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SUMMARY
Neuronal hyperactivity inducesmemory deficits in Alzheimer’s disease. However, how hyperactivity disrupts
memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excit-
atory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consis-
tent with this, natural images elicit neuronal hyperactivity in thesemice. Compensatory changes thatmaintain
activity homeostasis disrupt functional connectivity and increase population sparseness such that a small
fraction of neurons dominates population activity. These properties reduce the selectivity of neural response
to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-spe-
cific visual experiences improves the neural representation and behavioral expression of visual familiarity. In
contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibi-
tion, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when
the fraction of high-responsive neurons and the persistence of neural representation of amemory-associated
stimulus are not constrained.
INTRODUCTION

Structural synapse loss, which would reduce neuronal activity,

correlates strongly with cognitive decline.1,2 However, neuronal

hyperactivity is observed in the early stagesofAlzheimer’s disease

(AD) and mouse models of amyloidosis, suggesting excitation-in-

hibition (E/I) imbalance.3–5 Neuronal hyperactivity may occur,

despite structural synapse loss, due to increased glutamatergic,

reducedGABAergic transmission, orelevated intracellular calcium

release.6–20 Alternatively, structural changes, such as an imbal-

ance of excitatory and inhibitory synapse densities,21–23 may

promotehyperactivity in theearly stagesofamyloidosis. In vivo im-

aging studies of synapses in mouse AD models are restricted to

dendritic spine imaging.24 Because not all dendritic spines carry

mature excitatory synapses, and inhibitory synapses are missed

during spine imaging, whether structural synaptic changes favor

or oppose hyperactivity in early amyloidosis is unclear.

E/I imbalance-driven neuronal hyperactivity disrupts activity

homeostasis and imposes energy constraints on cellular and cir-

cuit functions.25,26 Whether neurons retain the ability to achieve

activity homeostasis in amyloidosis and how circuits are shaped

by hyperactivity remain unclear. Neuronal hyperactivity-induced
C
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memory deficits may result from circuit adaptation27 or could

stem from disruption of plasticity.28–30 However, how E/I balance

regulates memory in non-pathological conditions and the mech-

anisms by which hyperactivity disrupts plasticity and memory in

amyloidosis are poorly understood.

We address these knowledge gaps using in vivo imaging of

synaptic architecture and microcircuit functional connectivity in

the mouse visual cortex to uncover the cellular and network

mechanisms of visual recognition memory in amyloidosis and

non-pathological conditions. Visual recognition memory is

impaired in patients with AD.31,32 In mice, visual recognition

memory is measured by assessing their innate curiosity to

explore novel but not familiar objects or visual stimuli. Mice

show behavioral habituation selectively to a repeatedly experi-

enced grating stimulus of specific orientation.33,34 Orientation-

specific recognition memory is dependent on plasticity in the

visual cortex.35 Although the visual cortex does not display overt

neurodegeneration early in AD, it is vulnerable to amyloid accu-

mulation in patients and AD models.36–40

Here we analyzed�20,000 synaptic structures in living animal

brains and show that the excitatory-inhibitory synapse ratio in

dendrites increases in amyloidosis without altering average
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synaptic density. The ensuing hyperexcitability alters network

architecture, interferes with formation of efficient neural corre-

lates of familiarity, and disrupts the behavioral expression of vi-

sual recognition memory. Deprivation of non-specific visual ex-

periences improved memory in amyloidosis but disrupted it in

non-pathological conditions despite normal plasticity (based

on multiple metrics). In non-pathological conditions, deprivation

of non-specific visual experiences induced disinhibition and

increased the persistence of neural representation and the frac-

tion of high-responsive neurons to the repeatedly experienced

stimulus, leading to impaired memory. These results indicate

that hyperactivity induces recognition memory deficits, despite

normal synapse density and plasticity, by preventing formation

of the neural representation of familiarity.

RESULTS

Localized structural E/I imbalance in dendrites of layer
2/3 neurons in the visual cortex
Wefound thatmiceoverexpressinghumanamyloidprecursor pro-

teinwithmutations linked to familial AD (hAPPmice; J20 line41) ex-

press high levels of amyloid but not plaques in the visual cortex at

4–6 months of age used for our experiments (Figure 1A). Also, we

found increasedc-Fos immunolabeling in thevisualcortexofhAPP

mice, indicative of hyperactivity (Figure S1A). c-Fos immunofluo-

rescence did not significantly correlate with amyloid immunofluo-

rescence detected by the 6e10 antibody (Figures S1B–S1F).

To identify whether structural synaptic changes favor

(increased excitatory or decreased inhibitory synapses) or

oppose (decreased excitatory or increased inhibitory synapses)

hyperactivity, we used a synaptic labeling strategy that reliably

represents excitatory and inhibitory synapses in vivo.42–44 We

achieved sparse labeling of individual cortical neurons by

combining low levels of a Cre recombinase (Cre)-expressing

plasmid alongside high levels of Cre-dependent plasmids in a

lentiviral backbone that expresses (1) TdTomato to visualize

spines, (2) postsynaptic density-95 (PSD-95) tagged with Venus

fluorescent protein at the C terminus (PSD95-Venus) to visualize

mature excitatory synapses, and (3) gephyrin tagged at the N ter-

minus with teal fluorescent protein (teal-gephyrin) to visualize

inhibitory synapses (Figures 1B, 1C, and S2A–S2D).

We analyzed �20,000 synaptic structures (�23,000 mm of to-

tal dendritic length) from apical and basal dendrites of layer 2/3

neurons in wild-type (WT) and hAPP mice in vivo. Excitatory

and inhibitory synapse densities in non-transgenic controls

(WT) are comparable with those observed previously43,44 (Fig-

ure 1D). Furthermore, the average synapse densities of neurons

in hAPP mice did not differ from the WT in the visual cortex at

around 6months of age (Figure 1D). Averaging synapse densities

from multiple dendrites will not reveal the balance of excitatory

and inhibitory synapses on individual dendrites. Simultaneous

imaging of excitatory and inhibitory synapses allowed us to

determine their relative densities in the same dendrites. We

found that the densities of excitatory and inhibitory synapses in

WT mice are significantly correlated in apical and basal den-

drites, indicating structural E/I balance (Figure 1E). However,

the E/I correlation is not observed in apical dendrites of hAPP

mice (Figure 1E). Furthermore, the correlation in apical dendrites
2 Cell Reports 42, 111946, January 31, 2023
of WT (r = 0.43) and hAPP (r = 0.11) mice is significantly different

(p = 0.02, Fisher r-to-z transformation). In contrast, basal den-

drites of hAPP mice retained a significant E/I correlation (Fig-

ure 1E). E/I imbalance in apical dendrites of hAPP mice results

from a higher E/I ratio in these dendrites compared with WT

mice (Figure 1F). The E/I ratio of basal dendrites did not differ be-

tween the genotypes. The overall changes to the density of excit-

atory and inhibitory synapses (5 more and 1 fewer synapses per

100 mm in hAPP mice, respectively) are subtle.

To testwhether exogenous expressionof synapticmarkers pre-

vented the lossof synapses in hAPPmice,weperformed immuno-

histochemistry and compared PSD95 and gephyrin puncta in the

visual cortex of WT and hAPP mice (Figures S3A–S3C). We

observed a small but not significant increase in PSD95 puncta

and no change in gephyrin puncta in hAPP mice compared with

the WT (Figures S3B and S3C), consistent with our imaging data

and other studies that show no change or increased excitatory

synapse densities in early stages of amyloidosis.45–47

To address whether apical and basal dendrite differences in

the E/I ratio occur in other brain regions, we compared PSD95

and gephyrin puncta in the hippocampal CA1 region, which

displays dendritic hyperactivity15,48 in amyloidosis. CA1 has

anatomically distinguishable apical (stratum radiatum) and basal

(stratum oriens) dendritic domains. In the stratum radiatum,

PSD95 and gephyrin punctum densities were not significantly

different, but their ratio was increased significantly compared

with WT mice (Figures S3D and S3E). In contrast, in the stratum

oriens, we found that PSD95 puncta were significantly higher but

not gephyrin puncta, leading to an increased PSD95-gephyrin

ratio (Figures S3F and S3G). These results show that the

increased E/I ratio is not restricted to apical dendrites. Together,

our findings identify that structural synaptic changes favor hy-

peractivity in early amyloidosis.

Stimulus-selective hyperactivity in the visual cortex of
hAPP mice
To study the functional consequences of hyperactivity, we

crossed hAPPmice with transgenic mice expressing fluorescent

calcium indicator GCaMP6 and measured visually evoked cal-

cium transients. We presented four phase-reversing orientation

gratings (0�, 45�, 90�, and 135�) and two sets of 10 natural im-

ages in a random order, separated by gray screen, to awake

head-fixed mice (Figure 2A). We classified neurons as active to

the stimulus when the trial-averaged (8 cycles) dF/F0 (change

in fluorescence over the baseline fluorescence) during the stim-

ulus period exceeded a threshold (Figures 2B–2F, high

threshold; Figure S4, low threshold; STAR Methods). The area

under the curve (AUC) of trial-averaged dF/F0 for neurons clas-

sified as active was moderately higher for certain orientations

(0� and 135�) in hAPP mice compared with WTmice but reached

statistical significance only with the low-threshold criterion

(Figures 2B–2E and S4D). In contrast, natural images elicited a

significantly higher response in neurons classified as active in

hAPP mice regardless of the threshold criteria (Figures 2F and

S4D). These results show that natural images and some grating

stimuli evoke hyperactivity in neurons. However, we noticed that

the average number of neurons identified for analysis and the

number of neurons responsive to visual stimuli was lower in
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Figure 1. Structural E/I imbalance in amyloid pathology
(A and B) A representative image of a posterior cortical slice (A, left; scale bar, 1 mm). The blue box represents part of the visual cortex. Shown is amyloid

immunohistochemistry with the 6e10 antibody in wild-type (WT; center) and hAPP (right) slices (identical display range). Scale bars, 200 mm. Also shown (B) is a

top-down view of a 3D reconstructed layer 2/3 neuron in vivo. Scale bar, 20 mm. A mask was applied to isolate the neuron from autofluorescent structures in the

brain. The dendritic segment in the white square is magnified in (C).

(C) Pseudocolored dendritic segment containing dendritic spines with PSD95 (yellow arrowhead), PSD95, gephyrin (white arrowhead), and shaft gephyrin (blue

arrowhead). PSD95 (center) and gephyrin (bottom) channels are shown. Scale bars, 5 mm.

