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Abstract 
The extraction of crude oil generates large amounts of wastewater, also referred to as brine 

or produced water. This water is often high in salinity, heavy metals, and other toxic compounds. 

Its constituents make conventional treatment difficult and expensive, so a common practice is to 

inject this water deep underground for long-term storage. While convenient, deep well injection 

of produced water has been linked to environmental concerns, such as increased water stress and 

induced seismic activity. Alternative methods to produced water management are critical to 

alleviating concerns associated with current produced water disposal practices. Produced water 

brine exchange is one such alternative method that involves exchanging produced water between 

reservoirs to create a salinity gradient. A lower salinity brine is injected into a high salinity 

reservoir for use in Low Salinity Waterflooding (LSWF)—a practice that can lead to increased 

oil recovery. The high salinity brine is injected into the low salinity reservoir for long-term 

disposal, maintaining reservoir pressure. 

This study evaluates brine exchange between the Arbuckle formation (~20,000 mg/L TDS) 

and Lansing-Kansas City (LKC) formation (~150,000 mg/L TDS). To ensure geochemical 

compatibility between the injected brine, the in-situ brine, and reservoir rock and to evaluate the 

economic potential of brine exchange, a series of mixing experiments, geochemical modeling, 

and economic analysis were conducted. Bulk mixing and coreflooding experiments were 

conducted to evaluate brine-solid compatibility under both non-transport limited conditions and 

transport dominated conditions experienced in real-world environments. Experimental results 

were supplemented with geochemical modeling using PHREEQC with three sets of 

thermodynamic databases (PHREEQC, PITZER, and MINTEQ) to aid with compatibility 
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analysis. Additionally, a techno-economic assessment was conducted to gauge economic 

viability of potential brine exchange projects.  

Results from the mixing experiments showed the risk of calcium carbonate scale formation 

is present in brine-brine-rock systems with low salinities (high ratio of Arbuckle:LKC brines) but 

only to a minor degree.  None of the three databases used for geochemical modeling could 

accurately capture all trends in aqueous cation concentrations due to inherent limitations in each 

approach. Further study to identify discrepancies between model approaches and experimental 

results is warranted. Lastly, simulation modeling revealed that the economic viability of 

conducting brine exchange is highly correlated with the distance between wells and the energy 

cost of brine transportation. Conditions needed for economically viable operations have been 

identified, and the boundary between viable and unviable conditions have been found to be 

resilient to changes to material costs. The results gathered identify scenarios where brine 

exchange could be feasible and the key parameters needed to assess the risk of geochemical 

incompatibility. 
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1 Introduction 
The process of oil extraction is often accompanied by the coextraction of wastewater. This 

byproduct, referred to as produced water (PW) or brine, represents the largest waste stream of oil 

and gas operations as the ratio of produced water to oil can range from 1:1 to 100:11,2. The exact 

constituents of this water vary greatly depending on the geological formation it originated from, 

but management of this waste is difficult due to elevated levels of one (or often multiple) of the 

following: salinity, residual oil, organic components, heavy metals, production chemicals, and 

naturally occurring radioactive material1,3,4.  

Rather than treat produced water to a degree suitable for environmental release, producers 

typically turn to disposal or reuse to handle their waste. Disposal involves injecting brine deep 

underground, where it can be stored indefinitely. While simple and economical, it has been 

linked to induced seismic activity5 and other environmental concerns such as water stress in drier 

regions of the world. Reusing produced water for other oil extraction purposes is preferred but 

may not always be possible due to the large quantity of brine generated.  

One of the most prevalent forms of reuse is to reinject the water back into the original 

formation. This practice—known as water flooding, secondary recovery, or enhanced oil 

recovery—has the benefit of increasing the productive life of a reservoir by 1) maintaining 

operating pressures by replacing extracted fluids and 2) displacing hydrocarbons from rocks and 

mobilizing them towards the extraction wells6,7. While water of any composition can be used for 

waterflooding, increased oil recovery can be observed if the injected water contains a lower 

salinity than the connate water8. This practice is referred to as Low Salinity Waterflooding 

(LSWF) and leads to a dilemma where well operators must decide to either facilitate waste 

disposal by reinjecting produced water back into a reservoir or optimize oil recovery by 
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importing and injecting low salinity water and finding alternative disposal means for the original 

brine. 

The mechanism leading to increased oil recovery during LSWF is not fully understood for 

carbonate reservoirs. While there is no consensus, most published works link improved oil 

recovery to wettability alterations of the reservoir rock surfaces9. The mechanisms behind 

wettability alterations include the following proposals depending on the rock and brine 

composition: mineral dissolution10,11, multicomponent ionic enchange12,13, expansion of the 

electrical double layer14, and electrostatic bond linkage15,16. The term “low salinity” in LSWF is 

a misnomer as numerous lab and field experiments have shown the overall salinity level of 

injection water has little to no correlation on improved oil recovery. In their review of multiple 

waterflooding experiments, both Snosy et al.17 and Tetteh et al.18 concluded no significant trend 

exists between the overall brine salinity value and increased oil recovery. Rather, a combination 

of the ion composition and concentration of key ions (specifically Ca2+, Mg2+, Na+, and SO4
2-) 

have a greater impact on recovery. It could be assumed high salinity water could be used for 

injection as long as the concentration of these specific ionic species are low enough, but this 

subject requires additional study. Here, the term “low salinity brine” is used in reference to the 

low concentration of key ionic species rather than the overall salinity of the water.  

Due to its abundance and relative homogeneity compared to formation water, sea water has 

been the preferred source of injection water for coastal operations. However, for landlocked 

regions, LSWF can be conducted using freshwater resources (such as shallow aquifers or rivers) 

or dilutions of formation water using freshwater19. This results in two major environmental 

concerns. First, the consumption and eventual injection of freshwater resources can increase 

water stress, especially in regions where freshwater supplies are already strained. Second, the 
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excess produced water will most likely be disposed of through deep well injection via Class II 

injection wells, and this practice has been linked to induced seismic activity5. While this concern 

has been alleviated to a degree through the passage of state legislation limiting the maximum 

pressure gradient of wells20–22, there are still concerns about the overall capacity of these 

formations to accommodate produced water disposal when oil production is high. Thus, the ideal 

scenario still involves limiting reliance of this practice or outright eliminating it.  

Brine exchange offers a potential solution to both concerns without diminishing the benefits 

of LSWF. During brine exchange, the produced water from one oil operation is transported to 

another and used as the injection water for LSWF. Additionally, the produced water from the 

second reservoir can be transferred back to the first and reinjected—mainly for the purpose of 

pressure maintenance with the added benefit of being an alternative disposal method (Figure 1). 

As long as a salinity gradient exists between the two reservoirs, brine exchange can be 

conducted.    

 
Figure 1 Proposed sequence of brine exchange between two oil reservoirs 

Unfortunately, attitudes towards brine exchange can be best described as apprehensive 

due to potential operational issues. One of the most prominent concerns, and the focus of this 
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paper, is brine incompatibility— the potential for precipitation reactions to occur as the result of 

chemical reactions or oversaturation. Deposition of solids (scale formation) onto equipment or 

within the rock surfaces may lead to operational issues such as decreased recovery, equipment 

corrosion, and increased strain on injectors23.   

The potential impacts of fluid incompatibility have been known for decades24, with salts 

of Ca2+, Ba2+, Sr2+, SO4
2-, and CO3

2- being the species of greatest concern25. Despite this, modern 

literature regarding LSWF is dominated by research investigating the mechanisms responsible 

for its effects on oil recovery. Studies that examine scale formation tend to focus on its inhibition 

through the ad-hoc addition of scale inhibitors rather than the factors responsible for it26–29. 

Additionally, nearly all these studies are conducted using seawater, diluted connate water, or 

synthetic brines made to replicate these fluids as the source of the injection water. Virtually no 

research exists that uses produced water from a separate reservoir as a source of injection water 

for waterflooding. 

The purpose of this study is to address this gap in knowledge by evaluating the geochemical 

compatibility of brine exchange between two Kansas reservoirs. Produced water from the 

Arbuckle geologic formation (~20,000 mg/L TDS) was combined with produced water from the 

Lansing-Kansas City (LKC) formation (~150,000 mg/L TDS) in bulk mixing and coreflooding 

experiments to evaluate fluid compatibility and scale formation potential. Changes in cation 

composition were measured through inductively coupled plasma–optical emission spectrometry 

(ICP-OES) to indicate the presence of reactions between carbonate solids from the LKC 

reservoir and dissolved salts. Experimental data from both experiments were then compared to 

simulation results to gauge the utility of common geochemical models at predicting the viability 

of brine exchange. Additionally, the economic feasibility of conducting the exchange was 
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examined by constructing a techno-economic assessment model. The uncertainty of the 

economic model was evaluated using Monte Carlo simulation. This study demonstrates 

compatibility between the Arbuckle and LKC in liquid-liquid mixtures with only minor, yet 

manageable, incompatibility in Liquid-Liquid-Solid systems where the ratio of Arbuckle to LKC 

brines is high. Geochemical simulation results were found to have inherent limitations, which 

limited accuracy; and the economic analysis revealed parameters needed for profitable 

operations. The results of this study reveal the potential of large-scale brine exchange to reduce 

large quantities of water disposed during day-to-day operations. 

2 Methods and Materials 
2.1 Produced Water  

Produced water samples were obtained from two active oil fields within Barton County, 

KS. Ionic compositions were determined through ICP–OES (Optima 2000 DV instrument, 

PerkinElmer) and Ion Chromatography (IC) (Dionex Integrion HPIC with Dioinex IonPac AS18 

column) (Table 1). Samples were filtered using 0.45 µm PVDF vacuum filters prior to analysis 

and experimentation. The sum of ionic constituents was calculated to determine Total Dissolved 

Solids (TDS).  
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Table 1 Ionic composition (mg/L) of PW samples determined through ICP-OES and IC. Concentrations 
Below Detection Limit (B.D.L.) are shaded in grey. Ionic Strength (I.S.) and TDS are found in the bottom 
row 

   Arbuckle LKC 

C
at

io
n

s 

Ba B.D. L. B.D.L. 
K 120 ± 10 213 ± 44 
Fe B.D. L. B.D.L. 
Mn B.D.L. B.D.L. 
Mg 325 ± 12 2366 ± 108 
Al B.D.L. B.D.L. 
Sr 57 ± 2  578 ± 41  
Li 6 ± 0.1 14 ± 0.5  
Ca 943 ± 24 6133 ± 111  
Na 6702 ± 59 52093 ± 587 

A
ni

on
s 

Cl- 12075 ± 338 99605 ± 1328 
NO2

- B.D.L. 46 ± 12 
SO4

2- 1391 ± 13 864 ± 12 
Br- 50 ± 16 328 ± 17 

NO3
- 3 ± 1 12 ± 7 

 I.S. (M) 0.426 ± 0.026 3.078 ± 0.044 
 TDS (ppm) 21672 ± 475 162252 ± 2268 

 

2.2 Rock  
Limestone samples were obtained from the LKC geologic formation in the Central Kansas 

Uplift region within an active reservoir located in Haskell County, KS. Crushed samples were 

analyzed through X-Ray Diffraction (XRD) (Bruker PROTEUM diffraction system at ambient 

temperature with monochromated CuKα radiation (λ = 1.54178 Å)), and the mineral composition 

is shown in the following table. 

Table 2 Composition of limestone determined through XRD (% wt/wt) 
 Calcite Dolomite Quartz 

Lansing Kansas City (LKC) Carbonate 84.9 11.7 3.4 
 

2.3 Bulk Mixing Experiments 
Bulk mixing experiments were conducted to observe interactions between the brines and 

limestone. Liquid-Liquid (L-L) interactions between brines were evaluated by mixing Arbuckle 

and LKC brines in the following volumetric ratios (A:LKC): 10:90, 50:50, and 90:10. Samples 

were divided into 1.75 mL samples and placed in a shaker table maintained at 53°C. Samples 
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were removed at set intervals (ranging from 1 – 21 days) and filtered using 0.45 µm PTFE 

syringe filters. pH measurements of samples were recorded (Thermo Fischer ROSS Micro 

Combination pH Electrode) before being diluted and acidified with concentrated nitric acid (2% 

v/v) for analysis via ICP-OES. 

Liquid-Liquid-Solid (L-L-S) interactions were evaluated in a similar manner, but ground 

LKC limestone (53 µm – 75 µm in size) was added to each mixture in a ratio of 1 g limestone:20 

mL mixed brine prior to long term storage. To minimize the effects of atmospheric CO2, sample 

tubes were sealed with Teflon tape. Additionally, mixing ratios of 0:100 and 100:0 were also 

utilized to observe interactions between the limestone and unmixed brine. 

2.4 Geochemical Simulation 
Geochemical interactions between the brines and limestone were modeled within 

PHREEQC—software specializing in geochemical and physical processes developed by the 

United States Geological Survey30. The simulation was coded to reflect the conditions of the 

bulk mixing experiments. PHREEQC has the capability to utilize a variety of thermodynamic 

databases to calculate equilibrium behavior without requiring any changes to the initial code. The 

following databases were utilized in this study: PHREEQC, PITZER, and MINTEQ. In addition 

to utilizing different equilibrium constants and different salts of possible chemical species, the 

models vary in their approach to activity corrections at high salinity conditions. The PHREEQC 

and MINTEQ databases utilize a combination of WATEQ and Davies equations, while the 

PITZER database relies on the Pitzer correlations31. The goal of the simulation was to evaluate 

the behavior of mixed brine samples after extended contact with LKC limestone through the 

examination of equilibrium concentration alongside saturation indexes of potential mineral 
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species formed and then compare this to experimental data. A description of the major 

components of the simulation and comparison of the models can be found in Appendix B. 

2.5 Coreflooding Experiments 
Coreflooding experiments were conducted using an apparatus identical to the one 

described by Tetteh et al.32 (Figure 2). Limestone cores obtained from the LKC formation were 

utilized and stored in synthetic high salinity brine (Table 3) prior to flooding. A total of three 

coreflooding experiments were conducted with the main variable being alterations to the brine 

sequence and timeframe (Figure 3). Sequence 1 was conducted to establish baseline behavior of 

the brine-rock system, Sequence 2 investigated the influence of crude oil, and Sequence 3 was 

conducted to ensure the short flooding times of the previous tests did not obscure any major 

phenomena. Additionally, Sequence 3 involved flooding with a synthetic low salinity brine 

(Table 3) to observe the interaction between the Arbuckle brine and an even lower salinity brine. 

For each sequence, brine flowrate was set to 1 mL/min, chamber temperature was set to 53°C, 

and the effluent was collected in 1.5 mL intervals. 
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Figure 2 Coreflooding setup utilized for this experiment32 

Cores for each sequence, approximately 1.5 inches in diameter and 3 inches in length, 

were obtained from the LKC reservoir. Before flooding, each core was cleaned using a Dean-

Stark setup with toluene and methanol in a 1:1 volumetric ratio for 30 days to remove all crude 

oil present. Cores were then dried in an 80 ⁰C oven to evaporate the residual solvent. The cores 

were saturated with a high salinity synthetic brine (Table 3) by applying a vacuum and were then 

stored in the same brine until they were utilized. For the core used in Sequence 2, crude oil was 

pumped through the core after brine saturation followed by an aging step for 40 days at a 

temperature between 80 ⁰C and 90 ⁰C. Physical properties of the cores are shown in Table 4. 

The coreflooding effluent was collected continuously in 1.5 mL increments with a system 

flowrate of 1 mL/min. pH of each sample was measured before filtration with a 0.45 μm PTFE 

syringe filter. Filtered effluent was diluted, acidified, and analyzed via ICP-OES.  
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Figure 3 Coreflooding brine injection sequences; Sequences 1 and 2 utilized injection intervals of 40 PV, 
Sequence 3 utilized 100 PV intervals, and Sequence 2 was conducted in the presence of crude oil 

Table 3 Ionic composition of synthetic brine (mg/L) 

 Ca2+ Mg2+ Na+ K+ Cl- SO4
2- I.S. (M) 

TDS 
(ppm) 

Low 
Salinity 

134 34 588 6 1,249 0 0.04 2,011 

High 
Salinity 

11,000 2,800 48,000 500 101,913 260 3.27 164,473 
 

 

Table 4 Physical Properties of Core Samples 

Sequence 1 2 3 

Permeability (mD) 24.40 134.78 20.42 

Pore Volume (cm3) 6.38 5.60 8.53 

Bulk Volume (cm3) 23.22 23.28 33.86 

Porosity 0.27 0.24 0.25 

 

2.6 Economic Analysis via Techno-Economic Assessment and Monte Carlo 
Simulation 
While brine exchange benefits in the form of increased oil recovery and reduced brine 

disposal volumes, it can only be implemented if the benefits (mainly the revenue increase from 

improved oil recovery) can outweigh the costs (infrastructure investment and energy costs from 

transportation). As real-world construction data is sparse due to the novelty of the process, the 
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economic viability of a hypothetical brine exchange operation was determined through techno-

economic assessment, and the uncertainty was evaluated using Monte Carlo analysis. 

The economic model consists of the following key components: infrastructure costs, 

operational costs, savings from reduced disposal needs, and increased income from improved oil 

recovery. The first component of the simulation was accounted for by incorporating the 

WaterCOSTE model developed by researchers at the University of Arizona33. This model was 

developed to predict the construction costs of a potable water pipeline through open land. The 

model accounts for both material and labor costs (installation and excavation). The original 

model was modified to incorporate sensitivity analysis and fit within the Monte Carlo 

framework. Variables not provided within the WaterCOSTE model were obtained from other 

sources, mainly the RSMeans 2020 handbook34 or other articles/government databases. 

