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Abstract
Soil-borne pathogens structure plant communities, shaping their diversity, and through these effects may mediate plant
responses to climate change and disturbance. Little is known, however, about the environmental determinants of plant
pathogen communities. Therefore, we explored the impact of climate gradients and anthropogenic disturbance on root-
associated pathogens in grasslands. We examined the community structure of two pathogenic groups—fungal pathogens and
oomycetes—in undisturbed and anthropogenically disturbed grasslands across a natural precipitation and temperature
gradient in the Midwestern USA. In undisturbed grasslands, precipitation and temperature gradients were important
predictors of pathogen community richness and composition. Oomycete richness increased with precipitation, while fungal
pathogen richness depended on an interaction of precipitation and temperature, with precipitation increasing richness most
with higher temperatures. Disturbance altered plant pathogen composition and precipitation and temperature had a reduced
effect on pathogen richness and composition in disturbed grasslands. Because pathogens can mediate plant community
diversity and structure, the sensitivity of pathogens to disturbance and climate suggests that degradation of the pathogen
community may mediate loss, or limit restoration of, native plant diversity in disturbed grasslands, and may modify plant
community response to climate change.

Introduction

Experimental and theoretical evidence show that plant
pathogens play an important role in structuring plant

communities, especially in maintaining plant community
diversity [1–3]. For example, soil pathogen accumulation
near mature trees is a likely driver of poor performance by
seedlings of the same species [4–8]. This pathogen sup-
pression of conspecific seedlings can give heterospecific
species the opportunity to succeed in these patches, result-
ing in a more diverse plant community. Soil pathogens are a
major cause for the negative feedback commonly observed
between plants and their soil communities, a mechanism
which maintains large-scale patterns of plant diversity
[9–11]. Similarly, when plants move out of their native
range, release from pathogens may help drive their suc-
cessful invasion of new regions [12, 13], further evidence
for the critical role pathogens play in structuring plant
communities. Given the important role of pathogens in
plant community structure and diversity, responses of plant
communities to perturbations may be mediated by the
sensitivities of their pathogen communities.

Fungi and fungus-like organisms are major soil-borne
plant pathogens. While we know how fungi generally
respond to both edaphic properties [14–17] and climate
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[18–24], it is unclear if plant pathogens mirror these broader
responses to environmental factors. Individual studies have
shown that pathogen composition in root-infecting fungi is
driven primarily by soil pH [17], while diversity has been
shown to respond to precipitation [25] and richness to
respond to vapor pressure deficit [24]. The composition of
oomycetes, common, fungus-like pathogens, depends on a
combination of edaphic traits and environmental conditions,
including soil pH, nitrogen, phosphorus, latitude, air tem-
perature, and precipitation [23, 26, 27]. Water availability is
likely to be particularly important for oomycete distribution,
as wet conditions are required for most oomycete zoospore
release and flagellar movement [28]. Plant pathogens are
also likely to be affected by anthropogenic disturbance,
given the large effect of disturbance on plant communities.
Land use disturbances such as tillage, fertilizer additions,
heavy grazing, and row crop monocultures have been
shown to alter mycorrhizal fungal communities [29, 30],
but the sensitivity of plant pathogens to disturbance are
not well understood, particularly if their responses
interact with climate. Understanding plant pathogen
responses to environmental drivers is particular important
given contemporary and future pressure from anthropogenic
change, including changes in land use, temperature, and the
intensity and frequency of precipitation events [31, 32].
Because root-associated plant pathogens have large effects
on their plant hosts, their responses to climate and land use
may mediate plant responses to these anthropogenic
impacts.

Here, we use a naturally occurring climate gradient
across United States grasslands to investigate root-
associated plant pathogen response to climate gradients
and anthropogenic disturbance. Specifically, we compare
root-associated plant pathogen community diversity and
composition across remnant, native grasslands (those
without anthropogenic disturbances), and disturbed grass-
lands (those with a history of anthropogenic disturbances)
across a Midwestern US precipitation and temperature
gradient from Illinois to Oklahoma. We focus on two
groups of root-associated pathogens: fungal pathogens and
oomycetes. We hypothesize that root-associated pathogen
community structure will be strongly impacted by anthro-
pogenic disturbance, and drive differences in community
responses to climate. Undisturbed native grasslands should
show the greatest sensitivities to climate variables, such as
precipitation and temperature, because the long co-
evolutionary history of plants and pathogens there should
allow differentiation with respect to climate. Disturbed
grasslands are likely dominated by fewer pathogen species,
many of which are disturbance-adapted and therefore less
sensitive to climate variables. In addition, these disturbed
sites likely harbor more homogenous plant communities to
serve as pathogen hosts, possibly acting as a filter for

establishment of plant pathogens and reducing the range of
pathogen response to climate across these sites. Both tem-
perature and precipitation should limit pathogen diversity in
undisturbed, native grasslands [33], such that increasing
precipitation or temperature will increase pathogen diversity
and shift community composition. Precipitation and tem-
perature effects may interact, as has been shown for bacteria
[34], overall microbial communities [33], and soil respira-
tion [35]. Finally, because fungal pathogens are phylogen-
etically distributed throughout the fungal kingdom, we
compare fungal pathogen results to those of fungal sapro-
trophs (decomposers) to determine if responses are
pathogen-specific or in line with broader variation in the
fungal community.

