# RUSUUSIS OF YHRDING MHYROID GLANDS OR VARIOUS TYPES OF VEARTEBRATES TO TADPOLES 

## by

HOHAOS GUNTHORP
Ph. B., Hamline, 1906
A. B, stanford, 1909
A. M., Kansas, 1912.

Subnitted to the Department of Zoology and the raculty of the uraduate Bohool of the University of Hansus in partial fulfillment of the requirements for the degrae or Doator of Philosopis.

## Diss

1923 Gunthorp C. 3 Anschatz
vonateris.
Introduction ..... 3
Literatura ..... 4
Material and methoda ..... 9
sood ..... 13
Tabulations ..... 16
Experiments on Hana oatesbians ..... 20
gorias A ..... 25
Series B ..... 31
Series 0 ..... 35
gurmary of exparimenta on fi. catesbiana ..... 42
Experimenta on Rena pipiens ..... 52
Sories D ..... 53
Series K ..... 67
Series $F$ ..... 61
Series ..... 62
Series H ..... 67
Beries K and L. ..... 70
Bumary of experiments on R. pipiens. ..... 77
Experimenta on Hyla regilla. ..... 83
Sories M ..... 84
Saries 0 ..... 88
Serias P ..... 92
Series $\$$ ..... 93
Surmary of experimente on H . regilia. ..... 101
General $\quad$ ummary ..... 108
Conaluaions ..... 110
Bibliography ..... 112

# RESUIIIS OF PEBDING I'HYROID GLANDS OH VARIOUS ITYPBS OF VHRTEBRATES TO TADPOLFS 

Introduotion.

During the past ten or more pears considerable work has been done on the relationship of the thyroid gland to metamorphosis in the tadpole, and experiments have been performed in the feeding of bo th thyroid gland itself and pure iodine to both normal tadpoles and to speoimens with the thyroids removed. The present paper reoords the rebulte of experiments undertaken to determine the effect on tadpoles of the feading of thyroids from different types of vertebrates and to determine whether or not this offect is correlated with the amount of iodine contained in the different thyroids. The experiments were started in the zoological laboratory of washburn College, ropoka, Kansas, but owing to the removal of the witer, the later ones were curried on at the University of Washington, Seattle, Washington, where all of the measurements were made and the results tabulated.

I Wish to express my thanks to Dootor Bennet $\mathbf{M}$, Allen, of the southern Branch of the Univeraity of Ualifornia, under whose direotion this work was oarried on, for the help he has given me, and for the many suggestions he has made as the work progressed, and as this paper was in proparation.

## LITERARURE .

Little has been written that oan be considered in the nature of a study of the comparative effects of feoding different kims of thyroid glands to tadpoles, most of the literature on the relationship of the thyroid to the metamorphosis of tadpoles aovering ather phases of the subjeot. However, thyroids from several different kinds of animals, and glands from the same apeoies but of different iodine content have been fod, and some omparative work has been dons.

Gudernatsoh (1912 and 1914), the first parson to record the fact that the foeding of thyroid hastened the metamorphosis of tadpoles, fed horse thyroid to tadpoles of different ages, and also a mixad diet of thyroid and thymus, Feat (1914) fed bull-frog tadpoles "daily some two grain Parke Davis \& Co. sheep thyroid tablets", With positive reaulta, and daring the ampe Jear, Morse, feoding fana piplens, used Parke Davis \& OO.'s desiocated thyroid extract and armour and Co's. thyroid tablets as well as fresh thyroid gland obtained at a paoking house, but kind not specified, all with positive results. He also foun that positive resulta comparable to those produced by feoding thyroid could be obtained by using iodized aminoacid (3-5mi-iodo-tyrosine) and also by feeding blood-protein lodine in the form of a commeralal produot oalled "iodalbine" manufactured by Yarke Davis and Uo, Positive results were also obtained when thyreoglobulin and iodothyrin, parts of the thyroid oontaining iodine, were used. On the other hand, he obtained negative or no results

When he fed leoithin, whioh containg choline, extracted from the thyroid, potassium fodide, methyl iodide, iodobenzoio aoid, iodoxybenzoio acid, and "motalic" iodine. Also, the feoding of sea algae Dontaining iodine and of staroh iodate caused no acceleration of metamorphosis. jhe same was true when he fed lodized hen's egg lecithin and iodized egg albumin. None of morse's experimenta were carried on in a oomparative way.

Lenhart (1915) fed dried and pordered human thyroids (both eimple and exothalmic goitres) and dog thyroid of various iodine content, but how he obtained these different iodine peroentages is not atated. silso he fed ox and sheep thyroid, but did not reoord these respitis. In this oase the higher the per cont of lodine the more rapid was the motamorphosis of the tadpoles, cold and the foeding of oracker orrabs both tended to delay the ohange. the following year Graham fed tumorous human thyroid (adenomata) to the tadpoles of Rana piplens, and found that the afoeot was oloeoly related to the amount of lodine oontained in the food, the aame as in Lenhart's experiments. However, there were bome exceptions to this, no explanation boing givon for them.

Gudernatboh (1917) later performed some experiments where thyroid and thymus glunds were each split ohemioally into seven prom duats and tadpoles were treated with the aubstanoes obtained, The thgroid nuoleo-proteins qaused the most rapid differentiation, and the preaipitate from an alaoholic extract produoed the greateat growth with the least differentiation. whe other substances ranged between these two extremes in their aotion.

Rogoff and Karine (1917) found that artifioialls lodined blood serum caused an inorease in the rate of metamorphosis when fed to tadpoles, but that its aotion was not as marked as that of thyroid gland.

Kendall (1917) isolated from the thyroid protelns an iom dine-containing oompound in pure oryataline form having a constant iodine content of 60 per oent. He later called this substance thyroxin, and its identification and propertios were further disoussed by Kendall and Oaterberg (1919) and again by Kendall (1919). He found that this oubstance produced the so-called hyperthyroid symptoms, and was therefore the aotive element in the thyroid gland. frogoff (1918) reduoed thyroxin still further and fed both the produot of this reduction and the ontire thyroxin to tadpoles. Both sets of spoimens motamorphosed abnormally fast, those aating the thyraxin being slightly in the lead.

MoDord and Marius (1918) found thet lidhe offoct of thyroid foeding on normal tadpoles varied with the age of the individuals", and that "irradiation (subjeoting them to x-rays) is without apparent effeat upon normal tadpoles, but determinee a slight but diatinct inorease in the ausooptablifty of young tadpoles to thyroid atimulation". Swingle (1918a) fed armour and 00.'s powdered thyroid to tadpoles of fiana pipiens with marked acoeleration of metamorphosis resulting. Ithe same year (1918b and 1919a) ho fed tadpoles iodine orystala, iodoform and potassium iodide, all with the same positive rem sults, but those fed iodoform were $\quad$ lower in motamorphosing while the potassium iodide had atill less effect than when lodine orystals were
used. 'she seme author later (l919b) fed different suantities of Lodine to tadpoles of Kana sylvatios, and found that the larger the amount the more rapid the tranaformation. Bromide oamsed no acoeleration. still later (19190) he reported on the oomparative effeot of feeding iodine to normul tadpoles and to tho se with the thyroid gland removed. ithe results were the same in both instanoes, but it raquired a larger cuantity to produce an equal offeot in the ause of the thyroidiess tudpoles, Iho speoies used was Bufo lentiginosus. Finally, iwingle (1923) gave an extended disoussion of the literature oovering thyraid and lodine feoding, and, following axperiments on the feeding of thyroidectomized and hypophyseotomized frog larvan of Kana sylvatioa, reafirmod his belief thet iodine is the substance ossontial for unuran motamorphosis.
ammet and illon (1919) fed tudpoles of Fana pipions on diats of different kinds, the fat, oarbohydrate, protoin and vitamine contont of whioh were mown. They were able to alter tho size of the larvae and the rate of motumorphoais, but the lattor prooess was not completod in uny experiment. risom experiments performod by the sume authors later (1920), the food used above was ovidently praotioally free from iodine, beouuse when this halogen, either organio or inorganic, was udded to the diet, the tudpoles completed their metamorphosis.

The offeot of foeding thyroid gland to tadpoles upon winioh thyroideotomy had be日n performod was reportod by sllen (1917) as sucoessful in one aase in accolerating motamorphosia, and the same author (1919a) oaused similar results in both Bufo and ñana tadpoles

## 8.

from which both the pituitary and thyrold flands had been removed by feoding them lodine mixed with flour.
boith and Uneny (1921) briefly roport the foeding of dried and fresh anterior-iobe, as well as three kinds of aommeroial preparations of the same, to tadpoles. une of the oomeroial producta Whioh oontained iodine greatig in excess of the nomal amount, hastened metemorphosis, but none of the other feodings did. Lodine as KI and as thyroxin iodine were addod to the dried gland in suffioient amounts to give an iodine content identioal with the more active commeroial product. ihis was fed to normal and thyroidleas tadpoles, the food containing KI having no marked aocelerating effeot, but that coataining the thyroxin iodine caused a bastened developmont the same as the comprcial product with the high iodine content.

Uhlonhuth (1921a) gives a very good sumary of the literature covering thyroid and iodine feeding experiments of the larrae of both froge and salamanders, and later (2921b) the same writar reports the reaults of xeoping the tadpoles of Hana gylvatioa in water whioh eran the ofghteenth to the twenty-sixth day contained 0.005 gem. of Bayer's iodothyrine por 1000 o.c. of water with the result that "the fore limba broke througin the walls of the gill ohamber on the thirty-third day aftor hatohings " In similar experimenta where inorganio iodine was used in place of iodothyrine, the concentration varging from one to ten drops of a $1 / 20 \mathrm{lf}$ solution of lodine per 1000000 of water, the mortality was great, but "among the surviving larvas none had metamorphosed at the termination of the experiment, nor had the fore limbs
broken through in a aingle instance; yet the limbs were considerably further diferentiated than in the controls."

Whe physioal ohanges that ocour in the tadpoles during the process of metamorphosis and their relation to tho thyroid gland are disoussed by Swingle (1918a) and by illen (1918 and 1919b). Dickerson (1907) and Wright (1914) were used in conneotion with the identifioation and study of the life history of the tadpoles used in these oxperiments.

Kegarding the sources of commaroial thyroid preparations used In the above reports and also in the experiments oarried on by the writer, under date of December 6, 1919, irmour and vompany write, "Our atandsrised powdered thyroid subatance is made from the glands of sheep only", and a latter dated Decomber 10, 1919, from Parke Davis and Company says, "Practioally all of the supplies that we have been proparing for some time past are derived from the thyroid glands of hogs rather than tho of sheop."

Material and Methods.

The speoiea used for the first three series of experimenta (A, B, and O) was the oommon bull frog, Rana oatesbians, oaptured near Lawronoe, Kansas. whey variod somewhit in size, but so far as known at the beginning of the experiments, they were all less than a pear old. The speoies used for the next eight series ( $D, E, F, G, H, K$, and L) was the leopard frog, Rana pipiens. These were colleoted in
soveral small ponds in and near topoka, Kansas, by tho author. For the remainder of the experiments (series $M, U, P$ and $S$ ) the tree frog, Hyla regilla, was used. these were colleoted in small ponde and atreams in and near seattle, pashington, by the uathor. The bull froge were kept in captivity for some time before thej were used, but the experiments with the leopard frog and the tree frog were started within a short time after their capture in each case, the series of experiments is and $B$ on the bull frog were carried on in two rooms of different remperatures, other oonditions being as nearly identioal as was possible to obtain, in order to asoertain the effect, if any, of heat and cold on the rate of metamorphosis when acoelerated by different kinds of thyroid reeding. The two series $K$ and is were also run on a comparative basis, but here the amount of water in whioh the separate experiments were kept was the variable quantity.

Whe remaining aeries, inoluding $A$ and $B$, were performed for the main purpose of the undertaking, namely, to ascertain the effect on tadpoles of the feoding of various kinds of thyroids, and to see whether or not the reaults were correlated with the iodine content of the foode.

Regularity in the time of oloaning and peeding was maintained throughout the experiments. At $10 \mathrm{k} . \mathrm{M}$. each dey the food not eaten during the prepeding twenty-four hours was removed. The larger ohunks were soooped from the bottom of the oontainer with a perforated seotion lifter, and the finer partioles were removed with a pipette. Great
oare had to be used in the removal of this, as it was sometimes hard to distinguish from the exoreta of the tadpoles, especially in the oase of the bull frogs.
at the sane time the water was changed. This was accomplished by pouring the contents of the jar or dish through a clean wire sieve, and then plaoing the tadpoles temporarlly in a seoomd olean jar. The original jar was then thoroughly rinsed and oleaned under a running tap, and the tadpoles were returned to it. Care was taken not to omtaminate one experiment with water from another, and every precuation was taken in the handilng of the spocimens und ocontainers. After removing the excess food and changing the water, the fresh focd was placed on the surface of the water, and the tadpoles usually began to out it at onoe.

Ton tadpoles were used us the unit in most of the experiments except in 8 , where the unit was twonty, ihese were placed in a single container and each container was considered as a aingle unit or experiment. In order to be sure of ohance seleation of unimals for each experiment from the originul stock, eaah time a 日eries pas started, the tadpoles on hand were placed in four jars, und then one speoimen was taken with a dip not from onch jax in turn und plaoed in rotation in each of the contuiners making up the series, After this distribution the individuals were ourefully mousured and rem corded. In the case of the bull frogs, the meaburements ware made with a metric ruler, but in the oase of Inana pipiens and Hyla regilia a miorometer was used. In the latter oase the apparatus consiated of a Bausoh \& Lomb uptiasl vompany miorosoope with a 7.5 miorometer eye-
piece and a 40 mm . objeotive. The ilgures obtained were reduced to millimeters in order to have a single atandard for all measurements.

The different series were started on the dates mentioned in each case and were alosed from two to three duys ufter the mortality had reached 50 per cent of tho total number of specimens in the series. An exception to this rule ocourred in series $A, B$ and $C$ on Funa oatesblana, whioh was olosed while there was still about 70 per cent of the total number living.

The water used in the experiments performed at Washburn Oollege was Topeka oity water, which oomes from artesian wells. The water used at the University of Waahington oame from Lake Wasiningtom which is fed by momntain streame, The latter contains a considerable amount of plant and andmal life, but both aupplies are praotioally free from iodine.

Whe method of preparing the food fed in these experiments is given below. the weighing was done on analytioal belanoes sensitive to oseutenth milligram, but the limit of the weighing dons was to the milligram. Ordinary bottlas were used as containers for the food. These were oarefully welghed and marked with a label oorreaponding to one on the jar in which were kept the tadpoles being fed the speaifio food. The prepared food was placed in the bottle and it was again weighed, A reoord was kapt of all food plaoed in each bottle (in almost every oase the supply had to be replenishod more than orool, and the balanoe remaining at the end was subtraoted from the total. No welghing was done outaide the bottles.

For the oare of the burplus food plaoed in the experimental
jars, but not eaten, amall pieces of filter paper were weighed, and on these this exoess portion was placed each day. these pieces of filter paper were kept in drawers out of the dust, and after the experiment was olosed they were thoroughly dried and weighed, 2 he difference between the weight of the filter paper alone and the paper covered with the food gave the amount fed but not eaten.

## Food.

The food used in these experiments was prepared according to the diraotions of Dootor Allen, and after a fomula worked out by him, although the proportions ware modified by the writer. Ordinary wheat flour, alfalfa flour and powered thyroid were mixed with water and rolled into flakes in the following manner: The whoat flour was run through a fine oheese cloth before using. In order to obtain alfalfa flour, alfalfa moal was purchased, and this was run through alther two or three chease oloths of varying coarseness of mesh, the finest being used last. ithe thyroid gland was thoroughly dried and all fat removed. It was then ground in a rough mortar und passed twioe through a fine oheese oloth, the three plours were then thoroughly mixed in a dry state, and water was added, and a thin paste made. thit was spread thinly on glass and allowed to dry in the open aif over night. It was then placed in the oven for a short time, and was peoled from the glass as flakes, this was fed. iwo different mixtures of these three flours wero used. The first one (Formula A) was fed to the tadpoles in series in, $B, M, O, P$ and $g$.

Ihe second (Rormula B) was fed to the tadpoles in all the remaining 8eries. ithe following are the proportions in the two formulae: Formula A - 2 parts wheat flour
\& parts alfalfa flour
1 part thyroid.
Formula B - 2 parts what flour
I part alfalfa flour
1 part thyroid
rhis made the proportion of thyroid (and therefore of iodire) less when Formula a was used.
samples of the beef and the thyroids used in the following experiments were submitted to Dr. Thomas G. Thompson of the Department of Uhemistry of tho University of Mashington, Seattie, faahington, for chemioal analysia in order to asoertain the iodino oontent of the same. iincoopt the last two samples, they were all dried and in powdered form, unmixed with angthing else. the two exoeptions, beef soaked in lodine and calf thyroid treated in the seme Fay, wers mixtures of these substanoes with alfalfa flour and Whoat floux, prepared as desoribed under formula a for the preparation of food. In fact they were part of the foods loft over at the end of the experiments. the resulta follows
Beef (used in oontrol) $0.0004 \%$ 1odino
Oalf thgroid (raw) ..... 04 ..... "
Be日f thyroid (3 yrs., raw). . . . . . . 01 ..... "
Beef thyroid (mixed, oo oked). . . . . . . OI ..... "
Plg thyroid. . . . . . . . . . . . OZ ..... "
Dog thyroid . . . . . . . . . . . . 20 ..... "


The above figures apply only to the material used in the following experiments, as there is a wide seasonal variation in the iodine content of the thyroid gland, as shown by the work of soidell and Fonger (1914) and of Cameron (1914 and 1915).
rabulations.

In the rables following, whioh show the reaults of the experiments on the tadpoles and the amount of food and of iodine omm sumed in asoh experiment, the following remariks are of uniform applioation. The letters used for the different experiments and series are to be interpreted as follows: The first letter reprem sents the series of experiments to be considerad as a whole, and the second letter represents the unit (oontaining ten tadpoles usually) Whioh was fed a oertain kind of thyroid during the time the experIment was ranning. Therefore these second letters stand for the epeolfio food fod in each experiment, and are to be interpreted as follows:

A, oontrol fed ordinary beof; $B$, oalf thyroid; $a$, raw beof thyroid; $D$, coozed beef thyroid; $E$, pig thyroid; $F$, dog thyroid; $G$, U. S. P. Parke Davia and Oompany's thyroid; H, U. S. P. Armour mad Co.'s, thyroid; $K$, human thyroid; $L$, buffalo (Bison bison) thyroids M, oat thyroid; $\mathbb{N}$, blaok or olnnamon bear (Urbus americanus) thyroid; 0, flounder (Platiohthys stellatus) thyroid; P, ordinary beaf soaked in iodine; Q, calf thyroid soaked in iodino.

When measuring the living tadpoles before the start of the experiments, thres things ware taken into oonsideration: the total length, the body length and the length of the appendages. The fore lega were invariably absent, and the hind legs were also wanting in inana oatesbiana, but were usually present in both rana pipiens and Hyla regilla, when it oame to the examination of the specimens at the alose of the different experiments, the above items were again taken into wocount, but also the individuala were disseoted and the length of the stomach and of the intestines wore recorded, and also the shape of the stomach and panareas and the presence or absence of the promephros and the bladder. In all the tables all measurements are recorded in millimeters and ull woights in grams.