Operational costs and disposal savings were incorporated by adding additional equations 

onto the end of the WaterCOSTE model. Operational costs consist of energy costs needed to 

transport brine between two reservoirs. This was accounted for by calculating the frictional 

losses through the pipeline as well as the energy needed to overcome them. This was then 

converted to electricity costs. Disposal savings were incorporated by multiplying the volume of 

the produced water by typical brine disposal costs per barrel (between 0.10 – 0.14 $/barrel within 

Kansas)35. 

The following are major key assumptions made when constructing the model to calculate 

infrastructure cost: 

 All pipes are installed in open, flat terrain with negligible disturbances (i.e., no utility 

lines, roads, groundwater, right of way, etc.) 
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 Pipes are installed in rippable material, which can be removed via excavator (i.e., no 

bedrock or other difficult material) 

 Pipelines are primarily straight with negligible bends, fittings, and valves 

 Pipes are constructed out of PVC due to corrosion risk  

 10-year lifespan of the project with negligible maintenance cost 

The following were key assumptions made regarding enhanced oil recovery scenario of the 

model: 

 22.2 barrels of injection water is needed for every barrel of oil extracted 

o This value was based on the average Produced Water:Oil ratio for the state of 

Kansas36 and a volumetric balance assumption between extracted and injected 

liquids 

 Enhanced Oil Recovery (EOR) of crude oil varies between 4% - 12% 

o This was incorporated into the model by increasing daily output of oil wells by 

4% - 12% 

To aid with comparison, a second model was constructed using alternative cost estimates for 

material and labor from an industry contact35. This method greatly simplifies the infrastructure 

costs by assuming construction will take place via a specialized third-party contractor rather than 

being handled in-house. The following values were implemented in this version of the model: 

 Trenching is $0.75/ft regardless of pipe diameter 

 Pipe diameters other than 3” or 4” are not used 

o 3” pipe costs $3.70/ft and 4” pipe costs $4.65/ft 

Due to recent global events, the impact of variable material costs has become of greater 

concern. To determine the sensitivity of a brine exchange project to variable material costs, the 
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economic simulations were rerun multiple times with the base pipe material cost values all being 

multiplied by a fixed amount (-25% and +25%). Outputs are shown in Figure 9, which can be 

found in Section 3.3 Techno-Economic Assessment and Monte Carlo Results, and were 

compared to the base case to determine sensitivity. 

The series of equations comprising the cost estimates of infrastructure, operations, disposal 

savings, and increased oil income were coded in MATLAB. The Monte Carlo, sensitivity 

analysis, and Spearman Rank correlation calculations were also handled by the same software. A 

full outline of the code and a list of inputs and assumptions can be found in Appendix C and E. 

3 Results  
3.1 Bulk Mixing Experiments 
3.1.1 Brine-Brine Mixtures 

Concentrations of Ca, Mg, and Sr along with pH measurements of brine-brine samples 

are shown in Figure 4. Concentration values showed no major variations over time indicating 

liquid-liquid compatibility as a decrease in concentration would have been observed had 

precipitation occurred. pH measurements showed slight variations during the initial days, but this 

was likely due to exchange with the atmosphere. This rise at the beginning of the experiment 

suggests the system was undersaturated with respect to CO2. This was mitigated in future 

experiments by sealing sample vials with Teflon tape. 



14 
 

Figure 4 Cation and pH measurements of 10:90, 50:50, and 90:10 L-L bulk mixing samples; initial 
values (solid black line) plotted alongside experimented data; ±σ error bars plotted but not visible. 
Expanded figures can be found in Appendix A 

3.1.2 Brine-Brine-Solid Mixtures 
Experimental data of Ca and Mg measurements (Figure 5) show a net increase in 

concentration of both Ca and Mg for A:LKC S 10:90 and 50:50 mixing ratios. The 90:10 sample 

displayed a net decrease in concentration for Ca and no significant change for Mg. The change in 

concentrations of these cations can be attributed to the dissolution/precipitation of either calcite 

or dolomite. As decreases in ion concentration serve as signs of incompatibility, the A:LKC 

90:10 sample warrants concern. Mechanisms responsible for this behavior and their significance 

are discussed in latter sections. 
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Sr measurements all show a net increase in concentration, but this is most likely due to 

the detection limits of the instrument as there was no source of Sr in the mixtures. The high salt 

content of the samples required dilutions on the scale of 500x and 1000x to produce samples 

within tolerable salinity. As a result, cations with comparatively low concentrations (i.e., Sr) 

become difficult to measure accurately.  

Geochemical simulation results are plotted alongside experimental data. Mean Absolute 

Percent Error (MAPE) was calculated to evaluate the fit of each model to the experimental data 

(Table 5 and Table 6). Low MAPE values (≤ 5.0%) indicate a good fit in the case of PHREEQC 

predictions or no significant change when looking at differences relative to initial conditions.  

Based on the MAPE values of the geochemical model predictions, each of the three 

databases had more trouble with Mg than Ca. The PHREEQC database showed limitations at 

high salinity conditions. The PITZER struggled with mixed brines across the entire salinity 

range. MINTEQ showed the reverse trend and had large errors at low salinity conditions. This 

behavior can be attributed to inherent limitations of the databases and are discussed in later 

sections. Sr error should not be accepted at face value as they are impacted by detection limits of 

the ICP-OES.  

Samples containing unmixed Arbuckle and LKC brines and limestone were prepared and 

analyzed to serve as baseline conditions. The LKC and limestone mixture was expected to show 

no significant change in ionic concentration as the brine would have equilibrated with the rock 

before it was extracted from the reservoir. MAPE values confirm this as the error compared to 

initial conditions was 3.1% (seen in Table 5 below).  
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Concentrations within the Arbuckle and limestone samples show signs of dissolution 

occurring. MAPE values for Ca and Mg from initial conditions were 4.7% and 6.1%, 

respectively. Explanations of this phenomenon are described in latter sections.  

Figure 5 Cation and pH measurements of 10:90, 50:50, and 90:10 L-L-S bulk mixing samples; initial 
values (solid black line) plotted alongside experimented data and PHREEQC equilibrium predictions; ±σ 
error bars plotted but not visible for all points; note the offset y-axis
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Table 5 MAPE of Liquid-Liquid-Solid PHREEQC Predictions 

 
a Simulations were conducted using an older version of the database file (ver. 3.6.2). Newer versions utilize updated 
constants for calcite but produce results with less accuracy. See Section 10 Appendix D: PITZER Database for more 
detail. 

Table 6 MAPE of Liquid-Liquid-Solid Initial Conditions 
  Initial Conditions 

Ca Mg Sr 
A:LKC 0:100 4.59 3.12 6.96 
A:LKC 10:90 5.51 8.55 11.07 
A:LKC 50:50 4.93 8.94 15.67 
A:LKC 90:10 3.06 2.51 6.26 
A:LKC 100:0 4.69 6.05 5.49 

Ca Mg Sr pH Ca Mg Sr pH Ca Mg Sr pH
A:LKC 0:100 13.53 25.04 2.66 3.55 4.19 2.64 2.65 3.08 6.61 1.88 6.96 4.9
A:LKC 10:90 6.17 29.08 11.96 3.06 10.04 48.35 11.96 3.02 1.27 6.23 7.43 4.37
A:LKC 50:50 4.5 21.96 15.2 4.59 9.97 45.94 15.19 5.75 5.32 2.06 12.6 5.73
A:LKC 90:10 4.31 3.57 6.3 6.11 5.84 38.55 6.31 7.53 6.97 17.5 6.49 7.06
A:LKC 100:0 7.15 3.13 6.05 6.39 14.28 9.25 6.05 7.67 17.07 15.83 5.49 7.3

PHREEQC PITZERa MINTEQ
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3.1.3 Brine-Solid Mixtures 
To establish baseline behaviors, unmixed Arbuckle and LKC brines (Figure 6) were 

combined with limestone solids (ratios of 0:100 and 100:0). LKC + Solid samples display minor 

signs of precipitation for all elements analyzed, indicating oversaturation. The inverse behavior 

was seen in the Arbuckle and solid mixture and suggests the brine is undersaturated for these 

elements. Model outputs were inconsistent, with each database underpredicting one cation while 

overpredicting the other. pH in both sets of samples increased sharply on Day 5 and plateaued 

after this period. This may have been caused by a loose seal in the sample vials, but the 

possibility of a slow reaction cannot be excluded. 

 



19 
 

 
Figure 6 Cation and pH measurements of A:LKC 100:0 and 0:100 bulk mixing samples; initial values 
plotted alongside experimented data and PHREEQC equilibrium predictions; ±σ error bars plotted but not 
visible for all points 

3.2 Corefloodling Results 
Ca and Mg concentrations of coreflooding effluents were plotted against Pore Volume 

(PV) and pressure (Figure 7). Results across all three sequences show that effluent 

concentrations quickly shift to match the concentration of the flooding water, with the transition 

being completed within 6 PV. 

Pressure data is included alongside concentration data and display typical trends common 

for these types of experiments. Sequence 1 displays a gradual increase in pressure over the 

course of the flooding. There are multiple possible mechanisms which could be responsible for 
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this behavior. The cores were obtained from reservoir rock, so high heterogeneity could have 

prevented the system from reaching steady state. Additionally, the flow of brine through the core 

may have resulted in fines migration, the phenomenon where loose particles are dislodged from 

the rock surface causing pore blockage downstream and increasing pressure. While it is possible 

precipitation reactions may have occurred and impeded flow, the results of the bulk mixing 

experiments and cation measurements during the coreflooding experiments indicate no strong 

signs of these reactions occurring to any significant degree.  

Sequence 2 starts with a sudden decrease but quickly levels off, and this trend represents 

the ideal behavior for coreflooding experiments. While all cores came from the same formation, 

the use of reservoir samples means heterogeneity is high, and two cores located in close 

proximity to one another can have very different properties. Here, the higher permeability of the 

core used in Sequence 2 (Table 4) likely had an impact on the behaviors seen during the 

flooding. 

Sequence 3 is noticeably different than Sequence 1 despite being similar in setup and 

execution. Sudden drops and spikes coincide with points where brine pumps were stopped and 

refiled, which occurred more often due to the increased timespan of the flooding. Had the pumps 

been refiled more quickly or not stopped at all, it is likely the trend would have more closely 

resembled Sequence 1. The pressure data here should not be relied upon heavily as the 

interference caused by the pump refilling period reduces confidence in the data. 
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Figure 7 Ca and Mg concentrations of coreflooding samples (left axis) plotted alongside pressure (right 
axis) 

3.3 Techno-Economic Assessment and Monte Carlo Results 
The daily net benefit/cost in terms of dollars per day of potential brine exchange projects 

as a function of both distance and brine flowrate are shown in Figure 8. The simulation was run 

twice: once using data from literature and again using cost estimates from an industry contact. 

Approximate breakeven lines are plotted alongside model outputs. Additionally, Spearman Rank 

Correlation calculations were performed on each variable and can be seen in Appendix C: 

WaterCOSTE Model Input and Output. 
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Figure 8 Economic simulation results utilizing the WaterCOSTE model (top) and cost estimates from an 
industry contact (bottom). Breakeven line plotted alongside datapoints  
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Sensitivity analysis performed by varying base pipe material costs is shown in Figure 9 

below. The graphs based on the Water COSTE model are nearly indistinguishable from each 

other and their base case scenario, which indicates increasing or decreasing the costs of material 

has a minimal effect on the overall economic viability of the project. The only impact this 

modification has compared to the base case is the boundary between viability and unviability is 

less sharp, but the size and position of the regions themselves remain unchanged. Overall, a 

change in material cost will be a major concern only if the project was operating near the 

breakeven point. Projects located far into the viable/unviable regions will not suddenly shift due 

to these changes.  

The sets of graphs utilizing industry estimates do have a noticeable shift corresponding to 

material price changes. As expected, a decrease in material price results in a greater profitable 

operating range and vice versa for an increase in material price.  As with the previous sets of 

graphs, the boundary between feasibility and infeasibility becomes less sharp, but only when 

prices increase. A table depicting the changes in average and median values of Net Benefit 

between simulation runs is shown below. 

Table 7 Mean and median net benefit values obtained from individual economic analysis simulations 

 Model Mean Net Benefit Value 
(2020$/day) 

Median Net Benefit 
Value (2020$/day) 

B
as

e 
S

ce
na

ri
o WaterCOSTE 106.93 91.92 

Industry Estimate 180.00 167.66 

-2
5%

 
M

at
er

ia
l 

C
os

t WaterCOSTE 107.51 92.43 

Industry Estimate 188.31 176.28 

+
25

%
 

M
at

er
ia

l 
C

os
t WaterCOSTE 106.35 91.31 

Industry Estimate 155.38 143.27 
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4 Discussions 
4.1 Geochemical Compatibility of Arbuckle and LKC Brines 

The experiments conducted in this study show a trend of geochemical compatibility 

between the Arbuckle and LKC brines, however some of the results indicate there are areas 

where incompatibility may be a concern (Figure 5). Conditions where incompatibility may be 

present, the mechanisms responsible for dissolution/precipitation, and geochemical behavior 

under the influence of flow conditions are discussed in the following sections.   

4.1.1 Compatibility between Arbuckle and LKC brines in L-L Systems 
Figure 4 indicates the cation composition in mixed brine samples did not display major 

deviations from initial conditions throughout the course of the experiment, indicating the absence 

of any chemical reaction. The main factor behind this is the lack of Ba in either of the water 

samples. Ba and SO4 ions are a large concern within the oil industry as they readily react with 

one another to form BaSO4 (pKsp = 9.97)37 and lead to scaling. Decades have been spent trying 

to characterize its formation and mitigate it26,38, but it continues to be a problem for operators to 

this day. If potential injection water contains Ba in any appreciable concentration while the 

connate has SO4 (or vice versa), brine-brine incompatibility should be anticipated. 

4.1.2 Compatibility of Brines in L-L-S Systems 
The data presented in Figure 5 suggests that at a specific mixing ratio of Arbuckle and 

LKC brine, the equilibrium of the mixture shifts from favoring the dissolved mineral species to 

their solid form. This leads to the following questions: 1) what mechanism is responsible for 

these reactions and 2) how do mixing ratios affect it.  

The behavior of carbonate species during low salinity water injection has been 

characterized in previous studies. Tale et al.39 and Esene et al.40 both investigated the bulk 

dissolution and precipitation of carbonate minerals in their studies regarding wettability 
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alterations. Tale et al. coupled bulk dissolution experiments with surface reactivity models and 

observed how the use of synthetic low salinity brine (TDS = 36,109 ppm; Ionic Strength = 0.64 

M) resulted in the precipitation of calcite (~0.8 mmol/L) and dissolution of dolomite (~0.5 

mmol/L) with dilutions of this brine decreasing the magnitude of this behavior. Esene et al. 

developed a reactive transport model to simulate injected brine behavior in the presence of 

sulfate and noticed similar behaviors. The degree of precipitation/dissolution of calcite and 

dolomite, respectively, varied with sulfate content and distance from the injection source, but it 

was less than those seen in Tale et al. and this study. This is likely due to the higher salinity brine 

used (TDS = 245,980 ppm) and different limestone composition (50/50 volumetric ratio of 

calcite and dolomite). 

Both Tale et al. and Esene et al. attributed this precipitation of calcite and dissolution of 

dolomite to the amount of carbonate available within the system. The mineral species react 

according to the following schemes: 

Table 8 Limestone dissolution mechanisms 
Calcite + H ↔ Ca + HCO  [pKsp

 = 8.46]37 Eqn 1 

Dolomite + 2H ↔ Ca + Mg + 2HCO  [pKsp = 11]37 Eqn 2 

Prior to the bulk mixing experiments, the produced water was exposed to the atmosphere 

during transport and storage long enough to reach equilibrium with the atmosphere, and the 

atmospheric CO2 dissolved into the brine and formed HCO3
-. After the two brines were mixed 

and sealed, the equilibrium of the mineral species shifted with the direction being dictated by the 

HCO3
- saturation of the mixture.  

The quantity of HCO3
- present within each brine is dictated by the solubility of CO2. The 

“salting out” of CO2 is a phenomenon in which the solubility of the gas decreases as the salinity 
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of a solution increases due to the increased polarity between liquid molecules. This is a possible 

mechanism responsible for the trends observed. This decrease is difficult to measure as it is 

highly dependent upon the specific ions present as well as the quantity of gaseous CO2 present. 

Liu et al.41 attempted to quantify this decrease and found solubility decreased by approximately 

4% as the concentration of NaCl increased from 1,000 ppm to 15,000 ppm at a partial pressure of 

2 MPa (Figure 10). The trend of the data suggests this disparity will increase as the partial 

pressure is decreased.   

 
Figure 10 Salting Out Effect of NaCl on CO2. Percent difference of solubility in DI water and saline 
solution plotted against partial pressure. Adapted from Liu et al., 2021 

When the ratio of Arbuckle to LKC brine was low, the system was undersaturated with 

respect to HCO3
- due to the low solubility of CO2 in the LKC brine, so dissolution of mineral 

species occurred to restore equilibrium. In mixtures where Arbuckle brine was present in a 

greater quantity, HCO3
- was oversaturated as CO2 is more soluble in Arbuckle brine than mixed 

brine, and precipitation of calcite occurred to restore equilibrium. However, this created a deficit 

in Ca, so dolomite began dissolving in response, resulting in a slight increase in Mg. This creates 

a delicate situation for operators as injecting low salinity water in carbonate reservoirs increases 

the risk for scale formation, yet low salinity water has been shown to improve oil recovery8,17,42. 
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The behavior seen here will occur even if the initial brine samples are at equilibrium with the 

atmosphere as the relationship between salinity and CO2 solubility is nonlinear (Figure 10). 

