Invernet: An Adversarial Attack Framework to Infer
Downstream Context Distribution through
Word Embedding Inversion

©2022
Ishrak Hayet

Submitted to the graduate degree program in Department of Electrical Engineering and Computer
Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the
requirements for the degree of Master of Science.

Dr. Bo Luo, Chair

) Dr. Zijun Yao, Co-chair
Committee members

Dr. Fengjun Li

Dr. Alexandru Bardas

Date defended: April 26, 2022

The Thesis Committee for Ishrak Hayet certifies
that this is the approved version of the following thesis :

Invernet: An Adversarial Attack Framework to Infer Downstream Context Distribution through
Word Embedding Inversion

Dr. Bo Luo, Chair

Date approved: April 26, 2022

i

Abstract

Word embedding has become a popular form of data representation that is used to train deep
neural networks in many natural language processing tasks, such as machine translation, named
entity recognition, information retrieval, etc. Through embedding, each word is represented as a
dense vector which captures its semantic relationship with others, and can better empower machine
learning models to achieve state-of-the-art performance. Due to the data and computation intensive
nature of learning word embeddings from scratch, an affordable way is to borrow an existing
general embedding trained on large-scale text corpora by third party (i.e., pre-training), and further
specialize the embedding by training on downstream domain-specific dataset (i.e., fine-tuning).
However, a privacy issue can rise during this process is that the adversarial parties who have the
pre-train datasets may be able infer the key information such context distribution of downstream
datasets by analyzing the fine-tuned embeddings.

In this study, we aim to propose an effective way to infer the context distribution (i.e., the
words co-occurrence in downstream corpora revealing particular domain information) in order to
demonstrate the above-mentioned privacy concerns. Specifically, we propose a focused selection
method along with a novel model inversion architecture “Invernet” to invert word embeddings into
the word-to-word context information of the fine-tuned dataset. We consider the popular word2vec
models including CBOW, SkipGram, and GloVe algorithms with various unsupervised settings.
We conduct extensive experimental study on two real-world news datasets: Antonio Gulli’s News
Dataset from Hugging Face repository and a New York Times dataset from both quantitative and
qualitative perspectives. Results show that “Invernet” has been able to achieve an average F1 score
of 0.70 and an average AUC score of 0.79 in an attack scenario.

A concerning pattern from our experiments reveal that embedding models that are generally

considered superior in different tasks tend to be more vulnerable to model inversion. Our results

1l

suggest that a significant amount of context distribution information from the downstream dataset
can potentially leak if an attacker gets access to the pretrained and fine-tuned word embeddings.
As aresult, attacks using “Invernet” can jeopardize the privacy of the users whose data might have

been used to fine-tune the word embedding model.

v

Acknowledgements

I would like to thank Dr. Luo and Dr. Yao for their valuable guidance and sugges-
tion. Without their effective and helpful suggestions and guidance, this work would be

impossible.

Contents

1 Introduction

2

3

1.1
1.2

Contributions e e e e

Thesis Organization oo e

Problem Formulation

2.1 Problem Statement
2.1.1 Example e
2.1.2 0 ASSUMPLIONSo e e e e e e e e
2.1.3 Problem Formulation oo,

Background

3.1 Neural Representation Learning
3.1.1 Word2Vec e
3.1.2 GloVe . . . o o o
3.1.3 BERT

3.2 Transferring Knowledge in Deep Learning
32.1 DeepLlearning
322 TransferLearning

3.3 Information Leakage from Machine Learning Models
3.3.1 Membership Inference
3.3.2 Information Leakage in Deep Transfer Learning
3.3.3 Information Leakage in Embedding Models

vi

4 Methodology 21

4.1 Pretraining. e e e e 21
4.1.1 Continuous Bag of Words (CBOW) 21

412 SkipGram 22

413 GloVe e 22

4.1.4 Word Vector Initialization 23

42 Fine-tuning e e e e e 24
4.3 Invernet Framework L L 25
4.3.1 Preparing Embeddings for Inference 27

4.3.2 Inference Model 28

4.3.3 Inference Context Distribution 29

434 LossFunction. 30

5 Experiments 31
S.1 Datasets e e 31
5.2 Training Details 31
5.2.1 Preprocessing 31

5.2.2 Focused Data Selector 32

5.2.3 Splitting Dataset 32

5.24 Pretraining e 33

5.2.5 Fine-tuning e 33

5.3 Baselines e 34
5.3.1 NaiveBaseline 34

5.3.2 Motion based Inference Model 35

5.3.3 Stacked Generalization L Lo 36

5.3.4 Invernet Inference Model L. 37

5.4 Classification Report 39
5.4.1 Baseline Comparison L e 42

Vil

54.2 AblationStudy

5.5 Qualitative Analysis of Distributional Performance

5.6 Membership Inference

5.6.1 Quantitative Analysis with Hit Ratio

5.6.2 Qualitative Analysis with Sequence Reconstruction

6 Conclusion

6.1 Future Directions

viil

2.1

3.1

3.2

33

34
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

5.1
5.2
5.3
54

List of Figures

Problem statement e e e e e 6

Two dimensional t-SNE approximation of d-dimensional word vectors pretrained
on a dataset containing both technology and fruits related words 11
Two dimensional t-SNE approximation of d-dimensional word vectors fine-tuned
on a dataset containing fruits related wordso L. 12

Two dimensional t-SNE approximation of d-dimensional word vectors fine-tuned

on a dataset containing technology related words 12
Word2Vec models: i) CBOW; ii) SkipGram [20] 13
BERT input representation [10] 15
Transformer model architecture [39] 15
An example of a deep neural network [29] Lo 16
Membership inference using shadow model technique [35] 18
Leakage in deep transfer learning [9] 19
Embedding inversion [36]o 20
Inversion model framework ("Invernet") 25
Inference Sampler 26
Motion based inference method 35
Training graph for stacked generalization setting 37
Training graph for Invernet inference model 39
ROC analysis for different baselines 45

1X

5.5

5.6

5.7

5.8

5.9

ROC analysis of Invernet Framework for different embedding models with N=30

and B=2Ssetting e

Word-to-word distributional performance of logistic regression based inference

model on embeddings trained with CBOW model

Word-to-word distributional performance of Invernet Framework on embeddings

trained with CBOW model

Word-to-word distributional performance of logistic regression based inference

model on embeddings trained with SkipGram model

Word-to-word distributional performance of Invernet Framework on embeddings

trained with SkipGrammodel

5.10 Word-to-word distributional performance of logistic regression based inference

5.11

model on embeddings trained with GloVemodel

Word-to-word distributional performance of Invernet Framework on embeddings

trained with GloVemodel

2.1
22
2.3
24

5.1
5.2
5.3

54

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

List of Tables

Anexample of Dgop . « .« « o v o o e
Dg,p, after pre-processing and removing stopwords L.
Binary context of the word "economy" in D}, within a window size W¢e = 1

Table of Notations o o e

Comparing average F1 and AUC scores of different methods on AG_News Dataset

Comparing average F1 and AUC score of different methods on NYT Dataset
F1 and AUC scores for different N={5, 15, 30} and B={5, 25, 50} values for

AG _NewsDataset e e e e e
F1 and AUC scores for different N={5, 15, 30} and B={5, 25, 50} values for NYT

dataset e
Comparing different samples sizes for hit ratio analysis
Hit RatioCase Study e
Example of Sequence Reconstruction from AG’s News Dataset
Inference within window size W=1, target word="‘citigroup’
Inference within window size W=2, target word="citigroup’
Inference within window size W=3, target word="‘citigroup’
Inference within window size W=4, target word="citigroup’
Final reconstructed sequence

Human-in-the-loop Similarity Judgement

X1

Chapter 1

Introduction

Discriminative data representation learning is a critical factor in determining the success of Ma-
chine Learning models. In Natural Language Processing (NLP), many deep neural networks need
the input words or documents to be represented in a form of numerical vectors which indicate
the semantical distinction among information, so that the models can improve the performance
of NLP tasks relying on these quality input. Different methods of converting vocabulary tokens
to numbers have been discussed in literature [40]. For example, an intuitive way of converting
categorical vocabulary to numerical vectors is to one-hot encode the tokens into a bitstring or com-
monly known as a bag of words representation [17]. However, one-hot encoding can easily result
in high-dimensional representations and usually is not capable of accommodating unseen informa-
tion. Another way of representation is using distributed but low-dimensional representation called
word embedding [20], which has become successful and popular lately by capturing complex and
subtle semantic difference of input words or documents [4].

In practice, well trained word embeddings demand large training corpus, sufficient training
iterations, high computational cost and leaves a environmentally detrimental carbon footprint. E.g.
in [38], the authors mention that training a BERT-base model emits around 1,500 lbs of carbon
dioxide and costs around $3,000 - $12,000 to train. Ensuring such environmentally and financially
costly training factors are usually infeasible or uneconomical for most small organizations and
individuals. As a result, large platforms (e.g., Google cloud, Hugging Face) with computational
capacity train word embeddings on large and generic datasets, and offer the pretrained embeddings
through platforms like the Tensorflow Model Hub or the Hugging Face Model Repository [41].

With specific tasks and datasets in hand, other user entities can further refine the embeddings by

training on their own datasets, while using pretrained embeddings as the input to generate their
domain adapted downstream embeddings with much smaller corpus and cost. Such refinement
process is known as fine-tuning and can be considered as the de facto standard practice of how word
representations are commonly learnt in today’s natural language processing tasks [32]. Examples
of adopting such fine-tuning process are abundant in the biomedical sector [15], the financial sector
[3] etc.

Often times, users of word embeddings are of the opinion that word embeddings are simply
dense vector representations of words and that nothing much can be inferred about the training
corpus from just a collection of numbers. So, most of the times, they do not exercise caution
in keeping their word embeddings secure. In this paper, we study whether downstream word
embeddings leak the context information of the downstream dataset when the fine-tuned word em-
beddings is available for adversarial parties. Specifically, under the situation when the adversarial
parties like the pretrained embedding publishers are able to access the downstream embeddings,
we study the methods of inferring word to word binary co-occurrence statistics of the downstream
fine-tuning corpus, using the leaked fine-tuned embeddings and prior knowledge of the pretrained
embeddings and datasets. In this work, we conduct four different experiments where the first one
is a naive baseline that uses a logistic regression based inference model, the second one applies a
motion based inference, the third one uses a stacked ensemble model and the fourth one i.e. "In-
vernet" uses an inference sampling approach along with a deep neural network to invert fine-tuned
embeddings into the corresponding context.

Attacks on Machine Learning models have been studied extensively [28]. In [35], the authors
train adversarial shadow models to carry out membership inference attacks against different com-
mercial models. Feature based analyses of information leakage in machine learning models are
discussed in [9], and [36]. In [9], the authors consider the owner of the downstream dataset as
the attacker and perform a feature alignment based attack on the source dataset in a deep transfer
learning setting. In [36], the authors try to infer the constituent words of a sentence given that they

have access to a sentence embedding. The authors report an F1 score of 0.5-0.7 in [36]. However,

our proposed research problem is different and novel in that we consider the owner of the source
dataset to be the attacker and analyze information leakage of downstream dataset. We also consider
the attack surface to be just the word embedding vectors of the source and the downstream dataset.
Such an attack surface of word embedding vectors render our proposed problem and inversion
methods generic across different word embedding models. We apply our method to word vectors
that are generated by various major word embedding models like Word2Vec, and GloVe. Our meth-
ods successfully predict the neighboring words of a target word in the downstream dataset. Such
context leakage can reveal critical information regarding the downstream dataset. We achieve an
average F1 score of 0.70 and an average AUC score of 0.79 which is significant given the generic
nature of the attack surface.