In oomparing the results of the different experiments with each other it was found necossary to set up aqu more or less arbitrary rule by whioh they could be masured in order to determine the state or stage of metamorphosis reachad by the specimens in the different units at the time they were olosed, and from this judge the rate of development. It was soon found that no universally applioable standard could be taksn, but that each apeoles would have to be oonsidered by somewhat different methods. A discussion of the means used in comparing the different speoimens will be found under the acoount of the experiments on each spedies.

In regard to the tables covering the amount of food and iodine oonsumed, the total amount eaten was obtained by subtracting from the total smount fed the amount removed each day and afterward
dried on filter paper. 'The total amount of iodine eaten was ascertained from the ohemical unalyses of the different foods used. In order to obtain the amounts eaten per day it was necessary to heve scme uniform time measure so as to caloulate how long each experiment had run when compured to the remainder under disaussion. This time measure unit was obtained by adding the number of days each individual in a single oontainer or experiment lived, and then dividing this number by the number of individuals in the experiment, thus giving the uveruge length of life, or the total number of days there was a full yuota of apecimens In each experiment. An effort was made to give the tadpoles as much as they would eat, but no more.
with some indivuul exoeptions, development of the fore legs is generally indioutive of a ohange in the shape of the stomach and panoreas from that of the tadpole to that of the adult. Also, a similar statemont oun be ma regarding the presence or ubsence of the pronephros and the gall bladder, the former disappoaring and the latter beginning to ahow a short time before the fore legs push out. In the tabulation of the results of the experiments these iterns have been onitted, but it is assumed that the above statements will be borne in mind when considering the results.

All the photogreqphs were taken of spocimens that had been propared in formaline for some time, Where only one from eaoh exm pariment is shown (series A, B and 0), a typioal or average sized speoimen was used. In the osses where the entire experiment was photo-
19.
graphed, they were arranged in the order of their death, unless there was no variation in this, the ones dying first being placed on the left ond of the row. If a spoimen was lost in any way, i, $\theta_{0}$, oom pletely eaten by the other tadpoles before his death was alsoovered, a ring was placed in the seriers to fill the vacant place. If a speoimen was dried up or damaged so that it could not be used in its proper place, a small lead alug was substituted. All tha photographs are natural size.

## EXPIRTMEMTS ON RANA CATESBIANA.

ihhree series of experiments, $A, B$ and 0 , were performed on the tadpoles of frana catesbiana. all of these were oarried on at Washburn vollege, Z'opaka, Kansas, during the jear 1920. As stated above, two objects were in view in running these experiments. tibe first of these, shown in the results obtained in all three of the series, was to find out whether or not the feeding of different kinds of thyroid would heve identioal effeats on the rate of metam morphosis of the tadpolas, other conditions being equal. The seoond objeot was to ascertain what effeot, if any, temperature had on the rate of metamorphosis of tadpoles when fed the different kinds of thyroid, other conditions being the seme, This latter ontailed a oomparison of series $A$ with series $B$, the former being oarried on in a heated room and the latter in an unheated one.

Both of these rooms ware looated in a stone building with exoeptionally thick walls, thus allowing for a minimum ohange of temperature inside in response to external ohanges. The unheated room (containing experiments B) was located on the third floor. It was spacious and well fighted and ventilated from the north am west. The other room, in which series a was oarriod on, was direotly below the above mentioned one on the second $\mathrm{Plo0r}$, and was heated with steam It was generally drier and leas well ventilated than the uppor unheated room during the winter months. When weather conditions ohanged

## 21.

so there was practically no differenoe betweon the temperatures of the two rcoms, series $B$ was brought down to the secand floor raom, and fran this time (Juno I) on, both series wore finished in this room, then the cooler of the two.

Whe extremes and means of temperature for the two roms ure show in rables $I$ and $1 I$, the former being that for the una heated room in whioh series $B$ was oarried on, ard the latter being for the heated roon where series A was plaqed. All the temperatures are recorded in contigrade,

Oomparim the tamperatures of the two rooms, there was a oonstant and rather marked differenoe betwoen them from the atart of the reaord up to May 28 , when they began to ran praotioally the same. ithe fact is, the comparative phase of series $A$ and $B, 80$ far as differenos in tomperature was oonoernod, was olosed Juno 1, after the reoorded temparature of the two rooms had beon praotioally the sams for four days, as it was apparent that it was no longer posaible to obtain a marked differenoe in this respeot between the two rooms without apparatus or arrangements not available.

For the month of February, the unheated room ranced from $4,0^{\circ}$ to $13.5^{0}$ cooler than the heated, With an average differenoe for the month of $8.8^{\circ}$. For Maroh, the extremes of differenos were for the unheated room from $1.5^{\circ}$ warmer to $14.5^{\circ}$ colder, with an average of 6. $4^{\circ}$ colder. Eor April it variod from $0.5^{\circ}$ to $12.0^{\circ}$ colder with an average $6.4^{\circ}$. For hay the unheated room was from $1.0^{\circ}$ warmer to $7.26^{\circ}$ oolder than the heated, with the average at $3.2^{\circ}$. The un-
22.
hated room averaged b. $\dot{¿}^{0}$ oolder than the heated room for the entire months of February, Harch, april and May.
lhe containers used in series $A, B$, and 0 were ordinary battery jars of approximately 3000 o.0. oapaoity. They were filled to within an inch and a half of the top, and were marked on the outside so that the amount of water placed in them each day was practically identiaal.

Hegarding the method devised for determining the relative state of metamorphogis reaohed at the time the different experiments were olosed, undoubtedily all of the parts measured, that is, total length, length of body, of hind legs, of fore legs, of stomach and of intestines, ure of more or less importance, but it was early found there was some fluatuation in total longth and in the longth of uppendages due to individual variations. at the same time it was se日n that there was much less disorepanoy between individuals from the same units as to body, stomach and intestinal lengths, but that out of these three, the more oertain measuremente could be taken on the body and on the intestine. If the experimente in a single series were olassified acoording to length of intestine, planing the unit with the speoimens having the shortest intestines at one ond of the list as those moat nearly developed into frogs, and placing the experiment with the spocimens having the longest intestines at the other end, indioating that thoy had passed through the least development, it was found that with rare exooptions the experiments were listed in the sume order as if each item of the measuremente

Table I
Extremes and means of temperature in unheated room, 1920.

| Month | Lon |  | High |  | Average |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A.M. | P.I. | A.H. | P. H. | A.M. | P.M. |
| February | 6.0 | 5.5 | 18.0 | 19.0 | 12.0 | 13.5 |
| March | 3.0 | 6.0 | 21.0 | 22.5 | 15.0 | 13.3 |
| April | 5.0 | 8.0 | 22.0 | 20.0 | 14.5 | 15.8 |
| Mag | 16.0 | 17.5 | 24.0 | 27.0 | 19.9 | 21.9 |

Tarle II
Extrewes and means of temperature in heated room, 1920.

| Month | Lon |  | High |  | Arerage |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A.M. | P.M. | A.M. | P.M. | A.M. | P. M. |
| Fetruary | 17.0 | 17.5 | 27.5 | 27.0 | 22.2 | 21.5 |
| March | 15.0 | 17.0 | 26.0 | 25.0 | 22.1 | 21.9 |
| April | 14.0 | 17.0 | 28.0 | 25.0 | 21.5 | 21.6 |
| Mag | 20.0 | 21.0 | 26.0 | 27.5 | 24.0 | 24.2 |
| June | 21.0 | 22.0 | 29.0 | 30.5 | 25.1 | 26.8 |
| Ju1y | 21.0 | 23.0 | 31.0 | 34.0 | 26.9 | 28.7 |

was ranked and oounted. However, the length of body must be conbidered as of equal importance to the length of intestine, and their comparative relationship or ratio to each other was finally taken as the best oriterion for judging the atage of metamorphosis reachod by the several experiments, UP course, this applies only when comparing individuals or groups of the same species.

In these same comparisons, however, one other factor besides the neasurements of the different parts must be taken into socount. that is, the date of death of the apeoimens, or, in other words, the length of time the experiment ran. it is evident that if all measurements were equal ut the olose of two parallel experiments, the specimens reaching this state of development in the shorter time, i.e., dyines the sooner, would be considered as the more advanoed. Faking this fact into consideration, it was deoided that the best measure by whioh to judge the state of metamorphosis reachod was to use the number resulting from a multiplioation of the ratio between the length of the intesting to that of the body by the number of days the experiment ran us the oriterion. In other worde, it pas assumed thut $\frac{4}{b} \times 0=y$, where a oyuals length of integtine; b equals length of body; $c$, the number of days the experiment ran; und $\bar{J}$, the atage of metamorphosis reaohod at the end of the experiment, is a short intestine and a short body indioate an advanced stage of metamorphois, and a amall number of days during whioh the experiment lived usually denotos a rapid rate of developnent, it is erident that the smaller the number $y$ is the more frog-like the specimen conoernod must have been.

The mothods of oare and of feoding are desoribed above. Iho food for series A and $B$ was prepared under fomula A, while that for series 0 was mixed under formula $B$. The results of the three series of experiments ure discussed below.

SERIES K.
jeries $二$ was started with eighty bull frogs (Rana oatesbiana) on February b, 1920. ihese were divided into eight groups of ton, and each group plaoed in a single container, tho room in whioh these experinents were carried on was heated until fune 1 , when the heat was turned off for the remuinder of the gummer, mbe measurements at the beginning and at tho olose of the experiments are shown in rable III, and the umounts of food and lodine eaten are recorded in Table IV.

At the beginning of the experiments the specimons averaged very noarly the same in both total length und length of body, there beling no hind legs visible in any individusi. At the olose they arrunged themselves into well defined groups, the firgt of which oomprised the first $I I$ ve (AM, $A B, A O, A D$, and $A K$ ) and the seoond, the remaining three units (AF, AG und AH), in the firat group ovidentIy the most robust speaimens wore in $A B$, as this experiment loud in total und body length und also in length of intesting, und was a $0108 \theta$ second in hind leg and stomah longth. Nhe order of these rirst five, beginning with the largest, was $A B, A \bar{d}, A, A D$ and $A B$, the lattor being as distinotlg at the bottom of the list as AB was
at the top, but the other three being hardly distinguishable from each other, the second group consiating of the last three experiments was not hard to arrange in a sequenoe, the order of which was AH, AG and AF. The AF spocimens wore the smallest and showed the most marked development of the appendages and ahortening of the in testine, all three of which features point to the most adranoed stage of metamorphosis, taking the standard set for determining the stage of metamorphosis, i.e., the product of the length of intestine times the number of days the experiment was oarried on, and oombining the two groups, the units fall into the following order, beginning with the specimens ahowing the slowest metamorphosis and passing to the moat rapidiy developing ones; $A B, A C, A A, A D, A E, A B$, AG and AF.

Turning to Table IV, whioh shows the amount of food and iodine consumed by the tadpoles in each experiment, it is evident from the amount of uneaten food removed that probably the first five experiments ( $A A, A B, A O, A D$ and $A E$ ) wero under fed if anything, as they ran for approximately 180 days in each oase, and get the maximun amount removed in any experiment was only .065 grams in AE. No record was kept of the amount of food removed in AA (control), but 1t was a amall amount only. In the last throe unita ( $A F$, $A G$ and $A H$ ) it would seom as if an excessive amount of the food was not eaten, and therefore was removed. In fact, the firat five units (AA, AB, $A C, A D$ and $s i x)$ were fed approximately ten times as much as the rem maining three (AF, AG and $A H$ ), and st the same time they ate practioally all they ware fed, wile the last threa mentioned left a
27.
Tatle III

|  |  |  | Refore |  |  |  |  | ter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Rods | $\begin{aligned} & \text { Hind } \\ & \text { les̃ } \end{aligned}$ | total | Rody | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Fore Rt. | $\begin{gathered} 1 e 5 s \\ \text { L. } \end{gathered}$ | Stomacn | Intes tine |
| AA | Control | 50́. 1 | 23.1 | - | 64.0 | 25.0 | 1.8 | - | - | 7.0 | 272. 4 |
| $A B$ | Calf | 52.8 | 23.2 | - | 68.3 | 26.6 | 1.3 | - | - | 8.4 | 344.8 |
| AC | Reef ran | 55.1 | 23.4 | - | 65.4 | 26.0 | 0.6 | - | - | 9.1 | 230.7 |
| AD | Beef cooked | 54.5 | 22.9 | - | 65.0 | 25.0 | 3.3 | - | + | 8.5 | 271.5 |
| A退 | Pis | 54.3 | 22.7 | - | 59.7 | 24.8 | 0.3 | - | - | 7.5 | 224.8 |
| $A F$ | Dos | 54.8 | 22.4 | - | 39.4 | 15.1 | 3.8 | 0.8 | 2.0 | 5.0 | 27.8 |
| AG | P.D. and Co. | 54.6 | 23.4 | - | 32.7 | 16.1 | 3.1 | 0.4 | 1.5 | 4.9 | 35.4 |
| AH | A. and Co. | 55.3 | 23.5 | $\cdots$ | 45.9 | 16.7 | 3.4 | 0.6 | 1.6 | 5.4 | 37.2 |

28. 

|  | Amounts of | d and io | Tat1 <br> in 8 | $\begin{aligned} & \text { e IV } \\ & \text { ries A. } \end{aligned}$ | Onit ụ | , gr |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name | Amt.fed | Removed | Total eaten |  | Days | Paten daily |  |
|  |  |  |  | Food | Ioline |  | Food | Iodine |
| AA | Control | 38.661 | 0 | 38.661 | . 00003 | 179 | . 2160 | . 00000017 |
| $A B$ | Calf | 52.418 | . 058 | 52.3E0 | . 00419 | 180 | . 2909 | . 00002311 |
| AC | Reef ran | 44.748 | . 047 | 44.701 | . 00089 | 180 | . 2433 | . 00000494 |
| AD | Reef cooked | 42.221 | . 033 | 42.188 | . 00084 | 180 | . 2377 | . 00000467 |
| AE | Pig | 32.412 | . 065 | 32.347 | . 00129 | 174 | . 1859 | . 00000741 |
| AF | Dog | 4.750 | 1.101 | 3.649 | . 00144 | 31 | .1177 | . 00004645 |
| AG | P.D. and Co. | 3.509 | 2.243 | 1.266 | . 00101 | 23 | . 0550 | . 00004391 |
| AB | A. and Co. | 5.768 | . 624 | 5.144 | . 00237 | 32 | . 1008 | .00007406 |

large proportion of their food untouohed, is similar condition exiated in all the experiments performed, not only on Rana caterbiana but also on Rana pipiens and Hyla regilla. it the outset of a beries, all the tadpoles would eat readily, but after a ahort time those being fod food containing a relatively high per oent of iodine would seem to stop eating, growing sluggish very rapidy, and as metamorphosia advanced, would lie inert in the bottom of the container. whis always resalted in a deoided difference in the total amount of food esten by units developing with abnormal rapidity and by those passing through the period of metamorphosis at a more normal rate, ithe total amount of food eaten was also ol osely associated with the number of days the experiment ran, so we would expect the firet five (Ad, AB, AC, AD and AB) units to have oonsumed much more than the last three (AR, AG and AH) because the former were fed for from six to eight times as lomg as the latter.

Fegarding the total amount of iodine eaten in each experiment, We find this seme grouping did not exist, but a now one arose. AB was far in the lead with . 00419 grans, followed by AH with .00237 grams. The remainder, with the exoeption of the control, AA, formed a middle group with considerable variation within itself, while the amount of iodine eaten by the oontrol was rery amall. This ohanga in grouping was due partially to the total amount of food consumed, but more to the faat that there was a wide differenoe betwoen the iodine oontent of the different foods, the last three being especially woll provided with it.

When it comes to the yuestion of the amount of lodine eaten daily, the last colum indioates that the three experiments, $A P$, AG and iH, showed approximately ton times as muah lodine eaten daily as any of the others, except in $B$, and they consumed between two and three times as much as that one. The amount eaten in nif, the control, was . 00000017 gram which was very much less than any of the others.

In comparing Tablea LII and IV, that 18 , the condition of the speolmens at the ond of the experiments with the amount of food and iodino consumed, the units arranced themelvos in the following order:

Development (beginning with loast) $A B, A O, A A, A D, A B, A B, A G, A Z$ L'otal food (boginning with mont) $A B, A C, A A, A D, A B, A H, A F, A G$ Total lodim (beginning with least) $A A, A G, A D, A G, A R, A F, A H, A B$ Daily food (beginning with most) $A B, A C, A D, A A, A E, A H, A H, A C$ Daily lodime (beginning whth least) AA, $A D, A O, A F, A B, A O, A F, A H$ It is ovident that in this earies thore was a more or less Olose correlation anoms all these iteas with the notable exoeption of experiment $A B$. Next to this, there was the most variacion from the developmontal order in tho total amount of lodino eaten by eaoh unlt. With alight variations, in all the oases exoept theoo, we have the least development assoolated with the largeat total and daily monnts of food oaton, and the least amonnt of lodino onamod daily.

In serioa i it appours that the total amount of iodina oonsumed had little to do with bastenings metemorphosin, because the
experiment showing the least developmental ohange (AB) consumed the greatest total amount, while is oonsumed less than half as much as AH, and yet ig reachod a stage of development in twenty-three days whioh was practioolly the same as that reachod by in at the end of thirty-two days. In comparing the rate of development with the umount of daily iodine oonsumption, however, it will be seen that there was a very olose correlation, with the single exaeption of AB again,
fhotographs of typioal spocimens taken fran each of the experiments of series is are shown on plate 1 , figs. 8-15. There was vory ilttle variation among the speoimens of a single experiment.

## GERIES B

As stated above, beries B was run parallel to series A under identioally similar oonditions exoept that from rebruary 6, the date of starting, to June 1 the former was oomuoted in an unheated room While the latter was oarried on in a room aupplied with haat and henoe somewhat warmer and drier, The detaile ooncerning this variam tion in temperature are given in Tables I and II. The objeot in carrging on geries $B$ under different oonditions was to asoortain whether or not temperature had any effeot on the rate of metamorphosis of frogs fed the different kinds of thyroid. int the same time these experiments were used as a obeok on series d. The equipmont used and the material fed ware identioal with those of series A.
32.
Tatle $\downarrow$

| Summary of measurewents in series $B$ before and after feeding. Lensth in wm. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Before |  |  |  |  | After |  |  |
| No. Nawe | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Fore legs Rt. L. | Stowach | $\begin{gathered} \text { Intes- } \\ \text { tine } \end{gathered}$ |
| BA* Control | 52.5 | 22.9 | - | 61.6 | 24.9 | 1.3 | - - | 3.3 | 236.6 |
| BB* Calf | 52.3 | 22.1 | - | 61.9 | 24.5 | 1.3 | - - | 3.0 | 257.9 |
| BC Beef ran | 53.7 | 22.6 | - | 50.4 | 24.1 | 1.2 | - - | 3.1 | 227.3 |
| BD Reef cooked | 54.3 | 23.2 | - | 62.2 | 24.6 | 1.2 | - - | 7.5 | 282.9 |
| BE Pis | 52.6 | 22.9 | - | 55.6 | 22.6 | 0.2 | - - | 7.2 | 212.3 |
| BF Dos | 53.0 | 22.9 | - | 40.3 | 17.7 | 5.1 | 1.6 2.5 | 万. | 35.5 |
| BG P.D. and Co. | 54.4 | 23.4 | - | 35.1 | 16.7 | 2.6 | 0.71 .3 | 4.5 | 37.8 |
| R日 A. and Co. | 52.6 | 22.4 | - | 37.0 | 16. 3 | 4.6 | 2.22 .5 | 4.6 | 30.9 |

* After series $B$ was well unjer way it was iiscovered that a sinsle tadpole in $B A$ and another in $B B$ showed a remarkably rapid development of fore and himj legs, this evidently being due to these tho specimens being in their second jear of growth. Their weasurements are not included in this tatle.

