. canadense (Table 2,
p= 0.03), and the interaction of plant family composition and
plant species richness treatments (Table 2, p= 0.03); we also note

Fig. 2 Networks analysis revealing the co-occurrence patterns between microbial groups. The nodes were colored according to group
labels. A connection represents a strong (Spearman’s correlation coefficient r > 0.8) and significant (p < 0.001) correlation. The size of each
node is proportional to the number of connections. “R”, “S” represent root and soil samples, respectively.
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Fig. 3 Microbial diversity response to plant species richness treatment. Regression of (a) soil (p > 0.1) and (b) root fungal saprotroph
diversity (p= 0.01), (c) soil (p= 0.03) and (d) root (p= 0.05) pathogenic fungal diversity, (e) soil (p= 0.01) and (f) root (p= 0.05, interaction with
family treatment) oomycete diversity, (g) soil (p > 0.1) and (h) root (p= 0.05) bacteria diversity, (i) soil (p > 0.1) and (j) root (p= 0.09) AMF
diversity in response to the log-transformed planted species richness treatment. Diversity responses were adjusted when plant family
composition or block had significant responses. P-values reported are from GLM of microbial diversity response to the model, as shown in
detail in Table 1.

H.M. Burrill et al.

5

ISME Communications



Ta
bl
e
1.

So
il
m
ic
ro
b
ia
l
co

m
m
u
n
it
y
d
iv
er
si
ty

(H
’)
re
sp
o
n
se

to
ex
p
er
im

en
ta
l
d
es
ig
n
m
o
d
el
.