In one proposed approach, we hypothesize that the motion of a word vector can reveal con-
textual information of the dataset it is trained on. For this approach, we are required to store the
state of individual word vectors at every training epoch. Storing epoch specific word vectors is
feasible for the owner of the pretraining dataset because the owner of the pretraining dataset over-
sees the word embedding training process. However, even with access to the final form of the
fine-tuned downstream embedding, the owner of the pretraining dataset might not get access to the
fine-tuning process of the downstream embedding and hence she will not get access to the state of
fine-tuned embeddings at each time step of the fine-tuning process. So, an alternative is to design a
spatio-temporal encoder that can capture a latent representation of the temporal motion of the word
vectors. We train this encoder to learn a latent motion encoding of the source embeddings based on
only the initial and final form of the pretrained embeddings. Then, we transfer this encoder model
to the downstream embeddings and try to approximate the latent motion encoding of the fine-tuned
embeddings. In the final step of this method, we design a deep neural network that can learn the
context information of a target word from the latent motion encoding of that word by training on
the target word’s context from the source dataset. Finally, we use this trained deep neural network
to predict the target word’s context in the downstream dataset.

In another approach, we develop an inversion framework "Invernet" for inverting downstream

embeddings with a prior knowledge of the pretrained embeddings and the pretraining dataset. The
primary components of the "Invernet" model architecture are a focused document selector, and a
deep learning based inference model. The goal of the focused selector is to ensure that the se-
lected samples from the dataset will not contain any noise. The inference model is designed as
a learning problem where a deep model tries to learn the relation between the embeddings and
the downstream context information. We compare the performance of our method with respect to
how much context information of the downstream dataset is leaked in the inversion process. In
the "Invernet" method, we divide the dataset into multiple sub-datasets and fine-tune the pretrained
embeddings on the sub-datasets. Then we concatenate the pretrained embeddings and the down-
stream embeddings. We implement a series of fully-connected dense layers with self-attention and
dropout layers which take the concatenated embeddings as input and gives the context information
as output. After applying the "Invernet" method, we have found a considerable amount of context

leakage within a specific window.

1.1 Contributions

The main contributions of our work are summarized as follows:

» Presenting a novel privacy problem of inverting fine-tuned embeddings into the contextual

information of downstream dataset.

* Designing an inference attack model using deep learning techniques with multiple inference

sub-sampling strategies to accurately predict contextual information of downstream datasets.

* Conducting comprehensive experimental study on two real-world datasets such as AG_News
[16] and NYT Dataset [44]. Results clearly demonstrate the advantage of the proposed

Invernet framework over all the baselines.

1.2

Thesis Organization

The thesis is organized into the following chapters:

Chapter 1: Introduction - We introduce the problem and briefly mention our solution ap-

proaches. We motivate regarding why the problem is a threat to user privacy.

Chapter 2: Problem Formulation - We formally define the problem and present an example

of our goals

Chapter 3: Background - In this chapter, we mention some notable relevant background

work on Word Embeddings, Transfer Learning, and Privacy Issues with Word Embeddings

Chapter 4: Methodology - We explain in detail our solution approaches using i) Latent

Motion Encoding based Inference and ii) Invernet Method

Chapter 5: Experimental Evaluation - This chapter presents in detail the datasets used, the
experimental steps and the evaluation of the different inference models for different embed-

ding models

Chapter 6: Conclusion and Future Direction - We conclude the thesis with some directions

towards future research from our work

Chapter 2

Problem Formulation

2.1 Problem Statement

Word2Vec Word2Vec Fine-tuning

» &
» <

Alice

v

ALICE BOB

Dataset D Dataset Dy,

Alice

Pretrained (Emb.) Fine-tuned (Embyg,,)

Figure 2.1: Problem statement

The current trend in Natural Language Processing is to fine-tune pretrained models on domain
specific downstream datasets. In essence, we can consider the layer weights of the pretrained mod-
els as the pretrained embeddings. Traditionally, these pretrained embeddings are used to initialize
the weights of the layers for a downstream model. Fine-tuning involves retraining these weights
to get better word representations in the downstream domain. Large models like BERT [10] and
GPT-3 [8] that are pretrained on huge corpora are often published by organizations with train-
ing capacity. Eventually, other organizations or individuals retrain these models on their domain
specific corpus to get fine-tuned models whose weights can be considered as fine-tuned word em-
beddings. With the surge of niche datasets, the NLP community is observing a culture of sharing
the fine-tuned models for further fine-tuning. An example of this paradigm can be found in the
"Hugging Face Community Model Hub" [41].

In figure 2.1, Alice decides to train word embeddings based on her large dataset Dajjce. She

publishes her pretrained word embeddings ®Pajice. Bob fine-tunes ®ajice on his smaller dataset
Dgob. Bob publicly publishes his fine-tuned word embeddings ®p,}, so that others can further fine-
tune Ppop. Valice and Vpep are sets of all the words from Dyjice and Dggp respectively, excluding

the stop-words.

2.1.1 Example

Table 2.1: An example of Dgy

Sentence 1 Condition of economy is good

Sentence 2 | Economy is growing

Table 2.2: Dp,;, after pre-processing and removing stop words

non

Sentence 1 ["condition", "economy", "good"]

n n

Sentence 2 | ["economy", "growing"]

Table 2.3: Binary context of the word "economy" in Dgyp within a window size We =1

Vocab condition | economy | good | growing
Sentence 1 1 0 1 0
Sentence 2 0 0 0 1

2.1.2 Assumptions
Assumptions for our proposed breach of privacy are as follows:

Alice has access to DAl and gAlice

Alice is able to compute a binary word-to-word co-occurrence CA of her dataset DAl

Alice also gets access to ®B°P since B is published in the public domain

. VBOb N VAlice 7£ 0

2.1.3 Problem Formulation

Finding out the set of words that constitute Bob’s fine-tuned embedding model is trivial because
Bob’s embedding model is an association between Bob’s vocabulary and the corresponding vectors
for the words in Bob’s vocabulary. So, the question we are asking is: “Can Alice reveal the
binary word-to-word co-occurrence C2° from Bob’s fine-tuned word embeddings ®B° with the
knowledge of pAlice Alice g pAliced»

We formulate our question as a learning problem where Alice learns a set of mappings F such

that,

F= { fword ‘ v word € VAlice 7

2.1
fword C< q)Alice q)Bob > CBOb(WOI'd) }
When analyzing context leakage, we include only the set of vocabulary V such that,
V= VAliCC N VBOb (22)

As the attacker, Alice will not have any pretrained embeddings of the words that are not present
in Vajice. S0, we exclude such words that only belong to VB but not VA, Tables 2.1, and 2.2
show an example of DB, In table 2.3, we can see an example of the binary context output of
the word "economy" in DB Within a window size of 1, in sentence 1 of DB the output for
"economy" is [1, 0, 1, 0] which means that the words "condition", and "good" occur as either the

immediately previous or next word of "economy".

Table 2.4: Table of Notations

Notation Definition

pAlice pBod Dataset belonging to Alice and Bob respectively

yAlice yBob Vocabulary of Alice and Bob’s datasets respectively

(Alice Bob Binary word-to-word co-occurrence of Alice and Bob’s
datasets respectively

C(word) Binary word-to-word co-occurrence between a specific
word and the rest of the vocabulary of a specific dataset

pTrain Training dataset that will be split into pretraining and infer-
ence dataset

Drest Testing dataset

ppretrained Dataset for pretraining word embeddings

pfine-tuned Dataset used for creating multiple inference sub-samples

n Number of inference samples

b Number of documents per inference sample

gpretrained Word embeddings pretrained on DPrevained

fine-tuned Fine-tuned word embeddings

0 Word embedding model weight vector

6 (word) Embedding model weight at i"-dimension for specific word

after € epochs

9

Chapter 3

Background

3.1 Neural Representation Learning

Textual data is discrete and diverse in nature. Neural network models are unable to work with
textual data in its natural form since neural networks are numerical function approximators that
can only take numbers as input. Therefore, representing text as numbers is a necessary step when
learning neural language models. Over the years, numerous models have been introduced for
learning numerical representations of natural language tokens. Such numerical rendition of natural
language tokens is now known as token embedding or token vector.

Tokens in natural language are units of data that can vary greatly in syntax and semantics.
Examples of tokens can be words, subwords, phrases, sentences or entire documents [4]. If we
consider words, there are many similarities among the different words in the context of traditional
lexicography and computational linguistics [23]. Similar affinity can be observed within the other
tokens of natural language. Various neural network models are able to implicitly capture such
similarities through clusters of dense vector representations.

One of the earlier canonical works on learning word vectors is discussed in [34], where the
authors have used back-propagation technique to learn word representations. Following work in
[6] focuses on learning a statistical model of the word sequence distribution at scale with neural
networks. The authors report that such distributed representation of words overcome the curse
of dimensionality otherwise found in the naive computation of joint probability function of word
sequences. At the same time, such distributed neural representations of words show considerable

improvements over n-gram models and work well in longer contexts of textual data [6].

10

In word embeddings, words are represented as continuous and real-valued dense vectors. So,
words are essentially distributed in a vector space of real numbers. The functional aspect of word
embeddings is that within the vector space, semantically similar words are clustered together and
form a linearly analogical relationship with words from different clusters. As a result, word em-
beddings have brought breakthroughs in various deep learning-based NLP tasks. However, the
success of various deep learning models using word embeddings largely depend on the size of the
dataset. The larger the dataset the better the performance. For instance, GPT-3 [8] was trained on
almost 500 billion tokens , Google’s pretrained Word2Vec model [21] was trained on roughly 100
billion words. Training such large language models demands expensive resources. So, to make
these language models more accessible to everyone, large companies train the models on large
datasets and share the pretrained embeddings so that others can use transfer learning mechanism
to make use of the learned knowledge of these models [33]. Eventually, the pretrained transferred

representations are fine-tuned on downstream application specific datasets.

T
Peaches e

Fruit

Nutrition

Juice Oranges

Charge
Red
APPLE .

Battery
Produce

iPhone Company

Technology

cto Related Words

Fruit Related
® Words

The word
Technology APPLE

Revenue

Figure 3.1: Two dimensional t-SNE approximation of d-dimensional word vectors pretrained on a
dataset containing both technology and fruits related words

11

Juice

Charge

Battery

iPhone

Technology

Peaches

Nutrition

Company

CEO

Revenue

Fruit Tree

APPLE

Red

Oranges

Produce

Technology
Related Words

() Fruit Related

Words

The word
APPLE

Figure 3.2: Two dimensional t-SNE approximation of d-dimensional word vectors fine-tuned on a
dataset containing fruits related words

Peaches Fruit Tree

Juice

Charge

Battery

APPLE

iPhone

Technology

Nutrition

Red

CEO

Company

Revenue

Oranges

Produce

Technology
Related Words

() Fruit Related

Words

The word
APPLE

Figure 3.3: Two dimensional t-SNE approximation of d-dimensional word vectors fine-tuned on a
dataset containing technology related words

In Fig. 3.1, we can see a two dimensional t-SNE approximation of different word embeddings.

