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ABSTRACT: One way to improve the therapeutic potential of
peptides is through cyclization. This is commonly done using a
disulfide bond between two cysteine residues in the peptide.
However, disulfide bonds are susceptible to reductive cleavage, and
this can deactivate the peptide and endanger endogenous proteins
through covalent modification. Substituting disulfide bonds with
more chemically robust carbon-based linkers has proven to be an
effective strategy to better develop cyclic peptides as drugs, but
finding the optimal carbon replacement is synthetically laborious.
We report a new late-stage platform wherein a single disulfide bond
in a cyclic peptide can serve as the progenitor for any number of
new carbon-rich groups, derived from organodiiodides, using a Zn:Cu couple and a hydrosilane. We show that this platform can
furnish entirely new carbocyclic scaffolds with enhanced permeability and structural integrity and that the stereochemistry of the new
cycles can be biased by a judicious choice in silane.

■ INTRODUCTION
Cyclic peptides are among the most popular modalities for new
peptide therapeutics.1−3 Cyclization enhances the metabolic
stability of linear peptides to enzymatic hydrolysis.4−8

Cyclization also enhances cell permeability by reducing overall
polarity and hydrogen bonding9−13 and potency by stabilizing
peptide conformations that better complement the target
binding site.14−17 Many peptide therapeutics take advantage of
disulfide bonds between two cysteine residues (−SS−) to form
the peptide cycle. However, the susceptibility of −SS− bonds
to reductive ring-opening can be a metabolic liability. Disulfide
bonds are redox sensitive and are prone to rapid reductive
cleavage, which shortens their half-life in vivo.18,19 Disulfide
linkages can also participate in disulfide-exchange reactions
with glutathione or cellular proteins having free thiol groups,
resulting in protein modification and the generation of neo-
antigens.20,21 Hence, modern cyclic peptide drugs aim to
replace labile −SS− bonds with chemically benign −CC−
linkages (as shown for atosiban, Figure 1).22 This can be
accomplished using scaffold-based cyclization technologies
such as ring closing metathesis (RCM)23 or palladium cross-
coupling (Heck or Suzuki),24−26 wherein unique pairs of
synthetic amino acids are first positioned in the peptide by
solid-phase peptide synthesis (SPPS) and then coupled
together to form a single carbocyclic product. Alternatively,
one can start from an orthogonally protected diamino diacid
linker and use amide bond forming reactions to lay in the
remaining peptide around, from end-to-end, this synthetic core
unit.27−30 Besides the expense and limited availability of
synthetic amino acids,31 one caveat to these approaches is that

the new −CC− linkage can alter the three-dimensional
structure of the peptide,32 impacting its bioactivity. Identifying
−CC− replacements that maximize biopharmaceutical proper-
ties (e.g., half-life) without diminishing drug potency can,
therefore, require numerous carbocyclic analogs, each requir-
ing a separate multistep SPPS to complete. A carbocyclization
platform, through direct −SS− skeletal editing, could offer a
highly modular way to pan out the best carbocyclic analogs for
any −SS− cyclic peptide and could provide a general route to
access entirely new carbocyclic frameworks from a single
disulfide-containing peptide.

■ EXPERIMENTAL SECTION
We envisaged that we could cleave (i.e., “Snip”) the −SS−
bond of a cyclic disulfide-containing peptide into a pair of
electrophilic dehydroalanine (Dha) residues. Then, by
combining the bis-Dha peptide with an appropriate bridging
group (e.g., a bis-radical, bis-anion, or bis-metallic species), we
could insert (i.e., “Stitch”) a library of new linker groups in
place of the original −SS− bond in one convenient step. To
test our proposed diversification strategy, we needed to find
(1) a general method for converting the −SS− bond of a
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macrocyclic peptide into two Dha residues, (2) a functional
precursor for inserting diverse linker chemotypes in place of
the −SS− bond, and (3) chemistry to mediate bridge
installation. We selected terlipressin, an −SS− containing
cyclic dodecapeptide previously evaluated in the clinic to treat
hepatorenal syndrome type-1,33 as a model substrate for
designing our Snip-and-Stitch strategy. We found that
terlipressin could be converted to the unconstrained bis-Dha
peptide, Dha2-terlipressin, with the combination of methyl 2,5-
dibromopentanoate34 and TCEP in good yield (>60%
isolated). Other reagents for bis-Dha formation were
ineffective; see the Supporting Information p S20 for complete
details. Next, we sought to identify reagents and chemistries to
link the two Dha fragments together through unique tethering
groups. The challenge here is that the overall process of
macrocyclization involves the formation of two different C−C
bonds, one at each Dha residue, and a net input of up to four
electrons. Thus, we explored three different chemical

