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Abstract

The White Sands lizards of New Mexico are a rare and classic example of convergent
evolution where three species have evolved blanched coloration on the white gypsum
dunes. Until now, no geological replicate of the pattern had been described. However,
one of the White Sands species, the lesser earless lizard (Holbrookia maculata), has
been discovered to also inhabit the Salt Basin Dunes of Texas, where it has also
evolved a blanched morph. We here present a first phenotypic and genetic descrip-
tion of the Salt Basin Dunes population of H. maculata. Phylogenetic inference based
on a housekeeping gene (ND4) and a classic candidate gene in the melanin-synthesis
pathway (Melanocortin 1 Receptor; Mc1r) shows the newly discovered population as
an independent lineage, with no evidence of genetic parallelism in the coding region
of Mc1r. Initial morphological data suggest that while this population displays conver-
gent evolution in blanched coloration, there are divergent patterns in limb length and
habitat use behavior between the gypsum environments. Our findings present the
White Sands/Salt Basin Dunes as an exceptionally promising comparative model for

studies of adaptation and convergent evolution.
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1 | INTRODUCTION

Understanding how species adapt to environmental change re-
mains one of the central goals of evolutionary research (Bolnick
et al., 2018). The pace of contemporary global environment change
lends increased importance and urgency, as data on species re-
sponse to habitat shifts becomes increasingly valuable for designing
effective biodiversity conservation strategies (Hendry et al., 2010;
Mace & Purvis, 2008; Urban et al., 2016). Examples of repeated and
convergent evolution for organisms adapting to natural and abrupt
environmental transitions provide powerful opportunities to study
the ecological, morphological, and genetic factors underlying adap-
tation (Conte et al., 2012; Gompel & Prud'homme, 2009; Rosenblum
etal.,, 2014, 2017).

The White Sands of New Mexico is a compelling system to
study convergent adaptation of independent lineages to a geolog-
ically young (~5000years; Kocurek et al., 2007; Langford, 2003)
and abrupt (over mere meters of ecotone; Des Roches et al., 2017;
Rosenblum et al., 2017) habitat transition. Three lizard species
- Sceloporus cowlesi, Aspidoscelis inornata and Holbrookia maculata
- have successfully colonized and adapted to the White Sands, in-
dependently evolving blanched morphotypes. The blanched morphs
are well-matched to the white gypsum background and strikingly
contrast with their brown conspecifics found across the species
darker soil range (Rosenblum et al., 2004, 2007, 2010). Blanched

Blanched morph
L K 7y R

White Sands

Dark morph

coloration increases camouflage, mainly against avian predators
(Hardwick et al., 2015), while maintaining thermal performance
(Gunderson et al., 2022).

Here, we describe an analogous and independent gypsum dune
system where one of the species, Holbrookia maculata, has once again
colonized a white sand habitat and evolved a strikingly blanched col-
oration. The Salt Basin Dunes (SBD from here on), in the Guadalupe
Mountains National Park, Texas, have a geological origin similar to
the White Sands (WS from here on) but are smaller (Figure 1) and less
studied. Previously undescribed, the local H. maculata population is
allopatric from the White Sands, and all known H. maculata outside
the Salt Basin Dunes exhibit the ancestral brown dorsal coloration
that camouflages in the adobe soils of the Chihuahuan Desert.

We hypothesize that the SBD H. maculata represent an inde-
pendent colonization event with subsequent repeated evolution of
blanched cryptic coloration. This species is highly patchy in its distri-
bution (Degenhardt et al., 2005; Stebbins, 2003), and is not continu-
ously distributed between the two habitats, which are approximately
160km (99.4 miles) apart. Furthermore, given intense predator se-
lection against conspicuous morphs (Robertson et al., 2011), it is
highly unlikely that blanched individuals could successfully migrate
across the dark soils separating both habitats.

