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Abstract
We	consider	the	spatial	propagation	and	genetic	evolution	of	model	populations	com-
prising	multiple	subpopulations,	each	distinguished	by	its	own	characteristic	disper-
sal	rate.	Mate	finding	is	modeled	in	accord	with	the	assumption	that	reproduction	is	
based	on	random	encounters	between	pairs	of	individuals,	so	that	the	frequency	of	
interbreeding	 between	 two	 subpopulations	 is	 proportional	 to	 the	 product	 of	 local	
population	densities	of	each.	The	resulting	nonlinear	growth	term	produces	an	Allee	
effect,	whereby	reproduction	rates	are	lower	in	sparsely	populated	areas;	the	distri-
bution	of	dispersal	rates	that	evolves	is	then	highly	dependent	upon	the	population's	
initial	spatial	distribution.	In	a	series	of	numerical	test	cases,	we	consider	how	these	
dynamics	 affect	 lattice-	like	 arrangements	of	 population	 fragments,	 and	 investigate	
how	a	population's	 initial	 fragmentation	determines	 the	dispersal	 rates	 that	evolve	
as	a	habitat	is	colonized.	First,	we	consider	a	case	where	initial	population	fragments	
coincide	with	habitat	 islands,	within	which	death	rates	differ	from	those	that	apply	
outside;	the	presence	of	inhospitable	exterior	regions	exaggerates	Allee	effect-	driven	
reductions	 in	 dispersal	 ability.	We	 then	 examine	 how	 greater	 distances	 separating	
adjacent	population	fragments	lead	to	more	severe	reductions	in	dispersal	ability.	For	
populations	of	a	 fixed	 initial	magnitude,	 fragmentation	 into	smaller,	denser	patches	
leads	not	only	to	greater	losses	of	dispersal	ability,	but	also	helps	ensure	the	popula-
tion's	 long-	term	persistence,	 emphasizing	 the	 trade-	offs	 between	 the	benefits	 and	
risks	 of	 rapid	 dispersal	 under	 Allee	 effects.	 Next,	 simulations	 of	 well-	established	
populations	disrupted	by	 localized	depopulation	events	 illustrate	how	mate-	finding	
Allee	effects	 and	 spatial	 heterogeneity	 can	drive	 a	population's	dispersal	 ability	 to	
evolve	either	downward	or	upward	depending	on	conditions,	highlighting	a	qualitative	
distinction	between	population	fragmentation	and	habitat	heterogeneity.	A	final	test	
case	compares	populations	that	are	fragmented	across	multiple	scales,	demonstrating	
how	differences	 in	the	relative	scales	of	micro-		and	macro-	level	 fragmentation	can	
lead	to	qualitatively	different	evolutionary	outcomes.
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1  |  INTRODUC TION

1.1  |  Fragmentation and dispersal ability

Changes	 to	a	population's	habitat	can	 lead	 to	changes	 in	 the	phe-
notypic	traits	that	the	population	exhibits.	This	is	perhaps	most	vis-
ible	through	phenomena	such	as	island gigantism	and	island dwarfism 
(Benítez-	López	et	 al.,	2021;	 Lomolino,	2005;	McClain	et	 al.,	2013; 
Raia	&	Meiri,	2006;	Van	Valen,	1973).	Aside	from	changes	in	size,	in-
sular	populations	can	also	evolve	drastic	morphological	differences,	
such	as	those	that	lead	to	flightlessness	in	birds	(Wright	et	al.,	2016) 
or	 increased	 woodiness	 in	 plants	 (Lens	 et	 al.,	 2013).	 It	 has	 been	
suggested	 that	 most	 (if	 not	 all)	 of	 these	 evolutionary	 changes	 
reflect	the	same	consistent	trend	toward	reduced dispersal ability on 
islands,	or	even	beyond	islands	(Filin	&	Ziv,	2004;	Lomolino,	2005; 
Waters	et	al.,	2020;	Whittaker	&	Fernández-	Palacios,	2007).	Darwin	
famously	 pondered	 insular	 dispersal	 ability	 loss	 by	 considering	 an	
analogy	with	shipwrecked	mariners	facing	a	choice	between	clinging	
to	 the	 shipwreck	 or	 swimming	 away	 (Lomolino,	 2009).	 Individuals	
with	an	innate	tendency	to	stay	put	(i.e.,	slower	dispersers)	would	re-
main,	while	those	predisposed	to	swim	away	(i.e.,	faster	dispersers)	
would	 leave.	 In	 this	way,	slower	dispersers	could	come	to	consoli-
date	themselves	there,	reducing	the	local	population's	dispersal	abil-
ity.	A	variety	of	mathematical	analyses	repeatedly	predicted	similar	
tendencies	 toward	 dispersal	 ability	 loss,	 even	 beyond	 island	 habi-
tats	 (Asmussen,	1983;	Balkau	&	Feldman,	1973;	Filin	&	Ziv,	2004; 
Hastings,	 1983; Holt, 1985;	 Johnson	&	Gaines,	 1990). The down-
ward	evolution	of	dispersal	ability	in	these	models	is	typically	driven	
by	 the	 adverse	 effects	 suffered	 disproportionately	 by	 rapid	 dis-
persers	as	they	traverse	harmful	features	of	their	habitats,	such	as	
dangerous	boundaries	or	gradients	in	environmental	quality.	In	this	
way,	these	models	typically	assume	that	some	form	of	environmental 
heterogeneity,	rather	than	spatial isolation,	is	the	primary	factor	shap-
ing	the	evolution	of	dispersal	characteristics.	In	doing	so,	they	often	
draw	conclusions	which	do	not	depend	on	the	initial	distribution	of	a	
population	throughout	its	environment.

Elsewhere,	spatial	isolation	has	often	been	used	to	explain	these	
insular	phenomena,	whether	they	occur	on	true	islands	bounded	by	
water,	or	on	habitat islands,	where	other	 forms	of	 isolation	 lead	to	
“island	effects”	such	as	body	size	change	and	dispersal	ability	 loss	
(Amburgey	et	al.,	2021;	Cayuela	et	al.,	2019;	Haila,	2002;	Incagnone	
et	 al.,	 2015;	 Lens	 et	 al.,	 2013;	 McClain	 et	 al.,	 2006;	 Merckx	
et	 al.,	 2018).	 The	 isolation	 of	 population	 fragments	 from	 one	 an-
other	has	long	been	recognized	to	have	a	complex	influence	on	the	
evolution	of	populations	and	species	beyond	islands	as	well	(Kisel	&	
Barraclough,	2010;	Losos	et	al.,	2010;	MacArthur	&	Wilson,	2001; 
Whittaker	 et	 al.,	 2017;	 Whittaker	 &	 Fernández-	Palacios,	 2007). 
Spatial	 isolation	 can	 alter	 the	 selective	 pressures	 that	 shape	 the	

evolution	of	a	segment	of	a	population	(Jessop	et	al.,	2018;	Lomolino	
et	al.,	2012;	McClain	et	al.,	2013;	Millien,	2004)	by	sheltering	it	from	
predators,	 competitors,	 and	 environmental	 hazards,	 or	 conversely	
by	 separating	 individuals	 from	 resources	or	 from	 their	own	peers,	
including potential mates.	Even	within	Darwin's	“shipwreck”	scenario,	
the	prospects	of	survival	for	slower	or	faster	dispersers	would	de-
pend	on	 the	details	 of	 the	 shipwreck,	 including	how	 the	mariners	
and	ship	fragments	were	distributed	through	space	relative	to	one	
another	and	to	various	features	of	the	surrounding	environment.	In	
realistic	populations	and	habitats	too,	spatial	heterogeneity	can	re-
sult	in	a	complex	interplay	between	environments,	populations,	and	
the	patterns	of	dispersal	and	dispersal	ability	that	evolve.

Both	habitats	and	the	populations	that	inhabit	them	can	simul-
taneously	exhibit	heterogeneity,	patchiness,	or	fragmentation,	with	
the	distances	between	population	fragments	recognized	as	a	factor	
in	 the	 likelihood	of	 successful	 dispersal	 (Bowler	&	Benton,	2005; 
Conradt	et	al.,	2000).	Empirical	observations	of	genetic rescue—	by	
which	 migration-	driven	 gene	 flow	 reintroduces	 genetic	 diversity	
into	isolated	population	fragments,	supporting	their	continued	ad-
aptation	 and	 survival—	demonstrate	 how	 flows	 between	 separate	
fragments	can	be	mediated	by	individuals	with	high	dispersal	abil-
ity	 (Bell	et	al.,	2019;	 Ingvarsson,	2001;	Räsänen	&	Hendry,	2008; 
Whiteley	et	al.,	2015).	Natural	or	anthropogenic	disturbances	can	
alter	 habitats	while	 also	 affecting	 population	 densities	 across	 af-
fected	 areas,	 fragmenting	 habitats	 and	 populations;	 variations	
in	 body	 size	 and	 dispersal	 ability	 have	 been	 observed	 to	 follow	
these	events	(Brisson	et	al.,	2003;	Griffiths	&	Brook,	2014;	Merckx	
et	 al.,	 2018;	 Palkovacs	 et	 al.,	 2012).	 When	 populations	 expand	
into	unpopulated	areas,	 dispersal	 abilities	have	been	observed	 to	
evolve upward	along	the	advancing	edges	of	population	fragments	
(Bénichou	 et	 al.,	 2012;	 Bouin	 et	 al.,	 2012;	 Deforet	 et	 al.,	 2019; 
Holt	et	al.,	2004;	Hughes	et	al.,	2007;	Léotard	et	al.,	2009;	Phillips	
et	al.,	2010;	Travis	et	al.,	2009).	These	examples	highlight	the	po-
tentially	crucial	role	of	heterogeneity	of	a	population's	distribution	
throughout	 an	 environment—	population fragmentation,	 as	 distinct	
from	habitat fragmentation—	in	 shaping	 the	evolution	of	dispersal-	
related	traits.	This	study	thus	focuses	upon	the	 lesser	studied	as-
pects	of	population fragmentation,	in	terms	of	which	issues	of	spatial	
isolation	can	be	disentangled	from	heterogeneity	in	the	underlying	
habitat.	Using	a	reaction–	diffusion	model,	we	demonstrate	how	the	
details	of	a	population's	 initial	fragmentation	 in	space	can	play	an	
important	role	in	shaping	the	dispersal	characteristics	that	develop	
when	a	genetically	diverse	population	reproduces	sexually.	Before	
presenting	 the	 model,	 we	 will	 review	 related	 previous	 work	 on	
reaction–	diffusion	and	metapopulation	models	of	coupled	spatial-	
genetic	dispersal	dynamics,	as	well	as	mate-	finding	Allee effects,	by	
which	spatial	aggregation,	rather	than	isolation,	becomes	advanta-
geous	for	sexually	reproducing	populations.