Materials and methods

Field sampling

Samples were collected from paired remnant and disturbed
grassland sites across the Midwestern United States (Fig. 1),
from Illinois to Oklahoma. We paired remnants or clusters
of remnants with nearby disturbed grasslands, totaling 14
remnant and 12 disturbed sites. Remnant grassland sites
were defined by the absence of tilling or intensive grazing
and were dominated by late successional native tallgrass
prairie plant species, including Andropogon gerardii,
Schizachyrium scoparium, Sorghastrum nutans, Amorpha
canescens, Echinachea pallida, and Silphium lacinatum.
Disturbed grassland sites had known histories of soil dis-
turbance such as tillage (sites ranged from ~20 to 50 years
since disturbance), and clear signs of anthropogenic dis-
turbance, including overgrazing and dominance of non-
native plant species, including Festuca arundinaceae,
Bromus inermis, Bromus. tectorum, Poa pratensis, and
Bothriochloa ischaemum. Remnant grasslands were gen-
erally more diverse than disturbed grasslands (x= 18.8
versus 7.5 plant species per plot, respectively). We sampled
four plots arbitrarily located within each site. Four soil cores
(width 2 cm, depth 15 cm) were collected arbitrarily within
each of the four quadrants of each 1 m2 plot and composited
into one sample for sequence analysis. Fine roots were
collected from each sample, soil removed by hand, and
frozen until DNA extraction. Soil chemical analyses
including pH, Bray 1 phosphorus, and micronutrients
(Melich 3) as well as Bray 2 phosphorus and C/N (Dumas
method), were also conducted for most soil samples (A & L
Great Lakes Labs, Fort Wayne, Indiana). Climate variables
including mean annual temperature and mean annual pre-
cipitation were extracted from National Weather locations
closest to each site [30]. Soil chemical analyses results
and climate variables can be found in Table S1.
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Library preparation and sequencing

DNA was extracted from 35 mg of each root sample using
the PowerSoil Kit (Qiagen, Hilden Germany). PCR ampli-
fication targeted the internal transcribed spacer section (ITS)
of ribosome encoding genes for both fungi and oomycetes.
Forward primer fITS7 [36] and reverse primer ITS4 [37]
were used to amplify the ITS2 region. This region is a
universal barcode for fungi [38] and is particularly suited
for short Illumina MiSeq sequencing [39]. PCR amplifica-
tion for oomycetes was done using recently developed
oomycete-specific primers in the ITS2 region [40]: ITS3oo

(Forward, AGTATGYYTGTATCAGTG) and ITS4
(Reverse, TCCTCCGCTTATTGATATGC). PCR products
were visually checked on agarose gels to ensure successful
amplification and cleaned using Agencourt AMPure XP
magnetic beads (Beckman Coulter, Indianapolis, USA).

The fungal PCR reaction was performed using the fol-
lowing reactants per sample: 0.5 µl of each primer, 1 µl of
extracted DNA template, 12.5 µl Phusion mastermix with
HF buffer (New England Biolabs, Ipswich, MA) and 10.5 µl
ddH2O. We used the following thermocycler program for
fungal PCR: 5 min at 94 °C, 35 cycles of (30 s at 94 °C, 30 s
at 57c, 30 s at 72 °C), and a final 7 min extension step at

Fig. 1 Naturally occuring precipitation and temperature gradients
across study sites. Precipitation (a) and temperature (b) across our
sampling sites. Remnant sites are indicated by filled circles, while

disturbed sites are indicated by filled triangles. Sites are skewed ver-
tically to avoid overlap to clarify where different sites are located.
Color intensity represents rainfall (a) and temperature (b) intensity.
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72 °C. Fungal PCR resulted in amplicons of ~700 bases
including primers and Illumina adapters. Oomycete PCR
was performed using the following reactants in each sam-
ple: 0.5 µl of both primers, 1.0 µl of DNA template, 5.0 µl
HOT FIREpol (Solis Biodyne, Tartu, Estonia), and 18 µl of
ddH2O. For oomycete PCR, we used the following ther-
mocycler program: 5 min at 95 °C, 35× (30 s at 95 °C, 30 s
at 55 C°, 60 s at 72 °C), and 10 min at 72 °C. The oomycete
reaction created amplicons of variable length between 400
and 700 bases.

DNA libraries for each sample and target group were
created using a Nextera protocol, pooled, then sequenced
using Illumina Mi-Seq (Illumina, San Diego, USA). Fol-
lowing the first cleanup, an indexing PCR was carried out to
ligate unique 8 base-pair long sequences (molecular bar-
codes; Illumina, San Diego, CA, USA) to each sample. The
PCR was run under similar conditions as initial PCR, except
5 µl of the primary PCR amplicon was used instead of the
original DNA template, and the number of cycles was
reduced to 8. Secondary PCR amplicons were purified with
Agencourt AMPure XP magnetic beads and DNA con-
centrations were assessed by Qubit 2.0 (LifeTechnologies,
Carlsbad, USA). Samples were pooled in equimolar con-
centration to a single library for each target group (fungi and
oomycetes). Fungal and oomycete sequences were gener-
ated using an Illumina Mi-Seq (Illumina, San Diego, USA)
at the KU Sequencing Core (Lawrence, KS). Raw sequen-
cing data (fastq files) are available at Sequence Read
Archive, BIOPROJECT #PRJNA532765.