(D) The density of synaptic structures: spines with PSD95 (PSD95+), inhibitory synapse on the shaft, dually innervated spines (DISs) with PSD95 and gephyrin, and

spines without PSD95 (PSD95�). Data are presented as box (25th–75th percentile) and whisker (minimum and maximum values) plots, and median value is

indicated as a horizontal line. n = 11 cells from 10 mice (WT) and 12 cells from 12 mice (hAPP).

(E) Pearson correlation (r) between excitatory and inhibitory synapse density for apical (n = 64 [WT, p < 0.001] and 73 [hAPP, p > 0.05] dendrites, top), basal (n = 77

[WT, p < 0.0001] and 79 [hAPP, p < 0.001] dendrites, center), and all (n = 141 [WT, p < 0.0001] and 152 [hAPP, p < 0.001] dendrites, bottom) dendrites.

(F) Cumulative probability distribution (CPD) of the same dendritic segments (left, apical ; right, basal) for E/I ratio (top), excitatory synapse density (center), and

inhibitory synapse density (bottom).

p < 0.05 (E/I ratio, apical), p < 0.01 (excitatory synapses, apical), Kolmogorov-Smirnov test; ns, not statistically significant. See also Figures S1–S3.
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Figure 2. Natural images elicit hyperactivity in hAPP mice

(A) Illustration of a head-fixed mouse viewing a visual stimulus (top). Repre-

sentative imaging field (bottom left; scale bar, 50 mm) and calcium transients of

neurons (yellow and blue arrowheads) during the first cycle of stimulus (bottom

right). Gray bars, stimulus duration; NI, natural image.

(B–F) Average dF/F0 during 3-s gray screen and stimulus periods (left) and the

area under the curve (AUC) for the 3-s stimulus period (right) for neurons

considered active for 0� (B), 45� (C), 90� (D), 135� (E), and NI (p < 0.05, unpaired

Student’s t test; F) stimuli in each animal.

Data are mean ± SEM. n = 8 (WT: 91 [0�], 99 [45�], 141 [90�], 95 [135�], and 151

NI neurons) and 6 (hAPP: 60 [0�], 46 [45�], 58 [90�], 52 [135�], and 71 NI neu-

rons) mice. Circles in the histogram represent individual mouse values. See

also Figures S4 and S5.
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hAPP mice (Figure S5A). Although the reduction was not signifi-

cant with the high-threshold criterion, it reached statistical signif-

icance when the threshold for activity was lowered, indicating

that weakly responsive neurons are reduced in hAPP mice (Fig-

ure S5A). Similarly, the fraction of all identified neurons consid-

ered active (high threshold) for each stimulus did not differ be-

tween the genotypes (Figure S5B), whereas they were reduced

for orientation grating stimuli when the threshold for active neu-

rons was lowered (Figure S5C).

To test whether spontaneous activity is increased in hAPP

mice, we imaged neuronal activity without visual stimulus for

237 s. The average AUC of dF/F0 (100 s) and the number of im-

aging frames with deconvolved spikes (spike events) calculated

from all identified neurons did not differ between the genotypes

(Figures 3A and 3B). This is consistent with our findings that the

gray screen (Figure S5D) and some orientation gratings (Figure 2)

did not show a difference between hAPP and control mice.

Homeostatic regulation of population activity leads to
hypersparsification of neural code and functional
connectivity in amyloidosis
Neuronal activity homeostasis is tightly regulated to avoid

runaway excitation.49 To test whether hyperactivity in hAPP

mice is compensated over a longer period, we first compared

the average AUC of dF/F0/100 s over the entire imaging period

(consisting of a gray screen, gratings, and natural image stimuli;

Figure 3C) in WT and hAPP mice. The active (high-threshold)

neurons in hAPP mice still retained higher activity when aver-

aged over a 100-s period compared with the WT (but p < 0.06).

However, the average AUC obtained from all identified and

weakly responsive (considered active using the low but not

high-threshold criteria) neurons were similar (Figure 3D). Inter-

estingly, in these neurons, the total number of spike events

was reduced in hAPP mice. Reduced spike event frequency

and equal AUC indicate that each spike event in these mice

elicits a higher amplitude response and that the compensatory

nature of reduced spike event frequency and increased ampli-

tude per spike event maintains the total activity level in the

population.

We next restricted the analysis to imaging frames correspond-

ing to natural image stimuli to test whether hyperactivity in neu-

rons classified as active (high threshold) to natural images

(Figure 2F) is compensated at the population level. The average

AUCof trial-averaged dF/F0 of all identified neurons did not differ

between the genotypes (Figure 3E), suggesting that hyperactiv-

ity of active (high-threshold) neurons does not affect the total

population activity elicited by natural images. To test whether it

is due to compensatory reduction in the average AUC of weakly

responsive neurons, we compared the average AUC of trial-

averaged dF/F0 from neurons considered active with low but

not high-threshold criteria and found that they remained the

same between the genotypes (Figure 3E). However, we found

that the fraction of weakly responsive neurons decreased, and

nonresponsive neurons increased, in hAPP mice (Figure 3F).

Consequently, the increased contribution of active (high-

threshold) neurons to total population AUC (61% [WT] and

73% [hAPP] of total population AUC) was compensated by the

reduction in the contribution of weakly responsive neurons
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Figure 3. Reduced activity in low-responding neurons compensates for hyperactivity

(A) Representative traces of calcium transients and corresponding deconvolved spike trace of spontaneous activity from WT and hAPP mice.

(B) Average AUC and the number of deconvolved spikes (spike events) in every 100 s of spontaneous activity from all identified neurons for each animal. n = 10

(WT, 860 neurons) and 9 (hAPP, 780 neurons) mice.

(C) Representative traces of calcium transients and corresponding deconvolved spike trace across the entire imaging session of evoked activity (multiple stimuli)

from WT and hAPP mice.

(D and E) Average AUC (top) and the number of deconvolved spikes (spike events, bottom) in every 100 s of evoked activity across multiple stimuli (D). Shown are

(left) all identified (740 WT and 434 hAPP neurons), (center) active for any stimulus (high-threshold criteria; 353 WT and 168 hAPP neurons), and (right) weakly

responsive for any stimulus (active only when the activity criteria threshold is lowered; 349 WT and 171 hAPP neurons) from n = 8 WT and 6 hAPP mice. p < 0.01

(unpaired Student’s t tests, left and right bottom). Also shown (E) are the average AUC of trial-averaged dF/F0 (3 s) elicited by NI stimuli of all identified neurons

(WT = 740, hAPP = 434 neurons; left) and neurons classified as active only when the threshold is lowered (238 WT and 84 hAPP neurons; right) from 8 WT and 6

hAPP mice. Data are mean ± SEM. Circles in the histogram represent individual mouse values.

(F) Proportion of neurons that are not (351WT and 279 hAPP), weakly (238WT and 84 hAPP), or highly (151WT and 71 hAPP) responsive to NI stimuli from all mice.

p < 0.001 (chi-square test).

Cell Reports 42, 111946, January 31, 2023 5

Article
ll

OPEN ACCESS



B

A

Fr
ac

tio
n 

of
 n

eu
ro

ns

0 20

0.10

0.20

0
40

Node degrees

WT

hAPP

0

0.25

0.50

0.75

1.0

Po
pu

la
tio

n 
sp

ar
se

ne
ss

p<0.05  p<0.05 p<0.05 p<0.01

0º 45º 90º 135º NI
Stimulus

60 80

G H

0 2 4 6
Ensembles

1

0.1

100

AU
C

WT hAPP

p < 0.0001

10

1000

AU
C

WT hAPP

hAPPWT

C

N
od

e 
de

gr
ee

s

0

p < 0.01

25

50

0Sk
ew

p < 0.01

2.0

- 2.0

AU
C

WT hAPP

p < 0.001

D

E F

0

10

20

30

40

N
od

e 
de

gr
ee

s

0 1 2 >2
Ensembles

WT

0

10

20

30

40

0 1 2 >2

N
od

e 
de

gr
ee

s

Ensembles

hAPP

p < 0.05

0 25 50 75 100
Node degrees

1

0.1

100

10

1000

0.01

0

5

10

15

0

10

20

30

# 
en

se
m

bl
es

#n
eu

ro
ns

/e
ns

em
bl

e
WT

hAPP

C
PD

C
PD

Selectivity index

I

0.0 0.2 0.4 0.6 0.8
0

50

100

0.0 0.2 0.4 0.6 0.8
0

50

100

WT
hAPP

p < 0.05

0.0 0.5 1.0 1.5
0

50

100

C
PD

0.0 0.5 1.0 1.5
0

50

100

C
PD

FWHM(radians)

WT
hAPP

p < 0.001

WT
hAPP

p < 0.01

WT

hAPP

0 1.5 3
Radians

FWHM(radians)

J K

WT hAPP
100

50

0

WT

hAPP

AU
C

0 ensemble
1 ensemble
2 ensemble
>2 ensemble

0

200

400

600

800

1000 p < 0.001

0

50

100

hAPPWT

N
um

be
r o

f n
eu

ro
ns

Pe
rc

en
ta

ge
 o

f n
eu

ro
ns

Selectivity index

Figure 4. Altered functional connectivity and stimulus selectivity in hAPP mice

(A) Representative degree distribution calculated during the entire imaging period across multiple stimuli from WT and hAPP mice.

(B) Average node degree (left; p < 0.01, unpaired Student’s t test) and skew (right; p < 0.01,Mann-Whitney test) of distribution from all identified neurons from each

animal.

(C) Scatterplot comparing node degree and AUC during the 3 s of NI stimulus of all identified neurons (n = 740 WT and 434 hAPP neurons; y axis: log scale). Gray

and blue lines (slopes, p < 0.001) are least-squares fits for WT and hAPP mice, respectively. Circles represent the values of individual neurons.

(D) Top: representative images of activity distribution in WT (left) and hAPP (mice); scale bars, 50 mm. Filled circles represent neurons, and the color represents

trial-averaged AUC (color bar, right) during the 3 s of NI stimulus. Bottom: population sparseness for grating and NI stimuli. p < 0.05 (0�, 90�, and NI) and p < 0.01

(135�), unpaired Student’s t tests.

(E) Representative ensemble fromWT (top) and hAPP (bottom) mice. Colors represent ensemble identity (gray, more than one ensemble). Circles represent cells.