T A X O N O M Y  C L A S S I F I C A T I O N
Biogeography,	Evolutionary	ecology,	Landscape	ecology,	Movement	ecology,	Population	
ecology,	Population	genetics,	Quantitative	genetics,	Spatial	ecology
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1.2  |  Modeling dispersal and the evolution of 
dispersal ability

1.2.1  |  Reaction–	diffusion	models

A	population's	spatial	movements	can	change	its	patterns	of	expo-
sure	 to	 its	 environment,	 while	 also	 affecting	 how	 frequently	 dif-
ferent	types	of	 individuals	within	the	population	interact	with	one	
another.	These	changes,	in	turn,	alter	the	birth	and	death	processes	
that	 shape	 the	 population's	 genetics,	 including	 those	 traits	 that	
determine	 how	 it	moves	 through	 space.	 This	 results	 in	 a	 complex	
feedback	 between	 dispersal	 and	 reproduction	 that	 can	 be	 readily	
captured	by	reaction– diffusion	equations.	Skellam's	(1951) pioneering 
reaction–	diffusion	model	describes	how	a	population,	represented	
by	 a	 density	 function,	 evolves	 under	 simultaneous	 processes	 of	
random-	walk	dispersal	and	reproduction	 (see	Box 1,	Equation	B1). 
Considering	a	model	habitat	encircled	by	a	“zone	of	absolute	extinc-
tion,”	Skellam	concluded	 that	a	population	with	a	 slower	dispersal	
rate	would	grow	more	quickly,	while	a	population	of	faster	dispers-
ers	would	grow	more	slowly,	or	even	decay,	as	it	spilled	more	rap-
idly	outward	 into	 the	habitat's	 lethal	exterior.	Filin	and	Ziv	 (2004) 
later	invoked	this	result	to	explain	the	apparent	universal	tendency	
toward	dispersal	ability	loss	on	islands:	subpopulations	with	slower	
dispersal	 rates	 would	 grow	 faster	 than	 subpopulations	 of	 rapid	
dispersers.	However,	 this	 explanation	 relies	 on	 the	 assumption	 of	
passive	 dispersal	 across	 a	 lethal	 “absorbing”	 island	 boundary.	 Its	
heuristic	 arguments	 also	 overlook	 the	 possibility	 that	 subpopula-
tions	distinguished	by	different	dispersal	 rates	 can	mate,	 interact-
ing	through	reproduction	to	potentially	“rescue”	one	another	from	
extinction.	 These	 limitations	 demonstrate	 the	 need	 for	 reaction–	
diffusion	models	that	can	(1)	accommodate	a	wider	range	of	domains	
and	boundaries,	and	(2)	more	explicitly	account	for	interactions	be-
tween	subpopulations	with	different	dispersal	rates.

A	number	of	 studies	 sought	 to	 further	develop	 the	pioneering	
work	of	Skellam	and	others	 (e.g.,	Kierstead	&	Slobodkin,	1953)	by	 
applying	 reaction–	diffusion	models	 to	 investigate	ecological	prob-
lems	 in	 greater	 depth	 (Britton,	 1986;	Ōkubo	 et	 al.,	2001);	 a	 com-
prehensive	 review	 is	 given	 by	 Cantrell	 and	 Cosner	 (2004). These 
analyses	 considered	 reaction–	diffusion	 dynamics	 on	 domains	
with	 more	 general	 shapes	 and	 boundary	 conditions,	 while	 some-
times	also	accommodating	spatial	heterogeneity	among	per-	capita	
growth	rates	or	dispersal	rates	within	a	domain's	interior	(see	Box 1, 
Equations	B2	 and	B3).	 These	 analyses	 provided	 a	more	 thorough	
theoretical	understanding	of	how	a	habitat's	shape,	boundaries,	and	
interior	 source–	sink	dynamics	 can	 affect	 a	dispersing	population's	
long-	term	persistence,	making	predictions	 about	 the	 critical	 patch	
sizes	 required	 for	 survival	 (Cantrell	&	Cosner,	2001, 2004). These 
insights	were	used	to	formulate	more	generalized	reaction–	diffusion	
approaches	 toward	 island	 biogeography	 (Cantrell	 et	 al.,	 1996; 
Cantrell	 &	 Cosner,	 1994, 2001),	 while	 remaining	 applicable	 to	 a	
wider	variety	of	scenarios	of	interest	in	landscape	ecology.

Meanwhile,	other	reaction–	diffusion	modeling	efforts	explicitly	
modeled	 the	 interactions	between	coexisting	 subpopulations	with	

different	dispersal	 traits.	Unlike	models	 that	 focused	on	 the	 long-	
term	persistence	of	populations	of	 individuals	all	sharing	the	same	
dispersal	 rate,	 Dockery	 et	 al.	 (1998)	 explicitly	 modeled	 variability 
among	 dispersal	 abilities.	 Their	 approach	 considered	 the	 coevo-
lution	 of	multiple	 population	 density	 functions,	 each	 representing	
a	 phenotype	 characterized	 by	 its	 own	 distinct	 dispersal	 rate	 (see	
Box 1,	Equation	B4),	and	coupled	to	the	other	phenotypes	through	
competition	for	resources	and	small	mutations.	By	tracking	how	the	
relative	abundances	of	 slower	and	 faster	dispersers	would	change	
as	 they	 dispersed	 through	 an	 environment	 with	 spatially	 varying	
carrying	capacity,	the	model	predicted	a	universal	tendency	toward	
dispersal	ability	loss	(Dockery	et	al.,	1998).	Other	approaches	have	
since	 obtained	 similar	 results	 using	 models	 formulated	 with	 con-
tinuous	 rather	 than	discretized	dispersal	 rates	 (Lam	&	Lou,	 2017), 
and	ongoing	 research	has	continued	 to	use	 reaction–	diffusion	ap-
proaches	that	incorporate	environmental	heterogeneity	in	new	ways	
(Cantrell	et	al.,	2020;	Wickman	et	al.,	2017).

1.2.2  | Metapopulation	models

The	 reaction–	diffusion	 models	 reviewed	 above	 often	 echoed	 re-
sults	 from	 metapopulation models.	 These	 models	 partition	 envi-
ronments	 into	 discrete,	 interconnected	 sites	 while	 modeling	 the	
internal	 dynamics	 of	 each	 site	 as	 “well-	mixed.”	 Metapopulation	
models	were	able	to	incorporate	feedbacks	between	migration	rates	
and	the	distributions	of	genes	that	determine	those	migration	rates	
(Asmussen,	1983;	Balkau	&	Feldman,	1973;	Ludwig	&	Levin,	1991; 
Moody,	1981;	Nagylaki	&	Moody,	1980;	Olivieri	et	al.,	1995).	In	mod-
els	where	environmental	characteristics	were	allowed	to	vary	from	
site	to	site	(Cohen	&	Levin,	1991;	Hastings,	1983; Holt, 1985; Levin 
et	al.,	1984;	McPeek	&	Holt,	1992),	heterogeneity	was	 repeatedly	
shown	 to	 reduce	 dispersal	 abilities	 (Kirkland	 et	 al.,	2006;	Murrell	
et	al.,	2002;	Papaïx	et	al.,	2013).	 In	contrast,	temporal heterogene-
ity	was	 found	to	 increase	dispersal	ability	 in	some	cases	 (Cohen	&	
Levin, 1991;	McPeek	&	Holt,	 1992),	 foreshadowing	 similar	 results	
from	reaction–	diffusion	models	(Hutson	et	al.,	2001).

1.3  |  Allee effects

An	Allee effect	(Courchamp	et	al.,	2008)	operates	when,	at	lower	pop-
ulation	densities,	increasing	density	has	a	positive	effect	on	fitness	
and	reproduction	rates.	Aggregation,	rather	than	isolation,	becomes	
advantageous.	A	strong	Allee	effect	applies	when	the	effect	can	go	
beyond	merely	slowing	growth	rates	to	cause	a	net	population	de-
cline.	A	variety	of	mechanisms	produce	Allee	effects;	for	example,	
spatial	aggregation	by	animals	can	facilitate	cooperation	in	hunting,	
foraging,	or	defense,	while	in	plants,	higher	vegetation	density	can	
help	maintain	favorable	soil	conditions	that	support	further	growth	
(Rietkerk	et	al.,	2004). Mate- finding Allee effects	specifically	associ-
ated	with	sexual	reproduction	can	arise	when,	for	example,	animals	
in	sparsely	populated	areas	seldom	encounter	potential	mates,	or	as	
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pollen	propagated	by	plants	into	sparsely	populated	areas	too	often	
fails	to	reach	conspecifics	(Davis	et	al.,	2004).

