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Abstract

This dissertation focuses on development of new methods for multispectral remote
sensing, measurement, and mapping of the environment and natural disasters using
small Unmanned Aircraft Systems (UAS). Small UAS equipped with multispectral
cameras such as true color (RGB), near infrared (NIR), and thermal can gather im-
portant information about the environment before, during, and after a disaster without
risking pilots or operators. Additionally, small UAS are generally inexpensive, easy
to handle, and can detect features at small spatiotemporal scales that are not visible in
manned aircraft or satellite imagery. Four important problems in UAS remote sensing
and disaster data representation are focused in this dissertation. First, key consider-
ations for the development of UAS disaster sensing systems are provided, followed
by detailed descriptions of the KHawk system and representative environment and
disaster data sets. Second, a new method is proposed and demonstrated for accurate
mapping and measurement of grass fire evolution using multitemporal thermal ortho-
mosaics collected by a fixed-wing UAS flying at low altitudes. Third, a low-cost and
effective solution is further developed for spatiotemporal representation and measure-
ment of grass fire evolution using time-labeled UAS NIR orthomosaics and a novel
Intensity Variance Thresholding (IVT) method is proposed for grass fire front extrac-
tion to support fire spread metrics measurement of fire front location and rate of spread
(ROS). A UAS grass fire observation data set is also presented including thermal and
NIR orthomosaics and supporting weather and fuel data. Fourth, a new Satellite-based
Cross Calibration (SCC) method is proposed for surface reflectance estimation of UAS

images in digital numbers (DN) using free and open calibrated satellite reflectance
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data. This also serves as a solid foundation for data-enabled multiscale remote sensing
and large scale environmental observations. Finally, the main conclusions and future

research considerations are summarized.
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Chapter 1

Introduction

1.1 Dissertation Roadmap

This dissertation focuses on development of new methods for multispectral remote sensing, mea-
surement, and mapping of the environment and natural disasters using small Unmanned Aircraft
Systems (UAS). Multispectral images from UAS are already being used in many civilian and
military applications including precision agriculture, structural inspection, surveillance, search &
rescue, vegetation damage assessment, and post-disaster mapping. The increased frequency and
severity of natural disasters including wild res, oods, hail storms, and tornadoes demand more
accurate and robust observation systems that can not only assist in post-disaster recovery but can
also measure important spatiotemporal metrics of disasters. For example, location, spread direc-
tion, and spread speed of a fast-evolving wild re or ood, origin of a chemical leak, and tornado
damage intensity. Small UAS equipped with multispectral cameras can gather this information
without risking pilots or operators, especially since they are inexpensive, easy to handle, and can
detect features at small spatiotemporal scales that are not visible in manned aircraft or satellite
imagery. However, several critical challenges have to be addressed before wide uses of UAS in
such applications. For instance, how can a low- ying UAS be used for accurate mapping and
guantitative measurement of fast-evolving large-scale environmental processes like wildland res
or oods? Is there a low-cost and safe UAS solution for accurate observation and mapping of large
scale wildland res? How can UAS multispectral maps be integrated with existing satellite obser-
vations for enhanced observations of environment and disasters? This dissertation answers these

guestions by developing, demonstrating, and validating novel methods in real-world scenarios. Ad-



ditionally, this dissertation also shares important discussions and lessons learned that will greatly
contribute towards wider and more ef cient uses of small UAS in mapping and measurement of

the environment and natural disasters.

1.2 Research Motivations

The main motivation of this dissertation is to develop effective and robust UAS remote sensing
methods for accurate mapping and measurement of the environment and natural disasters that may
be dif cult to obtain using other remote sensing systems such as manned aircraft and satellites.
Multispectral remote sensing includes sensing in true color (RGB), near infrared (NIR), and ther-
mal bands. Images in different bands can be used to infer different properties of the environment
and disasters. For example, in re monitoring applications, RGB images can be used for smoke
detection and situational awareness, NIR images can be used to differentiate burned and unburned
areas, and thermal images are generally used for re front extraction and temperature measurement

(see Fig. 1.1).

Figure 1.1: Aerial view of a prescribed grass re from RGB (left), NIR (center), and thermal
cameras (right).

The vision of this dissertation is to acquire, calibrate, represent, and integrate new UAS data
into existing environment and disaster mapping products from manned aircraft and satellites, and
to support future multiscale and multisource remote sensing. The objective of such an integrative
multisource system is to maximize the desirable characteristics of each remote sensing system. For
example, UAS can provide data and measurements at high spatiotemporal resolutions while satel-

lites and manned aircraft can provide coarser measurements with large area coverage and reliable

2



spatial and spectral properties, as illustrated in Fig. 1.2. Such systems can greatly enhance earth

observations and enable better understanding of environmental processes and natural disasters.

Figure 1.2: Multiscale remote sensing systems.

