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Abstract

The choice of appropriate independent variables to create models characterizing ecological

niches of species is of critical importance in distributional ecology. This set of dimensions in

which a niche is defined can inform about what factors limit the distributional potential of a

species. We used a multistep approach to select relevant variables for modeling the ecologi-

cal niche of the aquatic Spirodela polyrhiza, taking into account variability arising from using

distinct algorithms, calibration areas, and spatial resolutions of variables. We found that,

even after an initial selection of meaningful variables, the final set of variables selected

based on statistical inference varied considerably depending on the combination of algo-

rithm, calibration area, and spatial resolution used. However, variables representing

extreme temperatures and dry periods were more consistently selected than others, despite

the treatment used, highlighting their importance in shaping the distribution of this species.

Other variables related to seasonality of solar radiation, summer solar radiation, and some

soil proxies of nutrients in water, were selected commonly but not as frequently as the ones

mentioned above. We suggest that these later variables are also important to understanding

the distributional potential of the species, but that their effects may be less pronounced at

the scale at which they are represented for the needs of this type of modeling. Our results

suggest that an informed definition of an initial set of variables, a series of statistical steps

for filtering and exploring these predictors, and model selection exercises that consider mul-

tiple sets of predictors, can improve determination of variables that shape the niche and dis-

tribution of the species, despite differences derived from factors related to data or modeling

algorithms.

Introduction

Ecological niche modeling (ENM) includes a diverse set of tools used to study potential distri-

butions of species via characterizations of their environmental requirements [1,2]. In particu-

lar, correlational ENMs use distributional data (occurrence records) and sets of environmental

variables to calibrate models that are used to predict environmental suitability for a species
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across a region of interest [3]. Variables appropriate to characterizing and understanding a

species’ niche are those that allow identifying conditions that are favorable for the species, as

well as detecting potential limits of what is or is not suitable for a species (e.g., temperatures

that allow maximum growth rates, or maximum temperatures that can be tolerated). However,

differences in the scale at which ecological processes occur and the grain and extent to which

environmental variables are measured make it difficult to select predictors based on direct

interpretations of their biological importance [4].

The challenge of selecting appropriate environmental variables when characterizing species’

ecological niches using correlative models is well-known in the field of distributional ecology

[5–7]. In general, models can be constructed with two main goals: (1) to improve predictions

of the geographic distribution of the species, and (2) to understand which environmental vari-

ables are important constraints on species’ niches. When the goal is to improve model predic-

tive ability, variables can be selected based on how they improve predictions of independent

testing data. In these cases, environmental data sets that efficiently summarize environmental

variation across an area of interest (e.g., principal components) are commonly considered to

be good choices [8]. However, when models are constructed to understand which and how

environmental variables shape species’ ecological niches and geographic distributions, use of

biologically meaningful and interpretable variables becomes more relevant [4].

Common procedures for selecting environmental predictors in ENM include reducing

multicollinearity, testing contribution of variables to models, selecting variables based on their

biological importance considering empirical evidence or the experience of researchers, or

using a broad set of variables and letting the algorithm select important variables [9]. Other

alternatives include selecting predictors by transforming original variables to summarize the

variance explained by a set of principal components that are more information-rich and in

general, are not correlated [10,11]. However, interpretation of the role of particular environ-

mental factors in the characterization of species niches is complicated. More recently, different

sets of variables have been used as part of the parameterizations to be tested during the process

of model calibration [12]. After model selection, one or more sets of variables can be identified

as more appropriate and powerful for use in creating final models.

The reality is that, regardless of the method used to determine the set of variables for model-

ing ecological niches, the decision is always difficult and the answer is rarely unique or unam-

biguous [9]. This complication exists because every step taken to define which variables are

best may result in distinct sets of predictors at the end. For instance, when selecting one vari-

able depending on correlation values and biological importance, the decision of which variable

to keep depends on the researcher; many times, such an initial decision determines which

other variables can or cannot be considered. Analyses like the variance inflation factor may

end up identifying unique sets of variables; however, the set of variables selected depends on a

predefined limit, which is not a biological consideration [13]. Distinct answers are obtained

when different sets of variables are considered in model calibration, although such sets are usu-

ally subject to a priori processes of selection [14].

Implications of using one set or another set of environmental dimensions when creating

models are not negligible, especially in applications in which model transfers to other geo-

graphic or temporal scenarios are required [15–17]. Other less explored complications are the

effects that areas for model calibration, spatial resolution of raster layers used as predictors,

and use of different modeling algorithms have on the variables that get selected. The area

across which a model is calibrated has direct implications on predictions: models may be over-

or under-fitted if such an area is poorly defined [18,19]. Little is known about how changes in

calibration areas affect decisions related to variable selection during the modeling process. The

spatial resolution of variables is known to affect model calibration and model transfers [6,20];
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however, little has been said about its effects on the final set of variables selected (but see [21]).