approaches for bridge installation, namely, photoredox catalysis
(single-electron transfer chemistry), transition metal catalysis
(the use of organometallic reagents as bis-anion equivalents),
and electrochemistry (the generation of open-shell or bis-
anionic intermediates through cathodic reduction or anode-to-
cathode cycling with a redox mediator). These approaches and
the intermediates they generate have been shown to transform
Dha residues in peptides and proteins into α-amino acids.35−38

To evaluate each platform, we prepared seven distinct linker
chemotypes (Table 1, compounds A−G), each linker
consisting of a central four-carbon fragment that is capped
with a unique pair of functional groups that serve as latent
handles for radical or anion generation (viz., X[CH2]4X).
Optimal conditions for converting each linker chemotype to
the corresponding radical or anionic intermediate were
selected on the basis of a comprehensive survey of the
literature.39−46 Linkers were evaluated in 9:1 H2O:DMSO (for
transition metals), 1:1 H2O:DMSO (for photoredox catalysis),
or 1:1 H2O:MeCN (for electrochemistry) at 1 mM. A brief
synopsis of our results is shown in Table 1. See the Supporting
Information pp S31−S50 for all entries.
Safety Statement. No unexpected or unusually high safety

hazards were encountered.

■ RESULTS AND DISCUSSION
We surveyed over five-hundred unique reaction conditions:
seven different linker chemotypes over three different synthetic
platforms. We identified two sets of conditions for converting
Dha2-terlipressin to the desired −[CH2]4− carbocyclic peptide
(Table 1, compound P1): (1) 1,4-diiodobutane in the
presence of zinc metal (9% conversion) and (2) the
combination of Ru(bpy)3 photocatalyst, Hantzsch ester
(HEH), and reagent B (7% conversion). Other organometallic
or photochemical methods gave varying amounts of a
dialkylated byproduct P2, failed to react, or afforded
considerable amounts of unidentifiable byproducts by HRMS
analyses. Electrochemical methods performed on Dha2-
terlipressin or on a test Dha monomer, Ac-Dha-OMe, formed
only large amounts of alanine. We attempted to independently
optimize both our zinc-mediated and Ru(bpy)3 photocatalyzed
protocols to improve the yield of the carbocyclic peptide. We
were unable to improve the yield of our photocatalyzed
reaction beyond 10% conversion. Performing our zinc-
mediated protocol in a solvent of 1:1 TFE:NH4Cl (sat. aq.)
and adding basic copper carbonate (CuCO3·Cu(OH)2) to the
reaction improved the conversion to carbocyclic peptide to
40% as a 1:1:1:1 mixture of diastereomers.47−53 A
stoichiometry of 12:12:1 of Zn:Cu:diiodide gave an optimal
55% conversion to P1 and 39% to P2 with complete
consumption of Dha2-terlipressin. See the Supporting In-
formation pp S50−S56 for complete optimization details.
One drawback of the above protocol is that it forms a

mixture of the desired carbocyclic peptide and a dialkylated
byproduct wherein each Dha residue reacts with a single alkyl
diiodide. To improve carbocyclic product selectivity, we
attempted to gain some mechanistic insight into our reaction.
Combining CuCO3·Cu(OH)2, Zn0, and NH4Cl in water
afforded a black insoluble material, presumably a ZnII:Cu0
couple. This material slowly turned blue upon exposure to air,
characteristic of reoxidation to CuII ions. We imagined that the
copper metal in our couple might be able to reduce our
diiodide (E1/2red = −1.44 V vs SCE for I(CH2)2I in DMF)54 to
an alkyl radical via an outer-sphere electron transfer

