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A B S T R A C T

Advanced battery management is as important for lithium-ion battery systems as the brain is for the human
body. Its performance is based on the use of fast and accurate battery models. However, the mainstream
equivalent circuit models and electrochemical models have yet to meet this need well, due to their struggle
with either predictive accuracy or computational complexity. This problem has acquired urgency as some
emerging battery applications running across broad current ranges, e.g., electric vertical take-off and landing
aircraft, can hardly find usable models from the literature. Motivated to address this problem, we develop an
innovative model in this study. Called BattX, the model is an equivalent circuit model that draws comparisons
to a single particle model with electrolyte and thermal dynamics, thus combining their respective merits to
be computationally efficient, accurate, and physically interpretable. The model design pivots on leveraging
multiple circuits to approximate major electrochemical and physical processes in charging/discharging. Given
the model, we develop a multipronged approach to design experiments and identify its parameters in groups
from experimental data. Experimental validation proves that the BattX model is capable of accurate voltage
prediction for charging/discharging across low to high C-rates.
1. Introduction

Lithium-ion batteries (LiBs) are a key power source for consumer
electronics, electrified transportation, smart grids, and renewable en-
ergy. Compared with alternative secondary storage sources, they pro-
vide a set of outstanding characteristics, including high energy/power
density, high nominal voltage, no memory effect, low self-discharge
rates, and long cycle life [1–3]. Recent technological advances have
further improved their power delivery and cost efficiency for a wider
application spectrum. High-quality dynamic models are fundamental
to the monitoring and control of LiBs to ensure operational safety
and performance. While the growing research has led to a variety of
useful models, the literature still lacks fast and accurate models for
applications involving charging/discharging from low to high current
rates. To fill this gap, we propose a first-of-its-kind equivalent circuit
model named BattX and demonstrate its predictive fidelity over broad
C-rate ranges.

Literature Review. Research on LiB dynamic modeling has flourished
in the past decades to produce an extensive collection of literature.
The mainstream models generally fall into two categories: electro-
chemical models and equivalent circuit models (ECMs). Electrochem-
ical models explicitly describe electrochemical reactions, transport of
lithium ions, and distribution of charge and potential inside a LiB
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cell. Depending on the need for accuracy, they exist on diverse scales,
from atomic/molecular to species level, and in different dimensions,
from 1D to 3D and beyond, and are often coupled with different
physical processes, e.g., thermodynamics and stress/strain [4]. Gener-
ally, electrochemical models present high mechanistic fidelity as well
as high computational complexity. Battery management researchers
hence must selectively focus on those that offer a desirable accuracy–
computation trade-off, due to practical demands for fast computation. A
favorable choice is the pseudo-2D Doyle–Fuller–Newman (DFN) model,
which describes the diffusion of lithium ions and charge transfer across
the electrodes, electrolyte, and separator of a sandwich cell [5]. The
search for more efficient models has led to the single-particle model
(SPM), which represents each electrode by a single spherical particle
and neglects electrolyte dynamics [6]. The simplification enhances
computational efficiency to a great extent but also limits the SPM model
to low-to-moderate C-rates (around or less than 1 C). Subsequent stud-
ies have emerged to expand the SPM model by adding characterization
of a cell’s thermal behavior [7,8], electrolyte dynamics [9–13], stress
buildup [13], or degradation [14], to elevate its prediction capability.
The literature has also presented a few computational methods to speed
up the simulation of the SPM model or its improved versions [15,16].
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ECMs represent another important pathway to modeling LiBs. They
are circuit analogs composed of electrical components to simulate a
cell’s dynamic behavior, capture phenomena in charging/discharging,
and track state-of-charge (SoC) and power capability. With simple
structures, they are accessible for interpretation, easy to calibrate, and
scalable to large LiB systems composed of many cells. Also, they are
governed by low-order ordinary differential equations, which allows for
very fast computation. These benefits combine to make them popular
candidates for real-world battery management systems with limited
computing resources [17]. A basic ECM, called the Rint model, cascades
an open-circuit voltage (OCV) source with an internal resistor, in which
the voltage source is SoC-dependent [18]. The Rint model can be added
to a set of serially connected RC pairs to describe the transient behavior
in a cell’s voltage response, leading to the so-called Thevenin model [1,
19]. Depending on the number of RC pairs used, one can set the model
to capture transients at multiple time scales [20]. The literature has
presented a few approaches to modify the Thevenin model for better
accuracy. For example, the study in [3,21] incorporates hysteresis in
charging/discharging; in [22–25], different circuit parameters (e.g., the
internal resistance) are made dependent on the SoC, temperature, or
current loads, and the OCV is parameterized using different function
forms for higher fitting accuracy. Even though phenomenological ECMs
and electrochemical models were largely two disparate threads of
research, a growing number of studies have explored developing ECMs
drawing upon electrochemical modeling. The work in [26,27] proposes
the nonlinear double capacitor (NDC) model to approximate the ion dif-
fusion in the electrodes of a cell and characterize the nonlinear voltage
behavior simultaneously. This model is interpretable as a reduced-order
circuit analog to the SPM, and it is further supplemented in [28] with a
data-based voltage hysteresis model to attain better accuracy. The study
in [29] derives an ECM using circuit elements to characterize charge
transfer and diffusion potentials; the derivation also helps explain some
conventional ECMs from an electrochemical perspective. In [30], an
ECM is coupled with diffusion dynamics to attain higher prediction
accuracy. It is increasingly recognized that we can combine ECMs with
machine learning. Such hybrid models, by design, utilize data-driven
representation to elevate the accuracy of ECMs in presence of biases or
uncertainty, as reported in [31–33].

Structural simplicity underlies the wide use of ECMs in battery
management but also restricts their accuracy. Most of today’s ECMs
are accurate enough for only low C-rates, and recent progress has led
to ECMs that are provably suitable for about 1 C [26,27]. However,
the literature still faces an absence of ECMs capable of predicting a
cell’s voltage behavior from low to high C-rate ranges. This gap will
pose potential barriers for some emerging battery-powered applications
that must operate across wide current ranges. One example is electric
vertical take-off and landing (eVTOL), which requires discharging of
up to 5 C in the take-off and landing phases and necessitates precise
models to fulfill high-stakes safety requirements [34].

Statement of Contributions. In this study, we present the first ECM
designed to predict over broad current ranges. We take inspirations
from the SPM with electrolyte and thermal dynamics (SPMeT) to enable
the design. Specifically, we propose equivalent circuits to separately
simulate a LiB cell’s electrode, electrolyte, and thermal dynamics as
well as their effects on the terminal voltage, and then conjoin the
circuits to set up the ECM. The obtained model, called BattX, com-
prehensively accounts for different dynamic processes key to a cell’s
charging/discharging behavior, making it distinct from existing ECMs.
This characteristic endows the model with excellent prediction ca-
pability from low to high C-rates. The model also retains relatively
compact structures to offer high computational efficiency, carrying
the potential to facilitate embedded battery management applications.
Centering around the BattX model, this paper delivers the following
specific contributions.
2

Fig. 1. Relations of the BattX model with some existing battery models. The light
blue and red arrows represent model simplification; the gray dashed arrows represent
comparability.

• We propose the principled design of the BattX model and further
elucidate the underlying rationale by showing its connections
with the SPMeT model in detail.

• We develop a multipronged parameter identification approach
to extract the parameters of the BattX model from measurement
data made on LiBs. This approach can make the model readily
available in practice.

• We provide experimental evaluation results to validate the ef-
fectiveness and accuracy of the BattX model. The experiments
involve charging/discharging across broad C-rate ranges and con-
sider operation profiles of eVOTL as a case study.

Fig. 1 further illustrates the connections of the BattX model with
some existing models. As is shown, there is a cascade of simplification
from the DFN to the SPMeT to the SPM model in the domain of electro-
chemical models, and the simplification goes from the BattX to the NDC
to the Thevenin model in the domain of ECMs. The BattX model is an
ECM in form but can be viewed as a circuit analog to the SPMeT model.
It thus combines the respective advantages of both types of models to be
fast and accurate. Note that the SPMeT model allows for mathematical
model order reduction to speed up computation. However, compared
to those numerical reduced-order models, the BattX model well lends
itself to physical interpretability and experimental calibration.

