In situ Raman spectroscopy study of silver particle size effects on unpromoted Ag/α-Al₂O₃ during ethylene epoxidation with molecular oxygen

Hashim A. Alzahrani, Juan J. Bravo-Suárez

Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, KS, 66047, USA
Department of Chemical & Petroleum Engineering, The University of Kansas, Lawrence, KS, 66045, USA

Article info
Article history:
Received 14 September 2022
Revised 30 December 2022
Accepted 18 January 2023
Available online 21 January 2023

Keywords:
Silver
Alumina
Ethylene epoxidation
Structure sensitivity
Particle size
Crystallite
In situ Raman
Subsurface oxygen
Molecular oxygen

Abstract
In situ Raman spectroscopy and parallel fixed bed reactor studies were conducted under ethylene epoxidation conditions with O₂ at 1 atm and 200 °C on unpromoted Ag/α-Al₂O₃ catalysts with different Ag particle sizes. It was found that for Ag particles of 20–50 nm, the weight normalized conversion rate decreased rapidly with increasing Ag particle size but remained almost constant above 50 nm. On the other hand, the apparent TOF increased with increasing Ag particle sizes in the 20–170 nm studied range, while ethylene oxide selectivity at zero residence time was nearly constant (55 ± 4%). Raman bands at 815 (all Ag sizes) and 880 (Ag sizes > 100 nm) cm⁻¹ were identified and assigned to active molecular oxygen species. The 880 cm⁻¹ species was assigned to a molecular oxygen complex structure stabilized by subsurface oxygen. The presence of the 880 cm⁻¹ oxygen species likely explain the higher apparent TOF in larger Ag particles (>100 nm).

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ethylene oxide (EO) is an essential cornerstone chemical in the petrochemical industry. It is the building block for many intermediates and products. The global EO production was 30 Mt in 2016 and is projected to reach 32 Mt by 2023 [1–3]. In 2018, only in the U.S., the production capacity of EO was 2.92 Mt, with a revenue of $3.4–3.9B/y. Around 72% of EO is consumed in the synthesis of glycols, primarily mono ethylene glycol (MEG) which is further polymerized to synthesize polyethylene terephthalate (PET) resin, the material from which most manufactured plastic containers are made of [4].

EO is selectively produced by reacting molecular oxygen with ethylene over Ag catalysts [5]. The unselective reaction path involves the high exothermic complete oxidation of ethylene and consequent oxidation of EO to carbon dioxide. EO selectivities of unpromoted and promoted Ag/α-Al₂O₃ are around 40–50 % and 85–90%, respectively, at low ethylene conversions (<10%) to avoid extensive ethylene and EO combustion and for safety concerns [6,7]. In 2016, the total combustion of ethylene in the EO process corresponded to a loss of $2B/y [8]. Therefore, even slight improvements in EO selectivity would significantly enhance EO process economics while reducing CO₂ production. These environmental and economic drivers have motivated researchers to continue EO silver catalyzed process investigations despite its relative industrial maturity.

The industrial Ag/α-Al₂O₃ catalyst has a silver content of about 15–30% Ag with nanoparticles in the range of about 50–100 nm (and even larger) supported on a low surface area α-Al₂O₃ (<1 m²/g) [7]. Overall, there have been multiple observations of significantly higher catalytic activity changes when the supported Ag particle size is increased between 10 and 100 nm [9]. This goes against the common intuition that on supported catalysts higher metal dispersion (small particle sizes) will usually favor catalytic activity for structure sensitive catalytic reactions. Such trends are widely reported in heterogeneous catalysis and therefore most supported catalysts are usually composed of metal nanoparticles <10 nm, whereas larger particles only possess a small fraction of active sites and are inefficient by behaving like bulk metals [10]. Thus, it is usually expected that for metal
nanoparticles>10 nm there should not be a significant change in catalytic activity [11–13]. The unusual structure sensitivity of silver catalysts for ethylene epoxidation was attributed by Boudart to surface saturation by possible impurities including various molecules and intermediates during preparation and pretreatment stages [11]. An evidence for that hypothesis was Campbell’s observations showing similar turnover frequencies on Ag(111) and Ag (110) [14]. Hensen and co-workers recently suggested that the observed structure sensitivity may be related to the reported bulk structure of Ag particles [15,16]. Large particles consist of multiple joined crystallites separated by grain boundaries, presumably providing low resistance paths through which oxygen can diffuse from the bulk to the subsurface region and eventually to the silver surface to react with ethylene which may explain their higher turnover frequencies.

The silver catalyst for EO industrial production uses an α-Al2O3 support which has a low specific surface area (<1 m²/g), and is non-porous [17,18]. During epoxidation reaction at temperatures between 200 and 300 °C the silver particle size can change via sintering due to the high silver loading and low support surface area [19–21]. Therefore, comparing particle size effects from various studies that utilized different reaction temperatures is not straightforward since the initial particle size distribution could change. One approach to minimize silver sintering is the use of a high surface area α-Al2O3 [12], but this approach might introduce support side effects on the reaction rate since CO can undergo secondary reactions with alumina’s hydroxyl groups if the surface area (>8 m²/g) or ethylene conversion are too large. This is the case for large surface area α-Al2O3 since CO can isomerize to acetaldehyde on the support’s hydroxyl groups [22–24]. Low density of hydroxyl groups and specific surface area are the properties that make α-Al2O3 particularly useful for maintaining high EO selectivity [23,25,26], but at the expense of having low Ag dispersity. Furthermore, acetaldehyde formed by EO isomerization will combust rapidly to CO2 over silver, which complicates the study of particle size effects on catalytic activity and selectivity [27].

The mechanism of ethylene partial and total oxidation remains debated despite almost a century of research [28–30]. In the heterogeneous catalysis route, it is expected that oxygen adsorbs on the Ag surface. Oxygen species were first suggested to be adsorbed molecular oxygen and atomic oxygen and presumed to be responsible for EO and CO2 formation, respectively [31]. This proposal implied a maximum selectivity of 86% based on the reaction stoichiometry [32]. Later studies disputed this theory by confirming: (1) the desorption of molecular oxygen at temperatures significantly below reaction conditions [14,33,34] and (2) reporting EO selectivities higher than 86%. Some computational and spectroscopic studies have provided evidence that the active intermediate oxygen species in the reaction may be a chemisorbed atomic oxygen on Ag surface (O₂). It has also been proposed that the nature and bonding strength of these oxygen species to Ag surface dictate the reaction mechanism [35,36].