Bioinformatics

Bioinformatic analysis of sequencing data used an opera-
tional taxonomic unit (OTU) approach through the Qiime
pipeline, followed by taxonomic, ecological group and
phylogenetic assignment. Sequencing data were analyzed
following Caporaso et al. [41] using Qiime v.1.9.1. Quality
and barcode filtering resulted in 11,951,250 reads with an
average phred score ≥20 and median length of 278.69 bases
for fungal sequencing and 20,752,280 reads with an average
phred score ≥20 and median length of 287.24 bases for
oomycete sequencing. Open-reference OTU picking using
sortmerna_sumaclust (pick_open_reference_otus.py) and
the UNITE fungal ITS reference database v7 [42] or a
custom curated oomycete reference database (available
upon request) were used to cluster OTUs at 97% similarity.
All OTUs with <5 reads overall were removed to eliminate
potential PCR/sequencing artefacts, as recommended by
Lindahl et al. [43]. All data were normalized using DESeq2
implemented in Qiime [44], using the normalize_table.py
script before analysis. In total, there were 866 fungal
pathogen, 3595 oomycete, and 3414 fungal saprotroph
OTUs we could identify in this study. Saturation curves for

each analyzed group show that more diversity is present in
our system than identified here (Fig. S1). The entire
bioinformatics pipeline and OTU tables are available upon
request.

To identify putative fungal plant root-associated patho-
gens from the broader fungal OTUs, we assigned taxonomy
from UNITE using RDP [45]. Then, because pathogenicity
arose independently in multiple fungal lineages [46] and
therefore pathogens are often closely related to non-
pathogenic species, we contrasted the resulting taxonomic
identities against the FUNGuild database [47]. Overall,
15.4% of fungal taxa were assignable to functional guild
using FUNGuild (Table S2). We identified putative fungal
pathogens within this group based on a FUNGuild assign-
ment that contained “pathotroph” and were categorized with
confidence of either highly probable or probable (17.8%,
Table S2b). In this way, the fungal pathogen assignment
was liberal to ensure that fungi which can be pathogens in
certain environments were not excluded. Although FUN-
Guild and other existing databases are incomplete, our
analyses that use these databases to identify taxa and
putative fungal pathogens are robust to assess our hypoth-
eses on climate and land use. One might expect pathogens
from disturbed sites to be overrepresented in these data-
bases, as the majority of plant-pathogen work has histori-
cally been agricultural, but we find little evidence for this
bias in identification between remnant (11.4%) and dis-
turbed (13.6%) sites. In addition, fungal saprotrophs were
identified using FUNGuild as described above for fungal
pathogens to assess whether fungal pathogen responses
match those of other fungi identified through this process
(Table S2). For oomycetes, we checked the identity of
resulting OTUs either against a database containing all
NCBI oomycote ITS2 sequence results using the Basic
Local Alignment Search Tool, BLAST v. 2.6.0 [48], using
default parameters, or through placing OTUs in the oomy-
cete clade, as the oomycota are thought to have arisen from
a common ancestor forming a conserved clade [49] and
generally function as pathogens [27, 28].

Statistical analysis

All statistical analyses were carried out on two plant
pathogen groups: fungal pathogens and oomycetes. In
addition, we analyzed fungal OTUs identified as sapro-
trophs (decomposers) to compare with fungal pathogen
results. We ran all analyses for phylogenetically and
BLAST determined oomycete OTUs, but because oomycete
OTUs were not as effectively identified by BLAST, we
report phylogenetic oomycete results here (BLAST results
can be found in Supplementary Information for both gen-
eralized linear mixed effect model (GLM) (Table S3) and
PERMANOVA analyses (Table S4)).
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We tested the impact of disturbance, temperature, and
precipitation (alongside other edaphic variables) on phylo-
genetic species richness (PSR-see below; GLM), and
community composition (PERMANOVA). We then asses-
sed differential presence (Venn diagrams) and abundance
(DESeq2) of each OTU between undisturbed and disturbed
grasslands. All statistical analyses were carried out in R
version 3.4.1 [50].

Estimating phylogenetic richness

PSR, [51] accounts for phylogenetic distance among taxa
by using branch lengths extracted from a phylogenetic tree.
We used RAxML to create our phylogenetic trees [52].
However, the evolution rate of the ITS region is relatively
fast [53] and thus is not suitable to build a global tree to
assess the PSR of fungal pathogens or saprotrophs. Instead,
we built a family-level tree from the small ribosomal sub-
unit using the kingdom-level fungal tree based on six genes
as a backbone constraint [46]. We then manually edited the
phylogenetic matrix to include the number of ITS2 identi-
fied OTUs per family, setting the distance between OTUs in
the same family at 0.05, a small number relative to the
distance between neighboring families. While this
assumption limits the information on relationships within
family, this approach represents the major advantage of
PSR, which is sensitive to the distribution of OTUs across
the deeper nodes of the tree. With both trees constructed, we
used the pez package [54] in R to extract PSR values. The
fungal outgroup used to root our phylogenetic tree was
Rhizopus oryzae [55]. For the oomycetes, no reference tree
is available, so we constructed a tree from the ITS
sequences using two outgroups: Phaeodactylum tricornu-
tum and Thalassiosira pseudonana [49].