In	the	context	of	reaction–	diffusion	models,	per-	capita	growth	
rates	(see	Box 1)	can	depend	on	local	population	density,	with	the	

appropriate	mathematical	form	of	density	dependence	determined	
by	the	specific	mechanisms	at	hand	(Aronson	&	Weinberger,	1978; 
Cantrell	 et	 al.,	 1996;	 Du	 et	 al.,	 2019;	 Du	 &	 Shi,	 2007;	 Shi	 &	
Shivaji,	2006).	Allee	effects	can	arise	from	mate-	finding	processes	

BOX 1 Related reaction– diffusion models.

In	Skellam's	(1951)	seminal	reaction–	diffusion	model,	the	evolution	of	a	population	density	function	Ψ(x, y)	is	described	by	a	partial	
differential	equation	that	combines	simultaneous	processes	of	random-	walk	dispersal	(with	characteristic	step	size	proportional	to	a	
constant	a)	and	reproduction	(at	a	constant	per-	capita	growth	rate	c > 0):

where ∇2 =
�2

�x2
+

�2

�y2
	is	the	Laplacian	operator.	Skellam	considered	Equation	(B1)	on	a	circular	domain	of	radius	r0,	beyond	the	outer	edge	

of	which	lie	a	“zone	of	absolute	extinction,”	while	enforcing	an	“absorbing”	(i.e.,	Dirichlet)	boundary	condition	(Pudjaprasetya,	2018)	of	
Ψ = 0	along	the	edge	for	continuity.	Regardless	of	the	population's	initial	distribution	throughout	the	domain,	solutions	have	a	dominant	
mode	consisting	of	a	dome-	shaped	density	function	that	grows	(or	decays)	exponentially	at	a	spatially	uniform	rate	k = c − a2j2

1
∕
(

4r0
)

 
(where j1 ≈ 2.405).	Populations	with	faster dispersal rates	would	traverse	the	“absorbing”	boundary	in	greater	numbers,	inhibiting	their	
growth;	this	lethal	boundary	effect	becomes	more	exaggerated	on	smaller	domains.	For	a	given	domain	size	r0,	populations	with	excessive	
dispersal	rates	(a > 2

√

cr0 ∕ j1)	fail	to	maintain	densities	sufficient	to	support	net	growth,	and	so	decay	to	extinction;	similarly,	for	a	popu-
lation	with	a	given	dispersal	rate	a,	there	is	a	critical	patch	size	(r0 > a2j2

1
∕(4c))	below	which	the	population	cannot	persist.

More	general	reaction–	diffusion	models	have	taken	forms	such	as

where	the	functions	a(x, y)	and	c(x, y)	can	accommodate	spatial	variations	among	dispersal	rates	and	per-	capita	growth	rates,	respectively	
(Cantrell	&	Cosner,	2004).	Boundary	conditions	were	also	formulated	much	more	generally,	allowing	for	a	hybrid	of	(partial)	absorption	
and	(partial)	reflection:

where �⃗n	is	an	outward	normal	vector	with	respect	to	the	domain	boundary,	and	the	function	�(x, y)	describes	the	fraction	of	individuals	
impinging	upon	the	boundary	at	(x, y)	that	can	traverse	it	(Cantrell	&	Cosner,	2004).	Treatment	of	eigenvalue	problems	that	arise	from	
Equations	(B2)	and	(B3)	yielded	more	general	conclusions	about	the	overall	rates	of	population	growth	or	decay:	the	rate	of	population	
loss	across	a	boundary	is	proportional	to	the	largest	eigenvalue	of	the	diffusion	operator	on	the	domain	Ω,	which	is	determined	primarily	
by	the	patch	area	and	not	by	irregularities	in	the	shape	of	the	boundary	�Ω.	Even	when	“no-	flux”	(i.e.,	Neumann)	boundary	conditions	
(Pudjaprasetya,	2018)	are	applied,	analyses	of	source–	sink	dynamics	within	the	domain	lead	to	predictions	regarding	critical	patch	sizes	
and	long-	term	persistence	(Cantrell	&	Cosner,	2001, 2004).

The	tendency	toward	reduced dispersal ability	in	spatially-	heterogeneous	habitats	was	studied	within	a	reaction–	diffusion	framework	
by	Dockery	et	al.	(1998),	who	considered	the	coevolution	of	multiple	population	density	functions	Ψk	(for	k = 1, … , n),	each	repre-
senting	a	distinct	phenotype	k	with	characteristic	dispersal	rate	ak,	in	environments	with	spatially	varying	carrying	capacities	K(x, y):

where 𝜖 > 0	is	small	and	Mki	encodes	the	relative	frequencies	of	random	mutations	from	phenotype	 i 	into	phenotype	k.	Spatial	hetero-
geneity	in	the	environment	(i.e.,	in	K(x, y))	was	shown	to	shift	the	relative	abundances	of	the	phenotypes	in	favor	of	slower	dispersers.	
In	contrast	with	this	study,	in	which	subpopulations	interact	directly	via	sexual	reproduction,	the	functions	Ψk	in	that	case	were	coupled	
to	one	another	only	via	the	logistic	growth	term,	which	depends	on	total	population	density.	The	small	linear	mutation	term	was	used	to	
confirm	the	robustness	of	the	model's	conclusions	with	respect	to	mutations.

(B1)�Ψ

�t
=

a2

4
∇2Ψ + cΨ,

(B2)�Ψ

�t
= ∇ ⋅ a(x, y)∇Ψ + c(x, y)Ψ,

(B3)a(x, y)
𝜕Ψ

𝜕�⃗n
+ 𝛽(x, y)Ψ = 0,

(B4)
�Ψk

�t
=

a2
k

4
∇2Ψk + Ψk

[

K(x, y) −

n
∑

i=1

Ψi

]

+ �

n
∑

i=1

MkiΨi ,
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due	to	the	relative	rarity	of	encounters	between	potential	mates	in	
sparsely	populated	areas	(Boukal	&	Berec,	2002, 2009;	Gascoigne	
et	al.,	2009;	Lutscher	et	al.,	2022;	McCarthy,	1997);	 these	often	
share	 a	 mathematical	 form	 anticipated	 by	 Volterra	 and	 later	
termed	a	bimolecular collision model (Dennis, 1989).	In	these	mod-
els.	the	frequencies	of	encounters	between	members	of	different	
subpopulations	are	assumed	to	be	proportional	to	the	product	of	
their	densities.	Some	models	separately	account	for	male	and	fe-
male	subpopulations	by	allowing	for	fluctuating	sex	ratios	(Boukal	
&	Berec,	2002, 2009;	Gascoigne	et	al.,	2009).	For	example,	Molnár	
et	 al.	 (2008)	 assumed	 the	 local	 rates	 of	 breeding	 pair	 formation	
to	be	proportional	 to	 the	product	of	 local	 female	and	male	pop-
ulation	 densities.	 More	 recent	 work	 has	 investigated	 reaction–	
diffusion	 dynamics	 incorporating	 other	 types	 of	 Allee	 effects	
(Du	 et	 al.,	 2019;	Wang	 et	 al.,	 2019;	Wei	 et	 al.,	2020),	 and	Allee	
effects	have	also	been	extensively	studied	using	metapopulation	
approaches	(Amarasekare,	1998;	Courchamp	et	al.,	1999;	Pires	&	
Duarte	Queirós,	2019).

This	study	 investigates	how	mate-	finding	Allee	effects	affect	
the	 evolution	 of	 highly	 fragmented	 populations:	 How does the  
geometry of a population's initial distribution in space determine the 
dispersal characteristics that evolve?	 A	 novel	 reaction–	diffusion	
model	is	applied	to	a	series	of	numerical	test	cases,	each	chosen	
to	 highlight	 how	 a	 different	 geometric	 aspect	 of	 a	 population's	
fragmentation	in	space—	the	sizes	and	densities	of	fragments,	the	
distances	 between	 adjacent	 fragments,	 or	 the	 presence	 of	 frag-
mentation	at	multiple	spatial	scales—	can	shape	the	dispersal	char-
acteristics	of	populations.