Moreover, two types of atomic oxygen have been postulated to be involved in the reaction, a weakly bonded atomic oxygen also called “electrophilic oxygen” (O_elec) or covalent oxygen and a strongly bonded oxygen also called “nucleophilic oxygen” (O_nuc) or ionic oxygen [37,38]. The O_elec is an electropositive charged species (O⁺) whose formation requires strongly positively charged Ag atoms with a low coordination number created by the presence of subsurface oxygen O₂ or surface defects [35,36]. The nucleophilic oxygen is suggested to be a surface oxide like Ag-O−Ag (bridged oxygen) [39] species formed on Ag sites with low oxygen coverage, where charge transfer from Ag to adsorbed oxygen creates silver cations Ag⁺ necessary for ethylene adsorption [40]. Based on earlier isotope experiments [29,41] and recent DFT calculations [12,30,42–44], it is believed that O_nuc attacks the C=H bond to form CO₂ whereas O_elec is responsible for the electrophilic attack of the π bond in ethylene, creating an adsorbed epoxy oxide intermediate called oxametallacycle (OMC) which requires an oxygen vacancy to form. It has been proposed that the OMC intermediate can form either EO or acetaldehyde (AA) which in turn is rapidly oxidized to CO₂ on Ag [12].

Most of the previous conclusions were mainly based on studies under ultra-high vacuum conditions (UHV) on clean surfaces where the state of the silver surface does not represent the working state of the catalytic surface under relevant practical conditions of temperature, pressure, and surface coverage [45]. In the presence of oxygen, silver undergoes oxygen-induced reconstruction forming a surface oxide-like structure [46,47], in which silver is partially oxidized and penetrated with dissolved oxygen in the subsurface and bulk regions [48–50]. Based on DFT calculations, Van Santen et al. proposed a direct epoxidation path when the catalyst operates at conditions of high oxygen coverage. In this path, there is no need for OMC to form EO, unless an oxygen vacancy exists [44,50]. Classical experimental kinetic studies by Harriot et al. postulated that oxygen can be adsorbed on a silver oxide-like surface [51,52]. This was attempted to explain the larger than unity reaction rate order dependence in oxygen at high partial pressures of oxygen. Further microkinetic modelling by Stegelmann et al. proposed that consecutively adsorbed oxygen on top of a pre-chemisorbed O₂ (most likely O_elec) on a Ag surface is an O_elec, which forms a molecular oxygen-like structure labelled O/O⁺* where * is an oxygen vacancy site (i.e., bare Ag metallic site) [53]. Recent DFT coupled with in situ Raman spectroscopic studies reported the presence of complex oxygen molecular-silver structures [54,55] during ethylene epoxidation [56].

In this work, we prepared a series of unpromoted Ag/α-Al2O3 catalysts with average Ag particle size varying from ~20 to around 170 nm while using an intermediate surface area α-Al2O3 (~8 m²/g) support which has been shown recently to minimize silver sintering [57]. In this work, we will show that for Ag particles up to 50 nm, the weight normalized reaction rate decreased, and above 50 nm it remained nearly constant. In the case of the apparent TOF, it increased with Ag particle size over the studied particle size range (~20–170 nm). These rate trends suggested an indirect contribution of Ag particle bulk structure in the reaction. It will also be shown that EO selectivity (extrapolated to zero residence time from experiments at different space velocities) was almost independent of Ag particle size. H2–TPR before and after the reaction qualitatively supported previous proposals of larger oxygen uptake in highly polycrystalline and large Ag particle sizes (>100 nm). In situ Raman spectroscopy during ethylene epoxidation on different silver particle sizes evidenced the presence of molecular oxygen species (Raman band at ~880 cm⁻¹) for particles >100 nm most likely stabilized by subsurface oxygen (supported by H2–TPR observations), and which are believed to be intermediate reaction species. Together, all these results support the hypothesis that increasing the Ag particle size increases the amounts of subsurface oxygen which leads to a higher concentration of reactive oxygen species.

2. Experimental

2.1. Silver precursor

Silver oxalate preparation steps were followed as reported in the literature [7,27,58,59]. Briefly, silver oxalate was prepared by mixing 0.4 M silver nitrate (AgNO3, ACS, 99.9%+ metal basis, Alfa Aesar 11414) aqueous solution (HPLC, Fisher Chemical, P/N W5-4) and a 0.2 M oxalic acid (Oxalic acid, 98%, anhydrous, Acros Organics, AC186432500) aqueous solution. A molar ratio of Ag
nitrilotriacetic acid of 1:2 was chosen such that the concentration of oxalate ions C$_2$O$_4^{2-}$ is four times that of Ag$^+$ ions to ensure complete consumption of the latter [60,61]. The following is an example of the preparation of a silver oxalate batch. Approximately 5 g of AgNO$_3$ were dissolved in 74 cm3 of HPLC water in a 250 cm3 beaker and 5.4 g of H$_2$C$_2$O$_4$ were dissolved in 294 cm3 of HPLC water in a 1000 cm3 beaker. The AgNO$_3$ solution was added dropwise to the H$_2$C$_2$O$_4$ solution at 60 °C for 20 min under stirring using a magnetic stirrer (MS-H-Pro Plus hotplate-stirrer, Scilogex). A white precipitate was immediately formed. After the addition, the Ag$_2$C$_2$O$_4$ precipitate was separated by vacuum filtration [62] (Buchi V-700) using a filter paper (Whatman, 11 µm, WHA1001325) placed in a funnel/vacuum flask system. Silver oxalate is insoluble in water; hence, deionized water (2000 cm3) was used for several washing times during vacuum filtration to remove excess ions and possible impurities. The filtered Ag$_2$C$_2$O$_4$ was dried in a vacuum oven (Thermo Scientific, 3608-1CE) at 15 kPa and 60 °C overnight to avoid the risk of explosion of Ag$_2$C$_2$O$_4$ [63]. After that, the sample was stored at room temperature in amber vials (dark vial) to avoid possible decomposition by light exposure [59].