33. 

Tatle VI

| No. Name |  | Aut.fed | Removed | Total eaten |  | Days | Faten daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Food |  | lodine | Food |  | Todine |
| BA | Control |  | 37.680 | . 025 | 37.655 | . 00003 | 130 | . 2092 | . 00000017 |
| PB | Calf | 44.131 | 1. 613 | 42.513 | . 00340 | 180 | . 2362 | .00001889 |
| RC | Beef raw | 35.965 | 1.619 | 34.344 | . 00069 | 172 | . 1997 | . 00000401 |
| ED | Reef cooked | 37.495 | 1.002 | 36.493 | .00073 | 180 | . 2027 | . 00000406 |
| RE | Pig | 24.352 | 1.636 | 22.716 | . 00091 | 105 | .1376 | . 00000552 |
| RF | Dog | 7.852 | . 333 | 6.954 | . 00279 | 32 | .0349 | . 00003402 |
| FG | P. D. and Co. | 7.178 | 4.590 | 2.588 | . 00207 | 69 | . 0375 | . 00003000 |
| B: | A. and Co. | 10:344 | 1.691 | 8.653 | . 00393 | 90 | . 0951 | . 00004422 |

## 34.

I5: stuafinfe aiblo $v$, which sliows the meagurements in sories s botir bofore and aftor the expuriments wore gerfomed, it will bo goon thiat almust overythinf trut was gaid conooming tho similur Fifurom in corios $A$ (as shom in rable all) can be ropeatod here with silfit variation. itho apecimons wore very uniform in sime at tho onxalme ef thoso axieriments, with no himl legs visible in any onso, but it was oocn dibocvered that two specimons - one in St ind motrar in $4 B$ - wore ovidently a your oldor than the remaininti oriea. ahate wora loft in the units and doveloped into typloal younf froga, tho tall boins ontirely abeorbod, Horovar, thoy foro not donsiderad in getting the averifemaurements of those ex-


An coourrod in sarien in, the oxporimonto acain firoup thomsolves iutu twu divialang, tho ilrmt fivo boing in the one whora the loat matimorghosia ooourrod and tho last threa bolug in a group where motmuorphoais was wo Il advanoed. Again taking tho produot of the longth of Intestine times tho numbor of daya as the oriterion for Juderias tho atato of dovolopant, it will be soon that tho order, bow sinning with the oxperimenta ohowing tho least devolopmont, was as


Oomparing the etato of developent at tho oloso of the experim mants with the mounts of food sma loling oonamed us ahown in rable vi, wo find the followinct rolationahlpe:

Dovologeant (boginnlaf with laast) BD, 3B, BS, BC, BE, BO, BP, BK,

spotal iodine (beginning with loast) $\mathrm{BA}, \mathrm{BC}, \mathrm{BD}, \mathrm{BH}, \mathrm{BG}, \mathrm{BF}, \mathrm{BB}, \mathrm{BH}$. Daily focd (beginning $W i t h$ most) $B B, B A, B D, B C, B E, B H, B F, B G$. Daily iodine (boginning with least) $\mathrm{BA}, \mathrm{BC}, \mathrm{BD}, \mathrm{BE}, \mathrm{BB}, \mathrm{BG}, \mathrm{BE}, \mathrm{BE}$. mgain we find, as in series $A$, a olose oorrelation betwoen all these items, with the exdeption of experiment BB, which showed a markedly large amount of lodine consumed, both total and daily, oompared to the slow rate of metamorphosis of this unit. there was also oonsiderable ohanfe of positionijof the units in the total amount of fodine eaten from that found in the line indioating rate of devalopmant. These same two exceptions ooourred in series A. Again we oan say that with scme variations wo had the least dovelopment asaociated with the largest tcal and daily amounts of food eaten and the least amount of lodine oonsumed daily.

Photographs of average spooimens from asoh of the unita in this series are shown on rlate $I$, figs. 16-23, The variation among the speoinens in a sirgle experiment was very slight with the exm coption of the two ouses mentioned above.

In the summary on experiments performed on Rana oatesblana will be found some further disoussion of this aerios, and also a oomparison of it with series a as to effect of temperature.

## BERTES 0 .

The expariments recoided under series 0 were on Rana oateabiana, and were atarted on June 15,2920 , and were olosed dugust 4. Tha
ocnditions under which these experiments wers aarried on were very nearly the same as those for series $A$, that is, they were in the same room, were placed in the same size containers, and the water used was the same. The average temperature for the total time was naturally several degrees warmer in the oase of $U$, due to the season of the year. ithe specimens used were from the same lot as for both series is and B. ithe total number of spocimons used pas fifty, distributed ab follaws: $\mathrm{CA}, \mathrm{E}$; $\mathrm{UB}, \mathrm{UO}, \mathrm{OD}$, and $\mathrm{Us}, 6$ each; $\mathrm{UF}, \mathrm{CG}$ and UH, 7 each. zhe focd used had a less lodine oontent than that in sories $A$ and $b$ as it was propared under formula $B$ instead of formu1a. A as in former cases. Whe purpose of the expariments was to oheok on the results found in the two former seriea. The measurem ments taken at the beginuing and 0 lose of these experiments and the food and iodine eaten ure reoorded in Tables VII and VIII. At the beginning, the speoimens were somewhat larger and more mature than was the oase at the start of oither $A$ or $B$, but at the olose their development had raachod very nearly the aame stage as the corresponding previous ones, The grouping at the olose again showed the two olasses, the more mature inoluding the three last groups, and the least developed, the first five. Judged by the aame standard as used in previous oases, their arrangement in the order of the state of their develoment, beginning with the more tad-polelike, follows $O E, O D, O B, C O, O A, O B, O B$ and CO. Whe oorrelations between the atate of development at the olose of the experiments and the amount of food and lodino oonsumed (Nable VIII) follow:


#### Abstract

Development (beginning with least) UF, UD, UB, CC, UA, OH, UF, CG. Hotal food (beginning with most) $C D, C A, O C, C B, O B, C R, O H, C G$. Total iodine (beginning with least) $\mathrm{CA}, \mathrm{CO}, \mathrm{CD}, \mathrm{CK}, \mathrm{UH}, \mathrm{OF}, \mathrm{CG}, \mathrm{OB}$. Daily food (beginning with most) $O A$, UC, UD, OF, OB, OF, OH, OG. Daily lodine (beginning with least) $O A, O D, O C, C E, O B, O H, O P, C G$. As in former series, we had a wide variation from the expeoted in the oase of UB regarding both the total gmount of iodine consumed and also in the daiby consumption of the same, $O A$ and $O G$ also showed rather wide variation in the same respent. In fact, there appeared to be here less uniformity botween the stage of developmont and the total iodine ocosumption than oocurred in either of the previous aeries.


In oxamining table VIII, it will be seon that muah saallar amounts were fed in the experiments of this series and at the same time very littio uneaten food was removed, the latter faot indicating, at least in the first five units (OA, $O B, O 0, O D$ and $O A$ ), tho probablility of underfeeding heving ooourred. On the other hand, the short length of time this aerigs ran acoounts for the mainess of the total consumption of food. The actual maximum pariod oovered was fifty days, but this is reduced to thirty in the table beoause the number of days there recorded prosupposes ten apooimens in oach unit, and there were lers in this series from the beginning. One other factor not shown in the tables probably enters into these resulta, eapocially in the very rapid metamorphoais of the speoimens in units CF, UG and OH. This factor is temperature.
Tatle VII

| No. Name |  | Before |  |  | After |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { less } \end{aligned}$ | Fore Rt. | $\begin{gathered} \text { lejs } \\ \text { L. } \end{gathered}$ | Storach | Intestine |
| CA | Control | 57.1 | 24.5 | - | 62.2 | 25.6 | 2.3 | - | - | 7.4 | 218.1 |
| CB | Calf | 54.9 | 23.9 | - | 58.9 | 23.7 | 1.2 | - | - | 3.2 | 255.0 |
|  | Reef ram | 50.8 | 21.8 | - | 59.5 | 22.3 | 1.8 | - | - | 3.2 | 227.0 |
|  | Beef cooted | 55.8 | 23.7 | - | 62.6 | 24.1 | 0.3 | - | - | 7.1 | 256.4 |
| CI | Pig | 55.1 | 23.4 | - | 58.8 | 23.1 | 0.9 | - | - | 3.3 | 265.6 |
|  | Dog | 57.1 | 25.0 | - | 34.4 | 17.1 | 2.9 | - | 1.1 | 6.0 | 39.6 |
|  | P.D. and CO. | 55.6 | 23.9 | - | 29.7 | 16.9 | 2.3 | - | 0.8 | 5.6 | 36.9 |
| CH | A. and Co. | 50.9 | 22.0 | - | 40.3 | 16.6 | 1.7 | - | 0.4 | 5.0 | 50.6 |

年atle VIII

| No. Haze |  | Ath.fed | Reeoved | Total caten |  | Dags | Taten taily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pood |  | Iodine | P001 |  | Iodine |
| CA | Contral |  | 3.433 | . 022 | 3.411 | .00001 | 18 | . 5257 | .00000053 |
| Cf | Calf | 7.550 | 0 | 7.560 | . 20075 | 30 | . 2520 | . 00002533 |
| CC | Reel ran | 8.218 | 0 | 3.212 | . 00021 | 24 | . 3424 | .00000375 |
| CD | Feaf cookes | $9 . C 42$ | . 016 | $9.02 t$ | . 00022 | 36 | . 3007 | . 00000733 |
| CE | Pis | 7.613 | 0 | 7.613 | .00038 | 30 | . 2533 | .00001207 |
| CF | Dos | 1.055 | . 040 | 1.025 | .00051 | 6 | .1703 | . 00003500 |
| C 3 | P. D. and Co. | 0.753 | .096 | 0.857 | -000és | $\overline{5}$ | . 1314 | . 00013200 |
| CH: | A. and Co. | 0.962 | .132 | 0.330 | . 00043 | $E$ | .1383 | .00003000 |

This series was ourried on during the summer months, and the average heat was oonsiderubly higher than occurred in oithar series a or $B$. Hhe arerage morning temperature for the last half of June was $25.1^{0}$ and for July, $26.9^{\circ}$, making the average morning temperature $26.3^{\circ}$ for the entire series. The utternoons uveruged slightly warmer, being $26.5^{\circ}$ for the lust balf of fune und 28.70 for July, making the totul uverige for the afternoons $28.0^{\circ}$. From rables I und 11. It will bo seen thent the averages for serios $A$ ware $23.6^{\circ}$ for the forenoons and $24.1^{\circ}$ for the afternoons, while for series $B$ they were $19.0^{\circ}$ and $20.0^{\circ}$ respectively.
ithe figures (24 to 31 ) on plate If show uverage speoimens
takon from the eight experiments in serios 0 . There was praotically no variation among the individuals in a single unit. Further discussion or this series will be found below.

## 

In oonsidering the atage of develcment reachod by the specizans In the difforent experiments, it ia neoessary to compare the rosults as show in the soparate serios, whose are show in fig. $]$ where the letterg ropresent the parallol oxpariments in whioh tho game food was fox, and the numbor stand for the relative rate of matamorphoais of tho alfferant oxporiments, the highest belng the most fully doveloped, and therofore having had tho most rapid rato. the avorage for the three sories is also shown thoro was some variation betpeon all threo of the series, this being the groatest In the oase of those fod on ple thyroid (B), followod by those fed on cooked boef thyroid (D), while the dog thyroid expariments ( $F$ ) nowed the least difforance.

While many of the conditions under which those three sorios were oarried on wer identioal, there ware some noteworthy differences. Cone of those was the matter of the nature of the pood, series $A$ and $B$ boing fed food prepared under formula $A$, whilo the food usod in sories $C$ was propared undor formala B. thant mant that the first two serias had a food of atromar thyroid and tharom fore of lodino content, but an thit was undform far all tho oxperimonta in a aerieb, it would havo no offoot on tho domparison of sorisa $U$ with the other two, Howaver, it would tand tn makn the differenoes botwern the rates of matrmorphosid in the


Series A
Series R ————Series C
Average

Fis. 1. Experiments on Rana catestiana. Graph showing the comparative stases of tevelnpaent reached in the experin ments comprising series $A, R$ anf $C$; also the averase for the three serias.
same serle日 more marixed. A seoobd fuotor that was quite different in the three series ${ }_{n}{ }^{\text {as }}$ that of temperature, and in addition the specimens In aries 0 were five months older at the time of sturting than those In either series A or B. Anothor fator entering into at least parts of all three aeriea was that perallel experiments in different series were ourried on for different langths of time, due usually to tho different rates of development. ill of the experiments in series 0 were of shorter duration than the oorresponding ones in series $A$ and $B$. Beaiden these there was some rariation in the way the different speoimens reated to the foeding of the same material, and in axoe units chazoe apparently threw together groups of somewhat physiologically elmilar individuals with the result that the total of their reactiona differed in moasurable quantity from units fed the samematerial but in other series.

The atages of development of the three series $A, B$, and 0 , taken as a Whole, ariange thomselves in the following order, beginning with the one that how the least change: $B$, fod oalf thyroid; $D$, fed oocked beas thyroid; $O$, fod raw beef thyroid; $A$, control and s, fod ples thyroid (tied): $B$, fod armour and Co.'s thyroid; $G$, fed Parke Dapis and Co.'s thyroid: ir, fod dog thyroid.

As atated before, series A and B were oarried on under different temperature conditions during the first four monthe for the purpose of detemining whether or not that faotor would ause any mariced variation In the effoot of fooding the different kind of throid. During this period experiments $F_{1}$ Gand $H$ in both series died, and so a oomparison of thom introduces no new faotors. In the case of the other five, A, B,

0 , $D$ and $x$, however, while the first fow months were oarried on under quite different temperature comitions, the last two were apent in the seme room under identical oifromatances. This would naturally be very likaly to cause some obliteration of any differenoes that might bave developed between the two series during the first part of the experimente. Firgt, comparing experiments ay, $A G$ and $\dot{A} H$ with $B F, B G$ and $B H$ rospoatively, it will be seen from l'ables III and $V$ that the spooimens in eanh instance averaged very noarly the same in total size and size of various parts both at the beginning of the work and at its olose, But it will be noted by rables IV and VI that tha unita BF, BG and BE lived for approximately threo times as lomg as did their oompanion oxperimentes In sorian A. In othar words, it toox tham three timas as long to reaoh the arase atage of developmont. rrom these acmo tables, we find that these thre unita of aeries B ate approximately twion as moh total food and total iodimeas $\dot{A} F_{\text {, }} A G$ and ill, but due to the longer time they ran, thoir dally conauption was only aboat two-thirde that of the latter. 2ruming now to the temperature of the two series as ahowa in Tables I and II, during Hobruary and Marah, the only montha daring whioh experimenty $H$, $G$ and $H$ of both series ware running paraliel, the differance between the rooms in whioh serles $A$ and gerien $B$ were being man was during fabragy, $9.8^{\circ}$ for the moraing and $8.0^{\circ}$ for the afternoon, and during yaroh, $7.1^{\circ}$ for the morning and $8.6^{\circ}$ for the afternoon. In othor worde, aoxion B wan $k$ paptor a tamperature of silghtly loss than $8, B^{\circ}$ colder than aerion in during the time those unita fed $F, G$ and A wera funning parallol.

Oomparing experiments $F, G$ and $H$ of these two sirios, then, all oonditions axoopt temperature being the ame, in viow of the faot that
the same atage of development was reached in the corresponding units Of each serios, it would se日m that a lowering of the temperature about $0,5^{\circ}$ oaused a slowing up of the metabolio processes to approximately onerthird of what they were when the tadpoles were kept in the warmer place.

Vers aimilar results to the above are shown in the thres last units ( $F, G$ and $H$ ) of series $O$ when they are compared to the same threo units of series A and $B$. This series was oarried on in the same room as was series $A$, but was not atarted until three months after experiment: AF, AG and AH had been olosed, consequently the temperature was yuite different. The average for Pobruary and uaroh, the time these three of the $A$ series were living, was $22.2^{0}$ fox themorning and $21.7^{\circ}$ for the afternoon, while for June, when the ooxrespondlag units of the $u$ series wore being oarried on, it was $25.1^{\circ}$ for both morning and aftemoon making a difference of $3.6^{\circ}$ in favor of the 0 serien, It will be seon by comparing rables III and VII that the tadpoles in these two corresponding groups of experiments were very nearly the same sise at the start. At the olose, in both series they wore by far the most adyenood, but in series $A$ the tail and body were somewhat shorter and the legs were better developed. also, the stomach and intestine wore shorter in serios A. All of these thinga indioate AF, AG and $A B$ had advanced to a momewhat later stage of dom velopment than had the corresponding unita of seriea 0 when they died.

Two other faotors, both mentioned above, besides temperature wero different in series $C$ to what they wore in series $A$, both of whioh mould favor a more rapid development. ihe piret of these was that those specimen were aix months older than those in aeries $A$ whon it was
started, and the second was that fomula $B$ was used in the preparation of the food for series 0 , while that of series a was prepared under formula $A$, hence the 0 experiments received food somewhat siaher in thyroid. ilso in comparing ilables IV and VIII, it appears that of and CO ate more focd daily than AF and sig respeotively, ond that all three of the 0 experiments $00 n s u m$ mo re fodine daily, the latter oondition being the least marked in the last pair of experimente, $H$. ddmitting that these two faotors hastened in a measurable degree the development of the last thres units in series 0 , it jet seems apparent that the wartuer temperature had considerable to do with the shortening of the period of aimilar developmant to a third of the time taken by seriea $A$. Turaing to the first five experimente in the three series, $A, B$, O, $D$ and $k$, in order to determine what offeot the different temparam ture conditions had on them, a study of pablea III, Y and VII, and Pig. 1 fails to show any miform differences uppifoable to all three series, It is possible, in faot probable, that if these oxpariments had beon ourried on for a suffioient length of time pader different temperature oonditions, they would also have shown that a lower temparature caused delay in metamorphosis when these foods were fod. Or it may be possible that differenoes betweon series $A$ and $B$ were obliterated by their being under identioal (warm) oonditions during the last two months they ore omried on.
yrom the above faotis, it seems afe to oonolude that if fana Qatesblana are fod dog thyroid (E), Paraco Davis and Vo.'s thryroid (a) and Armour and No.'s thyroid (H), all other conditions being similar, a lower temperature will delay the time of metamorphosis. A difference of approximately $8,5^{\circ}$ aussed metamorphoais to be dolayed about three


Stape of develnoment Tmotal food
Total iotine - - - Daily indine...........