Analysis of PSR differences

We used GLMs to test whether disturbance (remnant or
disturbed) and environmental variables explained differ-
ences in fungal pathogen and oomycete PSR across [1] all
sites, then separately across [2] remnant sites and [3] dis-
turbed sites. We ran these separate analyses for remnant and
disturbed sites to further explore significant disturbance by
environmental variable interactions present in the all sites
model. For the “all-sites” models, we ran linear models
testing mean annual precipitation, mean annual temperature,
and their individual interactions with land use. Within the
separate remnant and disturbed sites only data, we ran
separate linear regressions testing mean annual precipita-
tion, mean annual temperature, and the interaction between
mean annual precipitation and temperature. For the “all-
sites” models, we nested disturbance within site (random
effect, intercept) and for models for remnant or disturbed

sites included site as a random effect to properly account for
nonindependence of replicate samples within site. If we
assume that our sites are representative of each type of land
use (which they were to the best of our ability), identifica-
tion of sites within land use as random effects allows gen-
eralization across the sampled area. Mean annual
precipitation and temperature were mean-centered and
scaled prior to analysis. Our variable selection was informed
by literature investigating environmental predictors of soil
microbial diversity [20, 26, 56] and function [19, 57].

Analysis of differences in community composition

We used a permutational multivariate analysis of variance
(PERMANOVA) to test whether disturbance (remnant or
disturbed) and environmental variables explained differ-
ences in fungal pathogen and oomycete community com-
position, respectively, across all sites. Our environmental
predictor variables included mean annual precipitation,
mean annual temperature, phosphorus, calcium, potassium,
and soil pH (as well as each in an interaction with land use
for analysis across all sites). Because some disturbance by
environmental variable interactions were significant in our
model for all sites (see results), we also used a PERMA-
NOVA to assess how environmental variables impacted
pathogen community composition in remnant and disturbed
sites separately. Finally, we reran these PERMANOVAs to
test for an interaction between temperature and precipitation
as these were our two major climate change gradients and
did not covary (see Fig. 1). We stratified the PERMA-
NOVA by each combination of disturbance and site to
account for random effects due to spatial proximity of
paired disturbed and remnant plots within any one
site. These PERMANOVA tests were performed using
Morisita’s dissimilarity index, which is robust to unequal
sampling [58], and the adonis2 function in vegan Version
2.4–6 [59].

Analysis of differential abundance and occurrence

Finally, we analyzed the data to understand differential
presence (Venn diagrams) and abundance (DESeq2; [44])
of OTUs between remnant and disturbed grasslands. We
constructed Venn diagrams using VennDiagram (version
1.6.19) to determine shared and unique OTUs between
disturbed and remnant grasslands. We then analyzed the
data using DESeq2, which allows comparison of individual
OTU’s differential abundance between two groups of sites
while correcting for both variation in sequence number
across samples and variance in sequence number for each
OTU [60]. We binned sites into low (<800 mm annual
precipitation) and high (<800 mm) levels of precipitation,
with Western sites representing low precipitation, and
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Eastern sites representing high precipitation. We then used
DESeq2 to examine turnover between these Western and
Eastern sites within remnant and disturbed sites separately.
Because remnant grasslands had greater turnover across the
East–West precipitation gradient, we then reran DESeq2
analysis within Western sites only and within Eastern sites
only to determine variation between disturbed and remnant
grasslands in these two specific regions.

Results

In both groups of root-associated plant pathogens studied
here—fungal pathogens and oomycetes—richness and
community composition responded to environmental

variables, in remnant, undisturbed grasslands, but showed a
reduced sensitivity to environmental variation in disturbed
grasslands.

Phylogenetic richness

For fungal pathogens, PSR was predicted by environmental
variables, particularly precipitation, in remnant (Table 1b;
F1,13.55= 4.26, p= 0.06), but not in disturbed grasslands
(Fig. 2, Table 1b). In remnant grasslands only, precipitation
and temperature interacted to determine PSR, with pre-
cipitation associated with greater fungal pathogen PSR
when temperature was higher, but not when temperature
was lower (Fig. 3; Table 1b; F1,36= 6.22, p= 0.02).
Oomycetes showed similar responses, with oomycete PSR

Table 1 PSR richness GLM
results for oomycetes (a), fungal
pathogens (b), and fungal
saprotrophs (c).