2.2. Catalyst preparation

Incipient wetness impregnation of a dried α-Al$_2$O$_3$ with a Ag$_2$C$_2$O$_4$-EDA complex was carried out at room temperature. The impregnation solution is composed of Ag$_2$C$_2$O$_4$ dissolved in EDA (ethylenediamine, >99.5%, Sigma-Aldrich, 03550) diluted with HPLC water with a fixed molar ratio of 1:4.8:16 mol (Ag$_2$C$_2$O$_4$: EDA:H$_2$O) for all prepared catalysts [27]. In a typical preparation of a batch of impregnation solution, 3.9 g (4.3 cm3) of EDA was added to 3.8 g of HPLC (Fisher Chemical, P/N WS-5) water in a 20 cm3 amber vial, after which 4 g of the prepared Ag$_2$C$_2$O$_4$ fine white powder was added to the EDA-water solution and mixed by sonication for 10 min at room temperature. The formed single phase complex solution (nearly transparent) was stored at about 4 °C in amber vials (to avoid silver reduction) and prepared freshly before each impregnation use [59].

Alpha-alumina (α-Al$_2$O$_3$, BET specific area of ~ 8 m2/g, 0.25–0.45 µm meshed size, 99.95% Alpha Aesar P/N 42573) powder was dried at 150 °C overnight in static air in a drying oven (Thermo Scientific, Heratherm 51028112). A specific pore volume of 0.17 cm3/g of α-Al$_2$O$_3$ (close to BET value of 0.19 cm3/g) was estimated by incipient wetness impregnation of a known amount of Ag$_2$C$_2$O$_4$ with water. Catalysts with five different nominal metal loadings of 0.8, 3, 5, 9, and 30 Ag wt% were prepared by incipient wetness impregnation of α-Al$_2$O$_3$ with Ag$_2$C$_2$O$_4$-EDA aqueous solution. Due to the small specific pore volume, multiple impregnation-vacuum drying cycles were needed in the preparation of 9 and 30 Ag wt% catalysts, ensuring that each cycle filled the pores with a calculated overall solution volume. Once one impregnation cycle was complete by consecutive dropwise addition of silver solution and thorough mixing, the sample was dried in a vacuum oven (Thermo Scientific, 3608-1CE) at 15 kPa and 60 °C for 6 h, after which similar steps were repeated for the subsequent cycles. Additional details on the catalysts’ preparation is provided in Section S1 and Tables S1 and S2 in the supporting information.

The vacuum dried α-Al$_2$O$_3$ supported silver samples were then treated in a tube furnace instrument (Thermo Scientific, Thermolyne 79300) in different gas atmospheres using pure H$_2$ (UHP, Matheson), N$_2$ (UHP, Matheson), or O$_2$ (UHP, Matheson) under flowing conditions at 250 or 350°C to vary the silver particle size. Gas flow into the tube furnace was adjusted using a rotometer so that a space velocity of ~600 cm3 g$^{-1}$ h$^{-1}$ is maintained. Under a certain gas atmosphere, the samples were heated from ambient temperature to 110 °C (5 °C min$^{-1}$) and dwelled for 30 min, and then ramped to 250 or 350 °C (5 °C min$^{-1}$) and kept at that temperature for 2 h after which the sample was cooled down and stored before characterization and catalytic performance testing [27].

2.3. Characterization

2.3.1. Thermal stability and composition

Thermogravimetric analysis (TGA) was used to determine the weight loss and Ag$_2$C$_2$O$_4$:EDA complex decomposition temperature of the different impregnated but only vacuum dried Ag$_2$C$_2$O$_4$:EDA/α-Al$_2$O$_3$ catalyst samples (~80–100 mg). The experiment was conducted in oxidative atmosphere (air) and inert atmosphere (N$_2$) with 100 cm3 min$^{-1}$ from ambient temperature up to 500 °C at a temperature ramp of 5 °C min$^{-1}$. (in degrees), respectively. The full-width-at-half-maximum β (in radians) was estimated using the full width at half maximum (FWHM) and checked by calculating the integral breadth [65]. The peaks were fitted using a Pseudo-Voigt function (Gauss and Lorentz functions).

Surface morphology and local elemental mapping were determined by scanning electron microscopy (SEM, Versa 3D dual beam SEM/Focused Ion Beam) and energy-dispersive X-ray spectroscopy (EDX, Oxford). ImageJ software was used to count 100–150 silver particles on at least three different regions by assuming spherical silver particles. The average Ag particle size d_{SEM} (with standard deviation σ_{SEM}) is calculated using Eq. (1).

$$d_{SEM} = \sum_{i=1}^{n} d_i \pm \sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_{SEM} - d_i)^2}$$ \hspace{1cm} (1)

where n and d_i are the number of the counted particles and the diameter of a single particle i, respectively. The theoretical interparticle distance (IPD) is defined as the edge-to-edge distance among neighboring spherical Ag particles assuming that particles are equally distanced to surrounding ones in a hexagonal arrangement (resembling a quasi-close packing) as calculated by Eq. (2) [66].

$$IPD = \sqrt{\frac{A}{n}} - d_{SEM}$$ \hspace{1cm} (2)

where A and N are the BET specific surface area of the support and the number of Ag particles per gram of catalyst, respectively. N is calculated from the amount of Ag loaded on the support. As an approximation, particles are assumed to be spherical and monodispersed. Additionally, elemental compositions were determined by X-ray fluorescence (XRF) using a PANalytical Zetium instrument. Typical SEM images, silver particle size distributions, and elemental mapping results for the prepared catalysts are shown in Figs. S1–S7.

Nitrogen adsorption–desorption isotherms were measured at −196 °C using an Autosorb-iQ2 analyzer (Quantachrome Instruments). Prior to physisorption, about 1 g of α-Al$_2$O$_3$ was loaded in a 9 mm wide sample cell (P/N 74200-9L, Quantachrome Instruments) and heated in vacuum at 300 °C for 3 h at a rate of 5 °C min$^{-1}$. After degassing, the analysis was carried out with a standard method consisting of 21 adsorption points and 20 desorption points. The resulting BET surface area, pore volume, and average pore diameter were 7.5 m2 g$^{-1}$, 0.19 cm3 g$^{-1}$, and 105 nm, respectively.
2.4. Catalytic testing

Ethylene epoxidation over the prepared Ag/α-Al₂O₃ catalysts was carried out in a fixed bed reactor (1/2" OD, 0.444" ID, 427 mm long) made of stainless steel (SS304) mounted vertically. A quartz liner tube (8 mm ID × 10 mm OD, 430 mm long, Technical Glass Products) was inserted in the reactor to avoid possible reactions on the reactor wall. Coarse quartz wool (CQ-wool-0.5, Technical Glass Products) was used to hold the powdered catalyst in the middle of the reactor. The fixed bed reactor is also equipped with a tube furnace (EQ-OTF1200X-S-H-110 V, MTI Corp.) and a temperature controller (GSL-1100X-NT-110-LD, MTI Corp.). The fixed bed temperature was measured by a thermocouple placed in the middle of the catalyst sample.