Fig. 2. Experinents on Rana catestiana. Graph ahoming the relationship retween the average stase of devalopment reached and the averase grounts of food and iodine consumed in the different esperiaents.
times as long as when the tadpoles were fed the same substancea under warmer conditions. On the other hand, no difference in rate of metrmorphosis was discornible when oontrol (A), calf thyroid (B), raw beef thyroid (C), coaked beef thyroid (D) or plg thyroid ( $B$ ) were fed under similar variations of temperature.
rurning to the question as to what, if eny, relationehip there was between the atage of development attained and the food and iodine ocnsumed, we have this graphioally shown in Fig. 2 whioh is based on the information contained in rablea IV, VI and VIII. The line roprosenting the atage of development reached is that of the average por the three series $A, B$ and $O$. Both the total and daily lodine lines are drawn so that the highor the point is the more there was eaten, while the food line is just the reverse, the higher it is, the less there was ocnsumed. The experiments ure rearranged in order to make a regular curve for the atage of development line. ing total amount eaten is onitted frco the graph beoause it so olosely follows the line for duils food, being one-third of a spao lower for oxperiments 0 and D, but otherwise exactiy the same,
inhere was a olose relationghip between the amount of food, both total and daily, ocasumed and the state of development reached, as these two lines parallel each other qutte olosely through all the experiments. the totul amount of food consumed would necturalify be olosely associated with the longth of time the exporiment was oarried on, but this does not apply to the dalif oonsumption. ithe experimente fed A, control, B, oalr thyroid, 0 , raw boef thyroid, and $D$, cooked beef thyroid, conaumed diatinotiy larger quantition of food than the other experiments, those fed E, pig thyroid, lagging only a short distanoe bohind, whito-tho-lat-
while the last three, $F$, dog thyroid, $G$, Parko Davis and Company's thyroid, and $H$, Armour and compang' B thyroid, were muoh behind in both daily and total oonsumption. As stated before, this lack of food consumption was due to the tadpoles in these three last experiments refusing to eat anything after the first fow days of the experiment, ithey ate as well and probably as much for the first fourth of the time they lived, but after that were seldom seen to at at all; and yat they oontinued to metamorphose rapidly, beooming parm coptably amaler and more frog-like each day, yood consumption in the tadpole is probably dependent upon the oondition of the alimentary oanal, and this in turn serves as a measure of development. Just as the alimentary traot shortens so does the ability to eat diminish. this is correlated with the natural faot that must take place as the animal undergoes ohanges from adaptation to one kind of food to adaptation to another. In the experiments mentioned above ( $F, G$ and $K$ ) this ohange in the physiologioal oondition of the alimentary oanal was evidentiy due to the excessive amount of lodine oontained in the food.

Yhen it oomes to the question of whether or not there was any oorrelation between the stage of developant reached and the amount of lodine oonsumed, a first glanoe at irig. 2 might lead one to aay there was none, but a oloser study disproves this atatement.

Wirst, taking up the total amount of iodine consumed: this naturally will be related to the total amount of food eaten and to the per oent of iodine in the partioular food, 'Hhis aocounts for the decidediy large amount of iodine eaten by experimentis $B$, fed aif
thyroid, and for the very small amount in experimenta $A$, oontrol. Pith these two exceptions, the total iodine line followe more or less olosely the developmental line, but not yuite as olobely as does the food line.
d'urning to the daily amount of iodine consumed in each oase, here we find that experiments $A$, control, still had the least oonsumption, but experimenta $B$ had dropired from the highest to the fifth place. However, both is and $B$ show the most marked variation from the developmental line here as in the oase of total iodine oonsumed. But on the whole, the daily iodine ine is oonsiderably Oloser to the developmental line throughout its length than the total iodine line is, and with the exoeptions of experiments $A$ and B, its points apgroximate the developmental line oloser than the food line does.

Why experiments A showed a high degree of developmentet oorm related with a large amount of food and a law amount of iodine eaten While experiments $B$ showed a low state of dovelopment correlated with a large amount of food and a high amount of iodine consumed is not olear. These were both exceptions to what seans to be the general plan of more development being associated with amall amounta of food and large amounts of iodine eaten, negarding the bexperimenta, it Ia possible that the age of the thyroid fed was reaponsibla, as all the remainder were fed thyroids taken from mature animals while that used in the units $B$ was taken from oulves, inhis would mean that either the iodine content of the oalf thyroid was in oombination with other things whioh made it leas available for use by the tadpoles,
61.
or some element usually associated with the lodine was less abundant, or some repressing (so far as the iodine or iodine-oontaining element is concerned) substanoe was in the young thyroid, but not present in the old.

## EXPERIMHENSS OS RAKA PIPIENS

The experiments on Hana piplems were carried on daring the sumor Of 1920, the first being started June 20 and the last one olosed July 28. The first five serios, $D, B, B$, $G$ and $H$, were run for the parpose of determining the effect of feoding different kinds of thyroids to tadpoles of this species and recording the variations, if any axisted. series K and L were perrormed in order to determine whether or not the amount $O f$ water in whioh the speoimens were kept during the experiment had any effeot on the results, Thay were all conduoted in the room in Which the previously desoribed series $A$ and 0 were performed, all the conditions being identioal with the exaeption of the food formula and the sixe of the oontainers. The food wai prepared under formula $B$. As the tadpoles of hana pipiens are much smaller than those of funs oatesbiana, maller dishos were used, Those for asiles $D, \mathcal{A}, \mathcal{F}, G, H$, and K were about five inobes in diumeter and half us deop, oroh being filled with appraximately 200 0.0. of water. For series $\mathrm{f}, \mathrm{larger}$ shallow dishes eight inobes in diameter were used, in which 10000.0 . of water was placed.

The tadpoles of liana pipiens develop into frogs during the one season, Jonsequently a shorter $t$ ine was nocessary to complete a series Of experimentr. It will bo noted that most of the spooimens used had rudimentury hind logs present when the experimenta atarted, a condition not true in kans outesblana.

In determining the atage of developant reached in the different experiments, it was found thest the mothod used in the experiments on the bull fror was not sutisfuctory in the asse of riana pipions, Oonse-
quently a new method was devised whioh based the detemination largeIf on the ratio between the body length amd leg length, but also took into consideration the length of time the experiment ran. That is, $\frac{a_{4}}{b} \mathrm{o}=\mathrm{y}$, where a eyuals body length; $b$ equels hind leg length; $a$, number of days the experiment ran; and $y$, the stage of development reaohed. the smaller $y$ is, the more advanoed is the atage of metamorphosis, Uf the several leg measurements, those of the hind legs were ohosen because after they start to develop they grow continuously during the life of the tadpole and are always in plain sight and easily measured. In somb few instances other measurements were also used, especially the intestinal longth and that of the fore lega, but these were only acnsidered when the reaults from the above formuIa were olose. Bach experiment, excepting those in eeries F, consisted of tem speaimens, making a total of eighty tadpoles usod in each series, The results are disoussed below.

## 8KRIES D.

Sorias $D$, on fiena plpiens, was started $J$ mon $20,19 \% 0$, and whs olosed July \%o. ihe results of these experimenta are ohown in i'ables IX and $X$.

At the olose, the experiments foll into the following order when olassified as to stage of dovelopment reaohed, the one showing the slowest rate ooming firats DU, DA, DD, DB, Dss, DH, DF and DK. These arranged themselves into two distinot groups aimilar to those found in the provious series, the first five being distinatiy lebs developed than the last three. raking up the iteans enworated in rable $X$, their relation to the order of daveloponent is as follows:
54.

65.
Tatile $X$

| No. Name |  | Amt.fed | Removed | Total esten |  | Days | Caten daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pood |  | Iodine | Foot |  | Iodine |
| DA | Control |  | . 727 | . 045 | . 632 | . 000001 | 25 | . 02723 | .000000027 |
| DR | Calf | . 276 | . 020 | . 736 | . 000074 | 23 | . 03200 | .000003217 |
| DC | Beef ram | . 557 | . 035 | -522 | . 000013 | 27 | . 01933 | .000000481 |
| DD | Reel cooked | . 031 | . 034 | -597 | . 000015 | 27 | . 02211 | . 000000556 |
| Dg | Pis | .713 | . 010 | . 703 | .000035 | 26 | . 02704 | . 000001346 |
| DF | Dos | .138 | . 051 | . 087 | . 000044 | 3 | . 01038 | . 000005500 |
| DG | P. D. and Co. | . 093 | . 057 | . 036 | . 000036 | 7 | . 00514 | . 000005143 |
| DH | A. and Co. | . 099 | . 050 | . 049 | . 000028 | 11 | . 00446 | . 000002561 |



At the atart $O f$ the experiments, the apeoimena of the different units averaged very nearly tho same aizo. Ihose in DA worn silghty larger than the rest, while those in $D D$ and $D E$ were somaphat smaller, but these differenoes were hardly great emough to effeot the rasults as shown by the faot that the unit DE forged ahead into fifth place by the end of the experiments in spite of this initial handioap.

Regarding the total amount of food conamed, as ahorn in Table X, there was not a great doal of differemoe anong the firet five oxperimantis, $D A, D B, D C, D D$ and $D E$, and the same om bo said of the daily consmption, iho unit $D O$ ate the last in both instanoss, whila DB used the most. isen if the difference is not great botween theae two, jet it mugt be taicon into ocnsideration whan tha fato of matamorposis ia oonsidered, as the former dereloped to a leas degree than the lattor, as asen abovo. Tho last trree units, $D F, D G$, and $D E, 0$ onsumed much Ioss food then the ilrat five, infe ia associated with the short time thoy livodmosight to eferion days-ms oompared to the much longer period of if fe of the firat fivermtwonty-three to twentynsoven dayo. Also, the unite $D P$, $D$ and $D A$ aoted vory muoh like the oorresponding experimants on Gana oatesblana did. ishoy oeasod leoding ahortiy after the axperimants were ptartod, and lay inart in tho bottom of thois oontainers. ihe seme grouping that Was sean for food oonaumption does not hold日hen the total amount of Lodino is oopsiderod. tho unit DB 2ead with
$D F, D G, D E$ and $D H$ following in the order named, while the remaining three, DA, DC and DD, were a considerable distance behind. jihis condition is oorrelated to the iodine oontent of the food and to the amount eaten, fhen the daily iodine oonamption is conaidered, the number of days the experiments ran oomes into the ocnaideration. Here we find that DF and DG were away in the lead, with DB and DH following with approximately half as ruch, wile the rest had a considerably lower amount.

At the ol0se of the experimente, there was a general inveree oorrelation between the smount of food consumed and the stage of develop ment reached, but it was not universal, as DB, fed oalf thyroid, DO, fed raw boef thyroid, and DE, fed pig thyroid, were all exoeptiong. But with the axoeption of DB, there was a merimed tendenoy for those whioh recoived the most iodine, both as to total ami daily amounts, to develop the rastest. This sume temdenoy for the oxperiment that was fod oalf thyroid (DB) to show lass developmont in the presence of high iodine conaumption was noticesble in the experiments on Rana oatesbiana as well as hero.

The speoimens used in seriea $D$ as ther appoared at the olose of the experiments are shom on plate III, figs. 32 to 39 inolusive. There was a great deal more individual variation apparent in thia speoies than in the ball-frog, as some of the spoaimens reached the frog stage and died while othera still resembled half grown tadpoles in all respocte, This was probably due to individual differenoes rem garding tho rates of metabollam and of dovolopmont. In some oases there was probably a difference in the ages of the different mpoimen at the beginning of the sorias.

Geries t on Kana pipiens was run as a parallel to seriea $D$, all the conditions boing the same. ixperiment $D A$ was used as the oontrol for this a日ries also, but is here listed again as $E A$, The results are shown in Tables XI and XII.

At the comencement of the experiments, the average size of the spooimens in the different units was yuite uniform. on the whole, they averaged slightiy larger than those used in series $D$, the largest being in units ist and NG , and the amallest in the ocotrol, kA.

At the end of the experimenta, the units took on the following order, putting the experiment showing the least developnent firsts EH, N of plate IV, figa, 40 to 47 inoluaive, whioh show photographs of this sarios, it will be seem that the unita group themegives into two well marked divisions again, as in all prepious series, the last threo having devaloped muoh faster than the first five.

Taking up the items oovered in trable XII, their relation to the order of dovelopment is as follows
 Fotal food (beginning with most) EA, ESB, KID, SIS, 50 , KHH, EG, EFF.




Here in series si the total rood consumed in the different experimenta runs almost parallel to the atage of development, the most being eatan by those showing the least advanoo in matamorphoais. Tho oorrelation betweon daily oonsmption and rate of develogment is not ulite so olose, Fegarding the iodine eaten; both an to daily and total
Table XI

|  | Hame | Before |  |  | After |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { less } \end{aligned}$ | Total | Boay | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Pors Rt. | lejs | Sto【iach | Intestine |
| EA | Control | 18.31 | 2.90 | 1.34 | 17.95 | 3.24 | 4.58 | 1.38 | 1.41 | 2.75 | 31.91 |
| EB | Calf | 18.37 | 8.01 | 1.17 | 13.17 | 9.23 | 7.85 | 3.82 | 3.83 | 2.58 | 15.69 |
| EC | Reef ran | 18.72 | 8.01 | 1.18 | 19.10 | 9.37 | 5.13 | 1.97 | 1.52 | 2.15 | 36.86 |
| ED | Beaf cooked | 18.65 | 8.19 | 1.23 | 15.96 | 9.54 | 5.89 | 2.82 | 2.83 | 2.78 | 26.60 |
| ER | Pis | 20.37 | 8.47 | 1.52 | 11.73 | 6.90 | 7.00 | 1.46 | 1.37 | 2.06 | 10.50 |
| Ef | Dog | 19.89 | 8.43 | 1.39 | 15.40 | 9.37 | 3.71 | 3.03 | 3.05 | 2.59 | 22.51 |
| EG | P.D. and CO. | 19.72 | 8.47 | 1.41 | 11.78 | 6.80 | 3.49 | 0.26 | 1.56 | 2.02 | 11.26 |
| EH | A. and Co. | 19.06 | 3.01 | 1.18 | 11.07 | 6. 52 | 3.43 | 1.74 | 1.82 | 1.91 | 10.01 |

## 59.

Takle XII

| No. Name |  | Amt.fed | Removed | Total eaten |  | Days | Eaten daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Food |  | Iodine | Food |  | Iodine |
| EA | Control |  | .727 | . 045 | . 682 | . 000001 | 25 | . 02728 | . 000000027 |
| ER | Calf | . 725 | . 062 | -0́53 | . 000055 | 21 | .03157 | . 000002667 |
| EC | Reef raw | . 597 | . 002 | . 595 | . 000015 | 24 | . 02479 | . 000000625 |
| ED | Reef cooked | . 679 | . 021 | . 658 | .000016 | 22 | .02991 | . 000000727 |
| EE | Pis | . 635 | . 014 | . 621 | . 000031 | 23 | . 02700 | .000001348 |
| EP | Dos | . 096 | . 030 | . 0068 | . 000033 | 7 | . 00943 | . 000004714 |
| EG | P. D. and Co. | . 133 | . 056 | . 077 | . 000077 | 7 | . 01100 | . 000011000 |
| EH | A. and Co. | . 171 | . 067 | .104 | . 000060 | 9 | . 01156 | . 000006667 |

amounts, there is a rather olose correlation in position, the former being exactly the same exoopt for a slight ghifting amorg the last three units, while in the latter case, this shipting includes the last four experiments.
curning again to Table XII, in regard to the total amount of food oonsumed: there is no great difference among the first five ex-
 kr, ish, and sh, fall below these to a marked extent. As to the daily umount, the same is true, but we find a somewhat larger variation in the first group, and the amount that the last three conswod is not nearly as low in proportion as when the total is aonsidered. Both these facts are due to the difference in the number of days the experiments ware carried on. In the first group, the time extemad from twonty-five days in the control, isA, to twentyone days in $s B$, fed oale thyroid, while in the second group, the units were fed for about a third as long.
ithe unit nf oonsumed the largest total amount of iodine, fol-
 onerhalf as large an amount, followed by $n D, B$ and $i d$ in that ordor. But this order was not retalned when it oome to the daily oonsumption, again due to the variation in the number of days the difforent units were oarried on. Here we found isf far in the lead, followed by aH and Eff. sthen after a considerable gap oano the remaining pive in the same order as when the total amount was oonaiderod.

As in geries $D$, there was considerable variation in the rate of metamorphosis in each experiment. ihis is shom on Plate IV, figs. 40 to 47 inolusive.

## SERIES $F$.

Series F was on Rana Pipians, and was started on June 20,1920, and olosed July 20. This series was the same as series $D$ and $E$ in overy way except that the unit ubed was sevem in each experiment Instead of ten. $I A$ was used as the control for this series as woll as for the two preooeding, but was hore oalled RA.

Due to the faot that bacterial infection started in experiments IB, PC, FD and Fs and killed twentymone of the total twenty-oight speoimans in these unita six days after they were started, the rem sulta obtained so far as these partioular ones were ocncerned wore
 by the baoteria, Thoy developad at approximately the same rate as the oorrespondipg unit in serias $D$ and $\delta$, and their arrangement at the olose of the experiments was in the following order, beginning With the one howing the least rapidity of developmentsfG, IF, PH.

The relationahip between rate of developant and the amount of food and iodine ocnsumed is shown below:Development (beginning with least) FG, RF, PH Total food (boginning with mont) PF, PA, FQ
motel iodine (boginaing with least) FG, PH, FP
Daily food (beginning with most) BF, FB, FO
Dally lodiag (beginning with leant) FH, XF, PO
The pesuits of the experimenta of this agrien are onittod from the general discuaition of the wary on lana piplems, and the tables are not included beoanse of thoir unatisfaotory nature.