12

These words belong to either the technology or fruits domain. The word vector for the word
"Apple" can be seen positioned on the boundary between the technology and fruits clusters because
the "Apple" word vector is equally influenced by both domains. However, in Fig. 3.2 and 3.3, the
"Apple" word vector can be seen moving closer to the fruits and technology clusters respectively
because the pretrained embedding is fine-tuned on fruits and technology datasets respectively.
Over the years, more than 50 types of neural models have been implemented which can learn
the embeddings of natural language tokens [4]. Some of the most popular and relevant models are

described as follows:

3.1.1 Word2Vec

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) 4 w(t-2)
w(t-1) v w(t-1)

SUM
A
: > w(t) w(t) >
4
w(t+1) 4 w(t+1)
w(t+2) 4 w(t+2)
cBOW Skip-gram

Figure 3.4: Word2Vec models: i) CBOW; ii) SkipGram [20]

In [20], Mikolov et al. introduced two models namely Continuous Bag-of-words (CBOW) and
Skip-gram method to learn word embeddings and evaluated the models and the embeddings on a
word similarity task. Continuous bag-of-words or CBOW model trains continuous valued word
vectors using a simple model. Under the justification that models with non-linear hidden layers
tend to be more complex and slower, the CBOW method tries to overcome this complexity by

removing the non-linear hidden layer and by using a shared projection layer for the words. The

13

authors have designed the CBOW model [20] as a log-linear classifier where an unknown word is
predicted using the four previous and four next words. The resemblance of CBOW to a standard
bag-of-words model derives from the fact that CBOW does not take into account the order of
words when considering the previous and next words [20]. On the other hand, Skip-gram model
trains the word embeddings using an opposite approach compared to the continuous bag-of-words
model. Contrary to the CBOW method, the continuous skip-gram method considers a single word
and uses a log-linear classifier to predict the neighboring words both before and after the given
word. Similar to the CBOW method, the continuous skip-gram model also has a shared continuous
projection layer which is integral to computing the continuous vector representation of the words

[20].

3.1.2 GloVe

GloVe model [27] also produces continuous word vectors but with a focus on the explainability of
the linear regularities of word embeddings. GloVe is trained by combining the best of global matrix
factorization and local context window methods [27]. The authors have efficiently utilized the
word-word co-occurrence statistics when training their model. Because of considering the global
corpus statistics, GloVe is better at reflecting contexts through the produced representations. As a
result, the GloVe model has been able to capture semantically sound sub spaces within the word

embeddings [27].

14

3.1.3 BERT

Input ([cLs] W [my W [dog W (is 1(cute]([SEP] W (he W likes M play W (##ing ” [SEP] 1

Token

Embeddings E[CLS] Emy Edog E\’s Ecute E[SEP] Ehe Eers Ep\ay E##ing E[SEP]
-+ L] L] L] L] L] L] L] L] L L]

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
+ -+ -+ -+ -+ -+ -+ -+ -+ -+

Position

Embeddings Eo E1 Ez E3 E4 ES E6 E7 EB E9 Elo

Figure 3.5: BERT input representation [10]

Output
Probabilities
[}
()
Add & Norm
Feed
Forward
s ™\ Add & Norm
_ .
FHatel € [MerT Multi-Head
Feed Attention
Forward) Nx
\
Nix Add & Norm
f—>| Add & Norm | Maskod
Multi-Head Multi-Head
Attention Attention
A 2 At 4
& J \ —)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 3.6: Transformer model architecture [39]

15

Bahdanau et al. introduced an attention mechanism for machine translation task in [5]. The au-
thors claimed that using a variable length encoding of a source sentence using word by word
attention for each time step can improve the representational bottleneck of using a fixed-length
vector encoding [S]. In [39], Vaswani et al. proposed a simple Transformer architecture that rely
solely on attention layers for encoding and decoding instead of expensive recurrent or convolu-
tional operations. Transformers have achieved high performance in machine translation tasks [39].
In an attempt to generalize the use of Transformers, Devlin et al. introduced the BERT model
(Bidirectional Encoder Representations from Transformers) [10]. BERT is intended to be used as
a pretrained model which uses both left and right context for better performance [10]. Word em-
beddings trained with the BERT model can be fine-tuned to achieve superior performance in a

range of tasks e.g. MultiNLI, Question-Answering etc. [10].

3.2 Transferring Knowledge in Deep Learning

3.2.1 Deep Learning

(\
RIRTRA

““:’7 “: f‘v ". “\‘\‘&’é "A \ X »/ ‘ }(’h

'w o S
S ‘. 1 0 X
"::?(%:e\./":.'-‘ :l'u i\ P "{." "" "‘ \4.::/
X *’W‘“ e "" w“' o %'%\\
V'A‘%\ \,\ ,‘\‘\“" t‘ ;‘ //‘ “'

.,,,,' ‘\\' ‘\«\\ /I ‘v‘
A siae

Figure 3.7: An example of a deep neural network [29]

Deep learning is an evolutionary form of Artificial Neural Networks. In Artificial Neural Net-
works, we try to approximate the mapping between an input and an output using Multi-Layer

Perceptrons. Multi-Layer Perceptrons are essentially feedforward networks in which each neuron

16

transforms its input and passes it to the next neuron as an output. Eventually, the error rate between
the final output of the network and the ground truth is computed and backpropagated through the
network so that the prior neurons can adjust their weight parameters accordingly. Artificial Neural
Networks perform well on smaller datasets and with already engineered features. However, for
larger datasets, it becomes challenging to handcraft features suitable for the problem. With deep
learning, we stack together many such perceptron layers and create an effective hierarchical feature
learning environment so manually engineering features is no longer required [14]. An added ben-
efit of deep learning is that with an optimal set of hyperparameters, a deep learning model avoids
the plateaue problem and learns to approximate better with more training. Non-linear activation
functions in each layer helps the deep neural network to learn non-linear functions as well as linear
functions. Moreover, deep neural networks are able to learn better input representations along with

a supervised or unsupervised learning objective [14].

3.2.2 Transfer Learning

Transfer Learning is an effective process of transferring learnt knowledge of one model from one
domain or task to another model on a different domain or task. It is a shortcut approach to warm
start machine learning models and to achieve better downstream task specific performance. Trans-
fer learning is suitable when there is not enough data to train a new model. We can borrow already
learnt knowledge in a similar domain and achieve much better performance even if we have a
smaller dataset to train our model on. In [24], the authors categorize transfer learning based on

what is being transferred. The categories are mentioned below:

1 Instance-transfer
i1 Feature-representation-transfer
iii Parameter-transfer

iv Relational-knowledge-transfer

17

A common transfer learning approach in natural language processing is to either transfer mod-
els by parameter or to transfer word embeddings in the form of a feature representation transfer. In
the case of feature representation transfer, pretrained embedding vectors are used to initialize the
downstream model. Then, the downstream model along with the pretrained embedding vectors can
be fine-tuned on a downstream corpora with respect to either a supervised task or in an unsuper-
vised way to learn about the semantic and syntactic relationships among words in the downstream
dataset [33]. Validation error rate has shown to be very small for a fine-tuned language model as

opposed to one trained from scratch [31].

3.3 Information Leakage from Machine Learning Models

3.3.1 Membership Inference

E (data record, class label) | predict(data) }V(plrediction7 class label, “in” / “out”) E

“in” Prediction Set 1

“out” Prediction Set 1

Shadow Training Set 1

Shadow Test Set 1

Shadow Model 1

e —
“in” Prediction Set k
e —

“out” Prediction Set k

Attack Training Set Attack Model

Figure 3.8: Membership inference using shadow model technique [35]

Shadow Training Set k Shadow Model k&

train()

Shadow Test Set k

The goal of membership inference attacks is to identify whether a specific piece of data belongs to
the training dataset of a target model. Shokri et al. introduced a shadow model technique in [35] for
membership inference attacks. The authors assume that the target model will predict a particular
target class with a certain probability. The authors select k number of overlapping shadow training

sets with some background knowledge about the target dataset [35]. Eventually, they use the k

18

shadow training sets to train k shadow models that predict the target class, the probability of the
predicted class and membership within any of the shadow training sets. These outputs are used to
train ¢ = | target class | number of attack models that predict whether the provided piece of data

belongs to the training set [35].

3.3.2 Information Leakage in Deep Transfer Learning

] | \ \ \ i
w ol | B (B ety
Model I ? i T ‘ A::eature Parameter i

Fine-t ' ignment Sharing
™™ \ i) o) il
; i] i
- - - Co-training Co-training -
—— e —

(a) Model-based (b) Mapping-based (c) Parameter-based

Figure 3.9: Leakage in deep transfer learning [9]

Chen et al. demonstrated inference attacks in different transfer learning paradigms such as model
based, mapping based, and parameter based [9]. In all these settings, the authors consider that
the owner of the downstream target dataset carries out inference attack on the source dataset.
The authors applied the shadow model technique from [35] for their model based attack. For
the mapping based attack, they aligned the hidden features from both domains across the transfer
learning process and used the similar features between both domains to infer properties of the
source dataset [9]. The authors assume access to an auxiliary dataset which shares a distributional
similarity with the source dataset. For the parameter based method, they train an attack model

using the auxiliary dataset to determine batch properties from the transferred gradients [9].

3.3.3 Information Leakage in Embedding Models

In [36], the authors presented an embedding inversion attack on sentence embeddings. In the black-

box version of their attack, Song and Raghunathan considered access to a sentence embedding

19

model where querying the embedding model with a sentence gives the vector representation of
the sentence [36]. Using an auxiliary dataset to train their attack model, the authors proposed a
multi-label classification and a multi-set prediction method to predict which words are present in

a sentence given the sentence vector.

Embedding of x* -] Downstream
Sensitive [S gegeratlon - NLP tasks
input text x* Model ® P(x") > Question answering]
__________,f:~-_____ | Textclassification)
24’—— ; ~~~sﬁa’—---‘~\\
Embedding Attribute Membership o(x') Embedding of
Inversion Inference Inference context x’
1 1 1

v v v

Words in x* = {wy, W5, ...} Attribute of x* Is (x*,x") € Dyain?

Figure 3.10: Embedding inversion [36]

20

Chapter 4

Methodology

We develop our methodology to realize the inversion of Word2Vec [20] and GloVe [27] embedding
methods. Since we try to infer the binary co-occurrence context from only the pretrained and
fine-tuned embeddings, our proposed "Invernet" inversion architecture is model agnostic. In this
chapter, we explain in the detail our methods of pretraining, fine-tuning, the input and output

representations, and the Invernet framework to invert the embeddings.