(F) Top left: number of all identified neurons in no, one, or multiple ensembles (n = 740 WT and 434 hAPP neurons, top left) across multiple stimuli. P < 0.001, chi-

square test. Top right: the same data as the percentage of neurons. Also shown are the average number of ensembles (bottom left) and the average number of

neurons per ensemble (bottom right) from each animal.

(G) Relationship between the number of ensembles and node degrees for all identified neurons in WT (left) and hAPP (right; p < 0.05, Kruskal-Wallis test) mice.

(legend continued on next page)
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(25% [WT] and 12% [hAPP] of total population AUC). The contri-

bution of nonresponsive neurons to total AUC remained the

same between genotypes (14%–15%). These findings reveal

that neurons whose activity is weakly modulated by natural im-

ages become hypoactive to compensate for the hyperactivity

of high-responding neurons in hAPP mice.

A reduced frequency of spike events (Figure 3D) may reduce

the probability that two neurons are functionally connected or

coactive in the same imaging frame (�250 ms duration). Neuron

pairs are considered functionally connected when the number of

imaging frames in which they are coactive is greater than 95% of

the cumulative distribution of coactivation obtained from 1,000

random circular shifts of their activity. We calculated the node

degree, which is the average number of significantly coactive

neurons for each neuron, and compared their distribution in

WT and hAPP mice during the entire imaging period consisting

of a gray screen, gratings, and natural image stimuli. Neurons

in WT mice show a higher node degree than hAPP mice, whose

degree distribution is more positively skewed, indicating that

very few neurons have high functional connectivity in hAPP

mice (Figures 4A and 4B).

Skewed connectivity in hAPP mice could result from few hy-

peractive and many hypoactive neurons, with hyperactive neu-

rons forming the most functional connections. Consistent with

this, we found that the response to natural images increased

with higher node degree, and the slope (significantly non-zero,

p < 0.0001WT and hAPP) of this increasewas significantly higher

for hAPP mice compared with WT mice (Figure 4C). We found

similar results for orientation grating stimuli (Figure S6).

Higher activity of the few highly connected neurons could in-

crease sparseness of the neural code. Sparse coding requires

less energy to represent information.50 Therefore, we calculated

population sparseness, a measure of the shape of neuronal ac-

tivity distribution. The value ranges from 0–1, where 0 indicates

equal activity among all neurons, and 1 indicates only one active

neuron in the population. Consistent with previous findings,51 we

found that population sparseness is high for most of the stimuli in

WT mice (Figure 4D). Interestingly, it is even higher in hAPP mice

(Figure 4D), indicating that neural activity is hypersparsified.

The skewed distribution of connectivitymay alter the organiza-

tion of neuronal subnetworks (ensembles; described in STAR

Methods). To assess this, we assigned functionally connected

neurons to distinct ensembles.52 Neurons can be part of zero,

one, two, or more ensembles. Interestingly, a higher fraction of

neurons in hAPP mice than in the WT participated in more than

two ensembles. However, the total ensemble number and the

number of ensembles were not different (Figures 4E and 4F).

Because few neurons in hAPP mice are highly active and more
(H) Scatterplot comparing ensemble number and average AUC (y axis: log scale

p < 0.0001) are the least-squares fits for WT and hAPP mice, respectively.

(I) CPD of NI selectivity index of neurons that are responsive to NI stimuli and part

than one ensemble (n = 45 WT and 43 hAPP neurons; p < 0.05, Kolmogorov-Sm

(J) Representative examples of orientation tuning curves from WT (top) and hAPP

0� (0 radians), 45� (0.78 radians), 90� (1.57 radians), and 135� (2.35 radians) grat

(K) CPD of full width at half-maximum (FWHM) of the tuning curve of neurons that

WT and 68 hAPP neurons; p < 0.001, KS test; top) or more than one ensemble (

Data are mean ± SEM. n = 8 WT and 6 hAPP mice (B, D, and F, bottom). Circles in
functionally connected, these neurons may participate in multi-

ple ensembles. Consistent with this, neurons that participated

in more than two ensembles had more node degrees than those

that participated in fewer ensembles in hAPP mice (Figure 4G),

indicating that only a small fraction of neurons is highly relevant

to circuit architecture. Furthermore, the AUC of response elicited

by natural images is higher in neurons participating in multiple

ensembles in hAPP mice (slope significantly non-zero,

p < 0.0001) but stayed consistent in WT mice (Figure 4H). Our

findings show that increased excitability of neurons, counterintu-

itively, leads to hypersparsification of neural activity and network

connectivity and alters ensemble organization to maintain activ-

ity homeostasis.

We examined whether natural image-driven hyperactivity and

altered circuit architecture reduce stimulus specificity. Because

we delivered 10 different natural images in 3 s, we measured the

similarity of responses to different natural images during the 3 s

(13 imaging frames). We calculated a selectivity index (described

in STAR Methods) ranging from 0 (all imaging frames had the

same amplitude spike events [deconvolved], low selectivity) to

close to 1 (only one of the 13 frames had a spike event [decon-

volved], high selectivity). We found that neurons participating in

multiple ensembles in hAPP mice showed lower selectivity of re-

sponses to natural images than controls (Figure 4I). In contrast,

the full width at half-maximum of the orientation tuning curve

decreased in hAPPmice, indicating higher selectivity for orienta-

tion grating stimuli. To test whether the same neurons show

reduced selectivity for natural images and increased selectivity

for orientation gratings, we repeated this analysis in neurons

responsive to natural image stimuli and any of the grating stimuli.

We found that these neurons also exhibit increased selectivity to

orientation gratings and reduced selectivity to natural images

(Figures S7A and S7B), and these two features are not correlated

(Figure S7C). One mechanism that would sharpen orientation

selectivity is biased connectivity between similarly tuned neu-

rons.53 Consistent with this, functionally connected neurons in

hAPP mice are more similarly tuned compared with controls

(Figure S7D).

Non-specific visual experiences differentially modulate
the neural representation of familiarity in WT and hAPP
mice
The altered functional responses in amyloidosis, such as

reduced stimulus selectivity and skewed degree distribution,

indicate that multiple natural visual experiences activate the

same neurons. This could disrupt plasticity evoked by repeated

experience of the same visual stimulus, leading to memory inter-

ference. Repeated exposure to a grating stimulus leads to
) during 3-s NI stimuli from all identified neurons. Gray and blue lines (slopes,

icipate in one or less ensemble (n = 128 WT and 27 hAPP neurons, top) or more

irnov [KS] test; bottom).

(bottom) neurons. The black circles represent the average AUC during 3 s of

ing stimuli. The blue line represents the tuning curve.

respond to any grating stimuli and participate in one or less ensemble (n = 201

n = 47 WT and 51 hAPP neurons; p < 0.01, KS test; bottom).

the histogram represent individual mouse values. See also Figures S6 and S7.
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Figure 5. Nonspecific visual experiences differentially influence visual cortex plasticity

(A) Average dF/F0 of calcium transients during the gray screen and stimulus. Dotted lines indicate the first 10 s of stimulus.

(B) Average post- to pre-training ratio of AUC during the first 10 s of the same stimulus for all identified neurons from each animal (669 WT and 494 hAPP [pre-

training-light], 584 WT and 538 hAPP [post-training-light], 469 WT and 518 hAPP [pre-training-dark], and 416 WT and 383 hAPP [post-training-dark] neurons).

Values below the dotted line show reduction in AUC after training.

(C) The average post- to pre-training ratio of the fraction of identified neurons classified as active during the first 10 s of stimulus. Values below the dotted line

show reduction induced by training.

(D) The average post- to pre-training ratio of node degrees (number of coactive neurons to each neuron) during the first 10 s of stimulus for active neurons. Values

below the dotted line show reduction induced by training.

(E) The average post- to pre-training ratio of the fraction of neurons with dF/F0 > 15% (high-responding neurons) during the first 10 s of stimulus.

(F) The decay of neural overlap between imaging frames for up to 50 frames of separation forWT (left) and hAPP (center). Data were averaged for frames in the first

10 s of the stimulus. Also shown is the average post- to pre-training ratio of the rate of decay (Tau, right). Values above the dotted line show the increase in decay

rate induced by training.

(legend continued on next page)
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orientation-selective plasticity in the visual cortex.34,54–56 There-

fore, wemeasured GCaMP6s response to a 45� phase-reversing
grating stimulus before and after multiple days of exposure

(‘‘training’’) to the same 45� stimulus. Because plasticity is highly

selective to orientation,57 we also tested plasticity to a 75�

grating stimulus in the same mice, this time housed in complete

darkness except during the stimulus period (Figure S8A). Under

dark housing, mice only encountered specific visual experiences

and were not susceptible to interference by non-specific visual

experiences, whichwould be present during a 12-h light/dark cy-

cle when the effect of 45� stimulus training was assessed.

The post-training population (all identified neurons) response

(AUC during the first 10 s of stimulus) is 55% and 67% of pre-

training levels inWTmice under a 12-h light-dark cycle (WT-light)

and 24-h dark housing (WT-dark), respectively, indicative of

neuronal plasticity (Figures 5A and 5B). In contrast, hAPP mice

did not show plasticity in light (hAPP-light; 99% of pre-training

levels) but showed plasticity (49% of pre-training levels) in the

dark (hAPP-dark; Figures 5A and 5B). In contrast to familiar stim-

uli, the response to novel stimuli did not reduce following training

(Figure S8B). Similarly, the fraction of neurons classified as

active during the first 10 s of stimulus exposure reduced after

training in WT (light [post/pre ratio: 0.54] or dark [post/pre ratio:

0.62]) and hAPP-dark (post/pre ratio: 0.54) mice but not in

hAPP-light mice (Figure 5C). These findings show that neuronal

response plasticity in the visual cortex of hAPP mice is suscep-

tible to interference from non-specific visual experiences.

The lack of reduction of active neurons in hAPP-light mice

following training (Figure 5C) suggests that hyperactivity elicited

by natural images in their home cagemay prevent the weakening

of functional connectivity of these neurons. Consistent with this,

the average node degree of neurons for the trained stimulus

reduced for hAPP-dark (post/pre ratio: 0.65) and WT light

(post/pre ratio: 0.53) or dark (post/pre ratio: 0.80) mice after

training but not for the hAPP-light group Figure 5D). In contrast,

the node degree of neurons did not reduce under any conditions

for the non-trained orientation for all groups (Figure S8C). A

reduction in functional connectivity with repeated stimulus expo-

sure may further increase population sparseness.58 Training

further increased population sparseness in WT but not hAPP

mice, whose circuit activity is already hypersparsified

(Figure S8D).