So
il

Fu
n
g
al

sa
p
ro
b
es

Fu
n
g
al

p
at
h
og

en
s

O
om

yc
et
es

B
ac
te
ri
a

A
M
F

D
f

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

B
lo
ck

1
0.
90

20
6

0.
34

2.
04

90
2

0.
16

3.
75

35
4

0.
05

6
0.
77

34
1

0.
38

36
.2
60

2
4.
1E

−
08

Ph
yl
o
Fa
m

3
0.
64

48
8

0.
59

0.
06

83
5

0.
98

0.
24

88
2

0.
86

0.
37

81
3

0.
77

1.
27

73
4

0.
29

Pl
n
tD

iv
1

1.
60

71
5

0.
21

4.
88

86
4

0.
02

9
6.
21

71
5

0.
01

4
0.
00

79
7

0.
93

0.
86

61
1

0.
35

SC
H
SC

O
1

0.
64

64
4

0.
42

0.
22

78
3

0.
63

2.
29

24
9

0.
13

0.
25

11
6

0.
62

0.
00

28
3

0.
96

A
N
D
G
ER

1
5.
27

57
8

0.
02

0.
01

05
8

0.
92

0.
00

09
0.
98

2.
14

35
1

0.
15

2.
51

04
4

0.
12

KO
EM

A
C

1
0.
24

28
1

0.
62

2.
17

34
0.
14

0.
06

51
6

0.
80

0.
17

53
1

0.
67

3.
73

36
6

0.
05

7

EL
YC

A
N

1
7.
26

97
2

0.
00

8
2.
17

31
4

0.
14

0.
17

28
2

0.
68

0.
16

69
3

0.
68

7.
5E

−
05

0.
99

B
O
U
G
R
A

1
0.
00

67
9

0.
93

0.
05

47
8

0.
82

0.
03

72
8

0.
85

0.
86

50
3

0.
35

0.
31

38
3

0.
58

PA
N
V
IR

1
0.
66

72
7

0.
42

0.
30

19
4

0.
58

0.
01

92
8

0.
89

0.
18

79
5

0.
67

0.
35

36
3

0.
55

A
M
O
C
A
N

1
1.
05

05
8

0.
31

1.
32

97
8

0.
25

0.
64

18
0.
43

0.
32

18
2

0.
57

0.
00

06
3

0.
98

D
A
LC

A
N

1
6.
8E

−
06

0.
99

0.
28

93
6

0.
59

3.
99

12
5

0.
04

9
2.
62

04
4

0.
11

0.
07

39
2

0.
79

D
A
LP

U
R

1
0.
42

42
0.
52

0.
12

54
4

0.
72

0.
00

39
8

0.
95

2.
50

55
3

0.
12

0.
34

74
3

0.
56

D
ES

IL
L

1
0.
10

36
6

0.
75

0.
70

46
2

0.
40

0.
34

59
7

0.
56

0.
00

01
9

0.
99

2.
67

08
8

0.
11

D
ES

C
A
N

1
0.
95

33
6

0.
33

0.
52

30
4

0.
47

0.
00

02
1

0.
99

3.
25

76
9

0.
07

4
1.
11

19
8

0.
29

C
H
A
FA

S
1

0.
63

97
8

0.
43

1.
01

91
8

0.
32

3.
43

68
5

0.
06

7
1.
11

49
8

0.
29

2.
51

81
6

0.
12

LI
A
PY

C
1

4.
49

71
3

0.
03

7
0.
85

47
9

0.
36

1.
84

87
2

0.
18

0.
06

26
7

0.
80

3.
58

52
4

0.
06

2

C
O
R
TI
N

1
0.
21

80
5

0.
64

4.
58

31
2

0.
03

5
0.
44

89
0.
50

0.
32

74
1

0.
57

2.
02

82
7

0.
16

EC
H
PA

L
1

2.
28

55
5

0.
13

0.
02

94
2

0.
86

2.
40

84
4

0.
12

1.
61

02
6

0.
21

0.
00

26
5

0.
96

EU
PA

LT
1

0.
12

04
9

0.
73

0.
01

10
8

0.
92

0.
01

85
3

0.
89

0.
18

97
9

0.
66

0.
06

73
2

0.
80

SI
LI
N
T

1
3.
25

83
8

0.
07

4
0.
90

12
8

0.
34

0.
41

99
8

0.
52

0.
02

36
4

0.
88

0.
36

91
9

0.
55

H
EL
M
O
L

1
0.
01

35
1

0.
91

0.
53

67
5

0.
47

0.
53

21
7

0.
47

0.
74

39
5

0.
39

0.
25

43
5

0.
62

Ph
yl
o
Fa
m
:P
ln
tD

iv
3

1.
90

03
5

0.
13

1.
79

08
8

0.
15

0.
05

28
5

0.
98

0.
45

26
2

0.
72

0.
75

24
7

0.
52

R
oo

ts
Fu

n
g
al

sa
p
ro
b
es

Fu
n
g
al

p
at
h
og

en
s

O
om

yc
et
es

B
ac
te
ri
a

A
M
F

D
f

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

F
va

lu
e

Pr
(>
F)

B
lo
ck

1
1.
5E

−
05

0.
99

0.
00

41
1

0.
95

0.
57

23
3

0.
45

6.
84

88
2

0.
01

0
0.
02

71
2

0.
87

Ph
yl
o
Fa
m

3
0.
14

48
0.
93

0.
70

49
3

0.
55

4.
55

98
4

0.
00

51
2.
71

97
9

0.
05

0
2.
26

22
8

0.
08

7

Pl
n
tD

iv
1

6.
77

01
6

0.
01

1
3.
88

32
8

0.
05

2
3.
41

04
5

0.
06

8
3.
93

53
6

0.
05

0
3.
00

2
0.
08

7

SC
H
SC

O
1

0.
03

02
3

0.
86

0.
00

10
7

0.
97

1.
23

25
7

0.
27

0.
06

21
9

0.
80

2.
37

79
0.
13

A
N
D
G
ER

1
0.
07

52
2

0.
78

0.
98

27
8

0.
32

0.
46

70
4

0.
50

1.
03

04
3

0.
31

3.
50

86
9

0.
06

4

KO
EM

A
C

1
0.
48

42
4

0.
49

0.
06

10
6

0.
81

0.
02

14
9

0.
88

0.
10

87
3

0.
74

0.
43

34
7

0.
51

EL
YC

A
N

1
0.
42

56
9

0.
52

0.
60

89
6

0.
44

0.
82

42
0.
37

1.
62

47
1

0.
21

0.
98

49
3

0.
32

B
O
U
G
R
A

1
0.
03

59
1

0.
85

0.
54

60
3

0.
46

0.
25

14
3

0.
62

0.
72

40
9

0.
40

0.
68

51
5

0.
41

PA
N
V
IR

1
0.
04

60
7

0.
83

2.
49

73
2

0.
12

0.
93

47
9

0.
34

0.
00

02
3

0.
99

0.
95

70
5

0.
33

A
M
O
C
A
N

1
0.
10

76
7

0.
74

0.
46

35
0.
50

0.
90

11
0.
35

3.
27

72
6

0.
07

3
4.
93

72
6

0.
02

9

D
A
LC

A
N

1
3.
63

08
3

0.
06

0
0.
66

16
0.
42

3.
29

54
2

0.
07

3
0.
05

77
0.
81

0.
00

23
2

0.
96

D
A
LP

U
R

1
4.
94

43
5

0.
02

9
0.
00

07
4

0.
98

0.
27

08
4

0.
60

1.
81

77
0.
18

0.
00

07
3

0.
98

D
ES

IL
L

1
0.
03

83
1

0.
85

0.
09

95
6

0.
75

0.
93

31
6

0.
34

4.
45

75
5

0.
03

7
5.
08

42
9

0.
02

7

H.M. Burrill et al.