Here, we conduct a morphological and genetic exploration of
the Salt Basin Dunes blanched H. maculata population. We do so

within an evolutionary comparative context with the White Sands

FIGURE 1 Study systems and sampling
locations. Numbers in bubbles are the
total number of individuals used across
analysis. Population colors are consistent
throughout all figures, with dark soil
populations to the West (NM) depicted

in light brown, dark soil populations to

the East (NM and TX) depicted in darker
brown and a population from a region
between WS and SBD (Otero Mesa, NM)
depicted in orange. Map created with
Google Earth (Landsat/Copernicus). Photo
credits: DED, TGL, TJH, and Alex Krohn.
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blanched population and several dark soil populations for compar-
ison, thus establishing this lizard and gypsum dune systems as an
ideal model to study replicated evolution across populations of the

same species.

2 | MATERIAL AND METHODS

2.1 | Salt Basin dunes description and comparison
to the White Sands

The Salt Basin Dunes (SBD) are located in Texas, west of the
Guadalupe Mountains, in the Guadalupe Mountains National Park
(Figure 1). This gypsum dune system covers an area of approximately
8.03km? (3.1 square miles), and the dunes range from three-feet
high and heavily vegetated dunes at the south end of the area, to
sixty-feet high and largely non-vegetated dunes at the north end.
Also within the Chihuahuan desert, approximately 145km (90
square miles) northwest, is the White Sands National Park of New
Mexico, which is considerably larger, covering 712km? (275 square
miles; Figure 1).

While the geological age of the White Sands has been deter-
mined (2000-5000yearsold; Kocurek etal.,2007; Langford, 2003),
the origin of the SBD remains to be dated. However, the geological
and tectonic history of the region provides some cues for a simi-
larly recent origin (<10,000years old). The Salt Basin is a graben
(tectonic valley), and the streams surrounding the graben drained
into a basin with no outlet, where gypsum and salt were depos-
ited as water evaporated. During the Pleistocene (10,000 to 1.8
million years ago), heavier rainfall and lower temperatures main-
tained a shallow lake that would spread over the lowest portions
of the Salt Basin. Similarly to the history of the White Sands, the
evaporation of the local lake and the wind erosion of the lake bed
contributed to the formation of the gypsum dunes to the west
(Boyd & Kreitler, 1986; Given, 2004; Lee et al., 2012; Szynkiewicz
et al., 2010).

The WS and SBD also differ in their lizard communities. In addi-
tion to the blanched H. maculata, SBD also harbor predatory leopard
lizards (Gambelia wislizenii), side-blotched lizards (Uta stansburiana)
and at least one large species of whiptails (Aspidoscelis sp.) within the
white dune habitat. These additional species do not show obvious
evidence of blanching. In the White Sands by contrast, the only spe-
cies known to inhabit the dunes are the blanched trio of: Holbrookia
maculata, Sceloporus cowlesi and Aspidoscelis inornata. The Uta stans-
buriana in the White Sands area are restricted to the dark soils sur-
rounding the dunes.

Another noteworthy difference is the vegetation distribu-
tion, which in the White Sands is restrained to the interdunal area.
Comparatively, in the Salt Basin Dunes the vegetation cover is more
homogenously widespread, with the whole area having generally
lower and more consistently covered dunes. In sum, the Salt Basin
dunes cover a considerably smaller area (Figure 1), with higher vege-
tation cover and a different lizard community.

Ecology and Evolution 3o0f11
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2.2 | Lizard sampling

To situate the newly discovered SBD population in an evolutionary
context, we applied a repeated pair approach including individuals
from each morph (blanched and dark) across the two gypsum dune
systems (Figure 1). We selected dark morph individuals from popu-
lations as close as possible to each gypsum habitat, with proximity
limited by the characteristically patchy distribution of the species
(Degenhardt et al., 2005; Stebbins, 2003). Blanched populations
were sampled from the White Sands (WS) and Salt Basin Dunes
(SBD); dark populations were sampled to the West (Jornada and
White Sands Missile Range); at a region between WS and SBD (Otero
Mesa) and the to the East (Andrews, Chaves, Gaines, Lea; Figure 1).

All lizards were individually collected with a lasso and handled to
minimize stress.