We performed linear regression to test whether the reduction

in population AUC ratio can be explained by the reduction in

active neuron ratio and found that the regression is significant

for the WT-light and hAPP-dark groups (Figure S8E). Surpris-

ingly, for the WT-dark group, active neuron ratio reduction is

not a significant predictor of AUC ratio reduction (Figure S8E).
WT-light: p < 0.001 (B–E), p < 0.01 (F); WT-dark: p < 0.05 (B), p < 0.01 (C and D),

p < 0.01 (C, D, and F), one sample t tests (comparison of the samplemeanwith the

9 (hAPP-light and dark) mice. ns, not significant (p > 0.05). For the data presented

Table S2.

(G) Timeline for imaging gephyrin dynamics (top). IUE, in utero electroporation; E, e

1 week each. Dark bar, dark housing (bottom). Shown is a representative pseud

gephyrin (yellow arrowhead) between S2 and S3 (left). Scale bars, 5 mm.

(H) Average gain/loss of gephyrin when mice were housed under a normal light c

synapses).

Data are mean ± SEM. Circles in the histogram represent individual mouse value
To verify that it is not an artifact of placing a threshold for activity,

we compared the fraction of neuronswith different response (dF/

F0) levels without placing an activity threshold (Figure S8F). The

fraction of highly responsive neurons (>15% dF/F0, which is the

average dF/F0 of the top 20%of neurons for a novel grating stim-

ulus) during the first 10 s of stimulus exposure is slightly elevated

in WT-dark mice (Figure S8F) but their post-training levels were

similar to the pre-training WT-light group (Figure S8F). Further-

more, training-associated reduction of high-responsive neurons

is not significant in WT-dark mice (Figure 5E). This suggests that

dark housing increases the excitability of neurons to a visual

stimulus. The results from other groupswere consistent with pre-

vious results; the fraction of high-responsive neurons did not

reduce in hAPP-light mice after training, whereas WT-light

(post/pre ratio: 0.45) and hAPP-dark (post/pre ratio: 0.15) mice

showed a reduction (Figure 5E).

When a population of neurons is more excitable, longer-dura-

tion activity may cause a more persistent stimulus representa-

tion. We next tested how the stability of a neural representation

(persistence) to a stimulus was influenced by familiarity and

whether the duration changed under hyperexcitable conditions.

To do this, we calculated how similar the neural population activ-

ity was between pairs of imaging frames of various lags (STAR

Methods). A value of 1 indicates complete overlap between

frames with the same combination of neurons active, while a

value of 0 occurs when the activity is orthogonal, a completely

different combination of active neurons. We examined the imag-

ing frames during the first 10 s of the stimulus and measured the

decay rate (t) of the neurons’ similarity or overlap with future ac-

tivity. More negative values represent faster decay (less persis-

tence) or change of the neural representation. A larger post/pre

ratio indicates that training made the neural representation less

persistent. We found that WT-light mice showed faster decay

of neural overlap (post/pre ratio: 1.44; Figure 5F) after training,

suggesting that neural representation is more transient with fa-

miliarity. Interestingly, the pre-training decay of neural overlap

was slightly slower in the WT-dark group, and their post-training

levels were similar to the pre-training WT-light group (Figure 5F).

Conversely, for hAPPmice, training did not alter the rate of decay

under the light condition, whereas the dark group showed

increased decay with training (post/pre ratio: 1.94; Figure 5F).

These results show that training induced more transient neural

representations in theWT-light and the hAPP-dark groups. In hy-

perexcitable states (WT-dark and hAPP-light groups), however,

the neural representation did not change with training to

repeated stimuli but, rather, persisted at the pre-training levels.

The increase in visual stimulus-evoked excitability in dark-

housed WT mice could result from disinhibition,59,60 elicited by
p > 0.05 (E and F); hAPP-light: p > 0.05 (B–F); hAPP-dark: p < 0.001 (B and E),

ratio of 1) orWilcoxon signed-rank test (B–F). n = 11 (WT-light), 9 (WT-dark), and

as ratios of post/pre-training, the pre- and post-training means are provided in

mbryonic; P, post-natal age. S1, S2, and S3 are imaging sessions separated by

ocolored dendritic segment (merged, top; gephyrin, bottom) exhibiting loss of

ycle and 24-h darkness. p < 0.01, paired Student’s t test; n = 6 WT cells (1,000

s. See also Figure S8.
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visual deprivation, to maintain activity homeostasis. We have

shown previously that excitatory synapses become less dy-

namic in the dark at the structural level.43 Here, we found that

the ratio of gain/loss of inhibitory synapses is significantly

reduced in the visual cortex when mice were housed in the

dark compared with light, indicating that deprivation-associated

disinhibition manifests at the structural level (Figures 5G and 5H).

Non-specific visual experiences differentially modulate
the behavioral expression of visual familiarity in WT and
hAPP mice
Repeated experience of a stimulus results in visual recognition

memory, expressed behaviorally as a reduced exploration of

the stimulus.33 If any of the network correlates for familiarity influ-

ence the exploration of the stimulus, then we expected that non-

specific visual experiences would influence the behavioral

expression of visual familiarity.

We measured behavioral habituation for the repeatedly expe-

rienced 45� phase-reversing grating stimulus in WT and hAPP

mice with separate groups of mice housed in light or dark.

Following habituation to the apparatus, the stimulus was pre-

sented for 8 days in one of the two randomly chosen monitors

placed on two sides of the square chamber; the other displayed

a gray screen (Figures 6A and 6B). On the following test day,

mice were presented with the same 45� stimulus and a novel

135� stimulus (control for motivation to explore). The stimulus

zone preference (SZP) index was calculated as the difference

in the time mice spent exploring the stimulus and non-stimulus

zones divided by the total time. More positive values indicate

that the mice spent more time in the stimulus zone. On the first

day, all groups of mice had a similar positive SZP index, indi-

cating a preference for stimulus exploration (Figures 6C and

6D; Table S1). We confirmed that themice explored novel stimuli

regardless of the side of presentation to rule out any spatial bias

for exploration (Figure S9A). On the test day, WT-light and hAPP-

dark mice had a negative SZP index for the 45� stimulus and a

positive SZP index for the novel 135� stimulus, indicating that

they formed a visual recognition memory (Figures 6C and 6D,

Table S1). The total movement in the chamber increased over

the days but was similar between the genotypes (Figure S9B).

Interestingly, on the test day, the SZP index for the 45� stimulus

was not significantly different from 135� for WT-dark and hAPP-

light mice, suggesting that these mice are deficient in visual

recognitionmemory (Figures 6C and 6D; Table S1). These results

show that non-specific visual experiences improve visual recog-

nition memory of a specific stimulus under non-pathological

conditions but disrupt it in amyloidosis.

DISCUSSION

E/I imbalance in amyloidosis
We show that hyperactivity in amyloidosis is rooted in the anat-

omy of cortical neurons. We found that apical dendrites of visual

cortical neurons in pre-plaque hAPP mice have a reduced range

of excitatory synapse densities because of a decreased fraction

of dendrites with high and low synapse densities (Figure 1D). A

reduced fraction of low-density dendrites suggests that amyloid

increases excitatory synapse density, which would increase
10 Cell Reports 42, 111946, January 31, 2023
neuronal activity and curtail further increases in synapse den-

sities, leading to a narrower range of densities.

An increase in the E/I ratio more selectively in the apical den-

drites could be due to intrinsic biological differences between

apical and basal dendrites. In such a scenario, the observed dif-

ferences may broadly apply to other cortical regions and

perhaps the hippocampus. Selective apical dendrite vulnera-

bility is reported in amyloid mouse models61 and patients with

AD.62 However, numerous reports showed apical and basal

dendrite vulnerability in amyloidosis. Alternatively, the differ-

ences in apical and basal dendrites could be due to differential

presynaptic innervation. The vulnerability of apical and basal

dendrites may depend on circuit properties and may not be

generalizable across the cortex or the brain. Consistent with

this idea, excitability properties of cortical regions appear to be

different in amyloid models. In contrast to hyperactivity in the vi-

sual cortex, the parietal cortex has reduced glutamatergic activ-

ity.17,63 Similarly, the somatosensory cortex also shows reduced

activity.64 In the visual cortex, feedforward inputs primarily target

the basal dendrites, whereas the feedback inputs innervate api-

cal dendrites.65 Feedback inputs to the visual cortex could be

more vulnerable to high-amyloid conditions. Alternatively,

changes in feedback inputs to apical dendrites may compensate

for a possible amyloid-induced increase in somatic inhibition by

parvalbumin neurons66,67 not captured by our in vivo imaging

approach. The increased orientation selectivity could partly

stem from increased inhibition.68

Decreased PSD95 but normal synaptophysin puncta levels in

CA1 have been reported previously.69 In contrast, reduced syn-

aptophysin levels have also been observed in the samemodel.70

Similarly, normal spine densities in the CA1 region of J20 mice at

the same age have also been reported.71 Interestingly, an early

increase in excitatory synaptic density in CA1 has been reported

in a different amyloid model.47 These results indicate that struc-

tural synaptic alterations in apical and basal dendrites may

depend on the age, circuit, strain, and, perhaps, sub-strain in

amyloidosis. Low levels of amyloid promote long-term potentia-

tion (LTP) but disrupt it at higher concentrations.72 Therefore, the

differences in amyloid levels may determine how amyloid influ-

ences excitatory synapse density.

The role of amyloid in regulating inhibitory synapses is not

conclusive, with studies showing increased, reduced, or little

change in their density or activity.8,13,16,17,20,66,73–77 Here, we

see a slight but not significant reduction in inhibitory synapse

density in hAPP mice. The ratio of these two synapse types is

more consequential to neuronal activity than their densities.

Thus, imaging both synapse types in the same dendrites allowed

us to determine a structural basis for neuronal hyperactivity. Our

findings also reveal that gross structural abnormalities are not a

prerequisite for memory deficits, and subtle changes in multiple

brain regions, including the visual cortex, may contribute to dis-

ease progression.