4.1 Pretraining

Due to a strong coupling with the nature of the embedding model, the pretraining and fine-tuning
steps are tailored individually for the different embedding models. In the pretraining step, we use
different embedding models like Word2Vec [20],and GloVe [27] to pre-train word embeddings on
the source dataset. Details about how we train the pretrained embeddings using different embed-

ding models are as follows:

4.1.1 Continuous Bag of Words (CBOW)

The goal of the CBOW method is to maximize the log probability of a word given a set of sur-
rounding words. For a window range of [-c, c] around a word w; at position ¢, CBOW method

optimizes the following function [20]:

lng(W;|W[7C,...,Wt_],WH_],..-,W[+C> (41)

21

4.1.2 SkipGram

On the other hand, the objective of the SkipGram model is to maximize the average log probability
of the contextual words given a target word. For a window range of [-c, c] around a word w; at

position ¢, SkipGram method optimizes the following function [22]:

1 T
7Y X logp(wiw) 4.2)
=1 —c<j<c,j#0

where T is the total number of words in a specific sequence. In Eq. (4.2), p(w; j|w;) is fundamen-

tally defined as the following softmax probability [22]:

4.3)

where W is the vocabulary size, w; and w. are respectively the center word and the context
word, v; and v, are respectively the vector representations of the center word and the context word.
However, because of computational feasibility we can resort to using either a hierarchical softmax

or negative sampling instead of using the basic form of softmax probability in Eq. (4.3) [22].

4.1.3 GloVe

In the case of GloVe, we optimize the following function [27]:

J =Y f(Xij)(v] v — logX;;)® 4.4)
l7j

where Xij is the number of times words i and j co-occur within a certain window, v; and v; are

the word vectors of words i and j respectively [27]. With an empirical value of & = 3/4, f(X;;) is

22

a weighting function which in [27] is defined as follows:

(x/xmax)a 1fX < Xpmax

flx) = (4.5)

1 otherwise

4.1.4 Word Vector Initialization

When training a model from scratch, the word vectors can be initialized to either all zeros or
some random values. Sometimes initial values are sampled from special distributions or generated
randomly using special hash functions. Word vector initialization plays an important role in the
remainder of the training process because properly initialized vectors enable feasible and faster
convergence. Without proper initialization, the word embedding model might diverge because of
either vanishing gradients or exploding gradients. Even if the model converges without weight
initialization, it is possible that the convergence will be slow and the model might become stuck at
a local optima. In [19], the authors mention a few different ways of initializing word vectors for
pretraining. Some common word vector initialization values of the k" dimension 6y, at epoch 0 are

as follows:

~N(u,o?); Normal

0] ~ N(0,+/2/(fan_in+ fan_out); Glorot Normal [13] (4.6)

~N(0,+/2/fan_in); Glorot Uniform [13]

~U(—+/6/(fan_in+ fan_out),+/6/(fan_in+ fan_out)); He Normal [18]

~U(—+/6/fan_in,\/6/ fan_in); He Uniform [18]

where u and o2 are respectively the mean and the standard deviation of a normal distribution,

"fan_in" and “fan_out” are respectively the number of input units and the number of output units

23

to and from the k" neuron. If we pre-train the d-dimensional word vectors for £ number of epochs,

the pretrained vector for a specific word becomes,
orrarained (word) = [6¢ (word), 6F (word), ..., 65 (word))] 4.7)

4.2 Fine-tuning

Fine-tuning is the process of updating pretrained word vectors based on a downstream domain or
downstream task or both. For unsupervised fine-tuning, word vector updates are not constrained
with respect to a specific downstream task. In a word embedding model, word vectors are essen-
tially a set of model weights. In our study, we consider unsupervised fine-tuning of word vectors
using Word2Vec and GloVe models. Our fine-tuning process is not governed by any specific down-
stream task objective although having a supervised task objective can train even better downstream
fine-tuned embeddings, potentially rendering the embeddings even more vulnerable. Instead we
focus on an unsupervised setting where the word vectors are initialized using pretrained vectors and
then updated in the form of model weights based only on the semantic and syntactic regularities of
the downstream corpora.

In the case of pretraining, we initialize the word vectors using any option from Eq. (4.7).
However, instead of training the word vectors from scratch with any of the initialization from Eq.
(4.7), in fine-tuning, we initialize the word vector for a specific word with the pretrained values as

follows:

6€+1 (Word) _ [q)gretrained (Word),q);laretrained (WOFd), - q)gretrained (word)] (4.8)

Then, using gradient descent method and backpropagation technique, we update word vectors

or the model weight parameters as follows:
6'=6""'—nVel(6'") (4.9)

24

where 0 < i < ngpoens and 0'i is the state of the weight vector at epoch 7;. 1 is the learning rate
hyperparameter which can be manually adjusted to control the stability of the gradient descent. Vg
is the gradient or the dimension-wise partial derivative of the cost function J(6) with respect to the
weight vector 01,

After fine-tuning the word vectors for p epochs, we get the final fine-tuned word vector repre-

sentation for a specific word as follows:

ine—tuned __ [n€+tp pE+P E+p
o =[6;"7,6,"",...,057 (4.10)
4.3 Invernet Framework
—,‘_’—‘L —
’ l . Fine-tuned Inference Set
Training Set] Pretrained Embi“fe"e"ce—l Dinference_l
DTrain == DAIice Eranrain= ErnbAlice
6 — e
Fine-tuned Inference Set
Embinference_z Dinference_Z
[i —
Fine-tuned v |
Ermb, . oo b, y
Inference
Model ‘_:|_—.‘_’—) = —
for Fine-tuned Inference Set

Inference Set Emb,

inference_n

D

target

'word inference_n

— i l l

| COOcinference_l | | Coocinference_z | I | | Coocinference_3 ‘

40

Dtest == DBnb

A 4
| CooC,.,; == CoOCyy,

Figure 4.1: Inversion model framework ("Invernet")

The objective of the Invernet inversion framework is to invert fine-tuned word embeddings to the
binary context distribution of a specific target word. Our proposed Invernet framework contains
multiple components namely a focused document selector, an inference data sampler, input em-

beddings processor, and finally an inference model.

25

(Pre)Training (Pre)Trained
Repeating for N Embeddings

Samples
N Inference II
Samples

N Inference
Embeddings

(Pre)Trainin
g Dataset

Sampling B
Documents

Fine-tuning

Alice’s
Dataset

Inference
Sample

Inference
Dataset

Replace the B
Documents

Figure 4.2: Inference Sampler

At first, from the dataset vocabulary we select a set of target words for which we wish to
inference the contextual information from the downstream dataset. We can either select the target
words based on information need or based on random uniform sampling. Then, for each target
word we carry out a focused selection method to select a subset of documents containing the target
word, from the dataset. We split the dataset into source, inference, and testing dataset. We pre-
train a set of word embeddings in an unsupervised setting using the source dataset and different
embedding models. Then as depicted in Fig. 4.2, using a random uniform sampling approach
we select a set of B articles, N number of times from the inference dataset to create a pool of
inference sub-datasets. Here, B represents the bin size and N represents the number of inference
samples being sampled. Then, we fine-tune those N number of inference samples and produce N
number of inference embeddings. Then, using the pretrained embedding and all the N number of
inference embeddings, we train our inference model so that it can learn the relation between word

embeddings and the corresponding target word context. The algorithm of the Invernet framework

26

is given below:

Algorithm 1: Invernet Algorithm

Input: pTrain pTest target_word, n, b

Dpretrained’Dinference . split_dataset(DTrain)

)

2 @pretained o e train embeddings on DPretrained

3 fori< Otondo

4 data' < uniformly & randomly sampled b documents from Di"ference

5 @' + fine-tune PPrerained op datal

6 @fine-tuned o concatenate dfine-tuned & Pl

7 C' «+ binary co-occurrence vector between target_word and all vocabulary of datal
g | Cfinetuned o concatenate Cline-tuned & (i

9 Train an inference model f that predicts Ci"ened from < gppretrained

selfyitn (q)pretrained 7 q)pretrained , q)pretrained) , selfyn (q)ﬁne-tuned ’ cbﬁne-tuned , q)ﬁne-tuned)

b

q)ﬁne—tuned >

4.3.1 Preparing Embeddings for Inference

We prepare a two dimensional co occurrence matrix from the embedding dictionaries where each
row of the matrix is a vector for a specific word. We keep track of the word index of the embedding
matrix through a separate map between words and indices. We maintain one set of word embedding
matrix for the pretrained embeddings. After fine-tuning, we find the word intersection between the
source and the downstream model and create another set of word embedding matrix which accounts
for the changes effected on the pretrained embeddings by the fine-tuning process.

We apply self-attention technique on both the pretrained and fine-tuned word vector to later
pass as input to the inference model. The motivation for using self-attention individually on the
pretrained and fine-tuned embeddings is to find the degree of influence among different word
vectors within the pretrained and fine-tuned embeddings separately. Since the influence among
words within a specific set of embeddings entirely depend on their relative positions in the training
corpus, we have found the self-attention method very useful in identifying the degree of interaction

among words within a specific training dataset. We use the following formula [39] to calculate the

27

self-attention scores of each of the pretrained and fine-tuned target word vectors:

OK"
Vi

self_artn(Q,K,V) = softmax(

N4 (4.11)

where Q, K, and V are respectively the query, key, and value vectors. dy is the number dimension
size of the query and the key vectors [39].

Eventually, we use the concatenation of the source vector of a target word, the self-attention
scores of the source vector, the self-attention scores of the fine-tuned vector, and the fine-tuned

target word vector as input to the inference model. The input can be defined as follows:

vy = @PTEained (tqreet word) (4.12)
V= @/ine=tuned (tqraet word) (4.13)
x =<vg,self_attn(vs, v, vs),sel f_attn(ve,ve,vy),ve > (4.14)

where vs and vy are respectively the pretrained and fine-tuned word vectors for the target word,

and x is the concatenated input to the inference model.

4.3.2 Inference Model

We use a deep neural network to implement the mapping function in Eq. (2.1). We stack together a
series of dense layers with a combination of dropout layers [37] as the inference model. The dense
layers learn the weights of the network and the dropout layers prevent overfitting. We provide
a concatenation of the pretrained embeddings and the fine-tuned embeddings as the input to the
inference model. So, the model has two input layers followed by a concatenation layer that prepares
the final input for the model. Finally, we have an output layer that predicts the sigmoid probability

of whether a word appears in the binary context of the target word. The output of the n-layered

28

model can be defined as follows:

A= gt gl (4.15)
k

al! = gl () (4.16)

where z; is the non-activated output for a certain neuron i.e. j"* neuron of the n'" layer, w% is

the weight of the synapse between the j* neuron of the n'” layer and the k' neuron of the (n—1)"
layer, a,&nil] is the activated output of the k’* neuron from the (n — 1) layer, bgﬂ is the bias of the
7" neuron from the n'” layer, gl is the non-linear activation function of the n'" layer.

In case of the hidden layers, we use Rectified Linear Unit (ReLU) as the activation function.

So, Eq. (4.16) becomes,

a = ReLU (") = max(0,2]") (4.17)

For the output layer, we use sigmoid as the activation function. So, with a single neuron in the last
layer, Eq. (4.16) becomes,
1

a"l = sigmoid (") = PR (4.18)
o

4.3.3 Inference Context Distribution

We have chosen the output of the neural network to be the binary context vector of a target word.
So, we have to repeat the training multiple times i.e. once for each word. An example of our output
vector is shown in Table 2.3. The output of the model is a sigmoid probability between O and 1.
We apply a set of thresholds over which the output becomes 1 and otherwise the output becomes
0. If the output at a specific index becomes 1, it means that the word at that index is present in the
context window of the target word. From a design perspective, an alternative option would be to
use the complete co-occurrence matrix as the output. However, using the complete co-occurrence

matrix as output entails a multi-output classification which tends to be challenging to train [43].