4.1.3 Compatibility in L-S Systems 
Limestone was combined with Arbuckle and LKC brines to evaluate behavior in the 

absence of mixing. The composition of the LKC brine after the addition of solids was expected 

to remain constant as the brine should have reached equilibrium with the limestone before it was 

extracted. Results support this claim as the ion composition showed minor variance. The small 

deviation can be attributed to dilution and analytical limitations of the ICP-OES. 

The mixture of Arbuckle brine and limestone shows signs of mineral dissolution (Figure 

6) which is interesting since this would be a reversal of the trend observed in the previous 

mixtures. While there are mechanisms that could explain the dissolution of calcite material 

(mainly the increase in calcite solubility due to increased gypsum presence43), the conditions for 

this to happen (high SO4
- concentrations to facilitate gypsum formation) were not met in these 

experiments. It is likely that the behavior observed in this mixture was due to the Arbuckle brine 

not being at complete equilibrium with the atmosphere as previously thought or errors attributed 

to analyzing low ion concentrations.  

The results gathered here do not fully support nor disprove the compatibility of Arbuckle 

and LKC brines. On one hand, analysis of the carbonate equilibrium mechanism and predictions 

among geochemical simulations depict signs of precipitation and incompatibility between brines, 

most notably at low salinity conditions. On the other, experimental data shows a clear sign of 

mineral dissolution, indicating compatibility. Fortunately, this inconclusiveness is irrelevant in a 

field application of brine exchange. Even the most severe cases of calcium carbonate scale 
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buildup can be treated easily and cheaply with an HCl flush of the impacted region, and nothing 

in the results indicates scale formation will be a major concern even if it does occur. 

4.1.4 Fluid Flow Effects on Brine Compatibility 
Based on the results of the three individual experiments (Figure 7), displacement of the 

connate brine by the injected brine is the dominant transport mechanism during waterflooding 

rather than mixing. Within all floodings, the injected brine displaces the previous brine quickly 

(within 6 PV). This occurred regardless of the presence of crude oil (Sequence 2) or the salinity 

difference between the two brines (Sequence 3). While it can be assumed some mixing between 

brines occurs at the liquid interface, the interaction between the injection brine and the 

surrounding rock is more important in the context of scale formation, especially within the area 

surrounding the injection well. As such, more weight should be given to the compatibility of 

A:LKC 100:0 and 90:10 mixtures of the previous experiment.  

The results seen here agree with the findings of other studies focused on the mathematics 

and modeling of brine behavior during waterflooding. Sorbie and Mackay44,45 noted how injected 

brines tend to displace connate brine rather than mix within homogeneous rocks or systems 

which can be accurately described with 1-dimensional flow. They, as well as Attar and 

Muggeridge46, also observed how vertical and lateral heterogeneity in the surrounding rock can 

lead to increased brine mixing due to complex flow patterns. In systems where brine-brine 

compatibility is a concern, Sorbie and Mackay noted how this results in additional care being 

needed to protect the wellbore region where most precipitation is likely to occur. Heterogeneity 

may be beneficial for the Arbuckle and LKC system as greater mixing shifts the equilibrium in 

favor of dissolution (i.e., reduces scaling concerns) (Figure 5). Additionally, studies 

investigating the wettability alteration mechanisms have found the release of Ca ions into 
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solution may contribute to increased oil recovery, but further studies are needed to better 

quantify this effect10,47,48.  It should be noted both Sorbie and Mackay and Attar and Muggeridge 

focused on systems with brine-brine incompatibility and did not investigate the geochemical 

interactions with the surrounding rock. As such, the implications on solid-brine incompatibility 

on long term flow behavior warrants further study.   

4.2 Accuracy of Geochemical Model Predictions 
As seen in Figure 5 and Table 5, none of the three thermodynamic databases evaluated in 

this study could accurately predict geochemical behavior across all mixing ratios. Since 

modeling will be the primary method of determining initial viability for future brine exchange 

projects, it is important to understand the constraints of these models as they are all commonly 

used within the industry. Limitations of thermodynamic databases within PHREEQC have been 

the subjects of previous studies31,49, and it has been shown each database evaluated here 

possesses at least one shortcoming which affects the model predictions. 

4.2.1 PHREEQC Database Evaluation 
PHREEQC predictions consistently overestimated Ca concentrations and underestimated 

Mg with Mg deviations being more severe. A possible explanation for this can be attributed to 

the database’s inability to handle high ionic strength environments. The PHREEQC database 

relies on a combination of WATEQ and Davies equations for activity correction31. However, the 

accuracy of these equations begins to decrease above 1.0 M I.S. and 0.5 M I.S., respectively. 

Horbrand et al. validated the database against experimental data and found positive deviations 

began to occur above 1.0 molal NaCl49. These findings are consistent with the results of this 

experiment as the accuracy of Ca predictions became greater as salinity of mixed samples 

decreased (Table 5). 
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Mg was more difficult to model as these compounds are impacted by temperature 

limitations in addition to salinity. Lu et al. found solubility predictions for dolomite (the only 

source of Mg in this study) were only accurate up to 25 ⁰C, which is less than half of the 

temperature used in this study. This coupled with the difficulty of predicting Ca behavior, led to 

the inaccuracy of the model. Interestingly, the Mg predictions for the A:LKC 90:10 mixture was 

more accurate than others, which suggests limitations are minimized at lower salinity and lower 

Ca conditions. 

4.2.2 PITZER Database Evaluation 
Unlike the PHREEQC database, the PITZER can accommodate higher salinity conditions 

(up to 6 M I.S.) due to its use of the Pitzer equations for activity corrections. However, model 

outputs deviated from measured values by the greatest degree, highlighting a critical 

shortcoming not found in the other databases. Horbrand et al. attributed under predictions of 

calcite solubility to PITZER’s lack of calcium complexes (specifically CaHCO3
+), which is 

found in other databases. Complexes are soluble but un-ionized species, which means their 

constituents do not play a role in all equilibrium calculations. As they do not exist within 

PITZER, the model cannot account for the loss of Ca2+ and CO3
2- ions due to their formation, and 

solubility is underpredicted. Additionally, Horbrand et al. also noted accuracy of the database 

decreased in a salinity window of 1 – 2 M NaCl but fit experimental data above and below this 

range. While no further investigation was conducted, it is possible Ca complexes could be at 

fault as their formation has been shown to be impacted by ionic strength50. 

The PITZER database has undergone notable revisions in the past few years. Starting 

with Version 3.7.0, constants associated with calcite were updated to reflect more accurate 

values. However, our modeled results with the updated database yielded a worse fit with the 
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experimental data, with models predicting heavy dissolution of calcite for all brine mixtures. As 

database updates were recent, no literature is available for comparison. See Appendix B for more 

detail. 

4.2.3 MINTEQ Database Evaluation 
The MINTEQ database was designed to model reactions within surface waters and uses 

similar activity correction methods to the PHREEQC database. It still relies on both the Davies 

and WATEQ equations but has a greater reliance on the Davies and has a lower salinity tolerance 

as a result (up to 0.4 M NaCl)31, resulting in the upper salinity limits for this model being slightly 

out of the range used in these experiments (Table 1). However, these models are consistently 

higher for Ca concentrations and lower for Mg, indicating some underlying discrepancy within 

the datafile. While MINTEQ and PHREEQC do possess slightly different thermodynamic and 

equilibrium constants for calcite and dolomite, the main difference lies within their approach to 

fugacity calculations. PHREEQC relies on the Peng-Robinson approach while MINTEQ utilizes 

the Ideal Gas Law, which breaks down at high salinity conditions31. As MINTEQ was 

overestimating the solubility of CO2 (and by extension HCO3
-), the result was an underprediction 

of calcite solubility compared to PHREEQC.  

Unexpectedly, the MINTEQ predictions produced a closer match to Ca measurements at 

higher salinity conditions despite errors of the Ideal Gas Law being minimized at lower salinity 

conditions. Based on limitations of this database, it would be expected for accuracy to be higher 

when salinity is low. This may be an indication that errors caused by the Ideal Gas Law and 

those caused by activity corrections are occurring in opposite directions and canceling each other 

out at high salinity conditions.  
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While inaccurate on their own, the MINTEQ and PHREEQC predictions show promise at 

establishing a direction for cation concentration changes under a limited set of conditions. If 

these limitations could be better defined, the models would still prove useful in determining 

whether precipitation will occur at all and if concerns of incompatibility are warranted. 

4.2.4 Utility of Geochemical Simulations 

While none of the three databases evaluated could match experimental data across all 

samples, this does not mean modeling is useless with regards to predicting geochemical 

compatibility of brine samples. For real-world scenarios, the most important piece of information 

to obtain is the direction of ionic concentration change relative to initial conditions (i.e. whether 

concentration shifts upwards due to dissolution or downwards due to precipitation). Determining 

the magnitude of this change is secondary as operators are more interested in knowing whether 

precipitation will occur rather than how much solid will be formed. While modifying the 

modeling approaches to a degree where they can predict equilibrium concentrations accurately 

will likely require extensive work, modifying them to the point where they can reliably predict 

the direction of concentration change or identify the range of conditions where their accuracies 

are acceptable may be more feasible and will still prove valuable in real-world applications. 

4.3 Economic Analysis 
The output of the techno-economic assessment and the Monte Carlo simulation reveals the 

Pareto frontier for potential brine exchange operations. The viable conditions predicted utilizing 

the WaterCOSTE model are more constrained compared to the model utilizing industry cost 

estimates. This is likely due to differences in their approach to pipe installation costs. The 

WaterCOSTE model assumes a company has trained employees available but will need to rent 

construction equipment. In the oil and gas industry, it is common to hire a third party to handle 



34 
 

every aspect of pipeline construction. While outsourcing labor typically incurs additional costs 

compared to in-house labor, the efficiency and expertise of the third-party assumed in this 

scenario are enough to drive down the final cost. 

Spearman Rank Coefficients were calculated for each variable used in the economic model 

(Table 13). As expected, variables that represent additional cost possessed negative correlations 

with the Net Benefit of the project. In contrast, those representing income or cost savings had 

positive correlations with Net Benefit. Flowrate has a strong positive correlation with the Net 

Benefit as it was assumed the relationship between produced water to increased oil recovery was 

linear. Real case scenarios would provide a more nuanced relationship and likely shift the 

correlation to the negative region had they been implemented in the model. 

The sensitivity analysis results shown in Figure 9 indicate a ±25% shift in pipe material 

cost has a minor effect on the overall economic viability of the project. Looking at the 

WaterCOSTE based models, fluctuations in material price produced no major changes. The 

location of the Pareto frontier remains constant between simulations (Figure 9) and the shifts to 

the mean and median net benefit values were minimal (Table 7). This is likely due to the 

complexity and degree of manipulation of variables within the model, which obscured the impact 

a single variable had on the final calculations. While it can be said the profitable regions became 

more profitable and the non-profitable regions less so, the boundary between these regions did 

not change, meaning overall project feasibility is also left unchanged. Concern is only warranted 

if the project was operating near the breakeven line, which has become less sharp and less 

distinct with these changes. 

Applying the same adjustments to material prices in the model based on industry estimates 

resulted in noticeable changes. Lower prices resulted in a greater range of profitability and 
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higher prices resulted in the opposite. The reason why these sets of figures behaved differently 

than the previous is likely due to the simpler approach taken by this method. Since there are 

fewer variables, and each are manipulated to a lesser degree, changes to the values are more 

noticeable in the model output. 

5 Conclusions and Future Areas of Research 
Operational viability of a potential brine exchange operation was evaluated by determining 

the geochemical compatibility of low salinity Arbuckle brine (injection water) and high salinity 

LKC brine (in-situ water). Ionic concentration measurements of mixed samples indicated brine-

brine mixtures are compatible with one another across all mixing ratios—mainly attributed to the 

lack of Ba ions in the samples. Brine mixtures combined with LKC limestone were compatible at 

high salinity mixtures (low ratio of Arbuckle to LKC brines) but displayed signs of 

incompatibility as salinity decreased (high ratio of Arbuckle to LKC brines) due to hypothesized 

changes in CO2 solubility and the resulting shift in equilibrium. Mixtures of Arbuckle brine and 

LKC limestone show signs of mineral dissolution, which would indicate a sudden reversal in 

dissolution/precipitation trends seen in the observed mixtures. However, this most likely 

indicates equilibrium had not been reached between Arbuckle brine and CO2 prior to 

experimentation rather than another underlying mechanism. While incompatibility was predicted 

at low salinity conditions, MAPE calculations indicate scale formation will only be minor (if it 

occurs at all) and not enough to warrant concern if a pilot operation were to be initiated. 

Experimental data were compared to PHREEQC equilibrium models using the PHREEQC, 

PITZER, and MINTEQ thermodynamic databases to determine simulation reliability at field 

conditions. No model was able to consistently match experimental data due to inherent 

limitations of each database. The PHREEQC and MINTEQ suffer from low ionic strength 
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tolerance with the latter also suffering from constraints of using the Ideal Gas Law for fugacity 

calculations. While the PITZER can handle a broader salinity range, the equilibrium and 

thermodynamic constants for several Ca species are either inadequate or outright missing. While 

no database can match data across all conditions, each model possesses a window where 

predictions match experimental results closely. This study suggests the window of applicability 

is dependent upon ionic strength, but further study is needed to rule out the impact of ionic 

composition. Even in situations where no single model can provide a close match, multiple 

models can be combined to establish the upper/lower bounds for concentration or a range of 

potential values. 

Techno-economic assessment and Monte Carlo analysis provided an initial estimate for the 

range of conditions needed for economically viable operations. It is expected distance and energy 

costs represent two significant cost factors, while income from enhanced oil recovery and 

disposal savings represent significant forms of benefit. When comparing estimates using the 

WaterCOSTE approach and the guidelines obtained from industry, the WaterCOSTE produced 

more conservative costs and a narrowed range of viable operating conditions. This is likely due 

to the inability to account for bulk savings and the efficiency increase of hiring a third-party to 

handle procurement and installation.  

While the results of the study are promising, additional research could be conducted to 

increase the confidence and depth of the conclusions reached. Similar mixing experiments 

should be conducted with larger samples volumes to mitigate atmospheric exchange during the 

aging step. Additionally, the reliability of the thermodynamic databases can be increased by 

better understanding the limitation of each approach. This study varied the ionic strength of 

mixed brine samples, but the influence of specific ions or combinations of these ions should be 
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investigated further. Limestone samples of varying mineral composition should also be examined 

to evaluate any potential impacts on model accuracy.   
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7 Appendix A: Expanded Experimental Results 
The following figures depict enlarged graphs of bulk mixing experiment results. Data shown here is 
identical to those seen in Figure 4 and Figure 5. 

 

Figure 11 Cation and pH measurements of 10:90 L-L bulk mixing samples; initial values (solid black 
line) plotted alongside experimented data; ±σ error bars plotted but negligible in some cases 
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Figure 12 Cation and pH measurements of 50:50 L-L bulk mixing samples; initial values (solid black 
line) plotted alongside experimented data; ±σ error bars plotted but negligible in some cases 
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Figure 13 Cation and pH measurements of 90:10 L-L bulk mixing samples; initial values (solid black 
line) plotted alongside experimented data; ±σ error bars plotted but negligible in some cases 
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Figure 14 Cation and pH measurements of 10:90 L-L-S bulk mixing samples; initial values (solid black 
line) plotted alongside experimented data and PHREEQC equilibrium predictions; ±σ error bars plotted 
but negligible in some cases 
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Figure 15 Cation and pH measurements of 50:50 L-L-S bulk mixing samples; initial values (solid black 
line) plotted alongside experimented data and PHREEQC equilibrium predictions; ±σ error bars plotted 
but negligible in some cases 
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Figure 16 Cation and pH measurements of 90:10 L-L-S bulk mixing samples; initial values (solid black 
line) plotted alongside experimented data and PHREEQC equilibrium predictions; ±σ error bars plotted 
but negligible in some cases
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8 Appendix B: Geochemical Modeling 
The following figure outlines the code sequence of the PHREEQC geochemical model. 

 
Figure 17 PHREEQC model flowchart; Red outlines indicate inputs and blue indicate outputs 

 
The following tables contain saturation index calculation values of the PHREEQC models. 
Values between -1 and 1 were highlighted to show emphasis. 
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9 Appendix C: WaterCOSTE Model Input and Output 
The following table contains the variables utilized in the techno-economic simulation as well as 

their associated values. Unless stated otherwise, variables containing a range of values were 

assumed to have a uniform distribution. Variables without a provided value were derived from 

other variables.  

