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A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting 
the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching 
complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent 
to a wedge of spheres. In this paper, we extend Matsushita’s work to include a larger 
family of graphs and carry out a closer analysis of lines of triangles and pentagons, where 
the Fibonacci numbers arise.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
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1. Introduction

For a finite simple graph G , the matching complex M(G) is the simplicial complex on the set of edges with faces given 
by matchings in the graph, where a matching is a set of edges no two of which share a vertex. The topology of matching 
complexes has been the subject of much research over the years. Chessboard complexes, which are the matching complexes 
of complete bipartite graphs, have been studied by many authors, including Athanasiadis [2], Björner, et al. [5], Jojić [11], 
Shareshian and Wachs [17], and Ziegler [19]. See Wachs [18] for a survey. Other matching complexes that have been studied 
include those for paths and cycles (Kozlov [13]) and trees (Marietti and Testa [14] and Jelić Milutinović et al. [10]). Most 
relevant to this paper is the study of matching complexes of grid graphs (Braun and Hough [6] and Matsushita [15]), 
polygonal line tilings (Matsushita [16]), and honeycomb graphs (Jelić Milutinović et al. [10]). We are particularly interested 
in graphs whose matching complexes are contractible or homotopy equivalent to a wedge of spheres. These are not all 
graphs; for example, in [5] it is shown that the matching complex of the complete bipartite graph K3,4 is a torus.

Other papers take different approaches to the study of matching complexes. Bayer, et al. [3] start with the topology of the 
matching complex and identify the graphs that produce it. The current authors [4] define the perfect matching complex, the 
subcomplex of the matching complex with facets corresponding to perfect matchings, and study this complex for honeycomb 
graphs.

Note that other simplicial complexes associated with graphs have been studied from a topological viewpoint. See, in 
particular, Jonsson’s book [12]. We will see that tools developed for the study of independence complexes of graphs by 
Adamaszek [1] and Engström [8] play an important role in our work.

In this paper we will focus on graphs that are formed from lines of polygons. This expands on the work of Matsushita 
[16], who studied matching complexes of the graphs formed by lines of 2n-gons, intersecting at parallel edges. Our main 
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result is that any line of polygons, allowing different size polygons in the line (as long as each has at least four edges), has 
matching complex that is contractible or homotopy equivalent to a wedge of spheres. We also consider lines of triangles, 
where we can specify the dimensions and numbers of spheres in the wedge. In the case of pentagonal line tilings we give 
the explicit homotopy type (involving Fibonacci numbers).

2. Overview

We introduce the definitions and propositions that we use throughout the remainder of the article. Let G be a finite 
simple graph.

Definition 1. A matching of a graph G is a set of edges of G , no two of which share a vertex. The matching complex of a 
graph G is the simplicial complex M(G) with vertex set E , the set of edges of G , and faces the subsets σ ⊆ E that form 
matchings of G .

Definition 2. An independent set of a graph G is a set of vertices of G , no two of which form an edge. The independence 
complex of a graph G is the simplicial complex I(G) with vertex set V , the set of vertices of G , and faces the subsets σ ⊆ V
that form independent sets of G .

Definition 3. The line graph L(G) of a graph G is the graph with vertex set the set of edges of G and edge set the set of 
pairs of edges of G that share a vertex.

The following statement follows directly from the definitions.

Proposition 4. The matching complex of G is the independence complex of L(G).

It is not true that every independence complex is a matching complex. For example, consider the complex with facets 
{a, b, c} and {d}. This is the independence complex of K1,3, but it is not the matching complex of any graph, since such a 
graph would have three independent edges and one edge that intersects all three of them.

Proposition 4 enables us to translate theorems about independence complexes to theorems about matching complexes.
Define the (open) edge neighborhood E NG (e) of an edge e in the graph G to be the set of edges adjacent to e, and the 

closed edge neighborhood of e to be E NG [e] = E NG(e) ∪ {e}. (When the graph G is clear from context we write E N(e) and 
E N[e], respectively.)

For a simplex σ in a simplicial complex K the link of σ is

lk(σ , K ) = {τ ∈ K | τ ∩ σ = ∅, τ ∪ σ ∈ K }
and the (face) deletion of σ ∈ K is

del(σ , K ) = {τ ∈ K | σ �⊂ τ }.
For a graph G and edge e ∈ E(G), denote the corresponding vertex in M(G) as ē. Then lk(ē, M(G)) = M(G \ E NG [e]). 

