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Abstract
We consider the spatial propagation and genetic evolution of model populations com-
prising multiple subpopulations, each distinguished by its own characteristic disper-
sal rate. Mate finding is modeled in accord with the assumption that reproduction is 
based on random encounters between pairs of individuals, so that the frequency of 
interbreeding between two subpopulations is proportional to the product of local 
population densities of each. The resulting nonlinear growth term produces an Allee 
effect, whereby reproduction rates are lower in sparsely populated areas; the distri-
bution of dispersal rates that evolves is then highly dependent upon the population's 
initial spatial distribution. In a series of numerical test cases, we consider how these 
dynamics affect lattice-like arrangements of population fragments, and investigate 
how a population's initial fragmentation determines the dispersal rates that evolve 
as a habitat is colonized. First, we consider a case where initial population fragments 
coincide with habitat islands, within which death rates differ from those that apply 
outside; the presence of inhospitable exterior regions exaggerates Allee effect-driven 
reductions in dispersal ability. We then examine how greater distances separating 
adjacent population fragments lead to more severe reductions in dispersal ability. For 
populations of a fixed initial magnitude, fragmentation into smaller, denser patches 
leads not only to greater losses of dispersal ability, but also helps ensure the popula-
tion's long-term persistence, emphasizing the trade-offs between the benefits and 
risks of rapid dispersal under Allee effects. Next, simulations of well-established 
populations disrupted by localized depopulation events illustrate how mate-finding 
Allee effects and spatial heterogeneity can drive a population's dispersal ability to 
evolve either downward or upward depending on conditions, highlighting a qualitative 
distinction between population fragmentation and habitat heterogeneity. A final test 
case compares populations that are fragmented across multiple scales, demonstrating 
how differences in the relative scales of micro- and macro-level fragmentation can 
lead to qualitatively different evolutionary outcomes.
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1  |  INTRODUC TION

1.1  |  Fragmentation and dispersal ability

Changes to a population's habitat can lead to changes in the phe-
notypic traits that the population exhibits. This is perhaps most vis-
ible through phenomena such as island gigantism and island dwarfism 
(Benítez-López et al., 2021; Lomolino, 2005; McClain et al., 2013; 
Raia & Meiri, 2006; Van Valen, 1973). Aside from changes in size, in-
sular populations can also evolve drastic morphological differences, 
such as those that lead to flightlessness in birds (Wright et al., 2016) 
or increased woodiness in plants (Lens et al.,  2013). It has been 
suggested that most (if not all) of these evolutionary changes  
reflect the same consistent trend toward reduced dispersal ability on 
islands, or even beyond islands (Filin & Ziv, 2004; Lomolino, 2005; 
Waters et al., 2020; Whittaker & Fernández-Palacios, 2007). Darwin 
famously pondered insular dispersal ability loss by considering an 
analogy with shipwrecked mariners facing a choice between clinging 
to the shipwreck or swimming away (Lomolino,  2009). Individuals 
with an innate tendency to stay put (i.e., slower dispersers) would re-
main, while those predisposed to swim away (i.e., faster dispersers) 
would leave. In this way, slower dispersers could come to consoli-
date themselves there, reducing the local population's dispersal abil-
ity. A variety of mathematical analyses repeatedly predicted similar 
tendencies toward dispersal ability loss, even beyond island habi-
tats (Asmussen, 1983; Balkau & Feldman, 1973; Filin & Ziv, 2004; 
Hastings,  1983; Holt, 1985; Johnson & Gaines,  1990). The down-
ward evolution of dispersal ability in these models is typically driven 
by the adverse effects suffered disproportionately by rapid dis-
persers as they traverse harmful features of their habitats, such as 
dangerous boundaries or gradients in environmental quality. In this 
way, these models typically assume that some form of environmental 
heterogeneity, rather than spatial isolation, is the primary factor shap-
ing the evolution of dispersal characteristics. In doing so, they often 
draw conclusions which do not depend on the initial distribution of a 
population throughout its environment.

Elsewhere, spatial isolation has often been used to explain these 
insular phenomena, whether they occur on true islands bounded by 
water, or on habitat islands, where other forms of isolation lead to 
“island effects” such as body size change and dispersal ability loss 
(Amburgey et al., 2021; Cayuela et al., 2019; Haila, 2002; Incagnone 
et al.,  2015; Lens et al.,  2013; McClain et al.,  2006; Merckx 
et al.,  2018). The isolation of population fragments from one an-
other has long been recognized to have a complex influence on the 
evolution of populations and species beyond islands as well (Kisel & 
Barraclough, 2010; Losos et al., 2010; MacArthur & Wilson, 2001; 
Whittaker et al.,  2017; Whittaker & Fernández-Palacios,  2007). 
Spatial isolation can alter the selective pressures that shape the 

evolution of a segment of a population (Jessop et al., 2018; Lomolino 
et al., 2012; McClain et al., 2013; Millien, 2004) by sheltering it from 
predators, competitors, and environmental hazards, or conversely 
by separating individuals from resources or from their own peers, 
including potential mates. Even within Darwin's “shipwreck” scenario, 
the prospects of survival for slower or faster dispersers would de-
pend on the details of the shipwreck, including how the mariners 
and ship fragments were distributed through space relative to one 
another and to various features of the surrounding environment. In 
realistic populations and habitats too, spatial heterogeneity can re-
sult in a complex interplay between environments, populations, and 
the patterns of dispersal and dispersal ability that evolve.

Both habitats and the populations that inhabit them can simul-
taneously exhibit heterogeneity, patchiness, or fragmentation, with 
the distances between population fragments recognized as a factor 
in the likelihood of successful dispersal (Bowler & Benton, 2005; 
Conradt et al., 2000). Empirical observations of genetic rescue—by 
which migration-driven gene flow reintroduces genetic diversity 
into isolated population fragments, supporting their continued ad-
aptation and survival—demonstrate how flows between separate 
fragments can be mediated by individuals with high dispersal abil-
ity (Bell et al., 2019; Ingvarsson, 2001; Räsänen & Hendry, 2008; 
Whiteley et al., 2015). Natural or anthropogenic disturbances can 
alter habitats while also affecting population densities across af-
fected areas, fragmenting habitats and populations; variations 
in body size and dispersal ability have been observed to follow 
these events (Brisson et al., 2003; Griffiths & Brook, 2014; Merckx 
et al.,  2018; Palkovacs et al.,  2012). When populations expand 
into unpopulated areas, dispersal abilities have been observed to 
evolve upward along the advancing edges of population fragments 
(Bénichou et al.,  2012; Bouin et al.,  2012; Deforet et al.,  2019; 
Holt et al., 2004; Hughes et al., 2007; Léotard et al., 2009; Phillips 
et al., 2010; Travis et al., 2009). These examples highlight the po-
tentially crucial role of heterogeneity of a population's distribution 
throughout an environment—population fragmentation, as distinct 
from habitat fragmentation—in shaping the evolution of dispersal-
related traits. This study thus focuses upon the lesser studied as-
pects of population fragmentation, in terms of which issues of spatial 
isolation can be disentangled from heterogeneity in the underlying 
habitat. Using a reaction–diffusion model, we demonstrate how the 
details of a population's initial fragmentation in space can play an 
important role in shaping the dispersal characteristics that develop 
when a genetically diverse population reproduces sexually. Before 
presenting the model, we will review related previous work on 
reaction–diffusion and metapopulation models of coupled spatial-
genetic dispersal dynamics, as well as mate-finding Allee effects, by 
which spatial aggregation, rather than isolation, becomes advanta-
geous for sexually reproducing populations.