6

ISME Communications



a marginally significant response to plant species richness (Table 2,
p= 0.09). Root fungal pathogen composition differentiated
significantly among planted proportion of Asteraceae species C.
tinctoria (Table 2, p= 0.02). Root oomycetes had a marginal
response to plant family composition (Table 2, p= 0.06). Root
bacterial community composition differentiated by plant family
composition (Table 2, p= 0.001), planted species in Fabaceae
(p= 0.002, A. canescens; p= 0.03, D. canadense; p= 0.001, D.
purpureum), Poaceae (p= 0.005, P. virgatum), and Asteraceae
(p= 0.008, L. pycnostachya; p= 0.006, C. tinctoria; p= 0.005, S.
integrifolium; p= 0.03, H. mollis). In addition, root bacteria
composition had a marginally significant response to plant
species richness (Table 2, p= 0.09), the interaction of plant family
composition and plant species richness (Table 2, p= 0.07), and
planted proportion of Asteraceae species E. altissimum (Table 2,
p= 0.06). Lastly, root AMF community composition differentiated
with planted proportion of Poaceae species S. scoparium (Table 2,
p= 0.02) and Fabaceae species A. canescens (Table 2, p= 0.03)
and D. illinoensis (Table 2, p= 0.05).
Beta dispersion was not significant for soil fungal pathogen

response to plant species richness (F= 0.294, p= 0.82) or root
oomycete response to plant family composition (F= 1.064,
p= 0.37). For root fungal saprobes, beta dispersion among plant
species richness treatments was significantly different (F= 2.726,
p= 0.04). Beta dispersion for root bacteria was significant among
plant family composition treatments (F= 3.397, p= 0.02), but not
for planted species richness (F= 1.921, p= 0.12).

Drivers of community divergence
To better understand the effects of plant family composition, we
analyzed principal component coordinates for each microbial
community that differed significantly with the plant family
composition treatment (Fig. 4; Supplementary Appendix Table 2).
Differentiation in soil fungal pathogens in response to plant family
composition was detected in PC1 (F3,93= 2.81, p= 0.04) and PC5
(F3,93= 6.40, p= 0.001; Fig. 4A). In the roots, non-pathotrophic
fungi responded to plant family composition in PC1 (F3,85= 3.72,
p= 0.01) PC2 (F3,85= 2.11, p= 0.1; Fig. 4C), Oomycetes in PC4
(F3,93= 2.33, p= 0.08) and PC6 (F3,93= 3.54, p= 0.02; Fig. 4E), and
bacteria in PC1 (F3,93= 15.93, p= 1.9e−8) PC2 (F3,93= 51.65,
p= 2.2e−16; Fig. 4G).
Fungal genera in the soil that differentiated in relative

abundance with plant family composition include putative
pathogens in Monographella (F3,93= 4.61, p= 0.005), Cercospora
(F3,93= 3.07, p= 0.03), and Erysiphe (F3,93= 4.10, p= 0.009), all of
which had higher abundance in plots with legumes only (Fig. 5).
The relative abundance of putative pathogens within Stagonos-
pora also differed significantly in response to plant family
composition (F3,93= 2.44, p= 0.07), with Poaceae diverging
slightly (Fig. 5). In the roots, we found weak responses of putative
pathogens within Papiliotrema (F3,93= 2.69, p= 0.05) and
Lophiostoma (F3,93= 5.72, p= 0.001), which seem to be diverging
by composites and grasses, respectively. See Supplementary
Appendix Table 3 and Supplementary Appendix Fig. 4 for soil
fungal family abundance.