29

4.3.4 Loss Function

During the training process, we have used a Cosine Similarity based loss function where we try to
minimize the cosine distance between the prediction and the ground truth. The domain S and the

loss function L can be formulated as follows:
S = {(xi,yi) } iy (4.19)

Ls(0) = — ¥ (|1) 12 x il |2) (4.20)

i=1

30

Chapter 5

Experiments

In this section we describe the experimental details regarding the dataset, preprocessing, and the
training process. Then we evaluate the performance of our inversion model on different Word

Embedding models.

5.1 Datasets

We have used two datasets for training and testing the embedding inversion model. The first dataset
is the AG News dataset [16] [45]. AG News dataset contains 4 classes spanning 120,000 sample
articles. After preprocessing, we get ~60000 unique words in the dataset. The second dataset is
a collection of New York Times (NYT) articles [44]. The NYT dataset contains news articles on
59 different sections (e.g. Sports, World etc.). We use all 6013 articles from the World section of
the NYT dataset to conduct our experiments. After removing the stopwords, the vocabulary size

of the NYT World news articles reach 5633.

5.2 Training Details

5.2.1 Preprocessing

As part of the preprocessing, we clean both the datasets by removing any special character. Then
we replace all the numbers in the datasets by a special "<num>" tag. We perform case-folding
on all the words in the datasets. We remove all the stop words from the datasets using the NLTK

English Stop Words Corpus [7] as reference. Then, we tokenize all the space delimited articles in

31

the datasets so that each entry of the dataset is a list of words.

5.2.2 Focused Data Selector

We follow a focused selection approach where we consider only the subset of documents from
the dataset that contain the target word. Our motivation for adopting a focused selection approach
arose from the fact that we are using word-to-word co-occurrence values for training our inference
model. So, if the target word does not appear in an article, we cannot establish with confidence the
relation of the words in that article with the target word. Benefits of using this focused selection

approach instead of a global selection approach are two folds. The benefits are as follows:

* Considering the words that do not occur with the target word within the same article as noise

and removing those noisy words for a more focused inversion

* Saving computational time by removing the noise and reducing the dataset

We can define the dataset that is selected with focus on the target word as follows:

plarset_word _ {d|Vd € Dorigi"“l7target_w0rd €d} (.1

Dtarget_word C Doriginal (5 2)

where Dyurger wora 18 the focused dataset from the original dataset D,,,4inq1 With respect to the

target word.

5.2.3 Splitting Dataset

We have different news categories in both of the datasets. For each set of experiment, we pick
one specific news section and hold out around 10% documents from that section as the test set.
Then, we pick around 1000 documents from the remainder of that section and combine it with

1000 documents from each of the other news sections to form the training data. In this way, we are

32

ensuring that the distribution of the test is not exactly the same as the training set. Eventually, we
split the training set into 50% split for pretraining word embeddings and 50% split as the inference

dataset.

5.2.4 Pretraining

We perform pretraining in different ways for different embedding models namely Word2Vec (CBOW
and SkipGram method) [20], and GloVe [27]. For both Word2Vec based CBOW and SkipGram
models, we pre-train using the widely used Gensim python module [30]. In the case of GloVe [27],
we have used the original source code provided by the authors in [1] to pre-train the embeddings
on our dataset. In all the pretraining algorithms, we use a vector size of 20 as for our dataset size,
we observed well structured word clusters with 20 dimensional word vectors. In [25], the authors
have mentioned that starting from a lower bound on dimension size, word embeddings perform
acceptably well. The authors have found 19 as the lower bound on word embedding dimensions
for their dataset [25]. Another reason to use a lower bound on vector dimension was to reduce
overfitting of the inference model since the inference model takes the word vectors as input. We
use a minimum word count of 3 for a word to appear in the embedding set for all the embedding

models. For GloVe, we use a window size of 5 to determine the co-occurrence statistics.

5.2.5 Fine-tuning

We also adopt three separate methods for fine-tuning the pretrained embeddings. For embeddings
trained with Word2Vec, we fine-tune using the Gensim [30] package. For GloVe embeddings, we
use Mittens [11] package since Mittens allows a fast vectorized implementation of GloVe that also

has provisions for retrofitting.

33

5.3 Baselines

We use four different experimental approaches for the inference model. In our first approach, we
implement a naive baseline using logistic regression model without any inference sub-sampling.
In our second approach, we experiment with a motion based inference baseline. In our third ap-
proach, we use an ensemble of inference models in the form of neural networks and apply a stacked
generalization technique to aggregate their results. For the fourth approach, we generate multiple
sets of word embeddings and corresponding co-occurrence statistics from sub-sampling the dataset
and then apply a single neural inference model to learn the mapping between the embeddings and
the co-occurrence statistics. We call this fourth approach the Invernet inversion model. For all the
approaches, we repeat the process once for each target word. A collection of target words can be
formed using uniform and random sampling from the entire vocabulary of the pretraining dataset
or the collection of target words can also come from the information need or the domain expertise
of the attacker. For each target word, we use the same pretrained word embeddings for all the
different approaches. We have used Scikit-learn library [26] for the logistic regression based naive
baseline and Tensorflow-Keras library [2] for the other three approaches. Below we discuss about

our experimental setup for each of the approaches:

5.3.1 Naive Baseline

In this naive approach, we do not perform any inference data sub-sampling. Instead, we fine-tune
on the entire inference dataset. We train a logistic regression model to learn the mapping from this
fine-tuned embedding and the binary context vector for the target word. Then we use the trained
inference model on the test dataset and evaluate the performance of the logistic regression based

naive baseline without any inference sub-sampling.

34

5.3.2 Motion based Inference Model

Pretraining Fine-tuning
Approx.
Latgnt Latent
Motion Motion
Encodings
“h eanc¥ R R e HE

Training !] Training Using !] Using

Latent ' ' Latent Latent ! 1 Latent

Motion H 1 Motion Motion i] Motion

Encoder |} 1 | Encoder Encoder i) Encoder
' ' i 1
i i i i
' ' i i

Source 5 i Downstream
' ' i 1
Dataset : ; ' ' Dataset
4____ ¥ W____¥
e a
Co-occurrence Co-occurrence

Matrix Matrix

Figure 5.1: Motion based inference method

In the motion based inference model, we utilize the various movements of the word vectors during
their training process to learn about their context. Word vectors are simply points in a high dimen-
sional space. These vectors are influenced by the other vectors in the same space depending on
the proximity of other words with a specific word in the corpus. With respect to the premises of
the studied attack, the attacker has access to both the pretraining dataset and the pretrained word
embeddings. The attacker is also able to oversee the embeddings training process. In the motion
based inference model, we use the epoch by epoch positions of the word vectors and trains a la-
tent motion encoder that takes as input the initial representation of the pretrained embeddings and
the final representation of the pretrained embeddings and outputs a latent representation of their
motion during training. We have used a series of convolutional Istm layers in the latent motion
encoder in order to capture the spatio-temporal changes of the word vectors. Eventually, the mo-
tion based inference model learns a mapping between this latent motion encoding and the binary
context of the target word in the pretraining dataset.

Since the attacker is not able to oversee the downstream fine-tuning process, the attacker will
not have access to the epoch by epoch positions of the word vectors during the fine-tuning pro-

cess. However, with regards to the premises of the attack, the attacker has access to the initial

35

and the final representations of the fine-tuned word vectors. The initial representation of the word
vectors is essentially the final representation of the pretrained word vectors. Therefore, without
the epoch by epoch positions of the fine-tuned word vectors, we can only use the pretrained latent
motion encoder to approximate the latent motion encoding of the fine-tuned word vectors. Then,
using the approximate latent motion encoding of the fine-tuned word vectors, we can use the pre-
trained motion based inference model to predict the binary context of the target word in the private

downstream dataset.

5.3.3 Stacked Generalization

In this approach, at first we fine-tune the pretrained word embeddings on the entire inference
dataset without any sub-sampling. Then, we train multiple inference models to learn mappings
between the fine-tuned word embeddings and the binary context vector of a specific word in the
inference dataset. The motivation to train multiple models was to have each model learn different
patterns from the fine-tuned embeddings that could finally lead to the prediction of which words
co-occur with a specific target word. Finally, We use a stacked generalization technique [42]
to aggregate the results using a single generalizer. Essentially, in this setup we are creating a
committee of inference models. We train the committee members individually. During testing, we
take the opinion of all the committee member models and let the generalizer decide on the final
binary co-occurrence context of the target word. For all the neural layers in the ensemble and
the generalizer, we use he normal [18] initializer and ReLU activation function. As can be seen
from the Fig. 5.2, we have used a combination of 2-dimensional convolutional layers with fully
connected dense layers to build the ensemble models. For the generalizer, we have used a series of

fully connected dense layers.

36

input. | [(1, 500, 20, 1]
ut | [500,20, 1]

nput [[(1,500.20.)]

ensemble_3_input_3: TnpulLayer

ensemble_1_input_4: TnpulLayer

I

ensemble_1_conv2d_3: Comv2D

I

inpu
ensemble_4_flatten_3: Flatten

/

ensemble_1_dense_3: Dense

(1,500, 20, 1)

(1, 320000)

te 1 Concatente [Cimpur T 11, 500), . 500), (1, 500), @, 500). (1, 500)] |
- [Coutpu (1, 2500)

Figure 5.2: Training graph for stacked generalization setting

5.3.4 Invernet Inference Model

From the inference dataset, we sub-sample N (number of inference samples) number of sub-
datasets each with a randomly and uniformly sampled B (inference sample bin size) number of
articles from the inference dataset. After each sub-sampling step, we replace the articles back into
the inference dataset pool so that they might be sampled again by random chance. We experiment
with N =5,15,30 and B = 5,25,50. E.g. if N =5 and B = 5, we randomly take B = 5 articles
from the inference dataset and create an inference sample. Then, we return those B = 5 articles
to the inference dataset pool and randomly sample B = 5 articles from the inference dataset again.
In this way, we create N = 5 inference samples each with B = 5 articles. We compute N =5
binary co-occurrence context vectors of the target word from the N inference samples. These bi-
nary co-occurrence context vectors are later treated as the output of the inference model. Then
we fine-tune the pretrained word embeddings on the inference samples and generate N number of
fine-tuned word embeddings. In order to prepare the input, we concatenate the pretrained target
word vector, the self-attention scores of the pretrained and the fine-tuned target word vector, and
the fine-tuned target word vector itself.

The motivation for adopting such a sub-sampling approach is rooted in the core principles of
Machine Learning where we learn patterns from the data. In the Invernet framework, we consider

the inference samples as the data and train the inference model based on features extracted from

37

the data in the form of word vectors and the self-attention scores of the word vectors. We ask the
following question: "If the word vectors change in a certain way between the pretrained and the
fine-tuned embeddings, what binary co-occurrence context of the target word might have induced
the said change?" Hypothetically, the more the number of samples, the better the performance of
the inference model.