Distinct modeling algorithms may also perform better or worse depending on the sets of vari-

ables used, as all predictors influence the model and interact with other variables differently.

Again, however, this factor has not been considered deeply (but see [22]), and the set of vari-

ables for modeling is usually fixed when using multiple algorithms (e.g., [23,24]).

Here we explore the challenges in defining sets of environmental variables in ENM for Spir-
odela polyrhiza (L.) Schleid (greater duckweed), a freshwater plant species with a broad near

cosmopolitan distribution [25]. Specifically, we used distinct methods for variable selection in

a multi-step approach. We performed analyses at two spatial resolutions, used two algorithms

for model calibration, and considered different options regarding calibration areas, to explore

the consequences of these factors on variable selection. We hypothesize that variables repre-

senting extreme conditions and environmental conditions during the active period of the spe-

cies (see section Study organism) are better predictors for broad-scale characterizations of the

species ecological niche and distribution. As little is known about macroecological factors driv-

ing the geographic distribution of greater duckweed, our explorations of environmental vari-

ables can help to understand the distributional potential of this plant, environmental

dimensions limiting its potential for expansion to other areas, and how climate change might

affect this species’ range.

Methods

Study organism

Spirodela polyrhiza is a species of duckweed that ranks among the smallest angiosperms

known (sizes 0.5–18 mm). It is a free-floating aquatic plant that reproduces vegetatively in

largest part [26]. To overcome unfavorable conditions (specially during the winter), this spe-

cies produces a starch-rich tissue called a turion that is denser than normal fronds, and sinks

to the bottom of water sources until conditions become favorable [27]. Similar to other duck-

weed species, under appropriate conditions, S. polyrhiza grows at high rates, which helps it to

cover large portions of the surface of the water bodies where it is present [28].

Considering their high growth rates, small size, simple structures, and potential for indus-

trial applications, duckweed species have been the subject of intensive and detailed research

[29]. Among the most notable applications are possible utility in water treatment [30], bioe-

nergy [31], animal feeding [27], human nutrition [32,33], and pharmaceutical applications

[34]. Given the potential of duckweed species as model organisms [35,36], stock collections of

these species have been established by several institutions around the world, which have aided

substantially in promoting further research on these species [37]. As such, various aspects of S.

polyrhiza physiology, genome, and potential industrial applications have been studied in detail

[27,38–41]. A remarkable characteristic of the geographic distribution of S. polyrhiza is that it

extends worldwide. According to Les et al. [42], duckweed species and other aquatic plants dis-

persed transoceanically in the recent past, which highlights the importance of external biotic

dispersal for this species [43]. Duckweed dispersal is mainly via adhesion to aquatic birds and

mammals [25,44,45]. However, little has been done to understand the macroecological factors

that drive its distribution, and only general aspects of the regions occupied by S. polyrhiza have

been characterized [29].

Occurrence data

We obtained geographic occurrence records for S. polyrhiza from the Global Biodiversity

Information Facility (GBIF [46]) and the Botanical Information and Ecology Network (BIEN

[47]. In all, a total of 85,923 georeferenced records were obtained (GBIF: 84,992; BIEN: 931).
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We cleaned data from each database independently to exclude records from before 1970, lack-

ing coordinates, with zero values for longitude and latitude, or duplicates [48]. Records

marked as absent or uncommon were also removed from the GBIF data. After this initial

cleaning, we had 45,913 records (GBIF: 45,459; BIEN: 454). We combined records from the

two sources and excluded duplicates again. Records that were outside of, but closer than ~5’ to

the edge of environmental layers (i.e., that fell very close to informative areas for climate data)

were moved to the nearest pixel with information; points falling farther outside layer borders

were removed. To reduce bias from spatial autocorrelation, we thinned records using a mini-

mum point-to-point distance of ~30’. We selected this value after testing the effect of increas-

ing distances in the Moran’s I statistic for all environmental variables (see S1 and S2 Tables).

The final number of records after these procedures was 964. Occurrence data download, clean-

ing, and thinning were accomplished using rgbif [49], spooc [50], BIEN [51], and ellipsenm

[52] in R [53].