DISCUSSION
We found rapid differentiation of the soil microbiome in response
to plant community composition and diversity, as we observed
pathogenic fungi, oomycetes, saprotrophic fungi, AMF, and
bacteria in soil, roots or both compartments to be differentiate
with planting design four months after planting (Table 2). These
host-specific changes were largely independent of each other, as
indicated by only weak and infrequent correlations being
observed in the co-occurrence analyses (Fig. 2). We therefore
analyzed individual microbial group responses to the experimen-
tal design separately. Of these microbial groups, fungal pathogensTa
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Table 2. PERMANOVA table for soil community composition (Bray−Curtis dissimilarity) response to experimental design.

Soil Fungal
saprotrophs

Fungal
pathogens

Oomycetes Bacteria AMF

DF R2 Pr(>F) R2 Pr(>F) R2 Pr(>F) R2 Pr(>F) R2 Pr(>F)

Block 1 0.025 0.001 0.017 0.006 0.038 0.001 0.010 0.162 0.027 0.001

PhyloFam 3 0.025 0.4 0.028 0.187 0.025 0.43 0.024 0.677 0.026 0.668

PlntDiv 1 0.008 0.401 0.014 0.031 0.005 0.962 0.007 0.808 0.008 0.695

SCHSCO 1 0.010 0.165 0.012 0.082 0.010 0.237 0.009 0.255 0.008 0.862

ANDGER 1 0.009 0.236 0.008 0.5 0.007 0.744 0.008 0.591 0.007 0.977

KOEMAC 1 0.008 0.502 0.008 0.525 0.005 0.953 0.009 0.171 0.008 0.819

ELYCAN 1 0.011 0.074 0.008 0.432 0.008 0.413 0.010 0.108 0.009 0.33

BOUGRA 1 0.006 0.879 0.005 0.93 0.006 0.873 0.008 0.652 0.009 0.508

PANVIR 1 0.009 0.327 0.009 0.307 0.010 0.18 0.009 0.153 0.009 0.393

AMOCAN 1 0.011 0.086 0.006 0.744 0.007 0.577 0.010 0.122 0.009 0.279

DALCAN 1 0.011 0.088 0.008 0.485 0.009 0.388 0.009 0.362 0.008 0.715

DALPUR 1 0.008 0.553 0.004 0.99 0.008 0.411 0.008 0.633 0.009 0.344

DESILL 1 0.006 0.918 0.011 0.171 0.006 0.805 0.008 0.544 0.008 0.761

DESCAN 1 0.007 0.784 0.008 0.518 0.006 0.777 0.009 0.318 0.009 0.508

CHAFAS 1 0.011 0.05 0.015 0.01 0.009 0.281 0.008 0.494 0.008 0.584

LIAPYC 1 0.010 0.127 0.010 0.18 0.008 0.409 0.009 0.397 0.009 0.562

CORTIN 1 0.010 0.172 0.013 0.06 0.008 0.527 0.008 0.472 0.010 0.208

ECHPAL 1 0.008 0.487 0.006 0.841 0.013 0.05 0.010 0.097 0.008 0.826

EUPALT 1 0.009 0.307 0.005 0.892 0.009 0.276 0.007 0.754 0.008 0.721

SILINT 1 0.007 0.799 0.007 0.691 0.006 0.839 0.006 0.988 0.009 0.313

HELMOL 1 0.010 0.187 0.004 0.898 0.005 0.919 0.008 0.736 0.007 0.943

PhyloFam:PlntDiv 3 0.027 0.187 0.028 0.233 0.019 0.921 0.030 0.016 0.024 0.919

Residual 93 0.756 0.766 0.771 0.776 0.762

Total 119 1.000 1.000 1.000 1.000 1.000

Roots Fungal
saprotrophs

Fungal
pathogens

Oomycetes Bacteria AMF

DF R2 Pr(>F) R2 Pr(>F) R2 Pr(>F) R2 Pr(>F) R2 Pr(>F)