2  |  METHODS

2.1  |  Dynamical equations

We	 consider	 the	 coevolution	 of	 n	 population	 density	 functions	
�k(X ,Y),	 each	 representing	 a	distinct	 genotype	k	 distinguished	by	
its	 own	 characteristic	 dispersal ability ak	 (related	 to	 the	 distance	
traveled	per	unit	time	in	random-	walk	movements).	These	dispersal	
abilities	take	one	of	n	evenly	spaced	values,	ak = a0k,	for	k = 1, … , n 
(where a0 > 0).	The	environment	is	assumed	to	have	a	finite	carrying 
 capacity K,	such	that	a	logistic	growth	factor	attenuates	birth	rates	
as	 the	environment	becomes	saturated.	The	mate-	finding	process	
affects	birth	rates	in	accord	with	the	assumption	that	births	result	
from	random	encounters	between	pairs	of	individuals	(as	in	bimolec-
ular	collision	models;	Dennis,	1989).	By	further	assuming	a	constant,	
spatially	uniform	sex	ratio,	 the	 local	probability	of	encounters	be-
tween	members	of	subpopulations	 i 	and	 j	becomes	proportional	to	
the product � i � j.	A	factor	�

ij

k
	describes	the	probability	(

∑n

k=1
�
ij

k
= 1 )	

that	parents	of	genotypes	 i 	and	 j	will	produce	offspring	of	type	k .	
Deaths	 are	 assumed	 to	 occur	 randomly	 with	 probability	d within 
each	time	increment.	The	population	density	function	�k represent-
ing	genotype	k	thus	evolves	with	respect	to	time	�	according	to	the	
dynamical	equation

where ∇2 =
�2

�X2
+

�2

�Y2
	is	the	Laplacian	operator	and	all	parameters	are	

positive.
We	focus	on	the	case	where	offspring	have	an	equal	50%	chance	

of	inheriting	the	genotype	k	of	either	parent,	so	that

where ��ij = 1	if	i = j	and	��ij = 0	if	i ≠ j.	In	this	case,	Equation 1	becomes

where � =
∑n

i=1
� i is the overall population density. The net per- capita 

growth rate,

is	 then	 identical	 across	 all	 genotypes	k,	 depending	 only	 upon	 the	
overall	 population	 density	 �.	 As	 in	 some	 previous	 models	 (e.g.,	
Dockery	et	al.,	1998),	then,	any	changes	in	the	relative	abundances	
of	 the	 different	 genotypes	 can	 be	 attributed	 unambiguously	 to	
their	 different	 dispersal	 rates.	 In	 contrast	 to	 those	 models,	 the	
mate-	finding	process	modeled	here	results	 in	a	different	nonlinear	
dependence	of	the	per-	capita	growth	rate	upon	total	population	�. 
Specifically,	Equation (4)	recalls	the	class	of	strong Allee effect growth 
terms	 studied	 previously	 for	 populations	with	 a	 uniform	 dispersal	
rate	 (e.g.,	 Amarasekare,	 1998;	Cantrell	 et	 al.,	 1996; Dennis, 1989; 
Du	&	Shi,	2007;	Wang	et	al.,	2011, 2019).	These	growth	terms	ex-
hibit	bistable	“explosion/extinction”	behavior	(Du	&	Shi,	2007;	Shi	&	
Shivaji,	2006;	Wang	et	al.,	2011),	always	evolving	toward	one	of	the	
two	possible	outcomes:	 (1)	 successful	colonization	of	 the	environ-
ment	(here,	� → K

�

1 +
√

1 − 4d∕(Kb)
�

∕2),	or	(2)	extinction	(� → 0 ).	
Beyond	addressing	questions	of	 long-	term	population	persistence,	
though,	the	inclusion	of	multiple	dispersal	genotypes	here	enables	
us to consider the distributions	of	dispersal	ability	that	evolve	from	
different	fragmented	initial	conditions.

If	 population	 densities	 are	 expressed	 as	 fractions	 of	 carrying	
capacity	as	Ψk = �k ∕K,	spatial	variables	in	terms	of	a	characteristic	
length	scale	r0	as	x = X ∕ r0	and	y = Y ∕ r0,	and	time	as	t =

(

a0∕r0
)2
�  ,	

the	dynamical	equations	(Equation 3)	are	recast	in	nondimensional-
ized	form	as

where ∇2 =
�2

�x2
+

�2

�y2
	 now,	 and	Ψ =

∑n

i=1
Ψi	 is	 the	 rescaled	 overall 

population density.	 Two	 dimensionless	 parameters	 remain:	 a	 res-
caled	 birth parameter � ≡

[

K
(

r0∕a0
)2
]

b	 and	 rescaled	 death rate 
� ≡

(

r0∕a0
)2
d.	This	illustrates	that	for	given	a	set	of	initial	population	

configurations,	the	task	of	exploring	the	range	of	dynamics	possible	

(1)
��k

��
=

a2
k

4
∇2�k + b

[

n
∑

i=1

n
∑

j=1

�
ij

k
� i� j

][

1 −
1

K

n
∑

i=1

� i

]

− d�k ,

(2)�
ij

k
=

1

2

[

��ik + ��jk
]

,

(3)��k

��
=

a2
k

4
∇2�k +

(

b�

[

1 −
1

K
�

]

− d

)

�k =
a2
k

4
∇2�k + c(�)�k ,

(4)c(�) = b�

[

1 −
1

K
�

]

− d,

(5)�Ψk

�t
=

k2

4
∇2Ψk +

(

�Ψ
[

1 − Ψ
]

− δ
)

Ψk ,
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6 of 16  |     SCHAUF et al.

throughout	space	of	all	parameter	values	can	effectively	be	reduced	
to	an	exploration	over	a	range	of	values	of	the	birth	parameter	�	and	
death	rate	�.

2.2  |  Numerical scheme

We	simulate	the	dynamics	of	Equation (5)	using	a	finite	difference	
method	(Pudjaprasetya,	2018),	approximating	the	Laplacian	opera-
tor ∇2	using	a	9-	point	stencil	(LeVeque,	2007)	while	applying	periodic	
boundary	conditions.	We	consider	a	computational	grid	with	node	
spacing	Δx	 spanning	 horizontal	 coordinates	 X =

{

x1, … , xNx

}

	 and	
vertical	coordinates	Y =

{

y1, … , yNy

}

.	Discretized	population	density	
states	Ψk(x, y; t = 0)	 defined	on	 grid	 points	(x, y) ∈ X × Y (Δx = 0.02 
for	 Experiments	 A–	D	 and	Δx = 0.04	 in	 Experiment	 E;	 see	 below),	
are	advanced	in	time	according	to	Equation (5)	using	a	Runge–	Kutta	
method	 of	 order	 5(4).	 Dispersal	 ability	 values	 are	 discretized	 into	
n = 5	 bins,	 a	 number	 chosen	 to	 balance	 considerations	 of	 compu-
tation	and	visualization	with	 the	need	 to	 represent	 a	 gradation	of	
dispersal	rates.

Simulation	 results	 are	 then	 summarized	 in	 terms	 of	 the	 total 
population of genotype k, Pk(t) =

�

∑Nx

i=1

∑Ny

j=1
Ψk

�

xi , yj ; t
�

�

(Δx)2,	 the	 total	
overall population P(t) = ∑n

k=1
Pk(t),	 and	 the	 population's	mean dis-

persal ability, a(t) = 1

P(t)

∑n

k=1
Pk(t)ak .	Unless	 otherwise	noted,	 simu-

lations	were	terminated	when	the	value	�(t)∕Ψ1(t) (where � is the 
standard	deviation	of	genotype	k = 1	density	values	Ψ1

(

xi , yj ; t
)

,	and	
Ψ1	is	their	mean)	receded	to	below	10

−3	(i.e.,	when	the	slowest	class	
of	 dispersers	 have	 nearly	 achieved	 a	 spatially	 uniform	 population	
density),	or	when	the	total	overall	population	P(t)	receded	to	below	

10
−4	(extinction).	Simulation	code	is	available	at	https://osf.io/qy5gf/	?	

view_only=9d069	efcd7	6e437	9a8a6	874b2	7dd2e4d.

2.3  |  Fragmented population configurations

Rigorous	 studies	 of	 reaction–	diffusion	models	 have	 explored	how	
patch/fragment	geometry	determines	long-	term	outcomes	by	delin-
eating	 the	 ranges	of	patch	sizes,	densities,	or	spacings	over	which	
survival	 or	 extinction	will	 result	 (Cantrell	 &	 Cosner,	2001, 2004). 
While	a	similar	analytical	approach	is	beyond	our	scope,	this	study	
also	systematically	explores	how	different	aspects	of	a	population's	
spatial	 configuration—	fragment	 sizes,	 densities,	 and	 spacings—	
affect	evolutionary	outcomes	under	mate-	finding	Allee	effects.	To	
this	 end,	we	 deal	with	 idealized	 fragmented	 populations	 of	which	
the	characteristic	sizes,	densities,	and	spacings	of	fragments	can	be	
varied	(Figure 1).	We	detail	the	layouts	of	these	configurations	in	the	
following.