Environmental variables

We obtained raster environmental data layers from three sources: (1) bioclimatic (BIO) and

solar radiation (SR) layers from WorldClim v2.1, at 10’ resolution (available at www.

worldclim.com [54]); (2) cation exchange capacity (CEC), organic carbon (OC), and pH, from

the ISRIC–World Soil Information database, at 250 m resolution (available at www.soilgrids.

org [55]); and (3) total phosphorus (TP), labile inorganic phosphorus (LIP), and organic phos-

phorus (OP) in soils, from Global Gridded Soil Phosphorus at 30’ resolution (available at

www.daac.ornl.gov/SOILS/guides/Global_Phosphorus_Dist_Map.html [56]). We used biocli-

matic variables to represent temperature (which could help to identify thermal limits), and

precipitation (which can inform about water availability). Solar radiation layers provide infor-

mation on solar energy levels across a region in our models; soil variables offer more indirect

information relevant to nutrient availability. All of these variables have been proven to be rele-

vant to the development of the study species in analyses on local extents and/or in laboratory

experiments [25,26] (S3 Table).

Solar radiation layers were available as averages for the 12 months of the year. To create lay-

ers that better represented extremes and annual averages, we created the following “biocli-

matic-like” layers: annual mean solar radiation (AMSR), maximum solar radiation of the

month with maximum values (SRMax), minimum solar radiation of the month with mini-

mum values (SRMin), range of solar radiation (RSR), average solar radiation of the quarter

with highest values (ASRQH), and average solar radiation of the quarter with lowest values

(ASRQL). We created these variables using the values for the 12 months obtained from World-

Clim. Variable processing and calculations were done using the packages raster [57] and gda-

lUtilities [58], in R.

To test the effect of spatial resolution on the outcome of variable selection processes, we cre-

ated two groups of variables, at distinct spatial resolutions: (1) a group at 10’ resolution includ-

ing BIO and SR variables, plus CEC, OC, and pH; and (2) a group at 30’ resolution including

BIO and SR variables, plus TP, LIP, and OP. We performed raster aggregation procedures

(average of values) on CEC, OC, and pH to match the resolution of BIO variables, and on BIO

and SR variables to match the resolution of variables at 30’. One of the layers at 10’ and at 30’

resolution was used as a reference for the aggregation process to exactly match pixels among

all layers at each resolution. The method of aggregation used was the nearest neighbor and the

average value was used to represent environments aggregated. Although the set of variables

representing soil conditions used at 10’ differs from the one at 30’, variable selection analyses
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will help to identify whether the variables present in the two sets, at distinct resolutions, are

consistently selected.

Geographic areas for model calibration

To explore the effect of the areas across which models are calibrated on the set of variables

selected, we explored four options for such areas in our analysis: (1) buffers of ~5˚ (~500 km at

the Equator) around occurrence records, (2) concave-hull polygons with a buffer of ~5˚, (3)

ecoregions occupied by the species buffered by ~1˚ (~100 km), and (4) the result of intersect-

ing the previous three areas. Buffer distances for the first two types of calibration areas were

defined considering that the species can be dispersed by birds over relatively large distances.

Distance for ecoregion buffering was selected to include a more diverse set of environments

around occupied regions. We obtained the layer of world terrestrial ecoregions from the Har-

vard WorldMap database (available at https://worldmap.maps.arcgis.com). Although a new

simulation-based approach has been recently suggested as a reliable tool to estimate calibration

areas [59], the broad distribution of this species makes it difficult for that method to be applied.

The types of calibration areas used in our study have been used in other studies [9] to define

relevant environments for model development (e.g., [59,60]). Our chosen calibration areas are

therefore reasonable options to calibrate models considering that such areas should reflect

what regions could have been accessible to the species and present relevant environments for

comparisons (Fig 1). The two groups of variables were masked to the four areas. We created

these calibration areas using the packages ellipsenm, rgeos [61], and rgdal [62] in R.

Modeling algorithms

We used generalized linear models (GLMs) and Maxent [63,64] to estimate the ecological

niche of the species. These algorithms are both used commonly in the literature and produce

reliable and good-performing models [65,66]. For contrasts in model calibration, Maxent uses

presences and a characterization of the background, whereas GLMs use presences and pseudo-

absences; both background and the pseudo-absences were taken as a sample of available pixels

across the calibration area. For purposes of comparison, the same points (20,000) were used in

both algorithms, and were treated as both background and pseudo-absence data. The sample

of 20,000 points was taken for each calibration area option independently. This number of

points was used to achieve a good representation of the areas and corresponding environments

over which presences will be compared, and to follow recommendations regarding amount of

pseudo-absence data in ENM applications using regression techniques [67]. GLMs were per-

formed as logistic models with a weight of 1 for presences and 10,000 for pseudo-absences

(e.g., [14]). GLMs created in such a way are considered to be similar mathematically to Maxent

models under certain conditions and assumptions [68].