1.2.1 Role of Small UAS in Environment and Natural Disaster Mapping

Small UAS can contribute to existing environment and disaster mapping and measurement systems

in the following ways.

1. Quick deployment before, during, and after a disaster for quick data acquisition and situa-

tional awareness;
2. Close observations of disaster evolution;

3. Quantitative measurement of location, spread speed, and direction of fast-evolving processes

at high spatial and temporal resolutions;

3



4. Provide accurate measurements that can be used to evaluate and improve disaster spread

models such as re spread models;
5. Acquire data between satellite and aircraft ybys;

6. Acquire information over elds that may be obstructed by clouds in satellite images.

1.2.2 Challenges of Small UAS in Environment and Natural Disaster Map-
ping
Major challenges that limit the use of UAS in disaster mapping missions include:
1. Safe and ef cient operations in dangerous disaster environments;

2. accurate recapture or reconstruction of a fast-evolving process using UAS images with lim-

ited footprints;

3. Many UAS operators are limited by budget and cannot afford expensive cameras that are

often required for accurate measurements;

4. UAS multispectral data require vicarious radiometric calibration for re ectance estimation

and comparison with data from other sources.

This dissertation mainly addresses challenges 2-4. Chapters 3 & 4 provide solutions to chal-
lenges 2 and 3 by developing novel methods for the accurate mapping and measurement of grass
re metrics such as location and ROS using thermal and low-cost NIR cameras. Chapter 5 ad-
dresses challenge 4 by proposing a new satellite-based cross calibration method for UAS re-

ectance estimation.

1.3 Dissertation Contributions

The main contributions of this dissertation can be summarized as follows:



1. Developed a new and effective method for accurate recapturing of grass re evolution using

multitemporal thermal orthomosaics collected by a small xed-wing UAS at low altitude;

2. Developed a new and low-cost method for the spatiotemporal representation and measure-
ment of grass re evolution using time labeled NIR orthomosaics from a small xed-wing

UAS;

3. Invented a novel NIR intensity variance thresholding method for grass re front classi cation

and extraction;

4. Conducted comprehensive measurement, analysis, and validation of prescribed re ROS in a
typical tallgrass prairie, which has not been suf ciently addressed in existing remote sensing

literature;

5. Acquired, analyzed, and shared a UAS multispectral grass re data set including thermal and

NIR orthomosaics and supporting weather, terrain, and fuel data;

6. Developed a new and low-cost satellite-based cross-calibration method for UAS spectral

re ectance estimation;

7. Provided comprehensive quantitative and qualitative comparisons between multiscale re-

mote sensing images from KHawk UAS, NEON manned aircraft, and Landsat 8 satellite.

1.4 Dissertation Organization

This dissertation is organized as follows. Research motivations and dissertation contributions are
summarized in Chapter 1. Important considerations for development of a UAS multispectral sens-
ing system for disaster mapping applications are presented in Chapter 2 along with detailed de-
scriptions of the KHawk system and representative disaster data sets. Chapter 3 focuses on the
mapping and ROS measurement of a prescribed grass re using multitemporal thermal orthomo-

saics that are generated from UAS aerial images with limited footprints. In Chapter 4, a low-cost



and effective NIR-based re detection algorithm is introduced that can enable accurate mapping
and measurement of grass res without using expensive thermal cameras. Chapter 5 presents a
novel satellite-based cross-calibration method for UAS spectral re ectance estimation using free
and open satellite data. Finally, conclusions and future recommendations are provided in Chapter

6.



Chapter 2

UAS Development and Multispectral Data Acquisition for

Disaster Mapping and Measurement

2.1 Chapter Introduction

This chapter focuses on important considerations for the successful design and use of Unmanned
Aircraft System (UAS) for multispectral data acquisition missions to support disaster mapping,
measurement, and analysis. Typical disaster applications include wildland re metrics measure-
ment (location, rate of spread (ROS)), hail, tornado, or storm damage assessment, and post-disaster
vegetation recovery mapping. The main challenge for such missions is that they are often time-
critical and require quick and accurate data acquisition and analysis. This is true not only for
in-situ disaster sensing applications such as wildland re monitoring, when the re is still burning,

but also for post-disaster applications such as hail or tornado damage assessment. For example,
the UAS needs to be deployed for data acquisition over a tornado-affected eld before it is recov-
ered by residents or emergency response teams for accurate damage assessment. This means that
there is generally a short time window available for the UAS to acquire useful disaster informa-
tion. Therefore, the UAS ight path and associated sensing payload need to be well designed and
integrated for successful data acquisition. This chapter presents the KHawk UAS multispectral re-
mote sensing system and the disaster mission design strategies that are used for successful disaster
mapping applications in this dissertation. Example KHawk disaster sensing missions are presented
including the path planning and acquired multispectral data sets that can serve as a foundation for

the following chapters.
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