Organization. The rest of the paper is organized as follows. Section 2
presents the BattX model design as a whole. Section 3 proceeds to
elucidate the model’s correspondence to the SPMeT model. Section 4
develops the parameter identification pipeline of the model. Section 5
evaluates the model using experimental data. Finally, Section 6 offers
concluding remarks.

2. The BattX model

This section presents the structure and governing equations of the
BattX model. We will provide the detailed rationale for the model
design subsequently in Section 3.

At the core, the BattX model attempts to characterize the multiple
major dynamic processes innate to a LiB cell in order to capture
the cell’s behavior from low to high current rates. This is akin to
electrochemical modeling to a certain extent, but the main difference is
that the BattX model leverages circuit analogs to simulate the processes.
Fig. 2 shows the overarching structure of the model. As is seen, it
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Fig. 2. The BattX model comprising: sub-circuit A to simulate the lithium-ion diffusion in the electrode phase; sub-circuit B to simulate the lithium-ion diffusion in the electrolyte
phase; sub-circuit C to simulate heat conduction and convection; and sub-circuit D to simulate the terminal voltage.
consists of four coupled sub-circuits, which are labeled A to D. These
sub-circuits are designed to approximate the cell’s electrode-phase
diffusion, electrolyte-phase diffusion, thermal evolution, and voltage
response, respectively.

To begin with, sub-circuit A uses a chain of resistors and capacitors
to approximate the lithium-ion diffusion in the electrode phase. Its
governing equations are

�̇�𝑠,1(𝑡) =
𝑉𝑠,2(𝑡) − 𝑉𝑠,1(𝑡)

𝐶𝑠,1𝑅𝑠,1
+
𝐼(𝑡)
𝐶𝑠,1

, (1a)

�̇�𝑠,𝑖(𝑡) =
𝑉𝑠,𝑖−1(𝑡) − 𝑉𝑠,𝑖(𝑡)

𝐶𝑠,𝑖𝑅𝑠,𝑖−1
+
𝑉𝑠,𝑖+1(𝑡) − 𝑉𝑠,𝑖(𝑡)

𝐶𝑠,𝑖𝑅𝑠,𝑖
, 𝑖 = 2,… , 𝑁 − 1 (1b)

�̇�𝑠,𝑁 (𝑡) =
𝑉𝑠,𝑁−1(𝑡) − 𝑉𝑠,𝑁 (𝑡)

𝐶𝑠,𝑁𝑅𝑠,𝑁−1
, (1c)

where 𝐼 is the applied current, with 𝐼 > 0 for charging and 𝐼 < 0 for
discharging, 𝑉𝑠,𝑗 for 𝑗 = 1,… , 𝑁 are the voltages across the individual
capacitors 𝐶𝑠,𝑗 , 𝑅𝑠,𝑗 are the resistors that the current must flow through,
and the subscript 𝑠 refers to the solid phase. We set 0 ≤ 𝑉𝑠,𝑗 ≤ 1 for the
purpose of normalization and then define the SoC as the percentage
ratio of the currently available charge over the total charge capacity,
which is

SoC =

∑𝑁
𝑗=1 𝐶𝑠,𝑗𝑉𝑠,𝑗
∑𝑁
𝑗=1 𝐶𝑠,𝑗

× 100%.

That is, SoC = 100% when 𝑉𝑠,𝑗 = 1 for all 𝑗, and SoC = 0 when 𝑉𝑠,𝑗 = 0
for all 𝑗. A brief interpretation of sub-circuit A is as follows, with more
details to be shown in Section 3. Overall, the charge transfer between
the capacitors in the circuit mimics the diffusion of lithium ions in the
solid phase or electrode. Then, 𝑉𝑠,𝑗 for 𝑗 = 1,… , 𝑁 correspond to the
lithium-ion concentrations at 𝑁 different locations, from the surface
to the center, that spread along the radius of an electrode sphere; 𝐶𝑠,𝑗
for 𝑗 = 1,… , 𝑁 are analogous to the volumes of the subdomains if
one subdivides the electrode sphere at these discrete locations; 𝑅𝑠,𝑗 for
𝑗 = 1,… , 𝑁−1 resist the charge transfer or equivalently, the solid-phase
diffusion in the SPMeT model, and are hence inversely proportional to
the diffusivity.

Along similar lines to sub-circuit A, sub-circuit B uses a resistor–
capacitor chain to approximate the lithium-ion diffusion in the elec-
trolyte. Its dynamics are governed by

�̇�𝑒,1(𝑡) =
𝑉𝑒,2(𝑡) − 𝑉𝑒,1(𝑡)

𝐶𝑒𝑅𝑒
+
𝐼(𝑡)
𝐶𝑒

, (2a)

�̇�𝑒,2(𝑡) =
𝑉𝑒,1(𝑡) − 2𝑉𝑒,2(𝑡) + 𝑉𝑒,3(𝑡) , (2b)
3

𝐶𝑒𝑅𝑒
�̇�𝑒,3(𝑡) =
𝑉𝑒,2(𝑡) − 𝑉𝑒,3(𝑡)

𝐶𝑒𝑅𝑒
−
𝐼(𝑡)
𝐶𝑒

, (2c)

where the notations in above have similar meanings as in (1), and the
subscript 𝑒 refers to the electrolyte. We let 0 ≤ 𝑉𝑒,𝑗 ≤ 1 for 𝑗 = 1, 2, 3 as
in the case of 𝑉𝑠,𝑗 , and further assume that 𝑉𝑒,𝑗 = 0.5 for 𝑗 = 1, 2, 3
when the cell is at equilibrium. One can interpret sub-circuit B as
analogous to the one-dimensional electrolyte-phase diffusion that is
discretized along the spatial coordinate. In particular, 𝑉𝑒,𝑗 for 𝑗 = 1, 2, 3
can be associated with the lithium-ion concentrations at the locations
of the anode, separator, and cathode, and 𝑅𝑒 embodies resistance to
the diffusion. The spatial discretization is assumed to be uniform, thus
leading to the same values of 𝑅𝑒 and 𝐶𝑒 for each region as shown in (2).

Sub-circuit C is a lumped circuit model for the thermal dynamics,
with the design inspired by [35]. Here, we consider the cell to be a
cylindrical one without loss of generality and concentrate its spatial
dimensions into two singular points that represent the surface and core,
respectively. This simplification allows us to describe the evolution of
the temperatures at these two points, 𝑇surf and 𝑇core, by

�̇�core(𝑡) =
𝑄(𝑡)
𝐶core

+
𝑇surf (𝑡) − 𝑇core(𝑡)

𝑅core𝐶core
, (3a)

�̇�surf (𝑡) =
𝑇amb(𝑡) − 𝑇surf (𝑡)

𝑅surf𝐶surf
−
𝑇surf (𝑡) − 𝑇core(𝑡)

𝑅core𝐶surf
, (3b)

where 𝑇amb is the ambient temperature, 𝐶surf∕core and 𝑅surf∕core repre-
sent the thermal capacitance and resistance at the surface and core,
respectively, and 𝑄 is the internal heat generation rate accompanying
electrochemical reactions inside the cell during charging/discharging.
From a heat transfer perspective, (3a) approximately describes the heat
conduction between the cell’s surface and core, and (3b) grasps the
convection between the surface and the ambient environment. Further,
𝑄 is characterized as

𝑄 = −𝐼
[

𝑈𝑠 (SOC) − 𝑈𝑠(𝑉𝑠,1) − 𝑅𝑜,𝑇 𝐼
]

, (4)

where 𝑈𝑠(⋅) is the nonlinear OCV function, 𝑉𝑠,1 is defined in sub-circuit
A, and 𝑅𝑜,𝑇 is the internal resistance.