Variable selection process

As variable selection can be done in multiple ways and at distinct points in the process of data

preparation or modeling, we followed a multi-step approach that considers quantitative and

qualitative characteristics of predictors (Fig 2). Our approach consisted of (1) initial inspection

and processing of variables (see section Environmental variables); (2) assessing linear correla-

tions among variables; (3) exploring variable values in occurrences and across calibration

areas; (4) an initial selection based on the criteria (2) and (3) and the biological relevance of

variables; (5) creating variable sets resulting from all combinations of two or more initially

selected variables; and (6) including all sets of variables in model calibration exercises to iden-

tify which algorithm parameters and variable sets, in concert, result in the best-performing
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Fig 1. Geographic representation of species occurrence data for Spirodela polyrhiza (upper panel) and areas for

model calibration used to create ecological niche models. Occurrence data represented are after filtering and spatial-

thinning procedures. Buffer and concave areas are presented before masking them to land areas for purposes of

representation.

https://doi.org/10.1371/journal.pone.0276951.g001
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models. We performed exploration exercises 16 times: the combination of two environmental

data sets, four calibration areas, and two algorithms.

After the first two steps, initial selection of variables was done based on three consider-

ations: (1) groups of variables with all variable-to-variable pairwise correlations |r|� 0.8 (Fig

3); (2) biological relevance of variables; and (3) variables for which the calibration area had

wider limits in environmental dimensions than the occurrences [69], based on histogram plots

of values (Fig 4). The latter consideration assumes that using variables for which the entire

spectrum of responses can be characterized (i.e., non-truncated responses [2,70,71]) makes for

better models [72]. Biological relevance of variables was determined based on details about the

species’ natural history [25,41], phenology [28,73], and physiology [38,74] in the literature,

and our own experience with populations in the field and controlled environments. For sim-

plicity, we selected the same initial set of variables based on the relevance criterion for the four

calibration areas considered.

Using the groups of variables remaining after the initial selection, we prepared subsets of

variables representing all combinations of three or more variables [14]. Such sets of variables

were then used as part of our process of model calibration in which other parameter settings

were tested. For both Maxent and GLMs, we tested five response types (lq, lp, q, qp, lqp;

l = linear, q = quadratic, and p = product). For Maxent, six regularization multiplier values

were explored (0.1, 0.3, 0.6, 1.0, 2.5, 5.0). Performance of candidate models was evaluated

based on three criteria: statistical significance of predictions (partial ROC; [75]), omission rate

(allowing a 5% omission error; [76]), and model fit and complexity (based on the Akaike infor-

mation criterion for GLMs, and the AICc proposed by Warren and Seifert [77] for Maxent).

In total, then, for each model calibration exercise, 10,180 and 5065 GLM models were tested

at 10’ and 30’, respectively, and 61,080 and 30,390 Maxent models were tested at 10’ and 30’,

respectively. Model calibration processes with Maxent were done using the kuenm R package

[12], and model calibration using GLMs was done using stats and other base functions in R [53].

Fig 2. Schematic representation of the process that was followed to select variables to model the ecological niche of the greater duckweed (Spirodela polyrhiza).

https://doi.org/10.1371/journal.pone.0276951.g002
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Importance of variables and effects on models

To understand the effect of selected variables on models that could be used to represent species

niches and/or potential distributions, we created a final model for each of the calibration areas

at the two resolutions of variables, using parameters and sets of variables selected after model

calibration. Then, we measured the effects of variables on such models: in Maxent, we used

jackknife analysis to measure variable contributions [78], and for GLMs, we used an ANOVA

to explore deviance explained by each of the predictors considered and whether deviance val-

ues were statistically significant (whether the deviance was larger than expected by chance).

Fig 3. Results from linear correlation tests for initial variables. Values of correlation above |0.8| are magnified threefold. Results for variables at

10’ resolution are shown. Results for variables at 30’ are similar for most variables and can be found in S1 Fig.

https://doi.org/10.1371/journal.pone.0276951.g003
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We transferred all the models across the area comprising the union of the four calibration

areas, and compared those models to assess whether patterns of suitability values differed as a

result of using distinct variables, calibration areas, and algorithms. Model transfers in Maxent

were done using free extrapolation, no replicates, and a cloglog output format. Model transfers

for GLMs were scaled 0–1. As ecological niches exist simultaneously in both geographic and

environmental spaces [79], we created 3-dimensional visualizations of resulting predictions in

a space defined in terms of some of the environmental variables with larger effects on our

Fig 4. Histograms of variable values in calibration areas (M) and occurrence records. Results for variables at 10’ resolution and calibration areas

resulting from intersection are shown. Results of analyses at 30’ resolution and for other calibration areas were similar, although minor differences

can be observed in S2–S8 Figs.

https://doi.org/10.1371/journal.pone.0276951.g004
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models. Explorations in environmental space were used to detect how variation in suitability

was associated with variable values.