To	 approximate	 an	 equilateral	 triangular	 lattice	 of	 circular	
patches	with	nearest-	neighbor	spacing	s, grid points 

(

xi , yj
)

	are	de-
fined	 at	 xi = −

s

2
+ Δx(i − 1)	 from	 i = 1, … ,Nx (with Nx =

s

Δx
)	 and	

yj = −
�√

3

2

s

Δx

�

Δx + Δx(j − 1)	 for	 j = 1, … ,Ny (with Ny =
�√

3s

Δx

�

 ,	 where	
⌈ ⋅⌉	rounds	its	argument	to	the	next	larger	integer).	Initial	population	
configurations	consist	of	a	circular	region	of	radius	 r	positioned	at	
the	 center	 of	 a	 rectangular	 domain,	with	 additional	 circular	 quad-
rants	with	radii	r	at	each	corner	(Figure 1a).	Dimensions	are	chosen	
such	that	circular	region	centers	are	separated	by	a	distance	of	ap-
proximately	s.	With	these	initial	configurations	and	periodic	bound-
aries,	 the	 layout	 can	 be	 interpreted	 as	 representing	 an	 infinitely	

F I G U R E  1 (a)	Layout	of	initial	population	density	functions	Ψ(x, y;t = 0)	for	Experiments	A–	D.	Circular	patches	of	radius	r	and	uniform	
density	�int	are	positioned	as	shown	within	a	rectangular	domain.	Outside	these	patches,	the	domain	is	populated	with	uniform	density	�ext.  
(b)	Modeling	an	infinite	lattice	of	population	fragments.	Due	to	the	use	of	periodic	boundary	conditions	in	simulations,	the	layout	shown	
in	(a)	can	be	interpreted	as	modeling	an	infinitely	extended	tiling	of	identical	fragments.	Simulating	the	dynamics	within	this	domain	is	
thus	equivalent	to	simulating	the	dynamical	evolution	of	a	triangular	lattice	of	circular	patches	with	nearest-	neighbor	spacing	s.	(c)	Initial	
conditions	for	Experiment	E.	The	computational	domain	is	expanded	and	intervening	exterior	areas	are	introduced	atop	the	regular	lattice-	
like	arrangement	of	fragments	simulated	previously	such	that	“micro”-	fragments	are	grouped	into	larger	“macro”-	fragments,	themselves	
arranged	in	a	triangular	lattice	configuration.	We	consider	two	variations	on	this	layout,	both	sharing	the	same	overall	initial	population:	(i)	
coarse fragmentation	and	(ii)	fine fragmentation.
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extended	 triangular	 lattice	of	 identical	 circular	 patches	with	 spac-
ing s (Figure 1b)	 (while	 noting	 that	 this	 precludes	 capturing	 larger	
scale	 spatial	 phenomena	 that	 could	 develop	 on	 true	 spatially	 ex-
tended	domains).	Circular	 region	 interiors	 are	 populated	with	 uni-
form	 density	 �int,	 in	 which	 each	 genotype	 is	 represented	 equally	
(Ψk(x, y; t = 0) = �int ∕n	 for	 grid	 points	 (x, y)	 falling	within	 these	 re-
gions),	 while	 exterior	 regions	 are	 populated	 with	 uniform	 density	
�ext (Ψk(x, y; t = 0) = �ext ∕n	for	(x, y)	outside	these	regions).	The	initial	
mean	dispersal	rate	is	thus	a(0) = (1 + n)∕2 = 3.	A	configuration	can	
thus	be	characterized	by	four	parameters:	(1)	Patch radius r , (2) lattice 
spacing s, (3) patch interior population density �int,	and	(4)	patch exterior 
population density �ext.

For	each	initial	configuration,	simulations	can	be	repeated	over	
a	range	of	birth	parameter	�	and	death	rate	�	values	to	explore	how	
outcomes	 are	 affected	 by	 environmental	 conditions.	 This	 study	
comprises	 five	 test	 cases	 (summarized	 in	 Table 1).	 The	 first	 three	
test	cases	model	sparse,	fragmented	populations	dispersing	within	
an	otherwise	unpopulated	domain	(�ext = 0).	The	extent	of	fragmen-
tation	is	varied	from	trial	to	trial	(in	terms	of	spacing	s	in	Experiments	
A	and	B,	and	 in	terms	of	radius	 r	 in	Experiment	C).	The	mean	dis-
persal	rates	a	that	evolve	are	then	observed	for	those	populations	
that	persist.	 In	Experiment	D,	the	layout	 is	 inverted	to	simulate	an	
otherwise-	saturated	domain	 (�ext = K)	 in	which	circular	regions	are	
initially	 unpopulated	 (�int = 0);	 this	 can	 be	 seen	 as	 representing	 a	
well-	established	population	following	its	disturbance	by	some	spa-
tially	 localized,	 catastrophic	 depopulation	 events.	 Experiment	 E	
considers	 populations	 that	 are	 fragmented	 across	multiple	 spatial	
scales,	with	 fragments	 forming	a	 roughly	 self-	similar	 lattice	of	 lat-
tices (Figure 1c).	Additional	details	about	each	of	these	test	cases	are	
discussed	alongside	simulation	results	below.

3  |  RESULTS

3.1  |  Experiment A: Dispersal of population 
fragments between habitat islands

Numerous	 studies	 have	 identified	 gene	 flow	 between	 population	
fragments,	 including	 cases	 of	 “genetic	 rescue”	 between	 habitat	 
islands,	as	 important	factors	 in	evolution.	Situations	 like	these	can	
be	modeled	as	an	 “archipelago”	of	habitat	patches	separated	 from	
one	another	by	regions	with	inhospitable—	but	neither	strictly	lethal	
nor	 impenetrable—	conditions.	 Other	 work	 has	 applied	 reaction–	
diffusion	 approaches	 to	 investigate	 related	 issues	 of	 island	 bioge-
ography	or	other	complex	habitats,	but	has	not	typically	focused	on	
how	 the	 initial	 arrangements	 of	 population	 fragments—	as	 distinct	
from	habitat	fragments—	might	affect	the	extent	of	the	subsequent	
changes	in	dispersal	ability.	Experiment	A	uses	this	“habitat	islands”	
scenario	to	clarify	and	distinguish	the	potential	roles	of	habitat	and	
population	fragmentation	in	complex	scenarios	like	these.	Its	results	
provide	context	for	the	spatially	homogeneous	test	cases	that	follow.

Circular	 population	 fragments,	 initially	 populated	 with	 den-
sity	�int (Figure 1a),	 are	set	 to	coincide	with	circular	habitat islands 

wherein �(x, y) = �int,	 with	 initially	 unpopulated	 exterior	 regions	
where �(x, y) = �ext.	While	holding	patch	radii	r ,	initial	interior	and	ex-
terior densities �int	and	�ext,	and	parameters	�	and	�int	constant	across	
all	trials	(see	Table 1),	we	repeat	simulations	over	a	range	of	values	
of	 patch-	exterior	 death	 rate	 �ext.	 The	 final	 mean	 dispersal	 rates	
a shown in Figure 2a	are	 the	values	 achieved	when	 the	 condition	
�

�

�

∑Nx

i=1

∑Ny

j=1

𝜕Ψk

𝜕t

�

xi , yj ; t
�

�

�

�

(Δx)2 < 0.1	is	first	satisfied	for	all	k; these do 
not	represent	steady	states,	but	rather	the	states	attained	soon	after	
the	habitat	has	become	saturated	and	Allee	effects	have	ceased	to	
play	a	primary	role.

The	 curve	 representing	 the	 homogeneous	 environment	 case	
(�ext = �int = 35) in Figure 2a	 shows	 how	 the	 final	 mean	 dispersal	
rate	a	decreases	steadily	as	initial	spacings	s	are	increased.	For	less-	
hospitable	 values	 of	 the	 patch	 exterior	 death	 rate	 (𝛿ext > 𝛿int), the 
circular	 regions	 represent	habitat islands	with	more	 favorable	con-
ditions	embedded	within	a	less	hospitable	exterior.	The	presence	of	
higher	mortality	 in	 the	exterior	enhances	 the	dispersal	ability	 loss	
that	occurs	due	to	Allee	effect	losses	alone	in	a	homogeneous	envi-
ronment;	curves	show	a	qualitatively	similar,	but	more	exaggerated,	
dependence	of	 final	dispersal	 ability	upon	 lattice	 spacing	 s.	When	
population	fragments	initially	anchored	to	habitat	islands	propagate	
outward,	the	transient	dynamics	of	interest	are	largely	captured	by	
the	homogeneous	environment	case;	spatial	heterogeneity	in	death	
rates	boost	or	hinder	these	dynamics.	If	these	population	fragments	
instead	 propagate	 outward	 into	 regions	 where	 mortality	 is	 lower	
(𝛿ext < 𝛿int),	 then	 competition	 to	 occupy	 the	 exterior	 region	 can	
become	more	 important	 than	mate-	finding	Allee	effects	 in	driving	
selection,	so	that	faster	dispersal	is	advantageous.	These	results	re-
veal	the	potential	for	mean	dispersal	ability	to	evolve	upward in this 
model	(as	when	�ext = 10 in Figure 2a),	marking	an	important	quali-
tative	difference	between	the	dynamics	that	result	from	population	
fragmentation	from	those	associated	with	habitat	fragmentation.

Over	the	longer	run,	however,	spatial	gradients	in	the	death	rate	
�(x, y)	will	 continue	 to	drive	a	net	 flux	of	dispersers	 into	 the	more	
lethal	regions.	Genotypes	that	disperse	more	quickly	into	these	less	
hospitable	 regions	 will	 be	 disproportionately	 affected,	 gradually	
draining	the	population	of	its	more	rapid	dispersers.	The	mean	dis-
persal	abilities	that	initially	result	from	Allee	effects	(Figure 2a) will 
not	persist	in	the	long	run.	When	habitat	and	population	fragmen-
tation	 coincide,	 the	heterogeneity-	driven	dispersal	 ability	 loss	 ob-
served	in	so	many	previous	models	will	indeed	occur	here.	However,	
since	 these	 habitat-	driven	 changes	 can	 be	 orders	 of	 magnitude	
slower	than	those	that	result	from	Allee	effects,	the	dispersal	traits	
that	initially	evolve	due	to	fragmentation	can	endure	for	a	relatively	
long	time.	For	example,	 in	 the	simulation	with	 the	most	heteroge-
neous	 environment	 considered	 here	 (�ext = 35, �int = 10, s = 2.2), 
mean	dispersal	ability	attains	the	value	displayed	in	Figure 2a	as	the	
environment	becomes	saturated	around	t ≈ 0.1,	while	by	t ≈ 6, the 
effects	of	the	heterogeneous	environment	have	only	reduced	mean	
dispersal	 ability	 to	90%	of	 this	 previous	 value.	Allee	 effect-	driven	
processes	 could	 thus	 remain	 ecologically	 relevant	 for	 a	 long	 time,	
especially	 in	 less	 heterogeneous	 environments,	 or	 in	 cases	where	
additional	 fragmentation	 can	occur	over	 time.	These	observations	
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8 of 16  |     SCHAUF et al.

provide	motivation	and	context	for	our	focus	on	population fragmen-
tation,	rather	than	habitat fragmentation,	in	the	homogeneous	envi-
ronment	test	cases	that	follow.