Since for a vertex v of K the sequence lk(v, K ) → del(v, K ) → K is a cofiber sequence (see [1, Section 2] for the definition 
of cofiber sequence and further details), we have the following result.

Proposition 5 (Adamaszek [1], Proposition 3.1). The sequence

M(G \ E N[e]) ↪→ M(G \ {e}) ↪→ M(G)

is a cofiber sequence. If the inclusion M(G \ E N[e]) ↪→M(G \ {e}) is null-homotopic, then there is a homotopy equivalence M(G) �
M(G \ {e}) ∨ �M(G \ E N[e]).

Proposition 6 (Engström [7], Lemma 2.4). Let G be a graph that contains two different edges e and h such that E N(e) ⊂ E N(h). Then 
M(G) collapses to M(G \ {h}). That is, M(G) �M(G \ {h}).

Proposition 7 (Adamaszek [1], Theorem 3.3). Let G be a graph that contains two different edges e and h such that E N[e] ⊂ E N[h]. 
Then

M(G) � M(G \ {h}) ∨ �M(G \ E N[h]).

An edge e in G is simplicial if L(G[E N(e)]) is a complete graph. That is, every pair of edges adjacent to e are themselves 
adjacent.
2
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Fig. 1. Example of extended polygonal line tiling in G2,1
4,6,4,6.

Proposition 8 (Engström [7], Lemma 2.5). If e is a simplicial edge in G, then there is a homotopy equivalence

M(G) �
∨

w∈E N(e)

�M(G \ E N[w]).

Corollary 9. If G is a graph, and if P is a path of length 3 that intersects G at just one endpoint, then M(G ∪ P ) � �M(G).

Proposition 10 (Engström [9], Lemma 2.2). If G is a graph with a path X of length 4 whose internal vertices are of degree two and 
whose end vertices are distinct, then M(G) � �M(G/X), where G/X is the contraction of X to a single edge with endpoints given 
by the endpoints of X.

The resulting contraction may have parallel edges. The following proposition explains the homotopy type of the matching 
complex in those situations.

Proposition 11. Let G be a graph and e an arbitrary edge in G. Consider a graph G ∪ {x} obtained by adding an edge x parallel to e (x
and e have same endpoints). Then:

M(G ∪ {x}) � M(G) ∨ �M(G \ E NG [e]).

Proof. Observe that E NG∪{x}[e] = E NG∪{x}[x], so by Proposition 7 we have

M(G ∪ {x}) � M(G) ∨ �M((G ∪ {x}) \ E NG∪{x}[x]).
Then we have (G ∪ {x}) \ E NG∪{x}[x] = G \ E NG [e], and the result follows. �
3. General polygonal line tilings

A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no 
three intersecting. To maintain the last property, we assume all the cycles are of length at least four. We want to prove 
that the matching complex of such a graph is contractible or homotopy equivalent to a wedge of spheres. Our methods will 
require that we expand the class of graphs slightly by allowing two paths attached to adjacent vertices of the final cycle in 
the string. Here is the formal definition.

Definition 12. Let n be a positive integer, k and � nonnegative integers, and s1, s2, . . . , sn be a sequence of integers satisfying 
s j ≥ 4 for all j. Let Gk,�

s1,s2,...,sn be the set of graphs obtained as follows.

• For each i, 1 ≤ i ≤ n − 1, Ci is an si -cycle containing two disjoint edges ai−1bi−1 and cidi . Cn is an sn-cycle containing 
two disjoint edges an−1bn−1 and anbn .

• T is a length k path on vertices t0, t1, . . . , tk (if k ≥ 1) and U is a length � path on vertices u0, u1, . . . , u� (if � ≥ 1).
• The following pairs of vertices are identified: ai = ci and bi = di for all i, 1 ≤ i ≤ n − 1, and an = t0, bn = u0 (if the latter 

vertices exist).

Any graph in Gk,�
s1,s2,...,sn is called an (extended) polygonal line tiling. See Fig. 1.

Note: This set can contain different graphs with the same si , k and �. This is not important for our arguments.