Results

Results from the selection process

Graphical explorations of environmental conditions across calibration areas and occurrence

records varied somewhat among the distinct options of areas for calibration (Figs 4 and S2–

S8). Despite such variations, these explorations allowed us to identify variables that appeared

better for detecting suitable and unsuitable conditions based on distributions of values and

confidence limits. Variable correlations also varied slightly among the distinct options of cali-

bration areas tested, although we consistently found more highly correlated variables in cali-

bration areas derived from ecoregions (Figs 3 and S1). After considering the exploration of

environmental conditions, correlation values, and biological importance, we retained 11 vari-

ables at 10’ resolution and 10 variables at 30’ resolution. The variables mean diurnal range

(BIO 2), maximum temperature of warmest month (BIO 5), minimum temperature of coldest

month (BIO 6), annual precipitation (BIO 12), precipitation of driest month (BIO 14), precipi-

tation seasonality (BIO 15), range of solar radiation (RSR), and average solar radiation of the

quarter with highest values (ASRQH), were in common between these sets; cation exchange

capacity (CEC), organic carbon (OC), and pH were kept for the set at 10’, whereas labile inor-

ganic phosphorus (LIP) and organic phosphorus (OP) were kept at 30”.

All model calibration exercises found at least one parameter setting that produced a model

that met all criteria for selection (i.e., models with partial ROC values�0.05, omission rates

�0.05, and delta AICc values�2; S4 and S5 Tables). Variables selected contrasted markedly

among treatments that considered distinct calibration areas, spatial resolutions, and modeling

algorithms (Fig 5). None of the final sets of variables selected during model calibration used all

of the variables initially selected. In general, fewer variables were selected for models created

with Maxent at 10’ resolution (2–4) than for the other algorithm/resolution combinations (6–

7). Although the subsets of variables considered were not totally comparable between the tests

at distinct resolutions, at least one variable representing soil conditions was consistently

selected across all exercises using distinct calibration areas, using at least one of the modeling

algorithms. Soil and solar radiation variables were more consistently selected at 10’ resolution,

especially when using Maxent, whereas at 30’ resolution, bioclimatic and solar radiation vari-

ables were more consistently selected. Bioclimatic and solar radiation variables that represent

extreme conditions or means of extreme periods appeared to be selected more consistently

regardless of the differences in spatial resolution or algorithm (Fig 5).

Effects of variables on models

Bioclimatic and solar radiation variables had consistently larger effects than soil variables on

Maxent models (S9 and S10 Figs), with the exception of CEC, which was the most important

variable for the only model that selected this predictor (i.e., with variables at 10’ using calibra-

tion areas that intersected the other three options; S9 Fig). The most important predictor for

Maxent models varied among BIO variables and CEC at 10’ resolution, whereas at 30’, BIO 6

was consistently selected as more important based on the contribution, permutation impor-

tance, and jackknife results. For GLMs, bioclimatic variables, a few quadratic versions, and

products of such variables, as well as CEC, contributed most to the deviance in models at 10’

resolution (S6–S9 Tables). Solar radiation variables were not particularly relevant to explain

deviance in these models. At 30’ resolution, deviance in models was mostly explained by

PLOS ONE Broad-scale factors shaping the geographic distribution of Spirodela polyrhiza

PLOS ONE | https://doi.org/10.1371/journal.pone.0276951 May 4, 2023 10 / 23

https://doi.org/10.1371/journal.pone.0276951


bioclimatic and solar radiation variables, whereas soil variables did not explain large portions

of the deviance (S10–S13 Tables).

Model projections

Geographic transfers of Maxent models at 10’ resolution showed higher variability across dis-

tinct calibration areas than GLM projections (Figs 6 and S11). Variation was greatest in north-

ern and eastern Asia, central North America, eastern Australia, and northern and southern

Africa. At 30’ resolution, geographic transfers showed lower variability for both GLM and

Maxent models.

Projections of suitability in environmental space showed higher variability in Maxent pro-

jections than in GLMs, considering distinct calibration areas at 10’ resolution (Figs 7 and S12–

S26). That is, suitability values varied highly across the regions of the environment detected as

suitable (above the 5% omission threshold). In most Maxent projections of suitability in

Fig 5. Summary of variables retained after the multi-step approach for selection. Results depending on spatial resolution of predictors, model

calibration areas, and the algorithm used are shown. BIO2 = mean diurnal range of temperature; BIO5 = maximum temperature of warmest

month; BIO6 = minimum temperature of coldest month; BIO12 = annual precipitation; BIO14 = precipitation of driest month;

BIO15 = precipitation seasonality; RSR = range of solar radiation; ASRQH = average solar radiation of the quarter with highest values;

CEC = cation exchange capacity; OC = organic carbon; LIP = labile inorganic phosphorus; OP = organic phosphorus.

https://doi.org/10.1371/journal.pone.0276951.g005
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environmental space, and for various environmental variables, extreme environments were

predicted to have high suitability (i.e., we observed truncated responses [2] in our models).