We vertically stack all the N number of fine-tuned word embeddings, N repetitions of the
pretrained embeddings and the corresponding self-attention scores. Then, we concatenate these
together and create a single input for the single neural inference model. Again, we use he normal
[18] initializer and ReLU activation function. The initializer helps to constrain the initial weight
values within a certain range so that we can avoid vanishing and exploding gradients from faulty
initialization. We use a cosine similarity based loss function and Stochastic Gradient Descent
optimizer with a 0.01 learning rate. After experimenting with binary cross-entropy loss, cosine
similarity based loss, and a contrastive loss function, empirically we have achieved the best results
with cosine similarity based loss function. The training graph of the Invernet inference model is

given below:

38

input_1: InputLayer input_2: InputLayer

/ /

attention: Attention attention 1: Attention

T~/

concatenate: Concatenate

dense: Dense

dense 1: Dense

dense 2: Dense

dense_ 3: Dense

A 4
output: Dense

Figure 5.3: Training graph for Invernet inference model

5.4 Classification Report

The goal of our proposed inversion framework is to meet the information need of the downstream
dataset from an attacking point of view. In 4.3.3, we have defined the output of our inference model
as the inference context distribution of the downstream dataset with respect to a target word. So,
we consider our model successful if it is able to infer which words co-occur with a target word
within a specific window in the downstream dataset. The output of our inference model is a vector
whose elements represent words from the vocabulary. If the value at a specific position of the

output vector for a target word becomes 1, then we say that the word at that position is within the

39

context of the target word within a specific window. Now if the word at that is actually present in
the target word’s context window, then we consider this position of the output vector a true positive
(TP). If the word at that position is actually not present in the target word’s context window, then
we consider this position of the output vector a false positive (FP). However, if the value at a
specific position of the output vector for a target word becomes 0, then we say that the word at that
position is not present within the context of the target word within a specific window. If the word
at that position is actually not present in the target word’s context window, then we consider this
position of the output vector a true negative (7N). On the other hand, if the word at that position is
actually present in the target word’s context window, then we consider this position of the output
vector a false negative (FN). So for qualitative evaluation purposes our problem is a classification
problem.

Although accuracy is a popular classification metric, we do not use accuracy because accu-
racy can be misleading for datasets with imbalanced class distribution. Since the inference context
distribution of a target word can be imbalanced, we use precision and recall to get a better classi-
fication performance evaluation. Precision is the fraction of positively classified instances that are
actually positive. Recall is the fraction of actual positive instances that are classified as positive.

We provide the formula for calculating precision and recall below:

TP
precision = m (53)
recall = L 5.4)
TP+FN

From Eq. (5.3) and Eq. (5.4), we can see that if the inference model classifies a larger portion of
the words as positives then the recall might increase but the precision drops. On the other hand, if
the inference model identifies correctly the words that are not present within the context window
of the target word, the recall increases. However, if the model is unable to predict which words
are actually present within the context window of the target word, the precision drops. The model

can try to increase the precision by becoming very selective about classifying positive words. But

40

then there is a chance that the recall might drop. So, we can understand that the precision and
recall are competing metrics which sometimes can have very polar values. In order to dampen
the polar values of precision and recall, we use the F1 evaluation score and Receiver Operating
Characteristic (ROC) analysis along with Area Under the ROC Curve (AUC) score.

F1 score is the harmonic mean of precision and recall. Since F1 score combines the precision
and recall metrics, F1 score is an excellent and justified metric to compare the classification perfor-
mance of the different models. We report the F1 scores as representative of the aggregate precision

and recall of the different inference models. Formula for the F1 score is as follows:

Fl— 2 x precision x recall

5.5
precision+ recall (5-5)

Receiver Operating Characteristic (ROC) curve is an alternative and a visual way of evaluating
different classifier models. ROC is a probability curve between the true positive rate (7PR) and
false positive rate (FPR) of a classifier. The TPR is also called the sensitivity of a model. Since
true negative rate (TNR) is called the specificity of a model, F PR is usually referred to as (1 —

specificity) of a model. Formula for TPR, TNR, and F PR are as follows:

TP
TPR = Tf)-|-—F']V == sensitivily (56)
TN
TNR = T]V——f—l:P = SPECifiCity (57)
FP

In an ROC curve, the x-axis is the FPR or 1 — specificity and the y-axis is the T PR or sensitivity.
An ideal performance of a classifier will be to have a high 7 PR at a low FPR. So, higher convexity
of the ROC curve towards the top left of the ROC space is desirable. Since we are generating
individual classification reports for each target word, we will be getting an individual ROC curve
for each target word. We are presented with the challenge of averaging the ROC curves of all the

target words for a specific inference model. We follow the vertical averaging approach in [12]

41

to average the ROC curves of all the target words for a specific inference model. At first, we
consider various sigmoid thresholds for binary classification and note the pair of (T PR, FPR) for
each threshold and for each target word. Then we consider only the set of FPRs {0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and find the corresponding highest T PR from all the target word
ROC curves. If for a specific target word, none of the (T PR, F PR) pairs have any F PR value from
the above set, we interpolate between the available F PR values and find the corresponding 7 PR
for the unavailable FPR. Once we have sufficient pairs of (TPR, FPR), we apply the trapezoidal

rule [12] to calculate the area under the ROC curve.

5.4.1 Baseline Comparison

In the following table, we compare the F1 score and the AUC score of the different baseline models
and our proposed Invernet framework for the AG News dataset [16][45]. We consider the same 100
unique target words for the different models. We use a random and uniform sampling approach to
select the target words sample from the corpus. Then we carry out the inversion process for each of
the unique target words and report the average F1 scores and AUC scores of the different models

for the target words below:

42

Table 5.1: Comparing average F1 and AUC scores of different methods on AG_News Dataset

Method Remarks F1 Score AUC Score

Motion Inference Latent Motion Encoding Based In- | 0.35 0.48

ference Model

Stacked Generalization No inference sub-sampling; | 0.50 0.55
Stacked Ensemble of Inference

Models

Logistic Regression No inference sub-sampling; Single | 0.58 0.62
Inference Model using Logistic Re-

gression

Invernet Inference sub-sampling from in- | 0.70 0.78
ference dataset; Single Inference

Model using Deep Neural Network

We use a similar approach for the NYT Dataset [44] by randomly and uniformly sampling the
same 100 unique words for all the models. We report the average F1 scores and AUC scores of the

different models after carrying out the inversion process for all these 100 unique words.

43

Table 5.2: Comparing average F1 and AUC score of different methods on NYT Dataset

ference dataset; Single Inference

Model using Deep Neural Network

Method Remarks F1 Score | AUC Score

Motion Inference Latent Motion Encoding Based In- | 0.39 0.51
ference Model

Stacked Generalization No inference sub-sampling; | 0.52 0.57
Stacked Ensemble of Inference
Models

Logistic Regression No inference sub-sampling; Single | 0.60 0.59
Inference Model using Logistic Re-
gression

Invernet Inference sub-sampling from in- | 0.71 0.80

The motion inference method uses an approximation of the latent motion encoding of the down-
stream dataset. Because we are only approximating the motion encoding and not exactly inferring
it for the downstream dataset, we have the worst performance from the motion inference model.
The stacked generalization method uses different inference models on the same inference dataset
in hopes of deriving different patterns of data from the different models. However, due to the
complexity of the models and the method, the stacked generalization method suffers from poor
generalization and achieves poor performance. The logistic regression model is a straightforward
simple model that too infers binary context from the same inference dataset. But, it has better gen-
eralization ability and performs slightly better. Invernet demonstrates the best performance among

all these models because of multiple inference sub-sampling and a straightforward deep neural

network.

44

1.0 A
0.8 -
£06-
>
>
9 0.4 -
(O]
7]
=== Motion Inference
0.2 - === Ensemble Inference
=== | ogistic Regression
Invernet
00 _I T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

(1-specificity) (fpr)

Figure 5.4: ROC analysis for different baselines

5.4.2 Ablation Study

We have performed an ablation study by considering the number of inference samples N and the
bin size B as hyperparameters. We use a set of values {5, 15, 30} for N and {5, 25, 50} for B.
For each value of N, we consider all the bin sizes from B. Here, number of inference samples N
refers to the number of article collections we consider for inference model training. B refers to
the number of randomly and uniformly sampled articles from the inference dataset for each of the
inference sample. Below, we summarize the F1 scores and the AUC scores that we have found

from the different baselines and the proposed Invernet Framework for different N and B values.

45

Table 5.3: F1 and AUC scores for different N={5, 15, 30} and B={5, 25, 50} values for AG_News
Dataset

nsS nl15 n 30
Emb Eval
b5 b25 b50 b5 b25 b50 b5 b25 b50
F1 0.60 0.63 0.63 0.61 0.62 0.64 0.66 0.69 0.67
CBOW

AUC | 071 | 073 | 0.74 | 073 | 0.76 | 0.77 | 0.75 | 0.78 | 0.76

F1 059 | 060 | 062 | 062 | 0.65 | 0.66 | 0.67 | 0.70 | 0.68

Skip
Gram AUC | 071 | 0.74 | 075 | 0.74 | 0.77 | 0.79 | 0.77 | 0.79 | 0.78

F1 062 | 064 | 066 | 064 | 0.67 | 069 | 0.70 | 0.72 | 0.71

GloVe
AUC | 074 | 076 | 0.76 | 0.75 | 0.77 | 0.79 | 0.77 | 0.80 | 0.79

In 5.3.4, we hypothesized that with a higher number of inference samples, our inference model
will be exposed to a larger number of data with high variance and therefore will be able to learn
better. Through our experiments, we validate our hypothesis. Table 5.3 is a reflection of the
margin by which inference models trained with a higher number of samples perform better than
inference models trained with fewer number of samples. In tables 5.3 and 5.4 we can observe
that the best performance across different word embedding models was achieved with n=30 and
b=25. However, we can notice an exception at n=30 and b=50 where testing F1 scores and AUC
scores are better than most settings but slightly worse than n=30 and b=25. For each n™ sample,
we are picking b random documents from the inference dataset and then replacing them into the
inference pool. As a result, with a higher value of n and b, the likelihood of encountering duplicate
documents across multiple inference samples increases. With such duplicity, the diversity in the

inference sample distribution decreases thereby causing overfitting. On the other hand, with lower

46

values of n and b, we are sampling fewer documents and reducing the distributional diversity
among the inference samples. So, the goal of tuning the hyperparameters n and b is to find optimal
values of n and b so that we can get a diverse set of inference samples. In our experiments,

empirically we have found n=30 and b=25 to enable the best performance of the inference model.