Figure 1. Contemporary carbocyclic peptide formation and proposed
“Snip-and-Stitch” strategy.
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mechanism. However, this seems unlikely given the modest
reducing capacity of Cu0 (Cu0/CuI = −0.26 V vs SCE in H2O,
pH 6.82)55 and would necessitate that ZnII participates as a
strong Lewis acid to lower the barrier to outer-sphere electron
transfer. Another possibility is that a small amount of very
reducing Rieke zinc is generated in situ. While we cannot rule
out these possibilities, we propose that Cu0 can oxidatively
insert, albeit slowly,56 into the C−I bond of the diiodide,
forming an alkyl−CuII−I intermediate.57 This process should
be enthalpically feasible due to the cleavage of the weak C−I
bond (∼50 kcalmol−1) and formation of a comparable Cu−I
bond (∼47 kcalmol−1)58−60 in addition to a CuII−C bond,
reported as ∼33 kcalmol−1 for ClCuII−C3H7.

61 The CuII

organometallic can disproportionate to give an alkyl radical
and CuI−I.53 To probe the formation of a free alkyl radical, we
combined our Zn:Cu couple with 1,4-diiodobutane (1) and
TEMPO· (2) in H2O:TFE. By LC-MS analysis, we observed
complete conversion of the diiodide to a mono- and di-
TEMPO adduct (3 and 4, respectively), wherein one or both
iodine atoms of the diiodide were replaced by TEMPO, Figure
2A. In a separate set of experiments with cyclopropylmethyl
iodide (5) as a radical clock and Ac-Dha-OMe (6) as a
surrogate electrophile for our bis-Dha-peptide, we obtained
only the ring-opened product (7) under our reaction
conditions (26% 1H NMR yield), Figure 2B. The formation
of a free alkyl radical therefore seems plausible, and its

Table 1. Survey of Reaction Conditions and Synthetic Platforms for Peptide Macrocyclization

aSee the Supporting Information pp S31−S56 for full experimental details and additional reaction conditions.
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generation via disproportionation of an intermediate Alkyl-
CuII−I is probable. The radical intermediate then adds to a
single Dha residue in our bis-Dha peptide to give a
monoalkylated species, wherein one iodine atom is retained
on the linker. From here, one of two possible scenarios can
occur: (1) the second iodine atom is cleaved to a primary alkyl
radical, which adds to the second Dha residue in our peptide,
forming the carbocyclic product, or (2) another equivalent of
diiodide in solution is reduced to a radical intermediate, which
adds to the remaining Dha residue in our peptide, forming the
dialkylated product after both iodine atoms have been

reductively excised. The fact that we observe the cyclic and
dialkylated products in similar proportions suggests that both
pathways are likely.
A reagent that could mediate ring closure might bias our

reaction in favor of cyclization. An ideal reagent would
homolytically cleave the remaining C−I bond on the linker and
facilitate the formation of a new C−C bond at the second Dha
residue in our peptide. To satiate these requirements, we
investigated hydrosilanes. The α-carbonyl radical, formed after
addition of an alkyl radical to a Dha residue, has a BDE of ∼87
kcalmo1−1 (calculated for Ac-Ala-NHCH3 at the B3LYP 6-