## SERIES G.

The experiments in series G were on riana pipiens, and were started July 7, 1920, and were olosed July 28. They were oarried on under the same oonditions as the former series $D$, $E$ and $F$. They consisted of ten specimens in each unit, and were fed under formula $B$. Pables $x I I I$ and XIV give the results in tabular form, and plate $\mathrm{f}, \mathrm{figs} .48$ to b5 inolusive show the apacimens at the Olose of the experiments,

These were all smaller tadpoles than had been used in the preVious experiments, and probably due to this their metamorphosis was somewhat more rapid. silso the mortality was greater than in previous sets, excopt in the oase of series $F$ where bacterial trouble set in. this high death rate was probably due to the amall size of the specimens, and also to the high temperature during Juig, the oontrol, aA, fared worse thun any other single experiment, and it was due to this faot that the lot were olosed a weak before it was originally intended to do so. For these reasons the results are not as trustworting as those shown in series $D$ and $\ddot{\text { an }}$ The bottie oontaining the apeoimens from $A B$ was brokon in tranaportation and the speoimens dried up. It was impossible to examine the internal organs in this instamoe, but the oxternal measurements were taken and they are used in estimating the rate of development. The same method for determining the rate of development was used in this series and the rallowing one as in series D and in, but here the shortness of the time tho experimente were allowed to run and the immaturity of the spooimens at the start made it apparent thut the results obtained from the use of the formula $\frac{A}{b} \times 0$ - $F$ were not as aoourate as in the oases of the previous series. raking thin into oonsideration a study of the
63.
Tatile XIII

|  | \ame | Before |  |  | After |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \\ & \hline \end{aligned}$ | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Fore | $\begin{gathered} \text { 1ess } \\ \text { Len } \end{gathered}$ | Stomacb | $\begin{gathered} \text { Intes- } \\ \text { tine } \end{gathered}$ |
| GA | Control | 11.71 | 4.55 | 0.09 | 10.30 | 4.67 | 0.15 | - | - | 1.68 | 15.01 |
| GB | Calf | 10.66 | 4.73 | 0.06 | 12.30 | 5.77 | 0.10 | - | - | ? | ? |
| GC | Beef ran | 9.74 | 4.31 | 0.02 | 13.50 | 5.77 | 0.25 | - | - | 1.83 | 32.58 |
| GD | Beef cooked | 10.63 | 4.75 | 0.08 | 14.35 | 5.97 | 0.21 | - | - | 1.96 | 31.39 |
| 68 | Pis | 10.46 | 4.61 | 0.04 | 14.58 | 6.18 | 0.26 | - | - | 2.31 | 34.21 |
| GF | Dog | 10.21 | 4.52 | 0.02 | 6.30 | 3.47 | 0.80 | 0.10 | 0.57 | 1.35 | 4.70 |
| GG | P.D. and CO. | 10.56 | 4.63 | 0.07 | б. 18 | 3.47 | 0.65 | - | 0.57 | 1.48 | 5.00 |
| GH | A. and Co. | 11.04 | 4.82 | 0.10 | 6.59 | 3.34 | 0.74 | 0.01 | 0.35 | 1.34 | 5.82 |

64. 

|  |  |  |  | Total | eaten |  | Eate | daily |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Hame | Amt. fed | Removed | Pood | Iadine | Days | Food | Iodive |
| 6A | Control | . 292 | . 112 | .130 | . $000000+$ | 14 | . 01236 | . 000000013 |
| SR | Calf | . 486 | . 027 | . 459 | . 000046 | 21 | .02185 | . 000002190 |
| GC | Beef ram | . 211 | . 027 | . 134 | .000005 | 19 | . 00963 | . 000000263 |
| GD | Reef cooked | . 187 | . 058 | . 129 | . 000003 | 16 | . 00306 | .000000188 |
| GE | Pis | . 275 | . 034 | . 241 | . 000012 | 21 | . 01143 | . 000000571 |
| GP | Dos | . 078 | . 028 | . 050 | . 000025 | 7 | . 00714 | . 000003571 |
| GG | P. D. and Co. | . .099 | . 033 | . 066 | . 000066 | 6 | . 01100 | . 000011000 |
| GH | A. and Co. | . 097 | . 037 | . 060 | . 000035 | 8 | . 00750 | . 000004375 |

dimensions leads one to conolude the order of developrent at the 0lose of the experiments was as follows, beginning with the one ahowIng the least metamorphosis: $G A, G B, G D, G O, G E, G H, G O, G B$,

Comparing this order with the 100 and lodine eaton an show in fable XYII, wo get tho follawing:

Development (beginning with least) GA, GB, GD, GO, GE, GH, $40, G B$ Total food (beginaipe with most) GB, GS, GO, GA, GD, GG, GH, GF rotal iodine (boginning with least) $G A, G D, G C, G B, G F, G B, G B, G C$ Daily food (beginning with most) GB, GA, OF, GG, GO, GD, GE, GP Daily iodine (beginning with least) $G A, G D, G O, G E, G B, G P, G H, G G$

Again the experimenta 1011 into two groups, the one ahowing the least development consisting of GA, GB, GO, $G D$ and $G E$, 就ilo the one showing the more adranoed stage of motamorphosis contalaed the last three, UF, $G G$ and GH, ihis is in IIne with what oocurred in all prom vious series. Also the angle experiment, GB, consumed an excoptionally large amount of iodine, both total and daily, a condition shows in all provions units whore oalf thyroid (B) was fod. she amount of food eaten, both total and daily, appare to have had littlo oorrelam tion with the rate of develogmont, as it varied in one experiment in One direation and in the next in the opposite way. But in regard to the smount of lodine consmod; with the single axooption of GB as just stated, the relationship betwoen both tho total and tho daily amonnta and the rate of developsent was oxoeptionsily al.0so in all the mita,

Going into the ynation of food oonsumption more in detail it W111 be seon from rable XIV that the experimont aB ate nearly twion as muqh food both as to total and daily amounts an any other alagio unit.

Just why this group ate so much is not olear. sroept for this one osee, there is no deoided difference umong the group comprising the first five experiments, $G A, G B, G C, G D$ and $G E$, in either total or daily amounts. The seoond group, comprising the last three experiments, GF, GG and GH, ate a much smallor total amount of food, but due to the fewer days they ate, the dally amount is little less (none in the oase of GG) than the lowest ones of the preaeeding group.

In regard to the total emount of iodine eaten by the different anits, GG was well in the lead, followed by GB, GH and GF in this orm der, the remaining four experimeats being far behind these. In daily consumption of iodine, the same order prevailed excopt that $G B$ fell below both UH and Gri, due to its having been fed upproximately thres times as long as the other two. Here ugain, us in the oase of the total oonsumption of iodine, the remaining four unite fell a long ways behind the others.
is study of plate $V$, figs. 48 to b5, showe there was little variam tion among the individuala of the single experiments in this series, this being in murked oontrast to the oondition prevailing in the two provious ones, In this ouse, the reason for rocre uniformity is probably due to the fact the specimens were muah more nearly the same in eife at the commencement of the experiment: then thes were in either series $D$ or si siso, series a rem for a fourth less length of $t$ ime than did the two precoeding cones honce, they had lass time to develop individual variations due to different metabolio rates.

## 8FRIES H.

ihe experiments in series H were paraliels in every way with those in series $\dot{G}$, and experiment $u$ was used as the oontrol for ser$1 \theta 8 \mathrm{Halso}$, it being designated as Ht in this disoussion. is stated before under series $G$, the control used was not very satisfactory, as the mortality was abnormally high, ouusing tho olosing of this ind the previous series a weok before the time intended, shis togethor with the small size of the specimens used made the results obtainod less acourate than in series i) and $E$ whioh oovered this asme spooles. Tho results ure shown in fables iV and ifl and tho spocimens on Plato vi.

The same methods of estimating the stage of maturity wore used $a s$ in sexies $G$. Beginning with the one showing the least dovolopmont, the following was the order at the olose of the experimatss $\mathrm{HA}, \mathrm{HO}, \mathrm{HB} \mathrm{HE}_{1} \mathrm{HiO}, \mathrm{HH}, \mathrm{HF}$ and HG.

At the beginning of the series, the different unita avoragrad neariy the same siag. At tho ologe oomparing tho rate of davelopment with the food and iodine eaton as shown in rable XVI, wo hads

 Total lodine (beginning with least) $\mathrm{HA}, \mathrm{HD}, \mathrm{HE}, \mathrm{HO}, \mathrm{HB}, \mathrm{HE}, \mathrm{FA}, \mathrm{FL}$,

 In studying this comparison, it will bo soon that so tar as both total and dafly consumption of food Fere concornod, there was a oloso oorsolation between these and the rate of development oxoopt in the osee of dally food in experimant HD. Both tho total and dally mounto of lom dine eaten ahowed conaiderablo pariation from tho rato of dovolopment. lhe experiment fed B, calf throoid, did not not in itu unual manar. ilinis food generally socmed to aruse a glow
Table XV
Sumary of measurements in series $H$ before and after feeding. Length in mu.

| No. | Name | Refore |  |  | After |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Rody | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | ¢otal | Rody | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Fore Rt. | $\begin{gathered} \operatorname{leg} 8 \\ \mathrm{~L} \end{gathered}$ | Stomach | Intestine |
| HA | Control | 11.71 | 4.55 | 0.09 | 10.30 | 4.67 | 0.15 | - | - | 1.68 | 15.01 |
| HB | Calf | 10.87 | 4.85 | 0.06 | 13.62 | 5.87 | 0.29 | - | - | 1.87 | 23.90 |
| HC | Reef raw | 10.40 | 4.56 | 0.05 | 13.43 | 5.56 | 0.21 | - | - | 1.97 | 30.95 |
| HD | Reef cooked | 10.37 | 4.53 | 0.05 | 11.34 | 4.77 | 0.26 | - | - | 1.97 | 23.09 |
| HE | Pis | 10.74 | 4.74 | 0.07 | 12.53 | 5.13 | 0.24 | - | - | 1.50 | 27.05 |
| HR | Dog | 10.27 | 4.23 | 0.03 | 5.39 | 3.35 | 0.75 | 0.19 | 0.40 | 1.48 | 4.62 |
| HG | P.D. and Co. | 10.30 | 4.62 | 0.03 | $5.00^{\circ}$ | 3.17 | 0.69 | 0.12 | 0.57 | 1.19 | 4.29 |
| HR | A. and Co. | 10.47 | 4.47 | 0.04 | 6.10 | 3.33 | 0.70 | - | 0.41 | 1.34 | 4.47 |

Table XVI

| No. Name |  | A配.fed | Removed | Total saten |  | Dajs | Eaten Jaily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Food |  | Iodine | Food |  | Iodine |
| HA | Control |  | . 292 | . 112 | . 180 | .000000+ | 14 | .01286 | .000000013 |
| HR | Calf | . 236 | . 016 | . 220 | . 000022 | 19 | .01153 | . 000001158 |
| HC | Reef ran | . 489 | . 049 | . 440 | . 000011 | 21 | . 02095 | . 000000524 |
| RD | Peef coosed | . 155 | . 083 | . 072 | . 000002 | 19 | . 00379 | . 000000105 |
| HE | Pig | . 163 | . 019 | . 144 | . 000007 | 18 | . 00800 | . 000000389 |
| HF | Dos | . 077 | . 034 | . 043 | . 000022 | 7 | . 00614 | . 000003071 |
| BG | P.D. and CO. | . 082 | . 047 | . 035 | . 000035 | 8 | . 00433 | . 000004375 |
| H | A. and Co. | . 103 | . 044 | . 059 | . 000035 | 8 | . 00738 | .000004375 |

rate of matamorphosis in previous series, but the large amount of it eaten resulted in an abnomally high iodime oonsumption, both as to total and daily anounte, when these were qompared to the stage of development reached. In this series the unit $H B$ ate more than any other experiment axcept HC, and the total amount of iodine oonsumed was surpassed only by HG and HH. However, in the amount of iodine eaten daily, experiment HF was albo above it.

Nith minor ohanges within the divisions, the same major grouping of experiments as to rate of development and as to the amounts of food and of lodine consmed was fomd here as in the previous series G. Albo, an in this provious series, there was very littio variation emong the individuals of the experiments probably for the mame reasons. Photographs of the apocimens in series $H$ tacen at the 01080 of the work are shown on Plate VI, 21 ge. 66 to 63 incluaive.

BEHIES IT AND L
Series K and L were run at parallel sete of experiments in order to asoertain whether or not the volume of water used had any effeot on the resulta, as it had beon discovered that the offoota of feoding dog thyroid and Parke, Davin and 00.'a and Amour and Oo,'s propam cations were tho most rapid in oausing promature metamorphosin, these three were ohosen as the food for this comparative study, the oonditions under whioh theso wero ourried on wore identioal with those of series $D, B, F, G$ and $\&$ exoopt for the volume of water used. qioy were fod under formula $B$. The axperiments in series $\mathbb{I}$ were xapt in shallow diahes oontaining 8000.0 . of water, and those in aeries L
were in dishen containips 1000 0.0. of water. The latter oontainers were larger than the former, so the depth of water in both was practioally the ssme. The water was carefully measured each day as changed. Lhey pere started July 3, 1920, and fingliy olosed July 14. However, each palr, except the controls, were closed on the day when the last specimen in one of them died. That is, as soon as the last speoimen In an experiment died, the remaining spocimens in the oorresponding experiment in the other serien were killed. The dates of olosing follows

> KA and LA on July 14, ten KA and nine IA killed, KF and LF on July 10, ten LF killed, KG and LO on July 11, ten LG Kdiled, and KH and LE on July 14, nine LH Xdiled. The reaults of these experiments are ahown in rables XVII to $X X$ inolusive.

In comparing rables XVII and XIX, it will bo seon that the apooimens in the experiments were praoticalif tho same size at the atart, and that the controly, KA and Al , ware the same at the ond, unless m oould be oonsiderisd as romewhat more devoloped than KA. On the other hand, with the posaibla excoption of leagth of intestina, KF, KCF and KH were markedly more mature in all respoots than the oorrosponding LF, LG and 4 H. Also, the faot that the epooimens in the experimonta In series $K$, with the exoeption of the oontrol, reanod their maximum atage of dovelppment posible under the experimental oanditions and died before the oorresponding ones in serles $L$ did, would indioate the amas. 8till further, an xamination of Plate VII ahow the ame condition without question. from these faots, it is evident that morles
72.
Tat-le XVII
Sumary of measurements in series $K$ before and after feeding. Length in wr.

| No. | Name | Before |  |  | After |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { leßs } \end{aligned}$ | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Pore Rt. | lejs | $\begin{gathered} \text { Stow- } \\ \text { ach } \end{gathered}$ | $\begin{gathered} \text { Intes- } \\ \text { tine } \end{gathered}$ |
| EA | Control | 14.41 | 6.26 | 0.39 | 15.83 | 7.15 | 0.49 | - | - | 2.30 | 45.73 |
| EF | Dog | 14.55 | 6.23 | 0.35 | 7.08 | 4.56 | 1.75 | 0.93 | 1.24 | 1.81 | 7.76 |
| RG | P.D. and CO. | 14.07 | 6.10 | 0.30 | 7.02 | 4.34 | 1.57 | 0.31 | 0.95 | 1.65 | 5.26 |
| 8H | A. and Co. | 14.59 | 6.26 | 0.39 | 8.88 | 4.62 | 1.75 | 0.15 | 0.91 | 1.79 | 5.97 |

[^0]Tatie XX

| No. Name |  | Ant. fod | Removed | Total eaten |  | Days | Eaten daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Food |  | Ioding | Food |  | Iodins |
| LA | Control |  | . 354 | . 123 | . 231 | . $000000+$ | 10 | .02310 | .000000023 |
| LP | Dos | . 185 | . 056 | . 129 | . 000064 | 7 | . 01843 | . 000009143 |
| 19 | P.D. and Co. | . 180 | . 092 | . 098 | . 000098 | 3 | . 01225 | . 000012250 |
| LH | A. and Co. | . 230 | . 132 | . 098 | . 000056 | 11 | . 00391 | . 000005091 |

X, with the excoption of KA, the control, developed more rapidy in 200 O.c. od water than did series Lin 1000 c. o.

Turning to the amount of P ood and iodine consumed in the oorrespondius experiments as shom in rables XVIII and XX, it is sesp that the K series lead the L series in amount eaten with the exoeption of KH and KH , where the reverse was true. In the case of KF and LP , however, this lead was so alight that it probably had littie to do With the resulte, but the same oannot be said of KA and ha, nor of KO and LG. In both these oases the $K$ experiments consumed from two to four times as much as the oorresponding je ones, oertainly enough to acoount for any more rapid development the former mas have ahow, Ak stated before, $K G$ developed more rapidif than LO, but it was bard to distinguish mach Bifferenco betwem the apooimens in KA and 14 , the tro oontrols, at the olose of the experiments. so it is evident that at least in the cases where dog thyroid (F) and Armour and 0od's thyroid (H) ware fed, it was not the greater amount of food consumed that oaused the more rapid dorelopment, but it must have beon the only other variable yuantity, that is, the aqount of water in whioh the apeoimens were kept.
turning to a more detaiked study of events in oonneotion fith these two series, after the first two days the experimente were oarFled on, with the exoeption of the oontrols, $K A$, and LeA, ilttle food was consumed in any of the units. i'hat is, almost all of the food aotually eaten by the tadpoles was oonaumed during the first two days. after that, the poolmens staged on the bottom of the oontalners, motionless praotiosily all the time oxoopt when disturbed, d'be slakes Of food were plaoed on the surface of the water directig after it had
been ohanged every moming at tem o'olcok, They floated there until they became waterlogged when the sunk to the bottom of the dish, and remained there until theg were removed the following morning. The question arises as to just why the speoimons in the amaller amount of water developod so muoh faster than the ones in the larger amount. It se日ms to the writer that the only answer to this is to asaume that some active aubstance whioh oauses acoeleration of metamorphosis in the tadpoles had dissolvod out of the food, and that this was axturalif pive times as concentrated in the experiments of series $K$ as in those of series $I$ beoause it was in onefifth as mah water. It aoted through the body wall and pepbranes of the tadpoles, its action being the same, with the possible exoeption of speod, as when taken into the alimentary oanal. ithe speoimens, series $K$, in the more omoentrated solution would naturalls react more rapidig than those, series $L$, in the weaker one. That the larvae of Progs and touds do not swallow water but rather absorb it through the integument is the oontention of boulenger (1914), whioh is in line with the above ocnolusion. Albo, Swingla (19190) parformed bome experimenta on the larvae of Bufo lentiginosus in whioh he did not vary the amount of water in whioh they were kept, but did placo them in solutions considing of different conoentrations of iodine with the result that those whioh obtained the mo at lodine metamorphosed the most rapidig. Fhla would be in line with the present resulta, exoopt that hore it is not olear just what the activo substanco is that dissolved out of the food and caused the speoding up of matamorphosis.

## 76.

However, it is quite clear that this aotive substance was oither Lodine or some compound of whioh lodine was a part, as a ohomioal analysis was made of the Parke Davis and company's thyroid preparation (used in the preparation of food $\boldsymbol{q}$ ) after it had been soaked for twelve hours in water, then thoroughly dried and ground to a powder. It was found that the iodine contont wes only 0.112 per cont where it was 0.40 per oent befors it was soaked. it tho end of half the pariod the food was in the vator, almost throo= fourths of the iodine content had dissolvad out. the same mothod of maring the ohemioal analysis was used tere as in provious oases.

SURAARY OK EXPERIAENH'S OF RANA PIPIENS
A summary of the results of the experiments on Hana piplens entails a comparison of the series D, B, G and $H$. inis is graphleally shown in fig. 3 where the letters represent the kind of food and the numerals the rank of the experiment in relation to the other units, The lower the number is the alower the rate of development was, is stated before, the regulte of series are not inoluded in elther the graphs or the disoussion following beoause, with the possible exoeptions of the FF, FG and $F H$ experimenta, they were questionable owing to baoterial action.

In these series all of the anditions under which they were carriod on were identiaal with the possible axooptioniof temparature, Lion in this respeot there was less than half a degree variation ber tween the average for series $D$ and is on the one hand and seriea 0 and $H$ on the other.

There was muoh less variation between the different series in the oase of Hana plpiens than was se日n in the experimenta on Rana oatebbiana. The largest difference was in the case of those fod $U$, raw beef thyroid. On the whole, with this one exoeption, the rate of development among similar unita in the difforent aeries is remarkably uniform. The average rate of development for all the four series is as follows, beginning with the one showing the alowast fates $A$, control; $U$, raw beof thyroid; $B$, calf thyroid; $D$, oookeod beef thyroid; H, plg thyroid; $B$, Armour and U0.'g thgroid; $F$, dog thyroid; $G$, Farko Davis and Co.'s thyroid.

In regard to the relationship of the rate of development to the
78.


Series H————Average

Fig. 3. Rxparinents on Rana pipiens. Graph showing the comparative gtases of development reached in the experiwents oomprising series $D, E, G$ and $H$; also the avorage for the four geries.
79.


Fig. 4. Experiments on Rana pipians. 3raph showing the relationshio hotween the avorage stage of developaent reached and the amounts of food and iofine consumed in the difforent experiments.
80.
material eaten, we turn for information to Tables IX to XVI inolusive. ihe averages of the total food and the total and dally fodine oonsumed for the four series was taken, and the grapk shown in fig. 4 was made from these. the average rate of dovelopment for the four series is aiso shom, the experiments being urranged so that this line will form a regular curve, the ourve for the daily food was omitted because it follows so olosely the total food line that the one may be oonsidered as standing for both iterns for all praotical parposes. the lower numerals on the graph stand for slower rate of development, and a less amount of iodine consumed. Regrading the food, the reverse is true, the lower number standing for the liscger amount eaton.

Regarding the relationship betweon the amount of food esten and the rate of development, with the exceptions of experiments $B$, fed oalf thyroid, and possibly E, fed pig thyroid, it appears that the more rapid the rate of metsanorphosis the less the umount of food ocnsumed. 'ine exceptions are so few that it is very probable the atatement holds trua for all feoding experiments on tadpoles, espeoialif when it is remembered that there was even more uniformity betweon these two iteas in the experimentes on hana oatesbiana than there is in the geries under disoussion here.