Animations	 of	 the	 simulations	 of	 Experiment	A	 summarized	 in	
Figure 2a	are	accessible	at	https://osf.io/49863/	?view_only=e8126	
7c03e	474f1	6b551	237c2	7fa3d74.

3.2  |  Experiment B: The role of separation between 
population fragments

Experiment	 B	 retains	 the	 initial	 population	 configurations	 used	 in	
Experiment	 A,	 but	 now	 considers	 their	 dispersal	 within	 spatially 
homogeneous	 environments	 over	 a	 range	 of	 combinations	 of	 birth	
and	death	parameters.	While	 holding	 the	 initial	 sizes,	 shapes,	 and	
densities	of	these	patches	consistent	across	all	 trials,	we	run	a	se-
ries	of	simulations	that	vary	the	spacing	s	separating	the	fragment	
centers.	Lower	values	of	s	give	more	closely	packed	fragments;	as	
s	 is	 increased,	 these	 fragments	 become	 increasingly	 isolated	 from	
one	another.	As	simulations	proceed	from	these	fragmented	initial	
conditions (t1 in Figure 3),	faster	dispersers	propagate	first	into	these	
unpopulated	 regions,	 and	 so	 are	more	 severely	 affected	 by	 Allee	
effects;	 meanwhile,	 slower	 dispersers	 remain	 densely	 aggregated	
around	fragment	centers,	where	they	maintain	higher	growth	rates	
(t2 in Figure 3).	When	fragments	are	more	closely	spaced,	dispers-
ers	from	adjacent	fragments	more	quickly	meet	and	establish	higher	
population	 densities	 in	 the	 gaps	 between	 patches	 (t3 in Figure 3). 
This	reduces	the	losses	of	rapid	dispersers	suffered	early	on,	retain-
ing	more	of	their	genes	within	a	population	that	(given	sufficiently	
hospitable	 conditions)	 then	proceeds	 to	 saturate	 the	 environment	
(t4 in Figure 3).	However,	when	 fragments	are	 separated	by	 larger	
spacings	s,	the	greater	times	taken	to	traverse	the	intervening	gaps	
results	 in	greater	 losses	of	 rapid	dispersers	before	overall	popula-
tion	numbers	stabilize.	Once	the	population	has	established	itself	in	
greater	numbers,	surviving	rapid	dispersers	may	regain	some	advan-
tage	as	they	are	able	to	occupy	the	sparsely	populated	regions	be-
tween	fragments	first	(t3 − t4 in Figure 3c,f).	By	initially	dominating	

these	 regions,	 rapid	 dispersers	 can	 partially	 recover	 the	 dispersal	
ability	 lost	 during	 more	 precarious	 stages	 of	 evolution	 (t2 − t3 in 
Figure 3).

Even	as	a	population	saturates	the	environment,	and	its	constit-
uent	genotypes	become	uniformly	intermixed	in	space,	the	trauma	
of	 the	 initial	 fragmentation	nonetheless	 remains	 “frozen	 in”	 to	 the	
population,	having	determined	the	relative	abundances	of	different	
genotypes.	The	mean	dispersal	ability	values	attained	decrease	as	
the	 initial	 spacing	 s	 increases	 (Figure 2b).	 If	 the	 initial	 spacing	 s is 
further	 increased,	 then	Allee	 effects	 become	 insurmountable	 and	
the	entire	population	decays.	Under	more	favorable	environmental	
conditions	(i.e.,	higher	ratios	� ∕�),	Allee	effect	dispersal	ability	losses	
(and,	eventually,	extinctions)	begin	to	take	effect	at	larger	spacings	s ;	
the	more	favorable	the	conditions,	the	greater	the	amount	of	initial	
spatial	isolation	that	can	be	overcome.

Animations	 for	 the	 simulations	 summarized	 in	 Figure 3	 are	
shown	 in	Movies	S1	and	S2,	and	animations	for	the	simulations	of	
Experiment	B,	 representing	 the	 range	of	 parameter	 values	of	 s, �, 
and	� included in Figure 2b,	are	accessible	at	https://osf.io/2qn8u/	?	
view_only=7aa42	a040f	0b417	aa571	266a0	e465a9d.

3.3  |  Experiment C: The role of fragment 
size and density

In	Experiment	B,	the	spacing	s	between	fragment	centers	was	used	
to	track	the	effects	of	spatial	separation	upon	the	dispersal	abilities	
that	evolved.	Increasing	the	patch	spacing	s	in	this	way	also	results	
in	an	increased	domain	area (Figure 1a),	which	decreases	the	popula-
tion's	initial	overall	density	(i.e.,	the	ratio	of	total	overall	population	
to	domain	area	(≈ P∕

�
√

3s2
�

)).	Experiment	C	aims	to	disentangle	the	
geometric	 aspects	of	 fragmentation	 from	variations	 to	 the	overall	
population	density	by	varying	patch	size	 r	 in	 tandem	with	density	
�int ,	so	that	the	geometry	of	the	initial	configuration	is	altered	with-
out	affecting	its	initial	overall	density.

Many	 results	 show	 significant	 reductions	 in	 mean	 dispersal	
ability	 a,	 with	 dynamics	 qualitatively	 similar	 to	 those	 observed	 in	

TA B L E  1 Initial	conditions	and	parameter	settings/ranges	for	the	five	test	cases.	Independent	variables	(i.e.,	quantities	plotted	along	
the	horizontal	axes	in	Figure 2)	are	italicized;	Ranges	in	parentheses	(e.g.,	“(350–	400)”)	indicate	the	limits	of	the	parameter	regimes	over	
which	simulation	trials	were	repeated.	Entries	for	Experiments	A	through	D	correspond	to	the	layout	of	Figure 1a.	Entries	for	Experiment	E	
refer	to	the	(i)	coarse fragmentation	and	(ii)	fine fragmentation	layouts	displayed	in	Figure 1c, with S	and	R	indicating	the	spacing	and	radius,	
respectively,	of	the	“macro”-	lattice	of	hexagonal	fragments,	with	s	and	r	describing	the	spacings	and	radii	of	the	circular	“micro”-	fragments.

Experiment Lattice spacing s Radius r Interior density �int
Exterior 
density �ext

Birth parameter(s) 
� Death rate(s) �

A 2.0– 2.5 1.0 0.1273 0 365 Interior �int: 35
Exterior	�ext:	(10–	70)

B 2.0– 2.5 1.0 0.1273 0 (350–	400) (35–	39)

C 2.0 0.1– 0.9 ≈
0.1273

r2
0 (350–	380) (45–	60)

D 2.0– 2.5 1.0 0 1.0 (360–	380) (40–	55)

E (i): 2.2 (S =13.2)
(ii): 1.1 (S =13.2)

(i): 1.0 (R ≈ 5)
(ii): 0.5 (R ≈ 5)

(i):	0.1273
(ii): 

(

19

61

)

0.1273

≈ .0397

0 385 37
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Experiment	B	 (Figure 2c).	 The	observed	decline	 in	mean	dispersal	
rates	as	initial	patch	radii	r	are	decreased	(i.e.,	progressing	leftward	
in Figure 2c)	 corresponds	 to	 the	 decline	 observed	 for	 increasing	
spacing	 s	 in	 Experiment	B:	 in	 both	 cases	 (as	 s	 is	 increased,	 or	 r is 
decreased),	the	unpopulated	gaps	between	fragments	are	expanded.	
Here,	 however,	 the	non-	monotonic	dependence	of	 the	 final	mean	
dispersal	rate	a upon r (Figure 2c)	illustrates	the	trade-	off	between	

high	 population	 density	within	 fragments	 (which	 enhances	 a	 frag-
mented	population's	ability	overcome	Allee	effects	during	the	pre-
carious	initial	stages	of	evolution)	and	smaller	intervening	distances	
between	 fragments	 (which	 facilitates	 the	 rapid	 colonization	 of	 
unpopulated	 areas,	 reducing	 Allee	 effects	 there).	 Small,	 densely	
aggregated	 fragments	 are	 more	 spatially	 isolated;	 despite	 their	
high	interior	densities,	these	populations	suffer	great	reductions	in	

F I G U R E  2 Final	population	mean	dispersal	rate	a	as	a	function	of	the	independent	variable	characterizing	the	initial	conditions	in	each	
test	case.	(a)	Experiment	A.	Final	mean	dispersal	ability	a	as	a	function	of	spacing	s	for	various	values	of	the	patch	exterior	death	rate	�ext 
(with �int = 35	and	� = 365 ).	(b)	Experiment	B.	Final	mean	dispersal	ability	a	as	a	function	of	lattice	spacing	s	for	surviving	populations	over	
a	range	of	combinations	of	birth	parameter	�	and	death	rate	�.	(c)	Experiment	C.	Final	mean	dispersal	ability	a	as	a	function	of	patch	radius	
r	for	surviving	populations.	(d)	Experiment	D.	Final	mean	dispersal	ability	a	as	a	function	of	lattice	spacing	s.	Data	points	representing	
simulations	which	resulted	in	extinction	are	omitted.
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10 of 16  |     SCHAUF et al.

dispersal	ability	(or	extinction)	as	they	struggle	to	populate	the	vast	
surrounding	regions.	On	the	other	hand,	when	fragments	are	wider	
but	 less	 densely	 aggregated,	 populations	 may	 be	 spread	 too	 thin	
to	 overcome	Allee	 effects	 even	within	 fragments.	 Between	 these	
extremes,	 the	 advantages	 of	 closer	 spacings	 between	 fragments	
(which	support	the	survival	of	faster	dispersers)	and	higher	densities	
within	fragments	(where	slower	dispersers	stay	put	and	reproduce)	
complement	one	another.	All	else	being	equal,	an	 intermediate de-
gree	of	spatial	fragmentation	here	enhances	the	chances	of	survival	
compared	to	more-		or	less-	fragmented	initial	configurations,	includ-
ing	 for	more	 rapid	 dispersers	who	 disproportionately	 suffer	 Allee	
effects	at	both	extremes.

