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Abstract: Deep brain stimulation is a treatment that controls symptoms by changing brain activity.
The complexity of how to best treat brain dysfunction with deep brain stimulation has spawned
research into artificial intelligence approaches. Machine learning is a subset of artificial intelligence
that uses computers to learn patterns in data and has many healthcare applications, such as an
aid in diagnosis, personalized medicine, and clinical decision support. Yet, how machine learning
models make decisions is often opaque. The spirit of explainable artificial intelligence is to use
machine learning models that produce interpretable solutions. Here, we use topic modeling to
synthesize recent literature on explainable artificial intelligence approaches to extracting domain
knowledge from machine learning models relevant to deep brain stimulation. The results show that
patient classification (i.e., diagnostic models, precision medicine) is the most common problem in
deep brain stimulation studies that employ explainable artificial intelligence. Other topics concern
attempts to optimize stimulation strategies and the importance of explainable methods. Overall, this
review supports the potential for artificial intelligence to revolutionize deep brain stimulation by
personalizing stimulation protocols and adapting stimulation in real time.

Keywords: deep brain stimulation; explainable artificial intelligence; machine learning

1. Introduction

Deep brain stimulation is a technique wherein an implanted device delivers an elec-
trical current into a patient’s brain to improve their clinical condition [1]. Deep brain
stimulation is an important therapy because it is relatively safe and applicable to a variety
of neurological and psychiatric disorders [2]. While the underlying mechanisms are still
under study, chronic electrical stimulation causes cellular and molecular changes in brain
circuits that underlie behavior [2]. A crucial question in deep brain stimulation research
is how to adapt neurostimulation to the patient. Artificial intelligence approaches offer
solutions to this problem, such as altering stimulation schedules based on machine learning
models of brain activity that predict sleep stage [3]. However, there is a distinction between
using machine learning to find functional relationships and using machine learning to
explain mechanistic properties [4]. For example, machine learning can effectively detect
patterns of brain activity, but may not reveal a better understanding of the mechanisms
that change brain function [5]. To address this limitation, this paper offers a synthesis of
recent literature using a novel approach called explainable artificial intelligence that enables
the extraction of information from machine learning models [6].

From a decision-making perspective, implementing deep brain stimulation requires a
series of choices that artificial intelligence can optimize [7]. For example, closed-loop deep
brain stimulation systems can use neural activity to detect symptoms and adapt stimulation
parameters in real-time [8]. These systems could utilize computational models of brain
activity that help decide how to alter stimulation and inhibit an unwanted behavior before
it begins, such as a tremor [9]. This adaptive stimulation approach follows a sensor-trigger
protocol that alters the stimulation parameters according to the difference between ongoing
neural activity and a desired motif of neural activity. One potential way to create such a
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motif is to create a pre-trained computational model based on stimulation characteristics
and a cost function that mirrors symptoms [10,11]. Moreover, animal models could improve
understanding of how phasic and chronic deep brain stimulation differ in their efficacy to
produce a specific neurotransmitter, such as dopamine [12]. The combination of different
artificial intelligence implementations could serve as a clinical decision support system that
improves deep brain stimulation by leveraging high-dimensional data using computational
resources that exceed the abilities of human clinicians [13].

A key improvement needed for artificial intelligence algorithms in deep brain stim-
ulation research is the ability to understand how the model made a decision. Extracting
the logic for decisions made by machine learning algorithms is one way to improve the
interpretability of artificial intelligence approaches to deep brain stimulation [14]. Ex-
tracting information from decision models can help clinicians understand the model’s
characteristics and share this information with colleagues and patients [15]. For example,
PECLIDES is a personalized clinical decision support system built using random forests to
diagnose neurological diseases, such as Parkinson’s disease [16]. Besides making diagnoses,
PECLIDES creates a set of if-then-rules that can explain to a physician how the model made
the diagnosis.

One of the benefits of extracting explainable solutions from models for deep brain
stimulation is maintaining human supervision of the algorithms [17]. For example, a
study of clinical decision support systems used machine learning algorithms to build a
model of deep brain stimulation parameter settings and medication dosages that predicted
clinical outcomes following deep brain stimulation [18]. The model has the potential to
show a physician the predicted clinical outcomes of different treatment strategies and
suggest a specific treatment strategy that minimizes symptoms at follow-up [19]. However,
the system does not extract rules from the decision trees, leaving the potential physician
to wonder why the model predicted a particular treatment strategy would minimize
symptoms at follow-up. An explainable artificial intelligence approach to clinical decision
support systems could extract a set of rules explaining the decision, as well as an example
of the critical values for a patient concerning factors heavily weighted in the decision [20].

The aim of this paper is to synthesize recent literature on explainable artificial intelli-
gence approaches to deep brain stimulation [21]. There is evidence that machine learning
models can predict treatment outcomes and identify treatment targets [22]. It has also
been reported that in the domain of closed-loop brain stimulation, explainable artificial
intelligence can improve treatment outcomes and advance fundamental knowledge about
brain-stimulation relationships [23]. However, explainable artificial intelligence is an
emerging field that is not integrated into deep brain stimulation research [24]. Here, a topic
modeling approach is used to synthesize themes and trends in the literature regarding
approaches to extracting domain knowledge from machine learning models relevant to
deep brain stimulation. Topic modeling is an algorithmic approach to discovering themes
in a corpus of text [25,26]. The impetus of this project was to synthesize the progress made
in different aspects of deep brain stimulation, including the initial screening of patients
for eligibility, planning for surgical implantation, and post-op follow-up. Thus, this pa-
per offers a review at the intersection of explainable artificial intelligence and deep brain
stimulation across the treatment sequence.

2. Topic Modeling Procedure
2.1. Overview

To guide the review, a topic modeling algorithm (Latent Dirichlet Allocation) was used
to discover themes and trends in the applicable journal articles. Latent Dirichlet Allocation
is an unsupervised learning method based on a generative probabilistic model [27]. In
short, Latent Dirichlet Allocation finds latent thematic structures by detecting a specified
number of topics through analysis of the probabilities of words in a collection of documents.
The methods described below were pre-registered on the open science foundation using
the PRISMA 2020 checklist (https://osf.io/vdx6s/?view_only=752fbfdce1ea4ffbb360e3d0

https://osf.io/vdx6s/?view_only=752fbfdce1ea4ffbb360e3d09f22fdf3
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9f22fdf3, accessed on 14 December 2022) [28]. The code used for all analyses is available in
the Supplementary Materials.