All field research, specimen collection, and tissue collection
was approved by local and state agencies, including National Park
Service Scientific Research and Collecting Permits (Permit#: GUMO-
2018-SCI-0015; WS-2020-SCI-0004; TX-SPR-0506-662; GUMO-
2022-SCI0010; NMDGF-3353).

All detailed individual data can be found in Appendix S1.

2.3 | Genetic analysis

The Melanocortin 1 receptor (Mc1r) gene is known to affect melanin
synthesis across a range of vertebrates (Hoekstra, 2006; Hubbard
et al., 2010; Rosenblum et al., 2004). Previous studies in the White
Sands showed that coloration is genetically determined, and can-
didate gene approaches paired with functional assays showed that
variation between blanched and dark morphs in two White Sands
species (Sceloporus cowlesi and Aspidoscelis inornata) is influenced
by coding mutations in the Mc1r gene (Rosenblum et al., 2010).
Variation at Mc1r was also associated with coloration for Holbrookia
maculata, but the resulting amino acid substitution had no detect-
able functional effect (Rosenblum et al., 2010). These results do not
exclude the possibility that Mc1r could play a role in blanched colora-
tion for White Sands H. maculata or an independent population in
SBD (e.g., observed mutations may be in linkage disequilibrium with
upstream noncoding mutations or may impact receptor function in
ways that were not measured).

One way of assessing signatures of parallel evolution is through
the phylogenetic patterns of lineage sorting between different mo-
lecular markers. If mutations at the Mc1r locus (that are themselves
functionally relevant or linked with other causative mutations) are
shared between the WS and SBD blanched populations, then we ex-
pect the Mc1r phylogeny to show clustering by phenotype (blanched
WS closer to SBD). Contrastingly, the ND4 phylogeny should recapit-
ulate the geographic proximity of populations (Colosimo et al., 2005;
Schluter & Conte, 2009).

To infer phylogenetic patterns, genomic DNA was extracted
(Qiagen DNeasy Blood & Tissue kit Cat. No.: 69504) from blanched
SBD individuals (N = 10), from a population between WS and SBD
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(Otero Mesa N = 3), and from 11 dark individuals from four neigh-
boring dark soil populations (Andrews N = 3; Chaves N = 4; Gaines
N=1;LeaN =3; Figure 1). For the WS system, we retrieved GenBank
data from our previous sequencing efforts for 30 blanched individ-
uals, and 19 dark individuals from two neighboring dark populations
(White Sands Missile Range N = 4; Jornada N = 15). All downloaded
and newly produced sequence accession numbers are available in
Appendix S1, organized per dune system, population and gene.

The SBD ND4 (797 bp) and Mc1r (923 bp) coding sequences were
amplified following the PCR protocol previously established for the
H. maculata of the WS (Rosenblum et al., 2004, 2010) and Sanger
sequenced on an ABI3130x| instrument (Applied Biosystems).
Sequence files were analyzed and exported as FASTA sequences
using SeqTrace 0.9.1 (Stucky, 2012). The sequences of both genes
were aligned using mafft v7.407 (Katoh & Standley, 2013), and
trimmed at the 5’ end to the start codon, and on the 3’ end to the
stop codon, thus keeping the coding sequences, which were used
to infer the phylogenies. Maximum likelihood analyses were con-
ducted using RAXML v 8.2.12 (Stamatakis, 2014), using the orig-
inal search algorithm and the “GTRCAT” approximate model. Fast
bootstrap search was used to compute branch support (1000 rep-
licates). A seed value of 112,358 was used for calculating the initial
maximum parsimony tree and for bootstrapping. Bayesian inference
trees were calculated using MrBayes v3.2.6 (Ronquist et al., 2012),
using the default priors and 1,500,000 generations. To root both
phylogenies, we chose another lizard from the Phrynosomatidae
family as an outgroup: the eastern fence lizard (Sceloporus cowlesi),
from which sequences for both gene regions were obtained from
NCBI (Accession numbers Nd4: EU045304.1; Mclr: AY586153.1).
The inferred phylogenetic trees were plotted with a python script
using the toytree v 1.0 library (Eaton, 2020). The complete analysis
pipeline and respective parameters are publicly available as a gitlab
repository: https://gitlab.com/StuntsPT/the-colours-of-guadalupe.