Samples of freshly prepared powdered catalysts crushed and sieved to a catalyst particle size range of 20–38 μm were used. Approximately 5–20 mg of catalyst was loaded in the fixed bed reactor and interparticle-diluted with silica sand (silicon dioxide, Sigma-Aldrich, BCBV1579, crushed to 20–38 μm and pre-calcined at 600 °C) on a weight basis ratio of catalyst/SiO₂ = 1/10. The diluted catalyst sample was initially heated to 50 °C and flushed with Ar. The cell was then heated to 200 °C at a 10 °C/min heating rate in Ar then pretreated with 5% O₂/Ar at 200 °C and space velocity of 1500 cm³g⁻¹cat min⁻¹ (gas flow rate per gram of active catalyst) and dwelled for 2 h. The reaction mixture composed of 10% C₂H₄, 5% O₂ balanced with Ar was introduced and the space velocity (based on total gas flow rate and undiluted catalyst) was varied between 3000 and 18,000 cm³g⁻¹cat min⁻¹. These conditions ensured operation outside the mixture explosive region [67] and operation as a differential reactor. In a typical run, after achieving steady state operation, four different space velocities were tested to assess the absence of mass transport limitations. The absence of catalyst deactivation was also verified for each catalyst by retesting the initial space velocity at the end of the experimental series. Unreacted ethylene and products were quantified over 1 h of reaction at each space velocity by an online SRI 8610C GC equipped with an Rt-Q-BOND PLOT column (30 m × 0.53 mm, 20 μm, P/N 19742–6850, RESTEK), a methanizer, and a flame ionization detector (FID). The outlet gas stream was also monitored online by mass spectrometry (Omnistar GSD 3200 Mass spectrometer, Pfeiffer).

Ethylene conversion (Xₑ) and ethylene oxide selectivity (Sₑ:Object) were calculated as described in the supporting information (Section S2). Two parameters were used for catalytic activity assessment: (1) Quasi steady-state ethylene consumption rate normalized by total Ag weight (mAg), given by:

\[
R_e (\text{mol}_\text{ethylene} \text{g}^{-1} \text{Ag s}^{-1}) = \frac{X_e F_{\text{e,in}}}{m_{\text{Ag}}}
\]

where \(F_{\text{e,in}}\) is the inlet ethylene molar flowrates (mol s⁻¹) and (2) Apparent turnover frequency (TOF) defined as the moles of ethylene reacted per surface Ag moles (nAg) per second as determined by:

\[
\text{TOF (s}^{-1}) = \frac{X_e F_{\text{e,in}}}{n_{\text{Ag}} D}
\]

where D is the Ag metal dispersion (i.e., surface Ag atoms divided by total Ag atoms in a Ag nanoparticle). Here, for simplicity Ag particles are assumed to be semi-spherical, leading to the approximate relationship between dispersion D and average SEM Ag particle size (dSEM) given by [67]:

\[
D(\text{nm}) = \frac{1.34}{d_{\text{SEM}}}
\]

It is important to note that the “apparent TOF” term is used here because of the ambiguity about the true nature and density of the catalyst active sites. However, as an initial approach it is deemed acceptable to determine the activity per exposed (surface) Ag sites. Therefore, for the purposes of catalyst comparison all silver surface atoms are roughly assumed to be active [57].

2.5. In situ Raman spectroscopy

In situ Raman spectroscopy experiments were conducted in Harrick’s in situ high-temperature Raman reaction cell (HVC-MRA-5) shown in Fig. 1, which was equipped with a temperature controller (ATK-024–3, Harrick), and gas delivery system. The reaction cell has two thermocouples to monitor the cartridge heater and catalyst sample temperatures following a previously reported configuration [68]. The exit line from the cell is heated to ~100 °C to avoid product condensation on the tubing walls. The outlet gas stream was monitored online by mass spectrometry. A bypass line is present to verify the steady mixing of reactants prior to flow through the reaction cell. Quantification of reactants and products by MS is not reported here due to possible issues with overlapping m/z signals which may lead to underestimation of selectivities [69]. A detailed schematic of the experimental set up is provided in Section S3 in the supporting information (Fig. S9).

Freshly prepared catalyst samples were crushed and sieved to 38–75 μm particle size range and loaded (~0.10–0.11 g) to the reaction cell sample cup. The catalyst samples were pretreated in similar manner to those in the fixed bed reactor activity studies: (1) initially heated to 50 °C and flushed with Ar; (2) heated to 200 °C at a 10 °C min⁻¹ heating rate in Ar; (3) pretreated with 5% O₂/Ar (300 cm³g⁻¹cat min⁻¹) at 200 °C for 2 h and then (4) flushed with Ar. The sample was kept at 200 °C and a reaction mixture (300 cm³g⁻¹cat min⁻¹) of 10% C₂H₄, 5% O₂ balanced with Ar was introduced at a total pressure of 1 atm. The reaction products were monitored by following their major m/z fragments (CO₂, H₂O, EO were tracked by MS using fragments m/z = 44, 18 and 29).

In situ Raman spectroscopy was performed on Ag/α-Al₂O₃ catalysts at various reaction conditions using a dispersive Raman spectrometer equipped with a confocal microscope (SENTERRA, Bruker). All spectra were collected using a green laser (532 nm wavelength) at a relatively low power of 2 mW (to minimize
sample damage) and an objective lens of 50X and aperture of 1000 µm. Bruker’s OPUS software was used to obtain spectra over 30 s with 20 co-additions for one measurement. Raman spectra were taken at the following conditions: (1) fresh sample at 50 °C in 100% Ar; (2) after oxygen pretreatment at 200 °C in 100% Ar; and (3) during steady state ethylene oxidation at 200 °C in 10% C2H4 and 5% O2 after 1, 2, 3 and 4 h of reaction.