Finally, sub-circuit D summarizes the effects of the solid-phase and
electrolyte-phase dynamics on the terminal voltage. It contains two
voltage sources, 𝑈𝑠 and 𝑈𝑒, in series with an internal resistance 𝑅𝑜,𝑇 .
The terminal 𝑈 is given by

𝑈 = 𝑈𝑠(𝑉𝑠,1(𝑡)) + 𝑈𝑒(𝑉𝑒,1(𝑡), 𝑉𝑒,𝑁𝑒 (𝑡)) + 𝑅𝑜,𝑇 𝐼(𝑡). (5)

Here, 𝑈𝑠 simulates the solid-phase OCV. As the SPMeT model mandates
that the open-circuit potential of solid material relies on the lithium-
ion concentration at the surface of the electrode, 𝑈𝑠 should come as a
function of 𝑉 , and its exact form will depend on the cell. Next, we
𝑠,1
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𝑐

𝑐

𝑐

need to determine the form of 𝑈𝑒. In the SPMeT model, the electrolyte
potential depends on the electrolyte concentration at the anode and
cathode. We hence make 𝑈𝑒 as a function of 𝑉𝑒,1 and 𝑉𝑒,𝑁𝑒 and express
it as

𝑈𝑒(𝑡) = 𝛽1

(

ln
(𝑉𝑒,1(𝑡) + 𝛽2
𝑉𝑒,3(𝑡) + 𝛽2

))

, (6)

where 𝛽𝑖 for 𝑖 = 1, 2 are constant coefficients. As the last element of the
model, 𝑅𝑜,𝑇 is not a constant and instead depends on SoC and 𝑇core. It
is given by

𝑅𝑜,𝑇 = 𝑅𝑜(SoC) ⋅ exp
(

𝜅1

(

1
𝑇core

− 1
𝑇amb

))

, (7)

where 𝜅1 is a constant coefficient. In above, the first term 𝑅𝑜(SoC)
captures the dependence of 𝑅𝑜,𝑇 on 𝑉𝑠,1 and takes the form

𝑅𝑜(SoC) = 𝛾1 + 𝛾2 ⋅ exp
(

−𝛾3SoC
)

, (8)

where 𝛾𝑖 for 𝑖 = 1, 2, 3 are coefficients, and the second term shows
the temperature dependence due to the Arrhenius law. Similarly, an
Arrhenius relationship can be used to capture the relationship between
the electrode-phase diffusion constant and temperature:

𝑅𝑠,1,𝑇 = 𝑅𝑠,1 ⋅ exp
(

𝜅2

(

1
𝑇core

− 1
𝑇amb

))

. (9)

Putting together all the above equations, we will obtain a complete
description of the BattX model. This model is the first ECM that
can predict over broad current ranges, due to the integration of the
circuits approximating the electrode, electrolyte, and thermal dynamics
into a whole. The model design also leads to profound comparability
with electrochemical modeling, especially the SPMeT, which will be
revealed further in the next section. We will address the identification
of the model parameters in Section 4.

3. Rationale for the BattX model design

In this section, we will draw on the SPMeT model to explain the
rationale for the design of the BattX model. We will show that the
SPMeT model if appropriately discretized, will reduce to a structure
that is approximately equivalent to the proposed circuit analogs of the
BattX model. Our main references about the SPMeT model include [12,
36,37]. We will focus on expounding sub-circuits A, B, and D, with the
sub-circuit C-based lumped thermal model well addressed in [35].

3.1. Connection between sub-circuit A and SPMeT

The SPMeT model characteristically couples the SPM model with
the electrolyte and thermal dynamics. What it inherits from the SPM
model is the representation of the electrodes as two spherical particles.
The diffusion of lithium-ions in each particle follows Fick’s second law
in spherical coordinates [7,8]:
𝜕𝑐𝑠,𝑗 (𝑟, 𝑡)

𝜕𝑡
=
𝐷𝑠,𝑗

𝑟2
𝜕
𝜕𝑟

(

𝑟2
𝜕𝑐𝑠,𝑗 (𝑟, 𝑡)

𝜕𝑟

)

, (10)

where 𝑐𝑠,𝑗 is the solid-phase (electrode) lithium-ion concentration, 𝐷𝑠
is the constant diffusion coefficient, and 𝑟 is the radial coordinate. The
subscript 𝑗 ∈ {𝑛, 𝑝}, where 𝑛 and 𝑝 refer to the anode (negative) and
cathode (positive), respectively. The boundary conditions for (10) are
d𝑐𝑠,𝑗
d𝑟

|

|

|

|

|𝑟=0
= 0,

d𝑐𝑠,𝑗
d𝑟

|

|

|

|

|𝑟=𝑅𝑗

= −
𝐽𝑗
𝐷𝑠,𝑗

,

where 𝑅 is the radius of a particle. The molar flux 𝐽 at the elec-
trode/electrolyte interface is given by

𝐽𝑝(𝑡) =
𝑖(𝑡)
𝐹𝑆𝑝

, 𝐽𝑛(𝑡) = −
𝑖(𝑡)
𝐹𝑆𝑛

,

where 𝑖 is the applied current density, with 𝑖 > 0 for charging and 𝑖 < 0
for discharging, 𝑆 is the surface area of a particle, and 𝐹 is Faraday’s
constant.
4

Fig. 3. Spherical discretization of an electrode particle.

Next, let us reduce the PDE in (10) into a system of ODE equations
using a finite volume method [38,39]. The subscript 𝑗 ∈ 𝑛, 𝑝 will be
dropped in sequel without causing confusion. First, we subdivide the
particle into a set of continuous finite volumes at discrete locations
𝑟1 = 𝑅 > 𝑟2 > ⋯ > 𝑟𝑁 > 𝑟𝑁+1 = 0 that spreads inward from the surface
to the center, as show in Fig. 3. The amount of lithium-ions within the
𝑖th finite volume is given by

𝑄𝑖(𝑡) = ∫

𝑟𝑖

𝑟𝑖+1
𝑐𝑠(𝑟, 𝑡)𝑑𝑉 = ∫

𝑟𝑖

𝑟𝑖+1
𝑐𝑠(𝑟, 𝑡) ⋅ 4𝜋𝑟2𝑑𝑟,

for 𝑖 = 1,… , 𝑁 . Then, using (10), we have

�̇�𝑖(𝑡) = ∫

𝑟𝑖

𝑟𝑖+1
�̇�𝑠(𝑟, 𝑡) ⋅ 4𝜋𝑟2𝑑𝑟 = ∫

𝑟𝑖

𝑟𝑖+1
𝑑
(

4𝜋𝐷𝑠𝑟
2 𝜕𝑐𝑠(𝑟, 𝑡)

𝜕𝑟

)

= 4𝜋𝐷𝑠𝑟
2
𝑖
𝜕𝑐𝑠(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟𝑖
− 4𝜋𝐷𝑠𝑟

2
𝑖+1

𝜕𝑐𝑠(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟𝑖+1
.

(11)

To proceed, we replace 𝑐𝑠(𝑟, 𝑡) by the average lithium-ion concentration
within the 𝑖th finite volume, 𝑐𝑠(𝑟𝑖, 𝑡):

̄𝑠(𝑟𝑖, 𝑡) =
𝑄𝑖(𝑡)
𝛥𝑉𝑖

, (12)

where 𝛥𝑉𝑖 = 4𝜋(𝑟3𝑖 − 𝑟
3
𝑖+1)∕3. From (11)–(12), it follows that

̇̄𝑠(𝑟, 𝑡) =
4𝜋𝐷𝑠𝑟2𝑖
𝛥𝑉𝑖

𝜕𝑐𝑠(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟𝑖
−

4𝜋𝐷𝑠𝑟2𝑖+1
𝛥𝑉𝑖

𝜕𝑐𝑠(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟𝑖+1
.