GLM projections were more stable in both aspects; in these projections, and considering most

variables, regions of high suitability tended to be surrounded by regions with decreasingly

lower suitability (i.e., extreme environments were only rarely detected as the most suitable

ones). At 30’ resolution, projections of environmental space looked similar across distinct cali-

bration areas and modeling algorithms. Perhaps the main difference is that Maxent con-

strained suitable environments a little more than did the GLMs.

Fig 6. Geographic projections of suitability values deriving from final models created with the variables selected. Results for variables at 10’ resolution are

shown. Results at 30’ resolution are presented in S11 Fig.

https://doi.org/10.1371/journal.pone.0276951.g006
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Discussion

Determining sets of appropriate environmental variables with which to model ecological

niches or potential distributions of species remains a major challenge in distributional ecology.

Our results showed that multiple factors generated distinct outcomes regarding which vari-

ables are better for model development. Even after an initial selection of relevant variables,

when we let statistical methods select the best subset of variables, choice of spatial resolution of

layers, area for model calibration, and modeling algorithm, all affected the final subset of pre-

dictors selected. However, despite the fact that distinct groups of variables were selected when

these factors were changed, some predictors were more consistently selected than others,

Fig 7. Projections of suitability values in a three-dimensional environmental space. Values of suitability derive from final models created with selected

variables and parameters. GLM results for variables at 10’ resolution and calibration areas resulting from intersection are shown. Results at 30’ resolution and for

other calibration areas are in S12–S26 Figs.

https://doi.org/10.1371/journal.pone.0276951.g007

PLOS ONE Broad-scale factors shaping the geographic distribution of Spirodela polyrhiza

PLOS ONE | https://doi.org/10.1371/journal.pone.0276951 May 4, 2023 13 / 23

https://doi.org/10.1371/journal.pone.0276951.g007
https://doi.org/10.1371/journal.pone.0276951


which hints at the relevance of such variables when understanding ecological limitations for

the species.

Of particular interest is the recurring selection of variables representing maximum temper-

ature (BIO 5) and minimum temperature (BIO 6), which concurs with our initial hypothesis

and, in most cases, helped to identify the limits of what is suitable for the species in regions

with high and low temperatures. The consistent selection of these two variables could be attrib-

uted to the importance of the temperature in the natural history of the species, especially in

that low temperatures are responsible for triggering production of turions [25]. If temperatures

in an area are consistently low, the species will only produce these dormant fronds, and popu-

lations will stop growing (i.e., the species will be outside of its thermal niche, at least for

reproduction).

Obtaining different sets of key variables in modeling exercises based on distinct calibration

areas is concerning. One of the main aspects to be defined when creating such models is the

area over which models will be calibrated [19,59]. This dependency has implications from

both statistical and ecological perspectives. From a modeling point of view, the environmental

values of the points selected as background or pseudoabsences affect how models are fitted to

the occurrence records, sometimes resulting in overfitted models, which complicates model

transfers [80,81]. In regard to the ecological relevance of these areas, because models are fitted

within these regions, the associations to be found are only relevant if a species has had access

to those environmental conditions [18]. As distinct calibration areas affected the set of vari-

ables selected and the effects of such variables in the models, correct definition of these areas

becomes an even more important challenge. New methods to define calibration areas are now

available that account for ecological, historical, and dispersal factors, which may result in more

properly calibrated models and more consistent sets of variables [59]. However, this challenge

persists in cases in which limited information exists about a species, or the distribution of spe-

cies is close to global, as in this example.

The other two factors explored (modeling algorithm and spatial resolution of variables) also

affected the set of environmental variables selected for niche models. As in previous explora-

tions [22,82,83], the effects of these two factors were seen clearly in the transfers of models,

both geographic and environmental, and thus cannot be neglected. Spatial resolution of layers

has been noticed as a factor that can influence the sets of variables selected [21]. Depending on

the spatial resolution of layers, the number of environmental combinations found in an area

can change, with more numerous combinations at finer spatial resolutions. One of the compli-

cations deriving from these differences is that the ways in which variables are correlated can

change at distinct resolutions due to changes in sample size [84], which can modify the initial

selection of variables that is made, not necessarily related to the biological importance of such

variables. Our inclusion of distinct modeling algorithms showed that combining these factors

certainly increases the complexity of the process of selecting variables. The relevance of distinct

variables has been shown to change depending on the algorithm used [22]. Although it is not

clear whether the set of variables should be changed depending on the algorithm (if the vari-

ables have been preselected in some way), the fact that distinct algorithms work differently and

that distinct predictors have distinct effects should not be overlooked [85].

Exploring environmental conditions within calibration areas and in occurrence records

beforehand helped to identify variables for which truncated responses could be found.