Neuronal hyperactivity and circuit architecture
Under non-pathological conditions, energy efficiency is

achieved by sparsifying neuronal activity, with few high-respon-

sive neurons encoding a stimulus.50 Multiple mechanisms may

contribute to the sparse activity, including inhibition and
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Figure 6. Other visual experiences differentially influence visual

recognition memory

(A) Representation of a mouse in a chamber with two identical monitors. The

arena is divided into two equal zones: stimulus zone (SZ) and nonstimulus zone

(NSZ).

(B) Timeline for the paradigm (dark, bottom: dark housing). Days and stimuli

are indicated. h1 and h2 are habituation days. GS, gray screen.

(C) Representative traces of a WT (top) and hAPP (bottom) mouse’s position

during the five blocks of stimulus on the first day of 45� stimulus (day 1) and on

the test day (day 9) with 45� or 135� stimuli.

(D) Stimulus zone preference (SZP) index for hAPP mice and WT sibling con-

trols. Light and dark refer to mice housed in the normal light cycle (12 h

light:12 h dark) and complete darkness. n = 9 WT-light, 12 hAPP-light, 14 WT-

dark, and 9 hAPP-dark mice.

Data are mean ± SEM. p < 0.05 for training 3 genotype 3 light condition

interaction using three-way repeated-measures ANOVA. Selected
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decreased intrinsic excitability.78,79 Therefore, increased excit-

ability would be expected to decrease population sparseness.

However, we found that hyperactivity in amyloidosis increases

population sparseness. How could increased excitability also in-

crease population sparseness? Given energy constrains in the

brain, we speculate that increased population sparseness is a

compensatory adaptation for the higher energy demand associ-

ated with hyperactivity. Low-responding neurons reduce their

activity to compensate for the hyperactivity of a few high-re-

sponding neurons so that population response amplitude is

maintained. These findings are consistent with prior reports of

hyperactive and hypoactive neurons near amyloid plaques.80,81

However, this leads to increased population sparseness,

decreased functional connectivity, and increased memory inter-

ference. These results also argue that disrupted functional con-

nectivity is more likely to be a consequence than a cause for AD

pathologies.

Increased cFos+ cell density contrasts with population

sparseness observed during calcium imaging. We speculate

that two factors may contribute to the observation. One is that

cFos expression in weakly responsive neurons could be below

the threshold of detection, and their reduction in hAPP mice

does not reduce the cFos counts. Second, each spiking event

has a higher amplitude in hAPP mice, and the resultant higher

calcium influx may contribute to elevated cFos expression

beyond the threshold used for identifying c-Fos+ neurons.
A model for the role of E/I balance in regulating visual
recognition memory
Multiple network correlates of visual familiarity in the visual cor-

tex were revealed in WT-light mice: reduced population

response amplitude, fraction of high-responding neurons, func-

tional connectivity, persistence of neural representation, and

increased population sparsification. All of these familiarity corre-

lates were disrupted in hAPP mice because of interference from

non-specific visual experiences. Surprisingly, two of these corre-

lates, the reduced fraction of high-responsive neurons and

persistence of neural representation, in post-training WT-dark

mice were also disrupted, indicating that non-specific visual ex-

periences are required for some of the familiarity correlates in

WT mice.

The conditions (WT-dark, hAPP-light) that failed to reduce the

persistence of neural representation and constrain the fraction of

high-responsive neurons as a stimulus became familiar had

impaired behavioral expression of visual familiarity. Therefore,

we propose that constraining neural activity persistence and

the fraction of high-responsive neurons to a repeatedly experi-

enced stimulus below a threshold serve as a code for visual fa-

miliarity (Figure S10).

Hyperactivity and reduced stimulus specificity to natural visual

experiences could lead to continual coactivity of the few highly

connected neurons in amyloidosis. Intact Hebbian plasticity

mechanisms would prevent a reduction in functional connectivity
multiple comparisons are presented in Table S1. Circles in the

histogram represent individual mouse values. See also Figures S9 and

S10.
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despite repeated exposure to grating stimuli. Intact connectivity

would keep the fraction of high-responsive neurons and the

persistence of neural activity above a threshold for visual familiar-

ity (Figure S10). Coactivity of a higher fraction of high-responsive

neurons and longer persistence of their activity would promote

behavioral exploration of the stimulus (Figure S10). Contrary to

the commonly held view that synapse loss and impaired Hebbian

plasticity mechanisms underlie memory deficits in AD, we pro-

pose that memory deficits may also emerge as a result of intact

Hebbian plasticity mechanisms and unaltered synaptic density

because of E/I imbalance.

Under non-pathological conditions, visual recognition mem-

ory deficit arises in the absence of other visual experiences

despite normal plasticity (reduced evoked AUC, functional con-

nectivity, and increased population sparseness). This is surpris-

ing because the memory is expected to be more robust when

experiencing only one type of visual stimulus. However, mem-

ory-irrelevant visual experience constrains the fraction of high-

responsive neurons to memory-relevant stimulus and reduces

the persistence of stimulus representation. In the absence of

non-specific experiences, increased excitability may interfere

with these familiarity representations and lead to memory defi-

cits. Alternatively, continued exploration of a stimulus in the

dark could bemediated by top-down or neuromodulatory mech-

anisms. Our findings suggest that the absolute fraction of high-

responsive neurons and the duration of the neural representation

of the stimulus, rather than relative plasticity, are relevant for vi-

sual recognition memory. The cellular mechanisms of visual

habituation may vary depending on the brain region or the stim-

ulus specificity of habituation. In layer 4 neurons of the visual cor-

tex, repeated stimulus exposure led to the depression of cellular

response, but unlike layer 2/3 neurons,56 it did not reduce the

fraction of active neurons responding to the familiar stimulus.57

In addition, an increase in spontaneous activity rather than a

reduction in evoked activity was observed in layer 2/3 neurons,

but the habituation was not specific to the familiar stimulus.34

Limitations of the study
In vivo dendritic imaging does not capture all inhibitory synap-

ses, such as the soma targeting parvalbumin neurons,82 and

changes to ion channel composition. Furthermore, the mouse

model used in this study overexpresses amyloid precursor pro-

tein with familial AD mutations,70 and whether non-overexpress-

ing mice show similar phenotypes remains to be tested. APP

knockin mice (AppNL-G-F) with familial AD mutations also

show hyperexcitability.83 The amyloid levels in knockin (KI)

mice are higher than that observed in J20 mice, but hyperexcit-

ability is slightly lower, indicating that other factors may exacer-

bate hyperexcitability. Finally, whether memory interference

driven by hyperexcitability is limited to the visual cortex remains

to be tested, although interference has been associated with

impaired recall of a hippocampus-dependent task in another

amyloid model.84
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52. Pérez-Ortega, J., Alejandre-Garcı́a, T., and Yuste, R. (2021). Long-term

stability of cortical ensembles. Elife 10, e64449. https://doi.org/10.

7554/eLife.64449.

53. Priebe, N.J. (2016). Mechanisms of orientation selectivity in the primary

visual cortex. Annu. Rev. Vis. Sci. 2, 85–107. https://doi.org/10.1146/an-

nurev-vision-111815-114456.

54. Frenkel, M.Y., Sawtell, N.B., Diogo, A.C.M., Yoon, B., Neve, R.L., and

Bear, M.F. (2006). Instructive effect of visual experience in mouse visual

cortex. Neuron 51, 339–349. https://doi.org/10.1016/j.neuron.2006.

06.026.

55. Kaneko, M., Fu, Y., and Stryker, M.P. (2017). Locomotion induces stim-

ulus-specific response enhancement in adult visual cortex. J. Neurosci.

37, 3532–3543. https://doi.org/10.1523/JNEUROSCI.3760-16.2017.

56. Makino, H., and Komiyama, T. (2015). Learning enhances the relative

impact of top-down processing in the visual cortex. Nat. Neurosci. 18,

1116–1122. https://doi.org/10.1038/nn.4061.

57. Kim, T., Chaloner, F.A., Cooke, S.F., Harnett, M.T., and Bear, M.F. (2019).

Opposing somatic and dendritic expression of stimulus-selective

response plasticity in mouse primary visual cortex. Front. Cell. Neurosci.

13, 555. https://doi.org/10.3389/fncel.2019.00555.

58. Homann, J., Kim, H., Tank, D.W., and Berry, M.J. (2021). Passive expo-

sure sparsifies neural activity in the primary visual cortex. Preprint at bio-

Rxiv. https://doi.org/10.1101/2021.11.18.469160.

59. Bridi, M.C.D., de Pasquale, R., Lantz, C.L., Gu, Y., Borrell, A., Choi, S.Y.,

He, K., Tran, T., Hong, S.Z., Dykman, A., et al. (2018). Two distinct mech-

anisms for experience-dependent homeostasis. Nat. Neurosci. 21,

843–850. https://doi.org/10.1038/s41593-018-0150-0.

60. Huang, S., Hokenson, K., Bandyopadhyay, S., Russek, S.J., and Kirk-

wood, A. (2015). Brief dark exposure reduces tonic inhibition in visual

cortex. J. Neurosci. 35, 15916–15920. https://doi.org/10.1523/JNEURO-

SCI.1813-15.2015.

61. Alpár, A., Ueberham, U., Br€uckner, M.K., Seeger, G., Arendt, T., and
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CCTGGGGATGAG-30

This paper N/A

Primer for J20 genotyping

50AAAGAACTTGTAGGTTGGA

TTTTCGTAGCC-30

This paper N/A

For WT (Connexin gene)

50CCATAAGTCAGGTGTAA

AGGAGC-30

This paper N/A

For WT (Connexin gene)

50GAGCATAAAGACAGTG

AAGACGG-30

This paper N/A

Recombinant DNA

pFudioTdTomatoW A gift from Dr. Elly Nedivi N/A

pFudioTealgephyrinW Chen et al.85 RRID:Addgene_73918

pFudioPSD95venusW A gift from Dr. Elly Nedivi N/A

pSIN-W-PGK-Cre Subramanian et al.86 RRID:Addgene_101242

Software and algorithms

ScanImage Basic Vidrio Technologies https://vidriotechnologies.com/scanimage

StimulusSuite Modified version of Dr.