Then, we approximate the concentration gradient along the radial
coordinate as
𝜕𝑐𝑠(𝑟, 𝑡)
𝜕𝑟

|

|

|

|𝑟𝑖
=
𝑐(𝑟𝑖−1, 𝑡) − 𝑐(𝑟𝑖, 𝑡)

𝛥𝑟𝑖
,

where 𝛥𝑟𝑖 = (𝑟𝑖−1 − 𝑟𝑖+1)∕2. Given the boundary conditions, we further
have

̇̄𝑐𝑠(𝑟1, 𝑡) = −
4𝜋𝐷𝑠𝑟22
𝛥𝑉1𝛥𝑟2

(

𝑐𝑠(𝑟1, 𝑡) − 𝑐𝑠(𝑟2, 𝑡)
)

+
4𝜋𝑟21
𝛥𝑉1𝐹𝑆

𝑖(𝑡), (13a)

̇̄𝑐𝑠(𝑟𝑖, 𝑡) =
4𝜋𝐷𝑠𝑟2𝑖
𝛥𝑉𝑖𝛥𝑟𝑖

(

𝑐𝑠(𝑟𝑖−1, 𝑡) − 𝑐𝑠(𝑟𝑖, 𝑡)
)

−
4𝜋𝐷𝑠𝑟2𝑖+1
𝛥𝑉𝑖𝛥𝑟𝑖+1

(

𝑐𝑠(𝑟𝑖, 𝑡) − 𝑐𝑠(𝑟𝑖+1, 𝑡)
)

, 𝑖 = 2,… , 𝑁 − 1, (13b)

̇̄𝑠(𝑟𝑁 , 𝑡) =
4𝜋𝐷𝑠𝑟2𝑁
𝛥𝑉𝑁𝛥𝑟𝑁

(

𝑐𝑠(𝑟𝑁−1, 𝑡) − 𝑐𝑠(𝑟𝑁 , 𝑡)
)

. (13c)

The above ODEs show the spatially discretized solid-phase diffusion.
Note that they share the same structure with (1). A closer inspection
of (1) and (13) suggests: (1) 𝑉𝑠 is a mirror of 𝑐𝑠(𝑟, 𝑡), and its distri-
bution reflects the distribution of lithium-ion concentrations inside an
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𝑐

𝑐

Fig. 4. Three regions immersed in the electrolyte.

electrode particle; (2) 𝐶𝑠 is a mirror of 𝛥𝑉 , associating the capacitance
with the volume of a finite volume element within the particle; (3)
𝑅𝑠 roughly corresponds to 𝛥𝑟∕(𝐷𝑠 ⋅ 4𝜋𝑟2) to grasp the effect of 𝐷𝑠, 𝛥𝑟
and 𝑟 on the diffusion resistance at different locations. This unveiled
connection with the SPMeT model justifies the design of sub-circuit A.

3.2. Connection between sub-circuit B and SPMeT

The SPMeT model includes one-dimensional electrolyte diffusion,
which also follows Fick’s second law. Electrolyte diffusion is considered
in the electrode and separator domains that are all immersed in the
electrolyte. Based on the coordinates in each domain as shown in Fig. 4,
the governing equations are

𝜕𝑐𝑒,𝑝(𝑥, 𝑡)
𝜕𝑡

= 𝐷𝑒
𝜕2𝑐𝑒,𝑝(𝑥, 𝑡)

𝜕𝑥2
+

1 − 𝑡0𝑐
𝜖𝑒,𝑝𝐹𝐿𝑝

𝑖(𝑡), (14a)

𝜕𝑐𝑒,sep(𝑥, 𝑡)
𝜕𝑡

= 𝐷𝑒
𝜕2𝑐𝑒,sep(𝑥, 𝑡)

𝜕𝑥2
, (14b)

𝜕𝑐𝑒,𝑛(𝑥, 𝑡)
𝜕𝑡

= 𝐷𝑒
𝜕2𝑐𝑒,𝑛(𝑥, 𝑡)

𝜕𝑥2
−

1 − 𝑡0𝑐
𝜖𝑒,𝑛𝐹𝐿𝑛

𝑖(𝑡), (14c)

where 𝑐𝑒,𝑗 for 𝑗 ∈ {𝑛, 𝑝, sep} is the lithium-ion concentration in the
electrolyte surrounding the anode, cathode and separator, 𝜖𝑒,𝑗 is the
electrolyte volume fraction, 𝐷𝑒,𝑗 is the electrolyte diffusion coefficient,
and 𝑡0𝑐 is the constant transference number. We assume that 𝜖𝑒,𝑗 and 𝐷𝑒,𝑗
are the same for any 𝑗 ∈ {𝑛, 𝑝, sep}. The boundary conditions are given
by

𝜕𝑐𝑒,𝑝(0𝑝, 𝑡)
𝜕𝑥

=
𝜕𝑐𝑒,𝑛(𝐿𝑛, 𝑡)

𝜕𝑥
= 0,

𝜕𝑐𝑒,𝑝(𝐿𝑝, 𝑡)
𝜕𝑥

=
𝜕𝑐𝑒,sep(0sep, 𝑡)

𝜕𝑥
,

𝜕𝑐𝑒,sep(𝐿sep, 𝑡)
𝜕𝑥

=
𝜕𝑐𝑒,𝑛(0𝑛, 𝑡)

𝜕𝑥
,

𝑐𝑒(𝐿𝑝, 𝑡) = 𝑐𝑒(0sep, 𝑡),

𝑐𝑒(𝐿sep, 𝑡) = 𝑐𝑒(𝐿𝑛, 𝑡).

To convert (14) into ODEs, we concentrate the electrodes and
separator into singular points and further suppose 𝐿𝑝 = 𝐿𝑛 and 𝐿sep
is negligible. The singular point that represents the electrodes are
located at the midpoint of each domain, and the average lithium-ion
concentration is denoted as 𝑐𝑒,𝑗 . Then, we apply the finite difference
method to (14) and obtain

̇̄𝑐𝑒,𝑝(𝑡) =
4𝐷𝑒

𝐿2

(

𝑐𝑒,sep(𝑡) − 𝑐𝑒,𝑝(𝑡)
)

+
1 − 𝑡0𝑐
𝜖𝑒𝐹𝐿

𝑖(𝑡), (15a)

̇̄ (𝑡) =
4𝐷𝑒 (𝑐 (𝑡) − 2𝑐 (𝑡) + 𝑐 (𝑡)

)

, (15b)
5

𝑒,sep 𝐿2 𝑒,𝑝 𝑒,sep 𝑒,𝑛
̇̄𝑐𝑒,𝑛(𝑡) =
4𝐷𝑒

𝐿2

(

𝑐𝑒,sep(𝑡) − 𝑐𝑒,𝑛(𝑡)
)

−
1 − 𝑡0𝑐
𝜖𝑒𝐹𝐿

𝑖(𝑡). (15c)

As is seen, (14) is structurally similar to (2), and the similarity
lends to the interpretation of (2) through the lens of electrochemical
modeling. Specifically, we can associate 𝑉𝑒,1, 𝑉𝑒,2 and 𝑉𝑒,3 with 𝑐𝑒,𝑝,
̄𝑒,sep, and 𝑐𝑒,𝑛, respectively. Further, 𝐶𝑒 can be linked with the spatial
lengths of the electrode domains, which decide the volume of the
electrolyte, and 𝑅𝑒 comes as the inverse of 𝐷𝑒 to measure the resistance
against electrolyte diffusion.

3.3. Connection between sub-circuit D and SPMeT

In the SPMeT model, the terminal voltage 𝑉 consists of four terms
that represent the solid-phase OCV, electrolyte-phase voltage, overpo-
tential, and voltage over the film resistance, respectively. Then, coming
back to sub-circuit D of the BattX model, 𝑈𝑠 mirrors the solid-phase
OCV, 𝑈𝑒 corresponds to the electrolyte-phase voltage, and 𝑅𝑜,𝑇 plays a
role to mainly capture the film resistance as well as the overpotential
effect. Less trivially, we elaborate on the form of 𝑈𝑒 in (6). The
electrolyte-phase voltage is given by

𝜙𝑒(0𝑝, 𝑡) − 𝜙𝑒(𝐿𝑛, 𝑡) =
𝐿𝑝 + 2𝐿𝑠𝑒𝑝 + 𝐿𝑛

2�̄�
𝑖(𝑡) + 𝑘conc

(

ln𝑐𝑒(0𝑝, 𝑡) − ln𝑐𝑒(𝐿𝑛, 𝑡)
)

,

(16)

where 𝜙𝑒 is the electrolyte electric potential, and �̄� and 𝑘conc are
two coefficients that are related to electrolyte conductivity and molar
activity. The first term above is accounted for through 𝑅𝑜,𝑇 . Following
the discussion in Section 3.2, we can approximate the second term as

𝑘conc
(

ln 𝑐𝑒,𝑝(𝑡) − ln 𝑐𝑒,𝑛(𝑡)
)

.