2.2. Search for Journal Articles

The first step in identifying topics at the intersection of explainable artificial intelligence
and deep brain stimulation is curating relevant journal articles. Thesearch was conducted
using https://scholar.google.com/ (accessed 4 January 2023) with the following terms:
(“deep brain stimulation” “explainable artificial intelligence” OR “interpretable artificial
intelligence” OR “interpretable machine learning”). This search resulted in 79 articles.

2.3. Inclusion and Exclusion Criteria

The first inclusion criterion was that the journal articles matched the keyword search.
The google scholar results were screened by the lead author (BA) and excluded if they were
book chapters (n = 17), conference proceedings (n = 8), lists of articles (n = 1), dissertations
(n = 3), duplicates (n = 7), or webpages (n = 1).

2.4. Text Pre-Processing

The remaining 40 articles were converted to text files, reference sections were removed,
and the remaining text was examined for errors using spell check through Google docs. The
remaining preprocessing and analysis was conducted using the R programming language
(version 4.2.1, 23 June 2022). Trigrams (i.e., three consecutive words) were extracted from
each journal article and inspected to filter out articles that only contained search terms
in the reference section (n = 28). The resulting 12 articles were published between 2018
and 2022 and directly related to deep brain stimulation and explainable or interpretable
artificial intelligence (see Table 1).

Next, paragraphs from each journal article were segmented into separate files (n = 1262).
The R package tm (version 0.7-8) was used to merge all paragraphs into a corpus, remove
stopwords, symbols, numbers, and punctuation, and to lemmatize each word. The package
tm was also used to tokenize the text into trigrams for keyword screening and bigrams
for final analysis. Following the initial computation of the final topic model, additional
irrelevant bigrams were removed from the corpus and the topic models were estimated
again (i.e., may_also, studi_us, sourcerightclick_figur, model_, et_al, use_data, sampl_siz,
studi_focus, al_b, can_provid, updr_iii, s_disea, gof_valu, can_us, patient_, paper_entitl,
use_machin, fig_b, can_us, et_al, paper_entitl, use_data, input_data, studi_us, n_n, n_rem,
data_may, s_disea, data_set, model_, can_also, wide_us, g_figur, file_, al_b).

https://osf.io/vdx6s/?view_only=752fbfdce1ea4ffbb360e3d09f22fdf3
https://osf.io/vdx6s/?view_only=752fbfdce1ea4ffbb360e3d09f22fdf3
https://scholar.google.com/
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Table 1. Final corpus of journal articles.

Authors Year Title Journal

Chen, Y., Gong, C., Hao, H., Guo, Y., Xu, S.,
Zhang, Y., . . . and Li, L. 2019 Automatic sleep stage classification based

on subthalamic local field potentials [3]

IEEE Transactions on Neural
Systems and Rehabilitation

Engineering

Chen, Z. S., Galatzer-Levy, I. R., Bigio, B.,
Nasca, C., and Zhang, Y. 2022 Modern views of machine learning for

precision psychiatry [29] Patterns

Fellous, J. M., Sapiro, G., Rossi, A.,
Mayberg, H., and Ferrante, M. 2019

Explainable artificial intelligence for
neuroscience: behavioral

neurostimulation [23]
Frontiers in neuroscience

Habets, J. G., Janssen, M. L., Duits, A. A.,
Sijben, L. C., Mulders, A. E., De Greef, B.,

. . . and Herff, C.
2020

Machine learning prediction of motor
response after deep brain stimulation in
Parkinson’s disease—proof of principle

in a retrospective cohort [30]

PeerJ

Halilaj, E., Rajagopal, A., Fiterau, M., Hicks,
J. L., Hastie, T. J., and Delp, S. L. 2018

Machine learning in human movement
biomechanics: Best practices, common

pitfalls, and new opportunities [31]
Journal of biomechanics

Jung, K., Florin, E., Patil, K. R., Caspers, J.,
Rubbert, C., Eickhoff, S. B., and Popovych,

O. V.
2023 Whole-brain dynamical modelling for

classification of Parkinson’s disease [32] Brain Communications

Padberg, F., Bulubas, L., Mizutani-Tiebel,
Y., Burkhardt, G., Kranz, G. S.,

Koutsouleris, N., . . . and Brunoni, A. R.
2021

The intervention, the patient and the
illness–personalizing non-invasive brain

stimulation in psychiatry [33]
Experimental Neurology

Pinto, M. F., Leal, A., Lopes, F., Pais, J.,
Dourado, A., Sales, F., . . . and

Teixeira, C. A.
2022 On the clinical acceptance of black-box

systems for EEG seizure prediction [34] Epilepsia Open

Rupprechter, S., Morinan, G., Peng, Y.,
Foltynie, T., Sibley, K., Weil, R. S., . . . and

O’Keeffe, J.
2021

A clinically interpretable computer-vision
based method for quantifying gait in

Parkinson’s disease [35]
Sensors

Sendi, M. S., Waters, A. C., Tiruvadi, V.,
Riva-Posse, P., Crowell, A., Isbaine, F., . . .

and Mahmoudi, B.
2021

Intraoperative neural signals predict
rapid antidepressant effects of deep brain

stimulation [36]
Translational psychiatry

Tang, Y., Kurths, J., Lin, W., Ott, E.,
and Kocarev, L. 2020

Introduction to focus issue: When
machine learning meets complex systems:

Networks, chaos, and nonlinear
dynamics [37]

Chaos: An Interdisciplinary
Journal of Nonlinear Science

Zdravkova, K., Krasniqi, V., Dalipi, F.,
and Ferati, M. 2022

Cutting-edge communication and
learning assistive technologies for

disabled children: An artificial
intelligence perspective [38]

Frontiers in Artificial
Intelligence

2.5. Topic Modeling

One requirement for a topic model is the specification of the number of topics. This
was accomplished using two approaches. First, the R package ldatuning (version 1.0.2)
was used to find the optimal number of topics based on metrics of coherence for each
topic. To ensure that any one set of paragraphs did not overly influence this process, the
paragraphs were split into ten random subsets, and four different coherence metrics were
computed for topic models with 2 to 20 topics. These coherence metrics were estimated
ten times, each time removing one of the paragraph subsets. The median coherence
scores across the ten iterations were computed for each metric and each topic model.
Two of the coherence metrics show more coherent topics with lower values (i.e., Arun2010,
CaoJuan2009), whereas the other two metrics show more coherent topics with higher values
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(i.e., Griffiths2004, Deveaud2014). The average intersection of these lines was computed,
which suggested the optimal number of topics was nine, based on coherence.