Subset of samples Predictor variables Estimate p value

(a) Oomycetes

All samples Disturbance −0.022 0.389

Disturbance ×Mean annual precipitation 0.004 0.863

Disturbance ×Mean annual temperature −0.036 0.183

Remnant samples only Mean annual precipitation 0.033 0.046

Mean annual temperature −0.012 0.494

Precipitation × Temperature −0.03 0.233

Disturbed samples only Mean annual precipitation 0.029 0.123

Mean annual temperature 0.024 0.257

Precipitation × Temperature −0.002 0.951

(b) Fungal pathogens

All samples Disturbance −0.005 0.990

Disturbance ×Mean annual precipitation 0.645 0.080

Disturbance ×Mean annual temperature −0.369 0.326

Remnant samples only Mean annual precipitation 0.559 0.059

Mean annual temperature −0.386 0.199

Precipitation × Temperature 0.990 0.017

Disturbed samples only Mean annual precipitation −0.094 0.620

Mean annual temperature −0.018 0.921

Precipitation × Temperature −0.282 0.412

(c) Fungal saprotrophs

All samples Disturbance −0.353 0.314

Disturbance ×Mean annual precipitation 0.366 0.291

Disturbance ×Mean annual temperature −0.090 0.748

Remnant samples only Mean annual precipitation 0.415 0.126

Mean annual temperature −0.524 0.035

Precipitation × Temperature 1.033 0.001

Disturbed samples only Mean annual precipitation 0.050 0.817

Mean annual temperature −0.444 0.001

Precipitation × Temperature −0.041 0.840

These tests are univariate tests including either the interaction of the predictor variable and disturbance (if
across all sites), or only the predictor variable in determining PSR richness. Tests of all samples include a
random effect of disturbance nested within site; tests of remnant or disturbed samples include a random
effect of plot. The model distribution is poisson. All significant predictors are in bold.
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Fig. 2 Precipitation predicts fungal pathogen phylogenetic species richness in remnant grasslands. GLM results showing mean annual
precipitation prediction of phylogenetic species richness in fungal pathogens (a., remnant p= 0.06, b., disturbed p= 0.62). Points represent the
raw data; the trendline is the predicted probability from the GLM.

Fig. 3 Precipitation and
temperature interact to
predict fungal pathogen
phylogenetic species richness
in remnant grasslands. Soil
fungal pathogen richness
depends on the interaction
between precipitation and
temperature in remnant
grasslands (Table 1b, p= 0.02).
Pathogen phylogenetic species
richness increases with
precipitation at higher
temperature, but decreases with
precipitation at lower
temperature.

310 C. S. Delavaux et al.



in remnant grasslands increased with precipitation (Table 1;
F1,17.75= 4.62, p= 0.05), but in disturbed grasslands
oomycete PSR was unrelated to environmental variables.

Differences in community composition

Anthropogenic disturbance of grasslands, as well as pre-
cipitation and temperature, influenced fungal pathogen and
oomycete composition (Table 2; disturbance and pre-
cipitation, p < 0.001; temperature p < 0.01). As with rich-
ness, environmental factors predicted soil pathogen
community composition in remnant grasslands, but this
sensitivity was reduced in disturbed sites (Table 2). We
found a significant temperature by precipitation interaction
in fungal pathogens in both remnant and disturbed sites
(Table 2b, remnant: p= 0.04, R2= 0.049; disturbed: p=
0.03, R2= 0.099). In remnant sites, the significant envir-
onmental factors explained a total of 39 percent of variation,
while in disturbed sites they explained 10 percent of var-
iation; although the precipitation by temperature interaction
is significant in both disturbance groups, edaphic responses
were absent, leading to a much lower impact of environ-
mental variables on community composition in disturbed
sites. Mean annual temperature and calcium were significant
predictors of remnant community composition in both
fungal pathogens and oomycetes (Table 2; fungal patho-
gens: temperature: p < 0.01, R2= 0.074; calcium: p= 0.01,
R2= 0.07; oomycetes: temperature: p= 0.03, R2= 0.056,
calcium: p= 0.04, R2= 0.050). Fungal pathogen remnant
community composition was also significantly predicted by
phosphorous, soil pH and potassium (Table 2; phosphorus:
p < 0.01, R2= 0.073; soil pH: p < 0.01, R2= 0.070; potas-
sium: p= 0.03, R2= 0.056).

Differential abundance and occurrence

There were a greater number of unique pathogen OTUs
present in remnant versus disturbed grasslands as found in
the Venn diagrams (Fig. S2); this was especially striking for
oomycetes (BLAST) with over double the unique OTUs
(1555) compared to disturbed grasslands (628). Comparison
of the relative abundance of OTUs via DESeq2 confirms
greater turnover in remnant than in disturbed sites across the
precipitation gradient (west versus east; Fig. S3). Because
of the divergent composition across remnant grasslands, we
compared differential abundance of OTUs in remnant ver-
sus disturbed grasslands in eastern and western sites sepa-
rately. Remnant sites tended to have fewer differentially
abundant OTUs (between eastern and western sites) than
disturbed sites when analyzing fungal pathogens and
oomycetes (Fig. S4). Although there are fewer OTUs in
disturbed grasslands, a greater proportion of these OTUs are
differentially abundant in disturbed grasslands compared to

remnant grasslands, suggesting that they could be dis-
turbance specialists.