Block 1 0.011 0.101 0.013 0.085 0.009 0.35 0.010 0.065 0.013 0.001

PhyloFam 3 0.025 0.441 0.026 0.405 0.034 0.061 0.103 0.001 0.026 0.807

PlntDiv 1 0.011 0.085 0.009 0.334 0.011 0.16 0.010 0.086 0.009 0.209

SCHSCO 1 0.009 0.389 0.008 0.537 0.011 0.136 0.008 0.26 0.010 0.02

ANDGER 1 0.009 0.256 0.012 0.158 0.008 0.534 0.008 0.235 0.008 0.809

KOEMAC 1 0.008 0.504 0.004 0.95 0.008 0.452 0.008 0.314 0.007 0.991

ELYCAN 1 0.010 0.211 0.005 0.905 0.010 0.255 0.008 0.242 0.009 0.239

BOUGRA 1 0.008 0.556 0.009 0.324 0.006 0.885 0.008 0.301 0.009 0.385

PANVIR 1 0.011 0.111 0.008 0.485 0.009 0.346 0.014 0.005 0.009 0.445

AMOCAN 1 0.008 0.575 0.004 0.924 0.010 0.267 0.017 0.002 0.010 0.028

DALCAN 1 0.012 0.033 0.006 0.726 0.010 0.243 0.011 0.034 0.009 0.598

DALPUR 1 0.008 0.492 0.005 0.918 0.008 0.554 0.018 0.001 0.010 0.104

DESILL 1 0.007 0.837 0.010 0.238 0.008 0.56 0.008 0.266 0.010 0.05

DESCAN 1 0.007 0.683 0.009 0.398 0.008 0.498 0.005 0.849 0.009 0.747

CHAFAS 1 0.007 0.794 0.006 0.751 0.007 0.742 0.011 0.041 0.008 0.889

LIAPYC 1 0.006 0.919 0.007 0.654 0.007 0.635 0.013 0.008 0.008 0.827

CORTIN 1 0.008 0.585 0.013 0.091 0.009 0.311 0.013 0.006 0.009 0.366

ECHPAL 1 0.009 0.415 0.017 0.02 0.004 0.986 0.007 0.402 0.009 0.221

EUPALT 1 0.008 0.464 0.008 0.488 0.008 0.451 0.010 0.059 0.009 0.472

SILINT 1 0.008 0.46 0.009 0.358 0.010 0.262 0.015 0.005 0.009 0.274

HELMOL 1 0.011 0.048 0.008 0.582 0.008 0.688 0.011 0.025 0.009 0.245

PhyloFam:PlntDiv 3 0.032 0.028 0.031 0.159 0.032 0.103 0.027 0.065 0.026 0.585

Residual 93 0.767 0.773 0.763 0.657 0.763

Total 119 1.000 1.000 1.000 1.000 1.000

Block is based on the spatial orientation on plots (see Supplementary Appendix Fig. 1). PhyloFam is the phylogenetically under-dispersed (either Poaceae,
Fabaceae, or Asteraceae), or phylogenetically over-dispersed (2 or 3 plant families present). PlntDiv is the plant species richness treatment (1, 2, 3, or 6).
Significant (<0.05) and marginal (<0.1) p-values are shown in bold.
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Fig. 4 Microbial composition response to plant species richness and plant family composition treatments. PCA plots showing (a) soil
fungal composition response to plant species richness (p= 0.03, Table 2), (b) root bacteria composition response to plant family (p= 0.001,
Table 2), soil bacteria composition response to the interaction of plant species richness and plant family (p= 0.02, Table 2), monocultures
depicted in c and 6-species treatment shown in d. 2-species and 3-species interaction plots found in Supplementary Appendix Fig. 3. Root
fungal saprobe composition differentiation in response to the interaction of planted species richness and plant family (p= 0.03, Table 2)
shown in monoculture (e) and 6-species (f), with 2- and 3-species plots found in Supplementary Appendix Fig. 3. P-values reported are from
PERMANOVA of microbial bray-curtis dissimilarity response to the model, as shown in detail in Table 2.
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in soil and bacteria in roots responded most strongly in both total
microbial community diversity (Fig. 3C, H) and composition
(Fig. 4A, B) to manipulations of plant species richness and plant
community composition, respectively. The differential strength of
differentiation of these microbial groups suggests their relative
potential importance in plant community dynamics.

Relative strength of differentiation of microbial groups
Root bacteria and soil fungal pathogens differentiated most
strongly with plant composition as they had the highest variation
explained due to the model (Table 2), while AMF had the lowest
rate of differentiation. Those detected differences were driven by
plant family composition as well as individual plant species within
the three planted families (Fig. 4B–F). Differentiation of micro-
biome composition can influence plant-plant interactions when
these microbial components differentially impact host fitness [10].
Our results suggest that root colonizing bacteria and fungal
pathogens are prime candidates for generating plant-soil feed-
back, while changes in AMF composition are less likely to be
important in the short time frame. This is consistent with empirical
tests of feedback [3]. While negative feedback through mycor-
rhizal differentiation within a growing season has been detected
in the lab [15], meta-analyses of plant soil feedback show that
feedbacks through non-AMF components like root and fungal
pathogens are generally stronger and more negative [3].
Moreover, microbiome-driven plant soil feedback depends