This form is found to bear equivalence to (6), when making linear
projections of 𝑐𝑒,𝑝(𝑡) and 𝑐𝑒,𝑛(𝑡) to 𝑉𝑒,1 and 𝑉𝑒,3, respectively.

4. Parameter identification for the BattX model

In this section, we investigate how to determine the parameters of
the BattX model. To this end, we separate the model’s parameters into
different groups based on the dynamic processes that they belong to
or prominently influence. We then design experiments accordingly and
use different current profiles to excite different dynamic processes and
obtain voltage or temperature data suitable for the identification of
the corresponding parameter groups. Finally, we extract the parameters
from the data, group by group, through data fitting and some empirical
tuning.

To begin with, we set up the following parameter groups for the
BattX model:

• 𝛩𝑈𝑠 =
{

𝛼𝑖, 𝑖 = 0, 1,… , 16
}

, which includes the parameters in 𝑈𝑠 in
sub-circuit D;

• 𝛩𝑅𝑜 =
{

𝛾𝑖, 𝑖 = 1, 2, 3
}

, which includes the parameters in 𝑅𝑜 in
sub-circuit D;

• 𝛩𝑠 =
{

𝐶𝑠,𝑖, 𝑖 = 1,… , 𝑁,𝑅𝑠,𝑗 , 𝑗 = 1,… , 𝑁 − 1
}

, which includes the
parameters of sub-circuit A;

• 𝛩Th =
{

𝐶surf , 𝑅surf , 𝐶core, 𝑅core
}

, which includes the parameters in
the lumped thermal model in sub-circuit C;

• 𝛩𝑒 =
{

𝐶𝑒, 𝑅𝑒, 𝛽1, 𝛽2
}

, which includes the parameters in sub-circuit
B and the parameters in 𝑈𝑒 in sub-circuit D;

• 𝛩Arr =
{

𝜅1, 𝜅2
}

, which includes the Arrhenius-law-related param-
eters;.

By grouping the parameters as above, we can design different
current input profiles to stimulate different parts of the cell’s dynamics
so as to identify the parameters group by group. This multi-pronged
approach includes the following steps.
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Step 1: Identification of 𝛩𝑈𝑠 . Since 𝑈𝑠 represents the OCV source,
e can capture it by applying a trickle constant current with a mag-
itude of 1∕30 C to fully charge or discharge the cell. As the current
s extremely small, sub-circuit A, which is an analog to the solid
electrode)-phase diffusion, is almost always at equilibrium, with 𝑉𝑠𝑖 =
SoC for 𝑖 = 1,… , 𝑁 (SoC can be obtained via Coulomb counting);
meanwhile, sub-circuits B and C, 𝑈𝑒, and the voltage across 𝑅𝑜,𝑇 , are
all negligible in this case. Hence, 𝑈 ≈ 𝑈𝑠, and we can construct the
following data fitting problem to identify 𝛩𝑈𝑠 :

�̂�𝑈𝑠 = argmin
𝛩𝑈𝑠

∑

𝑡𝑘

[

𝑈 (𝑡𝑘) − 𝑈𝑠
(

SoC(𝑡𝑘);𝛩𝑈𝑠
)]2

, (17)

where 𝑘 is the discrete time index in the experiment.
Step 2: Identification of 𝛩𝑅𝑜 . 𝑅𝑜 is an integral part of the internal

resistance 𝑅𝑜,𝑇 , and 𝑅𝑜 = 𝑅𝑜,𝑇 when 𝑇 = 𝑇ref . To identify 𝛩𝑅𝑜 , we
apply a 0.5 C pulse current profile, which includes long enough rest
periods between two consecutive pulses to allow for sufficient voltage
recovery, to discharge the cell from 100% to 0% of SoC when the
ambient temperature is 𝑇ref . With discharging at 0.5 C, the cell will
only see a negligible increase in its temperature, and 𝑈𝑒 ≈ 0. For the
terminal voltage 𝑈 , we will see a sharp drop or jump at the beginning
or end of every pulse, and this is almost solely due to the voltage change
across 𝑅𝑜. Therefore, using the voltage jump, one can approximate 𝑅𝑜
as

�̃�𝑜(𝑡∗) =
|

|

|

|

𝑈 (𝑡∗+1) − 𝑈 (𝑡∗)
𝐼

|

|

|

|

, (18)

where 𝑡∗ is the instant when a pulse stops. Further, the instantaneous
SoC can be readily determined via Coulomb counting. Collecting 𝑅𝑜 for
all 𝑡∗, we can formulate the following data fitting problem to estimate
𝛩𝑅𝑜 :

�̂�𝑅𝑜 = argmin
𝛩𝑅𝑜

∑

𝑡∗

[

�̃�𝑜(𝑡∗) − 𝑅𝑜(𝛩𝑅𝑜 ; 𝑡∗)
]2
. (19)

Step 3: Identification of 𝛩𝑠. The number of parameters in 𝛩𝑠 depends
on 𝑁 , and when 𝑁 is large, 𝛩𝑠 will be poorly identifiable to defy
accurate estimation. To formulate a tractable identification problem,
we assume that

𝐶𝑠,𝑖 = 𝜂𝑖𝐶𝑠,1, 𝑅𝑠,𝑗 = 𝜎𝑗𝑅𝑠,1, (20)

where 𝜂𝑖 and 𝜎𝑖 for 𝑖 = 1,… , 𝑁 and 𝑗 = 1,…𝑁 − 1 are pre-
specified coefficients with 𝜂1 = 𝜎1 = 1, and ∑𝑁

𝑖=1 𝜂𝑖𝐶𝑠,𝑖 is the total
capacity of the cell. This allows us to consider only two parameters,
i.e., 𝛩𝑠 =

{

𝐶𝑠,1, 𝑅𝑠,1
}

, greatly facilitating the parameter estimation. The
simplification is also reasonable—the difference among 𝐶𝑠,𝑖 and 𝑅𝑠,𝑗
can be viewed as a result of the selection of the discretization points
as shown in (13), and one can specify 𝜂𝑖 and 𝜎𝑗 assuming that they
result from a certain selection. The practical selection of 𝜂𝑖 and 𝜎𝑗 can
be done through an analysis of the discretization shown in Section 3.1
and tuning. Going forward, we apply a 0.5 C constant-current profile to
discharge the cell from full to zero SoC. In this setting, sub-circuit A is
excited, but the dynamics of sub-circuits B and C have no appreciable
effects. That is, the cell’s temperature remains almost the same, and
𝑈𝑒 ≈ 0. We can conduct data fitting as below to find out 𝛩𝑠:

�̂�𝑠 = argmin
𝛩𝑠

∑

𝑡𝑘

[

𝑈 (𝑡𝑘) − 𝑅𝑜
(

�̂�𝑅𝑜 ; 𝑡𝑘
)

𝐼(𝑡𝑘) − 𝑈𝑠
(

𝑉𝑠,1
(

𝛩𝑠; 𝑡𝑘
)

; �̂�𝑈𝑠
)]2

,

(21)

where �̂�𝑈𝑠 and �̂�𝑅𝑜 have been obtained in Steps 1 and 2, and the form
of 𝑉𝑠,1(𝛩𝑠, 𝑡) is derived in Appendix A.

Step 4: Identification of 𝛩Th. Based on [35], a straightforward idea
to determine 𝛩Th is to fit it to the measurement data of 𝑇surf and/or
𝑇core given the lumped thermal model in (3). However, the idea is hard
to be applied here, because 𝑄 in our model is dependent on 𝑅𝑜,𝑇 , as
6

shown in (4), and unavailable before 𝑅𝑜,𝑇 is identified. To overcome
this issue, we choose to use prior knowledge to guide the estimation
of 𝛩Th. Here, we can approximate 𝑅core based on the conductivity
of the cell’s electrode materials and jellyroll structure. Furthermore,
we can infer 𝑅surf and 𝐶surf from the form factors and specifications,
casing material (usually aluminum), and the cooling system. Finally,
𝐶core can be deduced given the cell’s total heat capacity. A 2C constant
current full discharge profile is used to acquire the data encompassing
significant temperature changes. With the measurement data, we can
begin from the approximate values of the parameters and continually
tune them until achieving sufficient fitting accuracy to finalize �̂�Th.