Mark Bear’s lab version

N/A

Neural_Ensemble_Analysis.m Gift from Dr. Rafael Yuste lab N/A

4D point tracking system, ObjectJ Villa et al.44 N/A

Deposited code This paper https://zenodo.org/badge/latestdoi/568293797

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cell reporter express (CRX 2.9.1.1064) Molecular Devices https://www.moleculardevices.com/products/

cellular-imaging-systems/acquisition-and-

analysis-software/cellreporterxpress

MATLAB 2017-2021 Mathworks https://www.mathworks.com/products/matlab.html

Fiji (ImageJ 1.53f51) NIH https://ImageJ.net/software/fiji/

Python 3.6 Python https://www.python.org/downloads/release/python-360/

Microsoft Excel 2016 Microsoft https://www.microsoft.com/en-us/microsoft-365/excel

Neuroinfo (2021.1.5) MBF Biosciences https://www.mbfbioscience.com/neuroinfo

Graphpad Prism 9 GraphPad https://www.graphpad.com/scientific-software/prism/

SPSS27 IBM https://www.ibm.com/analytics/spss-statistics-software

Leica LAS X imaging

software

Leica https://www.leica-microsystems.com/products/

microscope-software/p/leica-las-x-ls/

Deposited code This study https://zenodo.org/badge/latestdoi/568299290

Deposited code This study https://zenodo.org/badge/latestdoi/568299908

Suite2p https://www.suite2p.org/ SCR_016434

Psychtoolbox http://psychtoolbox.org RRID:SCR_002881

Other

Eagle’s Minimum Essential Medium (EMEM) ATCC Cat # 30-2003

Fetal bovine serum ATCC Cat # 30-2020
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jai Sub-

ramanian (jaichandar@ku.edu).

Materials availability
This study did not generate unique reagents.

Data and code availability
d Data generated in this study are available from the lead contact upon request

d All original code used in this study for synaptic puncta detection, intrinsic signal analysis, and spectral unmixing has been

deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resource table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animal procedures are approved by the University of Kansas Institute of Animal Use and Care Committee and meet the

NIH guidelines for the use and care of vertebrate animals. PDGF-hAPP transgenic mice (J20 line; Gladstone) were maintained

as heterozygotes for the hAPP transgene by breeding heterozygous J20 male mice with WT female mice. J20-GCaMP6s

mice were generated by breeding J20 male mice with female C57BL/6J-Tg (Thy1-GCaMP6s) GP4.3Dkim/J (Strain: 024275,

JAX). A maximum of five mice were housed in a standard cage but individually housed after the cranial window surgery.

Mice were housed on a 12h-light/12h-dark cycle except for the group that went through a period of visual deprivation

(24h-dark).

Cell culture
SH-SY5Y cells (American Type Culture Collection), a neuroblastoma cell line originally derived from a human female, were grown in

Eagle’s Minimum Essential Medium supplemented with 5% fetal bovie serum at 37�C, 5% v/v CO2, and 95% humidity.
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METHOD DETAILS

DNA constructs
The Cre dependent TdTomato (pFudioTdTomatoW), Teal-gephyrin (pFudioTealgephyrinW) and PSD95-venus (pFudioPSD95ve-

nusW) plasmids are a kind gift from Dr. Elly Nedivi. Cre recombinase is expressed from pSIN-W-PGK-Cre plasmid.86 The combina-

tion of pSIN-W-PGK-Cre and pFUGW based fluorescently labeled gephyrin and PSD95 synaptic markers has been shown to reliably

represent inhibitory and excitatory synapses, respectively.44,85

In utero electroporation (IUE)
Timed pregnant matings were set between heterozygous J20 males and WT females of the same genetic background. Half of the

litter were heterozygous for APP mutations, and the other half were WT (control). E15.5–16.5 embryos received �3mg of plasmids

in 1mL Tris-EDTA (1:1:0.5:0.15 M ratio of pFudioTdTomatoW, pFudioTealgephyrinW, pFudioPSD95venusW, and pSIN-W-PGK-

Cre, respectively) mixed with 0.1% fast green into the right lateral ventricle using a 32-gauge Hamilton Syringe (Hamilton company).

A pair of platinum electrodes (Protech International) placed to target the visual cortex was used to provide five pulses of 36 V (50 ms

duration at 1 Hz) from a square wave electroporator (ECM830, Harvard Apparatus).

Cranial window
4-6-month-old J20 andWTmice received a cranial window over the visual cortex on the right hemisphere. A small scalp incision was

made over themidline of the skull. Soft tissues were reflected laterally by blunt dissection, and the pericraniumwas gently scraped. A

5-mmdiameter circle covering the visual cortex was scored using a biopsy punch. The skull was thinned along the scored circles with

a fine drill using a sterile 0.5mm diameter round burr (Fine Science Tools). The bone flap was carefully removed with fine forceps

leaving behind the dura. A 5-mm diameter sterile circular glass coverslip (Harvard Apparatus) was positioned over the openings. Vet-

bondwas applied over the juncture between coverslip and bone as firm pressure was used to keep the coverslips in place. Metabond

(C&B Metabond) was applied over the exposed skull. �2-weeks after the surgery, a titanium head-post was affixed around the win-

dow to restrain mice during imaging. For GCaMP6s expressing mice, a light-blocking cone was attached to the titanium headpost to

block monitor light from reaching the PMTs during imaging of visually evoked activity.

Optical intrinsic signal imaging
Optical intrinsic signal imaging was performed 14 days after cranial window surgeries to map the location of the visual cortex.44,87

Imaging was performed in a custom-built upright microscope with a 43 objective (Nikon). Lightly anesthetized mice were positioned

20 cm in front of a high refresh rate monitor displaying a horizontal bar (1� of the visual field) drifting at 10 Hz. Images were collected

using an sCMOS camera at 5Hz (1024 3 1024 pixels; Photometrics). A fiber-coupled LED, powered by T-Cube LED drivers (Thor-

labs), was used to deliver 610 nm light to illuminate the cortex (500–600 mmbelow the dura). Reference vasculature was imagedwith a

470 nm light. Images were downsized to 256 3 256 pixels, and cortical intrinsic signals were computed by extracting the Fourier

component of light reflectance changes to matched stimulus frequency. The fractional change in reflectance represents response

magnitude, and the magnitude maps were thresholded at 30% of the peak-response amplitude. The visual cortex was mapped

by overlaying the magnitude maps over the 470nm reference image.

Widefield calcium imaging
For GCaMP6s expressing mice, widefield calcium imaging instead of intrinsic signal imaging was used to map the location of the

visual cortex. Themapping protocol was similar to intrinsic signal imaging, except that fluorescencewas imaged rather than reflected

light. GCaMP6 was excited by an LED (Lambda FLED, Sutter) filtered through a bandpass filter (470/40, 49,002 Chroma), and the

emission was filtered through a 525/50 bandpass filter.

Two-photon imaging
For synaptic structural imaging, anesthetized mice with sparsely labeled neurons within themapped visual cortex were imaged using

a Sutter MOM multiphoton microscope. The Ti: sapphire laser (MaiTai HP: Newport SpectraPhysics; 915 nm) was routed to the mi-

croscope using table optics. The power was adjusted using a rotating half-wave plate and a polarizing beam splitter. A pair of galva-

nometric mirrors scan the laser beams to the back aperture of the objective (Nikon 163 0.8 NA). The output power from the objective

was set to 40-50mW. Emission signal was collected through the same objective, passed through a short pass filter to block infrared

wavelengths, and routed to three GaASP PMTs after passing through appropriate bandpass filters (488/50, 540/50, and 617/73 for

Teal, YFP, and TdTomato fluorescence, respectively). Image acquisition was controlled by Scanimage (Vidrio Technologies), and

images were obtained at 0.16Hz. The imaging field covered 133 3 133x�150 mm (1024 3 1024 XY pixels, Z step - 1 mm). For

GCaMP6 imaging, neurons within the mapped visual cortex (�100–150 mm below the dura) were imaged at 4.22 Hz in head-

restrained awake mice restrained in a body tube. The excitation wavelength was set to 940 nm, and the power was adjusted

(20-40mW) to avoid signal saturation. The imaging field was a single Z frame of 336 3 336 mm (256 3 256 pixels) consisting

of �50–100 cells.
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Visual stimulus to head restrained mice
Visual stimuli were delivered on a high refresh rate monitor placed 20 cm in front of the head restrained animals covering 94� 3 61� of
the visual field. The software for generating visual stimuli was modified from a customwritten stimulus suite (a kind gift from Dr. Mark

Bear’s lab) written in MATLAB (Mathworks) using the PsychToolbox extension. Mice were habituated to a gray screen by head-re-

straining them under the microscope for two days (30 min each day). For measuring the neuronal activity and functional connectivity,

visual stimuli consisted of 30 s of the gray screen followed by 8-cycles of 100% contrast, sinusoidal, phase reversing (2 Hz, 0.05 cy-

cles/degree) grating stimuli of different orientations (0�, 45�, 90�, 135� - 3 s each) and two sets of ten natural images (0.3 s/image – 3 s

per set) interspersed with 6 s of the gray screen. The order of stimuli was different in each cycle. For a couple of mice, only one set of

natural images was used. Grayscale natural images were obtained from Berkeley Segmentation Dataset, contrast normalized and

resized to 1600 3 1068 pixels. Grating stimuli covered the entire monitor display value range between black and white. Gamma

correction was performed to ensure the total luminance in the gray screen and grating stimuli were the same.

For plasticity experiments, mice were habituated as above for two days. For the next seven days, head restrained mice were

exposed to two sessions of 60 s gray screen followed by five blocks of 100 s of phase reversing grating stimulus with 30 s of the

gray screen between blocks. The two sessions were separated by �1–2 h. On the first session of the first day of stimulus (pre-

training), 10–15 min after head-fixation GCaMP6 response was first imaged without visual stimulus (total darkness) to record spon-

taneous activity. Five minutes later, imaging was performed during the first 60 s of the gray screen and the first block of 45� grating
stimulus. We tried to closely match the same field of view imaged in the first session for post-training imaging on the seventh day. Due

to slight differences in Z positioning, a part of the neuronal population was identical between sessions. To confirm that any reduction

in neuronal activity is not due to poor imaging conditions or the animal’s behavioral state on that day, we also recorded the response

to 60 s gray screen and 100 s of a novel (135�) stimulus 15 min after the end of the first session. The mice were then housed in a dark

room (24-h dark cycle) for one day, and the process was repeated, except that mice were repeatedly exposed to 75� instead of 45�.
On the final day, a novel 165� stimulus was used as a control for imaging quality. During these experiments, care was taken to avoid

light exposure other than the visual stimulus.