T A X O N O M Y  C L A S S I F I C A T I O N
Biogeography, Evolutionary ecology, Landscape ecology, Movement ecology, Population 
ecology, Population genetics, Quantitative genetics, Spatial ecology
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1.2  |  Modeling dispersal and the evolution of 
dispersal ability

1.2.1  |  Reaction–diffusion models

A population's spatial movements can change its patterns of expo-
sure to its environment, while also affecting how frequently dif-
ferent types of individuals within the population interact with one 
another. These changes, in turn, alter the birth and death processes 
that shape the population's genetics, including those traits that 
determine how it moves through space. This results in a complex 
feedback between dispersal and reproduction that can be readily 
captured by reaction–diffusion equations. Skellam's (1951) pioneering 
reaction–diffusion model describes how a population, represented 
by a density function, evolves under simultaneous processes of 
random-walk dispersal and reproduction (see Box 1, Equation B1). 
Considering a model habitat encircled by a “zone of absolute extinc-
tion,” Skellam concluded that a population with a slower dispersal 
rate would grow more quickly, while a population of faster dispers-
ers would grow more slowly, or even decay, as it spilled more rap-
idly outward into the habitat's lethal exterior. Filin and Ziv  (2004) 
later invoked this result to explain the apparent universal tendency 
toward dispersal ability loss on islands: subpopulations with slower 
dispersal rates would grow faster than subpopulations of rapid 
dispersers. However, this explanation relies on the assumption of 
passive dispersal across a lethal “absorbing” island boundary. Its 
heuristic arguments also overlook the possibility that subpopula-
tions distinguished by different dispersal rates can mate, interact-
ing through reproduction to potentially “rescue” one another from 
extinction. These limitations demonstrate the need for reaction–
diffusion models that can (1) accommodate a wider range of domains 
and boundaries, and (2) more explicitly account for interactions be-
tween subpopulations with different dispersal rates.

A number of studies sought to further develop the pioneering 
work of Skellam and others (e.g., Kierstead & Slobodkin, 1953) by  
applying reaction–diffusion models to investigate ecological prob-
lems in greater depth (Britton,  1986; Ōkubo et al., 2001); a com-
prehensive review is given by Cantrell and Cosner  (2004). These 
analyses considered reaction–diffusion dynamics on domains 
with more general shapes and boundary conditions, while some-
times also accommodating spatial heterogeneity among per-capita 
growth rates or dispersal rates within a domain's interior (see Box 1, 
Equations B2 and B3). These analyses provided a more thorough 
theoretical understanding of how a habitat's shape, boundaries, and 
interior source–sink dynamics can affect a dispersing population's 
long-term persistence, making predictions about the critical patch 
sizes required for survival (Cantrell & Cosner, 2001, 2004). These 
insights were used to formulate more generalized reaction–diffusion 
approaches toward island biogeography (Cantrell et al.,  1996; 
Cantrell & Cosner,  1994, 2001), while remaining applicable to a 
wider variety of scenarios of interest in landscape ecology.

Meanwhile, other reaction–diffusion modeling efforts explicitly 
modeled the interactions between coexisting subpopulations with 

different dispersal traits. Unlike models that focused on the long-
term persistence of populations of individuals all sharing the same 
dispersal rate, Dockery et al.  (1998) explicitly modeled variability 
among dispersal abilities. Their approach considered the coevo-
lution of multiple population density functions, each representing 
a phenotype characterized by its own distinct dispersal rate (see 
Box 1, Equation B4), and coupled to the other phenotypes through 
competition for resources and small mutations. By tracking how the 
relative abundances of slower and faster dispersers would change 
as they dispersed through an environment with spatially varying 
carrying capacity, the model predicted a universal tendency toward 
dispersal ability loss (Dockery et al., 1998). Other approaches have 
since obtained similar results using models formulated with con-
tinuous rather than discretized dispersal rates (Lam & Lou,  2017), 
and ongoing research has continued to use reaction–diffusion ap-
proaches that incorporate environmental heterogeneity in new ways 
(Cantrell et al., 2020; Wickman et al., 2017).

1.2.2  | Metapopulation models

The reaction–diffusion models reviewed above often echoed re-
sults from metapopulation models. These models partition envi-
ronments into discrete, interconnected sites while modeling the 
internal dynamics of each site as “well-mixed.” Metapopulation 
models were able to incorporate feedbacks between migration rates 
and the distributions of genes that determine those migration rates 
(Asmussen, 1983; Balkau & Feldman, 1973; Ludwig & Levin, 1991; 
Moody, 1981; Nagylaki & Moody, 1980; Olivieri et al., 1995). In mod-
els where environmental characteristics were allowed to vary from 
site to site (Cohen & Levin, 1991; Hastings, 1983; Holt, 1985; Levin 
et al., 1984; McPeek & Holt, 1992), heterogeneity was repeatedly 
shown to reduce dispersal abilities (Kirkland et al., 2006; Murrell 
et al., 2002; Papaïx et al., 2013). In contrast, temporal heterogene-
ity was found to increase dispersal ability in some cases (Cohen & 
Levin, 1991; McPeek & Holt,  1992), foreshadowing similar results 
from reaction–diffusion models (Hutson et al., 2001).

1.3  |  Allee effects

An Allee effect (Courchamp et al., 2008) operates when, at lower pop-
ulation densities, increasing density has a positive effect on fitness 
and reproduction rates. Aggregation, rather than isolation, becomes 
advantageous. A strong Allee effect applies when the effect can go 
beyond merely slowing growth rates to cause a net population de-
cline. A variety of mechanisms produce Allee effects; for example, 
spatial aggregation by animals can facilitate cooperation in hunting, 
foraging, or defense, while in plants, higher vegetation density can 
help maintain favorable soil conditions that support further growth 
(Rietkerk et al., 2004). Mate-finding Allee effects specifically associ-
ated with sexual reproduction can arise when, for example, animals 
in sparsely populated areas seldom encounter potential mates, or as 
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pollen propagated by plants into sparsely populated areas too often 
fails to reach conspecifics (Davis et al., 2004).