Step 5: Identification of 𝛩𝑒 and 𝛩Arr . Sub-circuit B will have substan-
tial effects on 𝑈 only at high C-rates. Therefore, we use a 3 C constant
current profile to fully discharge the cell such that large enough 𝑈𝑒
will result and present itself into the voltage response. This then allows
to identify 𝛩𝑒. In the meantime, 3 C discharging will subject the cell
to important temperature increases, which, in turn, will drive down
𝛩Arr -dependent 𝑅𝑠,𝑇 and 𝑅𝑜,𝑇 and influence the voltage response. As
such, we need to consider the estimation of 𝛩𝑒 and 𝛩Arr together. The
following data fitting problem can be formulated:

�̂�e, �̂�Arr = arg min
𝛩e ,𝛩Arr

∑

𝑡𝑘

[

𝑈 (𝑡𝑘) − 𝑅𝑜,𝑇
(

�̂�𝑅𝑜 , 𝛩Arr , 𝑇𝑡𝑘 ; 𝑡𝑘
)

𝐼(𝑡𝑘)

−𝑈𝑠
(

𝑉𝑠,1
(

�̂�𝑠, 𝛩Arr , 𝑇𝑡𝑘 ; 𝑡𝑘
)

; �̂�𝑈𝑠
)

− 𝑈𝑒
(

𝛩𝑒; 𝑡𝑘
)

]2
.

(22)

Here, 𝑈𝑒 depends on 𝑉𝑒,1 and 𝑉𝑒,3 as shown in (6), and the explicit
form of 𝑉𝑒,1 and 𝑉𝑒,3 is shown in Appendix B. Note that no closed-
form expression of 𝑈𝑠 exists in this step, as the changing 𝑅𝑠,𝑇 makes
sub-circuit A become a time-varying system. It is thus impossible to
solve the problem in (22) using nonlinear optimization. To alleviate the
difficulty, we suggest to apply some empirical tuning. Specifically, we
can pick a sample of 𝛩Arr using prior knowledge, then estimate 𝛩𝑒 by
solving the above data fitting problem, and iterate this procedure until
getting the lowest possible fitting errors. Despite the time and effort
needed, this iterative method is often found effective with a sufficient
number of tries.

The above steps together constitute our parameter identification
approach for the BattX model and are summarized in the flowchart in
Fig. 5. The following remarks summarize our further insights.

Remark 1.
We point out that the data fitting problems outlined in Steps 1–5 are

non-trivial to solve, as they entail nonlinear nonconvex optimization.
The nonconvexity can easily get the parameter search stuck in local
minima to produce physically meaningless parameter estimates. To mit-
igate the issue, it is sensible to constrain the search within a believably
correct parameter space [20]. Specifically, one can set up approximate
lower and upper bounds for every possible parameter and then limit
the numerical optimization within the resultant parameter space. The
prior knowledge used to establish such bounds can be derived from
both experience and observation or analysis of the measurement data.
Other helpful ways to overcome the local minima issue include adding
regularization terms that encode prior knowledge of some parameters
and applying different initial guesses to repeatedly run the numerical
optimization [20].

Remark 2.
We consider Samsung INR18650-25R cells (see Section 5 for the

specifications) as a baseline when selecting the discharging C-rates
in each step of the above approach, because they are used in the
experimental validation of the BattX model (see Section 5). However, a
user or practitioner may need to adjust the specific C-rates, depend-
ing on the cells to apply the model. The overall guiding rule is the
same—using current profiles of different C-rates to excite different
dynamic processes to obtain data informative for the identification of

the parameters associated with each process.
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Fig. 5. Flowchart for the multipronged experimental data generation and parameter identification.
Fig. 6. Experimental setup: (a) the PEC®SBT4050 battery tester; (b) the cell placed in an Arbin high-current cylindrical cell holder.
Table 1
Identification summary for 𝛩𝑅𝑜 , 𝛩𝑠, and 𝛩Th: initial guesses, bound limits, and final estimates.

Name 𝛾1 𝛾2 𝛾3 𝐶𝑠,1 𝑅𝑠,1 𝐶surf 𝑅surf 𝐶core 𝑅core

Initial guess 1 1 1 4391 0.090 7 6 20 1
Lower bound – – – 3600 0.054 3 3 5 0.5
Upper bound – – – 5500 0.167 12 20 50 7
Final estimate 0.026 0.061 14.36 4521 0.114 10 7 40 4
5. Experimental validation of the BattX model

This section offers the experimental validation of the proposed BattX
model. All the experiments were conducted on a Samsung INR18650-
25R cell with NCA cathode and graphite anode using a PEC®SBT4050
battery tester and placed in an Arbin cylindrical cell holder, as shown
in Fig. 6. The cell’s nominal capacity is 2.5 Ah, nominal voltage is 3.6
V, maximum cut-off voltage is 4.2 V, minimum cut-off voltage is 2.5
V, and maximum continuous discharge current is 20 A. The tester is
able to run charging or discharging tests of up to 40 V and 50 A under
arbitrary current or power load profiles. The cell holder is capable of
testing high-capacity 18650 cells at up to 200 A.

The experiment is comprised of two parts. The first part collected
datasets following the parameter identification approach in Section 4
to identify the model parameters. In the second part, new datasets were
generated to evaluate the predictive capability and computational cost
of the identified model against the Thevenin model.

5.1. Model identification

The experiments and model identification procedure is as follows.
7

Fig. 7. SoC/OCV curve fitting based on �̂�𝑈𝑠 .

• Based on Section 4, we first charged the cell using the popular
constant-current/constant-voltage method, let it rest for one hour,
and then fully discharged it using a 1/30 C constant-current load.
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Fig. 8. Identification of 𝛩𝑅𝑜 : (a) terminal voltage profile under intermittent discharging at 0.5 C to identify 𝛩𝑅𝑜 ; (b) fitting of 𝑅𝑜(SoC) with �̃�𝑜 based on �̂�𝑅𝑜 .
Fig. 9. Terminal voltage fitting under 0.5 C constant-current discharging based on �̂�𝑠.

Fig. 10. Temperature fitting and prediction based on �̂�Th.

We calculated the total capacity to be 2.55 A h using the Coulomb
counting method and then intended to use the voltage data to find
�̂�𝑈𝑠 . The following non-linear function was used to predict the
OCV of the cell:

𝑈𝑠(𝑉𝑠,1) = ℎ1
(

𝑉𝑠,1
)

⋅𝐻
(

0.9 − 𝑉𝑠,1
)

+ ℎ2
(

𝑉𝑠,1
)

⋅𝐻
(

𝑉𝑠,1 − 0.9
)

,

where 𝐻(⋅) is the Heaviside step function, ℎ1(𝑉𝑠,1) captures the
behavior when 𝑉𝑠,1 ≤ 0.9 as

ℎ1(𝑉𝑠,1) = 𝛼0 + 𝛼1
1

8

1 + exp(𝛼2(𝑉𝑠,1(𝑡) − 𝛼3))
+ 𝛼4
1

1 + exp(𝛼5(𝑉𝑠,1 − 𝛼6))
+ 𝛼7

1
1 + exp(𝛼8(𝑉𝑠,1 − 𝛼9))

+ 𝛼10
1

1 + exp(𝛼11𝑉𝑠,1(𝑡))
+ 𝛼12𝑉𝑠,1(𝑡),

and ℎ2(𝑉𝑠,1) is for when 0.9 < 𝑉𝑠,1 ≤ 1 with

ℎ2(𝑉𝑠,1) = 𝛼13exp(𝛼14𝑉𝑠,1) + 𝛼15exp(𝛼16𝑉𝑠,1).

Here, 𝛼𝑖 for 𝑖 = 0,… , 15 are constant coefficients. Then, �̂�𝑈𝑠 was
found based on (17):

�̂�𝑈𝑠 = {−9.048,−2.360,−12.986, 0.010, 13.036,

− 32.840,−0.087, 2.359,

− 14.863, 0.055,−0.788,−7.136, 0.966, 31.132,

−3.414, 0.513, 1.816} .

The SoC/OCV fitting result under the obtained �̂�𝑈𝑠 is shown in
Fig. 7.