Theorem 13. If G is any graph in Gk,�
s1,s2,...,sn , then the matching complex of G is contractible or homotopy equivalent to a wedge of 

spheres.
3
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Proof. The proof is by induction on n, with an internal induction on k and �.
Base case. Suppose n = 1. By symmetry, we can assume k ≥ �. If k = � = 0, then G0,0

s1 is simply the s1-cycle, which is 
known to have matching complex homotopy equivalent to a sphere or a wedge of two spheres (Kozlov, [13]).

If k = 1, 0 ≤ � ≤ 1, let e = t0t1 = a1t1 and let h be the edge of the s1-cycle, h = a1b1. Thus E N[e] ⊂ E N[h], and by 
Proposition 7,

M(G) � M(G \ {h}) ∨ �M(G \ E N[h])
= M(P s1+�+1) ∨ �M(P s1−2)

where Pn denotes a path on n vertices.
It is known that the matching complex of a path is contractible or homotopy equivalent to a sphere [13], so in this case 

M(G) is contractible or homotopy equivalent to a wedge of spheres.
If k = 2, 0 ≤ � ≤ 2, let e = t1t2 and let h = t0t1 = a1t1. Thus E N[e] ⊂ E N[h], and by Proposition 7

M(G) � M(G \ {h}) ∨ �M(G \ E N[h])
= M(H � P2)) ∨ �M(P s1−1+�)

where H is the s1-cycle with an �-path attached to the cycle at an endpoint. Since M(P2) is a single vertex, and the 
matching complex of a disjoint union is the join of the matching complexes of the components, M(H � P2) is contractible. 
So M(G) is contractible or homotopy equivalent to a wedge of spheres.

Now, inductively, assume that if both k and � are at most m ≥ 2, then the matching complex of G ∈ Gk,�
s1 is homotopy 

equivalent to a wedge of spheres. Let � ≤ k = m +1 and let G ∈ Gm+1,�
s1 . Let e = tmtm+1 and h = tm−1tm . Thus E N[e] ⊂ E N[h], 

and by Proposition 7,

M(G) � M(G \ {h}) ∨ �M(G \ E N[h])
= M(H � P2)) ∨ �M( J )

where H is the disjoint union of a graph in Gm−1,�
s1 and P2, and hence has contractible matching complex, and J ∈ Gm−2,�

s1 . If 
� ≤ m, then by the induction assumption, M( J ) is homotopy equivalent to a wedge of spheres. If � = m + 1, we repeat the 
argument with the roles of k and � reversed, and reduce to the suspension of a matching complex for a graph in Gm−2,m−2

s1 . 
So, again, by induction the matching complex of G is homotopy equivalent to a wedge of spheres.

This completes the base case, n = 1.
Now we assume the result for extended polygonal line tilings with fewer than n basic cycles, n ≥ 2, and let G ∈ Gk,�

s1,s2,...,sn . 
As in the base case, we consider different values of k and �, assuming k ≥ �.

Assume k = � = 0; then we need to consider separate cases based on the size of sn .
Consider sn = 4. Let e = anbn and h = an−1bn−1. Then E N(e) ⊂ E N(h), by Proposition 6, M(G) � M(G \ {h}). The graph 

G \ {h} is in the set G0,0
s1,s2,...,sn−2,sn−1+2, so by the induction assumption, the matching complex of G is homotopy equivalent 

to a wedge of spheres.
Now consider sn = 5. The 5-cycle minus the edge an−1bn−1 forms a path of length four with internal vertices of degree 

2. Then, by Proposition 10, M(G) is homotopy equivalent to the suspension of the matching complex of the (multi)graph 
H obtained by shrinking the 5-cycle to a 2-cycle (pair of parallel edges). Let e and h be those parallel edges in H . Then 
E N[e] = E N[h], and by Proposition 10 and Proposition 11 we obtain:

M(G) � �M(H) � �(M(H \ {h}) ∨ �M(H \ E N[h]))
� �(M(H \ {h})) ∨ �2M(H \ E N[h]).

Here H \ {h} ∈ G0,0
s1,s2,...,sn−1 and H \ E N[h] ∈ Gk′,�′

s1,s2,...,sn−2 for some k′ and �′ with k′ + �′ = sn−1 − 4. (If n = 2, H \ E N[h] is a 
path of length sn−1 − 3.) By the induction assumption, the matching complex of each is homotopy equivalent to a wedge of 
spheres, and hence so is the matching complex of G .