The second approach to finding the optimal number of topics was based on the
perplexity score of models with different numbers of topics using the LDA function from
the R package topicmodels (version 0.2-12). Perplexity is a metric that shows how probable a
collection of text is, given a topic model. For this process, a topic model was estimated for
2 to 20 topics using nine of the ten subsets of paragraphs, and that topic model was then
applied to the remaining fold where perplexity was computed. This process was repeated
until each fold was used as the holdout sample for cross-validation. The median perplexity
across all folds was computed for each number of topics. The perplexity measure was
rescaled to a range of 0 to 1, and the optimal number of topics was computed based on
the number of topics when the perplexity measure decreased less than 1%. This process
resulted in the optimal topic number being 11, based on perplexity.

Given the similar number of topics determined using coherence and perplexity, the
smaller number (nine topics) was then used to estimate the ultimate model based on the
entire corpus. The Latent Dirichlet Allocation model was estimated by applying the Gibbs
algorithm for its convergence method.

3. Topics in Deep Brain Stimulation Research Using Explainable Artificial Intelligence

A Latent Dirichlet Allocation model was used to estimate nine topics that summarized
the journal articles matching the search terms. The ultimate model was interpreted based
on the ten most probable bigrams per topic, and the ten most probable paragraphs per
topic. For interpretation, each of the top ten paragraphs per topic were traced back to
their original paper and described in the results regarding deep brain stimulation and
explainable or interpretable artificial intelligence. After interpreting each of the nine topics,
they were grouped together based on similar themes: patient classification, precision
psychiatry, complex systems, methodological concerns, heterogeneity of treatment response,
automated symptom assessment, and complex systems (see Table 2 for themes and top five
topic bigrams).

Table 2. Themes and Top Five Topic Terms.

Topic Theme Top 5 Bigrams

1
Patient Classification

mental health, deep learning, assistive technology, precision psychiatry,
mental disorder

2 model fit, Parkinson disease, model parameter, filter condition,
behavior model

3 Precision Psychiatry
sleep stage, beta power, closed loop deep brain stimulation, vote length,

wake sleep

4 prediction model, Unified Parkinson’s Disease Rating Scale, weak
responder, subthalamic nucleus deep brain stimulation, model can

5 Methodological Concerns
seizure prediction, clinical trial, support vector machine model, previous

studies, decision tree model

6 neural network, feature selection, model performance, test set, support
vector machine model

7 Complex Systems machine learning, reservoir computing, learning method, complex system,
dynamic system

8 Automated Symptom Assessment feature value, step frequency, Parkinson’s disease patient, model
estimation, arm swing

9 Heterogeneity of Treatment Response psychiatric disorder, brain stimulation, functional connectivity, deep brain,
neural circuit

To improve interpretability, the lemmatized bigrams are reverted into their original meaning. Bigrams are
separated by commas, and some bigrams may include more than two terms because of acronyms, such as PD for
Parkinson’s disease.



Biomedicines 2023, 11, 771 6 of 12

3.1. Patient Classification

The first topic in the subject area of patient classification relates to the field of precision
psychiatry, an area in which machine learning can improve the diagnosis, prognosis, and
treatment [29,39]. For instance, Drysdale et al. [40] used unsupervised machine learning
methods of clustering to discover subtypes of patients with depression based on neuroimag-
ing data. These subtypes showed differential response rates to brain stimulation, suggesting
machine learning can help identify patients who are more or less likely to respond to brain
stimulation. Importantly, this study also used an interpretable machine learning model for
prediction (i.e., support-vector machine) and identified the most important neuroimaging
features that discriminated between brain stimulation responders vs. non-responders.
Such information is important because it advances understanding of how heterogeneous
symptom profiles in brain stimulation patients relate to patterns of brain activity. It also
represents an example of using interpretable machine learning models and the explicit
extraction of domain knowledge about neurobiological heterogeneity and the efficacy of
brain stimulation.

The study by Drysdale et al. [40] paints the picture of using machine learning models
of behavior and neurophysiology to inform medical treatment with deep brain stimula-
tion [29]. It may also be important to adapt stimulation strategies based on momentary
changes in behavior and neurophysiology within a person across time. For example, an
adaptive, closed-loop stimulation system is being investigated in mice [41]. One interesting
component of this system is that it doesn’t use a pre-trained model of neural activity but
learns the stimulation protocol individually based on the difference between the evoked
response and the desired target response. The system iteratively updates stimulation param-
eters until it minimizes this difference. With a combination of these types of adaptive brain
stimulation approaches with interpretable models, studying the final parameters across
a group of people could help to better understand how different stimulation strategies
achieve desired brain states or eliminate unwanted behaviors.

The second topic in the subject area of patient classification relates to using inter-
pretable machine learning models of behavioral and neurophysiological data to classify
patients into broad diagnostic categories. For example, Jung et al. [32] used regularized
logistic regression to discriminate patients with Parkinson’s disease from healthy con-
trols based on features from functional neuroimaging scans. However, even interpretable
models that are algorithmically simple still require post-hoc explainability methods to
communicate to clinicians how the model works. Pinto [34] suggests that artificial intelli-
gence applications which include machine learning models of electroencephalogram data
to make diagnostic decisions, should also provide an annotated electroencephalogram
recording that visualizes important features for the decision. A potential application for
neuroimaging data could be to visualize functional neuroimaging data in brain regions
important for diagnostic decisions.

3.2. Precision Psychiatry

The first topic in the subject area of precision psychiatry concerns using machine
learning models to discover within-person differences relevant to the efficacy of deep brain
stimulation. For example, Chen et al. [3] investigated support vector and decision tree
models that classified sleep-stages based on local field potentials recorded from the stimu-
lation electrode. The authors extracted the importance of different frequencies of local field
potentials for sleep stage classification and identified beta, alpha, and gamma rhythms in
the subthalamic nucleus as the best predictors of sleep stage. Such an interpretation could
be critical for the development of closed-loop deep brain stimulation systems that adapt
stimulation to the sleep-stage. Another approach to optimizing deep brain stimulation is
using treatment response prediction models based on changes in local field potentials fol-
lowing intraoperative brain stimulation [36]. This paper follows a similar feature selection
approach with an interpretable logistic regression model to extract electrophysiological



Biomedicines 2023, 11, 771 7 of 12

biomarkers of treatment effects. Alternatively, it may be possible to identify treatment
response biomarkers using a classification model based on neuroimaging data [32].