• Next, the cell was charged to full again, idled for one hour, and
then discharged under a 0.5 C pulse load profile. Specifically, a
load was applied for five minutes, followed by a one-hour rest,
and this cycle continued until the cut-off voltage was met. Fig. 8
shows the profile, which includes a total of 12 pulses. With the
data, we calculated 𝑅𝑜 at different SoC via (18) and then used (19)
to compute �̂�𝑅𝑜 as shown in Table 1. The reconstructed 𝑅𝑜 is
compared with the measurements in Fig. 8.

• Going further, we fully charged the cell again as in the previous
steps, and then fully discharged it using a 0.5 C constant-current
load, with the objective of identifying 𝛩𝑠. As explained in Sec-
tion 4, we could impose a pre-determined relation like (20) to
reduce the number of parameters to estimate. Here, we let the
spherical particle be discretized into five finite volumes, and the
resulting 𝜂𝑖 and 𝜎𝑗 are

𝜂𝑖 = {1, 0.6066, 0.3115, 0.1148, 0.0164} ,

𝜎𝑗 = {1, 1.77, 4.00, 15.98} .

Fig. 9 illustrates a comparison between the predicted terminal
voltage (with the dynamics of sub-circuits B and C neglected)
based on �̂�𝑠 and the measurements. Table 1 shows the estimation
for �̂�𝑠.

• Then, we ran a 2 C constant-current discharging test to collect
the temperature data. The cell’s surface temperature increased by
about 10 K throughout the test. We leveraged prior knowledge
and empirical tuning to determine 𝛩Th, as suggested in Section 4.
While the procedure is coarse-grained, we obtained �̂�Th that leads
to accurate fitting with the surface temperature data and physi-
cally reasonable estimation of the core temperature, as shown in
Fig. 10. Table 1 summarizes the numerical estimates of �̂� .
Th
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Fig. 11. Terminal voltage fitting under 3 C constant-current discharging based on �̂�𝑒.

Table 2
Identification summary for 𝛩Arr and 𝛩𝑒: initial guesses, bound limits, and final estimates

Name 𝐶𝑒 𝑅𝑒 𝛽1 𝛽2 𝜅1 𝜅2
Initial guess 1032 0.028 0.53 0.31 15 22
Lower bound 500 0.002 0.42 0.19 10 10
Upper bound 5000 0.080 1.00 0.423 100 100
Final estimate 3691 0.007 0.789 0.317 30 70

• Finally, the cell was fully discharged at a constant current of 3 C
to excite the cell’s electrolyte dynamic and thermal behavior more
discernible, for the purpose of identifying 𝛩𝑒 and 𝛩Arr . Following
Section 4, we iteratively tuned �̂�Arr and then ran (22) to find
�̂�𝑒 until the achievement of both physically sound estimates and
accurate voltage data fitting. Fig. 11 shows that the BattX model
based on all the identified parameters fits well the measured
voltage, and Table 2 shows the estimation results.

From above, we have come up with an explicit setup of the BattX
odel for the cell. Next, we will fit the model to new datasets to assess
ow well it predicts.

.2. Model testing and validation

To further evaluate the obtained BattX model, we generated new
atasets by applying a variety of load profiles that span a range of
urrents. The first tests involved fully discharging the cell at a constant
urrent of 0.5, 1, 4, and 5 C separately. Fig. 12 compares the BattX
odel’s prediction of the terminal voltage against the measurement,
here a close match is observed in all four cases. Note that, even

hough the model was identified based on tests of only up to 3 C, it
an well predict 4 C and 5 C, suggesting its high fidelity.

Further, we adopted the Urban Dynamometer Driving Schedule
UDDS) as a variable load profile and scaled it to be between −8 C
nd 5 C to validate the BattX model. Here, we desire to compare the
attX model against the popular Thevenin model with two RC pairs.
o calibrate the 2RC Thevenin model, we utilize the same nonlinear
CV relationship shown in Fig. 7 and then use the 1 C constant-current
ischarging data to determine all its RC parameters. The validation
esult is shown in Fig. 13. The top figure in Fig. 13 illustrates the
oad profile, which includes both charging and discharging as well as
rest period. The voltage prediction of the BattX model, as shown in

ig. 13, closely follows the true voltage overall. A slight discrepancy
ppears at the end of the test when the cell is about to be depleted.
his is likely because the radical changes of the internal resistance at

ow SoC and high temperature are hard to be thoroughly captured. By
ontrast, the 2RC Thevenin’s model gives a poor prediction, especially
hen the current load is above 1 C. Fig. 14 then demonstrates the

omparison of the predicted surface temperature by the BattX model
9

l

Fig. 12. Voltage prediction for constant-current discharging at 0.5, 1, 4, and 5 C.

ith the measurement, showing an acceptable accuracy. The estimation
f the core temperature is also given in Fig. 14, which is reasonable by
mpirical knowledge and observation.

Recently, LiB-powered eVTOL has attracted increasing interest as
promising solution to urban air mobility and decarbonization of

viation. A safety-critical application, eVTOL must maintain fast and
ccurate monitoring of its onboard battery system throughout a mis-
ion. Conventional equivalent circuit models are impossible to meet
his need, as eVTOL often requires high-rate discharging—it must dis-
harge as fast as 5 C in the takeoff and landing phases. However, the
roposed BattX model holds a significant advantage to eVTOL battery
erformance modeling. We consider a notional eVTOL flight, which
ncludes three phases, takeoff, cruising, and landing. The three phases
nvolve discharging at 5 C, 1.48 C, and 5 C, respectively [34]. We
enerated a current load profile sequentially comprising a flight, full
ischarge, and another flight. Fig. 15 displays the current load profile
ver time and the voltage prediction by the BattX model and by the
RC Thevenin model. It is seen that the BattX model achieves accurate
rediction compared with the measurement. Especially, the accuracy is
ound satisfactory at times of high discharge rates. The 2RC Thevenin’s
odel, however, generates considerably larger prediction errors and

inds itself struggling to capture the cell’s voltage behavior at high C-
ates. These error magnitudes render the model far from sufficient for
he eVTOL application. For the BattX model, the surface temperature
rediction in Fig. 16 also well agrees with the actual temperature, and
he core temperature estimation shows a real trend that one can trust
o be close enough to the truth.

. Conclusions

LiBs have found their way into many sectors as a key technology to
rive forward electrification and decarbonization. For LiB applications,
omputationally fast and accurate ECMs are a bedrock for real-time
onitoring and simulation to ensure their performance and safety.
lthough the literature has presented several different ECMs, none
f them is effective when current loads range from low to high. To
vercome the problem, we proposed the BattX model in this study.
his model is an ECM in its form, but unlike other ECMs, it lends
o interpretation as a quasi-electrochemical model. This is because it
s designed to use separate yet coupled circuits to approximate the
ithium-ion diffusion in the electrode and electrolyte phases, heat trans-
er, and nonlinear voltage behavior in charging/discharging of a cell.

ith this novel design, the model offers high predictive accuracy over
road current ranges and still retains relatively simple structures for

ow computational costs. We also developed a parameter identification
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Fig. 13. BattX versus 2RC Thevenin’s under a UDDS load. Row 1: the UDDS-based current load profile; row 2: the actual and predicted voltage; row 3: zoomed (left: 2RC
hevenin’s; right: BattX); row 4: the voltage prediction error.
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Fig. 14. Temperature prediction by the BattX model versus the measurements in the
DDS-based test.

pproach for the model. The approach groups the parameters based
n the dynamic processes or components that they belong to and
hen identifies the parameters of each group using experimental data.
inally, the experimental validation showed that the BattX model has
igh accuracy and fidelity across low to high C-rates. Our future work
ill include further improvement of the model by taking hysteresis and
ther phenomena into account and state-of-charge estimation design
ased on the model.
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Appendix A. Derivation of 𝑽𝒔,𝟏 under constant current 𝑰

In Section 4, the identification of 𝛩𝑠 in (21) requires the expression
of 𝑉𝑠,1 when the applied current 𝐼 is constant. The derivation is as
ollows.