Table 12 Economic simulation variable names and values 

Code Name Variable Name Units Value Notes 

A_t Trench Cross Sectional Area mm2 Figure 4 Chee et al., 2018 

BHP Brake Horsepower hp 
  

C_electricity Electricity Cost $/kwh 
 

EIA,2020; Empirical 
distribution 

C_construction
_pipe 

Total Pipe Construction Cost $ 
 

Eqn 29 Chee et al., 2018 

C_demob_exc Excavator Demobilization 
Cost 

$ 
 

RSMeans 2020 Line 01 54 
36.50 

C_demob_load Loader Demobilization Cost $ 
 

RSMeans 2020 Line 01 54 
36.50 

C_demob_tank
er 

Water Truck Demobilization 
Cost 

$ 
 

Table S5 Chee et al, 2018 

C_disp_pipe PW Disposal Cost via Pipe $/bbl 0.12 ± 
10% 

Based on industry 
correspondence 

C_disposal Daily Disposal Cost $/day 
  

C_emb_r Total Cost of Embedment 
Material 

$ 0 Assume native material 

C_EOR Income from EOR $/day 
  

C_equip Total Equipment Cost $ 
 

Eqn 35 Chee et al., 2018 

C_equip_boost
er 

Cost of Booster Pumps $/pump 
 

Loh et al., 2002 

C_equip_exc Total Excavator Rental Cost $ 
 

Table S6 Chee et al., 2018 

C_equip_load Total Loader Rental Cost $ 
 

RSMeans 2020 Line 01 54 
33 4610-4870 

C_equip_tanke
r 

Total Water Truck Rental 
Cost 

$ 
 

Table S5 Chee et al, 2018 

C_exc_unit Excavation Cost $/BCY 
 

RSMeans 2020 31 23 16.13 

C_lab Total Labor Cost $ 
 

Eqn 33 Chee et al., 2018 

C_lab_load Total Loader Labor Cost $ 
 

RSMeans 2020 Medium 
Equipment Operator 

C_lab_pipe Total Pipe Installation Labor 
Cost 

$ 
 

RSMeans 2020 Crew B-20 

C_lab_tanker Total Water Truck Labor 
Cost 

$ 
 

RSMeans 2020 Truck 
Driver (Heavy) 
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C_lb Bucket Capacity of Loader m3/hr 2.29 - 
6.88 

Table S7 Chee et al., 2018 

C_mob_exc Excavator Mobilization Cost $ 
 

RSMeans 2020 Line 01 54 
36.50 

C_mob_load Loader Mobilization Cost $ 
 

RSMeans 2020 Line 01 54 
36.50 

C_mob_tanker Water Truck Mobilization 
Cost 

$ 
 

Table S5 Chee et al, 2018 

C_oil_bbl Crude Oil Price $/bbl 
 

EIA,2021; Empiracle 
distribution 

C_pipe Total Pipe Material Cost $ 
 

RSMeans 2020 Line 33 14 
13.25 

C_pumping_d
ay 

Daily Pumping Cost $/day 
  

C_wat Total Cost of Construction 
Water 

$ 
  

D_1 Embedment Material 
Density 

kg/m3 
 

Table S8 Chee et al., 2018 

D_b Bedding Thickness Below 
Pipe 

mm 50.8 ± 
10% 

Based on professional 
correspondence  

D_c Bedding Thickness Above 
Pipe 

mm 914.4 ± 
10% 

Based on professional 
correspondence  

D_e Embedment Cover Depth mm 12825.4 ± 
10% 

Based on professional 
correspondence  

D_ep Distance from Embedment 
Pile to Trench 

m 
 

Eqn 15 Chee et al., 2018 

D_id_in Pipe Inner Diameter Inch 
(Rounded Up) 

in 1.61 - 
11.94 

Exact value derived from 
flow calculations 

D_id_in_calc Theoretical Pipe Diameter in 
  

D_id_mm Pipe Inner Diameter mm 
(Rounded Up) 

mm 
  

D_Name_in Pipe Name 
 

1.5 - 12 Sch 40 Pipe specification 

D_od_in Pipe Outer Diameter Inch 
(Rounded Up) 

in 1.91 - 
12.75 

Exact value derived from 
flow calculations 

D_od_mm Pipe Outer Diameter mm 
(Rounded Up) 

mm 
  

d_P_100ft Head Loss per 100 ft ft 
H2O/100 

ft 

 
Darcy-Weisbach Equation 

d_P_100m Head Loss per 100 m ft 
H2O/100 

m 

 
Darcy-Weisbach Equation 

d_P_total_ft_
H2O 

Total Head Loss ft H2O 
  

D_sp Distance Between Spoil Pile 
and Trench 

m 
 

Eqn 15 Chee et al., 2018 

D_t Trench Depth mm 
 

Eqn 1 Chee et al., 2018 

D_w Distance from Water Source 
to Job Site 

m 5 - 10 Assumed 
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Dist_mob Equipment Mobilization 
Distance 

mi 10 - 100 Assumed 

E_pump Pump Energy Requirement kW 
  

Eff_motor Motor Efficiency 
 

0.6 - 0.9 Loh et al., 2002 

Eff_pump Pump Efficiency 
 

0.6 - 0.82 Loh et al., 2002 

f_c Excavator Bucket Fill Factor 
  

CAT, 2016 

f_friction friction factor 
  

Equation 3-2 from AWWA 
M23 Manual 

Loader_wt Loader Weight US ton 
 

CAT, 2016 

N_bp Number of Booster Pumps 
  

Assume booster pump 
needed after 20% pressure 
drop 

N_ep Number of Embedment Piles 
  

Eqn 14 Chee et al., 2018 

N_sp Number of Spoil Piles 
  

Eqn 14 Chee et al., 2018 

N_tanker Number of Water Trucks 
Required  

  
Eqn 24 Chee et al., 2018 

Net_benefit Net Benefit of Brine 
Exchange 

$/day 
  

Oil_EOR Enhanced Oil Recovery 
Quantity 

bbl/day 
 

Assumed 22.2 barrels of 
water needed per barrel of 
oil extracted 

P Percentage of Native 
Material Needing Processing 

 
0 - 0.2 Assumed 

P_back Backfill Placement Rate m3/hr 
 

Eqn 16 Chee et al., 2018 

P_emb Embedment Material 
Placement Rate 

m3/hr 
 

Eqn 19 Chee et al., 2018 

P_exc Excavator Production Rate m3/hr 
 

Eqn 9 Chee et al., 2018 

P_o Maximum Pipe Pressure psi 79 - 198 ASTM D2466-06 
Specification 

P_pro Native Material Processing 
Rate 

m3/hr 
 

Eqn 18 Chee et al., 2018 

P_sc Native Material Screening 
Rate 

m3/hr 
 

Eqn 18 Chee et al., 2018 

P_sp Spoil Pile Collection Rate m3/hr 
 

Eqn 16 Chee et al., 2018 

P_tanker Water Truck Production 
Rate per Truck 

L/day 
 

Eqn 25 Chee et al., 2018 

Percent_EOR Percent Increased Oil 
Recovery per Well 

 
0.04 -0.12 Wang et al, 2020 

Pipe_ID_Nom
_in 

Schedule 40 Pipe Inner 
Diameter 

in 1.61 - 
11.94 

Exact value derived from 
flow calculations 

Pipe_Name_N
om_in 

Schedule 4- Pipe Name 
 

1.5 in - 12 
in 

Exact value derived from 
flow calculations 

Pipe_OD_No
m_in 

Schedule 40 Pipe Outer 
Diameter 

in 
  

Q_oilwell_dail
y 

Daily Crude Oil Production 
per Well 

bbl/day 0.5 - 10 Based on industry 
correspondence 

Q_start PW Flow Rate bbl/day 1 - 1000 Model Input 
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R_exc Trenching Rate m/day 57 - 229 Eqn 8 Chee et al., 2018 

R_pipe Pipe Installation Rate ft/day 
 

RSMeans 2020 Line 33 14 
13.25 

Re Reynold's Numer 
   

S Percentage of Native 
Material Needing Screening 

 
0 - 0.2 Assumed 

S_1 Embedment Material Shrink 
Factor 

 
0.8  Table S8 Chee et al, 2018 

S_wt Water Truck Speed km/hr 64.37 Assumed value 

SG_Arbuckle Specific Gravity of Arbuckle 
Brine 

 
1.015 Measured Value 

t_d Loder Dumping Time s 5 Table S7 Chee et al, 2018 

T_day Workday Length hr 8 Assume standard workday 

t_ei Travel Time of Empty 
Loader to from Spoil Pile to 
Trench 

  
Table S7 Cheet et al, 2018 

t_es Loader Travel Time to 
Trench from Spoil Pile 

s 
 

Table S7 Chee et al, 2018 

T_hr Productivity Min Per Hour min/hr 40 -50 Assumed values 

t_i Excavator Cycle Time s 18 Saglam and Bettemir, 2018 

T_job Total Length of Job day 
 

Eqn 34 Chee et al., 2018 

t_l Loader Loading Time s 9 Table S7 Chee et al, 2018 

t_li Travel Time of Loaded 
Loader to Spoil Pile 

s 
 

Table S7 Cheet et al, 2018 

T_load Total Loader Task Time hr 
 

Eqn 22 Chee et al., 2018 

t_ls Loader Travel Time to Spoil 
Pile from Trench to Spoil 
Pile 

s 
 

Table S7 Chee et al, 2018 

t_tanker_cycle Water Truck Cycle Time s 
 

Eqn 27 Chee et al., 2018 

t_tanker_dump Water Truck Dumping Time min 5 -20 Assumed 

t_tanker_e Tanker Time Empty Tanker s 
 

Eqn 28 Chee et al., 2018 

t_tanker_l Travel Time of Loader 
Tanker 

s 
 

Eqn 28 Chee et al., 2018 

t_tanker_load Water Truck Loading Time min 5 -20 Assumed 

V_bed Bedding Material Volume m3 
material/ 
m pipe 

 
Eqn S1 Chee et al., 2018 

V_c Cover Material Volume m3 
material/ 
m pipe 

 
Eqn S8 and S9 Chee et al., 
2018 

V_emb Embedment Material 
Volume 

m3 
material/ 
m pipe 

 
Eqn 11 Chee et al., 2018 

V_emb_d Embedment Material 
Placement Rate 

m3/day 
 

Eqn 12 Chee et al., 2018 

V_ep Embedment Pile Volume m3 38.48 ± 
10% 

Assume max height of 3 
and 1.5H:1V 
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V_exc Trench volume m3 
 

Eqn 4 Chee et al., 2018 

V_exc_d Daily Bank Excavated 
Material 

m3/day 
 

Eqn 5 Chee et al. 2018 

v_fluid_max_f
t 

Fluid Pipe Velocity (ft) ft/s 5 Based on typical design 
parameters 

v_fluid_pipe_
m 

Fluid Pipe Velocity (m) m/s 
  

V_h Haunching Material Volume m3 
material/ 
m pipe 

 
Eqn S2 Chee et al., 2018 

V_ib Initial Backfill Material 
Volume 

m3 
material/ 
m pipe 

 
Eqn S3 Chee et al., 2018 

V_m_w Excavator Bucket Capacity m3 
 

Table S11 Chee et al., 2018 

V_sp Spoil Pile Volume m3 38.48 ± 
10% 

Assume max height of 3 
and 1.5H:1V 

V_wat Volume of Water for backfill 
and Embedment 

m3 
 

Eqn 23 Chee et al., 2018 

V_wat_d Volume of Construction 
Water Needed  

L/day 
 

Eqn 26 Chee et al., 2018 

V_wt Water Truck Capacity L 12870 Assume largest truck size 
used 

W_b Excavator Bucket Width mm 457.2 - 
1981.2 

Table S11 Chee et al., 2018 

w_d Water Content Deficit of 
Backfill and Embedment 
Material  

 
0 - 0.05 Assumed 

W_emb Embedment Material Weight metric ton 
 

Table S8 Chee et al, 2018 

W_t Final Trench Base Width mm 
 

Chee et al., 2018 

W_tr Trench Width mm 
 

Eqn 2,3 Chee et al., 2018 

x Distance m 1 - 10000 Model Input 
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The following table contains the ρ and p-values of the Spearman’s rank order correlation 

performed for each of the variables used within the simulation.  

Table 13 Spearman Rank Correlation Coefficient values between independent variables and Net Benefit 
used within the Monte Carlo analysis 

Code Name Variable Name ρ p-value 

C_disp_pipe PW Disposal Cost via Pipe 0.08 p <  0.01 

C_equip_booste
r 

Cost of Booster Pumps 0.31 p <  0.01 

C_equip_load Total Loader Rental Cost -0.41 p <  0.01 

C_equip_tanker Total Water Truck Rental Cost -0.41 p <  0.01 

C_exc_unit Excavation Cost 0.01 0.14 

C_lab_load Total Loader Labor Cost -0.41 p <  0.01 

C_lab_pipe Total Pipe Installation Labor Cost -0.42 p <  0.01 

C_mob_exc Excavator Mobilization Cost |ρ|<  0.01 0.77 

C_pipe Total Pipe Material Cost -0.34 p <  0.01 

C_rental_exc Excavator Rental Cost |ρ|<  0.01 0.96 

D_1 Embedment Material Density 0.01 0.29 

D_b Bedding Thickness Below Pipe |ρ|<  0.01 0.40 

D_c Bedding Thickness Above Pipe |ρ|<  0.01 0.33 

D_e Embedment Cover Depth |ρ|<  0.01 0.64 

D_w Distance from Water Source to Job Site |ρ|<  0.01 0.87 

Dist_mob Equipment Mobilization Distance |ρ|<  0.01 0.90 

Eff_motor Motor Efficiency |ρ|<  0.01 0.83 

Eff_pump Pump Efficiency |ρ|<  0.01 0.75 

f_c Excavator Bucket Fill Factor |ρ|<  0.01 0.51 

f_friction friction factor -0.78 p <  0.01 

P Percentage of Native Material Needing Processing |ρ|<  0.01 0.56 

Percent_EOR Percent Increased Oil Recovery per Well 0.18 p <  0.01 

Q_oilwell_daily Daily Crude Oil Production per Well |ρ|<  0.01 0.71 

Q_start PW Flow Rate 0.81 p <  0.01 

S Percentage of Native Material Needing Screening |ρ|<  0.01 0.42 

S_1 Embedment Material Shrink Factor |ρ|<  0.01 0.66 

S_wt Water Truck Speed -0.02 0.11 

t_d Loder Dumping Time -0.01 0.25 

t_es Loader Travel Time to Trench from Spoil Pile 0.03 p <  0.01 

T_hr Productivity Min Per Hour 0.01 0.20 

t_i Excavator Cycle Time |ρ|<  0.01 0.36 

t_l Loader Loading Time |ρ|<  0.01 0.60 

t_li Travel Time of Loaded Loader to Spoil Pile 0.01 0.23 
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t_ls Loader Travel Time to Spoil Pile from Trench to 
Spoil Pile 

0.03 p <  0.01 

t_tanker_dump Water Truck Dumping Time |ρ|<  0.01 0.44 

t_tanker_load Water Truck Loading Time -0.01 0.29 

V_ep Embedment Pile Volume |ρ|<  0.01 0.91 

V_m_w Excavator Bucket Capacity |ρ|<  0.01 0.49 

V_sp Spoil Pile Volume 0.02 0.05 

w_d Water Content Deficit of Backfill and Embedment 
Material  

|ρ|<  0.01 0.41 

x Distance -0.44 p <  0.01 
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10 Appendix D: PITZER Database  
The PITZER updated constant values for calcite in version 3.7.0. These values as well as 

previous ones can be seen in the figures below. Model predictions utilizing the updated file can 

be seen in Figure 20, and MAPE calculations using the new equilibrium points are shown in 

Table 14. 

Calcite 
 CaCO3 = CO3-2 + Ca+2 
 log_k    -8.406 
 delta_h -2.297 kcal 
 -analytic   -237.04  -0.1077  0  102.25  6.79e5 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982  
 -Vm 36.9 

Figure 18 PITZER database constants for calcite prior to version 3.7.0 

 CaCO3 = CO3-2 + Ca+2 
 log_k    -8.406 
 delta_h -2.297 kcal 
 -analytic  8.481      -0.032644  -2133 # ref. 3 + data from Ellis, 1959, Plummer and Busenberg, 1982  
 -Vm 36.9 

Figure 19 Current PITZER constants for calcite 
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Figure 20 Old PITZER database predictions plotted alongside results of other simulations 

Table 14 MAPE values using PHREEQC output with newest PITZER database 

 New PITZER 
 Ca Mg Sr pH 
A:LKC 10:90 18.80 48.35 11.96 3.35 
A:LKC 50:50 19.76 45.94 15.19 5.78 
A:LKC 90:10 25.64 38.55 6.30 7.37 
A:LKC 100:0 7.67 40.46 6.05 7.50 
A:LKC 0:100 3.08 44.88 2.66 3.50 
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11 Appendix E: Economic Analysis Simulation Code 
The following section contains the MATLAB code used to conduct the techno-economic 

simulation. The code incorporates the WaterCOSTE model to estimate infrastructure cost. 