We now consider sn = 6. The 6-cycle minus the edge an−1bn−1 contains a path of length four with internal vertices of 
degree 2. So by Proposition 10 M(G) is homotopy equivalent to the suspension of the matching complex of the graph H
obtained by shrinking the 6-cycle to a 3-cycle. Let h = an−1bn−1 and let e be one of the other edges of the 3-cycle in H . Then 
E N[e] ⊂ E N[h], and by Proposition 7, M(G) � �M(H) � � (M(H \ {h})) ∨ �2M(H \ E N[h]). Here H \ {h} ∈ G0,0

s1,s2,...,sn−1+1

and H \ E N[h] ∈ Gk′,�′
s1,s2,...,sn−2 for some k′ and �′ with k′ +�′ = sn−1 −4. (Again, if n = 2 H \ E N[h] is a path of length sn−1 −3.) 

By the induction assumption, the matching complex of each is contractible or homotopy equivalent to a wedge of spheres, 
and hence so is the matching complex of G .

Finally, consider sn ≥ 7. The sn-cycle minus the edge an−1bn−1 contains a path of length four with internal vertices of 
degree 2. Then by Proposition 10 M(G) is homotopy equivalent to the suspension of the matching complex of the graph 
H obtained by shrinking the sn-cycle to an (sn − 3)-cycle. This process can be repeated until the cycle shrinks to a cycle of 
4
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h e

G ∈ G2,1
s1,...,4,5

G \ {h} = H � P1, H ∈ G0,1
s1,...,4,5

G \ E N[h] ∈ G1,2
s1,...,4

Fig. 2. Example of reduction for sn = 5, k = 2.

length at most 6. So by the above cases, the matching complex of G is contractible or homotopy equivalent to a wedge of 
spheres.

This completes the k = � = 0 case for n.
Now assume k = 1, 0 ≤ � ≤ 1. Let e = t0t1 = ant1 and let h be the edge of the sn-cycle h = anbn . Thus E N[e] ⊂ E N[h], 

and by Proposition 7, M(G) � M(G \ {h}) ∨ �M(G \ E N[h]). Here G \ {h} ∈ Gk′,�′
s1,s2,...,sn−1 , with k′ + �′ = sn − 1 + �, and 

G \ E N[h] ∈ Gk′′,�′′
s1,s2,...,sn−1 , with k′′ + �′′ = sn − 4. By the induction assumption, the matching complex of each is contractible 

or homotopy equivalent to a wedge of spheres, and hence so is the matching complex of G .
Next assume k = 2, 0 ≤ � ≤ 2. (For an example see Fig. 2.) Let e = t1t2 and let h = t0t1 = ant1. Thus E N[e] ⊂ E N[h], and 

by Proposition 7

M(G) � M(G \ {h}) ∨ �M(G \ E N[h]).
Here G \ {h} = H � P2, where H ∈ G0,�

s1,s2,...,sn . Since M(P2) is a single vertex, and the matching complex of a disjoint 
union is the join of the matching complexes of the components, M(H � P2) is contractible. Also, G \ E N[h] ∈ Gk′,�′

s1,s2,...,sn−1 , 
with k′ + �′ = sn − 3 + �. By the induction assumption, the matching complex of each is contractible or homotopy equivalent 
to a wedge of spheres, and hence so is the matching complex of G .

Now, inductively, assume that if both k and � are at most m ≥ 2, then the matching complex of G ∈ Gk,�
s1,s2,...,sn is con-

tractible or homotopy equivalent to a wedge of spheres. Let � ≤ k = m + 1 and let G ∈ Gm+1,�
s1,s2,...,sn Let e = tmtm+1 and 

h = tm−1tm . Thus E N[e] ⊂ E N[h], and by Proposition 7,

M(G) � M(G \ {h}) ∨ �M(G \ E N[h]).
Here G \ {h} is the disjoint union of a graph in Gm−1,�

s1,s2,...,sn and P2, and hence has contractible matching complex, and 
�M(G \ E N[h]) ∈ Gm−2,�

s1,s2,...,sn . If � ≤ m, then by the induction assumption, M(G \ E N[h]) is homotopy equivalent to a wedge 
of spheres. If � = m + 1, we repeat the argument with the roles of k and � reversed, and reduce to the suspension of a 
matching complex for a graph Gm−2,m−2

s1,s2,...,sn . So, again, by induction the matching complex of G is contractible or homotopy 
equivalent to a wedge of spheres.