Consider the governing equations of sub-circuit A in (1) under the
ssumption in (20), and rewrite them compactly into the following
orm:

̇𝑠(𝑡) = 𝐴𝑠𝑉𝑠(𝑡) + 𝐵𝑠𝐼(𝑡), (A.1)

here

𝑉𝑠 =
[

𝑉𝑠,1 𝑉𝑠,2 ⋯ 𝑉𝑠,𝑁
]⊤ ,

𝐴𝑠 = 𝜇𝑠𝛺𝑠,

𝜇𝑠 =
1

𝐶𝑠,1𝑅𝑠,1
,

𝛺𝑠 =

⎡

⎢

⎢

⎢

⎢

⎢

−1
𝜂1𝜎1

1
𝜂1𝜎1

0 ⋯ ⋯ 0
1

𝜂2𝜎1
− 1
𝜂2𝜎1

− 1
𝜂2𝜎2

1
𝜂2𝜎2

0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ ⋯ 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

,

⎣ 𝜂𝑁𝜎𝑁−1 𝜂𝑁𝜎𝑁−1 ⎦
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Fig. 15. BattX versus 2RC Thevenin’s under an eVTOL profile. Row 1: the current load profile; row 2: the actual and predicted voltage; row 3: zoomed (left: 2RC Thevenin’s;
right: BattX); row 4: the voltage prediction error.
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Fig. 16. Temperature prediction by the BattX model versus the measurements in the
est simulating an eVTOL operation cycle.

𝐵𝑠 =
[

1
𝐶𝑠,1

0 ⋯ 0
]⊤
.

The solution to (A.1) is given by

𝑉𝑠(𝑡) = 𝑒𝐴𝑠𝑡𝑉𝑠(0) + ∫

𝑡

0
𝑒𝐴𝑠(𝑡−𝜏)𝐵𝑠𝐼(𝜏)𝑑𝜏.

When 𝐼 is constant, it becomes

𝑉𝑠(𝑡) = 𝑒𝐴𝑠𝑡𝑉𝑠(0) + ∫

𝑡

0
𝑒𝐴𝑠(𝑡−𝜏)𝑑𝜏 ⋅ 𝐵𝑠𝐼. (A.2)

To find the explicit form of 𝑉𝑠(𝑡), we must derive the expression of 𝑒𝐴𝑠𝑡.
To this end, we look at 𝛺𝑠 first and note that it is rank-deficient with
one zero eigenvalue. Further, assume the other non-zero eigenvalues
to be distinct, and denote the eigenvalues of 𝛺𝑠 as 𝜆𝑖 for 𝑖 = 1, 2,… , 𝑁
with 𝜆1 = 0. Then, by the Cayley–Hamilton theorem, we have

𝑒𝐴𝑠𝑡 =
[

𝛷−1𝜙(𝜇𝑠, 𝑡)
]

⊗𝛺𝑠, (A.3)

where

𝛷 =

⎡

⎢

⎢

⎢

⎢

⎣

1 𝜆1 ⋯ 𝜆𝑁−1
1

1 𝜆2 ⋯ 𝜆𝑁−1
2

⋮ ⋮ ⋱ ⋮
1 𝜆𝑁 ⋯ 𝜆𝑁−1

𝑁

⎤

⎥

⎥

⎥

⎥

⎦

,

(𝜇 , 𝑡) =
[ 𝜇𝑠𝜆2𝑡 𝜇𝑠𝜆𝑁 𝑡

]⊤ .
11

𝑠 1 𝑒 ⋯ 𝑒
he operator ⊗ is defined as

⊗𝐴 =
𝑛
∑

𝑖=1
𝑎𝑖𝐴

𝑖−1,

or 𝑎 ∈ R𝑛×1 and 𝐴 ∈ R𝑛×𝑛. Inserting (A.3) into (A.6), we obtain

𝑠(𝑡) =
[

𝛷−1𝜙(𝜇𝑠, 𝑡)
]

⊗𝛺𝑠 ⋅ 𝑉𝑠(0) + ∫

𝑡

0

[

𝛷−1𝜙(𝜇𝑠, 𝑡 − 𝜏)
]

⊗𝛺𝑠𝑑𝜏 ⋅ 𝐵𝑠𝐼

=
[

𝛷−1𝜙(𝜇𝑠, 𝑡)
]

⊗𝛺𝑠 ⋅ 𝑉𝑠(0) +
[

𝛷−1
∫

𝑡

0
𝜙(𝜇𝑠, 𝑡 − 𝜏)𝑑𝜏

]

⊗𝛺𝑠 ⋅ 𝐵𝑠𝐼

=
[

𝛷−1𝜙(𝜇𝑠, 𝑡)
]

⊗𝛺𝑠 ⋅ 𝑉𝑠(0) +
[

𝛷−1 (�̄�(𝜇𝑠, 𝑡) − �̄�(𝜇𝑠, 0)
)]

⊗𝛺𝑠 ⋅ 𝐵𝑠𝐼,
(A.4)

here

̄(𝜇𝑠, 𝑡) =
[

𝑡 𝑒𝜇𝑠𝜆2 𝑡

𝜇𝑠𝜆2
⋯ 𝑒𝜇𝑠𝜆𝑁 𝑡

𝜇𝑠𝜆𝑁

]⊤
.

Given (A.4), 𝑉𝑠,1 can be expressed as

𝑉𝑠,1(𝑡) = 𝐞⊤1 𝑉𝑠(𝑡),

here 𝐞1 =
[

1 0 ⋯ 0
]⊤
𝑁×1.

ppendix B. Derivation of 𝑽𝒆,𝟏 and 𝑽𝒆,𝟑 under constant current 𝑰

The explicit expressions of 𝑉𝑒,1 and 𝑉𝑒,3 under a constant current 𝐼
re needed to represent 𝑈𝑒 for the identification of 𝛩𝑒 in (22). We can
ollow similar lines in Appendix A to find them out. Let us rewrite the
overning equations of sub-circuit B in (2) compactly as

̇𝑒(𝑡) = 𝐴𝑒𝑉𝑒(𝑡) + 𝐵𝑒𝐼(𝑡), (A.5)

here

𝑉𝑒 =
[

𝑉𝑒,1 𝑉𝑠,2 𝑉𝑒,3
]⊤ ,

𝐴𝑒 = 𝜇𝑒𝛺𝑒,

𝜇𝑒 =
1 ,
𝐶𝑒𝑅𝑒
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T

T
C

𝑒

w

𝜓

B

𝑉

𝛺𝑒 =
⎡

⎢

⎢

⎣

−1 1 0
1 −2 1
0 1 −1

⎤

⎥

⎥

⎦

,

𝐵𝑒 =
[

1
𝐶𝑒

0 − 1
𝐶𝑒

]⊤
.

he solution to (A.5) under a constant current 𝐼 is

𝑉𝑒(𝑡) = 𝑒𝐴𝑒𝑡𝑉𝑒(0) + ∫

𝑡

0
𝑒𝐴𝑒(𝑡−𝜏)𝑑𝜏 ⋅ 𝐵𝑒𝐼. (A.6)

he eigenvalues of 𝛺𝑒 are 0,−1,−3, respectively. By the
ayley–Hamilton theorem, it follows that
𝐴𝑒𝑡 =

[

𝛹−1𝜓(𝜇𝑒, 𝑡)
]

⊗𝛺𝑒, (A.7)

here

𝛹 =
⎡

⎢

⎢

⎣

1 0 0
1 −1 1
1 −3 9

⎤

⎥

⎥

⎦

,

(𝜇𝑒, 𝑡) =
[

1 𝑒−𝜇𝑒𝑡 𝑒−3𝜇𝑒𝑡
]⊤ .

ased on (A.7), we can derive that

𝑒(𝑡) =
[

𝛹−1𝜓(𝜇𝑒, 𝑡)
]

⊗𝛺𝑒 ⋅ 𝑉𝑒(0) +
[

𝛹−1 (�̄�(𝜇𝑒, 𝑡) − �̄�(𝜇𝑒, 0)
)]

⊗𝛺𝑒 ⋅ 𝐵𝑒𝐼,

(A.8)

where

�̄�(𝜇𝑒, 𝑡) =
[

𝑡 − 𝑒−𝜇𝑒𝑡

𝜇𝑒
− 𝑒−3𝜇𝑒𝑡

3𝜇𝑒

]⊤
.

With (A.8), one can extract 𝑉𝑒,1 and 𝑉𝑒,3 from 𝑉𝑒.
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