upon transmission of microbiomes from one plant to its
neighbors. As root colonization comes from the pool of microbes
in the soil, our detection of fungal pathogen differentiation on
plant hosts in the soil is consistent with these fungal pathogens
being available to serve as future colonists of neighboring plant
roots. Oomycetes also had similar levels of differentiation in roots
and soils. Together, this suggests that fungal and oomycete
pathogens may be most likely to drive rapid negative plant-soil
feedback, a result consistent with meta-analyses of plant soil
feedback experiments [3] and with accumulating evidence of
pathogens playing an important role in plant species coexistence
[6, 58].
The divergence of fungal pathogens with plant family (Figs. 4A

and 5) is consistent with pathogen specificity being structured by
plant family, as has been shown previously [21]. The phylogenetic

structure of pathogen specialization is also consistent with
stronger negative feedbacks between phylogenetically distant
plant pairs, as has been demonstrated in meta-analyses of
feedback experiments [3]. Such feedback would generate stabiliz-
ing forces around phylogenetically over-dispersed plant commu-
nities. In the soil, fungal pathogens in the genera Erypishe,
Monographella, and Cercospora were most abundant on Fabaceae
(Fig. 5). While pathogens within Cercospora were relatively most
abundant on Fabaceae, they were intermediate on Asteraceae,
and the least abundant on Poaceae. In addition, pathogens within
Stagonospora were most abundant on Poaceae, relative to the
other plant families and mixture plots. These patterns of
specialization have some consistence with observations of
agricultural crops, as pathogens within Cercospora have been
found on soy (Fabaceae) [59]. However, pathogens within
Monographella have most notably affected agricultural grain
(Poaceae) crops, such as rice and corn [60]. Further work is
necessary to assess whether information on pathogen specificity
on crops is generalizable to other plants.

Microbiome dynamics can mediate plant biodiversity impacts
on function
Our observation of shifts in pathogen composition with plant
density (Table 2) is consistent with evidence that pathogen
dilution mediates productivity benefits from increased plant
species richness [11, 27, 28, 61, 62]. Lower densities of individual
host taxa with increasing plant richness could lead to dominance
of generalist pathogens [63] or reduced detection of lowered
density of specialist pathogens in diverse mixtures, and therefore
lower diversity of pathogens at high plant diversity. This pattern
was also observed in soil oomycetes (Fig. 3E) and root oomycetes
in under-dispersed Poaceae plots. However, dilution of root
oomycetes was strongest in mixtures and Fabaceae plots, which
may indicate host-specificity of oomycete pathogens on Fabaceae
plants, but not in Poaceae or Asteraceae (Fig. 3F). Alternatively,
with high host richness, specialists on different taxa could be
observed in diverse mixtures with highly sensitive detection
environmental sequencing, therefore yielding greater pathogen
richness in plots with high richness, as observed in fungal
pathogens (Fig. 3C, D). Hence it is possible that both patterns are
potentially consistent with dilution of specialized pathogens. At

Fig. 5 Differential relative abundance of fungal pathogen OTUs in response to plant family composition treatment. Fungal genera in soil
with pathogens that respond significantly to the plant family treatment, “Mix” indicates over-dispersed treatments with more than one plant
family, while “Aster”, “Fab”, and “Poa” indicate under-dispersed plots with only Asteraceae, Fabaceae, or Poaceae, respectively. Fungal genera on
y axis are log-transformed relative abundance calculated from OTU counts. See Supplementary Appendix Table 3 for anova output.
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present, we are unable to decipher whether the divergent
patterns of oomycete and fungal pathogens results from differing
competitive abilities of generalist and specialist pathogens or
different sensitivities of environmental sequencing methods.
Other microbial components, such as mutualist AMF, have been

found to contribute to plant productivity responses to diversity as
well [25, 27]. We found root AMF to marginally decrease in
diversity with increased plant species richness (Fig. 3J) and AMF
composition was not sensitive to planting design within the time-
frame of data collection. The weaker effects we detected indicate
that AMF community response to planting design is delayed
relative to compared with pathogens and bacteria. Since plant
hosts can preferentially allocate resources to symbioses with
particular AMF species [64, 65] and AMF species can differentially
impact growth of plant taxa [8, 66], increased plant host diversity
may dilute positive plant-AMF feedbacks, potentially leading to
reduced benefits to preferred plant hosts and reduced productiv-
ity with increasing diversity. Our findings provide some insight in
that, within a very short time period, pathogens respond more
rapidly than AM fungi. How the relative rates of pathogen and
mutualist community dynamics might impact plant productivity
responses to plant diversity over time needs further investigation.