Figure 2. Mechanistic studies and proposed mechanism. (A−D) Mechanistic and computational studies. (E) The influence of hydrosilanes on
diastereoselectivity of setmelanotide cyclization. (F) Proposed mechanism of “Snip-and-Stitch” cyclization. See the Supporting Information pp
S106−S117 for full experimental details.
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311+G** level of theory). The Si−H bond for some
hydrosilanes is weaker than the α-carbonyl-H bond,62

suggesting that a favorable hydrogen-atom transfer (HAT)
from the hydrosilane to the α-carbonyl radical can occur,
yielding an α-amino acid and a silyl radical. The silyl radical
can then abstract the remaining iodine atom63 from the linker,
affording a nucleophilic carbon-centered radical proximal to,
and poised to react with, the second Dha residue in our
peptide (Si−I BDE ∼ 80 kcalmol−1 vs C−I BDE ∼ 54
kcalmol−1).64 Experimentally, we found that hydrosilane
HSiMe2Ph (8) improved product selectivity in favor of
cyclization (Table 1). The overall conversion was comparable,
but the formation of mono- and dialanine peptides (from Dha
residues) was now observed in addition to smaller amounts of
dialkylated byproduct.
To test the ability of phenyldimethylhydrosilane (H-

SiMe2Ph) to quench an α-carbonyl radical through hydro-
gen-atom transfer and to generate an alkyl radical via iodine
atom abstraction, we performed additional mechanistic
experiments. While it is well-known that silyl radicals can
abstract halogen atoms,46,65−67 the ability of a hydrosilane to
transfer a hydrogen atom to an α-carbonyl radical in an amino
acid has not been observed previously. We used Ac-Dha-OMe
acceptor and cyclopropylmethyl iodide to separately inves-
tigate each process. To assess hydrogen atom transfer (HAT),
we combined our Dha acceptor and cyclopropylmethyl iodide
with our Zn:Cu couple and a nonexchangeable (with
protonaceous solvent) deutero-silane D-SiMe2Ph (10), Figure
2C. We observed the ring opened amino acid product with an
α-deuterium atom in 31% yield (48% d-content), compound
11. When the reaction was performed with the hydrosilane
congener H-SiMe2Ph in D2O:TFE, a 45% yield (65% d-
content) of the ring opened product with an α-deuterium atom
was obtained. This suggests that HAT from H-SiMe2Ph to Dha
is viable but is not the only source of hydrogen in our reaction.
To assess iodine abstraction, we removed Zn:Cu from the
reaction and instead used one of a myriad of reagents to
convert H-SiMe2Ph to halidophilic ·SiMe2Ph. Unfortunately,
the thermal and photolytic instability of our iodide, admixed
with competitive halogen abstraction, complicated our studies,
and we were not able to observe the ring opened amino acid
product or I-SiMe2Ph (Supporting Information pp S110−
S112). However, computations suggest that the generation of ·
SiMe2Ph (13) by HAT to an α-carbonyl radical (12) followed
by iodine atom abstraction to give I−SiMe2Ph should be a
favorable process overall (−11 kcalmol−1, Figure 2D). One
explanation for the competitive formation of the dialkylated
product in our peptide cyclization reaction could be that
electron transfer from our Zn:Cu couple (to form an α-
carbanion at Dha) outcompetes HAT from the hydrosilane in
some instances. This is supported by our experimental
observation that D2O is able to incorporate deuterium atoms
into our ring-opened amino acid product.
We prepared and tested a second bis-Dha peptide, Dha2-

setmelanotide. Setmelanotide (SMT) is a cyclic −SS−
containing octapeptide that was approved by the FDA in
2020 to treat genetic-associated obesity.68 Under our
optimized cyclization conditions with 1,5-diiodopentane,
SMT produced all four possible cyclic peptide diastereomers
in an ∼14:6:3:1 ratio with two diastereomers being heavily
favored. All four diastereomers were produced in equal
amounts when H-SiMe2Ph was removed from the reaction
(Figure 2E). This unexpected result led us to investigate the