This completes the induction on n and hence the proof. �
4. Line tilings by triangles

In the last section, we restricted the cycles in the tilings to be of length four or greater, to avoid three cycles intersecting 
at a point. Now we look at the special case of a line of triangles.

Definition 14. Let t be a positive integer. A regular triangular line tiling is a graph P3,t with vertex set V and edge set E as 
follows:
5
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a0 a1 a2 a3

b2b1b0

Fig. 3. P3,5.

• V = {ai | 0 ≤ i ≤ �t/2�} ∪ {bi | 0 ≤ i ≤ �t/2�}
• E = {aiai+1 | 0 ≤ i ≤ �(t − 1)/2�} ∪ {bibi+1 | 0 ≤ i ≤ �(t − 2)/2�} ∪ {ai+1bi | 0 ≤ i ≤ �(t − 1)/2�} ∪ {aibi | 0 ≤ i ≤ �t/2�}.

We extend this definition to t = 0, where it gives a single edge a0b0.

See Fig. 3.

Theorem 15. Let P3,t be a regular triangular line tiling. Then,

M(P3,0) � ∗, M(P3,1) � M(P3,2) �
∨

2

S0

M(P3,3) � S1, M(P3,4) �
∨

5

S1

and for t ≥ 5,

M(P3,t) � �M(P3,t−3) ∨ �M(P3,t−3) ∨ �2M(P3,t−5).

Thus M(P3,t) is contractible or homotopy equivalent to a wedge of spheres for all t ≥ 1.

Proof. The homotopy types for t ≤ 4 are straightforward. See Appendix. Now assume t ≥ 5.
Since E N(a0b0) ⊂ E N(a1b1) in P3,t , Proposition 6 gives us M(P3,t) �M(P3,t \ {a1b1}).
In M(P3,t \ {a1b1}) we see E N[a0b0] ⊂ E N[a1b0]. Hence by Proposition 7,

M(P3,t \ {a1b1}) � M(P3,t \ {a1b1,a1b0}) ∨ �M((P3,t \ {a1b1}) \ E N[a1b0]).
Since (P3,t \ {a1b1}) \ E N[a1b0] is isomorphic to P3,t−3,

M(P3,t \ {a1b1}) � M(P3,t \ {a1b1,a1b0}) ∨ �M(P3,t−3).

We now turn our attention to M(P3,t \ {a1b1, a1b0}). In P3,t \ {a1b1, a1b0} the vertices a2, a1, a0, b0, and b1 form an induced 
path of length 4, call it X . Contracting path X we obtain a graph isomorphic to P3,t−3 with an additional double edge x
(with same vertices as edge a2b1); call this graph P ′

3,t−3 = P3,t−3 ∪ {x}. Then by Proposition 10,

M(P3,t \ {a1b1,a1b0}) � �M(P ′
3,t−3).

Further, we apply Proposition 11 and obtain

M(P ′
3,t−3) � M(P3,t−3) ∨ �M(P3,t−3 \ E N P3,t−3 [x]).

The graph P3,t−3 \ E N P3,t−3 [x] is isomorphic to P3,t−5. Together the homotopy equivalences obtained imply

M(P3,t) � �M(P3,t−3) ∨ �M(P3,t−3) ∨ �2M(P3,t−5).

Hence M(P3,t) is homotopy equivalent to a wedge of spheres, or contractible for all t ≥ 1. �
Corollary 16. Let s(t, d) be the number of spheres of dimension d in the wedge that is the homotopy type of M(P3,t). Then for t ≥ 7
and d ≥ 2, s(t, d) = 2s(t − 3,d − 1) + s(t − 5, d − 2) and

∑
s(t,d)xt yd = 2x2 + x3 y + 5x4 y + 2x6 y2

1 − 2x3 y − x5 y2
.

t≥2,d≥0

6
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Proof. Let q(x, y) =
∑
t≥2
d≥0

s(t, d)xt yd . From Theorem 15, we get s(t, d) for t ≤ 6 or d ≤ 2, and the recursion M(P3,t) �
∨
2

�M(P3,t−3) ∨ �2M(P3,t−5) gives s(t, d) = 2s(t − 3, d − 1) + s(t − 5, d − 2) for t ≥ 7, d ≥ 2.