The second topic in the subject area of precision psychiatry concerns the use of ex-
plainable methods to identify between-person differences that can influence the efficacy
of deep brain stimulation. For example, Habets et al. [30] used an interpretable logistic
regression prediction model of preoperative clinical variables to predict clinically relevant
improvement in patients who received deep brain stimulation. Using the predictive weight
of each variable in the model to identify important predictors, the authors discovered
younger Parkinson’s disease patients were more likely to respond to deep brain stimulation.
However, one of the most common problems with clustering patients into discrete groups is
the lack of using a rigorous approach for selecting the number of clusters [31]. Anatomical
and pathophysiological differences between patients may not result in coherent groups at
all, resulting in inconsistent clinical outcomes [38,42].

3.3. Methodological Concerns

The first topic in the subject area of methodological concerns is the importance of
explainability over interpretable models when using artificial intelligence to make high-risk
medical decisions, such as the prescription of deep brain stimulation [34]. While an inter-
pretable model can facilitate explainability, there may still be a need to apply explainable
methods post hoc. Using explainable methods can keep humans in the loop by identify-
ing what features of a model caused a particular decision, giving the model creators an
opportunity to identify bias and update the decision-making process as needed [23,43].
Another benefit of being able to explain a decision made by an artificial intelligence system
is that providers and patients are more likely to trust the decision if they can understand
it. Importantly, there is often a difference in the accuracy of interpretable models with
a minimal number of features compared to more complex models that are difficult to
interpret, such as deep learning models [44]. Thus, addressing the social barriers to using
artificial intelligence in deep brain stimulation may include applying post-hoc explainabil-
ity methods to the most accurate models to explain to the patient and physician why a
particular decision was made.

The second topic in the subject area of methodological concerns is about best practices
and pitfalls when using machine learning [31]. For example, the curse of dimensionality
is a situation in which a model has many features and few observations. Such a problem
is common with neuroimaging data, where there are many measurements from the brain,
yet only a few participants in the study, resulting in over-fitting. Concerning model
complexity, there is a bias-variance trade-off. Simple models are high in bias (i.e., incorrect
model assumptions) but are low in variance (i.e., sensitivity to noise), whereas complex
models are low in bias but high in variance. The goal is to find an optimal level of model
complexity that minimizes both bias and variance and results in a generalizable model.
Finally, a common problem in machine learning studies of clinical populations is the small
number of observations. A recent review of studies using machine learning methods
in human movement biomechanics research showed that the median sample size was
40 [31]. Sample size is a concern because it is necessary to split the sample into training
and validation subsets before performing feature engineering, hyperparameter tuning, and
model validation.

3.4. Complex Systems

The theme of using machine learning to model complex systems consisted of one
topic. While machine learning is often used for prediction, it can also model dynamic
brain activity following stimulation [37]. This is important because deep brain stimulation
can be considered an attempt to control and optimize the topology of a complex network
of brain regions. In a simulation study, Krylov et al. [45] used a reinforcement learning
paradigm to suppress unwanted synchronous oscillations in degenerative neurons to treat
Parkinson’s disease. Such an application of reinforcement learning could create individual
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models specific to each patient’s brain structure. While the paper by Krylov et al. [45]
did not include explainable methods, there are ways to extract a summary of the policy
the reinforcement learning agent has learned [46]. The extraction of these policies could
provide insight on how to stimulate the brain optimally.

3.5. Automated Symptom Assessment

The theme of assessing patient symptoms automatically using machine learning con-
sisted of one topic. Specifically, the topic encompassed the possibility of using explainable
artificial intelligence to develop prediction models of Parkinson’s disease symptoms based
on videos of patient movement [35]. As motor function is a key impairment of movement
disorders, the authors aimed to develop an automated gait assessment. After the prediction
model was developed, the authors extracted Shapley additive explanations values for each
feature in the model, which provides a metric of the importance for each model feature in
making a prediction. Shapley additive explanations values have the potential to explain
to clinicians why a patient’s symptom severity is rated at a particular level. This type
of automated assessment could be integrated with deep brain stimulation in a way that
titrates stimulation based on symptom severity.

3.6. Heterogeneity of Treatment Response

The theme of using machine learning to predict treatment response comprised only
one topic. At the heart of this topic is the problem of heterogeneity within and co-morbidity
between diagnostic groups. The goal is to use models of symptoms, demographics, and
neurobiology to account for this heterogeneity and make more precise treatment recom-
mendations. One potential solution is using latent space-based supervised learning to
uncover latent dimensions of neural circuits in psychiatric disorders [29]. For example,
Wu et al. [47], used latent space-based supervised learning to discover neurobiological
signatures that predicted response to antidepressant treatment. Similar signatures likely
exist that account for heterogeneity in response to deep brain stimulation. An explainability
approach called accumulated-local-effects could be applied to machine learning models
to extract information about how different levels of a feature are related to treatment re-
sponse [33,48]. Accumulated-local-effects may be helpful because they provide information
about the directionality of effects, in addition to the importance of the feature in making
a prediction.

4. Discussion

This paper presents a review of topics and themes in deep brain stimulation research
using explainable artificial intelligence. The resulting topics were derived using topic
modeling of the full text of 12 journal articles that matched a keyword google scholar search
(“deep brain stimulation” AND (“explainable artificial intelligence” OR “interpretable
machine learning” OR “interpretable artificial intelligence”). The results show themes
that include patient classification, precision psychiatry, complex systems, methodologi-
cal concerns, heterogeneity of treatment response, automated symptom assessment, and
complex systems.

The results show a systematic evaluation of current directions in deep brain stim-
ulation research using explainable artificial intelligence, but also have the potential to
highlight underserved areas of research. For example, many of the topics and studies
reviewed concern patient classification and optimizing the identification of patients who
will or won’t benefit from deep brain stimulation. Conversely, only one study investigated
models that can optimize a brain stimulation device [45]. This study used a reinforce-
ment learning method but did not use explainable methods and only mentioned them in
passing. However, there are methods of extracting meaning from reinforcement learning
models [46], suggesting that applying explainable methods to machine learning models of
complex systems relevant to deep brain stimulation is an open research area. Such research
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has the potential to advance understanding of how stimulation protocols can minimize
patient symptoms.