Table 5.4: F1 and AUC scores for different N={5, 15, 30} and B={5, 25, 50} values for NYT
dataset

ns nl5 n 30
Emb Eval
b5 b25 b50 b5 b25 b50 b5 b25 bS50
F1 0.59 0.62 0.64 0.65 0.66 0.68 0.67 0.70 0.68
CBOW

AUC | 0.71 072 | 074 | 074 | 076 | 0.76 | 0.77 | 0.79 | 0.78

F1 0.61 | 065 | 0.66 | 0.67 | 0.69 | 0.69 | 0.68 | 0.71 | 0.69

Skip
Gram | AUC | 0.71 | 0.73 | 0.74 | 074 | 077 | 078 | 0.78 | 0.81 | 0.79

F1 0.64 | 066 | 068 | 0.67 | 069 | 0.70 | 0.69 | 0.73 | 0.71

GloVe
AUC 0.73 0.75 0.76 0.78 0.80 0.80 0.80 0.82 0.81

47

1.0 A

0.8 A

0.6 - /

0.4 - CBOW _n30_b25
me CBOW_n30_b25
== SkipGram_n30 _b25
0.2 A SkipGram_n30_b25
= GloVe N30 b25
GloVe_n30_b25

sensitivity (tpr)

0'0 _I T T T T
0.0 0.2 0.4 0.6 0.8 1.0
(1-specificity) (fpr)

Figure 5.5: ROC analysis of Invernet Framework for different embedding models with N=30 and
B=25 setting

5.5 Qualitative Analysis of Distributional Performance

We perform a heat map analysis to visualize the performance of our framework for target words
with different frequency. In the figures below, we have the target vocabulary sorted by their fre-
quency in both the x-axis and the y-axis. The color at cell (i, j) is closer to green if our inference
model is able to correctly identify whether words in indices i and j co-occur together within each
other’s context. Otherwise, the color at cell (i, j) goes closer to red. The function governing the

cell color of the following heat maps is as follows:

COlor(i,j) =1- H)’)\word(i),word(j) — Yword(i),word () H (5.9)

In Eq. (5.9), if the value of color defines the distance between the ground truth § and the prediction

y with respect to the value 1. The closer y and y is, the lower the distance and the higher the value

48

of color. If the prediction is incorrect by a large margin, distance between y and y increases and
the value of color decreases. With correct predictions, color is closer to 1 and the corresponding
cell color becomes green. With incorrect predictions, color is closer to 0 and the corresponding

cell color becomes red.

1.0
so
z g
C c
o (CINS]
> 58
g -06 | 8 €
) g€
Re] jo)
o} o
£ 04 | 5¢g
8 2 c
» o 9
2 A
S 0.2 'g c
= s
<
S~ o 0.0
N o‘b Q
N Words Sorted by Frequency ¥

Figure 5.6: Word-to-word distributional performance of logistic regression based inference model
on embeddings trained with CBOW model

1.0
,\b\'
so
0.8
:
g g g
> 5
L -06 | 8 €
< ® s
) R
- g
Ja T e
= -0.4 sy
3 2 c
o 2
B %@
S T =
; 0.2 o
=
S
> 0.0
RN N
& Words Sorted by Frequency &

Figure 5.7: Word-to-word distributional performance of Invernet Framework on embeddings
trained with CBOW model

49

1.0

so
> 0.8 g
c c
o (CINs]
o 55
g -06 | 8 €
) g€
o] jo)
o} o
£ 04 | 5g
83 2 c
» o 9
2 A
S 0.2 'g c
= S

<
S~ o 0.0
N o‘b Q

N Words Sorted by Frequency ¥

Figure 5.8: Word-to-word distributional performance of logistic regression based inference model
on embeddings trained with SkipGram model

1.0
,\b\’
so
0.8
g g
o 3
o 06 | B E
) Cl=
O g
3 =
£ -0.4 S @
<) 2 e
wv T
n 9 L
B s
S 02 | 5=
=
<
L~ o 0.0
N Q
$° Words Sorted by Frequency ¥

Figure 5.9: Word-to-word distributional performance of Invernet Framework on embeddings
trained with SkipGram model

50

1.0

so
> 0.8 g
c c
o (CINs]
g 55
g -06 | 8 €
) g€
o] jo)
o} o
£ 04 | 5g
83 2 c
» o 9
2 A
S 0.2 'g c
= S

<
S~ o 0.0
D o‘b Q

N Words Sorted by Frequency ¥

Figure 5.10: Word-to-word distributional performance of logistic regression based inference model
on embeddings trained with GloVe model

1.0

so
z g
c c
o (CINS]
g 55
o -06 | 8 €
) g€
o] [0
o} T o
£ -04]
8 2 c
» o 2
B 8
S Joi=
; 0.2 o

=
S~ o 0.0
D o‘b Q

D Words Sorted by Frequency ¥

Figure 5.11: Word-to-word distributional performance of Invernet Framework on embeddings
trained with GloVe model

Figures 5.6 and 5.7 show the distributional performance of the naive logistic regression baseline
and the Invernet framework respectively for the CBOW (Continuous Bag-of-words) embedding

model. Figures 5.8 and 5.9 show the distributional performance of the naive logistic regression

51

baseline and the Invernet framework respectively for the SkipGram embedding model. Figures
5.10 and 5.11 show the distributional performance of the naive logistic regression baseline and the
Invernet framework respectively for the GloVe embedding model.

For all three embedding models CBOW (Fig. 5.6), SkipGram (Fig. 5.8), and GloVe (Fig. 5.10),
we can observe that the naive logistic regression baseline has a stark red region along the top left
of the heat maps. At the same time, the naive logistic regression baseline produces a very light
green region towards the bottom right of the heat maps. Such color pattern tells us that the naive
logistic regression model is unable to identify the context of a large number of infrequent target
vocabulary and that the logistic regression model shows very low confidence when identifying the
context of frequent target vocabulary. On the other hand, for all three embedding models CBOW
(Fig. 5.7), SkipGram (Fig. 5.9), and GloVe (Fig. 5.11), the Invernet framework shows light red
regions towards the top left and a stark green region towards the bottom right. This color pattern
tells us that, the Invernet framework is most of the times very confidently correct about the context
of frequent target vocabulary and rarely incorrect with lower confidence regarding the infrequent
target vocabulary. We can also objectively claim from the changes of pattern in Figs. 5.7, 5.9,
and 5.11 that the performance of Invernet becomes progressively better from CBOW to SkipGram
and from SkipGram to GloVe embedding model, confirming our hypothesis that the better a word

embedding model becomes, the easier it becomes to invert those embeddings.

5.6 Membership Inference

In this experiment, we use the predicted co-occurrence vectors and try to infer whether any sen-
tence or sentence fragment formed using such co-occurrence vectors is actually a part of the down-

stream dataset or not using a high level hit ratio analysis and a sequence reconstruction technique.

52

5.6.1 Quantitative Analysis with Hit Ratio

In the hit ratio analysis, we take some positive and negative documents from the target dataset (e.g.
AG’s News) and a non-target dataset (e.g. NYT Dataset) respectively. We form sets of 1 positive
and 4 negative documents based on maximum vocabulary overlap. In this evaluation, our goal is to
find out whether a given fine-tuned embedding is coming from the positive or negative documents
based on the predicted binary context vector. The negative documents serve as the control of the
experiment.

For each set of 1 positive and 4 negative documents, we consider the union of their vocabulary
to form the context vectors. We compute the binary context vectors for each of the 5 documents
from a set. These binary context vectors are formed with respect to a specific window size = 5
which means that only the immediately neighboring 5 left and 5 right words of the target word will
have 1s in the binary context vector of that target word. Then, we apply the Invernet framework
to the positive samples and predict the corresponding binary context vectors for the target words.
Then we try to find whether we could hit or we missed the positive samples by comparing the
corresponding binary context vectors. If the Hamming distance between the predicted context
vectors and the positive sample’s context vectors is less than that between the predicted and the
negative samples’ context vectors, we call it a hit and otherwise a miss. We consider top k retrieval
for calling hits. For convenience we consider the relevance of a document as the inverse of the
distance between the document’s context vectors and the predicted vector. When k=2 for top k
retrieval, if the relevance of the positive document is higher than (5-k)=3 negative documents, we
call it a hit. When k=3 for top k retrieval, if the relevance of the positive document is higher than
(5-k)=2 negative documents, we call it a hit.

We also perform a slightly relaxed hit ratio analysis by ranking the 5 documents from a specific
set based on the inverse hamming distance between the predicted binary context vector of the
positive document and the ground truth binary context vector of all the 5 documents. The lower
the hamming distance the higher the document is ranked. In this case, the rank becomes the

relevance score of the documents. We also have the ground truth ranking at disposal for reference.

53

Ideally, the positive document should always be ranked at the top. However, practically that is not
always the case. Then we carry out a normalized discounted cumulative gain (NDCG) evaluation

of the ranking.

Table 5.5: Comparing different samples sizes for hit ratio analysis

Hit Ratio (Top k)

Total | Positive | Negative | k=1 k=2 k=3 NDCG Score
250 50 200 0.51 | 0.53 0.55 0.58
500 100 400 053 | 054 | 057 0.60
1000 200 800 0.58 | 0.62 | 0.66 0.70
2000 400 1600 0.60 | 0.63 | 0.69 0.73

Table 5.6: Hit Ratio Case Study

wl w2 w3 w4 w5 w6 w7 w8 w9 w10

pred 1 1 0 0 1 0 0 1 1 0

pos 1 1 1 0 0 1 1 1 0 0

negl 1 1 0 0 0 0 1 1 0 0

neg?2 0 1 1 0 0 0 1 0 0 1

neg3 0 0 0 1 0 1 0 0 1 1

neg4 0 0 0 1 0 1 1 0 0 1

54

When ranking the positive and the negative samples with respect to how similar their binary
context vectors are with that of the prediction vector, the positive sample should be at the top.
However, from the results in Table 5.6, we have found the following ranking: neg2 — neg3 —
pos —> negl — neg4. We call this a hit since the positive sample is ranked higher than at
least half of the negative samples. At the same time, we can see that the positive sample has
dropped from first to third position in ranking because the binary context vectors of neg2 and neg3
samples had considerable similarity with the positive and the predicted binary context vectors.

Nevertheless, because of using the ranking evaluation we can still consider this case as a hit.

5.6.2 Qualitative Analysis with Sequence Reconstruction

We apply the Invernet framework with an expanding window technique to infer an approximate
reconstruction of the target sentence or a fragment of the sentence. When we create multiple
inference samples for the Invernet framework, we usually create corresponding multiple context
vectors. These ground truth context vectors are created with respect to a specific window size. If
we incrementally iterate over a specific window length between the range of [1, /] and at each step
subtract the binary context vector from the previous window, we can sequentially reconstruct the
target sentence fragments that are with reasonable confidence, members of the downstream dataset.