Fungal saprotrophs

Fungal pathogens and saprotrophs differed in diversity
responses to climate and land use, but had similar com-
munity composition responses. While climate factors only
predicted pathogen PSR in remnant sites, climate predicted
saprotroph PSR in both remnant and disturbed sites
(Table 1c; remnant: F1,11.7= 5.67, p= 0.04; disturbed:
F1,25= 13.46, p < 0.01). Similar to pathogens, the interac-
tion of precipitation and temperature predicted saprotroph
PSR (Table 1c; F1,36= 13.73, p < 0.01; Fig S5) in remnant
grasslands. Precipitation was positively correlated to PSR
when temperature was high, but not when temperature was
low. Saprotroph community composition responses mir-
rored those found for fungal pathogens, with several sig-
nificant climate predictors for remnant, but none for
disturbed (Table 2c). Therefore, disturbance had distinct
effects on climate relationships for pathogen richness as
compared to saprotrophs, but showed similar results in
terms of community composition.

Discussion

In a comprehensive test of root-associated pathogen sensi-
tivity to environmental factors, we find that the community
structure of fungal pathogens and oomycetes changes with
anthropogenic disturbance. Moreover, we find that root-
associated fungal and oomycete pathogen communities are
sensitive to climate gradients, particularly precipitation and
temperature, in undisturbed grasslands, but that disturbance
disrupts the responses of these root-associated plant
pathogens to environmental factors. As with other recent
work, edaphic factors play an important role in structuring
these grassland fungal communities [15–19, 56]. Together,
these results identify interactive effects of climate and
disturbance on plant pathogen communities, with implica-
tions for understanding potential patterns of the impact of
pathogens on plant community composition and diversity.

Climatic determinants of root-associated plant
pathogen communities in remnant grasslands

In the absence of disturbance, the structure of root-
associated plant pathogen communities in remnant grass-
lands changes with climatic factors, including both pre-
cipitation and temperature. In contrast, most existing
literature on fungal communities find either that climatic
variables are not important to community structure [16, 17]
or these variables are not explored [15, 56]. Our work adds
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Table 2 PERMANOVA results for phylogenetic oomycetes (a) and
fungal pathogens (b).

Subset of samples Predictor variables R2 value p value

(a) Oomycetes

All samples Disturbance 0.061 0.000

Mean annual precipitation 0.092 0.000

Mean annual temperature 0.044 0.001

Bray 2 phosphorus 0.054 0.000

Potassium 0.035 0.007

Calcium 0.029 0.023

Soil pH 0.012 0.621

Disturbance ×Mean annual
precipitation

0.038 0.003

Disturbance ×Mean annual
temperature

0.019 0.188

Disturbance × Bray 2
phosphorus

0.024 0.052

Disturbance × Potassium 0.022 0.093

Disturbance × Calcium 0.025 0.042

Disturbance × Soil pH 0.020 0.153

Sequence number 0.053 0.000

Remnant
samples only

Mean annual precipitation 0.030 0.314

Mean annual temperature 0.056 0.027

Bray 2 phosphorus 0.048 0.050

Potassium 0.037 0.137

Calcium 0.050 0.043

Soil pH 0.043 0.084

Sequence number 0.052 0.030

Mean annual
precipitation × Temperature

0.023 0.879

Disturbed
samples only

Mean annual precipitation 0.061 0.109

Mean annual temperature 0.064 0.100

Bray 2 phosphorus 0.062 0.109

Potassium 0.060 0.122

Calcium 0.066 0.090

Soil pH 0.054 0.175

Sequence number 0.044 0.309

Mean annual
precipitation × Temperature

0.048 0.203

(b) Fungal pathogens

All samples Disturbance 0.065 0.000

Mean annual precipitation 0.096 0.000

Mean annual temperature 0.055 0.001

Bray 2 phosphorus 0.050 0.002

Potassium 0.056 0.001

Calcium 0.011 0.671

Soil pH 0.018 0.274

Disturbance ×Mean annual
precipitation

0.028 0.057

Table 2 (continued)

