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Abstract

This dissertation focuses on development of new methods for multispectral remote

sensing, measurement, and mapping of the environment and natural disasters using

small Unmanned Aircraft Systems (UAS). Small UAS equipped with multispectral

cameras such as true color (RGB), near infrared (NIR), and thermal can gather im-

portant information about the environment before, during, and after a disaster without

risking pilots or operators. Additionally, small UAS are generally inexpensive, easy

to handle, and can detect features at small spatiotemporal scales that are not visible in

manned aircraft or satellite imagery. Four important problems in UAS remote sensing

and disaster data representation are focused in this dissertation. First, key consider-

ations for the development of UAS disaster sensing systems are provided, followed

by detailed descriptions of the KHawk system and representative environment and

disaster data sets. Second, a new method is proposed and demonstrated for accurate

mapping and measurement of grass fire evolution using multitemporal thermal ortho-

mosaics collected by a fixed-wing UAS flying at low altitudes. Third, a low-cost and

effective solution is further developed for spatiotemporal representation and measure-

ment of grass fire evolution using time-labeled UAS NIR orthomosaics and a novel

Intensity Variance Thresholding (IVT) method is proposed for grass fire front extrac-

tion to support fire spread metrics measurement of fire front location and rate of spread

(ROS). A UAS grass fire observation data set is also presented including thermal and

NIR orthomosaics and supporting weather and fuel data. Fourth, a new Satellite-based

Cross Calibration (SCC) method is proposed for surface reflectance estimation of UAS

images in digital numbers (DN) using free and open calibrated satellite reflectance
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data. This also serves as a solid foundation for data-enabled multiscale remote sensing

and large scale environmental observations. Finally, the main conclusions and future

research considerations are summarized.
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Chapter 1

Introduction

1.1 Dissertation Roadmap

This dissertation focuses on development of new methods for multispectral remote sensing, mea-

surement, and mapping of the environment and natural disasters using small Unmanned Aircraft

Systems (UAS). Multispectral images from UAS are already being used in many civilian and

military applications including precision agriculture, structural inspection, surveillance, search &

rescue, vegetation damage assessment, and post-disaster mapping. The increased frequency and

severity of natural disasters including wild�res, �oods, hail storms, and tornadoes demand more

accurate and robust observation systems that can not only assist in post-disaster recovery but can

also measure important spatiotemporal metrics of disasters. For example, location, spread direc-

tion, and spread speed of a fast-evolving wild�re or �ood, origin of a chemical leak, and tornado

damage intensity. Small UAS equipped with multispectral cameras can gather this information

without risking pilots or operators, especially since they are inexpensive, easy to handle, and can

detect features at small spatiotemporal scales that are not visible in manned aircraft or satellite

imagery. However, several critical challenges have to be addressed before wide uses of UAS in

such applications. For instance, how can a low-�ying UAS be used for accurate mapping and

quantitative measurement of fast-evolving large-scale environmental processes like wildland �res

or �oods? Is there a low-cost and safe UAS solution for accurate observation and mapping of large

scale wildland �res? How can UAS multispectral maps be integrated with existing satellite obser-

vations for enhanced observations of environment and disasters? This dissertation answers these

questions by developing, demonstrating, and validating novel methods in real-world scenarios. Ad-
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ditionally, this dissertation also shares important discussions and lessons learned that will greatly

contribute towards wider and more ef�cient uses of small UAS in mapping and measurement of

the environment and natural disasters.

1.2 Research Motivations

The main motivation of this dissertation is to develop effective and robust UAS remote sensing

methods for accurate mapping and measurement of the environment and natural disasters that may

be dif�cult to obtain using other remote sensing systems such as manned aircraft and satellites.

Multispectral remote sensing includes sensing in true color (RGB), near infrared (NIR), and ther-

mal bands. Images in different bands can be used to infer different properties of the environment

and disasters. For example, in �re monitoring applications, RGB images can be used for smoke

detection and situational awareness, NIR images can be used to differentiate burned and unburned

areas, and thermal images are generally used for �re front extraction and temperature measurement

(see Fig. 1.1).

Figure 1.1: Aerial view of a prescribed grass �re from RGB (left), NIR (center), and thermal
cameras (right).

The vision of this dissertation is to acquire, calibrate, represent, and integrate new UAS data

into existing environment and disaster mapping products from manned aircraft and satellites, and

to support future multiscale and multisource remote sensing. The objective of such an integrative

multisource system is to maximize the desirable characteristics of each remote sensing system. For

example, UAS can provide data and measurements at high spatiotemporal resolutions while satel-

lites and manned aircraft can provide coarser measurements with large area coverage and reliable
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spatial and spectral properties, as illustrated in Fig. 1.2. Such systems can greatly enhance earth

observations and enable better understanding of environmental processes and natural disasters.

Figure 1.2: Multiscale remote sensing systems.