Animations	 of	 the	 simulations	 of	 Experiment	C	 summarized	 in	
Figure 2c	are	accessible	at	https://osf.io/mtbc4/	?view_only=05ef0	
d96d6	22467	1b098	cb107	bc872a1.

3.4  |  Experiment D: Disruption of established 
populations by localized depopulation

Even	dense	populations	can	become	vulnerable	 to	Allee	effects	 if	
they	are	affected	by	some	spatially	 localized	disturbance	(e.g.,	 for-
est	 fires	 or	 human-	induced	 deforestation;	 Brisson	 et	 al.,	 2003). 
Experiment	D	inverts	the	configurations	of	the	previous	test	cases	
by	 situating	 unpopulated	 circular	 patches	 among	 a	 densely	 popu-
lated	exterior	region	(�ext = K, �int = 0),	as	if	patch	interiors	had	just	
been	suddenly	depopulated.	Changes	to	the	spacing	s	alter	the	spa-
tial	extent	of	these	disruptions.	For	smaller	spacings	s,	a	majority	of	
the	domain	has	been	depopulated,	and	fragments	disperse	outward	
from	narrow,	densely	populated	 slivers.	These	 isolated	population	
fragments	struggle	to	repopulate	the	vast	unpopulated	regions,	and	
so	 experience	 Allee	 effect	 dispersal	 ability	 losses	 (Figure 2d)	 like	
those	 observed	 in	 previous	 cases.	 For	 larger	 spacings	 s,	 only	 dis-
tant	pockets	have	been	depopulated;	 the	population—	including	all	
of	its	constituent	genotypes—	remain	safe	from	Allee	effects.	Under	
these	more	favorable	conditions,	Allee	effect	losses	are	less	severe,	
and	the	clearing-	out	of	previously	saturated	regions	favors	rapidly	
dispersing	pioneers	who	manage	 to	establish	 their	presence	 there	
first,	leading	to	net	gains	in	mean	dispersal	ability	for	larger	spacings	
s (Figure 2d).	Along	the	propagating	front	of	expanding	population	
fragments,	rapidly	dispersing	pioneers	make	their	way	outward	into	
the	unpopulated	void;	not	far	behind	them,	though,	slower	dispersers	
maintain	higher	densities,	reproducing	with	faster	dispersers	to	en-
sure	a	constant	feed	of	new	rapid	dispersers	to	act	as	pioneers.	This	
result	echoes	empirical	and	theoretical	studies	that	investigate	how	
increased	dispersal	ability	can	evolve	along	 the	 range	edges	of	ex-
panding	population	fronts	(Bénichou	et	al.,	2012;	Bouin	et	al.,	2012; 
Deforet	 et	 al.,	 2019;	 Hughes	 et	 al.,	 2007;	 Léotard	 et	 al.,	 2009; 
Phillips,	2009;	Phillips	et	al.,	2010;	Simmons	&	Thomas,	2004;	Tobin	
et	al.,	2007;	Travis	et	al.,	2009, 2010;	Travis	&	Dytham,	2002).

Animations	of	 the	 simulations	of	Experiment	D	 summarized	 in	
Figure 2d	are	accessible	at	https://osf.io/xg6z7/	?view_only=be106	
51f66	e24f2	ba4fb	85ed4	ff4118c.

3.5  |  Experiment E: Fragmentation across multiple 
spatial scales

The	 idealized	 fragmented	configurations	of	 the	previous	 test	cases	
demonstrate	 how	 the	 spatial	 separations,	 densities,	 and	 sizes	 of	
identical	 fragments	 affect	 the	 extent	 of	 dispersal	 ability	 losses	 (or	
gains)	 that	 evolve	due	 to	mate-	finding	Allee	effects.	More	 realistic	
populations	 can	 contain	 fragmentation	 at	 multiple	 spatial	 scales.	
Experiment	E	considers	more	elaborate	configurations	where	 frag-
ments	 are	grouped	 into	 larger	macro-	fragments,	which	 themselves	
are	also	arranged	in	a	triangular	lattice	(Figure 1c).	We	consider	two	
different	population	configurations	that	differ	only	in	terms	of	their	
spatial	fragmentation	at	the	microscale.	Both	feature	large	hexagonal	
regions	with	“radii”	of	around	5	and	lattice	spacings	of	13.2,	and	the	
same	total	initial	population.	In	the	first	configuration,	these	macro-	
fragments	are	more	coarsely	subdivided	(with	r = 1.0	and	s = 2.2); in 
the	second,	they	are	more	finely	subdivided	(with	r = 0.5	and	s = 1.1).

Simulating	these	two	configurations	under	the	same	combination	
of	parameter	settings	offers	a	glimpse	into	how	meta-	scale	fragmenta-
tion	can	lead	to	qualitatively	different	patterns	of	evolution	than	were	
observed	on	the	simpler	layouts	considered	previously.	This	is	visible	
in	the	unique	patterns	of	spatial	propagation	of	the	macro-	fragment	
populations,	which	differs	from	those	observed	in	the	uniform	circular	
fragments	of	the	previous	experiments.	Internal	fragmentation	within	
the	macro-	fragments	leads	to	dispersal	ability	loss	within	their	interi-
ors,	and	even	greater	losses	are	experienced	near	the	macro-	fragments'	
outer	edges	as	rapidly	dispersing	pioneers	propagate	into	unpopulated	
regions.	This	 results	 in	a	relative	 lack	of	rapid	dispersers	around	the	
edge (t2 in Figure 4c,f);	as	the	population	then	builds	in	overall	num-
bers,	however,	a	surge	of	new	population	then	propagates	outward,	
driven	by	rapid	dispersers,	breeding	with	the	slow	dispersers	near	the	
edge	to	produce	a	greater	abundance	of	slower	dispersers	around	the	
macro-	fragment	edge	than	is	found	in	the	center	(t3 in Figure 4c,f).

Despite	 both	 configurations	 sharing	 a	 similar	 pattern	 of	 frag-
mentation	 at	 the	macro-	scale,	 these	 two	 cases	 differ	 in	 terms	of	
their	eventual	qualitative	outcomes.	As	macro-	fragment	populations	
colonize	 the	 intervening	 unpopulated	 regions,	 the	more	 coarsely	
fragmented	population	experiences	a	net	dispersal	ability	decrease 
(Figure 4a),	while	 the	more	 finely	 fragmented	population	 (r = 0.5 ,	
s = 1.1)	 experiences	 a	 net	 dispersal	 ability	 increase (Figure 4b). In 
the	coarsely	fragmented	case,	the	population	experiences	greater	
initial	dispersal	ability	loss,	with	mean	dispersal	ability	reaching	its	
lowest	level	around	t2 (Figure 4a).	Although	these	relative	losses	are	
later	partially	recovered	(t3 in Figure 4a)	by	rapid	dispersers	coloniz-
ing	the	larger	intervening	regions	between	both	macro-		and	micro-	
fragments	 (t3 in Figure 4c),	 dynamics	 eventually	 stagnate	 with	 a	
net	dispersal	ability	decrease	having	occurred	(t4 in Figure 4b,c). In 
the	more	finely	fragmented	case,	early	dispersal	ability	 losses	are	
less	extreme	due	to	the	narrower	gaps	between	micro-	fragments,	
which	mitigate	Allee	effect	losses	(t2 in Figure 4e,f).	Greater	num-
bers	 of	 rapid	 dispersers	 are	 thus	 retained	within	 the	 population,	
and	 these	 rapid	dispersers	have	an	advantage	as	well-	established	
macro-	fragments	 propagate	 outward	 to	 colonize	 the	 surrounding	
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F I G U R E  3 Simulation	results	from	Experiment	B	for	lattice	spacings	s = 2.15	(left	column)	and	s = 2.40	(right	column)	with	� = 380, � = 36.  
(a)	Time	evolution	of	the	total	population	of	each	genotype	for	spacing	s = 2.15.	(b)	Time	evolution	of	population	mean	dispersal	ability	a	for	 
spacing	s = 2.15.	(c)	Relative	population	densities	Ψk(x, y;t)∕Ψmax(t) (where Ψmax(t) = max

x,y,k
Ψk(x, y;t))	at	indicated	times	t1, t2, t3,	and	t4	for	spacing	

s = 2.15.	(d)	Time	evolution	of	the	total	population	of	each	genotype	for	spacing	s = 2.40.	(e)	Time	evolution	of	population	mean	dispersal	
ability	a	for	spacing	s = 2.40.	(f)	Relative	population	densities	Ψk(x, y;t)∕Ψmax(t)	at	indicated	times	t1 ,	t2, t3,	and	t4	for	spacing	s = 2.40.  
Note	that	by	the	times	t4	shown	here,	the	relative	abundances	of	each	genotype	have	nearly	reached	their	steady-	state	values;	following	t4, 
populations	continue	to	diffuse,	approaching	spatially	uniform	distributions.
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12 of 16  |     SCHAUF et al.