An example sequence reconstruction from the AG’s News dataset is as follows:

Table 5.7: Example of Sequence Reconstruction from AG’s News Dataset

Citigroup acquires First American Bank

Table 5.8: Inference within window size W=1, target word="citigroup’

citigroup | acquires | first | american | bank

55

Table 5.9: Inference within window size W=2, target word="citigroup’

citigroup | acquires | first | american | bank

Cw=2 0 1 1 0 0

Cw=2 - Cw=1 0 0 1 0 0

Table 5.10: Inference within window size W=3, target word="‘citigroup’

citigroup | acquires | first | american | bank

Cw=3 0 | 1 1 0

Cw=3 - Cw=2 0 0 0 1 0

Table 5.11: Inference within window size W=4, target word="‘citigroup’

citigroup | acquires | first | american | bank

Cw=4 0 | 1 1 1

Cw=4 - Cw=3 0 0 0 0 1

Table 5.12: Final reconstructed sequence

target word Cw=1 Cw= - Cw=1 Cw=3; - Cw= Cw=4 - Cw=3

citigroup acquires first american bank

Using the expanding window technique, we neither necessarily nor realistically need to recon-

struct an exact sentence from the downstream dataset to breach user privacy. Instead, sensitive

56

information surrounding certain events can be leaked from certain sequences of words that are
predicted correctly. A simple justification about why this incrementally differential approach on
binary context vector is useful to reconstruct specific word sequences or sentence fragments, can
be obtained by comparing Tables 5.11 and 5.12. When we consider a large window size in Table
5.11 and infer the binary context vector of a target word only from a single large window size, we
get which words appear in the context of a target word within the specified large window size but
we are unable to infer the fine-grained positions of the words in the context. On the other hand, in
Table 5.12, when we try to reconstruct the sequence using the expanding window technique and
aggregate the incrementally differential binary context vectors, we get a sequence of words with
granular leakage of the word positions surrounding the target word. Finally we can claim with rea-
sonable certainty that the reconstructed sequence of words or sentence fragment is a member of the
downstream target dataset. Evaluating the reconstructed sequence or fragment can be as simple as
judging how much of the sequence matches with a one from the target dataset. Sometimes because
of faulty predictions, there might be multiple contending words for the same position. Depending
on the number of possibilities, we can manually pick the one that sounds more appropriate both
grammatically and semantically. Another option to break the contention is to choose the word that
occurs more frequently with the target word in the pretraining dataset since the pretraining dataset

is our reference. We summarize our high level observations in the following table:

Table 5.13: Human-in-the-loop Similarity Judgement

Frequency of Observation | Similarity between Reconstructed Fragment and Actual Members

~ 55% of the times ~50—-55%
~ 25% of the times > 60%
~ 20% of the times <=150%

Expected Similarity > 55%

57

Chapter 6

Conclusion

In this thesis, we have demonstrated that a significant amount of downstream context distribution
can be leaked through fine-tuned word embeddings if one has access to the pretrained word em-
beddings, pretraining dataset, and the fine-tuned word embeddings. We have empirically shown
that a successful embedding inversion attack can be carried using the Invernet framework with an
attack F1 score of 0.70 and an attack AUC score of 0.79. Such performance metrics prove that
Invernet can considerably exceed comparable performance of other methods that are mentioned in
the literature. Through various comparative ablation studies We have established that word embed-
ding models that are considered superior in various Natural Language Processing tasks, tend to be
more vulnerable to embedding inversion attacks. A distributional heat map analysis has shown that
embeddings of words that occur more frequently in the dataset generally leak the highest amount
of context distribution.

We have noted from the literature and from common practices in the industry that small and
large scale users alike resort to transfer learning for fine-tuning a set of pretrained word embed-
dings in order to reduce the computational overhead and carbon footprint of training from scratch.
We have also observed a proliferation of publicly shared fine-tuned word embeddings. A primary
reason for sharing or storing such fine-tuned word embeddings and word embedding models is to
contribute very topical word embeddings to niche communities like the finance sector, the biomed-
ical domain etc. for improving domain specific tasks in these sectors. However, a critical concern
surrounds how these fine-tuned word embeddings are shared. Because the word embeddings are
simply dense continuous vector representations of words, the publishers of such fine-tuned word

embeddings are most of the times not careful about the potential of information leakage from these

58

presumably unexplainable and uninvertible sets of vectors. So, numerous such fine-tuned word
embeddings are shared or stored in an insecure way.

Our study focuses on the specific circumstances when a malicious participant in a transfer
learning based Natural Language Processing system has access to both the pretraining dataset
and pretrained word embeddings either through ownership rights or from the public domain. We
assume that the attacker also gets access to a set of downstream embeddings that are fine-tuned
on another user’s private dataset. The attacker can access the fine-tuned word embeddings from
the public domain if the owner of the fine-tuned word embeddings shares those embeddings in
public. The attacker might also be able to access the fine-tuned word embeddings from a private
domain if proper security and encryption mechanisms are not in place. We have also demonstrated
with considerable confidence that under the aforementioned situation, an attacker can easily apply
the Invernet framework to infer the context distribution of the downstream dataset. In light of
our findings regarding information leakage from fine-tuned word embeddings, we wish to raise

awareness about taking care when storing or sharing such fine-tuned word embedding models.

6.1 Future Directions

We have identified a few promising future directions of research arising from our work. In this
section, we will briefly mention these potential future directions of research in the field of fine-
tuned embedding inversion.

In this work, we have presented how the co-occurrence distribution of a fine-tuning dataset can
be inferred with access to both the pretrained and fine-tuned embeddings and with the knowledge
of the pretraining dataset. We have reported the successful outcomes of the Invernet framework
in various unsupervised fine-tuning settings. Another interesting direction can be to explore the
potential context distribution leakage of downstream embeddings that are fine-tuned in a super-
vised setting with respect to a specific downstream task like text classification, next word/sentence
predictions, named entity recognition etc.

A critical step in the Invernet framework is to create multiple inference samples of various doc-

59

uments from a separate inference dataset taken from the original pretraining dataset. We generate
multiple sets of word embeddings and corresponding binary co-occurrence vectors for each target
word from the multiple inference samples. The inference model eventually learns the relation be-
tween these word embeddings and binary co-occurrence vectors. One can augment the inference
samples by using a text generation module. The text generation module will essentially generate
numerous text samples based on the inference dataset. As a result, with a huge number of inference
samples, the augmented Invernet framework should hypothetically perform even better.

The output of the Invernet framework gives us word-to-word co-occurrence context of the
downstream dataset. If one passes each word from the vocabulary as the target word through
the Invernet framework, it is possible to get a probability score of two words occurring together
within a certain window size. Eventually, one can use the realized word-to-word co-occurrence
probability scores and apply any probabilistic text generation method like a Hidden Markov Model
(HMM) incorporated with knowledge from a Part-of-Speech (POS) tagger or linguistic grammar
to generate text equivalent to the actual downstream dataset. Successful dataset inversion through

this technique can pose a serious threat to user privacy.

60

References
[1] Glove: Global vectors for word representation.

[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vié-
gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems.

https://www.tensorflow.org/, 2015. Software available from tensorflow.org.

[3] Dogu Araci. Finbert: Financial sentiment analysis with pre-trained language models. arXiv

preprint arXiv:1908.10063, 2019.

[4] Karlo Babi¢, Sanda MartinCi¢-IpS$i¢, and Ana Mestrovi¢. Survey of neural text representation

models. Information, 11(11):511, 2020.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate, 2016.

[6] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language

model. Advances in Neural Information Processing Systems, 13, 2000.

[7] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python.

O’Reilly Media, 2009.

61

https://www.tensorflow.org/

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language

models are few-shot learners. Advances in neural information processing systems, 33:1877—

1901, 2020.

Cen Chen, Bingzhe Wu, Minghui Qiu, Li Wang, and Jun Zhou. A comprehensive analysis of

information leakage in deep transfer learning. arXiv preprint arXiv:2009.01989, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

Nicholas Dingwall and Christopher Potts. Mittens: an extension of glove for learning domain-
specialized representations. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 2 (Short Papers), pages 212-217, 2018.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861-874,
2006.
Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249-256. JMLR Workshop and Conference Proceedings,
2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. 2016.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan
Naumann, Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining
for biomedical natural language processing. ACM Transactions on Computing for Healthcare

(HEALTH), 3(1):1-23, 2021.

62

[16] Antonio Gulli. Ag’s corpus of news articles. http://groups.di.unipi.it/~gulli/AG_

corpus_of _news_articles.html.

[17] Zellig S Harris. Distributional structure. Word, 10(2-3):146—-162, 1954.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE

international conference on computer vision, pages 1026-1034, 2015.

[19] Tom Kocmi and Ondfej Bojar. An exploration of word embedding initialization in deep-

learning tasks. arXiv preprint arXiv:1711.09160, 2017.

[20] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[21] Tomas Mikolov and et al. word2vec, 2013.

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural information

processing systems, 26, 2013.

[23] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39-41, 1995.

[24] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on

knowledge and data engineering, 22(10):1345-1359, 2009.

[25] Kevin Patel and Pushpak Bhattacharyya. Towards lower bounds on number of dimensions for
word embeddings. In Proceedings of the Eighth International Joint Conference on Natural

Language Processing (Volume 2: Short Papers), pages 31-36, 2017.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

63

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825-2830, 2011.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pages 1532-1543, 2014.

Nikolaos Pitropakis, Emmanouil Panaousis, Thanassis Giannetsos, Eleftherios Anastasiadis,
and George Loukas. A taxonomy and survey of attacks against machine learning. Computer

Science Review, 34:100199, 2019.

Radu Raicea. Want to know how deep learning works? here’s a quick guide for everyone.,

Oct 2017.

Radim Rehurek and Petr Sojka. Gensim—python framework for vector space modelling. NLP

Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2), 2011.

Sebastian Ruder. Neural transfer learning for natural language processing. PhD thesis, NUI

Galway, 2019.

Sebastian Ruder. Recent Advances in Language Model Fine-tuning. http://ruder.io/

recent-advances-1m-fine-tuning, 2021.

Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf. Transfer learn-
ing in natural language processing. In Proceedings of the 2019 conference of the North Amer-

ican chapter of the association for computational linguistics: Tutorials, pages 15-18, 2019.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by

back-propagating errors. nature, 323(6088):533-536, 1986.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In 2017 IEEE symposium on security and privacy

(SP), pages 3—18. IEEE, 2017.

64

http://ruder.io/recent-advances-lm-fine-tuning
http://ruder.io/recent-advances-lm-fine-tuning

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Congzheng Song and Ananth Raghunathan. Information leakage in embedding models. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 377-390, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of

machine learning research, 15(1):1929-1958, 2014.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations

for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Fukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-

tion processing systems, 30, 2017.

Yuxuan Wang, Yutai Hou, Wanxiang Che, and Ting Liu. From static to dynamic word
representations: a survey. [International Journal of Machine Learning and Cybernetics,

11(7):1611-1630, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 conference on empirical

methods in natural language processing: system demonstrations, pages 38—45, 2020.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.

Donna Xu, Yaxin Shi, Ivor W Tsang, Yew-Soon Ong, Chen Gong, and Xiaobo Shen. Sur-
vey on multi-output learning. IEEE transactions on neural networks and learning systems,

31(7):2409-2429, 2019.

Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. Dynamic word embed-

65

dings for evolving semantic discovery. In WSDM 2018: The Eleventh ACM International

Conference on Web Search and Data Mining, 2018.

[45] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks

for text classification. In NIPS, 2015.

66

	Introduction
	Contributions
	Thesis Organization

	Problem Formulation
	Problem Statement
	Example
	Assumptions
	Problem Formulation

	Background
	Neural Representation Learning
	Word2Vec
	GloVe
	BERT

	Transferring Knowledge in Deep Learning
	Deep Learning
	Transfer Learning

	Information Leakage from Machine Learning Models
	Membership Inference
	Information Leakage in Deep Transfer Learning
	Information Leakage in Embedding Models

	Methodology
	Pretraining
	Continuous Bag of Words (CBOW)
	SkipGram
	GloVe
	Word Vector Initialization

	Fine-tuning
	Invernet Framework
	Preparing Embeddings for Inference
	Inference Model
	Inference Context Distribution
	Loss Function

	Experiments
	Datasets
	Training Details
	Preprocessing
	Focused Data Selector
	Splitting Dataset
	Pretraining
	Fine-tuning

	Baselines
	Naive Baseline
	Motion based Inference Model
	Stacked Generalization
	Invernet Inference Model

	Classification Report
	Baseline Comparison
	Ablation Study

	Qualitative Analysis of Distributional Performance
	Membership Inference
	Quantitative Analysis with Hit Ratio
	Qualitative Analysis with Sequence Reconstruction

	Conclusion
	Future Directions