effect of other hydrosilanes in our reaction (see the Supporting
Information p S54 and pp S112−S118 for all experimental
data). For SMT, we found that hydrosilanes (30 equiv) having
Si−H BDE ≥ 96 kcalmol−1 (determined computationally at
the B3LYP 6-311+G** level of theory) were best at biasing
cyclization. Hydrosilanes with BDEs < 96 kcalmol−1 gave more
dialkylated product. Although many of the hydrosilanes we
examined could enforce cyclization, they did not affect
diastereoselectivity. Interestingly, tri-n-butylhydrosilane (9;
H−Si(nBu)3) afforded only three of the four cyclic SMT
diastereomers in an ∼1:0:10:6 ratio, favoring two diaster-
eomers that were not produced in significant quantities when
H-SiMe2Ph was used as additive. Between H-SiMe2Ph and n-
tributylhydrosilane, we can bias cyclization in favor of two
different sets of the four possible cyclic peptide diastereomers
of SMT (Figure 2E). The capacity of achiral hydrosilanes to
bias the stereochemistry of amino acids formed by radical
addition to a prochiral dehydroalanine residue has not been
reported previously, and this has untapped potential for
synthetic peptide chemistry. This also lends further support to
the important role of hydrosilane in our proposed cyclization
mechanism, as depicted in Figure 2F. Because of its unique
ability to bias our cyclization reaction and its cleaner reaction
profile, we proceeded in our studies with H-SiMe2Ph as
additive.
To obtain sufficient quantitates of our SMT carbocyclic

peptide, we performed our diversification protocol on a scale of
5 or 10 mg of Dha2-setmelanotide. The efficiency of our
reaction was not affected on either scale when 1,5-
diiodopentane was used as linker. We explored three different
methods to isolate the carbocyclic product formed in our
scaled reaction. We elected not to use high-performance liquid
chromatography, a sufficient but rather slow purification
strategy, in lieu of exploring alternative strategies that would
be faster and more available to most synthetic and medicinal
chemists. We examined (1) liquid-phase extraction using an
aqueous solution of saturated ammonium sulfate and various
organic solvents,69 (2) solid-phase extraction (SPE) using a
Waters Oasis HLB cartridge,70 and (3) liquid-phase flash
chromatography. Of these, flash chromatography afforded the
cyclic product (and its individual diastereomers) in high purity
(>90%), using an eluent of H2O/0.1%TFA:EtOH/0.1%TFA.
This strategy is particularly useful when purifying large
quantities of carbocyclic peptides that would be unsuitable
for HPLC. (The cyclic products could not be separated using
H2O:MeCN or H2O:MeOH as eluents.) For these reasons, we
used C18 flash chromatography to purify our cyclic peptides.
We assessed other diiodide linkers for bis-Dha peptide

cyclization using Dha2-setmelanotide. Primary alkyl diiodides
(I(CH2)nI, n = 4−8 carbons; Table 2 compounds 14−18)
were first evaluated as −SS− replacements. These substrates
worked well in our diversification platform, furnishing C4−8-
SMT carbocyclic analogs in 24−38% conversion. Diiodo-
methane (19) afforded the methylene bridged (ring-
contracted) carbocycle in 22% conversion and several
intractable byproducts. 1,2-Diiodoethane (20), prone to
ethylene gas formation, did not furnish the desired macrocycle.
Only unreacted Dha2-setmelanotide was recovered. Diiodides
containing an ethylene glycol spacer (PEG-SMT; 21), a
perfluoroalkyl unit (F12-SMT; 22), and an adamantane
polycycle (23) afforded the desired macrocyclic products in
good overall conversions (28−47%). Finally, cyclohexyl
diiodide (24), benzylic diiodide (25), and phenyl diiodide
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(Ph-SMT; 26) furnished new macrocyclic products in useful
conversions (17−35%), Table 2. It is important to point out
that our products were all isolated (0.09−2.91 mg) as a
mixture of diastereomers in an average amount of 0.61 mg at
>90% purity. However, individual peptide diastereomers can
be separated by our flash chromatography procedure when

desirable. Our lab has shown that mixtures of peptide
diastereomers isolated in greater than 0.05 mg and exceeding
65% purity are more than sufficient for completing accurate
biochemical experiments.70 The data obtained from these
assays compares well with experiments performed using single
diastereomer products. As a word of caution, using mixtures of