In the context of reaction–diffusion models, per-capita growth 
rates (see Box 1) can depend on local population density, with the 

appropriate mathematical form of density dependence determined 
by the specific mechanisms at hand (Aronson & Weinberger, 1978; 
Cantrell et al.,  1996; Du et al.,  2019; Du & Shi,  2007; Shi & 
Shivaji, 2006). Allee effects can arise from mate-finding processes 

BOX 1 Related reaction–diffusion models.

In Skellam's (1951) seminal reaction–diffusion model, the evolution of a population density function Ψ(x, y) is described by a partial 
differential equation that combines simultaneous processes of random-walk dispersal (with characteristic step size proportional to a 
constant a) and reproduction (at a constant per-capita growth rate c > 0):

where ∇2 =
�2

�x2
+

�2

�y2
 is the Laplacian operator. Skellam considered Equation (B1) on a circular domain of radius r0, beyond the outer edge 

of which lie a “zone of absolute extinction,” while enforcing an “absorbing” (i.e., Dirichlet) boundary condition (Pudjaprasetya, 2018) of 
Ψ = 0 along the edge for continuity. Regardless of the population's initial distribution throughout the domain, solutions have a dominant 
mode consisting of a dome-shaped density function that grows (or decays) exponentially at a spatially uniform rate k = c − a2j2

1
∕
(

4r0
)

 
(where j1 ≈ 2.405). Populations with faster dispersal rates would traverse the “absorbing” boundary in greater numbers, inhibiting their 
growth; this lethal boundary effect becomes more exaggerated on smaller domains. For a given domain size r0, populations with excessive 
dispersal rates (a > 2

√

cr0 ∕ j1) fail to maintain densities sufficient to support net growth, and so decay to extinction; similarly, for a popu-
lation with a given dispersal rate a, there is a critical patch size (r0 > a2j2

1
∕(4c)) below which the population cannot persist.

More general reaction–diffusion models have taken forms such as

where the functions a(x, y) and c(x, y) can accommodate spatial variations among dispersal rates and per-capita growth rates, respectively 
(Cantrell & Cosner, 2004). Boundary conditions were also formulated much more generally, allowing for a hybrid of (partial) absorption 
and (partial) reflection:

where �⃗n is an outward normal vector with respect to the domain boundary, and the function �(x, y) describes the fraction of individuals 
impinging upon the boundary at (x, y) that can traverse it (Cantrell & Cosner, 2004). Treatment of eigenvalue problems that arise from 
Equations (B2) and (B3) yielded more general conclusions about the overall rates of population growth or decay: the rate of population 
loss across a boundary is proportional to the largest eigenvalue of the diffusion operator on the domain Ω, which is determined primarily 
by the patch area and not by irregularities in the shape of the boundary �Ω. Even when “no-flux” (i.e., Neumann) boundary conditions 
(Pudjaprasetya, 2018) are applied, analyses of source–sink dynamics within the domain lead to predictions regarding critical patch sizes 
and long-term persistence (Cantrell & Cosner, 2001, 2004).

The tendency toward reduced dispersal ability in spatially-heterogeneous habitats was studied within a reaction–diffusion framework 
by Dockery et al. (1998), who considered the coevolution of multiple population density functions Ψk (for k = 1, … , n), each repre-
senting a distinct phenotype k with characteristic dispersal rate ak, in environments with spatially varying carrying capacities K(x, y):

where 𝜖 > 0 is small and Mki encodes the relative frequencies of random mutations from phenotype i  into phenotype k. Spatial hetero-
geneity in the environment (i.e., in K(x, y)) was shown to shift the relative abundances of the phenotypes in favor of slower dispersers. 
In contrast with this study, in which subpopulations interact directly via sexual reproduction, the functions Ψk in that case were coupled 
to one another only via the logistic growth term, which depends on total population density. The small linear mutation term was used to 
confirm the robustness of the model's conclusions with respect to mutations.

(B1)�Ψ

�t
=

a2

4
∇2Ψ + cΨ,

(B2)�Ψ

�t
= ∇ ⋅ a(x, y)∇Ψ + c(x, y)Ψ,

(B3)a(x, y)
𝜕Ψ

𝜕�⃗n
+ 𝛽(x, y)Ψ = 0,

(B4)
�Ψk

�t
=

a2
k

4
∇2Ψk + Ψk

[

K(x, y) −

n
∑

i=1

Ψi

]

+ �

n
∑

i=1

MkiΨi ,
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    |  5 of 16SCHAUF et al.

due to the relative rarity of encounters between potential mates in 
sparsely populated areas (Boukal & Berec, 2002, 2009; Gascoigne 
et al., 2009; Lutscher et al., 2022; McCarthy, 1997); these often 
share a mathematical form anticipated by Volterra and later 
termed a bimolecular collision model (Dennis, 1989). In these mod-
els. the frequencies of encounters between members of different 
subpopulations are assumed to be proportional to the product of 
their densities. Some models separately account for male and fe-
male subpopulations by allowing for fluctuating sex ratios (Boukal 
& Berec, 2002, 2009; Gascoigne et al., 2009). For example, Molnár 
et al.  (2008) assumed the local rates of breeding pair formation 
to be proportional to the product of local female and male pop-
ulation densities. More recent work has investigated reaction–
diffusion dynamics incorporating other types of Allee effects 
(Du et al.,  2019; Wang et al.,  2019; Wei et al., 2020), and Allee 
effects have also been extensively studied using metapopulation 
approaches (Amarasekare, 1998; Courchamp et al., 1999; Pires & 
Duarte Queirós, 2019).

This study investigates how mate-finding Allee effects affect 
the evolution of highly fragmented populations: How does the  
geometry of a population's initial distribution in space determine the 
dispersal characteristics that evolve? A novel reaction–diffusion 
model is applied to a series of numerical test cases, each chosen 
to highlight how a different geometric aspect of a population's 
fragmentation in space—the sizes and densities of fragments, the 
distances between adjacent fragments, or the presence of frag-
mentation at multiple spatial scales—can shape the dispersal char-
acteristics of populations.