As explainable artificial intelligence is a new and burgeoning field, our results show a
limited scope of explainable artificial intelligence in deep brain stimulation research. It is
important to note that the scarcity of explainable methods is acting as a social barrier to
implementing machine learning models in deep brain stimulation treatment [34]. Not only
will explainable methods build trust by opening the black box to clinicians and patients, but
they also have the potential to advance understanding of how, when, and why deep brain
stimulation is effective. Thus, future deep brain stimulation researchers are encouraged
to use explainable methods when examining the role of artificial intelligence. Journal
editors and reviewers are also encouraged to advise authors to include explainability as a
component of their studies. General sources about explainable methods [48] and use-cases
from other domains [49] are likely sources of inspiration.

Limitations and Future Directions

A limitation of the topics discovered is that the results in this paper are from a topic
modeling analysis of papers explicitly mentioning explainable or interpretable artificial
intelligence. Thus, this study doesn’t show themes from the broader literature on artifi-
cial intelligence and deep brain stimulation. Instead, this paper shows the themes that
researchers have investigated and emphasizes opportunities for future research. Excel-
lent reviews exist on implementing machine learning models in deep brain stimulation
research [22], and the studies reported provide examples of future research projects that
could incorporate explainable methods.

A second limitation is that the journal articles analyzed in this paper were not all
open-source, making the data not publicly shareable. However, this report includes a
list of analyzed articles. The code is available, though the reader should know that topic
modeling is not the most sophisticated language model available. Future iterations of
language models about deep brain stimulation could use a more advanced approach, such
as a generative pre-trained transformer model validated by experts in the field [50].

Explaining machine learning models of neural activity following different stimulation
parameters could reveal key mechanisms for theoretical models of deep brain stimulation
and improve treatment efficacy [51]. Extracting feature importance from a model of stimu-
lation parameters could help identify a biological subspace for potential mechanisms of
change [23]. Explainable artificial intelligence approaches to studies of stimulation patterns
could advance the theory of how levels of tonic and phasic neural activity impact neuro-
transmitter release [12]. Personalized medicine is a translational application of explainable
artificial intelligence [52,53]. For example, the development of a closed-loop deep brain
stimulation system that automatically adjusts stimulation parameters for each individual
patient [54]. Or a warning system that predicts adverse effects and complications caused
by stimulation [55]. Together, these theoretical and translational applications will enhance
the efficacy and reliability of deep brain stimulation.

Researchers at the intersection of explainable artificial intelligence and deep brain
stimulation need to work towards improving answers to both the methodological and
theoretical questions. From a methodological perspective, a tremendous obstacle to build-
ing machine learning models is the small amount of publicly available data. Similar to
the ABCD study, the field needs a multi-site, publicly available, nationally representative
dataset from deep brain stimulation patients [56]. An open question is whether personal-
ized systems need a smaller amount of patient data to build a trustworthy model. From a
theoretical perspective, explainable artificial intelligence approaches would benefit from
integrating computational models of brain dynamics [57,58]. In the end, these efforts may
lead to an adaptive system governed by theoretical models of brain activity.
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5. Conclusions

This paper offers a current understanding of themes surrounding explainable artificial
intelligence and deep brain stimulation research. Explainable artificial intelligence has
the potential to make theoretical and translational contributions to deep brain stimulation
research. From a theoretical perspective, explainable artificial intelligence has the potential
to improve understanding of neural mechanisms. For example, visualizing brain regions
activated by different parameter settings could improve understanding of how brain circuits
respond to stimulation. From a translational perspective, explainable artificial intelligence
has the potential to improve individual specific stimulation strategies that improve patient
outcomes. Overall, the intersection of these two fields is in its infancy and new themes will
emerge once there are more implementations reported in the literature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines11030771/s1, R script S1: xai_dbs_bigram_topic
model_02172023.R.

Funding: This research received no external funding.

Data Availability Statement: The data used in this report comes from published articles that are
copyrighted. However, the list of articles used are listed in this report and the code used to analyze
them is provided in Supplementary Materials.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Benabid, A.L. Stimulation therapies for Parkinson’s disease: Over the past two decades. Bull. Acad. Natl. Med. 2010, 194,

1273–1286. [PubMed]
2. Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.;

Schulder, M.; et al. Deep Brain Stimulation: Current Challenges and Future Directions. Nat. Rev. Neurol. 2019, 15, 148–160.
[CrossRef] [PubMed]

3. Chen, Y.; Gong, C.; Hao, H.; Guo, Y.; Xu, S.; Zhang, Y.; Yin, G.; Cao, X.; Yang, A.; Meng, F.; et al. Automatic Sleep Stage
Classification Based on Subthalamic Local Field Potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 118–128. [CrossRef]

4. Lombrozo, T.; Gwynne, N.Z. Explanation and Inference: Mechanistic and Functional Explanations Guide Property Generalization.
Front. Hum. Neurosci. 2014, 8, 700. [CrossRef]

5. Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review. J. Neural
Eng. 2019, 16, 031001. [CrossRef]

6. Ahmed, I.; Jeon, G.; Piccialli, F. From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on
What, How, and Where. IEEE Trans. Ind. Inform. 2022, 18, 5031–5042. [CrossRef]

7. Watts, J.; Khojandi, A.; Shylo, O.; Ramdhani, R. Machine Learning’s Application in Deep Brain Stimulation for Parkinson’s
Disease: A Review. Brain Sci. 2020, 11, 809. [CrossRef]

8. Bouthour, W.; Mégevand, P.; Donoghue, J.; Lüscher, C.; Birbaumer, N.; Krack, P. Biomarkers for Closed-Loop Deep Brain
Stimulation in Parkinson Disease and Beyond. Nat. Rev. Neurol. 2019, 15, 343–352. [CrossRef]

9. Pascual-Valdunciel, A.; Lopo-Martinez, V.; Sendra-Arranz, R.; Gonzalez-Sanchez, M.; Perez-Sanchez, J.R.; Grandas, F.; Torricelli,
D.; Moreno, J.; Barroso, F.O.; Pons, J. Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks.
IEEE J. Biomed. Health Inform. 2022. ahead of print. Available online: https://ieeexplore.ieee.org/abstract/document/9904814
(accessed on 13 February 2023). [CrossRef] [PubMed]

10. Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W.; Davidson, B.; Grill, W.M.; Hariz, M.I.; Horn, A.; et al.
Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. [CrossRef]

11. Brocker, D.T.; Swan, B.D.; So, R.Q.; Turner, D.A.; Gross, R.E.; Grill, W.M. Optimized Temporal Pattern of Brain Stimulation
Designed by Computational Evolution. Sci. Transl. Med. 2017, 9, eaah3532. [CrossRef] [PubMed]

12. Döbrössy, M.D.; Ramanathan, C.; Ashouri Vajari, D.; Tong, Y.; Schlaepfer, T.; Coenen, V.A. Neuromodulation in Psychiatric
Disorders: Experimental and Clinical Evidence for Reward and Motivation Network Deep Brain Stimulation: Focus on the
Medial Forebrain Bundle. Eur. J. Neurosci. 2021, 53, 89–113. [CrossRef]

13. Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An Overview of Clinical Decision Support
Systems: Benefits, Risks, and Strategies for Success. Npj Digit. Med. 2020, 3, 17. [CrossRef] [PubMed]

14. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box
Models. ACM Comput. Surv. 2019, 51, 1–42. [CrossRef]

https://www.mdpi.com/article/10.3390/biomedicines11030771/s1
https://www.mdpi.com/article/10.3390/biomedicines11030771/s1
http://www.ncbi.nlm.nih.gov/pubmed/22043624
http://doi.org/10.1038/s41582-018-0128-2
http://www.ncbi.nlm.nih.gov/pubmed/30683913
http://doi.org/10.1109/TNSRE.2018.2890272
http://doi.org/10.3389/fnhum.2014.00700
http://doi.org/10.1088/1741-2552/ab0ab5
http://doi.org/10.1109/TII.2022.3146552
http://doi.org/10.3390/brainsci10110809
http://doi.org/10.1038/s41582-019-0166-4
https://ieeexplore.ieee.org/abstract/document/9904814
http://doi.org/10.1109/JBHI.2022.3209316
http://www.ncbi.nlm.nih.gov/pubmed/36170410
http://doi.org/10.1038/s41582-020-00426-z
http://doi.org/10.1126/scitranslmed.aah3532
http://www.ncbi.nlm.nih.gov/pubmed/28053151
http://doi.org/10.1111/ejn.14975
http://doi.org/10.1038/s41746-020-0221-y
http://www.ncbi.nlm.nih.gov/pubmed/32047862
http://doi.org/10.1145/3236009


Biomedicines 2023, 11, 771 11 of 12

15. Tonekaboni, S.; Joshi, S.; McCradden, M.D.; Goldenberg, A. What Clinicians Want: Contextualizing Explainable Machine Learning
for Clinical End Use. In Proceedings of the 4th Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 28 October
2019; pp. 359–380.

16. Müller, T.T.; Lio, P. PECLIDES Neuro: A Personalisable Clinical Decision Support System for Neurological Diseases. Front. Artif.
Intell. 2020, 3, 23. [CrossRef] [PubMed]

17. Lipton, Z.C. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability Is Both Important and
Slippery. Queue 2018, 16(3), 31–57. [CrossRef]

18. Shamir, R.R.; Dolber, T.; Noecker, A.M.; Walter, B.L.; McIntyre, C.C. Machine Learning Approach to Optimizing Combined
Stimulation and Medication Therapies for Parkinson’s Disease. Brain Stimulat. 2015, 8, 1025–1032. [CrossRef]

19. Boutet, A.; Madhavan, R.; Elias, G.J.B.; Joel, S.E.; Gramer, R.; Ranjan, M.; Paramanandam, V.; Xu, D.; Germann, J.; Loh, A.; et al.
Predicting Optimal Deep Brain Stimulation Parameters for Parkinson’s Disease Using Functional MRI and Machine Learning.
Nat. Commun. 2021, 12, 3043. [CrossRef]

20. van der Waa, J.; Nieuwburg, E.; Cremers, A.; Neerincx, M. Evaluating XAI: A Comparison of Rule-Based and Example-Based
Explanations. Artif. Intell. 2021, 291, 103404. [CrossRef]

21. Ma, Y.; Gong, A.; Nan, W.; Ding, P.; Wang, F.; Fu, Y. Personalized Brain–Computer Interface and Its Applications. J. Pers. Med.
2023, 13, 46. [CrossRef]

22. Peralta, M.; Jannin, P.; Baxter, J.S.H. Machine Learning in Deep Brain Stimulation: A Systematic Review. Artif. Intell. Med. 2021,
122, 102198. [CrossRef]

23. Fellous, J.-M.; Sapiro, G.; Rossi, A.; Mayberg, H.; Ferrante, M. Explainable Artificial Intelligence for Neuroscience: Behavioral
Neurostimulation. Front. Neurosci. 2019, 13, 1346. [CrossRef]

24. Farrokhi, F.; Buchlak, Q.D.; Sikora, M.; Esmaili, N.; Marsans, M.; McLeod, P.; Mark, J.; Cox, E.; Bennett, C.; Carlson, J. Investigating
Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms. World
Neurosurg. 2020, 134, e325–e338. [CrossRef] [PubMed]

25. Thakur, K.; Kumar, V. Application of Text Mining Techniques on Scholarly Research Articles: Methods and Tools. New Rev. Acad.
Librariansh. 2022, 28, 279–302. [CrossRef]

26. Abdelrazek, A.; Eid, Y.; Gawish, E.; Medhat, W.; Hassan, A. Topic Modeling Algorithms and Applications: A Survey. Inf. Syst.
2023, 112, 102131. [CrossRef]

27. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
28. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;

Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88,
105906. [CrossRef]

29. Chen, Z.S.; Kulkarni., P.P.; Galatzer-Levy, I.R.; Bigio, B.; Nasca, C.; Zhang, Y. Modern Views of Machine Learning for Precision
Psychiatry. Patterns 2022, 3, 100602. [CrossRef]

30. Habets, J.G.V.; Janssen, M.L.F.; Duits, A.A.; Sijben, L.C.J.; Mulders, A.E.P.; De Greef, B.; Temel, Y.; Kuijf, M.L.; Kubben, P.L.; Herff,
C. Machine Learning Prediction of Motor Response after Deep Brain Stimulation in Parkinson’s Disease-Proof of Principle in a
Retrospective Cohort. PeerJ 2020, 8, e10317. [CrossRef]

31. Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine Learning in Human Movement Biomechanics:
Best Practices, Common Pitfalls, and New Opportunities. J. Biomech. 2018, 81, 1–11. [CrossRef]

32. Jung, K.; Florin, E.; Patil, K.R.; Caspers, J.; Rubbert, C.; Eickhoff, S.B.; Popovych, O.V. Whole-Brain Dynamical Modelling for
Classification of Parkinson’s Disease. Brain Commun. 2023, 5, fcac331. [CrossRef] [PubMed]

33. Padberg, F.; Bulubas, L.; Mizutani-Tiebel, Y.; Burkhardt, G.; Kranz, G.S.; Koutsouleris, N.; Kambeitz, J.; Hasan, A.; Takahashi, S.;
Keeser, D.; et al. The Intervention, the Patient and the Illness—Personalizing Non-Invasive Brain Stimulation in Psychiatry. Exp.
Neurol. 2021, 341, 113713. [CrossRef]

34. Pinto, M.; Leal, A.; Lopes, F.; Pais, J.; Dourado, A.; Sales, F.; Martins, P.; Teixeira, C.A. On the Clinical Acceptance of Black-box
Systems for EEG Seizure Prediction. Epilepsia Open 2022, 7, 247–259. [CrossRef] [PubMed]

35. Rupprechter, S.; Morinan, G.; Peng, Y.; Foltynie, T.; Sibley, K.; Weil, R.S.; Leyland, L.-A.; Baig, F.; Morgante, F.; Gilron, R.; et al.
A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease. Sensors 2021, 21, 5437.
[CrossRef]

36. Sendi, M.; Waters, A.; Tiruvadi, V.; Riva-Posse, P.; Crowell, A.; Isbaine, F.; Gale, J.T.; Choi, K.S.; Gross, R.E.; Mayberg, H.S.; et al.
Intraoperative Neural Signals Predict Rapid Antidepressant Effects of Deep Brain Stimulation. Transl. Psychiatry 2021, 11, 551.
[CrossRef]

37. Tang, Y.; Kurths, J.; Lin, W.; Ott, E.; Kocarev, L. Introduction to Focus Issue: When Machine Learning Meets Complex Systems:
Networks, Chaos, and Nonlinear Dynamics. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 063151. [CrossRef]

38. Zdravkova, K.; Krasniqi, V.; Dalipi, F.; Ferati, M. Cutting-Edge Communication and Learning Assistive Technologies for Disabled
Children: An Artificial Intelligence Perspective. Front. Artif. Intell. 2022, 5, 970430. [CrossRef]

39. Feczko, E.; Miranda-Dominguez, O.; Marr, M.; Graham, A.M.; Nigg, J.T.; Fair, D.A. The Heterogeneity Problem: Approaches to
Identify Psychiatric Subtypes. Trends Cogn. Sci. 2019, 23, 584–601. [CrossRef]

40. Drysdale, A.T.; Grosenick, L.; Downar, J.; Dunlop, K.; Mansouri, F.; Meng, Y.; Fetcho, R.N.; Zebley, B.; Oathes, D.J.; Etkin, A.; et al.
Resting-State Connectivity Biomarkers Define Neurophysiological Subtypes of Depression. Nat. Med. 2017, 23, 28–38. [CrossRef]

http://doi.org/10.3389/frai.2020.00023
http://www.ncbi.nlm.nih.gov/pubmed/33733142
http://doi.org/10.1145/3236386.3241340
http://doi.org/10.1016/j.brs.2015.06.003
http://doi.org/10.1038/s41467-021-23311-9
http://doi.org/10.1016/j.artint.2020.103404
http://doi.org/10.3390/jpm13010046
http://doi.org/10.1016/j.artmed.2021.102198
http://doi.org/10.3389/fnins.2019.01346
http://doi.org/10.1016/j.wneu.2019.10.063
http://www.ncbi.nlm.nih.gov/pubmed/31634625
http://doi.org/10.1080/13614533.2021.1918190
http://doi.org/10.1016/j.is.2022.102131
http://doi.org/10.1016/j.ijsu.2021.105906
http://doi.org/10.1016/j.patter.2022.100602
http://doi.org/10.7717/peerj.10317
http://doi.org/10.1016/j.jbiomech.2018.09.009
http://doi.org/10.1093/braincomms/fcac331
http://www.ncbi.nlm.nih.gov/pubmed/36601625
http://doi.org/10.1016/j.expneurol.2021.113713
http://doi.org/10.1002/epi4.12597
http://www.ncbi.nlm.nih.gov/pubmed/35377561
http://doi.org/10.3390/s21165437
http://doi.org/10.1038/s41398-021-01669-0
http://doi.org/10.1063/5.0016505
http://doi.org/10.3389/frai.2022.970430
http://doi.org/10.1016/j.tics.2019.03.009
http://doi.org/10.1038/nm.4246


Biomedicines 2023, 11, 771 12 of 12

41. Tafazoli, S.; MacDowell, C.J.; Che, Z.; Letai, K.C.; Steinhardt, C.R.; Buschman, T.J. Learning to Control the Brain through Adaptive
Closed-Loop Patterned Stimulation. J. Neural Eng. 2020, 17, 056007. [CrossRef]

42. Cagnan, H.; Denison, T.; McIntyre, C.; Brown, P. Emerging Technologies for Improved Deep Brain Stimulation. Nat. Biotechnol.
2019, 37, 1024–1033. [CrossRef] [PubMed]

43. Zanzotto, F.M. Viewpoint: Human-in-the-Loop Artificial Intelligence. J. Artif. Intell. Res. 2019, 64, 243–252. [CrossRef]
44. Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, Methods, and Applications in Interpretable Machine

Learning. Proc. Natl. Acad. Sci. 2019, 116, 22071–22080. [CrossRef]
45. Krylov, D.; Dylov, D.V.; Rosenblum, M. Reinforcement Learning for Suppression of Collective Activity in Oscillatory Ensembles.

Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 033126. [CrossRef]
46. Wells, L.; Bednarz, T. Explainable AI and Reinforcement Learning-A Systematic Review of Current Approaches and Trends. Front.