1.2.1 Role of Small UAS in Environment and Natural Disaster Mapping

Small UAS can contribute to existing environment and disaster mapping and measurement systems

in the following ways.

1. Quick deployment before, during, and after a disaster for quick data acquisition and situa-

tional awareness;

2. Close observations of disaster evolution;

3. Quantitative measurement of location, spread speed, and direction of fast-evolving processes

at high spatial and temporal resolutions;
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4. Provide accurate measurements that can be used to evaluate and improve disaster spread

models such as �re spread models;

5. Acquire data between satellite and aircraft �ybys;

6. Acquire information over �elds that may be obstructed by clouds in satellite images.

1.2.2 Challenges of Small UAS in Environment and Natural Disaster Map-

ping

Major challenges that limit the use of UAS in disaster mapping missions include:

1. Safe and ef�cient operations in dangerous disaster environments;

2. accurate recapture or reconstruction of a fast-evolving process using UAS images with lim-

ited footprints;

3. Many UAS operators are limited by budget and cannot afford expensive cameras that are

often required for accurate measurements;

4. UAS multispectral data require vicarious radiometric calibration for re�ectance estimation

and comparison with data from other sources.

This dissertation mainly addresses challenges 2-4. Chapters 3 & 4 provide solutions to chal-

lenges 2 and 3 by developing novel methods for the accurate mapping and measurement of grass

�re metrics such as location and ROS using thermal and low-cost NIR cameras. Chapter 5 ad-

dresses challenge 4 by proposing a new satellite-based cross calibration method for UAS re-

�ectance estimation.

1.3 Dissertation Contributions

The main contributions of this dissertation can be summarized as follows:
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1. Developed a new and effective method for accurate recapturing of grass �re evolution using

multitemporal thermal orthomosaics collected by a small �xed-wing UAS at low altitude;

2. Developed a new and low-cost method for the spatiotemporal representation and measure-

ment of grass �re evolution using time labeled NIR orthomosaics from a small �xed-wing

UAS;

3. Invented a novel NIR intensity variance thresholding method for grass �re front classi�cation

and extraction;

4. Conducted comprehensive measurement, analysis, and validation of prescribed �re ROS in a

typical tallgrass prairie, which has not been suf�ciently addressed in existing remote sensing

literature;

5. Acquired, analyzed, and shared a UAS multispectral grass �re data set including thermal and

NIR orthomosaics and supporting weather, terrain, and fuel data;

6. Developed a new and low-cost satellite-based cross-calibration method for UAS spectral

re�ectance estimation;

7. Provided comprehensive quantitative and qualitative comparisons between multiscale re-

mote sensing images from KHawk UAS, NEON manned aircraft, and Landsat 8 satellite.

1.4 Dissertation Organization

This dissertation is organized as follows. Research motivations and dissertation contributions are

summarized in Chapter 1. Important considerations for development of a UAS multispectral sens-

ing system for disaster mapping applications are presented in Chapter 2 along with detailed de-

scriptions of the KHawk system and representative disaster data sets. Chapter 3 focuses on the

mapping and ROS measurement of a prescribed grass �re using multitemporal thermal orthomo-

saics that are generated from UAS aerial images with limited footprints. In Chapter 4, a low-cost
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and effective NIR-based �re detection algorithm is introduced that can enable accurate mapping

and measurement of grass �res without using expensive thermal cameras. Chapter 5 presents a

novel satellite-based cross-calibration method for UAS spectral re�ectance estimation using free

and open satellite data. Finally, conclusions and future recommendations are provided in Chapter

6.
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Chapter 2

UAS Development and Multispectral Data Acquisition for

Disaster Mapping and Measurement

2.1 Chapter Introduction

This chapter focuses on important considerations for the successful design and use of Unmanned

Aircraft System (UAS) for multispectral data acquisition missions to support disaster mapping,

measurement, and analysis. Typical disaster applications include wildland �re metrics measure-

ment (location, rate of spread (ROS)), hail, tornado, or storm damage assessment, and post-disaster

vegetation recovery mapping. The main challenge for such missions is that they are often time-

critical and require quick and accurate data acquisition and analysis. This is true not only for

in-situ disaster sensing applications such as wildland �re monitoring, when the �re is still burning,

but also for post-disaster applications such as hail or tornado damage assessment. For example,

the UAS needs to be deployed for data acquisition over a tornado-affected �eld before it is recov-

ered by residents or emergency response teams for accurate damage assessment. This means that

there is generally a short time window available for the UAS to acquire useful disaster informa-

tion. Therefore, the UAS �ight path and associated sensing payload need to be well designed and

integrated for successful data acquisition. This chapter presents the KHawk UAS multispectral re-

mote sensing system and the disaster mission design strategies that are used for successful disaster

mapping applications in this dissertation. Example KHawk disaster sensing missions are presented

including the path planning and acquired multispectral data sets that can serve as a foundation for

the following chapters.
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