2  |  METHODS

2.1  |  Dynamical equations

We consider the coevolution of n population density functions 
�k(X ,Y), each representing a distinct genotype k distinguished by 
its own characteristic dispersal ability ak (related to the distance 
traveled per unit time in random-walk movements). These dispersal 
abilities take one of n evenly spaced values, ak = a0k, for k = 1, … , n 
(where a0 > 0). The environment is assumed to have a finite carrying 
capacity K, such that a logistic growth factor attenuates birth rates 
as the environment becomes saturated. The mate-finding process 
affects birth rates in accord with the assumption that births result 
from random encounters between pairs of individuals (as in bimolec-
ular collision models; Dennis, 1989). By further assuming a constant, 
spatially uniform sex ratio, the local probability of encounters be-
tween members of subpopulations i  and j becomes proportional to 
the product � i � j. A factor �

ij

k
 describes the probability (

∑n

k=1
�
ij

k
= 1 ) 

that parents of genotypes i  and j will produce offspring of type k . 
Deaths are assumed to occur randomly with probability d within 
each time increment. The population density function �k represent-
ing genotype k thus evolves with respect to time � according to the 
dynamical equation

where ∇2 =
�2

�X2
+

�2

�Y2
 is the Laplacian operator and all parameters are 

positive.
We focus on the case where offspring have an equal 50% chance 

of inheriting the genotype k of either parent, so that

where ��ij = 1 if i = j and ��ij = 0 if i ≠ j. In this case, Equation 1 becomes

where � =
∑n

i=1
� i is the overall population density. The net per-capita 

growth rate,

is then identical across all genotypes k, depending only upon the 
overall population density �. As in some previous models (e.g., 
Dockery et al., 1998), then, any changes in the relative abundances 
of the different genotypes can be attributed unambiguously to 
their different dispersal rates. In contrast to those models, the 
mate-finding process modeled here results in a different nonlinear 
dependence of the per-capita growth rate upon total population �. 
Specifically, Equation (4) recalls the class of strong Allee effect growth 
terms studied previously for populations with a uniform dispersal 
rate (e.g., Amarasekare,  1998; Cantrell et al.,  1996; Dennis, 1989; 
Du & Shi, 2007; Wang et al., 2011, 2019). These growth terms ex-
hibit bistable “explosion/extinction” behavior (Du & Shi, 2007; Shi & 
Shivaji, 2006; Wang et al., 2011), always evolving toward one of the 
two possible outcomes: (1) successful colonization of the environ-
ment (here, � → K

�

1 +
√

1 − 4d∕(Kb)
�

∕2), or (2) extinction (� → 0 ). 
Beyond addressing questions of long-term population persistence, 
though, the inclusion of multiple dispersal genotypes here enables 
us to consider the distributions of dispersal ability that evolve from 
different fragmented initial conditions.

If population densities are expressed as fractions of carrying 
capacity as Ψk = �k ∕K, spatial variables in terms of a characteristic 
length scale r0 as x = X ∕ r0 and y = Y ∕ r0, and time as t =

(

a0∕r0
)2
�  , 

the dynamical equations (Equation 3) are recast in nondimensional-
ized form as

where ∇2 =
�2

�x2
+

�2

�y2
 now, and Ψ =

∑n

i=1
Ψi is the rescaled overall 

population density. Two dimensionless parameters remain: a res-
caled birth parameter � ≡

[

K
(

r0∕a0
)2
]

b and rescaled death rate 
� ≡

(

r0∕a0
)2
d. This illustrates that for given a set of initial population 

configurations, the task of exploring the range of dynamics possible 

(1)
��k

��
=

a2
k

4
∇2�k + b

[

n
∑

i=1

n
∑

j=1

�
ij

k
� i� j

][

1 −
1

K

n
∑

i=1

� i

]

− d�k ,

(2)�
ij

k
=

1

2

[

��ik + ��jk
]

,

(3)��k

��
=

a2
k

4
∇2�k +

(

b�

[

1 −
1

K
�

]

− d

)

�k =
a2
k

4
∇2�k + c(�)�k ,

(4)c(�) = b�

[

1 −
1

K
�

]

− d,

(5)�Ψk

�t
=

k2

4
∇2Ψk +

(

�Ψ
[

1 − Ψ
]

− δ
)

Ψk ,
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throughout space of all parameter values can effectively be reduced 
to an exploration over a range of values of the birth parameter � and 
death rate �.

2.2  |  Numerical scheme

We simulate the dynamics of Equation  (5) using a finite difference 
method (Pudjaprasetya, 2018), approximating the Laplacian opera-
tor ∇2 using a 9-point stencil (LeVeque, 2007) while applying periodic 
boundary conditions. We consider a computational grid with node 
spacing Δx spanning horizontal coordinates X =

{

x1, … , xNx

}

 and 
vertical coordinates Y =

{

y1, … , yNy

}

. Discretized population density 
states Ψk(x, y; t = 0) defined on grid points (x, y) ∈ X × Y (Δx = 0.02 
for Experiments A–D and Δx = 0.04 in Experiment E; see below), 
are advanced in time according to Equation (5) using a Runge–Kutta 
method of order 5(4). Dispersal ability values are discretized into 
n = 5 bins, a number chosen to balance considerations of compu-
tation and visualization with the need to represent a gradation of 
dispersal rates.

Simulation results are then summarized in terms of the total 
population of genotype k, Pk(t) =

�

∑Nx

i=1

∑Ny

j=1
Ψk

�

xi , yj ; t
�

�

(Δx)2, the total 
overall population P(t) = ∑n

k=1
Pk(t), and the population's mean dis-

persal ability, a(t) = 1

P(t)

∑n

k=1
Pk(t)ak . Unless otherwise noted, simu-

lations were terminated when the value �(t)∕Ψ1(t) (where � is the 
standard deviation of genotype k = 1 density values Ψ1

(

xi , yj ; t
)

, and 
Ψ1 is their mean) receded to below 10

−3 (i.e., when the slowest class 
of dispersers have nearly achieved a spatially uniform population 
density), or when the total overall population P(t) receded to below 

10
−4 (extinction). Simulation code is available at https://osf.io/qy5gf/​?​

view_only=9d069​efcd7​6e437​9a8a6​874b2​7dd2e4d.

2.3  |  Fragmented population configurations

Rigorous studies of reaction–diffusion models have explored how 
patch/fragment geometry determines long-term outcomes by delin-
eating the ranges of patch sizes, densities, or spacings over which 
survival or extinction will result (Cantrell & Cosner, 2001, 2004). 
While a similar analytical approach is beyond our scope, this study 
also systematically explores how different aspects of a population's 
spatial configuration—fragment sizes, densities, and spacings—
affect evolutionary outcomes under mate-finding Allee effects. To 
this end, we deal with idealized fragmented populations of which 
the characteristic sizes, densities, and spacings of fragments can be 
varied (Figure 1). We detail the layouts of these configurations in the 
following.