Subset of samples Predictor variables R2 value p value

Disturbance ×Mean annual
temperature

0.016 0.344

Disturbance × Bray 2
phosphorus

0.014 0.473

Disturbance × Potassium 0.018 0.300

Disturbance × Calcium 0.016 0.403

Disturbance × Soil pH 0.035 0.017

Sequence number 0.027 0.057

Remnant
samples only

Mean annual precipitation 0.050 0.053

Mean annual temperature 0.074 0.005

Bray 2 phosphorus 0.073 0.006

Potassium 0.056 0.029

Calcium 0.067 0.011

Soil pH 0.070 0.007

Sequence number 0.023 0.463

Mean annual
precipitation × Temperature

0.049 0.042

Disturbed
samples only

Mean annual precipitation 0.044 0.455

Mean annual temperature 0.050 0.400

Bray 2 phosphorus 0.049 0.406

Potassium 0.046 0.432

Calcium 0.052 0.379

Soil pH 0.045 0.444

Sequence number 0.056 0.272

Mean annual
precipitation × Temperature

0.099 0.028

(c) Fungal saprotrophs

All samples Disturbance 0.099 0.000

Mean annual precipitation 0.169 0.000

Mean annual temperature 0.053 0.000

Bray 2 phosphorus 0.081 0.000

Potassium 0.033 0.006

Calcium 0.035 0.003

Soil pH 0.022 0.066

Disturbance ×Mean annual
precipitation

0.016 0.195

Disturbance ×Mean annual
temperature

0.014 0.270

Disturbance × Bray 2
phosphorus

0.021 0.067

Disturbance × Potassium 0.010 0.536

Disturbance × Calcium 0.015 0.265

Disturbance × Soil pH 0.020 0.087

Sequence number 0.012 0.439

Remnant
samples only

Mean annual precipitation 0.023 0.329

Mean annual temperature 0.052 0.013
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to the growing evidence that soil fungi in general respond to
climatic factors in addition to edaphic properties
[18, 20, 25]. For example, Zhou et al. [20] investigated six
forests across northern and central America, representing a
30 °C temperature gradient and found that fungal diversity
was better predicted by variation in temperature than
edaphic properties. Likewise, Rincón et al. [18] showed that
fungal community composition responded to temperature
and precipitation across a set of scots pine forests in France
and Spain. Recent work by Spear [25] showed that diversity
of putative fungal pathogens from leaf stem and root tissue
isolated on media responds positively to precipitation across
a natural rainfall gradient in Panama. Our study is the first to
show similar patterns for root-associated pathogens in
undisturbed grasslands.

Oomycetes also respond to precipitation in remnant
grasslands, perhaps due to their life history. For example,
oomycete zoospore release and subsequent flagellar move-
ment to find a host explicitly depend on wet conditions [28].
Precipitation has previously been shown to be an important
driver of oomycete community composition, although most
studies showing this were conducted in agricultural settings
[27]. In agreement with a recent global analysis of oomy-
cete environmental drivers showing the positive relationship
between precipitation and oomycete abundance [23],
oomycete richness in our study responded positively to
precipitation in remnant, undisturbed grasslands.

Temperature modifies the response of fungal pathogen
diversity to precipitation (i.e., temperature and precipitation
interact, Fig. 3). This has important implications for pre-
dicting the impact of these two major climate variables on
remaining grassland systems. In sites with especially high
average temperatures, increasing precipitation corresponds
to an increase in OTU richness, but this effect is absent
across sites with colder average temperatures. Zhang et al.
[33] also found a similar temperature by precipitation
interaction using PLFAs to assess soil fungi; precipitation
and temperature interacted to promote stimulation of func-
tional groups, while under drought, this relationship dis-
appeared. In addition, Talley et al. [24] found that vapor
pressure deficit, a metric combing temperature and relative
humidity, explained fungal richness better than temperature
alone. In contrast, Ochoa-Hueso et al. [61] found soil fungal
diversity decreases with precipitation, although these results
may be a product of different temperature regimes. While
this interaction has been shown for bacteria [34] and fungi
in general [33], our results are, to our knowledge, the first to
show it for root-associated fungal pathogens. Given pre-
dicted shifts in both temperature and precipitation due to
climate change, experimental assessment of the interactions
between these factors is sorely needed.

Anthropogenic disturbance shifts root-associated
plant pathogen composition and alters dependence
on climate

Anthropogenic disturbance impacted pathogen community
composition. The community composition of both oomy-
cetes and fungal pathogens differed in disturbed compared to
remnant grasslands. Our results are consistent with other
studies showing strong effects of land use in non-pathogenic
microbes [30, 62]. We note that these differences in
pathogen composition persisted at some sites decades after
disturbance ended. One might ask why this difference has
persisted so long. It is quite possible that there were few
opportunities for dispersal of native pathogens to disturbed
grasslands, as the vast majority of remnant grassland has
been destroyed by tillage over the last hundred years of
agriculture. With remnant grasslands occurring in less than
four percent of original extent [63], there are very few
remaining sources of native microbes, including pathogens,
and these sources could be many miles from the disturbed
grasslands we sampled. Alternatively, the successful colo-
nization of disturbed grasslands by native plant pathogens
could be limited by other persistent legacies of anthro-
pogenic disturbance. As anthropogenic disturbance includes
tillage and fertilization effects, its impact on the microbial
composition could be mediated by changes in soil structure
or fertility. Edaphic mediation of disturbance effects has
been observed on nonpathogenic microbial groups [16, 56].

Table 2 (continued)