Thus

q(x, y) = 2x2 + x3 y + 5x4 y + 4x5 y + 4x6 y2 +
∑
t≥7
d≥2

s(t,d)xt yd

= 2x2 + x3 y + 5x4 y + 4x5 y + 4x6 y2

+
∑
t≥7
d≥2

2s(t − 3,d − 1)xt yd +
∑
t≥7
d≥2

s(t − 5,d − 2)xt yd

= 2x2 + x3 y + 5x4 y + 4x5 y + 4x6 y2

+
∑
t≥4
d≥1

2s(t,d)xt+3 yd+1 +
∑
t≥2
d≥0

s(t,d)xt+5 yd+2

= 2x2 + x3 y + 5x4 y + 4x5 y + 4x6 y2

+
∑
t≥2
d≥0

2s(t,d)xt+3 yd+1 − 4x5 y − 2x6 y2 +
∑
t≥2
d≥0

s(t,d)xt+5 yd+2.

So

q(x, y)(1 − 2x3 y − x5 y2) = 2x2 + x3 y + 5x4 y + 2x6 y2. �
Theorem 17. For t ≥ 2, let Dt be the set of dimensions of the spheres occurring in the wedge of spheres that gives the homotopy type 

of M(P3,t). Let It =
[⌊

t

3

⌋
,

2t − f (t)

5

]
, where

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5 if t ≡ 0 (mod 5)

2 if t ≡ 1 (mod 5)

4 if t ≡ 2 (mod 5)

1 if t ≡ 3 (mod 5)

3 if t ≡ 4 (mod 5)

.

Then Dt = It .

Proof. Part I. Dt ⊆ It .
The proof is by induction on t ≥ 2. The statement is true for the base cases, 2 ≤ t ≤ 6. So assume t ≥ 7 and the statement 

is true for all smaller t . Theorem 15 implies that Dt = {r + 1 | r ∈ Dt−3} ∪ {r + 2 | r ∈ Dt−5}. We consider first the smallest 
integer in Dt .

min(Dt) = min(min(Dt−3) + 1,min(Dt−5) + 2)

= min

(⌊
t − 3

3

⌋
+ 1,

⌊
t − 5

3

⌋
+ 2

)

= min

(⌊
t

3

⌋
,

⌊
t + 1

3

⌋)
=

⌊
t

3

⌋

Now for the largest integer in Dt .

max(Dt) = max(max(Dt−3) + 1,max(Dt−5) + 2)

= max

(
2t − 1 − f (t − 3)

5
,

2t − f (t − 5)

5

)

We calculate this for each congruence class modulo 5.
7
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• t ≡ t − 5 ≡ 0 (mod 5), t − 3 ≡ 2 (mod 5)

max(Dt) = max

(
2t − 5

5
,

2t − 5

5

)
= 2t − 5

5
= 2t − f (t)

5
• t ≡ t − 5 ≡ 1 (mod 5), t − 3 ≡ 3 (mod 5)

max(Dt) = max

(
2t − 2

5
,

2t − 2

5

)
= 2t − 2

5
= 2t − f (t)

5
• t ≡ t − 5 ≡ 2 (mod 5), t − 3 ≡ 4 (mod 5)

max(Dt) = max

(
2t − 4

5
,

2t − 4

5

)
= 2t − 4

5
= 2t − f (t)

5
• t ≡ t − 5 ≡ 3 (mod 5), t − 3 ≡ 0 (mod 5)

max(Dt) = max

(
2t − 6

5
,

2t − 1

5

)
= 2t − 1

5
= 2t − f (t)

5
• t ≡ t − 5 ≡ 4 (mod 5), t − 3 ≡ 1 (mod 5)

max(Dt) = max

(
2t − 3

5
,

2t − 3

5

)
= 2t − 3

5
= 2t − f (t)