%% Input Constants 
x = lhsu(1,10000,10000); % distance in meters 
    x = round(x); 
Q_start = lhsu(1,1000,size(x,1)); % hypothetical starting volumetric flow of PW in barrels/day 
%% Labor Constants 
 % Hours per Workday 
    T_day = 8; 
 % Produciton Minutes 
    T_hr = lhsu(40,50,size(x,1)); 
     % Assumes 10 to 20 minutes per hour are spent on actions other than direct work 
%% Embedment Constants  
 % Embedment Cover Depth (mm); Assume 1 ft 
    D_e = lhsu(12*25.4*0.9,12*25.4*1.1,size(x,1)); 
%% Pipe Size (Inner Diameter) 
    D_id_in_calc=zeros(size(x,1),1); 
    % Assume max fluid velocity of 5 ft/s before 20% surge factor 
    v_fluid_max_ft = 5; 
    % Q in units of barrels/day 
    % D_p in units of in 
    % Diameter is inner diameter 
    for i = 1:size(x,1) 
        D_id_in_calc(i,1) = sqrt(4*(Q_start(i,1)/24/60/60)*5.615/pi/(v_fluid_max_ft*0.8))*12; 
    end 
 % Schedule 40 Pipe Size and Pressure 
        Pipe_ID_Nom_in = [1.61;2.07;2.47;3.07;3.55;4.03;5.05;6.07;7.98;10.02;11.94]; 
        Pipe_OD_Nom_in = [1.90;2.38;2.88;3.50;4.00;4.50;5.56;6.63;8.63;10.75;12.75]; 
        Pipe_Name_Nom_in = [1.5;2;2.5;3;3.5;4;5;6;8;10;12]; 
        Pipe_Max_Pressure = [198;166;182;158;145.5;133;119.5;106;93;84;79]; % ASTM D2466-06 Specification; 
values not listed interpolated 
    Pipe_Nom_Array = zeros(size(Pipe_ID_Nom_in,1),2);     
    for i =1:size(Pipe_ID_Nom_in,1) 
       Pipe_Nom_Array(i,1) = Pipe_ID_Nom_in(i,1); 
       Pipe_Nom_Array(i,2) = Pipe_OD_Nom_in(i,1);     
       Pipe_Nom_Array(i,3) = Pipe_Name_Nom_in(i,1); 
       Pipe_Nom_Array(i,4) = Pipe_Max_Pressure(i,1); 
    end 
 % Round ID to next closest Nominal Schedule 40 ID  
    D_id_in = zeros(size(D_id_in_calc,1),1); 
    for i=1:size(x,1) 
        if D_id_in_calc(i,1) <= 1.61 % Set min and max inner diameters 
            D_id_in(i,1) = 1.61; 
        elseif D_id_in_calc(i,1) >= 11.94 
            D_id_in(i,1) = 11.94; 
        else 
            D_id_in(i,1) = roundtowardvec(D_id_in_calc(i,1),Pipe_ID_Nom_in,'ceil'); 
        end 
    end 
 % Assign OD and Size Name based on Nominal ID Schedule 40 
    D_od_in = zeros(size(x,1),1); 
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    D_Name_in = zeros(size(x,1),1); 
    row = zeros(size(x,1),1); 
    for i =1:size(x,1) 
        row(i,1) = find(Pipe_Nom_Array(:,1) == D_id_in(i,1)); 
        D_od_in(i,1) = Pipe_Nom_Array(row(i,1),2); 
        D_Name_in(i,1) = Pipe_Nom_Array(row(i,1),3); 
    end 
 % Convert Inner/Outer Diameter from in to mm 
    D_id_mm=zeros(size(x,1),1); 
    D_od_mm=zeros(size(x,1),1); 
    for i= 1:size(x,1) 
        D_id_mm(i,1)= D_id_in(i,1)*25.4; 
        D_od_mm(i,1)= D_od_in(i,1)*25.4; 
    end 
%% Trench Excavation 
 % Trench Depth 
    % D_od_mm Outside Diameter of pipe (mm) 
    D_b = lhsu(50.8*0.9,50.8*1.1,size(x,1)); % Bedding thickness below pipe (mm), Assume 2 inches 
    D_c = lhsu(914.4*0.9,914.4*1.1,size(x,1)); % Bury Depth over pipe (mm), Assume 3 ft 
    D_t = zeros(size(x,1),1); 
    for i = 1:size(x) 
        D_t(i,1) = D_od_mm(i,1)+D_b(i,1)+D_c(i,1); % Trench depth (mm) (Eqn 1 Chee et al., 2018) 
    end 
 % Trench Width (assumes all Kansas is covered with Class 4 soil) 
  W_tr=zeros(size(x,1),1); % (Eqn 2,3 Chee et al., 2018)  
    for i = 1:size(x,1) 
        if D_od_mm(i,1) < 1200 
            W_tr(i,1)=D_od_mm(i,1)+600; 
        else 
            W_tr(i,1)=D_od_mm(i,1)+1200; 
        end 
    end 
 % Trench Cross Sectional Area (Assume Kansas is all Type B soil) 
  % Units mm^2 
  % (Figure 4 Chee et al., 2018) 
    A_t=zeros(size(x,1),1); 
    for i = 1:size(x,1) 
        if D_t(i,1) <= 1219 
            A_t(i,1)= W_tr(i,1)*D_t(i,1); 
        elseif D_t(i,1) > 1219 && D_t(i,1) <= 6096 
            A_t(i,1) = W_tr(i,1)*D_t(i,1)+(D_t(i,1)-1219)^2+(2438*(D_t(i,1)-1219)); 
        else  
            error('Pipe diameter too large'); 
        end 
    end 
%% Pipe Installation Data 
 % Installation Rate from (RSMeans 2020 Line 33 14 13.25) 
    % Values not explicitly listed were interpolated 
  % Pipe Nominal Diameter 
    Pipe_Install_Data(:,1) = [1.5;2;2.5;3;3.5;4;5;6;8;10;12]; 
  % Pipe Install Rates in units of m/day  
    Pipe_Install_Data(:,2) = [229;209;152;116;116;116;106;96;80;67;57]; 
   % Pipe Material Cost per Meter 
    Pipe_Install_Data(:,3) = [2.00;2.89;3.87;5.22;7.58;9.94;13.17;16.40;28.22;41.50;58.23]; 
%% Trenching Rate R_Pipe    
    R_pipe = zeros(size(x,1),1); 
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    for i = 1:size(x) 
        row(i,1) = find(Pipe_Install_Data(:,1) == D_Name_in(i,1)); 
        R_pipe(i,1) = Pipe_Install_Data(row(i,1),2); 
    end 
%% Total Length of Project (days) 
 % (Eqn 34 Chee et al., 2018) 
    T_job = zeros(size(x,1),1); 
    for i = 1:size(x) 
        T_job(i,1) = x(i,1)/R_pipe(i,1); 
    end 
%% Trench Volume 
 % (Eqn 4 Chee et al., 2018) 
    V_exc=zeros(size(x,1),1);  
    for i = 1:size(x,1) 
        V_exc(i,1)= A_t(i,1)*x(i,1)/1000000; % Excavated material (m^3) 
    end 
%% Daily Bank Excavated material (m^3) 
 % (Eqn 5 Chee et al. 2018) 
    V_exc_d=zeros(size(x,1),1);  
    for i = 1:size(x,1) 
        V_exc_d(i,1)= A_t(i,1)*R_pipe(i,1)/1000000;  
    end 
%% Excavator Selection 
 % Excevator Bucket Width (Calculates size of excavator bucket in mm) 
 % (Table S11 Chee et al., 2018) 
 % Assume CAT 315 model used 
    W_b=zeros(size(x,1),1); 
    for i = 1:size(x,1) 
        W_b(i,1)= 152.4*ceil(W_tr(i,1)/152.4); %buckets come in of 6in intervals 
    end 
    for i = 1:size(x) 
        count=0; % Sets maximum and minimum bucket sizes 
        while count < size(x) 
            count = count +1; 
            for i = 1:size(x,1) 
                if W_b(i,1) < 457.2 
                    W_b(i,1) = 457.2; 
                elseif W_b(i,1)> 914.4 
                    W_b(i,1) = 914.4; 
                else  
                    W_b(i,1) = W_b(i,1); 
                end 
            end 
        end 
    end 
%% Trenching Rate 
 % Bucket fill factor assuming soil, boulders and roots 
  % (CAT, 2016)51 
    f_c = lhsu(0.8,1,size(x,1));  
 % Bucket Capacity based on Bucket Width 
    V_m_w = zeros(size(x,1),1); 
        % Assume 1/2 cubic card capacity common (CAT Model 315) 
            % Bucket sizes 18in to 36in available) 
        % (Table S11 Chee et al., 2018) 
    % Uncertainty rante for Bucket Capacity    
     V_m_w_uncert = lhsu(0.9,1.1,size(x,1));     
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    for i = 1:size(x,1) 
        % capcity values are in cubic meters 
        if W_b(i,1) == (18+(6*0))*25.4 
            V_m_w(i,1) = 0.27*0.7645*V_m_w_uncert(i,1); 
        elseif W_b(i,1) == (18+(6*1))*25.4 
            V_m_w(i,1) = 0.4*0.7645*V_m_w_uncert(i,1); 
        elseif W_b(i,1) == (18+(6*2))*25.4 
            V_m_w(i,1) = 0.54*0.7645*V_m_w_uncert(i,1); 
        else  
            V_m_w(i,1) = 0.69*0.7645*V_m_w_uncert(i,1); 
        end 
    end 
 % Cycle Times 
  % (Saglam and Bettemir, 2018)52 
  % Assume all soil is common earth, soft clay, average soil 
    t_i = zeros(size(x,1),1); 
  % Cycle Time uncertainty range 
    t_i_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i=1:size(x) % Cycle Time in seconds based on bucket capacity in m^3 
        if V_m_w(i,1) < 0.76 
            t_i(i,1) = 18*t_i_uncert(i,1); 
        elseif V_m_w(i,1) > 0.95 && V_m_w(i,1) < 1.72 
            t_i(i,1) = 23*t_i_uncert(i,1); 
        else 
            t_i(i,1) = 30*t_i_uncert(i,1); 
        end 
    end 
 % Excavation Production Rate (m^3/hr) 
  % (Eqn 9 Chee et al., 2018) 
    P_exc = zeros(size(x,1),1); 
    for i = 1:size(x) 
        P_exc(i,1) = f_c(i,1)*V_m_w(i,1)/t_i(i,1)*T_hr(i,1)*60; 
    end 
 % Trenching Rate (m/day) 
  % (Eqn 8 Chee et al., 2018) 
    R_exc=zeros(size(x,1),1); 
    % Assume 8 hr shifts per day 
    for i =1:size(x) 
        R_exc(i,1) = P_exc(i,1)*1000000/A_t(i,1)*24; 
    end 
%% Embedment Calculations 
    % Assume Type B Soil 
    % Assume Tpye B Soil in Kansas is Class 4 (Soil Stiffness) 
 % Final Trench Base Width (mm) 
  % (Chee et al., 2018) 
    W_t = zeros(size(x,1),1); 
    for i = 1:size(x) 
        if W_tr(i,1) > W_b(i,1) 
            W_t(i,1) = W_tr(i,1); 
        else 
            W_t(i,1) = W_b(i,1); 
        end 
    end 
 % Bedding Material Volume (m^3 material /m pipe) 
  % (Eqn S1 Chee et al., 2018) 
    V_bed = zeros(size(x,1),1); 
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    for i =1:size(x) 
        V_bed(i,1) = D_t(i,1)*W_t(i,1)*1000/1e9; 
    end 
 % Haunching Material Volume (m^3 material/m pipe) 
  % (Eqn S2 Chee et al., 2018) 
    V_h = zeros(size(x,1),1); 
    for i = 1:size(x) 
        V_h(i,1) = (((D_od_mm(i,1)/2)*W_t(i,1))-((pi*(D_od_mm(i,1)^2))/8))*1000/1e9; 
    end 
 % Initial Backfill Material Volume (m^3 material /m pipe) 
  % (Eqn S3 Chee et al., 2018) 
    V_ib = zeros(size(x,1),1); 
    for i =1:size(x) 
        if D_t(i,1) <= 1219 
            V_ib(i,1) = (((D_od_mm(i,1)/2)*W_t(i,1))-((pi*(D_od_mm(i,1)^2))/8))*1000/1e9; 
        elseif D_t(i,1) > 1219 && D_t(i,1) <= 6096 && (D_od_mm(i,1)+D_b(i,1))<=1219 
            V_ib(i,1) = (((D_od_mm(i,1)/2)*W_t(i,1))-((pi*(D_od_mm(i,1)^2))/8))*1000/1e9; 
        elseif D_t(i,1) > 1219 && D_t(i,1) <= 6096 && (D_od_mm(i,1)+D_b(i,1))> 1219 
            V_ib(i,1) = ((((D_od_mm(i,1)/2)*W_t(i,1))- ... 
                ((pi*(D_od_mm(i,1)^2))/8)) + ... 
                (2*1219*(D_b(i,1)+D_od_mm(i,1)-1219)) + ...  
                (2*1.0*(D_b(i,1)+D_od_mm(i,1)-1219)^2))*1000/1e9;  
        else 
            V_ib(i,1)='Error'; 
        end 
    end 
 % Cover Material Volume (m^3 material /m pipe) 
  % (Eqn S8 and S9 Chee et al., 2018) 
        V_c=zeros(size(x,1),1); 
        W_1 = zeros(size(x,1),1); 
        W_2 = zeros(size(x,1),1); 
    for i = 1:size(x) 
        if D_t(i,1) <= 1219 
            V_c(i,1) = W_t(i,1)*D_e(i,1)*1000/1e9; 
        elseif D_t(i,1) <= 6096 && D_t(i,1) > 1219 
            if (D_b(i,1) + D_od_mm(i,1) + D_e(i,1)) <= 1219 
                V_c(i,1) = W_t(i,1)*D_e(i,1)*1000/1e9; 
            elseif (D_b(i,1) + D_od_mm(i,1) + D_e(i,1)) > 1219 && (D_b(i,1) + D_od_mm(i,1)) < 1219 
                V_c(i,1) = (D_e(i,1)*W_t(i,1)+ 2*1219*(D_od_mm(i,1)+D_e(i,1)+D_b(i,1)-
1219)+1*((D_od_mm(i,1)+D_e(i,1)+D_b(i,1)-1219)^2))*1000/1e9; 
            else 
                W_1(i,1) = W_t(i,1)+2*1219+2*1*(D_b(i,1)+D_od_mm(i,1)-1219); 
                W_2(i,1) = W_t(i,1)+2*1219+2*1*(D_b(i,1)+D_od_mm(i,1)+D_e-1219); 
                V_c(i,1) = (0.5*(W_1(i,1)+W_2(i,1))*D_e)*1000/1e9; 
            end 
        else 
            V_c(i,1) = 'Error'; 
        end    
    end 
 % Embedment Material Volume (m^3/m) 
  % (Eqn 11 Chee et al., 2018) 
    V_emb=zeros(size(x,1),1); 
    for i = 1:size(x) 
        V_emb(i,1) = V_bed(i,1)+V_h(i,1)+V_ib(i,1)+V_c(i,1); 
    end 
 % Embedment Material Volumetric Rate 
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  % (Eqn 12 Chee et al., 2018) 
    V_emb_d=zeros(size(x,1),1); 
    for i = 1:size(x) 
        V_emb_d(i,1) = V_emb(i,1)*R_pipe(i,1); 
    end 
 % Embedment Material Weight (Native) 
  % Assume Density of Type IV (Native) Embedment Material is 1922 kg/m^3 (Table S8 Chee et al, 2018) 
    D_1 = lhsu(1922*0.9,1922*1.1,size(x,1)); 
  % Assume Shrink Factor of Type IV Embedment Material is 0.8 (Table S8 Chee et al, 2018) 
    S_1 = lhsu(0.8*0.9,0.8*1.1,size(x,1)); 
    W_emb = zeros(size(x,1),1); 
        for i = 1:size(x) 
            W_emb(i,1) = V_emb(i,1)/1000/D_1(i,1)/S_1(i,1)*x(i,1); 
        end 
%% Spoil Pile Criteria (Native Material) 
 % Volume of Spoil Pile (m^3) 
  % Assume Cone with max height of 3m and 1.5H:1V (horizontal:vertical side slope (m^3) 
  % (Chee et al., 2018) 
    V_sp = lhsu((1/3)*pi()*(3.5)^2*3*0.9,(1/3)*pi()*(3.5)^2*3*1.1,size(x,1)); 
 % Number of Spoil Piles 
 % (Eqn 14 Chee et al., 2018) 
    N_sp = zeros(size(x,1),1); 
    for i = 1:size(x) 
        N_sp(i,1) = V_exc_d(i,1)/V_sp(i,1); 
    end 
 % Distance between Spoil Pile and Trench (m) 
 % (Eqn 15 Chee et al., 2018) 
    D_sp = zeros(size(x,1),1); 
    for i =1:size(x) 
        D_sp(i,1) = N_sp(i,1)/R_pipe(i,1); 
    end 
%% Loader Travel and Operating Times (Spoil Pile) 
% (Table S7 Chee et al, 2018) 
 % Travel Time of loaded loader to spoil pile 
    t_ls = zeros(size(x,1),1); 
  % Travel speed Uncertainty 
    t_ls_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        t_ls(i,1) = D_sp(i,1)/2/(4.47*t_ls_uncert(i,1)); % 4.47 = speed of loaded loader in m/s 
    end 
 % Travel Time of empty loader from spoil pile to trench 
    t_es = zeros(size(x,1),1); 
    t_es_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        t_es(i,1) = D_sp(i,1)/2/(4.92*t_es_uncert(i,1)); % 4.92 = speed of empty loader in m/s 
    end   
 % Dumping and Loading Times (s) 
    t_l = lhsu(9*0.9,9*1.1,size(x,1)); 
    t_d = lhsu(5*0.9,5*1.1,size(x,1));     
%% Embedment Pile Criteria (Native Material) 
 % Volume of Embedment Pile 
 % Spoil pile is same as embedment pile due to use of native material 
    V_ep = lhsu((1/3)*pi()*(3.5)^2*3*0.9,(1/3)*pi()*(3.5)^2*3*1.1,size(x,1)); 
 % Number of Import Piles 
    N_ep = zeros(size(x,1),1); 
    for i = 1:size(x) 
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        N_ep(i,1) = V_emb_d(i,1)/V_ep(i,1); 
    end 
 % Distance between Embedment Pile and Trench (m) 
    D_ep = zeros(size(x,1),1); 
    for i =1:size(x) 
        D_ep(i,1) = N_ep(i,1)/R_pipe(i,1); 
    end 
%% Loader Travel and Operating Times (Embedment Pile) 
 % (Table S7 Cheet et al, 2018) 
 % Travel Time of loaded loader to spoil pile 
    t_li = zeros(size(x,1),1); 
 % Loader Loaded speed uncertainty 
    t_li_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        t_li(i,1) = D_ep(i,1)/2/(4.47*t_li_uncert(i,1)); % 4.47 = speed of loaded loader in m/s) 
    end 
 % Travel TIme of empty loader from spoil pile to trench 
    t_ei = zeros(size(x,1),1); 
 % Loader Empty speed uncertainty 
    t_ei_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        t_ei(i,1) = D_ep(i,1)/2/(4.92*t_ei_uncert(i,1)); % 4.92 = speed of empty loader in m/s) 
    end   
 % t_l and t_d assumed to be identical to spoil pile values 
%% Front End Loader Selection     
 % Spoil Pile Collection Rate (m^3/h) and Backfill Placement Rate (m^3/h) 
    P_sp = zeros(size(x,1),1); 
    P_back = zeros(size(x,1),1); 
 % Native Embedment Material Screening and Processing 
    P_pro = zeros(size(x,1),1); 
    P_sc = zeros(size(x,1),1); 
  % Percentage of native material which requires Screening and Processing 
  % Fix later 
    S = lhsu(0,0.2,size(x,1)); 
    P = lhsu(0,0.2,size(x,1)); 
 % Native Embedment Material Placement Rate 
    P_emb = zeros(size(x)); 
 % Bucket Capacity (C_lb) of Loader (m^3) 
    % Iterative Calculation 
    C_lb = zeros(size(x,1),1); % m^3 
    T_load = zeros(size(x,1),1); 
    for i = 1:size(x) 
        j = 1; 
        iter = 1; 
       % Determine minimum loader size needed 
       % (Table S7 Chee et al, 2018) 
        while iter == 1 
            if j == 1 
                C_lb(i,1) = 2.29; 
            elseif j == 2 
                C_lb(i,1) = 2.52; 
            elseif j == 3 
                C_lb(i,1) = 2.91; 
            elseif j == 4 
                C_lb(i,1) = 3.10; 
            elseif j == 5 
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                C_lb(i,1) = 3.40; 
            elseif j == 6  
                C_lb(i,1) = 4.01; 
            elseif j == 7  
                C_lb(i,1) = 4.78; 
            elseif j == 8 
                C_lb(i,1) = 5.40; 
            elseif j == 9 