Although this point may not be related to the biological role of this environmental dimension,

it is crucial in being able to transfer a model to other conditions with less ambiguity [69,86].

Maximum temperature of warmest month (BIO 5) and minimum temperature of coldest

month (BIO 6) are examples of variables that contributed importantly to models, and, as

expected, values of suitability were higher at intermediate values, with decreasing suitability
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towards extreme environmental values. Performing these explorations can help to select pre-

dictors appropriately when the goal is to understand why species are distributed the way they

are. However, other variables should not be discarded only based on these graphical explora-

tions, because they may be important environmental constraints despite the truncation. For

instance, cation exchange capacity (CEC), a soil variable, showed truncation towards lower

values in our examples (Fig 7), but still was selected across various of the experiments, and its

contribution to models was not negligible. CEC is a soil variable that provides information

about nutrient availability; hence, these results underline the importance of making decisions

based on ideas that combine ecological and statistical considerations.

In spite of the variability in the results, we found that variables related to temperature

extremes were critical in characterizing the greater duckweed ecological niche, which concurs

with findings from experimental work done with this species [25,87]. In fact, temperature may

be the main factor shaping the distribution of this species, especially considering its distribu-

tional limits at high latitudes. Models created using precipitation variables (particularly those

using precipitation of driest quarter; BIO 14) correctly discarded suitability in xeric regions,

showing the importance of considering a factor that represents water availability [88]. Solar

radiation of quarters periods with higher values (ASRQH) and range of solar radiation (RSR)

were also potentially helpful in limiting the distribution of the species towards higher latitudes,

as solar radiation informs about a crucial resource for photosynthesis, and experimental work

has confirmed the importance of this factor [31,38]. Factors related to soil variables that served

as proxies for nutrient availability and water conditions also showed high importance in some

of the results. Although nutrients are critical for the development of this species, the fact that

soil variables are only indirect proxies for such information [89] and the complications of rep-

resenting this type of information at the scale of our analyses may explain why these variables

were not selected as consistently as others.

In sum, we showed that selecting relevant variables to characterize ecological niches and

potential distributions becomes even more complicated when multiple factors related to data

processing and model development are considered. However, if a series of criteria and

approaches is applied in concert, certain variables are selected more consistently than others.

Such variables may in effect be the ones that shape and constrain the species’ distribution from

a macroecological point of view. Variables representing extreme temperatures, dry periods,

seasonality of solar radiation, summer solar radiation, and some soil proxies of nutrients in

water were among the factors that contributed the most to shaping the distribution of S.

polyrriza.

Supporting information

S1 Fig. Results from linear correlation tests for initial variables. Values of correlation above

|0.8| are magnified threefold. Results for variables at 30’ resolution are shown.

(TIF)

S2 Fig. Histograms of environmental variable values in calibration areas and occurrence

records. Results for variables at 10’ resolution and buffer calibration areas are shown.

(TIF)

S3 Fig. Histograms of environmental variable values in calibration areas and occurrence

records. Results for variables at 10’ resolution and concave calibration areas are shown.

(TIF)

S4 Fig. Histograms of environmental variable values in calibration areas and occurrence

records. Results for variables at 10’ resolution and calibration areas resulting from ecoregions
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are shown.

(TIF)

S5 Fig. Histograms of environmental variable values in calibration areas and occurrence

records. Results for variables at 30’ resolution and buffer calibration areas are shown.

(TIF)

S6 Fig. Histograms of environmental variable values in calibration areas and occurrence

records. Results for variables at 30’ resolution and concave calibration areas are shown.

(TIF)

S7 Fig. Histograms of environmental variable values in calibration areas and occurrence

records. Results for variables at 30’ resolution and calibration areas resulting from ecoregions

are shown.

(TIF)

S8 Fig. Histograms of environmental variable values in calibration areas and occurrence

records. Results for variables at 30’ resolution and calibration areas resulting from intersection

are shown.

(TIF)

S9 Fig. Predictor contribution to Maxent models created with variables and parameter set-

tings selected after model calibration. Results for variables at 10’ resolutions are shown.

(TIF)

S10 Fig. Predictor contribution to Maxent models created with variables and parameter

settings selected after model calibration. Results for variables at 30’ resolutions are shown.

(TIF)

S11 Fig. Geographic projections of suitability values deriving from final models created

with the selected variables. Results for variables at 30’ resolution are shown.

(TIF)

S12 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.

GLM results for variables at 10’ resolution and calibration areas resulting from buffers are

shown.

(TIF)

S13 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.

GLM results for variables at 10’ resolution and calibration areas resulting from concave hulls

are shown.

(TIF)

S14 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.

GLM results for variables at 10’ resolution and calibration areas resulting from ecoregions are

shown.

(TIF)

S15 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.