Because this investigation focused on the lineage sorting pat-
terns between gypsum dune habitats, we present the cladograms as
main figures (Figure 2), which facilitate the visualization of lineage
sorting, but see Supplementary figures (Figure S1, in appendix S2)

for the phylograms with branch length information.

2.4 | Color pattern analysis

To acquire dorsal coloration data, 20 individuals (10 males; 10 fe-
males) from each blanched population were photographed in loco,
inside a portable white photo studio box (Neewer), together with a
reference color scale (X-Rite ColorChecker Classic Mini). The color
scale and each lizard were placed inside an open and transparent
Lee's kritter keeper, inside the photo cube (40cm?®). The photo cube
was placed in unshaded ground, and only had a small opening at the
top that fits around the camera lenses, creating a stable light envi-
ronment without shades or unbalanced sun incidence on the animal.

After placing the lizard within the photo cube, we recorded dorsal

temperature with a laser thermometer and took a color photo with a
Canon Powershot G7X - Mark I, framing both the lizard and the color
scale, which was used to further standardize picture color across all
specimens.

Stress (Seddon & Hews, 2016), temperature (Rosenblum, 2005)
and ontogeny (Escudero et al., 2016; Hawlena et al., 2006) may affect
dorsal brightness, thus we minimized capture stress by handling the
animals as little as possible. All lizards were captured by lasso within
~3 min of first observation, placed in a mesh bag, transported into
the photo cube, and processed. To minimize confounding effects of
ontogeny and temperature when selecting individuals representa-
tive of the White Sands and Salt Basin Dunes dorsal variation, the 20
pairs of lizards analyzed were matched for sex, dorsal temperature
at the time of the photo, and SVL, without looking at the photos
(Figure S2, in appendix S2).

Color profiles of all photos were calibrated and standardized in
Adobe Lightroom (v. 5.4) using the X-Rite classic color scale. The
phenotypic area for color analysis was defined as the dorsal area
between the hind and forelimbs. Each color calibrated individual
photo was cropped, and background masked in GIMP (v. 2.10; The
GIMP Development Team, 2019). The dorsal areas were then ana-
lyzed using the R packages Colordistance (Weller & Westneat, 2019)
to retrieve luminance data, and Recolorize (Weller et al., 2021) to vi-
sualize dorsal color K-means per sex (Hager, 2001b), and per pop-
ulation. Differences between populations were measured through
effect size estimates (Hedge's g and confidence interval) between
comparison groups. All analyses were performed in R studio, R ver.
4.0.2 (R Core Team, 2019).

2.5 | Morphometric analysis

We conducted basic morphometric analyses of the blanched SBD
population compared with WS blanched H. maculata and East and
West dark soils populations. A total of 20 blanched individuals (7
females, 12 males, 1 unassigned) were sampled de novo at the SBD
(GPS 31.91656, -104.98973) in the summer of 2018 (between May
30th and June 4th). For each individual, snout to vent length (SVL)
was measured with a ruler; and handheld calipers were used to
measure head size: width, depth, length; and limb size: length of
the right femur, and right rear toe (from heel to tip of fourth toe).
The same measurements were taken from museum specimens for
the remaining study populations: 19 (8 females, 11 males) blanched
individuals from the White Sands; 18 from East dark soil popula-
tions (Jornada: 6 females, 3 males; White Sands missile range: 5 fe-
males, 1 males); and 15 (12 females, 3 males) from East dark soil
populations.