Subset of samples Predictor variables R2 value p value

Bray 2 phosphorus 0.050 0.015

Potassium 0.033 0.097

Calcium 0.052 0.012

Soil pH 0.047 0.021

Sequence number 0.026 0.219

Mean annual
precipitation × Temperature

0.025 0.238

Disturbed
samples only

Mean annual precipitation 0.039 0.404

Mean annual temperature 0.037 0.479

Bray 2 phosphorus 0.037 0.470

Potassium 0.040 0.402

Calcium 0.031 0.597

Soil pH 0.048 0.210

Sequence number 0.036 0.415

Mean annual
precipitation × Temperature

0.039 0.340

Separate tests were run within each oomycetes (a), fungal pathogens
(b) and fungal saprotrophs (c) for all, remnant and disturbed sites; a
second set of analyses was run for remnant and disturbed sites to test
for the interaction between temperature and precipitation. All
significant predictors are in bold.
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However, our data show a consistent differentiation of root-
associated pathogen community structure between remnant
and disturbed sites independent of measured edaphic
properties. It is also possible, and perhaps likely, that the
persistent change in plant composition following dis-
turbance could contribute to these shifts in pathogen com-
munity composition. The disturbed grasslands sampled here
had a markedly different plant composition, including
dominance by non-native plant species, compared to rem-
nant grasslands. Because plant community composition
overlapped so little between remnant and disturbed sites
(with many disturbed sites having no overlap in plant spe-
cies composition with remnant sites), linking pathogen
shifts to individual plant species differences was not pos-
sible. However, given host-specificity of plant pathogens
[2, 64], it is likely that the loss of the native prairie plant
species in disturbed grasslands would limit establishment
success of pathogens from remnant grasslands.

We also find that plant pathogens in anthropogenically
disturbed grasslands are less responsive to variation in cli-
mate than in remnant grasslands, compared to other func-
tional groups. Our results indicate a disturbance-induced
reduction in climate sensitivity of root-associated patho-
gens. Increased homogenization of both soil properties and
plant communities in disturbed grasslands likely leads to a
prevalence of shared, disturbance-adapted pathogens across
the sites. Fungal saprotroph community composition was
also linked to climate in remnant, but not disturbed grass-
lands. Unlike fungal pathogens and oomycetes, however,
climate factors predicted PSR of fungal saprotrophs in both
remnant and disturbed systems. In previous work, arbus-
cular mycorrhizal fungi (AMF) communities in remnant
sites also differed in response to precipitation, similar to
patterns we find in pathogens, but AMF richness was not
affected by climate [30]. Despite some similarities across
functional groups, our data support distinct OTU richness
responses of pathogenic fungi, saprotrophic fungi, and
AMF to disturbance and climate. Given their different
functional roles, these data support expectations that dif-
ferent groups within the microbial community can react
differently to climatic and land use drivers.

Our results support the hypothesis that pathogen com-
munities in undisturbed native grasslands are more
responsive to precipitation and temperature than disturbed
grasslands, yet we urge careful interpretation of these
results. Taxonomic and functional group assignment rely on
well-informed reference databases, which may be lacking
particularly in remnant, undisturbed systems. The common
practice of removing all OTUs that do not match a database
(e.g., BLAST) may skew results toward cultured, heavily
studied, or economically important organisms, such as those
found in agricultural settings. For example, 509 oomycete
taxa were excluded from our initial OTU table based on

matching BLAST sequences because of the limited refer-
ence database available. Phylogenetic taxa delineation (used
here) rather than a BLAST approach is more appropriate for
the poorly described pathogens of native communities and
generated a larger pool of resident oomycetes. Functional
variation may also impact our conclusions. For example, the
assumption that all oomycota are pathogens is widely sup-
ported. Certain oomycetes, however, have been shown to be
saprophytic instead of pathogenic [28] and may have a
spectrum of pathogen and saprotrophic potential [65].
Likewise, our liberal inclusion of fungi designated by
FUNGuild as pathogens likely masks a spectrum of func-
tional variation. Inclusion of only high confidence desig-
nations, similar designations among site types, and
comparison to FUNGuild-designated saprotrophs supports
that these results are not products of database bias alone.
Ideally, a more complete, experimental assessment of
pathogenicity among oomycetes and fungal pathogens
might allow more accurate ecological inferences about these
groups across grasslands.

Study implications

Our findings have implications for restorations of disturbed
grasslands as well as remnant grasslands that have under-
gone the effects of climate change. To the extent that
pathogens contribute to the maintenance of plant diversity
[2], degradation of pathogen diversity and composition
could contribute to the reduced plant diversity often
observed following anthropogenic disturbance [63, 66, 67].
Successful restoration of native plant diversity in grasslands
may depend on reintroduction of these lost pathogens. In
undisturbed systems, greater precipitation increases patho-
gen diversity, both for oomycetes and fungal pathogens,
potentially contributing to increased native plant diversity.
Within a changing climate, however, focusing solely on
precipitation may not effectively predict these microbial
communities, since precipitation effects here depended on
temperature. While we cannot separate the direct effects of
climate on pathogen composition from those effects medi-
ated through plant responses, our results suggest that
incorporation of environmental sensitivities of pathogens
may be important to long-term predictions of plant com-
munity response to climate. Further work is necessary to
understand the causes and consequences of the precipitation
and temperature interaction in pathogen groups to enact
effective management strategies.

Conclusion

In conclusion, our study shows that different groups of
root-associated plant pathogenic microbes are sensitive to
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land use disturbance and environmental gradients.
Environmental gradients are important in driving patho-
gen community responses in undisturbed remnant, but
less so in disturbed, grasslands. By clarifying root-
associated plant pathogen response to temperature and
precipitation gradients, we highlight the indirect con-
sequences that climate shifts may have on plants through
their microbiome. The root-associated plant pathogens
studied here represent an often-overlooked mediator of
plant community composition and diversity. Therefore, a
clear understanding of how the plant microbiome
responds to climate change will help us secure the future
of remaining native plant communities and improve
restoration of degraded ones.
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