Artif. Intell. 2021, 4, 550030. [CrossRef] [PubMed]
47. Wu, W.; Zhang, Y.; Jiang, J.; Lucas, M.V.; Fonzo, G.A.; Rolle, C.E.; Cooper, C.; Chin-Fatt, C.; Krepel, N.; Cornelssen, C.A.; et al. An

Electroencephalographic Signature Predicts Antidepressant Response in Major Depression. Nat. Biotechnol. 2020, 38, 439–447.
[CrossRef] [PubMed]

48. Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W. Explainable AI Methods—A Brief Overview. In xxAI—Beyond
Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended
Papers; Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., Samek, W., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Swizterland, 2022; pp. 13–38. ISBN 978-3-031-04083-2.

49. Chaddad, A.; Lu, Q.; Li, J.; Katib, Y.; Kateb, R.; Tanougast, C.; Bouridane, A.; Abdulkadir, A. Explainable, Domain-Adaptive, and
Federated Artificial Intelligence in Medicine. arXiv 2022, arXiv:2211.09317.

50. Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.; Liu, T.-Y. BioGPT: Generative Pre-Trained Transformer for Biomedical Text
Generation and Mining. Brief. Bioinform. 2022, 23, bbac409. Available online: https://academic.oup.com/bib/article-abstract/23
/6/bbac409/6713511 (accessed on 16 February 2023). [CrossRef]

51. Yang, J.; Wright, S.; Hamblin, M.; McCloskey, D.; Alcantar, M.A.; Schrübbers, L.; Lopatkin, A.J.; Satish, S.; Nili, A.; Palsson,
B.; et al. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Cell 2019, 177, 1649–1661.
Available online: https://reader.elsevier.com/reader/sd/pii/S0092867419304027?token=899385E08D5FD8834AA0F4192705C3F6
F07913AE40DE540FE03DA26565D59137C6C57AE40350CFC4FF0806CE620DA5D4&originRegion=us-east-1&originCreation=
20230214194639 (accessed on 14 February 2023). [CrossRef]

52. Langlotz, C.P.; Allen, B.; Erickson, B.J.; Kalpathy-Cramer, J.; Bigelow, K.; Cook, T.S.; Flanders, A.E.; Lungren, M.P.; Mendelson,
D.S.; Rudie, J.D.; et al. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018
NIH/RSNA/ACR/The Academy Workshop. Radiology 2019, 291, 781–791. [CrossRef]

53. Esmaeili, M.; Vettukattil, R.; Banitalebi, H.; Krogh, N.R.; Geitung, J.T. Explainable Artificial Intelligence for Human-Machine
Interaction in Brain Tumor Localization. J. Pers. Med. 2021, 11, 1213. [CrossRef]

54. Maley, C.T.; Becker, J.E.; Shultz, E.K.B. Electroconvulsive Therapy and Other Neuromodulation Techniques for the Treatment of
Psychosis. Child Adolesc. Psychiatr. Clin. N. Am. 2019, 28, 91–100. [CrossRef] [PubMed]

55. Ong, J.S.; Wong, S.N.; Arulsamy, A.; Watterson, J.L.; Shaikh, M.F. Medical Technology: A Systematic Review on Medical Devices
Utilized for Epilepsy Prediction and Management. Curr. Neuropharmacol. 2022, 20, 950–964. [CrossRef] [PubMed]

56. Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.;
Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) Study: Imaging Acquisition across 21 Sites. Dev. Cogn.
Neurosci. 2018, 32, 43–54. [CrossRef]

57. Fernandes, H.M.; Deco, G.; Kringelbach, M.L. Chapter 26—Whole-Brain Modeling to Predict Optimal Deep Brain Stimulation
Targeting. In Connectomic Deep Brain Stimulation; Horn, A., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 543–559.
ISBN 978-0-12-821861-7.

58. Lin, A.; Witvliet, D.; Hernandez-Nunez, L.; Linderman, S.W.; Samuel, A.D.T.; Venkatachalam, V. Imaging Whole-Brain Activity to
Understand Behaviour. Nat. Rev. Phys. 2022, 4, 292–305. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1088/1741-2552/abb860
http://doi.org/10.1038/s41587-019-0244-6
http://www.ncbi.nlm.nih.gov/pubmed/31477926
http://doi.org/10.1613/jair.1.11345
http://doi.org/10.1073/pnas.1900654116
http://doi.org/10.1063/1.5128909
http://doi.org/10.3389/frai.2021.550030
http://www.ncbi.nlm.nih.gov/pubmed/34095817
http://doi.org/10.1038/s41587-019-0397-3
http://www.ncbi.nlm.nih.gov/pubmed/32042166
https://academic.oup.com/bib/article-abstract/23/6/bbac409/6713511
https://academic.oup.com/bib/article-abstract/23/6/bbac409/6713511
http://doi.org/10.1093/bib/bbac409
https://reader.elsevier.com/reader/sd/pii/S0092867419304027?token=899385E08D5FD8834AA0F4192705C3F6F07913AE40DE540FE03DA26565D59137C6C57AE40350CFC4FF0806CE620DA5D4&originRegion=us-east-1&originCreation=20230214194639
https://reader.elsevier.com/reader/sd/pii/S0092867419304027?token=899385E08D5FD8834AA0F4192705C3F6F07913AE40DE540FE03DA26565D59137C6C57AE40350CFC4FF0806CE620DA5D4&originRegion=us-east-1&originCreation=20230214194639
https://reader.elsevier.com/reader/sd/pii/S0092867419304027?token=899385E08D5FD8834AA0F4192705C3F6F07913AE40DE540FE03DA26565D59137C6C57AE40350CFC4FF0806CE620DA5D4&originRegion=us-east-1&originCreation=20230214194639
http://doi.org/10.1016/j.cell.2019.04.016
http://doi.org/10.1148/radiol.2019190613
http://doi.org/10.3390/jpm11111213
http://doi.org/10.1016/j.chc.2018.07.004
http://www.ncbi.nlm.nih.gov/pubmed/30389079
http://doi.org/10.2174/1570159X19666211108153001
http://www.ncbi.nlm.nih.gov/pubmed/34749622
http://doi.org/10.1016/j.dcn.2018.03.001
http://doi.org/10.1038/s42254-022-00430-w

	Introduction 
	Topic Modeling Procedure 
	Overview 
	Search for Journal Articles 
	Inclusion and Exclusion Criteria 
	Text Pre-Processing 
	Topic Modeling 

	Topics in Deep Brain Stimulation Research Using Explainable Artificial Intelligence 
	Patient Classification 
	Precision Psychiatry 
	Methodological Concerns 
	Complex Systems 
	Automated Symptom Assessment 
	Heterogeneity of Treatment Response 

	Discussion 
	Conclusions 
	References