                C_lb(i,1) = 6.10; 
            elseif j == 10 
                C_lb(i,1) = 6.88; 
            else 
                'Error'; 
                break 
            end   
        % Spoil Pile Backfill and Collection Rate 
         % (Eqn 16 Chee et al., 2018) 
            P_back(i,1) = C_lb(i,1)*60*T_hr(i,1)/(t_ls(i,1)+t_es(i,1)+t_l(i,1)+t_d(i,1)); 
            P_sp(i,1) = P_back(i,1); 
        % Processing and Screening Rate of Native Material 
         % (Eqn 18 Chee et al., 2018) 
            P_pro(i,1) = C_lb(i,1)*60*T_hr(i,1)/(t_l(i,1)+t_d(i,1)); 
            P_sc(i,1) = P_pro(i,1); 
        % Production Rate of Native Embedment Material 
         % (Eqn 19 Chee et al., 2018) 
            P_emb(i,1) = C_lb(i,1)*60*T_hr(i,1)/(t_li(i,1)+t_es(i,1)+t_l(i,1)+t_d(i,1)); 
        % Total Time to Accomplish all Tasks (hours)  
         % (Eqn 22 Chee et al., 2018) 
            T_load(i,1) = (V_exc_d(i,1)/P_sp(i,1)) + (V_emb_d(i,1)/P_emb(i,1)) + (V_exc_d(i,1)/P_sc(i,1))*S(i,1) + 
(V_exc_d(i,1)/P_pro(i,1))*P(i,1) + (V_exc_d(i,1)/P_back(i,1)); 
            if T_load(i,1) > T_day 
                j = j+1; 
            else 
                iter = iter+1; 
            end 
        end 
    end 
%% Water Volume Calculations     
 % Water Content Deficit of Backfill and Embedment Material (assume 0 - 5%) 
    w_d = lhsu(0,0.05,size(x,1));  
 % Total Volume of Water (m^3) for Backfill and Embedment 
  % (Eqn 23 Chee et al., 2018) 
    V_wat = zeros(size(x,1),1); 
    for i = 1:size(x) 
        V_wat(i,1) = (V_exc(i,1)+V_emb(i,1))*w_d(i,1); 
    end 
%% Water Truck Calculations 
 % Assume Truck Capacity is 12870 L each 
    V_wt = 12870; 
 % Cycle Time Calculations for Water Truck (min) 
  % Distance from Water Source to Job Site (km) 
    D_w = lhsu(5,10,size(x,1)); 
   % Assume Average Speed of Water Truck is 64.37 km/hr 
    S_wt = lhsu(64.37*0.9,64.37*1.1,size(x,1));  
  % Travel Time for Loaded and Unloaded Tanker (min) 
   % (Eqn 28 Chee et al., 2018) 
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    t_tanker_l = zeros(size(x,1),1); 
    t_tanker_e = zeros(size(x,1),1); 
    for i = 1:size(x) 
        t_tanker_l(i,1) = D_w(i,1)/S_wt(i,1)*60; 
        t_tanker_e(i,1) = t_tanker_l(i,1); 
    end 
  % Time to Load and Dump Water Truck (min) 
   % Assume 5 - 20 min each 
    t_tanker_load = lhsu(10,20,size(x,1)); 
    t_tanker_dump = lhsu(10,20,size(x,1));   
  % Total Cycle Time of Water Truck 
   % (Eqn 27 Chee et al., 2018) 
    t_tanker_cycle = zeros(size(x,1),1); 
    for i = 1:size(x) 
        t_tanker_cycle(i,1) = t_tanker_load(i,1) + t_tanker_l(i,1) + t_tanker_dump(i,1) + t_tanker_e(i,1); 
    end 
 % Daily Production Rate per Truck (L/day) 
  % (Eqn 25 Chee et al., 2018) 
    P_tanker = zeros(size(x,1),1); 
    for i = 1:size(x) 
        P_tanker(i,1) = V_wt/t_tanker_cycle(i,1)*60*T_day; 
    end 
 % Daily Amount of Construction Water Required (L/day) 
  % (Eqn 26 Chee et al., 2018) 
    V_wat_d = zeros(size(x,1),1); 
    for i = 1:size(x) 
        V_wat_d(i,1) = V_wat(i,1)/T_job(i,1); 
    end 
 % Number of Trucks Needed 
  % (Eqn 24 Chee et al., 2018) 
    N_tanker = zeros(size(x,1),1); 
    for i = 1:size(x) 
   %%%% Formula Alterd From Original Found in Chee et al., 2018 (Eqn 24)      
        N_tanker(i,1) = ceil(V_wat_d(i,1)/P_tanker(i,1)); 
    end 
%% Material Costs 
 % Pipe Cost 
    C_pipe = zeros(size(x,1),1); 
  % Pipe Cost Uncertainty 
    C_pipe_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        row(i,1) = find(Pipe_Install_Data(:,1) == D_Name_in(i,1)); 
        C_pipe(i,1) = Pipe_Install_Data(row(i,1),3)*x(i,1)*C_pipe_uncert(i,1); 
    end 
 % Embedment Material 
  % Assume native material is used for embedment 
    C_emb_r = 0; 
 % Water Cost 
  % Assume water price per Litre is 0.00001 
    C_wat = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_wat(i,1) = V_wat(i,1) * 0.00001; 
    end 
%% Excavating Cost 
 % Labor and Equipment (Consumables) Cost for Excavating 
  % RSMeans Data for (3/8), (1/2), and (3/4) cubic yd excavators 
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  % Round CATPIL 315 capacity up to nearest cost data 
  % Value Accounts for 10% margins 
  % (RSMeans 2020 31 23 16.13) 
  % Assume Treches do not exceed 4 ft in Depth 
  % Cost is per BCY of common earth removed 
    C_exc_unit = zeros(size(x,1),1); 
  % Excavating Cost Uncertainty 
    C_exc_unit_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        if V_m_w(i,1) > 0 && V_m_w(i,1) <= (0.375*0.7645) 
            C_exc_unit(i,1) = 9.45*C_exc_unit_uncert(i,1); 
        elseif V_m_w(i,1) > (0.375*0.7645) && V_m_w(i,1) <= (0.5*0.7645) 
            C_exc_unit(i,1) = 7.20*C_exc_unit_uncert(i,1); 
        elseif V_m_w(i,1) > (0.5*0.7645) && V_m_w(i,1) <= (0.75*0.7645) 
            C_exc_unit(i,1) = 7.35*C_exc_unit_uncert(i,1);  
        else 
            break 
        end 
    end 
%% Daily Equipment Rental Cost 
 % Excavator 
  % Based off CAT 315 Model 
   % (Table S6 Chee et al., 2018) 
    C_equip_exc = zeros(size(x,1),1); 
   % Daily Excavator Rental Cost 
    C_rental_exc = lhsu(676*0.9,676*1.1,size(x,1)); 
    for i = 1:size(x) 
        C_equip_exc(i,1) = C_rental_exc(i,1)*x(i,1)/R_pipe(i,1); 
    end 
 % Loader 
  % (RSMeans 2020 Line 01 54 33 4610-4870) 
    C_equip_load = zeros(size(x,1),1); 
  % Loader Cost Uncertainty 
    C_equip_load_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        if C_lb(i,1) <= 1.1475 
            C_equip_load(i,1) = 282*C_equip_load_uncert(i,1)*T_job(i,1); 
        elseif C_lb(i,1) > 1.1475 && C_lb(i,1) <= 1.33875 
            C_equip_load(i,1) = 440*C_equip_load_uncert(i,1)*T_job(i,1); 
        elseif C_lb(i,1) > 1.33875 && C_lb(i,1) <= 1.53 
            C_equip_load(i,1) = 395*C_equip_load_uncert(i,1)*T_job(i,1); 
        elseif C_lb(i,1) > 1.53 && C_lb(i,1) <= 2.6775 
            C_equip_load(i,1) = 780*C_equip_load_uncert(i,1)*T_job(i,1); 
        elseif C_lb(i,1) > 2.6775 && C_lb(i,1) <= 3.4425 
            C_equip_load(i,1) = 890*C_equip_load_uncert(i,1)*T_job(i,1); 
        elseif C_lb(i,1) > 3.4425 && C_lb(i,1) <= 4.39875 
            C_equip_load(i,1) = 890*C_equip_load_uncert(i,1)*T_job(i,1); 
        elseif C_lb(i,1) > 4.39875 && C_lb(i,1) <= 6.885 
            C_equip_load(i,1) = 2550*C_equip_load_uncert(i,1)*T_job(i,1); 
        elseif C_lb(i,1) > 6.885 && C_lb(i,1) <= 8.415 
            C_equip_load(i,1) = 2700*C_equip_load_uncert(i,1)*T_job(i,1); 
        else 
            C_equip_load(i,1) = 'Error'; 
            break 
        end 
    end  
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 % Water Truck 
  % Assume 12870 L (3400 gal) truck is used 
  % Labor  Included 
  % (Table S5 Chee et al, 2018) 
    C_equip_tanker = zeros(size(x,1),1); 
  % Water Truck Cost Uncertainty 
    C_equip_tanker_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        C_equip_tanker(i,1) = 509*C_equip_tanker_uncert(i,1)*N_tanker(i,1)*T_job(i,1); 
    end 
%% Mobilization and Demobilization of Equipment 
 % Assume Equipment Depot is between 10 and 100 miles from project site 
    Dist_mob = lhsu(10,100,size(x,1)); 
 % Excavator 
  % Assume Equipment is less than 20 US tons 
  % Assume Demobilization = Mobilization 
  % (RSMeans 2020 Line 01 54 36.50) 
  % Cost Represents Total Labor + Equipment and 10% profit margin 
    C_mob_exc = zeros(size(x,1),1); 
    C_demob_exc = zeros(size(x,1),1); 
  % Mobilization Cost Uncertainty 
    C_mob_exc_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        if Dist_mob(i,1) <= 25 
            C_mob_exc(i,1) = 855*C_mob_exc_uncert(i,1); 
            C_demob_exc(i,1) = C_mob_exc(i,1); 
        else  
            C_mob_exc(i,1) = 855*C_mob_exc_uncert(i,1) + (Dist_mob(i,1)-25)/5*(855*0.1); 
            C_demob_exc(i,1) = C_mob_exc(i,1); 
        end 
    end 
 % Loader 
  % CAT Loader Model Number 
    Loader_Properties(:,1) = [926;930;938;950;962;966;972;980;982;986]; 
  % Loader Capacity(m^3) 
    Loader_Properties(:,2) = [2.29;2.52;2.91;3.1;3.4;4.01;4.78;5.4;6.1;6.88]; 
  % Loader Weight (US ton) 
    Loader_Properties(:,3) = 
[10.24927838;13.98170004;17.06486111;19.60127642;20.47871518;19.17688707;28.89374972;32.81907563;33.1
685079;49.40332958]; 
    Loader_wt = zeros(size(x,1),1); 
    C_mob_load = zeros(size(x,1),1); 
    C_demob_load = zeros(size(x,1),1); 
  % Loader Mobilization Uncertainty 
    C_mob_load_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        row(i,1) = find(Loader_Properties(:,2) == C_lb(i,1)); 
        Loader_wt(i,1) = Loader_Properties(row(i,1),3); 
        if Loader_wt(i,1) <= 20  
            C_mob_load(i,1) = 855*C_mob_load_uncert(i,1); 
        elseif Loader_wt(i,1) <= 40 
            C_mob_load(i,1) = 1000*C_mob_load_uncert(i,1); 
        elseif Loader_wt(i,1) <=50 
            C_mob_load(i,1) = 3000*C_mob_load_uncert(i,1); 
        else 
            'Error'; 
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            break 
        end 
        if Dist_mob(i,1) > 25 
            C_mob_load(i,1) = C_mob_load(i,1) +(Dist_mob(i,1)-25)/5*(C_mob_load(i,1)*0.1); 
            C_demob_load(i,1) = C_mob_load(i,1); 
        else 
            C_demob_load(i,1) = C_mob_load(i,1); 
        end 
    end 
 % Water Truck 
  % Assume 12870 L (3400 gal) truck is used 
  % (Table S5 Chee et al, 2018) 
    C_mob_tanker = zeros(size(x,1),1); 
    C_demob_tanker = zeros(size(x,1),1); 
  % Tanker Mobilization Cost Uncertainty 
    C_mob_tanker_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x,1) 
        C_mob_tanker(i,1) = 400*C_mob_tanker_uncert(i,1)*N_tanker(i,1); 
        C_demob_tanker(i,1) = C_mob_tanker(i,1); 
    end 
%% Total Equipment Cost ($) 
 % (Eqn 35 Chee et al., 2018) 
    C_equip = zeros(size(i,1),1); 
    for i = 1:size(x) 
        C_equip(i,1) = C_equip_exc(i,1)+C_equip_load(i,1)+... 
            C_equip_tanker(i,1)+C_mob_exc(i,1)+C_demob_exc(i,1)+... 
            C_mob_load(i,1)+C_demob_load(i,1)+C_mob_tanker(i,1)+... 
            C_demob_tanker(i,1); 
    end     
%% Labor Costs 
 % Excavotor 
  % Included with Material and Equipment in Previous Section 
 % Pipe Installation ($) 
  % Assume RSMeans 2020 Crew B-20  
  % Includes 10% profit margin 
    C_lab_pipe = zeros(size(x,1),1); 
  % Pipe Labor Cost Uncertainty 
    C_lab_pipe_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        C_lab_pipe(i,1) = 1699.60*C_lab_pipe_uncert(i,1) *T_job(i,1); 
    end 
 % Loader Operation ($) 
  % Assume RSMeans 2020 Medium Equipment Operator 
  % Includes 10% Profit Margin 
    C_lab_load = zeros(size(x,1),1); 
  % Loader Labor Cost Uncertainty 
    C_lab_load_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        C_lab_load(i,1) = 678*C_lab_load_uncert(i,1)*T_job(i,1); 
    end 
  % Water Truck Drivers ($/day) 
   % Assume RSMeans 2020 Truck Driver (Heavy) 
   % Includes 10% Profit Margin 
    C_lab_tanker = zeros(size(x,1),1); 
   % Water Truck Labor Uncertainty 
    C_lab_tanker_uncert = lhsu(0.9,1.1,size(x,1)); 
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    for i = 1:size(x) 
        C_lab_tanker(i,1) = N_tanker(i,1)*586.80*C_lab_tanker_uncert(i,1)*T_job(i,1); 
    end 
  % Embedment Material Truck Driver  
   % Indluded in Previous Calculations  
%% Total Labor Costs ($) 
 % (Eqn 33 Chee et al., 2018) 
    C_lab = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_lab(i,1) = C_lab_pipe(i,1)+C_lab_load(i,1)+C_lab_tanker(i,1); 
    end 
 %% Total Pipe Construction Cost 
  % (Eqn 29 Chee et al., 2018) 
    C_construction_pipe = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_construction_pipe(i,1) = C_pipe(i,1)+C_wat(i,1)+C_lab(i,1)+C_equip(i,1); 
    end 
%% Pressure Drop  
 %Conditions 
  % Assume 20% safety factor 
    P_o = zeros(size(x,1),1); 
    for i = 1:size(x) 
        row(i,1) = find(Pipe_Nom_Array(:,3) == D_Name_in(i,1)); 
        P_o(i,1) = Pipe_Nom_Array(row(i,1),4); 
    end 
 % Reynold Numer Calculation 
  % Density of Arbuckle Brine is 1.015 g/mL (1015 kg/m^3) 
    SG_Arbuckle = 1.015; 
  % Pipe Velocity Calculation (m/s) 
    v_fluid_pipe_m = zeros(size(x)); 
    for i = 1:size(x) 
        v_fluid_pipe_m(i,1) = (Q_start(i,1)*5.615/(24*60*60)/(((D_id_in(i,1)/12/2)^2)*pi))/3.28; 
    end 
  % Assume Dynamic Viscosity of Brine is 1e-3 Ns/m^2 
    Re = zeros(size(x,1),1); 
    for i = 1:size(x) 
        Re(i,1) = SG_Arbuckle*1000*v_fluid_pipe_m(i,1)*(D_id_mm(i,1)/1000)/(1e-3); 
    end 
 % Friction Factor 
  % Determine Laminar or Turbulet Flow 
    f_friction = zeros(size(x,1),1); 
    for i = 1:size(x,1) 
            options = optimoptions('fsolve','Display','off'); 
            f_friction(i,1) = fsolve(@(f) 2*log10(Re(i,1)*sqrt(f))-0.8-(1/sqrt(f)),0.001,options); % Eqution 3-2 from 
AWWA M23 Manual 
    end 
 % Pressure Drop (ft H2O per 100 ft) 
  % Darcy-Weisbach Equation 
    d_P_100ft = zeros(size(x)); 
    d_P_100m = zeros(size(x)); 
    for i = 1:size(x) 
       d_P_100ft(i,1) = f_friction(i,1)*100*((v_fluid_pipe_m(i,1)*3.28)^2)/(D_id_in(i,1)/12)/2/32.2; 
       d_P_100m(i,1) = d_P_100ft(i,1)*3.2;  
    end 
%% Booster Pump Quantity and Cost    
 % Assume maximum pressure drop of 20% before booster pumps needed 
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    N_bp = zeros(size(x,1),1); 
    for i = 1:size(x) 
        N_bp(i,1) = floor(x(i,1)/100*d_P_100m(i,1)/(P_o(i,1)*2.31*0.2)); 
    end 
 % Material Cost 
  % Values obtained from fitting data from Loh et al., 2002) 
    C_equip_booster = zeros(size(x,1),1); 
  % Booster Pump Cost Uncertainty 
    C_equip_booster_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        if Q_start(i,1) <= 68571.4 
            C_equip_booster(i,1) = N_bp(i,1)*3855*C_equip_booster_uncert(i,1)*exp(1.635e-5*Q_start(i,1)); 
        else 
            C_equip_booster(i,1) = N_bp(i,1)*0.1492*C_equip_booster_uncert(i,1)*Q_start(i,1); 
        end 
    end 
%% Electricity Cost 
 % Data from EIA,202053 
 % Cost in $/kWh for commercial rates 
 % Cost adjusted to 2020$ 
 % Empiracle Distribution from 2001-2020 data 
    C_electricity = lhs_empir([0.1033;0.10476249;0.111177404;0.112800444;0.112927326; 
        0.10906687;0.111163581;0.1077868;0.10501722;0.102941988;0.0979803; 
        0.093786003;0.091761984;0.086639233;0.091148856;0.08936466;0.08967435; 
        0.091283412;0.090712088;0.09209108],size(x,1)); 
%% Pumping Cost Analysis 
 % Does not account for pumping water out of well (needed regardless of 
  % brine exchange) 
 % Does not account for pumping needed for reinjection 
 % Head Loss (m) 
  % Convert Pressure drop per 100m to total pressure loss (ft h2O) 
    d_P_total_ft_H2O = zeros(size(x,1),1); 
    for i = 1:size(x) 
        d_P_total_ft_H2O(i,1) = d_P_100m(i,1)*(x(i,1)/100); 
    end 
  % Pump Efficiency  
   % Assume Centrifugal Pump Used 
   % Values obtained from Loh et al., 200254 
   % Flow converted from bbl/day to gpm 
   % Assume lowest efficiency applies when overlap in data occurs 
    Eff_pump = zeros(size(x,1),1); 
   % Pump Efficiency Uncertainty 
    Eff_pump_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        if (Q_start(i,1)*0.0292) < 50 
            Eff_pump(i,1) = 0.6*Eff_pump_uncert(i,1); 
        elseif 50 <= (Q_start(i,1)*0.0292) && (Q_start(i,1)*0.0292) < 200 
            Eff_pump(i,1) = 0.65*Eff_pump_uncert(i,1); 
        elseif 200 <= (Q_start(i,1)*0.0292) && (Q_start(i,1)*0.0292) < 500 
            Eff_pump(i,1) = 0.75*Eff_pump_uncert(i,1); 
        else 
            Eff_pump(i,1) = 0.82*Eff_pump_uncert(i,1); 
        end 
    end 
  % Motor Efficiency 
   % Assume Efficiency Ranges from 60% - 90% 