To approximate an equilateral triangular lattice of circular 
patches with nearest-neighbor spacing s, grid points 

(

xi , yj
)

 are de-
fined at xi = −

s

2
+ Δx(i − 1) from i = 1, … ,Nx (with Nx =

s

Δx
) and 

yj = −
�√

3

2

s

Δx

�

Δx + Δx(j − 1) for j = 1, … ,Ny (with Ny =
�√

3s

Δx

�

 , where 
⌈ ⋅⌉ rounds its argument to the next larger integer). Initial population 
configurations consist of a circular region of radius r positioned at 
the center of a rectangular domain, with additional circular quad-
rants with radii r at each corner (Figure 1a). Dimensions are chosen 
such that circular region centers are separated by a distance of ap-
proximately s. With these initial configurations and periodic bound-
aries, the layout can be interpreted as representing an infinitely 

F I G U R E  1 (a) Layout of initial population density functions Ψ(x, y;t = 0) for Experiments A–D. Circular patches of radius r and uniform 
density �int are positioned as shown within a rectangular domain. Outside these patches, the domain is populated with uniform density �ext.  
(b) Modeling an infinite lattice of population fragments. Due to the use of periodic boundary conditions in simulations, the layout shown 
in (a) can be interpreted as modeling an infinitely extended tiling of identical fragments. Simulating the dynamics within this domain is 
thus equivalent to simulating the dynamical evolution of a triangular lattice of circular patches with nearest-neighbor spacing s. (c) Initial 
conditions for Experiment E. The computational domain is expanded and intervening exterior areas are introduced atop the regular lattice-
like arrangement of fragments simulated previously such that “micro”-fragments are grouped into larger “macro”-fragments, themselves 
arranged in a triangular lattice configuration. We consider two variations on this layout, both sharing the same overall initial population: (i) 
coarse fragmentation and (ii) fine fragmentation.
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extended triangular lattice of identical circular patches with spac-
ing s (Figure 1b) (while noting that this precludes capturing larger 
scale spatial phenomena that could develop on true spatially ex-
tended domains). Circular region interiors are populated with uni-
form density �int, in which each genotype is represented equally 
(Ψk(x, y; t = 0) = �int ∕n for grid points (x, y) falling within these re-
gions), while exterior regions are populated with uniform density 
�ext (Ψk(x, y; t = 0) = �ext ∕n for (x, y) outside these regions). The initial 
mean dispersal rate is thus a(0) = (1 + n)∕2 = 3. A configuration can 
thus be characterized by four parameters: (1) Patch radius r , (2) lattice 
spacing s, (3) patch interior population density �int, and (4) patch exterior 
population density �ext.

For each initial configuration, simulations can be repeated over 
a range of birth parameter � and death rate � values to explore how 
outcomes are affected by environmental conditions. This study 
comprises five test cases (summarized in Table  1). The first three 
test cases model sparse, fragmented populations dispersing within 
an otherwise unpopulated domain (�ext = 0). The extent of fragmen-
tation is varied from trial to trial (in terms of spacing s in Experiments 
A and B, and in terms of radius r in Experiment C). The mean dis-
persal rates a that evolve are then observed for those populations 
that persist. In Experiment D, the layout is inverted to simulate an 
otherwise-saturated domain (�ext = K) in which circular regions are 
initially unpopulated (�int = 0); this can be seen as representing a 
well-established population following its disturbance by some spa-
tially localized, catastrophic depopulation events. Experiment E 
considers populations that are fragmented across multiple spatial 
scales, with fragments forming a roughly self-similar lattice of lat-
tices (Figure 1c). Additional details about each of these test cases are 
discussed alongside simulation results below.

3  |  RESULTS

3.1  |  Experiment A: Dispersal of population 
fragments between habitat islands

Numerous studies have identified gene flow between population 
fragments, including cases of “genetic rescue” between habitat  
islands, as important factors in evolution. Situations like these can 
be modeled as an “archipelago” of habitat patches separated from 
one another by regions with inhospitable—but neither strictly lethal 
nor impenetrable—conditions. Other work has applied reaction–
diffusion approaches to investigate related issues of island bioge-
ography or other complex habitats, but has not typically focused on 
how the initial arrangements of population fragments—as distinct 
from habitat fragments—might affect the extent of the subsequent 
changes in dispersal ability. Experiment A uses this “habitat islands” 
scenario to clarify and distinguish the potential roles of habitat and 
population fragmentation in complex scenarios like these. Its results 
provide context for the spatially homogeneous test cases that follow.

Circular population fragments, initially populated with den-
sity �int (Figure 1a), are set to coincide with circular habitat islands 

wherein �(x, y) = �int, with initially unpopulated exterior regions 
where �(x, y) = �ext. While holding patch radii r , initial interior and ex-
terior densities �int and �ext, and parameters � and �int constant across 
all trials (see Table 1), we repeat simulations over a range of values 
of patch-exterior death rate �ext. The final mean dispersal rates 
a shown in Figure 2a are the values achieved when the condition 
�

�

�

∑Nx

i=1

∑Ny

j=1

𝜕Ψk

𝜕t

�

xi , yj ; t
�

�

�

�

(Δx)2 < 0.1 is first satisfied for all k; these do 
not represent steady states, but rather the states attained soon after 
the habitat has become saturated and Allee effects have ceased to 
play a primary role.

The curve representing the homogeneous environment case 
(�ext = �int = 35) in Figure  2a shows how the final mean dispersal 
rate a decreases steadily as initial spacings s are increased. For less-
hospitable values of the patch exterior death rate (𝛿ext > 𝛿int), the 
circular regions represent habitat islands with more favorable con-
ditions embedded within a less hospitable exterior. The presence of 
higher mortality in the exterior enhances the dispersal ability loss 
that occurs due to Allee effect losses alone in a homogeneous envi-
ronment; curves show a qualitatively similar, but more exaggerated, 
dependence of final dispersal ability upon lattice spacing s. When 
population fragments initially anchored to habitat islands propagate 
outward, the transient dynamics of interest are largely captured by 
the homogeneous environment case; spatial heterogeneity in death 
rates boost or hinder these dynamics. If these population fragments 
instead propagate outward into regions where mortality is lower 
(𝛿ext < 𝛿int), then competition to occupy the exterior region can 
become more important than mate-finding Allee effects in driving 
selection, so that faster dispersal is advantageous. These results re-
veal the potential for mean dispersal ability to evolve upward in this 
model (as when �ext = 10 in Figure 2a), marking an important quali-
tative difference between the dynamics that result from population 
fragmentation from those associated with habitat fragmentation.

Over the longer run, however, spatial gradients in the death rate 
�(x, y) will continue to drive a net flux of dispersers into the more 
lethal regions. Genotypes that disperse more quickly into these less 
hospitable regions will be disproportionately affected, gradually 
draining the population of its more rapid dispersers. The mean dis-
persal abilities that initially result from Allee effects (Figure 2a) will 
not persist in the long run. When habitat and population fragmen-
tation coincide, the heterogeneity-driven dispersal ability loss ob-
served in so many previous models will indeed occur here. However, 
since these habitat-driven changes can be orders of magnitude 
slower than those that result from Allee effects, the dispersal traits 
that initially evolve due to fragmentation can endure for a relatively 
long time. For example, in the simulation with the most heteroge-
neous environment considered here (�ext = 35, �int = 10, s = 2.2), 
mean dispersal ability attains the value displayed in Figure 2a as the 
environment becomes saturated around t ≈ 0.1, while by t ≈ 6, the 
effects of the heterogeneous environment have only reduced mean 
dispersal ability to 90% of this previous value. Allee effect-driven 
processes could thus remain ecologically relevant for a long time, 
especially in less heterogeneous environments, or in cases where 
additional fragmentation can occur over time. These observations 
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8 of 16  |     SCHAUF et al.

provide motivation and context for our focus on population fragmen-
tation, rather than habitat fragmentation, in the homogeneous envi-
ronment test cases that follow.