Morphometric data for SBD, WS, and East dark soil populations
were collected by the same experimenter (DED), with West dark soil
being an exception (TGL). No Morphometric data was available for
the three Otero Mesa individuals. Individual measurements and all

raw data are available in Appendix S1.
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FIGURE 2 Phylogenetic trees for Bootstrap values
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We looked at the relationship between body size (SVL) and both
head size (Figure S3, in appendix S2) and limb length (Figure 3),
traits known to vary between blanched and dark conspecifics in
the White Sands system (Des Roches et al., 2014; Rosenblum &
Harmon, 2011). To further visualize the morphological differences
between SBD and the remaining populations, we applied a stan-
dard regression-based approach (Berner, 2011; Hagey et al., 2017)
to calculate the individual residuals of the regression of the limb
length/head size against body size. To statistically quantify the un-
covered differences in limb length, we applied tests of normality
(Shapiro-Wilk test) and homoscedasticity (Levene's test) to the
residuals of SBD and non-SBD populations. All data proved to be
normal (p-values >.266) yet not homoscedastic (p-values <.0254).
We thus applied a non-parametric test (Mann-Whitney-Wilcoxon)
to quantify the differences in femur and rear toe lengths between
SBD and the remaining populations. All data analysis and visual-
ization were conducted using R (v 4.0.2; R Core Team, 2019) in
Rstudio (v 1.3.1093) and all code is available.

3 | RESULTS & DISCUSSION

The White Sands system has offered an exceptional model to
study repeated evolution across species (Rosenblum et al., 2010).
The discovery of an additional blanched population of the lesser
earless lizard (Holbrookia maculata) in the Salt Basin Dunes en-
hances the study power of a classical model by adding an inde-
pendent geological replicate within species. By comparing the
blanched SBD population with conspecifics from (i) the well-
studied and phenotypically convergent population from the
White Sands; and (ii) with several nearby dark soil populations, we
provide a first morphological and genetic exploration and raise
ecomorphological hypotheses which can provide a robust basis
for future studies.

50 75 100

3.1 | SaltBasin dunes blanched H. maculata
form an independent genetic lineage and there
is no evidence of genetic parallelism at the Mcir
coding region

The phylogeny based on the mitochondrial ND4 gene (Figure 2, top)
shows an overall clear lineage sorting pattern across populations
recapitulating population proximity and potential geographic bar-
riers to gene flow. The dark soil populations to the East (Chaves,
Lea, Gaines and Andrews) are the most divergent populations, fol-
lowed by the branch of the Salt Basin dunes blanched population.
The Northwest population group shows Jornada as an independent
branch, which is concordant with the San Andres mountain range
acting as a barrier to ongoing gene flow. White Sands blanched in-
dividuals cluster with the neighboring brown individuals from the
White Sands missile range with Otero Mesa as a sister branch. This
biogeographic pattern is consistent with expectations of isolation by
distance given the patchy distribution of the species and suggests
that the SBD population may indeed be an independent evolution-
ary lineage.

However, the Mc1r gene tree (Figure 2, bottom) shows a lack
of overall resolution of clusters and comparatively weaker nodal
support (the majority of nodes have bootstraps values and pos-
terior probabilities below 50). For the nuclear marker, the SBD
population seems to be closer to the Otero Mesa population and
the lineage sorting of the Eastern dark soil and Jornada popula-
tions is lost. It is thus difficult to conclusively infer the biogeo-
graphical history of H. maculata in this region without additional
genetic data. Mito-nuclear discordances are common (Toews &
Brelsford, 2012): lineage sorting is often more pronounced for
mitochondrial genes, which typically have higher mutation rates
and one-fourth of the effective population size (due to maternal
inheritance). Thus, mitochondrial markers show stronger demo-
graphic effects of genetic drift compared with nuclear markers,
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which are diploid and subjected to meiotic recombination (Toews
& Brelsford, 2012). It is possible that the discordant patterns be-
tween these two markers reflect changes in connectivity between
populations associated with the geology of the Tularosa Basin.
However, a robust interpretation will require higher resolution
genomic data and a more comprehensive sampling of dark soil
populations (which is hindered by land-use change and population
declines).

The blanched population from SBD does have several SNPs in
the Mclr sequence not found in other populations (with only one
being monomorphic within SBD, Appendix S1). All of these SNPs are
synonymous mutations that would not impact receptor function or
differences in coloration, suggesting that coding mutations at Mc1r
are not causative of blanched coloration in SBD H. maculata, un-
less they are linked to causative variants elsewhere in the genome.
This is similar to what was found for the White Sands population
(Rosenblum et al., 2004, 2010).