Free moving behavior
We used a visual recognition memory paradigm for oriented grating stimulus.33 In this paradigm, mice were habituated for two days

(30min each) to a chamber with two identical monitors displaying a gray screen on either side. For the next eight days, mice explored

the chamber for 23 15min sessions, with each session separated by 1–2 h. The gray screen was presented on both monitors for the

first 5 min. This was followed by five blocks of 100% contrast sinusoidal grating of a specific orientation (45�) that phase reverse at

2 Hz with a 30-s inter-block interval in one of the randomly chosen monitors. The other monitor continued to remain gray. On the test

day, mice were presented with the now familiar 45� and a novel 135� stimulus in separate sessions. The position of mice in the appa-

ratus was tracked using a force-plate actometer with a square sensing surface measuring 42 cm on each side. Force samples from

each of the four force transducers that support the sensing surface were taken at a rate of 100 samples/s via a USB-based data

acquisition device controlled by a computer running custom-written Visual Basic software. The side of the stimulus presentation

was tracked using a camera.

Tissue preparation and immunohistochemistry
Mouse cages were brought to the surgical suite at least 5 h before brain extractions to avoid capturing c-Fos expression elicited by

movement or contextual novelty. �5-month-old (for c-Fos and 6e10 analysis) or 3.5–5 month old (for synaptic puncta analysis) J20

and WT mice were deeply anesthetized by intraperitoneal injection of 2% avertin in phosphate-buffered saline (PBS), pH 7.4,and

transcardially perfused with cold PBS followed by 4% paraformaldehyde. The brains were extracted and post-fixed in 4% PFA over-

night at 4�C, followed by storage in PBS. For c-Fos/6e10 analysis, the brains were embedded in 4% oxidized agarose88 to limit ar-

tifacts during sectioning. Blocks were then cut into 40mm thick coronal slices on a microtome (Leica VT1000 S). For synaptic puncta

analysis, the brains were then cryoprotected overnight at 4�C in 15% (w/v) and then in 30% (w/v) sucrose in phosphate buffer (PB).

The brains were sectioned coronally at 20 mm thickness on a microtome and collected in PBS with sodium azide (0.02%).

3-4 evenly spaced slices spanning the primary visual cortex for each brain were fluorescently immunolabeled for c-Fos and am-

yloid. Sections were permeabilized for 2h at room temperature in a 1% Triton X-100 and 10% normal goat serum (NGS) solution in

PBS followed by incubation with mouse clone-6E10 antibody (1:250, BioLegend) and rabbit anti-c-Fos (1:1000, CST) in a PBS so-

lution containing 0.1%Triton X-100 and 5%NGSovernight at 4�C. Sections were thenwashed 3Xwith PBS and incubatedwith Alexa

647-conjugated goat anti-mouse antibody (1:2000; Fisher) and Alexa 555-conjugated goat anti-rabbit antibody (1:2000; Fisher) for

2 h in a PBS solution containing 0.1% Triton X-100 and 5% NGS at room temperature, followed by three washes with PBS before

mounting on glass slides. Slices were imaged using an ImageXpress Pico automated imaging system (Molecular Devices, San

Jose, CA) with a 103 objective (Leica HC PL FLUOTAR 103/0.32).

For synaptic puncta immunohistochemistry, the brain sections containing both hippocampus and visual cortex (bregma:�3.68mm

to �2.78mm) were immersed in 10mM sodium citrate solution and kept in boiling water for 5 min for antigen retrieval. The brain sec-

tions were let to cool down and permeabilized for 2 h at room temperature in a 1% Triton X-100 and 10% normal goat serum (NGS)

solution in PBS, followed by incubation with mouse anti-PSD-95 (1:1000, Thermo Fisher Scientific) and rabbit anti-gephyrin (1:1000,

Synaptic Systems) in a PBS solution containing 0.2%Triton X-100 and 5%NGS overnight at 4�C. Sections were thenwashed 3Xwith
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PBS and incubated with Alexa 647-conjugated goat anti-rabbit antibody (1:2000; Fisher) and Alexa 555-conjugated goat anti-mouse

antibody (1:2000; Fisher) for 2 h in a PBS solution containing 0.2% Triton X-100 and 5%NGS at room temperature, followed by three

washeswith PBS beforemounting on glass slides.�175 mm3 175 mm images from two slices permouse, containing layers 1 and 2 of

the visual cortex, striatum oriens (SO), and striatum radiatum (SR) of the hippocampus, were imaged on a laser scanning confocal

microscope (Leica, DM6-Q model; performed at Microscopy and Analytical Imaging Research Resource Core Laboratory), using

a 63x (NA 1.30) objective. Alexa 555 and 647 were excited with 561 nm, and 635 nm lasers, respectively, and the emission was

collected on a 12-bit spectral PMT detector.

QUANTIFICATION AND STATISTICAL ANALYSIS

In vivo synaptic imaging analysis
The signal collected in each PMT is a combination of signals from the three fluorophores (Teal, Venus, and TdTomato) due to their

overlapping emission spectra. The relative contribution of signal from each fluorophore to each PMT was calculated by imaging

SH-SY5Y cells expressing single fluorophores. We used spectral linear unmixing to reassign the signal from each fluorophore to

the appropriate PMT.44 To normalize the signal relative to local dendritic volume, we normalized the fluorescence in the synaptic

channels to that of the cell fill channel.89 A normalization factor was calculated as the ratio of the mean pixel value of a chosen

dendrite in the cell fill channel to the synaptic channel. Each pixel value in the synaptic channel was then multiplied by the normal-

ization factor, and the pixel value of the cell fill channel was subtracted on a pixel-to-pixel basis.

Synaptic puncta were identified inmultiple steps. For the initial automated identification of PSD95 and gephyrin puncta, we created

a plugin for FIJI90 from a combination of plugins previously available. Sections of dendrites were traced using the Simple Neurite

Tracer plugin to create a binary image stack of the trace. The trace was dilated using the Dilate 3D plugin,90 resulting in a 3D binary

image used to mask the original image. A custom radius was entered to determine the thickness of the mask from the center of the

branch in the XY plane, and a second radius determined the thickness in the z axis. The resulting masked image was split into three

separate channels, each marked with different fluorescent proteins. Contrast enhancement was performed in each channel contain-

ing puncta.90 Background subtraction was then performed using a user-entered rolling ball radius on each image in the stack. A local

threshold was applied to each slice in the image stack. The threshold value at each pixel was calculated as a bias added to the me-

dian value of the surrounding pixels within a customizable radius. The plugin 3D watershed split91 was used on each resulting binary

image to separate groups of overlapping puncta. The plugin 3D Object Counter92 was used to analyze the binary images and find the

positions and size of each puncta. The 3dObject Counter plugin results were exported as files in the.csv format. Amacro was used to

read the coordinates of the detected objects from the.csv files and place correspondingmarkers in the first linked image of a custom-

written 4D point tracking system implemented in Fiji using a modified version of the ObjectJ plugin.44 After the markers were placed,

the IDs of the auto-detected objects were saved in the ObjectJ file.

The detected PSD95 and gephyrin puncta were verified for accuracy, and missed puncta were manually added. Gephyrin puncta

and PSD95 puncta were scored as synapses if they were present in two consecutive frames and that they consisted of at least 8–9

clustered pixels or 4–5 clustered pixels, respectively. Excitatory synapses emanating perpendicular to the shaft were not included in

the analysis. The synaptic density in non-transgenic mice is comparable to previously published values.43,44 Two investigators proof-

read the synapse count, and one of them was blind to the genotype. Fractional gain of inhibitory synapses between two sessions S1

and S2, was calculated as the number of new gephyrin puncta in S2 divided by the total number of gephyrin puncta in S2. The frac-

tional loss of inhibitory synapses was calculated as gephyrin puncta lost in S2 divided by the total number of gephyrin puncta in S1.

A total of 5251 (WT), 6250 (hAPP) PSD95+, 1064 (WT), 1301 (hAPP) PSD95-, 1190 (WT), 1268 (hAPP) PSD95+and gephyrin+ spines,

and 1944 (WT), 1965 (hAPP) inhibitory shaft synapseswere counted from 64 (WT), 73(hAPP) apical (originating from the apex of soma)

and 77 (WT); 79(hAPP) basal dendrites from 11 (7males and 4 females;WT) and 12 (7males and 5 females hAPP)mice for E/I balance

experiments. Gephyrin dynamics was calculated from �1000 inhibitory synapses from 6 cells (5 WT mice - 2 females and 3 males).

Calcium imaging analysis
Motion registration and ROI detection in the time-series images were performed using Suite2p.93 Tau and neuropil coefficient for

spike deconvolution were set at 2.0 and 0.5, respectively. Suite2p generated ROIs were chosen as cells (cellular ROI) if the soma

was visible in the mean or maximum projection image. Cellular fluorescence (F) was corrected for neuropil contamination, estimated

as the ratio of blood vessel fluorescence to that of neuropil (Fneu). The value ranged from�0.3–0.7, andwe used 0.5 as the correction

factor. Neuropil corrected fluorescence (Fcorr) is calculated as F - (0.5xFneu). Cellular ROIs that did not have at least one peak greater

than 10% dF/F0, calculated as (Fcorr – F0)/F0, where F0 is defined as the mode of the Fcorr density distribution,94 anywhere in the

time series were excluded. The 10% dF/F0 could lie anywhere in the time series (corresponding to the gray screen or the stimulus

period) and is averaged out by the variation between trials.

To analyze spike event frequency and amplitude for spontaneous and stimulus evoked activity, deconvolved spikes obtained from

Suite2p for cellular ROIs were thresholded (>2 SD from the mean to remove noise artifacts). The frequency of spike events is calcu-

lated as the number of identified spike events/defined time period (100 s for Figures 3A–3D).

For experiments with multiple grating and natural images stimuli, dF/F0 for each stimulus from all the cycles (trials) were averaged

for all neurons. Neurons are considered active if the trial-averaged dF/F0 of the 3 s stimulus period is greater than 5% (high-threshold)
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or two standard deviations of baseline dF/F0 (low-threshold) and is different from the 3 s of gray screen preceding the stimulus

(p < 0.05, paired t test). Mean dF/F0 for a stimulus was calculated by averaging all active neurons’ mean dF/F0. The area under

the curve (AUC) for the dF/F0 response is calculated using the trapz function in MATLAB. The fraction of active (visually responsive)

neurons was calculated as the number of neurons active for at least one stimulus divided by the number of neurons identified by

Suite2p.