GLM results for variables at 30’ resolution and calibration areas resulting from buffers are
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shown.

(TIF)

S16 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.

GLM results for variables at 30’ resolution and calibration areas resulting from concave hulls

are shown.

(TIF)

S17 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.

GLM results for variables at 30’ resolution and calibration areas resulting from ecoregions are

shown.

(TIF)

S18 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.

GLM results for variables at 30’ resolution and calibration areas resulting from intersection are

shown.

(TIF)

S19 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters. Max-

ent results for variables at 10’ resolution and calibration areas resulting from buffers are

shown.

(TIF)

S20 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters. Max-

ent results for variables at 10’ resolution and calibration areas resulting from concave hulls are

shown.

(TIF)

S21 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters. Max-

ent results for variables at 10’ resolution and calibration areas resulting from ecoregions are

shown.

(TIF)

S22 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters. Max-

ent results for variables at 10’ resolution and calibration areas resulting from intersection are

shown.

(TIF)

S23 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters. Max-

ent results for variables at 30’ resolution and calibration areas resulting from buffers are

shown.

(TIF)

S24 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters.
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Maxent results for variables at 30’ resolution and calibration areas resulting from concave hulls

are shown.

(TIF)

S25 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters. Max-

ent results for variables at 30’ resolution and calibration areas resulting from ecoregions are

shown.

(TIF)

S26 Fig. Projections of suitability values in a three-dimensional environmental space. Val-

ues of suitability derive from final models created with selected variables and parameters. Max-

ent results for variables at 30’ resolution and calibration areas resulting from intersection are

shown.

(TIF)

S1 Table. Spatial autocorrelation results for all environmental variables derived from spa-

tial patterns of occurrence data after using distinct distances for spatial thinning. Results

presented here are for variables at 10’ resolution. Spatial autocorrelation was measured using

the statistic Moran’s I.

(DOCX)

S2 Table. Spatial autocorrelation results for all environmental variables derived from spa-

tial patterns of occurrence data after using distinct distances for spatial thinning. Results

presented here are for variables at 30’ resolution. Spatial autocorrelation was measured using

the statistic Moran’s I.

(DOCX)

S3 Table. Description of ecological importance of variables used for ecological niche

modeling exercises with Spirodela polyrhiza.

(DOCX)

S4 Table. Selected parameter settings and variables after model calibration for analyses

with variables at 10’ resolution. AIC/AICc values are not comparable across distinct calibra-

tion areas.

(DOCX)

S5 Table. Selected parameter settings and variables after model calibration for analyses

with variables at 30’ resolution. AIC/AICc values are not comparable across distinct calibra-

tion areas.

(DOCX)

S6 Table. Effects of predictors on GLMs produced using variables and parameter settings

selected after model calibration. Results for models created with variables at 10’ resolution,

using buffer calibration areas are shown. Quadratic = “^2”; Product = “:”.

(DOCX)

S7 Table. Effects of predictors on GLMs produced using variables and parameters settings

selected after model calibration. Results for models created with variables at 10’ resolution,

using concave calibration areas are shown. Quadratic = “^2”; Product = “:”.

(DOCX)

S8 Table. Effects of predictors on GLMs produced using variables and parameters settings

selected after model calibration. Results for models created with variables at 10’ resolution,
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using calibration areas from ecoregions are shown. Quadratic = “^2”; Product = “:”.
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S9 Table. Effects of predictors on GLMs produced using variables and parameters settings

selected after model calibration. Results for models created with variables at 10’ resolution,

using calibration areas from intersection are shown. Quadratic = “^2”; Product = “:”.

(DOCX)

S10 Table. Effects of predictors on GLMs produced using variables and parameters set-

tings selected after model calibration. Results for models created with variables at 30’ resolu-

tion, using buffer calibration areas are shown. Quadratic = “^2”; Product = “:”.

(DOCX)

S11 Table. Effects of predictors on GLMs produced using variables and parameters set-

tings selected after model calibration. Results for models created with variables at 30’ resolu-

tion, using concave calibration areas are shown. Quadratic = “^2”; Product = “:”.

(DOCX)

S12 Table. Effects of predictors on GLMs produced using variables and parameters set-

tings selected after model calibration. Results for models created with variables at 30’ resolu-
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S13 Table. Effects of predictors on GLMs produced using variables and parameters set-
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8. Cruz-Cárdenas G, López-Mata L, Villaseñor JL, Ortiz E. Potential species distribution modeling and the

use of principal component analysis as predictor variables. Rev Mex Biodivers. 2014; 85: 189–199.

https://doi.org/10.7550/rmb.36723

9. Simões M, Romero-Alvarez D, Nuñez-Penichet C, Jiménez L, Cobos ME. General theory and good
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