76 
 

    Eff_motor = lhsu(.6,0.9,size(x,1)); 
  % Brake Horse Power (BHP) per pump 
    BHP = zeros(size(x,1),1); 
   % Q in units of gpm 
   % Head loss in units of feet 
    for i = 1:size(x) 
        BHP(i,1) = Q_start(i,1)*0.0292*d_P_total_ft_H2O(i,1)*SG_Arbuckle/(3960*Eff_pump(i,1)); 
    end 
  % Energy Requirements (kW) 
  E_pump = zeros(size(x,1),1); 
    for i = 1:size(x) 
        E_pump(i,1) = 0.746 *BHP(i,1)/Eff_motor(i,1); 
    end 
%% Pumping Cost per Day 
    C_pumping_day = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_pumping_day(i,1) = E_pump(i,1)*C_electricity(i,1)*24; 
    end 
%% Daily Injection Rate (bbl/day) 
 % Assume all oil wells produce 22-barrel PW for every 1-barrel oil 
 % Assume injection volume equals volume removed plus 10% to maintain pressure 
 % Assume all transported water will be used for injection   
 % Daily Production of Oil Well  
  % Assume value of 0.5 to 50 bopd with most producing 5 bopd 
    Q_oilwell_daily = lhsu(0.5,10,size(x,1)); % bbl/day 
  % Assume EOR from brine exchange is 4% - 12% 
   Percent_EOR = lhsu(0.04,0.12,size(x,1)); 
 % EOR Calculation   
   Oil_EOR = zeros(size(x,1),1); 
   for i = 1:size(x) 
      Oil_EOR(i,1) = Q_start(i,1)/(23*1.1)*Percent_EOR(i,1); 
   end 
%% Monetary Benefit of EOR 
 % Historic Crude Oil Prices (2001-2020) (2020$/bbl) (EIA,2021)55 
    C_oil_bbl = lhs_empir([43.241088;34.9946104;34.1037006;40.7789448; 
        54.471954;72.3176741;79.5457114;84.7998935;113.5677888;64.6194924; 
        86.3141067;103.7861592;99.8459175;102.274975;95.251716;46.6071892; 
        40.8458246;48.944102;63.045723;53.531698;36.29],size(x,1)); 
 % Cost Benefit 
    C_EOR = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_EOR(i,1) = Oil_EOR(i,1)*C_oil_bbl(i,1); 
    end 
%% Disposal Cost Savings 
 % Assume all PW will be piped to disposal well 
 % Assume Average disposal cost is $0.12 per barrel 
   C_disp_pipe = lhsu(0.10,0.14,size(x,1)); 
 % Savings Calculation 
   C_disposal = zeros(size(x,1),1); 
   for i = 1:size(x,1) 
      C_disposal(i,1) = Q_start(i,1)*C_disp_pipe(i,1); 
   end     
%% Net Benefit 
 % Income from EOR minus Daily Costs 
    Net_benefit = zeros(size(x,1),1); 
    for i = 1:size(x) 
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        Net_benefit(i,1) = C_EOR(i,1)+2*C_disposal(i,1)-2*C_pumping_day(i,1)-
2*((C_lab(i,1)+C_construction_pipe(i,1)+C_equip_booster(i,1))/10/365); 
    end     
%% Heatmap Creation 
 % x-axis =x (Length of pipe in meters) 
 % y-axis = Q_actual (bbl/day) 
 % z-axis = Net Benefit 
figure 
scatter(x,Q_start,10,Net_benefit); 
colormap(bluewhitered); 
clbr = colorbar; 
xlabel('Distance(m)') 
ylabel('PW Flowrate (bbl/day)') 
clbr = ylabel(clbr,'Net Benefit (2020$/day)');      
set(clbr,'Rotation',90);   
%% Functions 
 % Uniform Distribution 
 function s=lhsu(xmin,xmax,nsample) 
% s=lhsu(xmin,xmax,nsample) 
% LHS from uniform distribution 
% Input: 
%   xmin    : min of data (1,nvar) 
%   xmax    : max of data (1,nvar) 
%   nsample : no. of samples 
% Output: 
%   s       : random sample (nsample,nvar) 
%   Budiman (2003)56 
nvar=length(xmin); 
ran=rand(nsample,nvar); 
s=zeros(nsample,nvar); 
for j=1: nvar 
   idx=randperm(nsample); 
   P =(idx'-ran(:,j))/nsample; 
   s(:,j) = xmin(j) + P.* (xmax(j)-xmin(j)); 
end 
 end 
 % Budiman Minasny (2021). Latin Hypercube Sampling 
(https://www.mathworks.com/matlabcentral/fileexchange/4352-latin-hypercube-sampling), MATLAB Central File 
Exchange. Retrieved October 20, 2021.  
function s=lhs_empir(data,nsample) 
% s=lhs_empir(data,nsample) 
% perform lhs on multivariate empirical distribution 
%   assume no correlation 
% Input: 
%   data    : data matrix (ndata,nvar) 
%   nsample : no. of samples 
% Output: 
%   s       : random sample (nsample,nvar) 
%   Budiman (2003) 
[m,nvar]=size(data); 
ran=rand(nsample,nvar); 
s=zeros(nsample,nvar); 
for j=1: nvar 
   idx=randperm(nsample); 
   P=((idx'-ran(:,j))/nsample).*100; 
   s(:,j)=prctile(data(:,j),P); 
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end 
end 
function X=roundtowardvec(X,roundvec,type) 
%function newnums=roundtowardvec(X,[roundvec],[type]) 
% (Tom R, 2022)57 
% This function rounds number(s) toward given values. If more than one 
% number is given to round, it will return the matrix with each rounded 
% value, otherwise it will return the single rounded value. It will ignore 
% NaNs and return them back with NaNs. 
% 
% Inputs: X: the number(s) that you want rounded 
% 
%         roundvec:(opt) the values to round X to. If none given, it will 
%           default to -inf:1:inf (and use the built in functions). 
% 
%         type:(opt) specifies which kind of rounding you want 
%           the function to use. 
% 
%           Choices are: 'round' - round to nearest value 
%                        'floor' - round toward -Inf 
%                        'ceil'  - round toward Inf 

%                        'fix'   - round toward 0 
%                        'away'  - round away from 0 (ceil if positive and floor if negative) 
%                     (see help files for more clarity) 
% 
%           If no type is given, the function will default to rounding to 
%           the nearest value. 
% 
% Outputs: newnums: rounded values, in same shape as X input matrix 
%          indices: indices of rounded values in roundvec 
if nargin==0 
 help roundtowardvec; %if nothing given, tell what to give 
 return 
elseif isempty(X) 
 %if given empty, return empty without going through whole script 
 return 
end 
if nargout>1 
 error('Too many output variables are given'); 
end 
if ~exist('type','var') || isempty(type) 
 type='round';  %%round to nearest value if not specified 
end 
if ~exist('roundvec','var') || isempty(roundvec) || all(isnan(roundvec)) 
 if strcmpi(type,'round') 
  %to nearest integer 
  X=round(X); 
 elseif strcmpi(type,'away') 
  %nearest integer away from 0 
  X=ceil(abs(X)).*sign(X); 
 elseif strcmpi(type,'fix') 
  %nearest integer toward 0 
  X=fix(X); 
 elseif strcmpi(type,'floor') 
  %nearest integer toward -inf 



79 
 

  X=floor(X); 
 elseif strcmpi(type,'ceil') 
  %nearest integer toward inf 
  X=ceil(X); 
 else 
  error('%sRound type not recognized. Options are:\n''round'' - round to nearest value\n''floor'' - 
round toward -Inf\n''ceil''  - round toward Inf\n''fix''   - round toward 0\n''away''  - round away from 0','') 
 end 
else 
 %Ignore nan in roundvec 
 roundvec(isnan(roundvec))=[]; 
  
 %Record which values are nan to ignore 
 Xnan=isnan(X); 
  
 %Hold onto size for returning value 
 sz=size(X); 
  
 %Calculate differences 
 X=X(:); 
 roundvec=roundvec(:)'; 
 diffs=bsxfun(@minus,X,roundvec); 
  
 if strcmpi(type,'round') %to nearest value 
  [~,inds]=min(abs(diffs),[],2); 
  X=roundvec(inds); 
 elseif strcmpi(type,'fix') %to nearest value toward 0 
   
  iless=X<0; 
  X(iless)=roundtowardvec(X(iless),roundvec,'ceil'); 
  X(~iless)=roundtowardvec(X(~iless),roundvec,'floor'); 
 elseif strcmpi(type,'ceil') %nearest value toward inf 
  diffs(diffs>0)=nan; 
  [~,inds]=min(abs(diffs),[],2); 
   
  i_inf=X>max(roundvec); 
  X=roundvec(inds); 
  X(i_inf)=inf; 
 elseif strcmpi(type,'floor') %nearest value toward -inf 
  diffs(diffs<0)=nan; 
  [~,inds]=min(abs(diffs),[],2); 
   
  i_inf=X<min(roundvec); 
  X=roundvec(inds); 
  X(i_inf)=-inf; 
 elseif strcmpi(type,'away') %nearest value away from 0 
   
  iless=X<0; 
  X(~iless)=roundtowardvec(X(~iless),roundvec,'ceil'); 
  X(iless)=roundtowardvec(X(iless),roundvec,'floor'); 
 else 
  error('%sRound type not recognized. Options are:\n''round'' - round to nearest value\n''floor'' - 
round toward -Inf\n''ceil''  - round toward Inf\n''fix''   - round toward 0\n''away''  - round away from 0','') 
 end 
  
 %Return to output side 
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 X=reshape(X(:),sz); 
  
 %Ignore nan in input dataset 
 X(Xnan)=nan; 
end 
end 
function newmap = bluewhitered(m) 
% Nathan Childress (2021). bluewhitered58 
% (https://www.mathworks.com/matlabcentral/fileexchange/4058-bluewhitered), 
% MATLAB Central File Exchange. Retrieved October 26, 2021. 
 
%BLUEWHITERED   Blue, white, and red color map. 
%   BLUEWHITERED(M) returns an M-by-3 matrix containing a blue to white 
%   to red colormap, with white corresponding to the CAXIS value closest 
%   to zero.  This colormap is most useful for images and surface plots 
%   with positive and negative values.  BLUEWHITERED, by itself, is the 
%   same length as the current colormap. 
% 
%   Examples: 
%   ------------------------------ 
%   figure 
%   imagesc(peaks(250)); 
%   colormap(bluewhitered(256)), colorbar 
% 
%   figure 
%   imagesc(peaks(250), [0 8]) 
%   colormap(bluewhitered), colorbar 
% 
%   figure 
%   imagesc(peaks(250), [-6 0]) 
%   colormap(bluewhitered), colorbar 
% 
%   figure 
%   surf(peaks) 
%   colormap(bluewhitered) 
%   axis tight 
% 
%   See also HSV, HOT, COOL, BONE, COPPER, PINK, FLAG,  
%   COLORMAP, RGBPLOT. 
if nargin < 1 
   m = size(get(gcf,'colormap'),1); 
end 
bottom = [0 0 0.5]; 
botmiddle = [0 0.5 1]; 
middle = [1 1 1]; 
topmiddle = [1 0 0]; 
top = [0.5 0 0]; 
% Find middle 
lims = get(gca, 'CLim'); 
% Find ratio of negative to positive 
if (lims(1) < 0) & (lims(2) > 0) 
    % It has both negative and positive 
    % Find ratio of negative to positive 
    ratio = abs(lims(1)) / (abs(lims(1)) + lims(2)); 
    neglen = round(m*ratio); 
    poslen = m - neglen; 
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    % Just negative 
    new = [bottom; botmiddle; middle]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
    newsteps = linspace(0, 1, neglen); 
    newmap1 = zeros(neglen, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap1(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
    % Just positive 
    new = [middle; topmiddle; top]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
    newsteps = linspace(0, 1, poslen); 
    newmap = zeros(poslen, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
    % And put 'em together 
    newmap = [newmap1; newmap]; 
     
elseif lims(1) >= 0 
    % Just positive 
    new = [middle; topmiddle; top]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
    newsteps = linspace(0, 1, m); 
    newmap = zeros(m, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
else 
    % Just negative 
    new = [bottom; botmiddle; middle]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
    newsteps = linspace(0, 1, m); 
    newmap = zeros(m, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
end 
end 
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The following section contains the MATLAB code used to conduct the techno-economic 

simulation. The code utilizes information from an industry contact to estimate infrastructure cost. 