TheMATLAB-basedGUI for ensemble identification was a kind gift fromDrs. Jesus Perez Ortega and Rafael Yuste.52 Deconvolved

spikes obtained from Suite2p for cellular ROIs were thresholded (>2 SD from the mean) and binarized. Briefly, neuron pairs are

considered functionally connected if the number of their coactive frames exceeds 95% of the cumulative probability distribution

generated by a 1000 random circular shift of their activity. All imaging frames (vectors) that do not contain at least three coactive neu-

rons were excluded. Hierarchical clustering using simple linkage was used to identify vectors with greater than 50% Jaccard simi-

larity, and non-similar vectors were excluded from the raster. More similar vectors were clustered with Ward linkage and grouped

based on contrast index.

To identify neurons participating in an ensemble, Pearson correlation coefficient for the coactivity of neurons and an ensemble was

calculated. A binary vector Vj representing the imaging frames when the ensemble was active (1) or not (0) was generated. The cor-

relation of neurons a and b activities with ensemble j activity would be Pj,a and Pj,b, respectively. To assess if neurons a and b are

functionally connected within ensemble j, an ensemble weight (Wj,ab) was calculated as Pj,a. Pj,b. Coab, where Coab is the corre-

lation of neurons a and b activities. To test the significance, 1000 surrogates were obtained by shuffling neurons a and b activities and

used the correlation from each iteration to calculate a surrogate weight (SWj,ab,i). If Wj,ab is greater than 95%of the cumulative prob-

ability distribution of surrogate weights, then a functional connection was placed between neurons a and b within ensemble j. A

neuron will be part of the ensemble if it has at least one functional connection.

The functional connectivity matrix generated above was used to determine the node degree - the number of edges connected to

each node (neuron) during the entire imaging period for Figure 4B or during the first 10 s of the grating stimuli (Figures 5D and S8C)

using MATLAB graph and degree functions. The skew function was used to calculate the skewness of degree distribution.

Population sparseness is calculated as

1 � ðSiRi=nÞ2=ðSiRi2=nÞ
ð1 � 1=nÞ

where Ri is the AUC of the trial-averaged dF/F0 response during the 3-s stimulus (for the multi-stimuli experiment) and 10-s stimulus

(for plasticity experiment), and n is the number of identified neurons. The selectivity index for natural images in neurons considered

active for natural images is calculated as 1 � ðSiRi =nÞ2=ðSiRi2 =nÞ, where Ri is the amplitude of trial-averaged (4 cycles of the same

set of natural images) deconvolved spike event in individual imaging frames during the 3 s natural image stimulus period encompass-

ing 13 (n) imaging frames. We used deconvolved spikes to avoid confounds from the slow decay kinetics of calcium transients.

To obtain an orientation tuning curve, the trial-averaged AUC of dF/F0 during the 3 s of each grating stimulus was fit as a function of

stimulus angle (4) with a von Mises function (Equation 1) in neurons responsive to any grating stimuli.95,96

fð4Þ = AeKðcos½2ð4� qÞ� � 1Þ +b (Equation 1)

The function is defined by four fit parameters: a preferred stimulus orientation that gives the maximum response (q), a tuning curve

width (K), a response amplitude (A), and an intercept (b). Fits were calculated with a maximum likelihood estimate of q and K of using

CircStat in MATLAB,97 and least-squares regression was then used to identify A and b. The fraction of explained variance, R2, was

calculated, and the full width at half-maximum was calculated as FWHM = arccos[ln(1/2eK + 1/2e-K)/K] for fits that accounted for

70% of the variance in the data.

For single orientation stimulus plasticity experiments, F0 was calculated as the mean Fcorr of 10 s preceding the start of the stim-

ulus. All analyses were limited to response during the first 10 s of stimulus exposure. Cellular ROIs with F0 greater or less than two SD

from themeanwere not included in the analysis. To ensure only good quality recordings were analyzed, we only includedmicewhose

mean population dF/F0 was at least 1% for the novel stimulus (response to the first session with 45� and 135� for light conditions, and
75� and 165� stimulus for the dark conditions). AUC of dF/F0 for the first 10 s of the grating stimulus was measured, and the ratio of

AUCtensec of post-training to pre-training was used as a measure for plasticity. Cellular ROIs with greater than 5%mean dF/F0 during

the first 10 s of stimulus and are significantly different (p < 0.05, paired t test) from the mean dF/F0 of the 10-s gray screen before the

stimulus onset were considered as active neurons.

To assess the stability of the neural representation to a given visual stimulus over time, we calculated the similarity of the neural

population’s activity between pairs of imaging frames. We used a neural space representation to quantify the neural population ac-

tivity of each frame. The neural activity for each imaging framewas represented as a datapoint in the neural space.98 The activity level

for each identified neuron as measured with dF/F0 was mapped to its own neural dimension. This combination or pattern of active

neurons thus defined a vector in the neural space and was normalized to a unit vector for each imaging frame. It’s similarity or overlap

with other frames was then calculated by taking the dot product between the neural vectors in methods similar to.99,100 The neural

overlap was calculated as follows:
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Overlap =
Nt1

kNt1k,
Nt2

kNt2k
where Nti is the neural vector for a given time, t1, and a time, t2, in the future. Each neural vector is normalized by itsmagnitude (kNtikÞ:
A value of 1 indicates complete overlap between frames with the same combination of neurons active, while a value of 0 occurs when

the activity is orthogonal, a completely different combination of neurons is active. Analysis was performed on all imaging frames

within the time window from immediately after stimuli onset until 10 s after onset. Each analysis frame was examined by calculating

its overlap with subsequent images with delays of 1–50 frames in the future by calculating the overlap. The overlap values were then

averaged for a given delay for all analysis frames in the 10 s window.

The amount of neural overlap as a function of time lag was fit with exponential decay of the following form:

Overlap = ð1 � bÞet,t +b

Here, t defines the rate of decay starting from anOverlap of 1 at no time delay (t = 0), and b represents the final average overlap after

a sufficiently long interval. The rate of decay, t, is always negative, with more negative values representing faster decay correspond-

ing to less persistence or stability in the neural representation during stimulus presentation.

For multiple stimuli experiments, 8 WT (6 males and 2 females) and 6 hAPP (5 males and 1 female) mice were analyzed. �70–90

ROIS were identified per mouse. For plasticity experiments, 11WT (4 males and 7 females) and 9 hAPP (5 males and 4 females) mice

were analyzed. �60 ROIs were identified per mouse. Suite2p analysis was performed blind to genotype.

Behavior analysis
The voltage measurements from the four sensors of the force plate were smoothed using a moving average filter and converted into

x-y coordinates using the following formula

X =
ðX1 f1+X2 f2+X3 f3+X4 f4Þ

ðf1+ f2+ f3+ f4Þ
y =
ðY1 f1+Y2 f2+Y3 f3+Y4 f4Þ

ðf1+ f2+ f3+ f4Þ
where (X1, Y1), (X2, Y2), (X3, Y3), and (X4, Y4) are the X and Y coordinates of the fixed positions of the four force sensors located at

each corner of the square chamber and f1, f2, f3, f4 are the four forces [96]. The data were then down-sampled from 100 Hz to 2 Hz.

The half of the chamber closest to the stimulus monitor is considered the stimulus zone, and the other half is the non-stimulus zone.

The stimulus zone preference (SZP) index is calculated as the difference in the time mice spent exploring (active exploration at R

3 cm/s) the stimulus and non-stimulus zones divided by the total exploration time. More positive values indicate that the mice spent

more time in the stimulus zone. Mice that did not respond to stimulus on both the sessions on days with a novel stimulus (first day of

stimulus andmemory test day) were removed from the analysis. Data from the first session of the stimulus on the first day and test day

were compared. 9 (WT - light), 12 (hAPP-light), 14 (WT-dark), and 9 (hAPP-dark) male mice were analyzed.

Immunofluorescence analysis for c-Fos, 6e10, and synaptic markers
Slice registration, cell detection, and brain region area measurements were performed using NeuroInfo software (MBF Bioscience,

Williston, VT). Slices were first mapped in 3D to the Allen CCF v3 to allow automated cell detection and area measurement by

region. Bright circular objects against a darker background were automatically detected using a scale-space analysis of the

response to Laplacian of Gaussian (LoG) within the expected range of labeled cell body diameters.101 Briefly, cells were filtered

out from all identified objects with a user-defined threshold based on the strength of the LoG response within an expected range

of cell body diameters. Each respective region’s threshold value was set at the 70th LoG strength percentile of identified objects in

that region across all WT slices (LoG threshold = 15, range 0–255). Only objects above this LoG strength threshold were included

in the analysis to minimize false positives. Cell density was calculated by dividing the number of cells per region by the area per

region across all slices for each brain. 8 hAPP (5 males, 3 females) and 5 WT (3 males, 2 females) were used. Individual cell cor-

relation analysis was performed on fluorescence values of each ROI in both the c-Fos (nuclear fluorescence) and the 6E10 (non-

nuclear) were collected in FIJI by automatically drawing a 10-pixel radius ROI around identified c-Fos + cells post-proofreading.

For animal correlation, mean 6E10 fluorescence values from the entire visual cortex in the analyzed slices were collected in FIJI

and compared with the mean fluorescence of c-Fos + cells. 8 hAPP (4 males, 4 females) mice were used for c-Fos/hAPP corre-

lation analysis.

For synaptic markers, analysis is performed as described above for c-Fos except that a 25mm rolling ball radius background

subtraction was first performed in Fiji, and the LoG threshold was 10 for the PSD channel and 4 for the Gephyrin channel, range

0–255. Automatically identified puncta (�0.5–1.5mm) were manually proofread, and the remaining false positive identifications

were removed before analysis. 8 WT (6 males, 2 females) and 7 hAPP mice (4 males, 3 females) were analyzed blind to their

genotype.
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Statistical analysis
Data were analyzed using Prism 9 or SPSS. No statistical methods were used to predetermine sample sizes. The sample sizes are

comparable to previous literature. Test for normal distribution was done with Kolmogorov-Smirnov test. p < 0.05 was considered

statistically significant. Sample sizes are reported in figure legends and methods. Samples are individual mice (for most analyses),

cells or dendrites. Blinding of genotype identity is mentioned in methods. Statistical procedures are two-sided and are listed in figure

legends. The actual p values, F and t-values, and degrees of freedom are listed in Table S1. For the data presented as ratios of post/

pre training, the pre and post training means are provided in Table S2.
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