5

So min(Dt) = min(It) and max(Dt) = max(It).
Part II. It ⊆ Dt .
Note that in the expansion of the rational function for q(x, y) there is no subtraction. We consider one set of monomials 

that occur in q(x, y) with positive coefficients, namely those of the form (2x2)(2x3 y)α(x5 y2)β = 2α+1x3α+5β+2 yα+2β . Each 
such monomial cxt yd represents c spheres of dimension d in the wedge of spheres for the homotopy type of M(P3,t), that 
is, an element d of Dt . We are not concerned with the coefficient c, which for these monomials is positive. So we will 
consider just the exponents. We know that for every nonnegative integers α and β , α + 2β ∈ D3α+5β+2. Also, for every 
integer t ≥ 5, there exist α ≥ 0 and β ≥ 0 such that t = 3α + 5β + 2. (In general, the α and β are not uniquely determined.) 
In what follows we sometimes assume t ≥ 14; it is easy to check that the statement of the theorem is true for smaller t . 
(See Appendix.) We show that for fixed t ≥ 14, all of these elements of Dt fill the interval It .

Let At = {(α, β) | 3α + 5β + 2 = t} and f (α, β) = α + 2β . Note that if (α, β) ∈ At and α ≥ 5, then (α − 5, β + 3) ∈ At and 
f (α − 5, β + 3) = f (α, β) + 1. Using this we will produce an interval of sphere dimensions for fixed t .

Fix t ≥ 14. The minimum of α + 2β for (α, β) ∈ At occurs when α is greatest and β is least; values are in the following 
table.

t ≡ 0 (mod 3) α = (t − 12)/3, β = 2 α + 2β = t/3
t ≡ 1 (mod 3) α = (t − 7)/3, β = 1 α + 2β = (t − 1)/3
t ≡ 2 (mod 3) α = (t − 2)/3, β = 0 α + 2β = (t − 2)/3

The maximum of α + 2β for (α, β) ∈ At occurs when α is least and β is greatest; values are in the following table.

t ≡ 0 (mod 5) α = 1, β = (t − 5)/5 α + 2β = (2t − 5)/5
t ≡ 1 (mod 5) α = 3, β = (t − 11)/5 α + 2β = (2t − 7)/5
t ≡ 2 (mod 5) α = 0, β = (t − 2)/5 α + 2β = (2t − 4)/5
t ≡ 3 (mod 5) α = 2, β = (t − 8)/5 α + 2β = (2t − 6)/5
t ≡ 4 (mod 5) α = 4, β = (t − 14)/5 α + 2β = (2t − 8)/5

Note in all cases a pair in At produces the minimum value in the set It , but in some cases no pair in At produces the 
maximum value in It . However, the maximum value produced by a pair in At is at least one less than the maximum value 
of It . Since the set produced by At is itself an interval, missing at most one element (the top) of the interval It , and we 
know by Part I that the top element of It is in Dt , we conclude that Dt = It . �
5. Regular pentagonal line tilings

We consider one more particular case, pentagonal line tilings.

Definition 18. Let t be a positive integer. A regular pentagonal line tiling is a graph P5,t with vertex set V and edge set E as 
follows:

• V = {ai | 0 ≤ i ≤ �3t/2�} ∪ {bi | 0 ≤ i ≤ �3t/2�}
• E = {aiai+1 | 0 ≤ i ≤ �(3t − 1)/2�} ∪ {bibi+1 | 0 ≤ i ≤ �(3t − 2)/2�} ∪ {a3 jb3 j | 0 ≤ j ≤ �t/2�} ∪ {a3 j+2b3 j+1 | 0 ≤ j ≤

�(t − 1)/2�}

See Fig. 4.
Let (Fn) be the standard Fibonacci sequence, F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.
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a0

a1

a2 a3

a4

a5 a6

b6

b5

b4b3

b2

b1b0

Fig. 4. Graph P5,4.

u
w

v

Fig. 5. Graph Ht .

z

vx

Fig. 6. Graph G ′
t .

Theorem 19. Let P5,t be the pentagonal line tiling with t ≥ 1. Then M(P5,t) �
∨

Ft+2−1

St .

Proof. The proof is by induction, and we work with two sequences of graphs. Let Gt = P5,t . Let Ht be the graph obtained 
by appending one edge to the graph Gt , as shown in Fig. 5. We will use Proposition 10 and Proposition 11 to reduce the 
matching complex of Gt to the wedge of suspensions of the matching complexes of Gt−1 and Ht−2.