Animations of the simulations of Experiment A summarized in 
Figure 2a are accessible at https://osf.io/49863/​?view_only=e8126​
7c03e​474f1​6b551​237c2​7fa3d74.

3.2  |  Experiment B: The role of separation between 
population fragments

Experiment B retains the initial population configurations used in 
Experiment A, but now considers their dispersal within spatially 
homogeneous environments over a range of combinations of birth 
and death parameters. While holding the initial sizes, shapes, and 
densities of these patches consistent across all trials, we run a se-
ries of simulations that vary the spacing s separating the fragment 
centers. Lower values of s give more closely packed fragments; as 
s is increased, these fragments become increasingly isolated from 
one another. As simulations proceed from these fragmented initial 
conditions (t1 in Figure 3), faster dispersers propagate first into these 
unpopulated regions, and so are more severely affected by Allee 
effects; meanwhile, slower dispersers remain densely aggregated 
around fragment centers, where they maintain higher growth rates 
(t2 in Figure 3). When fragments are more closely spaced, dispers-
ers from adjacent fragments more quickly meet and establish higher 
population densities in the gaps between patches (t3 in Figure  3). 
This reduces the losses of rapid dispersers suffered early on, retain-
ing more of their genes within a population that (given sufficiently 
hospitable conditions) then proceeds to saturate the environment 
(t4 in Figure 3). However, when fragments are separated by larger 
spacings s, the greater times taken to traverse the intervening gaps 
results in greater losses of rapid dispersers before overall popula-
tion numbers stabilize. Once the population has established itself in 
greater numbers, surviving rapid dispersers may regain some advan-
tage as they are able to occupy the sparsely populated regions be-
tween fragments first (t3 − t4 in Figure 3c,f). By initially dominating 

these regions, rapid dispersers can partially recover the dispersal 
ability lost during more precarious stages of evolution (t2 − t3 in 
Figure 3).

Even as a population saturates the environment, and its constit-
uent genotypes become uniformly intermixed in space, the trauma 
of the initial fragmentation nonetheless remains “frozen in” to the 
population, having determined the relative abundances of different 
genotypes. The mean dispersal ability values attained decrease as 
the initial spacing s increases (Figure 2b). If the initial spacing s is 
further increased, then Allee effects become insurmountable and 
the entire population decays. Under more favorable environmental 
conditions (i.e., higher ratios � ∕�), Allee effect dispersal ability losses 
(and, eventually, extinctions) begin to take effect at larger spacings s ; 
the more favorable the conditions, the greater the amount of initial 
spatial isolation that can be overcome.

Animations for the simulations summarized in Figure  3 are 
shown in Movies S1 and S2, and animations for the simulations of 
Experiment B, representing the range of parameter values of s, �, 
and � included in Figure 2b, are accessible at https://osf.io/2qn8u/​?​
view_only=7aa42​a040f​0b417​aa571​266a0​e465a9d.

3.3  |  Experiment C: The role of fragment 
size and density

In Experiment B, the spacing s between fragment centers was used 
to track the effects of spatial separation upon the dispersal abilities 
that evolved. Increasing the patch spacing s in this way also results 
in an increased domain area (Figure 1a), which decreases the popula-
tion's initial overall density (i.e., the ratio of total overall population 
to domain area (≈ P∕

�
√

3s2
�

)). Experiment C aims to disentangle the 
geometric aspects of fragmentation from variations to the overall 
population density by varying patch size r in tandem with density 
�int , so that the geometry of the initial configuration is altered with-
out affecting its initial overall density.

Many results show significant reductions in mean dispersal 
ability a, with dynamics qualitatively similar to those observed in 

TA B L E  1 Initial conditions and parameter settings/ranges for the five test cases. Independent variables (i.e., quantities plotted along 
the horizontal axes in Figure 2) are italicized; Ranges in parentheses (e.g., “(350–400)”) indicate the limits of the parameter regimes over 
which simulation trials were repeated. Entries for Experiments A through D correspond to the layout of Figure 1a. Entries for Experiment E 
refer to the (i) coarse fragmentation and (ii) fine fragmentation layouts displayed in Figure 1c, with S and R indicating the spacing and radius, 
respectively, of the “macro”-lattice of hexagonal fragments, with s and r describing the spacings and radii of the circular “micro”-fragments.

Experiment Lattice spacing s Radius r Interior density �int
Exterior 
density �ext

Birth parameter(s) 
� Death rate(s) �

A 2.0–2.5 1.0 0.1273 0 365 Interior �int: 35
Exterior �ext: (10–70)

B 2.0–2.5 1.0 0.1273 0 (350–400) (35–39)

C 2.0 0.1–0.9 ≈
0.1273

r2
0 (350–380) (45–60)

D 2.0–2.5 1.0 0 1.0 (360–380) (40–55)

E (i): 2.2 (S =13.2)
(ii): 1.1 (S =13.2)

(i): 1.0 (R ≈ 5)
(ii): 0.5 (R ≈ 5)

(i): 0.1273
(ii): 

(

19

61

)

0.1273

≈ .0397

0 385 37
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Experiment B (Figure  2c). The observed decline in mean dispersal 
rates as initial patch radii r are decreased (i.e., progressing leftward 
in Figure  2c) corresponds to the decline observed for increasing 
spacing s in Experiment B: in both cases (as s is increased, or r is 
decreased), the unpopulated gaps between fragments are expanded. 
Here, however, the non-monotonic dependence of the final mean 
dispersal rate a upon r (Figure 2c) illustrates the trade-off between 

high population density within fragments (which enhances a frag-
mented population's ability overcome Allee effects during the pre-
carious initial stages of evolution) and smaller intervening distances 
between fragments (which facilitates the rapid colonization of  
unpopulated areas, reducing Allee effects there). Small, densely 
aggregated fragments are more spatially isolated; despite their 
high interior densities, these populations suffer great reductions in 

F I G U R E  2 Final population mean dispersal rate a as a function of the independent variable characterizing the initial conditions in each 
test case. (a) Experiment A. Final mean dispersal ability a as a function of spacing s for various values of the patch exterior death rate �ext 
(with �int = 35 and � = 365 ). (b) Experiment B. Final mean dispersal ability a as a function of lattice spacing s for surviving populations over 
a range of combinations of birth parameter � and death rate �. (c) Experiment C. Final mean dispersal ability a as a function of patch radius 
r for surviving populations. (d) Experiment D. Final mean dispersal ability a as a function of lattice spacing s. Data points representing 
simulations which resulted in extinction are omitted.
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10 of 16  |     SCHAUF et al.

dispersal ability (or extinction) as they struggle to populate the vast 
surrounding regions. On the other hand, when fragments are wider 
but less densely aggregated, populations may be spread too thin 
to overcome Allee effects even within fragments. Between these 
extremes, the advantages of closer spacings between fragments 
(which support the survival of faster dispersers) and higher densities 
within fragments (where slower dispersers stay put and reproduce) 
complement one another. All else being equal, an intermediate de-
gree of spatial fragmentation here enhances the chances of survival 
compared to more- or less-fragmented initial configurations, includ-
ing for more rapid dispersers who disproportionately suffer Allee 
effects at both extremes.