Overall, we found that SBD and WS populations of H. macu-
lata seem to be independent genetic lineages without direct ev-
idence for genetic parallelism in the coding region of Mclr. This
does not exclude the possibility of parallelism at other genomic
regions and/or shared changes in Mc1r gene regulation that play
a role in blanched coloration, as suggested before (S. Des Roches
et al., 2017; Laurent et al., 2016; Rosenblum et al., 2007, 2017).
Furthermore, other lizard species showing variation in melanic
phenotypes often lack associated variation at Micr (Buades
et al., 2013; Corso et al., 2012; Nunes et al., 2011), suggesting that
other genes in the melanin-synthesis pathway are likely involved
in convergent phenotypes.

The evolution of adaptive traits in novel environments can occur
via de novo mutation or from the rise in frequency of standing ge-
netic variants, and will depend on the interplay between many fac-
tors including population size, gene flow, and allelic dominance of
the causative variants (Nuismer et al., 2012). The repeated evolu-
tion of blanched coloration in two independent populations and the
young geological age of both dune systems makes it tempting to sug-
gest that blanched alleles may be segregating at low frequency as
standing genetic variation in dark soil populations. This could explain
a rapid rise in frequency when modulated by selection and/or demo-
graphic changes (Barrett & Schluter, 2008; Colosimo et al., 2005).
However, additional genome-wide studies across geological repli-
cates will be necessary to identify specific adaptive alleles and their
likely history.

Finally, it is interesting to note that the SBD H. maculata popula-
tion has a much lower census population size than that at WS (based
on habitat size and field observations). Thus, it will be important to
determine how the blanched phenotype arose and is maintained
given that the effects of genetic drift - and the swamping effects
of gene flow from dark soils populations - would be amplified in this
small population. Therefore, the SBD system provides an interest-
ing demographic counterpoint to the White Sands for studies of the
dynamics of small locally-adapted populations and studies of the ge-
netic architecture of repeated evolution.

Ecology and Evolution 7 of 11
=t S VY LEYy- L7

3.2 | Salt Basin dunes and White Sands lizards
differ in limb length and possibly habitat use

Dorsal coloration was highly convergent between both populations
(Figure 1, Figure 3), with no statical difference in level of blanching
(Hedge's g and 95 percent confidence interval for: WS males vs SBD
males = 0.21 (0.207, 0.212) - small effect size; WS females vs SBD
females = -0.09 (-0.089, 0.085) - negligible effect size).

In parallel with convergence of blanched coloration between
SBD and WS H. maculata, we also find evidence of divergence in
other traits. Limb size showed interesting trends, with SBD H. mac-
ulata having longer limbs than both dark soil and WS populations
(Figure 4), and a more pronounced difference in rear toe length (p-
value =.00392) versus femur length (p-value =.0802). Blanched liz-
ards from the WS are usually bigger than their dark soil counterparts
(body size and weight), and seem to have longer hindlimbs too; but
while rear toe scales with SVL, it does not differ between WS and
West dark soil populations (Des Roches et al., 2014).

Because both SBD and WS populations are arenicolous, facing
similar locomotion constraints, we might expect their limb lengths
to be similar. However, a behavioral observation might be linked to
this phenotypical trend: out of 25 SBD lizards captured in the sum-
mer of 2018, three (12%) were captured while exhibiting perching
behavior. This is a common find in the SBD (TGL and DED, pers. ob-
servation) with lizards frequently spotted on branches of sagebrush
(Artemesia filifolia), trunks of yuccas, and on grass stems (Figure 5).
Despite a similar plant community being available, this behavior has
very rarely been observed in the White Sands H. maculata popula-
tion (oral communication from 6 researchers, ~20years of cumula-
tive observations).