2.6. Hydrogen-temperature programmed reduction (H2-TPR)

Temperature programmed reduction with hydrogen was carried out in the in situ reaction cell for all fresh catalyst samples: (1) after oxygen pretreatment and (2) after 4 h under ethylene epoxidation conditions. Fresh catalyst samples were used for each measurement. After a reaction run or pretreatment at 200 °C, the sample temperature was brought down to 50 °C in Ar. After MS signal stabilization, H2 reduction was started by introducing a 10% H2/Ar mixture (300 cm3 gcat−1 min−1) and by ramping up the reaction cell temperature to 450 °C (10 °C min−1) and holding for 1.5 h.

3. Results and discussion

3.1. Ag metal loading and particle size control

The decomposition of deposited silver complex under different atmospheres is discussed in the supporting information (Section S5.1). As previously reported in the literature [27,57], we also employed pure hydrogen, nitrogen, and oxygen as treatment gases to obtain small, medium, and large silver nanoparticles, respectively. Therefore, we used gas treatments at 250 and 350 °C to obtain small, medium, and large silver nanoparticles, respectively. Therefore, we used gas treatments at 250 and 350 °C (well above the decomposition temperature of the silver oxalate complex and of ethylene epoxidation reaction temperature in the present work) to provide catalyst samples with different silver particle sizes and over a wide range.

In this work, the parameters used for Ag particle size control were Ag loading, treatment temperature, and the nature of the gas atmosphere. Table 1 presents the average Ag particle diameter as measured by SEM (dSEM) as well as the estimated interparticle distance for all the different Ag catalysts treated at 250 and 350 °C. The catalysts notation in this work is usually given by “Ag(nominal wt%)_Treatment Gas” when comparing preparation conditions. Therefore, we used gas treatments at 250 and 350 °C to obtain small, medium, and large silver nanoparticles, respectively. Therefore, we used gas treatments at 250 and 350 °C (well above the decomposition temperature of the silver oxalate complex and of ethylene epoxidation reaction temperature in the present work) to provide catalyst samples with different silver particle sizes and over a wide range.

In this work, the parameters used for Ag particle size control were Ag loading, treatment temperature, and the nature of the gas atmosphere. Table 1 presents the average Ag particle diameter as measured by SEM (dSEM) as well as the estimated interparticle distance for all the different Ag catalysts treated at 250 and 350 °C. The catalysts notation in this work is usually given by “Ag(nominal wt%)_Treatment Gas” when comparing preparation conditions. For the latter nomenclature, the complete sample labels, preparation conditions, and Ag particle sizes are also listed in Table 1. The average Ag particle sizes ranged from 20 to 170 nm. The choice of α-Al2O3 with a relatively higher specific surface area (~8 m2/g) than the industrial alumina support also allowed more control on the Ag particle size and interparticle distance (while minimizing particle size metal sintering at the relatively low reaction temperature of 200 °C).

Fig. 2 compares the obtained average silver particle sizes with the different treatment conditions. Catalysts Ag(3) and Ag(9) were both treated with N2 and show a slight increase in the average SEM Ag particle size with increasing temperature. The higher Ag(9) loading with respect to Ag(3) led to slightly larger Ag particle sizes as expected for higher silver loadings (Table 1). On the other hand, catalysts Ag(5) and Ag(30), which were treated in O2 resulted in a steeper increase of the average Ag particle diameter to nearly doubled that of the lower temperature when the temperature increased from 250 to 350 °C. This observation has also been reported by de Jongh et al. [57] and it was attributed to the formation of small Ag oxide nanoparticles, which are mobile species that enhance sintering while decomposing to Ag metal [27], particularly during heat treatments in oxidative environments [57]. Alternatively, higher Ag loadings inherently facilitate sintering which lead to particle growth and an increase in the interparticle distance.

3.2. Catalysts morphology

XRD results for the prepared catalysts are presented in Fig. 4. This figure shows that the intensity of Ag characteristic peaks at

Table 1

<table>
<thead>
<tr>
<th>Ag[wt%]_Treatment Gas</th>
<th>250 °C</th>
<th>350 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dSEM ± σSEM</td>
<td>IPD/nm</td>
</tr>
<tr>
<td></td>
<td>dSEM ± σSEM</td>
<td>IPD/nm</td>
</tr>
<tr>
<td>Ag[0.8]_H2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ag[3]_N2</td>
<td>40 ± 10</td>
<td>180</td>
</tr>
<tr>
<td>Ag[9]_N2</td>
<td>50 ± 10</td>
<td>150</td>
</tr>
<tr>
<td>Ag[5]_O2</td>
<td>60 ± 40</td>
<td>345</td>
</tr>
<tr>
<td>Ag[30]_O2</td>
<td>120 ± 80</td>
<td>280</td>
</tr>
</tbody>
</table>

![Fig. 2. Catalysts average SEM Ag particle diameter as a function of temperature and gas atmosphere (solid line: O2 and dashed lines: N2) after treatment for 2 h with a space velocity of 600 cm3 gcat−1 min−1. Trend lines added to guide the eye.](image-url)
values of 38.1, 44.2, 64.5, and 77.4° increased with increasing Ag loading, reaching the highest values for Ag(30). The absence of additional peaks illustrates the appreciable decomposition of Ag organic precursor compounds by heat treatment regardless of the gas atmosphere during catalyst preparation. Ag(220) reflection was used to estimate the crystallite size as reported earlier [15].

Fig. 3. SEM images, silver particle size histograms, and XRD diffractograms of the Ag(220) for (a) Ag(9)_50, (b) Ag(3)_50, (c) Ag(5)_110, and (d) Ag(30)_120.
The Ag reflections for catalyst samples Ag(0.1) and Ag(0.8)_20 could not be detected, as shown in Fig. S13 (supporting information) because of Ag low loading, high dispersion, and/or low crystallite size, which is well below the XRD instrument sensitivity limit. The SEM image of Ag(0.8)_20 and XRD patterns in Fig. S13 clearly illustrates the high dispersity in the low Ag loading samples.

Table 2 summarizes the results for particle and crystallite sizes as determined from SEM and XRD analysis, respectively. From this table it can be noted that all crystallite sizes were found to be similar and in the range of 18–23 nm. However, the SEM average particle diameter for all studied catalysts in this table was larger than the crystallite size obtained by XRD. Similar observations have been reported and used as evidence that Ag particles consist of multiple crystallites that are separated by intergrain boundaries for average particle diameters >40 nm [15,16]. These results imply that the Ag(0.8)_20 catalyst has a homogeneous monocrystalline (i.e., one crystallite/per Ag particle) structure compared to the multicrostallite particles present in other catalysts. Based on the poly-crystallinity of Ag particles, it seems like there is a dominant Ostwald growth mechanism [48,55] and a less predominant particle coalescence mechanism during catalyst preparation [42].