Animations of the simulations of Experiment C summarized in 
Figure 2c are accessible at https://osf.io/mtbc4/​?view_only=05ef0​
d96d6​22467​1b098​cb107​bc872a1.

3.4  |  Experiment D: Disruption of established 
populations by localized depopulation

Even dense populations can become vulnerable to Allee effects if 
they are affected by some spatially localized disturbance (e.g., for-
est fires or human-induced deforestation; Brisson et al.,  2003). 
Experiment D inverts the configurations of the previous test cases 
by situating unpopulated circular patches among a densely popu-
lated exterior region (�ext = K, �int = 0), as if patch interiors had just 
been suddenly depopulated. Changes to the spacing s alter the spa-
tial extent of these disruptions. For smaller spacings s, a majority of 
the domain has been depopulated, and fragments disperse outward 
from narrow, densely populated slivers. These isolated population 
fragments struggle to repopulate the vast unpopulated regions, and 
so experience Allee effect dispersal ability losses (Figure  2d) like 
those observed in previous cases. For larger spacings s, only dis-
tant pockets have been depopulated; the population—including all 
of its constituent genotypes—remain safe from Allee effects. Under 
these more favorable conditions, Allee effect losses are less severe, 
and the clearing-out of previously saturated regions favors rapidly 
dispersing pioneers who manage to establish their presence there 
first, leading to net gains in mean dispersal ability for larger spacings 
s (Figure 2d). Along the propagating front of expanding population 
fragments, rapidly dispersing pioneers make their way outward into 
the unpopulated void; not far behind them, though, slower dispersers 
maintain higher densities, reproducing with faster dispersers to en-
sure a constant feed of new rapid dispersers to act as pioneers. This 
result echoes empirical and theoretical studies that investigate how 
increased dispersal ability can evolve along the range edges of ex-
panding population fronts (Bénichou et al., 2012; Bouin et al., 2012; 
Deforet et al.,  2019; Hughes et al.,  2007; Léotard et al.,  2009; 
Phillips, 2009; Phillips et al., 2010; Simmons & Thomas, 2004; Tobin 
et al., 2007; Travis et al., 2009, 2010; Travis & Dytham, 2002).

Animations of the simulations of Experiment D summarized in 
Figure 2d are accessible at https://osf.io/xg6z7/​?view_only=be106​
51f66​e24f2​ba4fb​85ed4​ff4118c.

3.5  |  Experiment E: Fragmentation across multiple 
spatial scales

The idealized fragmented configurations of the previous test cases 
demonstrate how the spatial separations, densities, and sizes of 
identical fragments affect the extent of dispersal ability losses (or 
gains) that evolve due to mate-finding Allee effects. More realistic 
populations can contain fragmentation at multiple spatial scales. 
Experiment E considers more elaborate configurations where frag-
ments are grouped into larger macro-fragments, which themselves 
are also arranged in a triangular lattice (Figure 1c). We consider two 
different population configurations that differ only in terms of their 
spatial fragmentation at the microscale. Both feature large hexagonal 
regions with “radii” of around 5 and lattice spacings of 13.2, and the 
same total initial population. In the first configuration, these macro-
fragments are more coarsely subdivided (with r = 1.0 and s = 2.2); in 
the second, they are more finely subdivided (with r = 0.5 and s = 1.1).

Simulating these two configurations under the same combination 
of parameter settings offers a glimpse into how meta-scale fragmenta-
tion can lead to qualitatively different patterns of evolution than were 
observed on the simpler layouts considered previously. This is visible 
in the unique patterns of spatial propagation of the macro-fragment 
populations, which differs from those observed in the uniform circular 
fragments of the previous experiments. Internal fragmentation within 
the macro-fragments leads to dispersal ability loss within their interi-
ors, and even greater losses are experienced near the macro-fragments' 
outer edges as rapidly dispersing pioneers propagate into unpopulated 
regions. This results in a relative lack of rapid dispersers around the 
edge (t2 in Figure 4c,f); as the population then builds in overall num-
bers, however, a surge of new population then propagates outward, 
driven by rapid dispersers, breeding with the slow dispersers near the 
edge to produce a greater abundance of slower dispersers around the 
macro-fragment edge than is found in the center (t3 in Figure 4c,f).

Despite both configurations sharing a similar pattern of frag-
mentation at the macro-scale, these two cases differ in terms of 
their eventual qualitative outcomes. As macro-fragment populations 
colonize the intervening unpopulated regions, the more coarsely 
fragmented population experiences a net dispersal ability decrease 
(Figure 4a), while the more finely fragmented population (r = 0.5 , 
s = 1.1) experiences a net dispersal ability increase (Figure 4b). In 
the coarsely fragmented case, the population experiences greater 
initial dispersal ability loss, with mean dispersal ability reaching its 
lowest level around t2 (Figure 4a). Although these relative losses are 
later partially recovered (t3 in Figure 4a) by rapid dispersers coloniz-
ing the larger intervening regions between both macro- and micro-
fragments (t3 in Figure  4c), dynamics eventually stagnate with a 
net dispersal ability decrease having occurred (t4 in Figure 4b,c). In 
the more finely fragmented case, early dispersal ability losses are 
less extreme due to the narrower gaps between micro-fragments, 
which mitigate Allee effect losses (t2 in Figure 4e,f). Greater num-
bers of rapid dispersers are thus retained within the population, 
and these rapid dispersers have an advantage as well-established 
macro-fragments propagate outward to colonize the surrounding 
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F I G U R E  3 Simulation results from Experiment B for lattice spacings s = 2.15 (left column) and s = 2.40 (right column) with � = 380, � = 36.  
(a) Time evolution of the total population of each genotype for spacing s = 2.15. (b) Time evolution of population mean dispersal ability a for  
spacing s = 2.15. (c) Relative population densities Ψk(x, y;t)∕Ψmax(t) (where Ψmax(t) = max