Perch use is a key component of the ecological niche of sit and
wait foragers (Hager, 2001a), and behavioral shifts in perch use can
play a crucial role during adaptation to new environments that differ
in predator composition (Losos et al., 2004) or inter vs intra-specific
competition dynamics (Losos et al., 1993). In the WS, where H. mac-
ulata is not known to perch frequently, its phrynosomatid relative
Sceloporus cowlesi makes regular use of vegetative perching habitat.
At WS, S. cowlesi have longer rear toes (Des Roches et al., 2014) and a
broader climbing niche (Des Roches et al., 2011) than their dark soils
conspecifics. Hind-limb length is known to be correlated with perch
characteristics in other species of arboreal lizards (Losos, 1994;
Losos et al., 1997), with a significant contribution of phenotypic
plasticity (hatchlings reared on broad perches had longer hind limbs,
Losos et al., 2000). Thus, it is tempting to speculate that the absence
of a species like S. cowlesi in the SBD could allow H. maculata to
expand their habitat use. Furthermore, the presence of predatory
leopard lizards (Gambelia wislizenii) in the Salt Basin Dunes, at the
ground level, might contribute to selective benefits for periscoping
behavior while perching on taller grasses.

We found no significant patterns of head shape divergence
in our analyses. Head shape is often correlated with bite force
(Anderson et al., 2008) and burrowing movement in sandy habi-
tats (Arnold, 1995). Thus, differences in head size or shape across
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FIGURE 4 Comparative limb morphometrics across habitats. Salt Basin Dunes lizards tend to have overall longer limbs, assessed by the
relationship between Body size (SVL) and femur length (first line), and rear toe length (second line). Numbers in brackets refer to number

of individuals analyzed per habitat. Left column: Colored lines represent linear model per habitat, with shading as the 95% confidence
interval (gypsum dunes: gray for SBD and blue for WS; dark soils: light brown for West and dark brown for East). Right column: Predicted
model and residual distribution similarly color coded by habitat. Points above the correlation line correspond to individuals with limbs longer
than expected based on the prediction of relationship between limb and body size (higher residuals). Histograms visualize the residuals
distribution with SBD data highlighted in gray. Limb drawings adapted from (Cox & Tanner, 1977).

populations can reflect selection on locomotion on sandy substrate
(Bergmann & Berry, 2021); and/or shifts in dietary niche (Herrel
et al., 2001; Verwaijen et al., 2002). While WS H. maculata tend
to have larger heads relative to their West dark soil conspecifics
(Rosenblum & Harmon, 2011), we find no evidence of SBD diverg-
ing from dark soils nor converging with WS populations for this trait
(Figure S3, in appendix S2).

In sum, limb and head morphology are known to impact behav-
ior, locomotion, and habitat use across numerous squamate species.
However, the strength of these correlations and the trade-offs be-
tween traits are quite often population or species specific. Thus, fo-
cused ecomorphology studies will be needed for SBD H. maculata to
understand trait heritability and potential links between morphol-
ogy, behavior, and habitat use in this novel environment.

3.3 | Divergence within convergence: Adding new
power to a classic evolution study system

Overall, we find evidence of both convergence and divergence be-
tween the blanched populations of H. maculata of the White Sands
and the Salt Basin Dunes. Even when convergent morphologies
evolve across independent populations in similar habitats, evolu-
tionary patterns are still influenced by population-level differences
in ecology, demography and plasticity (Bolnick et al., 2018). Rarely
does a natural system allow researchers to disentangle population-
specific eco-evolutionary effects, which is why examples of paral-
lel evolution within and among species, in the wild, are so valuable
(Arendt & Reznick, 2008; Conte et al., 2012). The WS and SBD
systems offer an opportunity to study trait-specific convergence
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FIGURE 5 Blanched H. maculata
exhibiting typical perching behavior,

at the Salt Basin dunes. The newly
discovered population frequently exhibits
a vegetation climbing and perching
behavior very rarely recorded for the
WS conspecific population. It is possible
that the behavior is associated with limb
size divergence and absence of perching
competitors, but this hypothesis requires
further testing. Photo credits: DED.

in species that have adapted to geologically recent habitat shifts
(Kocurek et al.,, 2007; Langford, 2003). Continued comparisons
across these systems can shed light on the genetic architecture of
repeated evolution in novel, and geologically young, ecological con-
texts and how natural selection and population demography interact
during repeated adaptation in the wild.
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