F I G U R E  4 Simulation	results	from	Experiment	E	with	� = 385, � = 37.	(a)	Time	evolution	of	the	total	population	of	each	genotype	for	the	
coarse fragmentation	case.	(b)	Time	evolution	of	population	mean	dispersal	ability	a	for	the	coarse fragmentation	case.	(c)	Relative	population	
densities Ψk(x, y;t)∕Ψmax(t) (where Ψmax(t) = max

x,y,k
Ψk(x, y;t))	at	indicated	times	t1, t2, t3,	and	t4	for	the	coarse fragmentation	case.	(d)	Time	

evolution	of	the	total	population	of	each	genotype	for	the	fine fragmentation	case.	(e)	Time	evolution	of	population	mean	dispersal	ability	a 
for	the	fine fragmentation	case.	(f)	Relative	population	densities	Ψk(x, y;t)∕Ψmax(t)	at	indicated	times	t1, t2, t3,	and	t4	for	the	fine fragmentation 
case.	Note	that	by	the	times	t4	shown	here,	the	relative	abundances	of	each	genotype	have	nearly	reached	their	steady-	state	values;	
following	t4,	populations	continue	to	diffuse,	approaching	spatially	uniform	distributions.
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regions,	 where	 rapid	 dispersers	 come	 to	 dominate	 slower	 dis-
persers (t3	and	t4 in Figure 4a–	c),	 leading	to	a	net	dispersal	ability	
increase	(Figure 4d–	f).	The	effects	of	the	population's	initial	micro-	
fragmentation	 are	 thus	 still	 felt	 even	 long	 after	 its	 traces	 are	 no	
longer	visible	in	the	population's	spatial	distribution	(t4 in Figure 4d). 
These	effects	are	manifest	not	 just	 in	 the	magnitude	of	dispersal	
change,	but	potentially	also	in	its	direction:	upward	or	downward.

Full	 animations	 for	 the	simulations	summarized	 in	Figure 4	are	
shown	in	Movies	S3	and	S4.

4  |  DISCUSSION

The	model	 presented	 here	 combines	 several	 features	 of	 previous	
reaction–	diffusion	models	in	a	novel	way	to	study	the	evolution	of	
dispersal	by	fragmented	populations	with	an	Allee	effect.	Its	use	of	
multiple	interacting	dispersal	ability	genotypes	distinguishes	it	from	
other	related	reaction–	diffusion	models	that	included	Allee	effects	
(Cantrell	et	al.,	1996;	Shi	&	Shivaji,	2006).	As	in	the	work	of	Dockery	
et	al.	(1998),	variability	among	dispersal	abilities	is	modeled	by	dis-
cretizing	the	space	of	possible	dispersal	rates	into	several	bins,	each	
represented	by	its	own	characteristic	dispersal	ability	(ak),	and	then	
considering	the	coevolution	of	the	population	density	functions	(Ψk )	
that	represent	these	subpopulations.	 In	that	model,	direct	 interac-
tions	between	different	 kinds	of	dispersers	were	not	 a	prominent	
driver	of	evolution	in	their	own	right.	Here,	however,	nonlinear	in-
teractions	between	these	different	genotypes	play	a	more	formative	
role	in	the	evolution	of	dispersal	traits.

Our	 results	 demonstrated	 how	 larger	 distances	 between	 pop-
ulation	 fragments	 lead	 to	 greater	 dispersal	 ability	 losses	 for	 small	
populations	 that	 survive	 to	 colonize	 a	 habitat	 (Experiment	B).	 For	
populations	with	low,	fixed	initial	densities,	we	demonstrated	that	an	
intermediate	level	of	aggregation	into	fragments	is	optimal;	at	lower	
or	higher	degrees	of	fragmentation,	dispersal	ability	losses	become	
increasingly	severe	 (Experiment	C).	When	densely	populated	 frag-
ments	 colonize	unpopulated	 regions,	 dispersal	 abilities	 can	 evolve	
upward	 under	 favorable	 conditions	 (Experiment	 D).	 For	 different	
model	 populations	 showing	 similar	 levels	 of	 fragmentation	 at	 one	
spatial	scale,	different	patterns	of	fragmentation	at	another	spatial	
scale	can	lead	them	toward	divergent	outcomes	(Experiment	E).

Reaction–	diffusion	models	have	long	been	used	to	demonstrate	
how—	for	 populations	 confronted	 with	 heterogeneous	 habitats	 or	
hostile	boundaries—	slow	dispersal	can	come	to	dominate	over	time.	
The	simulations	presented	here	illustrate	a	case	where	multiple	co-
existing	strategies—	slower	dispersers	who	remain	anchored	around	
dense	 population	 fragments,	 and	 rapid	 dispersers	 who	 colonize	
sparsely	populated	areas—	can	complement	one	another.	Each	con-
tributes	potential	advantages	at	different	phases	of	evolution;	 the	
relative	magnitudes	of	these	advantages	depend	on	the	distribution	
of	the	population	in	space.	This	sensitivity	to	initial	conditions	is	an-
other	qualitative	difference	distinguishing	the	present	model	from	a	
great	deal	of	previous	related	work.	Following	Skellam	(1951),	many	
analytical	 reaction–	diffusion	 approaches	 to	 dispersal	 have	 tended	
to	focus	only	on	the	long-	term	outcomes	approached	after	all	traces	

of	 initial	 conditions	 have	 vanished.	 Our	 results,	 however,	 provide	
examples	of	highly	path-	dependent	dispersal	evolution,	where	tran-
sient	dynamics	determine	the	states	that	a	population	approaches	in	
the	long	run.	Even	in	homogeneous	environments,	where	previously	
studied	mechanisms	eventually	 act	 to	 reduce	dispersal	 ability,	 the	
consequences	of	these	earlier	stages	of	evolution	can	remain	rele-
vant	over	relatively	long-	time	scales	(Experiment	A).

Within	the	current	model,	the	details	of	this	fragmentation	can	
even	determine	the	direction—	downward	or	upward—	in	which	dis-
persal	ability	evolves.	This	capacity	for	predicting	upward	evolution	
of	dispersal	rates	under	some	conditions,	even	within	an	unchang-
ing	habitat,	marks	an	interesting	qualitative	distinction	of	this	model	
from	the	majority	of	 related	work.	A	 few	simple	mechanisms	here	
can	lead	either	to	downward	or	upward	changes	in	dispersal	ability	
depending	on	fragmentation	patterns	and	environmental	conditions.	
Given	that	the	purportedly	universal	loss of dispersal ability	on	islands	
has	been	called	into	question	even	for	the	most	passive	of	dispersers	
(Burns, 2018;	García-	Verdugo	et	al.,	2017),	models	like	this	could	be	
useful	when	navigating	these	issues.	Some	of	the	simulation	results	
presented	above	exhibit	features	which	recall	various	empirical	re-
sults	reported	elsewhere,	such	as	the	upward	evolution	of	dispersal	
ability	 along	 the	expanding	 fronts	of	population	 fragments,	which	
in	 some	 cases	 have	 been	 attributed	 to	 Allee	 effects	 (e.g.,	 Tobin	
et	al.,	2007).	Further	work	could	explore	the	possibility	of	establish-
ing	more	direct	links	between	models	and	simulations	like	those	of	
this	study	and	more	concrete	empirical	observations.

These	numerical	experiments	have	explored	the	space	of	potential	
dynamics	that	can	result	from	population	fragmentation	and	Allee	ef-
fects,	demonstrating	some	qualitative	differences	of	these	dynamics	
from	those	of	habitat	fragmentation.	A	rigorous	theoretical	treatment	
of	 this	 model,	 more	 akin	 to	 that	 undertaken	 for	 other	 reaction–	
diffusion	 models	 (Cantrell	 &	 Cosner,	 2004), could provide deeper 
insights.	 One	 advantage	 of	 this	 study's	 computational	 approach,	
though,	is	that	simulation	results	allow	for	visualizations	of	the	com-
plex	patterns	of	spatial	propagation	undergone	by	multiple	interacting	
classes	of	dispersers	alongside	the	population-	level	genetic	changes	
in	dispersal	ability	that	result	(as	in	Figures 3	and	4	and	Movies	S1–	S4).  
The	real	utility	of	such	a	model	may	lie	in	its	application	to	more	re-
alistic	and	specific	case	studies,	where	the	spatial	patterns	it	predicts	
could	be	compared	with	observed	spatial	distributions.	Previous	work	
has	applied	related	models	to	problems	of	conservation	or	pest	con-
trol	(e.g.,	Boukal	&	Berec,	2009;	Du	et	al.,	2019);	in	applications	like	
these,	simulations	could	be	useful	to	help	guide	spatially	targeted	in-
terventions.	The	modeling	and	simulation	approach	presented	here,	
by	providing	visualizations	of	 complex	 coupled	processes	of	 spatial	
propagation	and	genetic	evolution,	could	help	to	facilitate	these	kinds	
of	connections	between	models	and	applications	in	ways	that	more	
abstract,	theoretical	results	alone	might	not.
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