3.3. Catalytic activity and ethylene oxide selectivity measurements

For all catalysts tested, it was found that steady-state operation was achieved within 1 h of reaction (Section S2, Fig. S8). For all catalytic activity and selectivity testing, the absence of mass and heat transfer limitations was evaluated as detailed in the supporting information (Section S4). From the catalytic activity testing results at different space velocities, it was found that external mass transfer limitations, which can limit catalytic activity comparison among different catalysts, can exist even at conversions below 1%. For example, Fig. S11 in Section S4.2 shows that the weight-normalized ethylene conversion rate increases with the square root of the ratio of volumetric flowrate to catalyst particle size indicating the presence of external diffusion limitations. It was found that ethylene conversions lower than 0.5% and space velocities higher than 6000–9000 cm gcat min⁻¹ were required to eliminate such mass transport issues as well as to minimize possible product inhibition effects such as those previously reported for propylene epoxidation reaction [71]. These results highlight the risks of relying on only theoretical calculations for external mass transfer limitations due to the lack of reliable mass transfer coefficient correlations at the small Re and Sc numbers commonly present in laboratory reactors. For these reasons and for rigorous comparison of catalysts, catalytic activity and ethylene oxide selectivity results are reported at extrapolated residence time of zero as shown in Table 3.

Fig. 5 (left) presents ethylene conversion vs EO selectivity for the tested Ag/α-Al₂O₃ catalysts. The figure shows the typical inverse relationship between conversion and selectivity for a primary product. As conversion increases, the primary product (EO) can undergo secondary reactions to form CO₂ (on Ag) and/or acetaldehyde (on α-Al₂O₃’s hydroxyl groups) [50], leading to a decrease in the selectivity. Fig. 5 (right) shows EO selectivity extrapolated to residence time zero (to minimize the confounding effects of conversion, inhibition, and exposed support surface) as a function of the average silver particle size. Overall, the EO selectivity is found to be nearly independent of silver particle size. These selectivity trends match previous reports by de Jongh and co-workers [27,57] and Hensen and co-workers [15].

3.4. Silver particle size effects on the rate of reaction and apparent TOF

The catalytic activity of the tested catalysts was normalized to the average exposed surface area of the silver nanoparticles. For these rates, the average Ag particle sizes of the freshly prepared catalysts (as determined by SEM) were used for simplicity since no significant changes were observed in the average Ag particle size in the used catalysts after reaction (Figs. S6 and S7). The sintering of these catalysts to sintering was also reported earlier for a similar support specific area and reaction conditions [27,57]. Fig. 6 shows the rate of ethylene oxidation normalized by the total weight of silver and apparent TOF (moles of ethylene reacted per moles of surface Ag per second), respectively, against the average Ag particle size. For particles up to around 50 nm, the weight normalized conversion rate decreased rapidly and above ~ 50 nm the conversion rate remained nearly constant. In contrast, the apparent TOF increased with the average silver particle size. These observations are similar to those reported by Hensen and co-workers [15]. In general, silver particles of 50–70 nm or larger have been commonly reported to be more active based on apparent TOF [24,27,70,72,73].

For most structure sensitive reactions, it is commonly assumed that TOF will be higher for smaller particles showing high dispersion [70]. However, this does not seem to be the case for ethylene epoxidation (at least based on apparent TOF) for which the TOF

Table 2

<table>
<thead>
<tr>
<th>Name Ag(wt%), DSEM</th>
<th>Ag Loading (wt%)</th>
<th>Temperature(°C), atmosphere</th>
<th>dSEM (nm)</th>
<th>dXRD (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag[30]_170</td>
<td>29.6</td>
<td>350-O₂</td>
<td>170</td>
<td>23</td>
</tr>
<tr>
<td>Ag[30]_120</td>
<td>29.6</td>
<td>250-O₂</td>
<td>120</td>
<td>20</td>
</tr>
<tr>
<td>Ag[9]_50</td>
<td>9.2</td>
<td>250-N₂</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>Ag[5]_110</td>
<td>4.9</td>
<td>350-O₂</td>
<td>110</td>
<td>23</td>
</tr>
<tr>
<td>Ag[3]_50</td>
<td>3.7</td>
<td>350-N₂</td>
<td>50</td>
<td>19</td>
</tr>
<tr>
<td>Ag[0.8]_20</td>
<td>0.8</td>
<td>350-H₂</td>
<td>20</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 4. XRD patterns for various Ag/α-Al₂O₃ catalysts presented in Table 2. The diffractograms are offset for clarity.
increases with Ag particle size, leading investigators to study other factors such as the bulk structure of such relatively large particles [15,16,72,73]. The effect of Ag particle size on apparent TOF (Fig. 6) resembles an atypical (antipathetic) particle size-TOF relationship, also known as negative particle size effect, demonstrating the unusual role of Ag surface area for catalyzing the reaction in which large Ag particles have high catalytic activity. This increase in apparent TOF with larger Ag particle sizes defies expectations of
low TOF for larger metal particle sizes since the reaction rate scales typically with surface area in more common sympathetic structure-sensitive reactions. At present, the reasons for this behavior are unknown, but the lack of knowledge on the true nature of active sites and their counting probably contribute to the current unusual observations based on apparent TOFs. Other than particle size and the corresponding silver exposed surface area, silver particles also differ in their bulk structure as shown by XRD and SEM where Ag particles most likely consists of multiple crystallites which increase proportionally with increases in particle size (Section S5.3, Fig. S14). It is unclear if these differences are related to the unusual behavior of silver catalysts for EO synthesis, but this has led to speculations that Ag particle bulk structure plays an essential role in the reaction, manifested in the observed structure sensitivity of the ethylene epoxidation reaction.