There ia a very olose correlation between the rate of development and the amount of lodine, both votal and dails consumed with the one exoeption of experimenta $B$, fed oalf thyroid. shat ia, the more iodine oonsumed the more rapid the rate of motamorphosin. In the oase of experiments $B$, they oonsumed an equal or largor total O1 iodino than the unita $x$, fod plg thyroid, or $P$, fed dog thyroid,
or $H$, fed irmour and Company's thyroid, and jet each of these developed much more rapidly. On the other hand, the only experiment Of these three that $B$ surpassed in daily consumption of lodine was B. This correlation botween the amount of lodine eaten and the rate of development is much olearer here than was the oase in the experiments on fiana oatesbiana.
dhis exceptional behavior on the part of the specimens in experiments $B$ seems to always be assoolated with a very large total consumption of iodine, but the amount of this substance eaton daily is not relatively so high due to the faot that these units invariably were long lived. This would indioate that it was not the total amount of iodine consumed that oaused the acceleration of metamorphosis so muoh us it was a large wount used dally. In ull of the series of experiments on fana pipiens the last three unite, f, fed dog thyroid, $G$, fed parke Davis and Uompany' e thyroid, and H , fed Armour und vompany's thyroid, developed with the greatest rapidity. However, in every one of the four geries, the unita fod $B$, oale thyroid, ocnsumed as muoh or more total lodine that at least one of these three, and in the oase of series $D$, almost twioe as moh as any of them. Again in this case no explanation oan be given for the exceptional oonduot of the spocimens in experiments $B$, unless it was that the age of the thyroid had acmething to do with it.

A full disoussion of series $K$ and $L$, oarried on to determine the offect of the umount of water in whioh the experiments were sapt on the reaulta of thyroid reoding is given above under the treatment of those series. whe rosults there obtained probably indicate that the notive substunce of the thyroid giands dissolves out into the water

## 82.

In which the spacimens are kopt, and this 土uot probably acoounts for the rapid rate of motumorphosis of the last three experiments in euch series, if, fed dog thyroid, i, fod rarke Davis and Company's thyroid, and $H$, fed drmour und vompany's thyroid, a speed assooiated with sanall food consumption and a pruatically inert condition after the first two or three days.

## KXPISRIMEHNS ON ETILA RDOILIA

Whe experiments on Ryla regilla, the tree frog, were oarried on during the sumar of 1922 at the University of Washington, geattlo, Washington, ihair purpose was to asoertain further the effacts of feeding the different kinds of thyroid previousif used, to add to these material fran other speoies, and to study tho reaotions of a new genus to thyroid feeding. line oonditions under which the experim monts wore performed were as marly identioal with tho se for the ones that were done in Kansas as it was possible to make them, rhey were plaoed in ahallow white enamel ware dishos of a oapacity of 22500.0. whioh were ililed about twomthirds sull. These dishes were kept on tables in a small room with two large windows opening towards tha Bouthasat. itho summer was axcoptionaliy suoky, and tho illumination on the axporiments was probably about the 8 ame as in tho 0880 of all provious ones. the mods of oaring for the spoolmens, foeding, oto.; Were the same as used in all tho prece日ding series. All the food wan propared under fomula i, ithe temperature, rooorded in oontigrado, WIII be found in Table XXI.

Nable XXI。
Extrames andfeans of tamperatura, 192Z.

| Month | Low |  | High |  | Average |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A.M. | P. M. | A.M. | P.M. | A, $\mathrm{S}_{6}$ | P.M. |
| June | 18.0 | 19.6 | 24.0 | 26.5 | 20.7 | 21. 6 |
| July | 18.5 | 20.0 | 24.5 | \%8.0 | 21.4 | 88. 0 |
| Augunt | 18.0 | 19.0 | 25.0 | 26.0 | 19.8 | 21.9 |

Several now kinds of food Fere used in theses serles, and all of tho provious varieties wore tried at least once, jhe nem kinds, with their letter symbols, follow: $K$, human thyrold, $L$, busfalo thyroidi H, oat thyroid; $N$, bear thrroid; $O$, flounder thyroid; $P$, beof soaked In iodine; $Q$, oalf thyroid soaked in iodine.

The same method of dotemining stage of development roachod at the time of olosing the different experiments was followa as in the previous series on kana pipiens. The number of speolmans in ach experiment in series $M, 0$ and $P$ was ton, whilo in fories 8 it was twonty.

## 8ERIES H

Sexies 4 consisted of experiments on Hyls regilla whoh wore started June 6, 1922, and were 0losed Juno \%. the followne xinda Of foods were fods $A$, control; $U$, raw boof thyrold; $Q$, Parke Daris
 buffalo thyroid; M, oat thyroid; $D$, bear thyroid; 0, floander thyrold. d'he rasults of these exporiments are shown in tablos XXII amd XXIII.

In the beginning, the spooimens in the difforent units avaraged about the satno sise exoopt that those in ug and xo wore 11ghtly mailon than the pest, At the 010se, in apto of thia handioap, wo had mado the most rapid advamoment. racm a study of qablo xXII, taking Into consideration the lougth of tim the dieforent axparimants ran, ono is lad to the concluvion that the $101 \mathrm{cow} i n g$ was the mramegoment of the units at the olos, so far as atato of developmont was oanc oerned, beginaing with the om showing the Jowest progreass M, MO,


Tatle XXII
Sammary of measurements in series $u$ before and after feeding．Length in m⿴囗十．

| No． | Hame | Before |  |  | After |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Rody | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Fore Rt． | legs | $\begin{aligned} & \text { Stow- } \\ & \text { ach } \end{aligned}$ | $\overline{\substack{\text { Intes- } \\ \text { tine }}}$ |
| uA | Control | 17.36 | 7.62 | － | 19.07 | 3.09 | 0.49 | － | － | 2.19 | 42.14 |
| UC | Reef raw | 16.58 | 7.58 | － | 17.07 | 7.54 | 0.54 | － | － | 2.09 | 33.25 |
| UG | P．D．and Co． | 15.84 | 6.96 | － | 9.70 | 4.80 | 0.75 | － | 0.22 | 1.44 | 9.61 |
| UR | A．and Co． | 17.67 | 7.90 | － | 10.04 | 5.09 | 0.36 | － | － | 1.41 | 7.35 |
| UR | Haman | 17.74 | 8.11 | － | 11.86 | 5.62 | 1.01 | － | － | 1.57 | 9.70 |
| ML | Buffalo | 17.65 | 8.09 | － | 12.60 | 5.92 | 1.18 | － | － | 1.69 | 13.40 |
| H1 | Cat | 17.10 | 7.61 | － | 16.44 | 6.57 | 1.96 | － | － | 2.03 | 17.78 |
| UN | Bear | 17.46 | 7.63 | － | 12.25 | 5.48 | 1.41 | － | － | 1.52 | 7.15 |
| yo | Plounder | 16.24 | 7.04 | － | 19.49 | 6.78 | 0.46 | － | － | 2.39 | 34.11 |

Table XXIII
Amounts of food and iodine in series $\mathrm{H}_{\mathrm{o}}$. Onit used, gram.

| No. Name |  | Ast.fed | Remored | Total eaten |  | Dags | Eaten daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Food |  | Todine | Food |  | Todine |
| HA | Control |  | . 309 | . 123 | . 186 | . $000000+$ | 14 | . 01329 | . 000000011 |
| HC | Beef ram | . 256 | . 111 | . 145 | . 000003 | 13 | . 01115 | . 000000223 |
| UG | P.D. and Co. | . 207 | . 194 | . 013 | . 000010 | 9 | . 00144 | . 000001111 |
| UH | A. and Co. | . 202 | . 183 | . 019 | . 000009 | 11 | . 00173 | . 000000818 |
| WR | Haman | . 098 | . 063 | . 035 | . 000001 | 11 | . 00318 | . 000000057 |
| UL | Buffalo | . 175 | . 125 | . 050 | . 000005 | 10 | . 00500 | . 000000530 |
| 44 | Cat | . 124 | . 030 | . 094 | . 000002 | 15 | . 00627 | .000000100 |
| y | Rear | . 164 | . 114 | . 050 | . 000003 | 17 | . 00294 | . 000000147 |
| yo | Flounder | . 274 | . 073 | . 196 | . 000003 | 14 | . 01400 | . 000000224 |

Oompariag this with ilable XXIII, where the emorat of food amd iodine consumed is show, we find the following relationshipss
 From the above it will appear that there was a very alose inverse correlation between the amount of food eaten and the rate of development. ihis applied to both the daily and total amounts. In regard to the lodine, however, with the excoption of the first four experimonta, fed $A$, oontrol; $C$, repr beof thyroid; $G$, Yark Dapis and Co.'a thyroidf and $H$, Armour and CO.'a thyroid, thero seamed to be ilttie or no relationship. zithe experiment fod on $K$, human thyroid, shoved an oxoegtionally 10 w Lodine acmsumption in rolation to the rate of development. On the other band, in the oase of $\times 0$, fed flounder thyroid, the revers was trua, but not in so marked a degree.

Ithe aossumption of food in this series was oxooptionalif manal. the reason for this was not olear, but it was not beosuse the epeoins mens did not have an mpportunity to ost, as in oyory instanoe a oonsiderable portion of the material fod was removed. of oourse there wan a oorreapondixgly mall quantity of lodime eaton also. In apite of these faote, there was oonsiderable difforence in the length of time the experimants ran, and marked differemoe betwoen the various units at the olose of the wark, both thinge indioatime a distinot differenos in the rates of development.

The units oomposing this series arranged themselves into four well marked groups when the rate of developnent or stage of metumorphosis reached, was considered. Beginning with the group showing the least ahange, they were as followw (2) $4 \mathrm{~h}, \mathrm{LO}$ and $\mathrm{KO} ;(2) \mathrm{KL}$, Man and (3) MK; (4) wG and MH. ihe grouping was as distinot and exaotly the same when the total amount of food consumed was ocnsidered, and the same was true of the daily food with the single exoeption of experiment wk whioh ate suffioient to throw it into the second group. Howeper, when oonsidering the total amount of iodine eaten, this grouping entirely diasppeured with the single exoeption of the fourth one, the two unlts of which had by far the most lodine. fhis was also true when the daily iodime oonamption wis ocnsidered.

## 8NTNES O.

The experimants on Hyla rogilia liated under seriot O were atarted June 16, 1928, and Fare 010aod July 8 followngs ithey were darried on under identioal comditions to those under whioh the experiments in serien a were rum, but in this obse all of the different kinds of food so far tested were usedy The resulta are shown in rablaa XXIV and XXV. From the formar table, taking into considecation the number of days anoh experinent ran, afiter they ware all through, the following soams to be their arrangement, beginning fith the one ahowing the alowest rate of developmonts $O A, O B, C D, O B, O C, O D, O M, O N, O L, O K$, OH, OG and Or.

The relationship botwoen the rate of dovelopment and the amount of food and iodine consumad was as followas

|  |  |  | Before |  |  |  |  | fter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { less } \end{aligned}$ | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Fore Rt. | $\begin{gathered} \text { legs } \\ \mathrm{L} \end{gathered}$ | Stow- $\mathrm{ach}$ | Intestine |
| OA | Control | 13.51 | 5.64 | - | 19.30 | 7.31 | 0.20 | - | - | 2.37 | 37.40 |
| OB | Calf | 13.22 | 5.32 | - | 19.81 | 7.71 | 0.35 | - | - | 2.35 | 44.50 |
| 9 C | Beel ran | 12.71 | 5.46 | - | 18.69 | 7.70 | 0.46 | - | - | 2.68 | 48.90 |
| OD | Reef coozed | 12.44 | 5.22 | - | 17.20 | 6.88 | 0.29 | - | - | 2.16 | 3c. 05 |
| 02 | Pis | 12.69 | 5.09 | - | 19.55 | 7.73 | 0.43 | - | $\sim$ | 2.42 | 44.40 |
| OP | Dog | 11.73 | 5.01 | - | 5.38 | 3.21 | 0.55 | 0.16 | 0.15 | 1.12 | 4.70 |
| $0: 3$ | P.D. and Co. | 11.31 | 5.03 | - | 6.73 | 3.47 | 0.34 | - | 0.12 | 1.37 | 4.60 |
| OH | A. and Co. | 11.91 | 5.29 | - | 7.86 | 3.48 | 0.38 | - | - | 1.21 | 5.25 |
| OR | Howan | 12.66 | 5.34 | - | 9.77 | 4.31 | 1.66 | 0.18 | 0.18 | 1.30 | 5.25 |
| OL | Buffalo | 12.03 | 5.07 | - | 9.47 | 3.87 | 0.79 | - | 0.03 | 1.22 | 5.55 |
| 04 | Cat | 12.07 | 5.17 | - | 15.27 | 5.48 | 2.65 | - | - | 1.35 | 14.25 |
| On | Bear | 12.29 | 5.12 | - | 8.92 | 3.84 | 0.92 | - | 0.05 | 1.25 | 6.35 |
| 00 | Plounder | 12.35 | 5.04 | - | 15.60 | 6.28 | 0.56 | - | - | 1.84 | 29.44 |

Table XXV

| No. Name |  | Amt.fed | Removed | Total eaten |  | Da.gs | Eaten daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Food |  | Iodine | Food |  | Iodine |
| OA | Control |  | . 565 | . 057 | . 508 | . $000000+$ | 23 | . 02209 | . 000000018 |
| OR | Calf | . 311 | . 075 | . 236 | . 000019 | 23 | . 01026 | . 000000326 |
| 00 | Reef ram | -513 | . 093 | . 420 | . 000008 | 20 | . 02100 | . 000000420 |
| OD | Reef cooked | . 296 | . 105 | . 191 | . 000004 | 23 | . 00330 | . 000000174 |
| OE | Pis | . 196 | . 031 | .115 | . 000005 | 23 | . 00500 | . 000000274 |
| OP | Dog | . 104 | . 032 | . 082 | . 000033 | 12 | . 00633 | . 000002750 |
| 06 | P.D. and CO. | . 232 | . 115 | . 117 | . 000094 | 11 | . 01054 | . 000003545 |
| 08 | A. and Co. | . 214 | . 150 | . 064 | . 000029 | 14 | . 00457 | .000002071 |
| OR | Huxen | . 345 | . 054 | . 291 | .000005 | 20 | . 01455 | .0000002062 |
| 02 | Euffelo | . 272 | . 122 | . 150 | . 000016 | 17 | .00332 | . 000000935 |
| O4 | Cat | . 313 | . 024 | . 289 | . 000005 | 22 | . 01314 | . 000000210 |
| OH | Pear | . 386 | . 116 | . 270 | . 000014 | 18 | . 01500 | . 000000750 |
| 00 | Plounder | . 384 | . 072 | .313 | . 000005 | 20 | .015こう | . 003000250 |

Devolopment (beginning with loust) $O A, O B, O D, O E, C, O D, a r, O N$, OL, OK, OH, CG, OR.
lotal food (beginning with most) $O A, \infty, O D, O K, O A, O N, O B, O D$, $O L, O G, O R, O R, O B$.
l'otal iodine (beginning with least) $O A, O D, O E, O O, C A, O K, O C, O N$, $O L, O B, O H, O F, O G$.

Daily pood (baginning with most) UA, $O, O, O N, O K, O M, O G, O B$, OL, OD, OF, OE, OH.

Dailg iodine lbeginning with leastlon, $O D, O M, O D, O K, O E, C, O N$, $O B, O L, O H, O P, O G$.
It oan again be said that those units showing the least dovelopment ocnsumed the most food as a rule, both as to daily and to tal amounts. Who experiment which was fed K, human thyroid, was the most marked excoption to this, as it ahowed a rapid rate of development assoolated with a comparatively large amount of food eaten, suooptions In the other direotion, i.e., a slow rate of metamorphosia assoaiated With a somparatively small food oonsumption, were found in the experiment fod $\mathrm{E}, \mathrm{pig}$ thyroid, and to a 108 axtent in tho units fod B, oalf thyroid, and $D$, cooked beet thyroid.
fegarding the iodine oonsumption, a lurge amount was generally assooiated with a rapid rate of develoment. where wore two axcoptions to this-mono in the oase of the experiment fod $K$, human thyroid, where a rapid rate of metemorphosia want with a comparatively amall amount of iodine eaten, espeoially regarding the daily amounte, and a aecond in the oase of the unit UB, fed oalf thyroid, where the development was slow but the emount of iodine oonsumed was high.

At the start the spooimens used in this sorios pere oonsiderably smailer than those ugod in morion $M$, but were yuite uniform in aizo.

At the close, the units 00 uld be divided into three large eroups; those whioh had undergone a comiderable change, those which had developed to only a silight degree, and those which oocupied a middie position in relation to the other two groups, $O R, O G, O H, O R, O L$ and $O F$ showed the most rapid development; $O R, O B, O, O D$, as and 00 under. went the least, while the middle graup oonsisted of the single experiment cas. The last three of the first group, oK, of and OR, approach this middle group, due to the fact that it took them a conoiderably longer time to develop than it did the firat three.

## 8BRIES $P$

Soriea P, on 耳fla regilla, was started July 4, 1922, and was olosed July 18. The spocimens uead in thim aeries ware oonsidarably smaller at the atart than those used in the two preooding aerion. This fact probably acoounted for a high rate of mortality whioh amsed the series to be olosed at the end of two weoks whereas the preoeoding ones had been carried on for threa. for this raason, the remults of these experiments were not atisfaotory and are not inoluded in the summary of experimants on Hyla regilia follating. the rollowing foods were used; PA, control; PR, Pig thyroid; PR, dog thyrold; PR, Parke Davis and 00.'s thyroid; PB, Armour and OO.'s thyroidi PX, haman thyroid; PL, buffalo thyroid; FM, cat thyroid; PW, boar thyrold; PO, flounder thgroid.

It was very hard in a serien that had ron fas as short a tima an this one had and hence showed little differentlation botween acme of the units to place them in order so as to show rolative rapidity of developrent, beounso the more slowly devoloping experiments hed not
had suffioient time to differentiate. The followng arrangement is as soourato as could be made under these conditions. Beginning with those showing the $s$ lowest rate of development, thes fell into approx-


BERIES 8
H'he last experiments on Hyla regilla, series $S$, Fere started on sughat 10, 192A, and were closed Aughat 31. In this series asoh anit had twonty apeoimens in it, otherwise the conditions under which they Were performod Fers the seme as for the three precoeding serios. Tha results are shown in fiables XXYI and XXYII. In the latter table the number of days the experiments $\operatorname{san}$ is ifgured on the basis of there being onif ton speolmens in each unit, thas maxing these numbers on a uniform basis with all tho othor serios.

In addition to the foods used in the provious experiments on Hyla regilla, two new ones were added bere, Ihey were $P$, be日t goaked in iodine, and G, oalf thyroid soakod in iodino. itho formor was propdrod by soaking some of the oooked beef from the same lot as that used in the oontrol (A) for fortyouight houxs in a atrong solution of iodine Which had been made by dissolving iodine orystale in 967 aloohol. infa was then thoroughly dried and made into the regalar food pader fomula $A$. FOF food Q, the sam thing was done with oalf thyroid taloan from the ono Iot as that usod in making Yood $B$.