%% Input Constants 
x = lhsu(1,10000,10000); % distance in meters 
    x = round(x); 
Q_start = lhsu(1,1000,size(x,1)); % hypothetical starting volumetric flow of PW in barrels/day 
%% Pipe Size 
D_od_in=zeros(size(x,1),1); 
D_id_in = zeros(size(x,1),1); 
D_id_ft = zeros(size(x,1),1); 
for i = 1:size(x,1) 
    if Q_start(i,1) <= 2000 
        % Schedule 40 3in pipe 
        D_od_in(i,1) = 3.5; 
        D_id_in(i,1) = 3.068; 
        D_id_ft(i,1) = D_id_in(i,1)/12; 
    else  
       D_od_in(i,1) = 4.5; 
       D_id_in(i,1) = 4.026;  
       D_id_ft(i,1) = D_id_in(i,1)/12; 
    end 
end 
%% Pipe Material Cost 
C_pipe = zeros(size(x)); 
C_pipe_uncertainty = lhsu(0.9,1.1,size(x,1)); 
for i = 1:size(x) 
    if D_od_in(i,1) == 3.5 
        C_pipe(i,1) = 3.7*C_pipe_uncertainty(i,1)*x(i,1)*3.28; 
    else 
        C_pipe(i,1) = 4.65*C_pipe_uncertainty(i,1)*x(i,1)*3.28; 
    end 
end 
%% Trenching and Pipe Installation 
C_install_ft = lhsu(1.17,1.43,size(x,1)); % Third Party rate of $1.30/ft to trench and install 
C_install_total = zeros(size(x,1),1); 
for i = 1:size(x,1) 
    C_install_total(i,1) = C_install_ft(i,1)*x(i,1)*3.28; 
end 
%% Pressure Drop  
 % Pipe Velocity Calculation (m/s) 
    v_fluid_pipe_m = zeros(size(x)); 
    v_fluid_pipe_ft = zeros(size(x)); 
    for i = 1:size(x) 
        v_fluid_pipe_ft(i,1) = (Q_start(i,1)*5.615/(24*60*60)/(((D_id_ft(i,1)/2)^2)*pi)); 
        v_fluid_pipe_m(i,1) = v_fluid_pipe_ft(i,1)/3.28; 
    end 
 %Conditions 
  % Assume all PVC Pipes have maximum pressure of 100 psi 
  % Assume 20% safety factor 
    P_o = 100*0.8; 
 % Reynold Numer Calculation 
  % Density of Arbuckle Brine is 1.015 g/mL (1015 kg/m^3) 
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    SG_Arbuckle = 1.015; 
  % Assume velocity of 10 ft/s (3.048 m/s) before 20% safety factor  
  % Assume Dynamic Viscosity of Brine is 1e-3 Ns/m^2 
    Re = zeros(size(x,1),1); 
    for i = 1:size(x) 
        Re(i,1) = SG_Arbuckle*1000*(v_fluid_pipe_m(i,1))*D_id_ft(i,1)/(1e-3); 
    end 
 % Friction Factor 
  % Determine Laminar or Turbulet Flow 
    f_friction = zeros(size(x,1),1); 
    for i = 1:size(x,1) 
            options = optimoptions('fsolve','Display','off'); 
            f_friction(i,1) = fsolve(@(f) 2*log10(Re(i,1)*sqrt(f))-0.8-(1/sqrt(f)),0.001,options); % Eqution 3-2 from 
AWWA M23 Manual 
    end 
 % Pressure Drop (ft H2O per 100 ft) 
  % Equation 2.2 of API 14E Design Manual (Modificed Darcy Equation) 
  % Q = flow in barrels per day 
    d_P_100ft = zeros(size(x,1),1); 
    d_P_100m = zeros(size(x,1),1); 
    for i = 1:size(x) 
       d_P_100ft(i,1) = f_friction(i,1)*100*(v_fluid_pipe_ft(i,1))^2/D_id_ft(i,1)/2/32.2; 
       d_P_100m(i,1) = d_P_100ft(i,1)* 3.2;  
    end 
%% Booster Pump Quantity and Cost    
 % Assume maximum pressure drop of 20% before booster pumps needed 
    N_bp = zeros(size(x,1),1); 
    for i = 1:size(x) 
        N_bp(i,1) = floor(x(i,1)/100*d_P_100m(i,1)/(P_o*2.31*0.2)); 
    end 
 % Material Cost 
  % Values obtained from Loh et al., 2002) 
    C_equip_booster = zeros(size(x,1),1); 
    for i = 1:size(x) 
        if Q_start(i,1) <= 68571.4 
            C_equip_booster(i,1) = N_bp(i,1)*3855*exp(1.635e-5*Q_start(i,1)); 
        else 
            C_equip_booster(i,1) = N_bp(i,1)*0.1492*Q_start(i,1); 
        end 
    end 
%% Electricity Cost 
 % Data from EIA,2020 
 % Cost in $/kWh for commercial rates 
 % Cost adjusted to 2020$ 
 % Empiracle Distribution from 2001-2020 data 
    Electricity_Cost = lhs_empir([0.1033;0.10476249;0.111177404;0.112800444;0.112927326; 
        0.10906687;0.111163581;0.1077868;0.10501722;0.102941988;0.0979803; 
        0.093786003;0.091761984;0.086639233;0.091148856;0.08936466;0.08967435; 
        0.091283412;0.090712088;0.09209108],size(x,1)); 
%% Pumping Cost Analysis 
 % Does not account for pumping water out of well (needed regardless of 
  % brine exchange) 
 % Does not account for pumping needed for reinjection 
 % Head Loss (m) 
  % Convert Pressure drop per 100m to total pressure loss (ft h2O) 
    d_P_total_ft_H2O = zeros(size(x,1),1); 
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    for i = 1:size(x) 
        d_P_total_ft_H2O(i,1) = d_P_100m(i,1)*(x(i,1)/100); 
    end 
  % Pump Efficiency  
   % Assume Centrifugal Pump Used 
   % Values obtained from Loh et al., 2002 
   % Flow converted from bbl/day to gpm 
   % Assume lowest efficiency applies when overlap in data occurs 
    Eff_pump = zeros(size(x,1),1); 
   % Pump Efficiency Uncertainty 
    Eff_pump_uncert = lhsu(0.9,1.1,size(x,1)); 
    for i = 1:size(x) 
        if (Q_start(i,1)*0.0292) < 50 
            Eff_pump(i,1) = 0.6*Eff_pump_uncert(i,1); 
        elseif 50 <= (Q_start(i,1)*0.0292) && (Q_start(i,1)*0.0292) < 200 
            Eff_pump(i,1) = 0.65*Eff_pump_uncert(i,1); 
        elseif 200 <= (Q_start(i,1)*0.0292) && (Q_start(i,1)*0.0292) < 500 
            Eff_pump(i,1) = 0.75*Eff_pump_uncert(i,1); 
        else 
            Eff_pump(i,1) = 0.82*Eff_pump_uncert(i,1); 
        end 
    end 
  % Motor Efficiency 
   % Assume Efficiency Ranges from 60% - 90% 
    Eff_motor = lhsu(.6,0.9,size(x,1)); 
  % Brake Horse Power (BHP) per pump 
    BHP = zeros(size(x,1),1); 
   % Q in units of gpm 
   % Head loss in units of feet 
    for i = 1:size(x) 
        BHP(i,1) = Q_start(i,1)*0.0292*d_P_total_ft_H2O(i,1)*SG_Arbuckle/(3960*Eff_pump(i,1)); 
    end 
  % Energy Requirements (kW) 
  E_pump = zeros(size(x,1),1); 
    for i = 1:size(x) 
        E_pump(i,1) = 0.746 *BHP(i,1)/Eff_motor(i,1); 
    end 
%% Pumping Cost per Day 
    C_pumping_day = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_pumping_day(i,1) = E_pump(i,1)*Electricity_Cost(i,1)*24; 
    end 
%% Daily Injection Rate (bbl/day) 
 % Assume all oil wells produce 22 barrel PW for every 1 barrel oil 
 % Assume injection volume equals volume removed plus 10% to maintain pressure 
 % Assume all transported water will be used for injection   
 % Daily Production of Oil Well  
  % Assume value of 0.5 to 50 bopd with most producing 5 bopd 
    Q_oilwell_daily = lhsu(0.5,10,size(x,1)); % bbl/day 
  % Assume EOR from brine exchange is 4% - 12% 
   Percent_EOR = lhsu(0.04,0.12,size(x,1)); 
 % EOR Calculation   
   Oil_EOR = zeros(size(x,1),1); 
   for i = 1:size(x) 
      Oil_EOR(i,1) = Q_start(i,1)/(23*1.1)*Percent_EOR(i,1); 
   end 
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%% Monetary Benefit of EOR 
 % Historic Crude Oil Prices (2001-2020) (2020$/bbl) 
    C_oil_bbl = lhs_empir([43.241088;34.9946104;34.1037006;40.7789448; 
        54.471954;72.3176741;79.5457114;84.7998935;113.5677888;64.6194924; 
        86.3141067;103.7861592;99.8459175;102.274975;95.251716;46.6071892; 
        40.8458246;48.944102;63.045723;53.531698;36.29],size(x,1)); 
 % Cost Benefit 
    C_EOR = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_EOR(i,1) = Oil_EOR(i,1)*C_oil_bbl(i,1); 
    end 
%% Disposal Cost Savings 
 % Assume all PW will be piped to disposal well 
 % Assume Average disposal cost is $0.12 per barrel 
   C_disp_pipe = lhsu(0.10,0.14,size(x,1)); 
 % Savings Calculation 
   C_disposal = zeros(size(x,1),1); 
   for i = 1:size(x,1) 
      C_disposal(i,1) = Q_start(i,1)*C_disp_pipe(i,1); 
   end 
%% Net Benefit Calculation 
 % Assume Project Life of 10 years 
    C_Net_Benefit = zeros(size(x,1),1); 
    for i = 1:size(x) 
        C_Net_Benefit(i,1) = (C_EOR(i,1)+2*C_disposal(i,1)-2*C_pumping_day(i,1))-
2*((C_install_total(i,1)+C_pipe(i,1)+C_equip_booster(i,1))/10/365); 
    end 
%% Heatmap Creation 
 % x-axis =x (Length of pipe in meters) 
 % y-axis = Q_actual (bbl/day) 
 % z-axis = Net Benefit 
figure 
scatter(x,Q_start,10,C_Net_Benefit); 
old_cmap = colormap(bluewhitered); 
clbr = colorbar; 
xlabel('Distance(m)') 
ylabel('PW Flowrate (bbl/day)') 
clbr = ylabel(clbr,'Net Benefit (2020$/day)');      
set(clbr,'Rotation',90);       
%% Functions 
 % Uniform Distribution 
 function s=lhsu(xmin,xmax,nsample) 
% s=lhsu(xmin,xmax,nsample) 
% LHS from uniform distribution 
% Input: 
%   xmin    : min of data (1,nvar) 
%   xmax    : max of data (1,nvar) 
%   nsample : no. of samples 
% Output: 
%   s       : random sample (nsample,nvar) 
%   Budiman (2003) 
nvar=length(xmin); 
ran=rand(nsample,nvar); 
s=zeros(nsample,nvar); 
for j=1: nvar 
   idx=randperm(nsample); 
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   P =(idx'-ran(:,j))/nsample; 
   s(:,j) = xmin(j) + P.* (xmax(j)-xmin(j)); 
end 
 end 
 % Budiman Minasny (2021). Latin Hypercube Sampling 
(https://www.mathworks.com/matlabcentral/fileexchange/4352-latin-hypercube-sampling), MATLAB Central File 
Exchange. Retrieved October 20, 2021.  
function s=lhs_empir(data,nsample) 
% s=lhs_empir(data,nsample) 
% perform lhs on multivariate empirical distribution 
%   assume no correlation 
% Input: 
%   data    : data matrix (ndata,nvar) 
%   nsample : no. of samples 
% Output: 
%   s       : random sample (nsample,nvar) 
%   Budiman (2003) 
[m,nvar]=size(data); 
ran=rand(nsample,nvar); 
s=zeros(nsample,nvar); 
for j=1: nvar 
   idx=randperm(nsample); 
   P=((idx'-ran(:,j))/nsample).*100; 
   s(:,j)=prctile(data(:,j),P); 
end 
end 
function z = ltqnorm(p) 
%LTQNORM Lower tail quantile for standard normal distribution. 
% 
%   Z = LTQNORM(P) returns the lower tail quantile for the standard normal 
%   distribution function.  I.e., it returns the Z satisfying Pr{X < Z} = P, 
%   where X has a standard normal distribution. 
% 
%   LTQNORM(P) is the same as SQRT(2) * ERFINV(2*P-1), but the former returns a 
%   more accurate value when P is close to zero. 
%   The algorithm uses a minimax approximation by rational functions and the 
%   result has a relative error less than 1.15e-9.  A last refinement by 
%   Halley's rational method is applied to achieve full machine precision. 
%   Author:      Peter J. Acklam 
%   Time-stamp:  2003-04-23 08:26:51 +0200 
%   E-mail:      pjacklam@online.no 
%   URL:         http://home.online.no/~pjacklam 
   % Coefficients in rational approximations. 
   a = [ -3.969683028665376e+01  2.209460984245205e+02 ... 
         -2.759285104469687e+02  1.383577518672690e+02 ... 
         -3.066479806614716e+01  2.506628277459239e+00 ]; 
   b = [ -5.447609879822406e+01  1.615858368580409e+02 ... 
         -1.556989798598866e+02  6.680131188771972e+01 ... 
         -1.328068155288572e+01 ]; 
   c = [ -7.784894002430293e-03 -3.223964580411365e-01 ... 
         -2.400758277161838e+00 -2.549732539343734e+00 ... 
         4.374664141464968e+00  2.938163982698783e+00 ]; 
   d = [  7.784695709041462e-03  3.224671290700398e-01 ... 
          2.445134137142996e+00  3.754408661907416e+00 ]; 
   % Define break-points. 
   plow  = 0.02425; 
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   phigh = 1 - plow; 
   % Initialize output array. 
   z = zeros(size(p)); 
   % Rational approximation for central region: 
   k = plow <= p & p <= phigh; 
   if any(k(:)) 
      q = p(k) - 0.5; 
      r = q.*q; 
      z(k) = (((((a(1)*r+a(2)).*r+a(3)).*r+a(4)).*r+a(5)).*r+a(6)).*q ./ ... 
             (((((b(1)*r+b(2)).*r+b(3)).*r+b(4)).*r+b(5)).*r+1); 
   end 
   % Rational approximation for lower region: 
   k = 0 < p & p < plow; 
   if any(k(:)) 
      q  = sqrt(-2*log(p(k))); 
      z(k) = (((((c(1)*q+c(2)).*q+c(3)).*q+c(4)).*q+c(5)).*q+c(6)) ./ ... 
             ((((d(1)*q+d(2)).*q+d(3)).*q+d(4)).*q+1); 
   end 
   % Rational approximation for upper region: 
   k = phigh < p & p < 1; 
   if any(k(:)) 
      q  = sqrt(-2*log(1-p(k))); 
      z(k) = -(((((c(1)*q+c(2)).*q+c(3)).*q+c(4)).*q+c(5)).*q+c(6)) ./ ... 
             ((((d(1)*q+d(2)).*q+d(3)).*q+d(4)).*q+1); 
   end 
   % Case when P = 0: 
   z(p == 0) = -Inf; 
   % Case when P = 1: 
   z(p == 1) = Inf; 
   % Cases when output will be NaN: 
   k = p < 0 | p > 1 | isnan(p); 
   if any(k(:)) 
      z(k) = NaN; 
   end 
   % The relative error of the approximation has absolute value less 
   % than 1.15e-9.  One iteration of Halley's rational method (third 
   % order) gives full machine precision. 
   k = 0 < p & p < 1; 
   if any(k(:)) 
      e = 0.5*erfc(-z(k)/sqrt(2)) - p(k);          % error 
      u = e * sqrt(2*pi) .* exp(z(k).^2/2);        % f(z)/df(z) 
      %z(k) = z(k) - u;                             % Newton's method 
      z(k) = z(k) - u./( 1 + z(k).*u/2 );          % Halley's method 
   end 
end 
function newmap = bluewhitered(m) 
% Nathan Childress (2021). bluewhitered 
% (https://www.mathworks.com/matlabcentral/fileexchange/4058-bluewhitered), 
% MATLAB Central File Exchange. Retrieved October 26, 2021. 
 
%BLUEWHITERED   Blue, white, and red color map. 
%   BLUEWHITERED(M) returns an M-by-3 matrix containing a blue to white 
%   to red colormap, with white corresponding to the CAXIS value closest 
%   to zero.  This colormap is most useful for images and surface plots 
%   with positive and negative values.  BLUEWHITERED, by itself, is the 
%   same length as the current colormap. 
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% 
%   Examples: 
%   ------------------------------ 
%   figure 
%   imagesc(peaks(250)); 
%   colormap(bluewhitered(256)), colorbar 
% 
%   figure 
%   imagesc(peaks(250), [0 8]) 
%   colormap(bluewhitered), colorbar 
% 
%   figure 
%   imagesc(peaks(250), [-6 0]) 
%   colormap(bluewhitered), colorbar 
% 
%   figure 
%   surf(peaks) 
%   colormap(bluewhitered) 
%   axis tight 
% 
%   See also HSV, HOT, COOL, BONE, COPPER, PINK, FLAG,  
%   COLORMAP, RGBPLOT. 
if nargin < 1 
   m = size(get(gcf,'colormap'),1); 
end 
bottom = [0 0 0.5]; 
botmiddle = [0 0.5 1]; 
middle = [1 1 1]; 
topmiddle = [1 0 0]; 
top = [0.5 0 0]; 
% Find middle 
lims = get(gca, 'CLim'); 
% Find ratio of negative to positive 
if (lims(1) < 0) & (lims(2) > 0) 
    % It has both negative and positive 
    % Find ratio of negative to positive 
    ratio = abs(lims(1)) / (abs(lims(1)) + lims(2)); 
    neglen = round(m*ratio); 
    poslen = m - neglen; 
     
    % Just negative 
    new = [bottom; botmiddle; middle]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
    newsteps = linspace(0, 1, neglen); 
    newmap1 = zeros(neglen, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap1(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
    % Just positive 
    new = [middle; topmiddle; top]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
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    newsteps = linspace(0, 1, poslen); 
    newmap = zeros(poslen, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
    % And put 'em together 
    newmap = [newmap1; newmap]; 
     
elseif lims(1) >= 0 
    % Just positive 
    new = [middle; topmiddle; top]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
    newsteps = linspace(0, 1, m); 
    newmap = zeros(m, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
else 
    % Just negative 
    new = [bottom; botmiddle; middle]; 
    len = length(new); 
    oldsteps = linspace(0, 1, len); 
    newsteps = linspace(0, 1, m); 
    newmap = zeros(m, 3); 
     
    for i=1:3 
        % Interpolate over RGB spaces of colormap 
        newmap(:,i) = min(max(interp1(oldsteps, new(:,i), newsteps)', 0), 1); 
    end 
     
end 
end 
 
 