In general, quasi spherical silver particles with fcc structure have predominantly regular Ag surfaces Ag(111), which is the most stable facet for large particles [74]. As noted above, the apparent TOF behavior with such large particles (>20 nm) is unusual because they are expected to resemble more closely the bulk metal on which the emergence of active sites due to structural variation no longer occurs [10,11]. If the polycrystallinity of large silver particles is of relevance for ethylene epoxidation, then this may be due to the presence of defects at the grain boundaries that separate the crystallites. Such defects have been postulated to enhance oxygen diffusion to silver bulk [75,76]. To explain the increase in the apparent TOF with Ag particle size, Hensen and co-workers proposed that oxygen is activated on the defects near the grain boundaries where oxygen in the metal bulk diffuses to subsurface regions and eventually to the external surface to react with ethylene [15]. While plausible, many questions remain with this proposal. For example, it is unclear if atomic oxygen will diffuse out of silver bulk and participate in the oxidation reaction, in particular, at high oxygen partial pressures (20 bar) such as those previously reported [15]. An alternative explanation is the relevance of subsurface oxygen for the formation of reactive oxygen species [6,30], which seems to agree with the increase of apparent TOF with Ag particle size based on the following observation: that the oxygen content remaining in large Ag particles (>100 nm) is relatively larger than those in smaller ones (<100 nm) as assessed by comparing H2-TPR before and after the reaction for all catalysts (see Section S5.5 and Fig. S16). This relatively higher overall oxygen content is presumed to affect the stability of reactive oxygen species. The possible presence of different surface oxygen species is explored next by in situ Raman spectroscopy at ethylene epoxidation conditions.

3.5. In situ Raman spectroscopy at ethylene epoxidation reaction conditions

In this section, in situ Raman spectra after oxygen pretreatment and during ethylene epoxidation reaction will be presented for catalysts with Ag particle sizes of 20, 50, 120 and 170 nm. In situ Raman spectra were taken after oxygen pretreatment at 200 °C and during reaction (10% C2H4, 5% O2) at 1 atm and 200 °C for 4 h (steady state operation was achieved after ~1–2 h, Fig. S15). A review of previously reported Raman bands during silver exposure to oxygen, ethylene, and/or reaction mixture and their assignments is shown in Table S4. Table 4 below summarizes the most relevant Raman bands to this work detected during in situ measurements. Fig. 7 presents the in situ Raman spectra for Ag/Al2O3 catalysts with average Ag particle sizes of 20, 50, 120 and 170 nm (additional Raman spectra for fresh catalysts and for Ag (3)_50 nm are shown in Figs. S17 and S18 in Section S6).

The band at 580 cm⁻¹ appeared after the oxygen pretreatment for all catalysts and is particularly intensified for particles >100 nm. The shoulder at 680 cm⁻¹ also appeared after the pretreatment, and its intensity was appreciable in the case of the 170 nm Ag particle size catalyst sample, but barely noticeable for other particle sizes. The in situ Raman spectra (Figs. 7 and S18) shows the intensification of bands 399 and 440 cm⁻¹ and emergence of features between ~800 and 1000 during ethylene epoxidation reaction demonstrating that Ag catalysts becomes oxidized when exposed to reaction conditions, as reported earlier [56]. The intensity of the band at 399 cm⁻¹ increased slightly during ethylene epoxidation reaction for all catalysts. The intensity of the band at 440 cm⁻¹ remained unchanged for particles <100 nm but slowly intensified for larger particles. A small peak emerged for all samples at 815 cm⁻¹ during ethylene epoxidation reaction. This band at 815 cm⁻¹ attenuated for particles >100 nm and it correlated with the intensification of a characteristic feature at 880 cm⁻¹ for catalysts Ag(30)_120 and Ag(30)_170 as a function of reaction time. For the Ag(30)_170 catalyst, in situ Raman spectra acquired after 10 min of reaction confirmed the emergence of the 880 cm⁻¹ feature due to ethylene epoxidation. Other Raman features emerged during reaction at 1040 and 1080 cm⁻¹ and grew with reaction time for all samples.

The Raman assignments of relevant features in this work which are summarized in Table 4 are supported by recent DFT guided studies. The band at 399 cm⁻¹ is generally assigned to Ag-O vibrations as frequently reported in the literature (Table S4). As discussed above, H2-TPR after reaction (Fig S16) showed that polycrystalline particles >100 nm have relative larger hydrogen consumption. Therefore, the band at 440 cm⁻¹ is assigned to bulk oxygen as reported by Wachs and co-workers [56]. The band at 580 cm⁻¹ was assigned to O-Ag-O motifs vibrations as suggested by Paolucci and co-workers for multiple Ag2O structures and ascribed to O-Ag-O motifs that can be a combination of surface and subsurface oxygens. Further support for this assignment comes from an earlier observation of a 545 cm⁻¹ band attenuation during the thermal decomposition of silver oxide [79]. The shoulder at 680 cm⁻¹ has been assigned to multiple oxygen species (Table S4). Nevertheless, the bands at 668 and 691 cm⁻¹ reported

<table>
<thead>
<tr>
<th>Raman bands in this work (cm⁻¹)</th>
<th>Species</th>
<th>Literature reports (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>399</td>
<td>ν(Ag-O) on Ag Surface</td>
<td>399 [54]</td>
</tr>
<tr>
<td>440</td>
<td>ν(O-Ag-O) in bulk Ag</td>
<td>399 [56]</td>
</tr>
<tr>
<td>436</td>
<td>ν(O-Ag-O) in subsurface Ag</td>
<td>449 [56]</td>
</tr>
<tr>
<td>580</td>
<td>ν(O-Ag-O) in surface and subsurface oxygen motifs</td>
<td>436 [77,78]</td>
</tr>
<tr>
<td>680</td>
<td>ν(O-Ag-O) in subsurface atomic-molecular hybrid structure: Ag₆₋O-O-Ag₂</td>
<td>500-580 [54]</td>
</tr>
<tr>
<td>693</td>
<td>ν(O-O) in trough site: Ag₆-O-O structure</td>
<td>500-580 [54]</td>
</tr>
<tr>
<td>815 and 880</td>
<td>ν(O-O) in surface atomic-molecular hybrid structure: Ag₂₋O-O-Ag₂</td>
<td>668 [55]</td>
</tr>
<tr>
<td>806</td>
<td>ν(O-O) in surface Ag₆-O-O structure</td>
<td>806 [55]</td>
</tr>
<tr>
<td>810-840</td>
<td>ν(O-O) in molecular oxygen complex Ag₆₋O-O stabilized by subsurface atomic oxygen</td>
<td>839[56]</td>
</tr>
</tbody>
</table>

*Most Raman band assignments supported by DFT calculations are listed here. A more comprehensive literature review of band assignments is shown in Table S4.
by Podkolzin and co-workers and Wachs and co-workers, respectively, suggested that they could be due to a subsurface atom molecular oxygen hybrid structure [55,56] (Ag2-O-O-Ag2 is similar to Ag4-O-O in Table 4); however, contributions to this band from adsorbed carbonates cannot be excluded.