As to the rate of developrent, takdre into ocasideration tho length of time the experiments ran, the data in Fable xXYI shows the followng to be the order, beginalng with the slomests $8 A, 8 Q, g P, ~ 50$,
94.
Tatle XXVI

|  | Name | Refore |  |  | After |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Rody | $\begin{aligned} & \text { Hind } \\ & \text { legs } \end{aligned}$ | Total | Body | $\begin{aligned} & \text { Hind } \\ & \text { lesg } \end{aligned}$ | Fore Rt. | $\begin{gathered} \text { legs } \\ \text { L. } \end{gathered}$ | $\begin{gathered} \text { Stow- } \\ \mathrm{acb} \end{gathered}$ | $\begin{gathered} \text { Intes- } \\ \text { tine } \end{gathered}$ |
| SA | Control | 18.58 | 7.78 | - | 18. 44 | 7.93 | - | - | - | 3.18 | 37.04 |
| SR | Howan | 17.51 | 7.52 | - | 11.76 | 5.48 | 0.73 | - | 0.04 | 2.00 | 14.20 |
| SL | Earfalo | 19.35 | 8.16 | - | 10.20 | 5.42 | 0.99 | - | 0.03 | 1.90 | 3.81 |
| SY | Cat | 18.65 | 7.89 | - | 14.38 | 5.18 | 1.28 | - | - | 1.99 | 10.41 |
| 84 | Pear | 17.89 | 7.82 | - | 9.57 | 5.49 | 1.02 | 0.23 | C. 39 | 1.32 | 6.37 |
| 50 | Flounder | 18.11 | 7.69 | - | 17.44 | 7.14 | 0.33 | - | - | 2.0́ó | 31.70 |
| $3 P$ | Control + I | 17.83 | 7.50 | - | 18.05 | 7.13 | 0.05 | - | - | 2.06 | 27.11 |
| SA | Calf + I | 17.17 | 7.03 | - | 21.1Z | 7.95 | 0.11 | - | - | 2.52 | 40.13 |

95. 

sable XXVII

| No. Nare |  | A畂.fed | Rewioved | Total eaten |  | Days | Eaten daily |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Food |  | Iodine | Food |  | Iodine |
| SA | Control |  | . 805 | .130 | . 775 | .000001 | 33 | . 02348 | . 000000019 |
| SR | Homan | $\div 221$ | . 089 | . 132 | . 000002 | 21 | . 00629 | . 000000113 |
| SL | Roffalo | . 247 | . 132 | .115 | . 000012 | 26 | . 00442 | . 000000469 |
| Su | Cat | . 199 | . 054 | . 145 | . 000002 | 30 | . 00483 | . 000000077 |
| SN | Rear | . 323 | . 155 | .168 | . 000003 | 24 | . 00700 | . 000000350 |
| So | Flounder | . 363 | . 111 | . 252 | . 000004 | 24 | . 01050 | . 000000168 |
| SP | Control + I | . 509 | . 150 | . 359 | . 000215 | 18 | . 01994 | . 000011967 |
| S | Calf + I | . 776 | . 056 | . 720 | . 000972 | 26 | . 02769 | . 000037386 |

isf, SK, SL and SN. As in most previous series, there was a distinot grouping of the units into a division whioh devoloped oomparatively rapidly, and another one whioh developed muoh slower, In the former group of rapid developers we oun place SK , SL and sf, the latter showing this in the most marked degree, it the close of the series, the speoimens in these units all hed the typloal dwarfed appearance oharacteriatio of precooious development due to thyroid reeding. The group showing little developaent, oonsiatipg of exporiments Sa , Sw, SO, SP and Bus, did not show this abnomal appoarsnoe, thore was a heavy mortality in experiment isp, the qause of whioh is disoussod bolow. The ralationship betreen the rate of developant and tho amorat of focd and fodine oonsumed as shown in 'rable dXYII was as follows Development (beginning with leust) SA, $54,5 P, 30,524,9 K, 5 L, 98$ L'Lal food (begiming with most) SA , 5 Q , $\mathrm{SP}, \mathrm{SO}, \mathrm{SN}, \mathrm{SM}, \mathrm{SK}, \mathrm{SL}$ Total iodine (beginning with least) SA, SM, $8 \mathrm{EK}, \mathrm{SO}, 5 \mathrm{~S}, \mathrm{yL}, \mathrm{SP}$, SQ Dsily food (beginning with most) SA, YA, SP, SO, SN, SK, Sk, SL Daily lodine (beginning with least) $8 A$, SH, SK, $50, S N, S L, 8 P, S 4$ Regarding the total amount of food, the oontrol, $3 A$, and tho unit fed oalf thyroid soaked in iodine, bQ, consursed over twiae as muoh as any other unit, and yet these same two showed the lowest rate of developaent. Bxperiment SN , fod bear thyroid, wat the only markod exooption to a olose relationship betwoen rapid devolopment und small amount of food consumed.

Iruming to the question of louine und its rolation to the rate of metamorphosis; both SK , fod human thyroid, and sht, fed oat thyroid, ahowed a relatively low iudina consumption, both total and daily, cam-
bined with a rather rapid rate of development. bxactly the reverse was true in the case of the units SP, fed oxdinary beef soaked in iodine and SQ, fed oalf thyroid soaked in iodine. These two experiments are disoussed further below. In the remaining four units a large oonsumption of iodine was assooiated with a rapid develoment, or the reverse. Lhese were similar conditions to those shown in series 4 and 0 , except that foods $P$ and $Q$ were fod for the first time in the present serios.

In the two experiments that were fed on food soaked in iodine, $3 P$ and $\searrow$ Q, we find a very slow rate of developnent associuted with a large oonsumption of food, an Fas usualif the case in all the experinente, it the same time, these unita apparentiy oonsumed the most iodine, both as to total and daily amounts, of any of the exporiments in this series. In fact, aocording to leble XXVII, the spocimons in SP ate about eighteen times as much total lodine and over twentymive times as muoh each day as those in bi, the noxt highest, while those in 89 oonsumed in all oighty times as ruah as the apooimens in $8 L_{\text {, }}$ and their relative daily oonsumption was about the ame. at firat sight it would appar that these reauits were at maricod varianoe with the general tendenoy as shown in praotioally all the other experimenta here performed, but a oloser examination of the experimenta throwe oonsiderable doubt upon suoh a supposition, she apeoimens in those two unita were very aotive, and those that survived ocstinued so until they rwore kelied. The mortality in BP was high juat after the sories wus atarted, as it was also in $8 Q_{\text {, }}$ but in the formor oase this high death rate kept up for a Ionger time in the latter it ahown in fable XXVIII whioh gives tho dates of the death of tho spoolman in these two experimenta, This high morm tality was probably due to the excasaivo amount of freo iodine present,

## 98.

Table XXVIIT
Dates of death of specimens in experiments $P$ and $Q$ in series $S$.

| Date | $S P$ | $S Q$ |
| :---: | :---: | :---: |
| Aug. 11 | 5 | 2 |
| " | 12 | 0 |
| " | 13 | 3 |
| " | 14 | 0 |
| " | 15 | 0 |
| " | 16 | 1 |
| " | 17 | 0 |
| " | 18 | 3 |
| " | 19 | 1 |
| " | 20 | 0 |
| " | 21 | 0 |
| " | 22 | 1 |
| " | 23 | 2 |
| " | $24-30$ | 0 |
| " | 31 | $-\frac{1}{2}$ |
|  |  | 20 |
|  | 20 |  |

as it is toxio in too large quantities. Individual variation among the specimens would account for the surrival of some and the death of others. From a casual examination of the food remored, it seamed evident that a considerable per cent of the added iodine in both these foods was dissolved out of the food by the water in whioh the tadpoles Iived. In order to determine whether or not this was the oaso, a ohemical analysis was made of the focd $\delta$, oalf thyroid soaked in iow dine, after it had been in water for two hours. It was thoroughly dried, and the analysis was mude by the same mothod used in all preFious determinations, whe analysis of this food at the beginning of the experiment showed a 0.135 per cent iodine oontent, while after it had been in the water for two hours, it had only 0.001 per oont lodine in it. From the method of preparing foods $p$ and $\theta, 1, \theta_{1}$, soaking the beef and oalf thyroid in iodine, then drying, and mixing this proparation with wheat flour and alfalfa flour to make the paste whioh was fed, it is probable that there was very littlo of the lodine that ontered into combination with the other bubstances, as was ovidently the case when Allen (1919a) fed jodine mixed with flour. whio would aocount for the large per oent whith was no readily separated from this food by soaking for a short time. It is ovident that thia would tend to reduce the amount of lodine the spooimens aotually oonsumod. to a large extent and this reduotion would be more marked the longor the food remained in the water uneaten, But the food firat oonaviod must have been high in iodine content, and also, as mentionod befora, acoording to Boulenger (1914) and Bwingle (19190), tadpoles absorb water and honoe in all grobability iodino dissolvod in it, through the integument. Nevertheless, the momet of iodine which was eaton
and absorbed by the speoimens in experimenta iP and s\& was probably small.

In experiment SP, fed ordinary beef scaked in iodine, there was no trace of thyroid material, but in the mit $\mathrm{S}_{\mathrm{i}}$, fed calf thyroid souked in iodine, one-fifth of the food was thyroid. ihe presence Of this large amount of thyrold, and the attendant iodine whioh was lart of it, apparently nad little effeot beoause what slight difference there was notiosable between the rates of development in these two experiments was in favor of SP, the one without any thyroid. However, it must be remembered that of all the different kinds of thyroids used in tho preoceding experiments, the one whioh had the leaat effect in hastening metumorphosis was this ame oalf thyroid, oven in spite of the faot that the spocimons eating it always consumod a proportionately larger amount of lodino than other unita doveloping more rapidis.

The generally aoaepted idoa is that the foeding of fodine to tadpoles of the tailless imphibia will oause an aoooleration of motamorphosis, dhis is largely based on the work of swingle (1918a, 1918b, 1919b, 19190 and 1923) and of Allen (1919a). In regard to the effeot of feoding iodine to the larvae of salamandere, on the other hand, Uhlenhuth (1921a, 192ka ana 19228) foum it had no offoct in haatoning motamorphosis, in the present experimonts (8P and gQ), it would appear that the feoding of an lodina-soaked food to the tadpoles of Hyla rogilla had no offoct in hamtoning motrmorphosia, but it is oarm tain that the apeoimons actaally obtained a very moh amaller amount of iodine than the figures in Table XXVII would indioate, and it is reasonable to belleve that farther axperimanation will ahow that
this form is no excoption to the other anurans. ilso, the high rate of mortality in these two experiments (Table XXYIII) reduood the number of speoimens so greatiy that it is obriously not possible to draw defindte conclusions from the small number remaining.

## SUMBARY OF EXPERIMENSS OH HYLA REGILIA.

The work on liyla regilla cansistod of four series of oxperiments, M, O, $P$ and $S$. In this summery and comparisan of the different experimente, those of series $r$ are omittod for reabons stated before. a oomparison of the aifferent rates of dovelopment of corresponding experiments in the three series and the arorage of the same are shown in fig, 5 where the numeruls represent the oomparative rate of metamorphoals, the lowest bolng the slarest, and the letters the experiments and the food oonsumed by thom. in oowputing the average rate, series is was given twion as muah folght us either of the others because it had twice as many individuals in anah experinent.
102.


Series N....... Sarias 0 Sarieg S————Averase

Fig. 5. Rxperinents on Hyla ragilla. Graph showing the coa~ parative stages of developnent reached in the experimente conprise ing geries $M, 0$ and $S$; also the average for the three geries. Series 0 and the aperafe are koth represented the the average line retween $A$ and $H$, and $L$ and $M$ they are identioal retneen these points.

The onditions under whioh these several series were carried on were identioal, with the possible exception of temperature. But in this respeat the variation was only silght, as shown in dable XXI. The following is the order in which the experiments fell in regard to their average rate of development, beginning with the slowest: $i$, control; $B$, oalf thyroid; $D$, cooked beof thyroid; is, pig thyroid; 0 , flounder thyroid; $u$, raw boef thyroid; $M$, oat thyroid; $K$, maman thyroid, and $L$, buffalo thyraid (tied); $N$, bear thyroid; $H$, Armour and co.'s thyrold; $G$, Parise Dayis and co.'s thyrold; in, dog thyroid. rhose fed $B, D, B$ and si were only in one series, while $C, G$, and $H$ were omitted from the last series, ihere was a remurkably alight difference in the rato of development in the oorresponding experiments In the different series, Units $k$, fed human thyroid, and $N$, fed bear thyroid, ahowed the laat uniformity.

In studying the relationship betweon the average rate of development and the amount of food and lodine consumed it was found necessary to divide the experiments on Hyla regilla into two groups owing to the fact that all of the series did not cover the oomplete list of foods used, but at the same time the groupe oan be compared due to the presence in both of them of three of the units, whe first of these groups consiated of those fod foods $\dot{A}, B, C, D, s, F, G$ and $H$, the same ones used in the experiments on the tadpoles of fana oatesbiana and frana pipiens. The relationshipa of this group of experiments are shown In figure 6. the second group consisted of the units fed $n, G, H, k$, L, $\frac{M}{}, N$ and 0 , and their relationships are shown in figure 7. ihe data from whioh these graphs are made is contained in Tables XXII to


Stage of development
Total Pood
Total and daily iodine (identionl)--- -

Fis. 6. Exporiaents on Hyls resilla. Graph showing the relationship tetneen the average stage of development reached and the awounts of lond and iodine conguma in the experimenta fed $A, R, C, D, E, P$, and $H$.


Fig. 7. Experiments on Hyla resilla. Graph shoming the relationship tetween the avarage stage of development reachas and the mounts of food and losine consuned in experiments fed $A, B, H, K, W, N$ and $O$.

XXVII inclusive, whe sume urrangement of the experiments so as to Ef ve a gradual advance in rate of develoment from the sloweat to the fastest was made as in the sumaries of previous series, the higher the number on the left of the graph, the more rapid was the development of the specimens in the experiment. whe higher numbers also stand for a larger consumption of iodine, but the reverse is true of the food, the lower the number the more food there was eaten.

In regard to the relationship between the mount of food eaten and the rate of development: it seems that the lass focd oonsumed the more rapid the development, with some exceptions, This would be the expeoted relationship, as the units showing the more rapid matamorphosis were uaturally the shortest ilved, and consequently ate for the ahorter pericd. In the first group mentioned above, as shoma in Fig. G, the relationship of the amount of food oonsumed to the rate of development varios to a oonsiderable oxtent, but this is at least partialiy due to the faot that the graph represents the results obtained from only a single experiment in most of the cases. The linge paralial each other much more olosely when the relationshlps of the aeoond group, shown in Fig.7, ars considerod.

The relationahip between the averaga rate of metemorphoala and both total and daily iodine consumption oan bo conaidored ab onausé Fery ilitile variation between the total and the daily loddme lines. In the oase of experiment 0 , fed flounder thyroid, the amount eaten daily is proportionately somowhat hlegher than the total amount, but otherwise the two liners are almost parallel. In a general way, large Lodine oonsumption went with last development. But experiment b, fed calf thyroid, was a marked oxcoption to thin as it showed a proportion
ately high iodine consumption in connection with a slow rate of deVelopment, a comition apparently usual for experiments fod with this preparation. Als $D$, the units $D$, fed cooked beof thyroid, $K$, fed human thyroid, and $M$, sed oat thyroid, were just the reverse to $B$, chowing an exaeptionally low lodine consumption assoolated with a more rapid rato of metamorphosis. As stated before, it is possible that the age of the thyroid in food B had something to do with the fact that it appeared less active in proportion to the amount of iodine oontained in it than did the other thyrolde. But this doen not acoount for the other exceptions. It seems probable that the active agent of the thyroid gland varies in intensity in different animals, and that the per cont of iodine contained in the giand is in a general way a gauge by whioh its action may be oatimated, but that there are more or lepa marked exoeptions to this, and the exoeptions may oxtend in either direotion from what might be oalled the nomal.

Experiments $9 P$, fed beef soaked with iodine, and se, fed oalf thyroid soaked with iodine, are not disoussed in this sumary because they were treated in detail under the general discussion above.

## GENGRAL SURRARTY．

In comparing the results of the different series wo find that the first eight experimentz in each series uniformily arrangod them－ selves in two groups，the first shofing a alower rate of develoment and the second a more rapid one．Invariably the unite fed $A$ ，control， B，calf thyroid，ü，raw beef thyroid，$j$ ，cooked boof thyroid，and 4 ， pig thyroid，were found in the firgt group，und those fed $\boldsymbol{f}$ ，dog thyroid，$H$ ，yarke Davis and vo．＇s thyroid and $H$ ，irmour and vo．＇s thyroid，were in the second．there was ane variation in the arrange－ mant of the experimente in the different sories as shown by the follow ing oomparison where the units are arrunged in order，tho one which showed the alowest rute of development beinf plagod firati

| mana catesbiana | B，D，C，A，S，H，G，P． |
| :---: | :---: |
| Hana pipions |  |
| Hyla regilla | $A, B, D, E, O, H$, |

The variution within the two ercups mentioned above was aonsiderable and seomed to follow no rule．In series b where additional kind of food were used，we find that the units ped $G$ ，flounder thyroid，ghowed the slower rate of developont oharacteriatio of the first grapapa bove，while those fed $k$ ，human thyrcid，$L$ ，buffalo thyrcia，and $⿴ 囗 十$ bear thyroid，had a distinotly rapid metamorphois，thus pilaolng tham in the seocnd group，although they all had a olower rate than those fed oither $\mathrm{f}, \mathrm{G}$ or H ．the experimante rod M ，out thyrula，wero mid－ Way betweon these groups for as the rate of dovelopoont went． Regarding the relationship between the rate of davolopment and
the amounta; both total and daily, of food eaten, it may be said that With few exceptions, the greator amount of food conswned was assooiated With the allower rate of development. As atated before, this is correlated with the length of time the experiments ran, as those living longer would naturally eat a greater amount, and the longer lived experiments ware the ones that developed the slowast.

As to the correlation between the amount of iodine used and the rate of development, it may be said that with some excoptions the greater amount of lodine consumed was assoaiated with the more rapid rate of development. One marked exoeption to this was seen in all the oxperiments fed on $B$, calf thyroid. In these there was invariably a very high rolative cacount of lodine eaten ocmpared to a muoh slower relative rate of development. Also, in the experimenti on Hyla regilla, those fod K, human thyroid, $M$, oat thyroid, and $D$, oooked bool thyroid, showed the opposite condition, namely, a low lodine cousumption tom gether with a relatively rapld development and in the experiments on Rana oatesbiana, those fed A, oontrol, shoved the gano condition.
conclusi cess.

Whe following are the conclusions reached from a study of the foregoing experiments:

1. Whose tadpoles that develop the most rapidy eat the least, this being due to the faot that the longer lived individuals have more opportunits for food consumption.
2. A lower temperature tends to slow up the prooess of metamorphosis. However, there was little evidence that it effeoted the rate of development of the apeolmens fed one kind of thyroid any more than it did those fed other kinde.
3. In experiments where thyroid is fad to tadpoies, while the rate of metamorphosia is usually related to the amount of lodine consumed by the speoimens, those obtaining the larger aqounta, both total and daily, developing the more rapidiy, get there are distinot exoeptions to this.
4. These exceptions to the above sean to be asacoiated with some apecifio kinds of thyroid. for inatance, oalf thyroid may be fed in large enough quantities so that a relatively large amount of iodine is comomed, and yot no oorrespondingly rapid metamorphosis ensues. On the other hand, human and oat thyroid aean to produae an abnormaliy rapid developmon whon the anall amount of iodine coneumed is ocnaiderod.
5. sood soaked in lodine, and honoe haring a much higher lodino content than the same food not so treated, does not always appear
to have a freater effect in acceleratiog the rato of metamorphosis than untroated food.
6. ixom the above (4 and 5) it wolild appear probable that the iodine alone is not the aotive agent in the thyroid giand, but that it is combined with or part of the aotive ueent, and that this latter varies in composition in the glands of different animals.
7. Lhe larger the volume of water in whioh the specimens were kept, the slower was the rate of developront, dihis indioates that the aotive substanoe of the thyroid not only aots through the alimentary oanal, but also disalves out of the food and affects the tadpolas through their integuments.