Differentiation of soil versus root microbial compartments
We generally observed stronger impacts of plant composition on
microbial diversity and composition in roots than soil. This is
consistent with strong filters to colonization of roots driving
microbe specialization, as might be expected from plant species
differing in their signaling for mutualists and immune response to
pathogens. Bacteria, while showing weak correlations between
soil and root compartments in the co-occurrence analysis (Fig. 2),
also showed the most dramatic difference with significant beta
dispersion in community composition in response to plant family
composition (Fig. 4B). This strong difference in beta dispersion is
consistent with a strongly host specific filter to root colonization
by bacteria and with the great bacterial diversity in soil being
unresponsive to our planting design. In addition, non-pathogenic
fungi showed a similar filter to root colonization as did bacteria,
though the response is less strong (Table 2). It is possible this
difference could be due to portions of the DNA extracted from soil
being from non-active cells [67], in which case amplified inactive
DNA could have diluted effects of microbial community responses
to our experimental design.
Counter to other groups, fungal pathogens had a stronger

response in the soil than in roots. Oomycetes also had this trend,
although the responses were less dramatic. These responses are
consistent with roots colonized by pathogens being turned over
quickly [68], thereby releasing the pathogens into the soil. This
suggests that fungal pathogens have a relatively faster response
to plant community composition than other microbial groups,
perhaps because pathogens that have associated with host roots
already began moving outwards in the soil to potential new hosts.
In plots of low plant species richness and plots with species from
only one plant family, the pathogen turnover in the soil is more
likely to lead to attack of a nearby susceptible host [21]. This could
magnify the growth rates of specialist pathogens, potentially
contributing to the significant variation in soil fungal pathogens
explained by plant family composition.

Evidence for home-field advantage for decomposer microbes
We observed strong responses of decomposers (fungal sapro-
trophs) and potential decomposers (bacteria – unable to match to
function) to our planting design, which may indicate proliferation
of decomposer microbes that specialize on plant litter types. Soil
bacteria (Fig. 4C, D) and root fungal saprobe (Fig. 4E, F)
composition differed significantly between plant family treat-
ments, particularly in high diversity plots (Table 2), while root
bacteria also had a marginal response (Supplementary Appendix

Fig. 3). For all interaction responses, composition of microbial
groups in mixtures were central to under-dispersed plant family
treatments. Soil bacteria composition becomes more different
between composite and legume plots as plant species richness
increases (Fig. 4C, D). Similarly, root saprotroph composition
becomes more different between grass and composite plots as
plant species richness increases (Fig. 4E, F). While we are unable to
match bacteria to functional traits at this time, many plant-
associated bacteria are decomposers, in addition to some plant
mutualists and pathogens [69]. Thus, it is likely that we detect
microbial decomposer host-specificity, potentially contributing to
the Home-Field Advantage effect [70]. The phylogenetic pattern of
differentiation is also consistent with a phylogenetic structure to
decomposer home field advantage, as observed in bark [17]. While
we do not include plant decomposition rates in congruence with
microbial sequencing data, we plan to investigate this relationship
in future years of the study.

CONCLUDING REMARKS
Just four months after planting this experiment, we observed
significant differences in microbial diversity and composition to
manipulations of plant community composition, with the stron-
gest observed response in root bacteria and soil fungal pathogens.
Microbial pathogens, bacteria and fungal saprotroph communities
differentiated between plant family composition, supporting host
specificity of pathogens and mutualists. Through both negative
plant-soil feedbacks driven by pathogens and positive plant-soil
feedbacks driven by host-preferred mutualists, a host plant’s
microbiome can mediate plant productivity changes with plant
diversity [27, 28, 71]. Future studies need to test the potential for
rapid divergence to contribute to plant species coexistence and
mediate ecosystem responses to plant diversity.

DATA AVAILABILITY
The raw sequencing reads data are uploaded to the NCBI Sequence Read Archive,
BIOPROJECT #PRJNA863284. Additional meta data (i.e. planting design) are available
from the corresponding author upon reasonable request.
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