We first find the homotopy type of the matching complex of Ht . It is straightforward to check that M(H1) �
∨

2

S1. Let 

u be the pendant edge and v and w its neighboring edges, as shown in Fig. 5. The edge u is a simplicial edge, because its 
two neighbors are neighbors of each other, so we can apply Proposition 8, and conclude that

M(Ht) � �M(Ht \ E N[v]) ∨ �M(Ht \ E N[w]).
The graph Ht \ E N[v] is isomorphic to Ht−1. The graph Ht \ E N[w] is isomorphic to the graph Ht−2 with an additional 
path of length 3 attached to another vertex of the first pentagon. (In the case of t = 2, Ht \ E N[w] is a path of length 5.) By 
Corollary 9, this path can be collapsed to give M(Ht \ E N[w]) � �M(Ht−2). Thus, M(Ht) � �M(Ht−1) ∨�2M(Ht−2). By 
induction we conclude that M(Ht) �

∨
Ft+2

St .

Now consider Gt = P5,t . Let G ′
t be the multigraph obtained from Gt by duplicating the first “vertical” edge v in Gt ; 

denote the duplicate edge x. (See Fig. 6.) Proposition 10 gives M(Gt) = �M(G ′
t−1). Since G ′

t−1 = Gt−1 ∪ {x}, by applying 
Proposition 11 we obtain:

M(G ′
t−1) � M(Gt−1) ∨ �M(Gt−1 \ E NGt−1 [v]).

Further, graph Gt−1 \ E NGt−1 [v]) is isomorphic to Ht−2, so
9
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M(Gt) � �M(G ′
t−1) � �M(Gt−1) ∨ �2M(Ht−2).

It is straightforward to check that M(G1) � S1 and M(G2) �
∨

2

S2. By induction we see that M(Gt) is homotopy 

equivalent to a wedge of t-spheres:

M(Gt) � �M(Gt−1) ∨ �2M(Ht−2) � �(
∨

Ft+1−1

St−1) ∨ �2(
∨
Ft

St−2) �
∨

Ft+1−1+Ft

St .

So M(P5,t) �
∨

Ft+2−1

St . �

6. Conclusion

Our focus in this paper has been on extending the set of graphs whose matching complexes are known to be contractible 
or homotopy equivalent to a wedge of spheres. We are interested in larger classes of graphs, particularly of planar graphs, 
with this property. We believe that the methods in this paper will be useful in this regard.
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Appendix A. Matching complexes for P3,t , 1 ≤ t ≤ 4

P3,1: V = {a0, a1, b0}, E = {a0a1, a1b0, a0b0}

a0 a1

b0

P3,1

a0b0

a0a1

a1b0

M(P3,1)

P3,2: V = {a0, a1, b0, b1}, E = {a0a1, b0b1, a1b0, a0b0, a1b1}
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a0 a1

b0 b1

P3,2

a0b0 a1b1

a1b0

a0a1

b0b1

M(P3,2)

P3,3: V = {a0, a1, a2, b0, b1}, E = {a0a1, a1a2, b0b1, a1b0, a2b1, a0b0, a1b1}
a0 a1

b0

a2

b1

P3,3

a1b1

a0b0

a1a2

b0b1

a0a1

a2b1

a1b0

M(P3,3)

P3,4: V = {a0, a1, a2, b0, b1, b2}, E = {a0a1, a1a2, b0b1, b1b2, a1b0, a2b1, a0b0, a1b1, a2b2},

a0 a1

b0

a2

b1 b2

P3,4

a0b0

a1a2

b0b1

a0a1

a2b1

a1b0

a1b1

b1b2

a2b2

M(P3,4)
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Appendix B. Homotopy types of M(P3,t) for small t

t homotopy 
type

t homotopy 
type

t homotopy 
type

2
∨
2

S0 6
∨
4

S2 10
∨
28

S3

3 S1 7
∨
12

S2 11
∨
16

S3 ∨ ∨
6

S4

4
∨
5

S1 8
∨
8

S2 ∨ S3 12
∨
38

S4

5
∨
4

S1 9
∨
13

S3 13
∨
64

S4 ∨ S5
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