## BIBLICCRAPHY

Allen, Bennet M., 1917. bitizpation of the hypophysis and thyrold glands in Rana pipiens. Anat, Figo, 1l:486-

Allen, Bennet M. , 1918. ihe relation of nomal thyroid piand dom Velopment to bodily growth and differentiation in fiana, Bufo and Amblyetoma, Anat. Fiec., 14:206-

Allen, Bennet $\mathrm{H}_{\mathrm{A}}$, 1919a, ing relation of the pituitary and thyroid glands of Bufo amd Rana to lodine and motamorphosis. Biol. Bulletin 86: 405m417.

Allen, Bennet M., 1919b, The developrent of the thyroid glands of Bufo and their normal relation to metamorphosis. Jl. Mormh., 32:489-504.

Boulenger, t. G., 1914. Reptiles and Befraohians. Loodon mand New York.

Cameron, A. T., 1914. Gontributions to the blochomistry of lodine. Part. I. Who diatributions of lodine in plant and animal tissue. J1, Biol. Ohom., 18 ;335~380,

Oameron, A. Y., 1915. Oontributions to the bioohomistry of todino. Part II. The diatributions of lodine in plant and animal tiagues. J1. Biol, Uhom., 23:1-39.

Diakerson, Mary 0., 1907. whe frog book. Hyow York.

Enouet, A. D., and Allon, f. Pop 1919. Nutritional studies on the growth of prog larvae (Rana pipiens). Jl. Biol. Chem., 38 : 325-343.

Emmet, A. D., Allen, $\mathrm{H}^{\prime}$. P., and sturtevant, \&o, 19z0. Kelation of vitamines and loding to the aize and development of the tadpole, J1. B101. Uhem., 41:31-71.

Graham, A., 1916. A study of the physiologioal activity of adom momata of the thyroid gland in relation to thelr lodine oontent, as ovidenoed by feeding experiments on tadpoles. J1. Bxp. Medi., 24: 345-359.

Gudernatsoh, J. B., 191之, Feoding exporiments on tadpoles. I. The inf luenoe of speoific orgens given as food on growth and differentiation. Aroh fus. fintwiok, d. Organ, $35 ; 457$ -

Gudernatach, J. F., 1914. Feeding expariments on tadpoles. A furthar oontribution to the knowledge of organs with internal searetions, Amer. N1. Anat., 251431-478.

Gudernatsah, J.f., 1917. Etudies in internal searetion. IV. Troatment of tadpoles wi th thyroid and thymus extraots. Anat. Kө0., 11:557m

Kendall, Bdward O., 1917. On the orystalina oompound ocntaining jodino whioh oocurs in the thyroid. andoc., 1:153-169.

Kendali, E, O., 1919, The ohemioal identifioation of thyroxin. J1. B101. Ohem., 40:125-147.

Kendall, s. O., and Osterberg, A. E., 1919. Isolation of the iodine ocmpound whioh oocurs in the thyroid. Jl. Biol. Chom., 39: 265-334.

Lenhart, U. H., 1915, The influence upon tadpoles of feading desiocated thyroid gland in variable amounts and of variable

 the x-ray apon the reaponse of tadpoles to thyroid stimulation. mandoo., 2\&189-300.

Shoree, Hax, 1914. The effootive prinolpal in throid acoelerating involution in frog lampae, sh. Biol. Ohem, , 19:421-429.

Rogoff, J. M., 1917. A method for the standardization of thyroid proparation. J1. Pharm. and isep tharap. , 10:199-208.

Rogoff, M. Mo, 1918. Note on the preparation of a soluable conoentrated product of the thyrold 8 hand, sl. Pharm, and texp. Wherap., 1Kiz07-209.

Fiogoff, J. M., and Marine, D., 2917. Attempta to produce a subatance with thyroid-like activity by the artificial iodizam tion of protoing, Jl. Pharm, and sicp , Thorap, 10:321-325.

Soidell, itherton, an Pergor, rroderio, 1914. Soasonal variation in the oomposition of the thyroid glamed, Bull. No. 9, Hygianio Lab., U. 8, Pablio Hoalth 8anviae, pp. 67-88.

Smith, Philip s., and Cheny, Gernott, 1921. Does the administration of anterior lobe to tadpole produce an affoot aimilar to that obtained from thyroid feading? Abstraots Am. issoc, inat., inat. Feo., íl:84.

Swingle, W. W., 1918a, the acoeleration of metamorphosis in Prog larvae by thyroid feeding, and the erfeota upon the alimontary oanal and sex glands. J1. Eixp. Zool.,24:521-543.

Swingle, W. W., 1918b. Lodine as the aotive prinoipal of the thyroid gland. sindoo., 2 2883-iz88.

Swingle, W. W., 1919a, studies on the relation of iodine to the thyroid. I, ahe effects of feeding lodine to normal and thyroideotanized tadpoles. JI. kxp,zool., $27: 397-416$.

Swingle, W. W., 1919b, lodine and the thyroid. III. The speoifio sotion of iodine in aocelerating Amphibian matamorphosia. J1. Gen. Hhys., 1:693-606.

SWingle, W. W., 1919 o. Lodino and the thyroid. IV. quantative experiments on lodine feoding and matamorphosis, sl. Uen. Phys, F :161-171.

Ewingle, W. W., 19\&3, ihyroid transplantation and anuran matamorphosis. J1. sxp. 8ool., 37:219-257.

Uhlenhuth, sduard, 1921a, whe intermal searetions in growth and development of dmphibians. imer. Nat., 55:193-221.

Uhlonhuth, sduard, 19ikib. The effeot of iodine and lodothyrine On the larvae of alamandera. iI. ithe selation between metumorphosis and limb devolozent in salamander larvas. siol. Bulletin, 41:307-317.

Uhlenhuth, aduard, 19ixia, whe offeot of iodino and iodothyrine on the larvae of elamanders. L. the effect of iodothyrine and iodine on the metemorphosis of inblyatome maculatum. sindoc., b:10\%-116.

Uhlenhuth, whurd, 1922b, she offect of lodine and lodotinyrine on the larpae of salamarieri. IIE, the role of the iodine in the apodific aotlon of the thyroid hormone us tested in the metamoryhobia of the axolotl larva日. Biol. Bullotin, 4is 143-162.

Weat, raul ishleg, 1914. sotes an a aheop thyroid experiment with Prog tadpolas. joi., 391818979,1 fig.
vright, A. H., 1914. Worth arerioan anura. Carnogie Pub. Ho.197. Washington, D. 0.

INDEX.
algae, 5.
Allen, B. M., 7, 9, 99, 100, 112.
Allen, i' P., 7, 113.
anterior lobe, 8.
Armour ani co.'s thyroid, 4, 6, 9, 15, 16, $25,34,36,43,53,57$ 61, 65, 67, 71, 77, 84, 88, 92, 103, 108.

Bear thyroid, 25, 16, 84, 88, 92, 96, 103, 108.
beef and iodira, $15,16,93,108$.
beef thyroid cooked, $14,16,25,34,36,41,53,57,65,67,77$, 88, 103, 108.
be日f thyroid raw, 5, 14, 16, 25, 34, 36, 43, 53, 67, 65, 67, 77, 84, 88, 103, 108.
bladder, 18.
Blood servm, 6.
Boulenger, Li. G., 75, 99, 112.
bromide, 7.
buffulo thyroid, 15, 16, 84, 88, 92, 96, 103, 103.
Bufo sp., 7.
Bufo lentiginobus, 78.
oalf thyrold, 14, 16, 25, 34, 36, 43, 63, 59, 66, 67, 77, 64, 103 108, 110.
calf thyroid and lodine, $15,16,98,100$.
Gameron, A. il, , 16, 112.
ont thyroid, 15, 16, 84, 88, 92, 96, 103, 108, 110.
ohemioal analysis, 14, 76, 99,

Uheng, G., 8, 215.
oonolusions, 110.
control, 14, $16,25,34,36,43,53,579,65,67,71,77,84,88$, 92, $93,103,108$.

Dickerson, M. Or, 9, 112.
dog thyroid, $5,14,16,25,34,36,41,53,57 a, 61,65,67,71$, 77, 88, 92, 103, 108.
ogg albumen, 5.
Emmet, A. D., 7, 113.
Fenger, Fi, 16, 114.
flounder thyroid, $25,16,84,88,92,93,103,108$.
food, 13, 17.
food formula A, $13,14,25,41,83$.
food formula $B, 14,25,36,41,6 R, 62,70$.
Graham, A., 5, 113.
Qudematsoh, J. F., 4, 6, 113.
human thyroid, $b, 15,16,84,88,92,96,103,108,110$.
Hyla regilia, 10, 17, 29, 83, 108.
jodalbine, 4.
lodime, 4, 5, 6, 14, 17, 26, 34, 36, 48, 56, 57a, 61, 65, 67, 74, 80, 87, 91, 96, 106, 109, 110, 111.
iodobenzoio acid, 5.
10doform, 6.
iodothyrin, 4, 6.
iodoxpbensoio aoid, b.
Kendal:1, E. C., 6, 113, 114.
Ieaithin, .

Lenhart, C. H., b, 114.
Iiterature, 4.
Marine, D., 6, 114.
Marius, C. J., 6, 114.
material, 9.
LicGord, C. F., 6, 114.
methods, 9.
methyl iodide, 5.
敢Orse, M., 4, 114.
nuoleo-proteins, 5.
Ostenberg, A. E., 6, 114.
Parke Davis and (50.'s thyroid, 4, 9, 15, 16, $25,34,36,43,53$, $57,61,66,67,71,77,84,88,94,103,108$.
ple thyroid, $9,14,16,25,34,36,41,58,57 a, 65,67,77,88$, 92, 103, 108.
potasaim iodine, $\overline{5}, 6,8$.
pronephros, 18.
Kana sp. . 7.
Ftana oatesbiuna, 9, 17, 20, 25, 62, 67, 80, 108.
Fiana pipions, 4, 5, 9, 17, $29,52,108$.
Kana aylvatiaa, 7, 8 .
Fogoff, J. K., 6, 114.
Series A, 9, 13, 18, 20, 25, 34, 35, 36, 31, 108.
Series B, 9, 13, 18, 20, 31, 41, 208,
Series $0,9,14,18,80,86,41,108$.
Serie日 D, 14, 52, 53, 57a, 60, 61, 62, 66, 70, 77, 108.
series F, 14, 62, E7a, 6\%, 66, 70, 77, 108.

Series $F, 14,52,61,70,77$,
Series G, 14, 52, 62, 67, 70, 77, 108.
Series H, 14, 52, 67, 70, 77, 108.
Sories K, 14, 52, 70, 81, 108.
Series L, 14, 52, 70, 81, 108.
Beries M, 13, 84, 88, 91, 101, 108.
Series 0, 13, 64, 88, 101, 108.
д̈ries $P, 13,84,92,101$.
Series 8, 13, 84, 93, 101, 108.
seidell, A., 16, 114.
shoop thyroid, $b, 9$.
Bmith, P. B., 8, 115.
starch iodate, B. $^{\text {. }}$
aummary, general, 108.
summary, H. regilla, 101.
summary, $k$. oatesbiana, 41.
summary, R. pipiens, 77.
Swingle, W. W., 6, 7, 9, 75, 99, 200,216
tabulations, 16.
temperature, $21,23,40,83,110$.
3-5-D1-iodo-tyrosene, 4.
thymus gland, $b$.
thyreoglobulin, 4.
thyroideatomy, 7, 8 .
thyroxin, 6.
thyroxin iodino, 8.

Uhlenhuth, E., 8, 100, 116, 116.
water, amount, 70, 111.
West, P. A., 4, 116.
Wright, A. H., 9, 116.
x-ray, 6.

## PLATE I

## Rana oatesblana

Hig. 8. srom experiment iA, control, fed beaf.
ris. 9. irom experiment $A B$, fed oalf thyroid.
alg. 10. Prom oxporiment AC, fed raw boef thyroid.
iig. 11. Fron experimont $A D$, fod oooked beef thyroid.
ilg. 12. rrom exporimant AB, fod pig thyroid.
Pig. 13. From axporimant AF, fad dog thyroid.
Pig. 14. From exparimant A 10 , fod Yarice Davis and CO.'s thyroid.
Fig. 15, From experiment AH, fed Armour and 00.1 e thyroid.

Fig. 16. From exporiment BA, control, fed beef.
Pig. 17. From experiment BB, fod calf thyroid.
Pig. 10. Prom experiment $B O$, fod raw boof thyroid.
1ig. 19. Prom experimant BD, fod cooked beof thyroid.
Yis. 20. Prom experiment Bis, fod pig thyroid.
Hig. 2l. Froan axporiment Br , fod dog thyroid.
Hig. 火2. Prom axporimont BG, fod Parko Davis and OD.'s thyroid.
18. 2\%. From axparimant 明, fod Amour and 00.'s thyroid.
the spoolmons shown in $\# 1 \mathrm{gB}, 9,10,21,12,26$ and 20 were disseoted bofore the photographs ware taken.

The speolmens photographed were individuals as near the aver(er for axperiment thoy represent as it was posaible to obtain.


PLAME IL

## Rans oateabians

i18. i4. irom experiment UA, control, fed beof.
rig. 25. jrom experiment OB , fed oals thyroid.
71g. i6, irom experiment 0, fod raw beef thyroid.
18. 85. From expariment OD, fed oooked beof thyroid.

H2g. 28. From oxporimont 08, fod ple thyroid.
-1g. 29. From exporiment OF, fod dog thyroid.
Hig. 30. From experiment 0n, ted Park Davi and 00.'s thyroid.
18. 31. srom oxperiment OH, fod Armour and OO.'s thyroid.
qhe paoimen ahown in ilg. 27 was disseoted berore the phot cgraph Fas taxan.

The apeolman photographed were individuals as near the avorage for the oxperiment they represent as it was posaible to obtain.


## PLats III

## Rana pipions

Fig. 3x, bpeoimens in experiment $D A$, oontrol, fed beef. Pig, 33. spocimens in expariment DB, fed oalf thyroid. Fig. 34, spacimens in experiment $D 0$, sed raw beef thyroid. 11g. 35. speoimens in experiment $D D$, fed cooked beef thyroid. rig. 36. zpelman in experiment $D F$, fed pig thyroid. Hig. 37. Specimena in axperiment DF, fed dog thyroid. Tig. 38. Bpoaiman in experiment DG, fod Parke Davis and Gompany's thyroid.

7ig. 39. speoimens in experiment pH, fed Armour and vompany's thyroid.

In Hig. 35, the first two spolmens ixam the left were dried up.


侖

娚




## plate IV

Rana pipions

Tig. 40. ppooimens in experiment FA, oontrol, fed beef. This experiment was also the oontrol for serien $D$, and 1s, tharefore, a duplicate of Pig. 32.

Yig. 41. specimans in experiment ies, fed oalf thyroid.
rig. 4iL. spocimang in experimont 120 , fod raw boot thyroid. His. 43. spooimens in experiment SD , fed cooked beef thyroid. Hig. 44. bpeoimeni in exporiment ksp , fod pig thyroid. Hig. 45. bpooimens in experiment BF, fed dog thyroid. Pig. 46. Speoimens in experimant ${ }^{5 C G}$, fed Parke Davia and Oompany's thyroid. Yig. 47. Speoimen in experiment 3 , fod Ammons and vompany's thyroid.

In Fig. 42, the first four speoimens from the left were partially aton before being removed from the experiment. The load alpg in fig. 46 represents a apeoimen that acoidentiy dried up in tranait and could not be photographed.

Plate IV


PLATG V
Bana pipiens

Fig. 48. upeoimens in experiment GA, oontrol, fed beef. Fig. 49. Speaimens in experiment GB, fed oalf thyroid. rig. 50. Speaimens in experiment a0, fed raw beef thyroid. Fig. 61. Bpeoimens in expariment GD, fed cooked beel thyroid, Pig. BZ. Specimens in experiment GE, fed pig thyroid. F1g. 53. Epeoimens in experiment ar, fed dog thyroid. Fig. 54. Epecimens in experiment GG, fed Parke Davis and Company's thyroid. Hig. 55. Specimens in oxperimont GH, fed Armour and 0ompany's thyroid.

The rings in Higs , 48, 51, 63 and 55 represent specimens that died and were consumad by the othor individuals, leaving no traoe, the lead alugs in Figa. 49 and B6 represent spocimons that acoidently driod up in transit and oould not be photographod.

## Flatie V



$01,1,1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 53$
$1,1 \quad 1 \quad 1 \quad i \quad 1 \quad 1 \quad 154$
$01 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 55$

PLATTK VI
Rana piplans

Hig. 66. speoimens in experiment HA, oontrol, fed beof. This experiment was also the oontrol for series $a$ and is, tharefore, a dupliaate of Fig. 48.

Fig. 67. Spacimens in experiment HB, fed oalf thyroid. FIG. b8. 8pooimas in experiment HC, fod raw beef thyroid. Wig. B9. 8pecimana in experimant HD, fod oooked be日f thyroid. 118. 60. Bpocimens in exporiment HF, fed pig thyroid. Fig. 61. 8peoimens in experiment HF, fod dog thyroid. Pig. 62. 8pooimen in exporiment HQ, fed Parko Davia and Uompany's thyroid. Fig. 68. 8peoimona in experiment HH, fed Armour and Oompany'a thyroid. The rings in Higs, 56, 57, 60 and 61 represent apooimons that died and were consumed by the other individuals, leaving no traos, the load alugs in Migs. 58, 59 and 60 repreasnt epeoimens that aooidentiy dried up in transit and could not be photographod.

## Plate VI

## $091,9,1190$



是


gana pipions

Whe first four figures, 64 to 67 inolusive, represent exporiments that were oarried on in containers holding 200 0.0. of water, while the last four, 68 to 71 inclusive, are photom graphs of similar experiments in whioh the amount of water was 10000.0.

Fig. 64. Epeoimens in experiment KA, oontrol, fed beof.
Fig. 65. Speoimens in experiment KF , fed dog thyroid.
Fig. 66. Speoimens in experiment KG, fed Parke Davis and. Company' s thyroid.

Fig. 67. Speoimens in exporiment $K H$, fod Armour and DO.'s thyroid. Hig. 68. apeoimen in experiment LA, dontrol, fed beef, Hig. 69, ápecimens in experiment LF, fed dog thyroid. Fig. 70. Speoimeng in experiment La, fed Parke Davis and Lompany' a thyroid.

Fig; 71. speoimen in experiment LH, fod Armour and 00.'s thyroid.

In Fig. 68, the firbt spociman from the left was dried up.

Plate vil
19 1 1 19191




$\begin{array}{llllll}9 & 1 & 9 & 9 & 9 & 9\end{array}$
1919191919


[^0]:    Table XVIII
    Amounts of food and iodine in series $K$. Onit used, graw.

    | No. Name |  | Ant.red | Removed | Total eaten |  | Days | Eaten daily |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Pood |  | Todine | Food |  | Iodine |
    | 8A | Control |  | 1.322 | . 006 | 1.316 | . 000001 | 11 | . 11964 | . 000000120 |
    | Rf | Dog | . 208 | . 064 | - 144 | . 000072 | 7 | . 02057 | . 000010286 |
    | ES | P.D. and Co. | . 286 | . 109 | . 177 | . 000177 | 7 | . 02529 | . 000025286 |
    | 8H | A. and Có. | . 201 | . 121 | . 030 | . 000046 | 10 | . 00800 | . 000004600 |

    .00800 .000004600