The emergence of features at 815 and 880 cm

−1 during the reaction indicates that they may be due to intermediate species contributing to the reaction. The band near ~800 cm

−1 was suggested to represent reactive atomic oxygen species in ethylene epoxidation [80] and previous DFT calculations assigned it to an interaction between surface and subsurface oxygen atoms O2−O

a on partially oxidized Ag [6,81]. However, during reaction conditions, Wachs and coworkers investigated P(4 × 4) – O/Ag(111) with quasi-in situ HS-LEIS, in situ NAP-XPS, and in situ Raman spectroscopy after an oxidation treatment and during ethylene oxidation, and provided compelling evidence that the surface molecular oxygen structure Ag4−O2 (near 800 cm

−1) is an active oxygen species for ethylene epoxidation [56]. This species is similar to the surface atomic-molecular oxygen hybrid structure Ag2−O−O−Ag2 previously reported by Podkolzin and co-workers. This hybrid oxygen species required dissociation of molecular oxygen but still possess the O−O bond because one of the adsorbed O atom reacts with one lattice O atom on the surface or subsurface of Ag. More importantly, these hybrid oxygen structures were described as a metastable species that can be catalytically active in selective oxidation reactions on Ag catalysts [55].

Raman features in the range of 1040–1080 cm

−1 are tentatively assigned to O−O vibrations in absorbed molecular oxygen and/or surface monodentate and bidentate carbonates adsorbed on Ag as shown in Table S4. In our work, these peaks did not appear for the fresh catalysts (Fig. S17), nor after O2 pretreatment (Fig. 7) and only appeared during ethylene epoxidation reaction. It is unlikely that these Raman bands are due to the presence of carbonates of alkaline metal (e.g., Na, K) impurities (which could affect catalytic activity and selectivity) since they were not detected by in situ Raman during exposure of the support to CO2 at 200 °C (Section S63, Fig. S19) neither (at instrument’s sensitivity levels) by XPS and EDX elemental mapping of the silver catalysts (Section S64, Fig. S20).

The key new feature from the current in situ Raman studies during ethylene epoxidation reaction is the band around 880 cm

−1 that evolved significantly for Ag particle sizes >100 nm and grew during reaction. Paolucci and co-workers conducted an in situ Raman spectroscopy study of unsupported silver nanoparticles (80–100 nm) under ethylene epoxidation conditions with complementary computed Raman frequencies using DFT calculations for several AgxOy reconstructed surfaces [54]. They reported a band centered between 810 and 840 cm

−1 and provided evidence for bands in the range of 800–1000 cm

−1 as being due to molecular oxygen complexes stabilized by surface and/or subsurface atomic oxygen. Therefore, the band at 880 cm

−1 is ascribed to a stabilized molecular oxygen complex structure. The stabilizing agent is a neighboring atomic oxygen species that is speculated to be a subsurface or bulk oxygen represented by the observed Raman band at 440 cm

−1 [56]. For particles >100 nm, after the oxygen pretreatment and during the reaction, the band at 440 cm

−1 was intensified indicating the formation of substantial amounts subsurface/bulk oxygen species during the oxygen pretreatment. This subsurface oxygen appears to play an important role in the stabilization of reactive oxygen species and it has been reported to be highly stable at reaction temperature [77,78]. Overall, it is possible that the higher degree of polycrystallinity in catalyst samples with larger Ag particle sizes may facilitate oxygen uptake as suggested [15,16] by SEM, XRD and H2-TPR after reaction; however, additional systematic in situ studies are required to establish such correlation between silver particle structure and catalytic activity and selectivity.

Regardless of the assignment of the band at 880 cm

−1, particles >100 nm are most likely to have significant larger amounts of oxygen species represented by this band. In addition to active oxygen species represented by 815 cm

−1 that appeared for all catalysts, the appearance of the oxygen species at 880 cm

−1 for catalysts with Ag particle size >100 nm implies an increase in the number of active oxygen species resulting in an enhanced apparent TOF. The observed variations of in situ Raman bands with silver particle size in unpromoted Ag/x-Al2O3 catalysts provide further spectroscopic evidence of the silver particle size effect on the ethylene epoxidation activity through the formation of multiple reactive oxygen species for relatively large Ag particles (>100 nm).
4. Conclusion

In this work, the controlled synthesis of unpromoted Ag/α-Al2O3 was achieved by treating samples of α-Al2O3 support (~8 m²/g) impregnated with a silver oxide solution at different temperatures and under different gas atmospheres leading to Ag particle sizes between ~20 and 170 nm. Characterization by SEM and XRD showed that silver particles consist of multiple crystallites. It was found that ethylene epoxidation had an atypical TOF-particle size relationship, where the apparent TOF increased with increasing Ag particle size. The opposite relationship was observed for the weight normalized conversion rate vs Ag particle size. Meanwhile, EO selectivity (extrapolated to zero residence time) was nearly unaffected (~50–60%) by Ag particle size. In situ Raman during ethylene epoxidation on unpromoted Ag/α-Al2O3 with different average Ag particle sizes revealed the presence of a Raman band at 815 cm⁻¹ for all catalysts, which was assigned to molecular oxygen complex species. Moreover, in situ Raman also revealed the evolution of a significant band at 880 cm⁻¹ for large particles (>100 nm) attributed to molecular oxygen complex species as reported in literature and this species is presumably stabilized by subsurface oxygen as suggested from H2-TPR results. The results of this work provide in situ Raman spectroscopic evidence for the presence of several active oxygen species during ethylene epoxidation on Ag/α-Al2O3 catalysts. Particularly, catalysts with larger Ag particles show two active oxygen species (characterized by Raman bands at 815 and 880 cm⁻¹), which are more likely responsible for their higher apparent TOF in ethylene epoxidation.

Data availability

Data will be made available on request.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors acknowledge the financial support by the National Science Foundation under grants No CBET-1847655. H.A.A. also would like to thank the government of the Kingdom of Saudi Arabia and King Abdulaziz University for their financial support in his graduate study at the University of Kansas.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2023.01.016.

References