Table 2. Scope of Diiodides for Setmelanotide Cyclization and Survey of Bioactive Peptides for “Snip-and-Stitch” Cyclization

aAll reactions were performed using 951 nmol of Dha2-setmelanotide, 5 equiv. of diiodide, 30 equiv. of CuCO3·Cu(OH)2, 60 equiv. of zinc mesh,
and 10 equiv. of HSiMe2Ph in a solution of 1:1:2 sat. aq. NH4Cl:H2O:TFE (1 mM) for 16 h. Yields are reported as % conversion to cyclic products
at 280 nm. bReaction performed using 10 equiv. of diiodide. cAll reactions were performed using 5.0 mg of Dha2-peptide, 5 equiv. of diiodide, 30
equiv. of CuCO3·Cu(OH)2, 60 equiv. of zinc mesh, and 10 equiv. of HSiMe2Ph in a solution of 1:1:2 sat. aq. NH4Cl:H2O:TFE (1 mM) for 16 h.
Yields are reported as % conversion to cyclic products at 214 nm.
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peptide diastereomers is very useful when surveying large
numbers of peptides for relative biochemical activity. Optimal
substitutions generally lead to order of magnitude enhance-
ments.71−73 However, separating the mixture and testing
individual diastereomers is necessary to ascribe physiochemical
properties to a specific peptide sequence. This becomes rather
important when dealing with certain peptides whose molecular
mechanism, i.e., ability to self-assemble74 or penetrate cell
membranes,75 depends on its innate chirality.
We examined other bioactive peptides, including several

FDA approved peptide drugs for −SS− bond diversification.
We assessed eptifibatide (platelet inhibitor),76 desmopressin
(antidiuretic),77 and vapreotide (vasoconstrictor).78 For these
studies, we used 1,5-diiodopentane as a standard linker. We
found that bis-Dha analogs of each peptide could be formed
and reacted under our diversification conditions to afford new
carbocyclic peptides in conversions of 22−44%, Table 2
compounds 27−29. The new cyclic products were readily
isolated by flash chromatography, as shown for eptifibatide in
Table 2. For eptifibatide and desmopressin, the C-terminal
thiol is converted to an acrylamide rather than a prochiral Dha
residue. Hence, only two cyclic peptide diastereomers are
generated in these cases. While our results show that our
cyclization method can fashion head-to-tail (eptifibatide), side
chain-to-side chain (vapreotide and terlipressin), and head-to-
side chain (desmopressin) peptide cycles, they also provide us
with additional insights into our cyclization mechanism. First,
whereas the two diastereomers of the dialkylated product of
eptifibatide are formed in an ∼1:1 ratio, the two diastereomers
of the cyclic peptide are formed in ∼2:1 (see Table 2). This
highly suggests that ring closure from one diastereomer is more
favored over the other diastereomer, encouraging a single

diastereomer product to form. Thus, in some cases, our
cyclization method can favor a single diastereomer product.
Second, while desmopressin and terlipressin have nearly
identical sequences, including the positioning of their Dha
residues, desmopressin cyclizes >10-fold more efficiently with
almost no dialkylated byproduct being observed. Thus,
intrinsic geometries may be more important for cyclization
than any specific sequence or Dha loci.
We next examined the effect of our linkers on the