x,y,k
Ψk(x, y;t)) at indicated times t1, t2, t3, and t4 for spacing 

s = 2.15. (d) Time evolution of the total population of each genotype for spacing s = 2.40. (e) Time evolution of population mean dispersal 
ability a for spacing s = 2.40. (f) Relative population densities Ψk(x, y;t)∕Ψmax(t) at indicated times t1 , t2, t3, and t4 for spacing s = 2.40.  
Note that by the times t4 shown here, the relative abundances of each genotype have nearly reached their steady-state values; following t4, 
populations continue to diffuse, approaching spatially uniform distributions.
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F I G U R E  4 Simulation results from Experiment E with � = 385, � = 37. (a) Time evolution of the total population of each genotype for the 
coarse fragmentation case. (b) Time evolution of population mean dispersal ability a for the coarse fragmentation case. (c) Relative population 
densities Ψk(x, y;t)∕Ψmax(t) (where Ψmax(t) = max

x,y,k
Ψk(x, y;t)) at indicated times t1, t2, t3, and t4 for the coarse fragmentation case. (d) Time 

evolution of the total population of each genotype for the fine fragmentation case. (e) Time evolution of population mean dispersal ability a 
for the fine fragmentation case. (f) Relative population densities Ψk(x, y;t)∕Ψmax(t) at indicated times t1, t2, t3, and t4 for the fine fragmentation 
case. Note that by the times t4 shown here, the relative abundances of each genotype have nearly reached their steady-state values; 
following t4, populations continue to diffuse, approaching spatially uniform distributions.
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regions, where rapid dispersers come to dominate slower dis-
persers (t3 and t4 in Figure 4a–c), leading to a net dispersal ability 
increase (Figure 4d–f). The effects of the population's initial micro-
fragmentation are thus still felt even long after its traces are no 
longer visible in the population's spatial distribution (t4 in Figure 4d). 
These effects are manifest not just in the magnitude of dispersal 
change, but potentially also in its direction: upward or downward.

Full animations for the simulations summarized in Figure 4 are 
shown in Movies S3 and S4.

4  |  DISCUSSION

The model presented here combines several features of previous 
reaction–diffusion models in a novel way to study the evolution of 
dispersal by fragmented populations with an Allee effect. Its use of 
multiple interacting dispersal ability genotypes distinguishes it from 
other related reaction–diffusion models that included Allee effects 
(Cantrell et al., 1996; Shi & Shivaji, 2006). As in the work of Dockery 
et al. (1998), variability among dispersal abilities is modeled by dis-
cretizing the space of possible dispersal rates into several bins, each 
represented by its own characteristic dispersal ability (ak), and then 
considering the coevolution of the population density functions (Ψk ) 
that represent these subpopulations. In that model, direct interac-
tions between different kinds of dispersers were not a prominent 
driver of evolution in their own right. Here, however, nonlinear in-
teractions between these different genotypes play a more formative 
role in the evolution of dispersal traits.

Our results demonstrated how larger distances between pop-
ulation fragments lead to greater dispersal ability losses for small 
populations that survive to colonize a habitat (Experiment B). For 
populations with low, fixed initial densities, we demonstrated that an 
intermediate level of aggregation into fragments is optimal; at lower 
or higher degrees of fragmentation, dispersal ability losses become 
increasingly severe (Experiment C). When densely populated frag-
ments colonize unpopulated regions, dispersal abilities can evolve 
upward under favorable conditions (Experiment D). For different 
model populations showing similar levels of fragmentation at one 
spatial scale, different patterns of fragmentation at another spatial 
scale can lead them toward divergent outcomes (Experiment E).

Reaction–diffusion models have long been used to demonstrate 
how—for populations confronted with heterogeneous habitats or 
hostile boundaries—slow dispersal can come to dominate over time. 
The simulations presented here illustrate a case where multiple co-
existing strategies—slower dispersers who remain anchored around 
dense population fragments, and rapid dispersers who colonize 
sparsely populated areas—can complement one another. Each con-
tributes potential advantages at different phases of evolution; the 
relative magnitudes of these advantages depend on the distribution 
of the population in space. This sensitivity to initial conditions is an-
other qualitative difference distinguishing the present model from a 
great deal of previous related work. Following Skellam (1951), many 
analytical reaction–diffusion approaches to dispersal have tended 
to focus only on the long-term outcomes approached after all traces 

of initial conditions have vanished. Our results, however, provide 
examples of highly path-dependent dispersal evolution, where tran-
sient dynamics determine the states that a population approaches in 
the long run. Even in homogeneous environments, where previously 
studied mechanisms eventually act to reduce dispersal ability, the 
consequences of these earlier stages of evolution can remain rele-
vant over relatively long-time scales (Experiment A).

Within the current model, the details of this fragmentation can 
even determine the direction—downward or upward—in which dis-
persal ability evolves. This capacity for predicting upward evolution 
of dispersal rates under some conditions, even within an unchang-
ing habitat, marks an interesting qualitative distinction of this model 
from the majority of related work. A few simple mechanisms here 
can lead either to downward or upward changes in dispersal ability 
depending on fragmentation patterns and environmental conditions. 
Given that the purportedly universal loss of dispersal ability on islands 
has been called into question even for the most passive of dispersers 
(Burns, 2018; García-Verdugo et al., 2017), models like this could be 
useful when navigating these issues. Some of the simulation results 
presented above exhibit features which recall various empirical re-
sults reported elsewhere, such as the upward evolution of dispersal 
ability along the expanding fronts of population fragments, which 
in some cases have been attributed to Allee effects (e.g., Tobin 
et al., 2007). Further work could explore the possibility of establish-
ing more direct links between models and simulations like those of 
this study and more concrete empirical observations.

These numerical experiments have explored the space of potential 
dynamics that can result from population fragmentation and Allee ef-
fects, demonstrating some qualitative differences of these dynamics 
from those of habitat fragmentation. A rigorous theoretical treatment 
of this model, more akin to that undertaken for other reaction–
diffusion models (Cantrell & Cosner,  2004), could provide deeper 
insights. One advantage of this study's computational approach, 
though, is that simulation results allow for visualizations of the com-
plex patterns of spatial propagation undergone by multiple interacting 
classes of dispersers alongside the population-level genetic changes 
in dispersal ability that result (as in Figures 3 and 4 and Movies S1–S4).  
The real utility of such a model may lie in its application to more re-
alistic and specific case studies, where the spatial patterns it predicts 
could be compared with observed spatial distributions. Previous work 
has applied related models to problems of conservation or pest con-
trol (e.g., Boukal & Berec, 2009; Du et al., 2019); in applications like 
these, simulations could be useful to help guide spatially targeted in-
terventions. The modeling and simulation approach presented here, 
by providing visualizations of complex coupled processes of spatial 
propagation and genetic evolution, could help to facilitate these kinds 
of connections between models and applications in ways that more 
abstract, theoretical results alone might not.
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