biopharmaceutical properties of setmelanotide. The capacity
of setmelanotide (SMT) to regulate appetite depends on its
ability to penetrate the blood−brain barrier and to activate
melanocortin-4 (MC4) receptors in the brain.79,80 Replacing
the −SS− bond of SMT with more lipophilic −CC− linkages
could improve the CNS permeability of SMT and could also
enhance its proteolytic stability. Hence, we determined the
aqueous solubility, cellular permeability (log Peh), and general
stability for some of our new carbocyclic analogs, namely, C4-
SMT, PEG-SMT, F12-SMT, and Ph-SMT, and compared them
to SMT. For aqueous solubility, we measured solvation in
deionized water (pH 6 at 25 °C). We found that our
carbocyclic peptides were completely soluble at a concen-
tration of 1 mg of peptide per 1 mL of water. To assess cell
permeability, we measured the partition coefficient Peh of our
carbocyclic peptides in a mixture of ethylene glycol and
heptane.81−84 Previous studies by Borchardt and co-workers
showed that the permeabilities (log Peh) of peptides obtained
using this partitioning system agreed well with permeabilities
measured from an in vitro model of the blood−brain barrier
and from physiologic saline to rat brain.82 Thus, log Peh values
are a good approximation of in vivo permeabilities. For
reference, log Peh of water immiscible (brain penetrable)

Figure 3. Permeability values (log Peh) for setmelanotide analogs. For setmelanotide, log Peh = −1.16.
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toluene = 0.994, and log Peh of water miscible (brain
impenetrable) benzamide = −3.69. Common small molecule
CNS drugs have log Peh values between −1.5 and −2.5.
Examples include zolantidine (log Peh −1.47), clonidine (log
Peh −1.80), and antipyrine (log Peh −2.28).78 For SMT, we
determined log Peh = −1.16, reflective of its good water
solubility and mild blood−brain permeability. For our
carbocyclic peptides C4-SMT, Ph-SMT, F12-SMT, and PEG-
SMT, we measured log Peh values of −1.52, −0.57, −0.47, and
−0.45, respectively (Figure 3). Thus, many of our carbocyclic
analogs should have improved (up to 2.6-fold) blood−brain
penetrance in vivo. Finally, we determined the stability of our
carbocyclic peptides to aqueous hydrolysis and to reductive
cleavage by glutathione (GSH), an approximate measure of
their plasma stability.85 GSH in the cytoplasm can reduce
disulfide bonds to dicysteine peptides and can also cleave
disulfide bonds through a disulfide exchange reaction.18−21

Hydrolysis of disulfide bonds has also been observed, and this
can result in the loss of one or both sulfur atoms from the
peptide and in several cleavage byproducts.86−89 All measure-
ments were compared to setmelanotide (SMT). As expected,
SMT underwent disulfide exchange (2% mixed disulfide after
24 h) in the presence of 1 equiv. of GSH at physiological
conditions (pH 7.4, 37 °C). Increasing the amount of GSH to
10 equiv. afforded more of the mixed disulfide (17%). No
disulfide exchange was observed in the case of our carbocyclic
analogs, which lack a disulfide bond. To assess hydrolytic
stability, we dissolved SMT in pH 8.5 water and incubated the
solution at 50 °C for 16 h. The products were analyzed by LC-
MS. We observed the loss of a single sulfur atom (−32 m/z)
from SMT. Only 5% SMT remained intact. In comparison, our
carbocyclic peptides were susceptible to racemization at pH
8.5, but the peptide cycles remained completely intact. The
only “odd” result came in the case of F12-SMT, which
underwent extensive protodefluorination, with up to four
fluorine atoms being lost. No C-terminal deamidation was
observed for any peptide. Our carbocyclic analogs are,
therefore, less likely to lose their biological activity due to
processes that cleave the peptide cycle. Taken together, our
carbocyclic analogs display superior cellular permeability and
general stability and also maintain good aqueous solubility,
thus imparting them with pharmacokinetic properties un-
rivalled by ordinary −SS− cyclic peptides.

■ CONCLUSIONS
In conclusion, we have developed a first-generation Snip-and-
Stitch platform to routinely transform disulfide bonds into new
C−C bonds. We demonstrate the ability of our newly minted
platform to produce entirely new classes of peptide carbocycles
with improved biopharmaceutical properties. Our mechanistic
studies detail the multifarious role of a hydrosilane in guiding
peptide cyclization and for achieving stereospecific outcomes.
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