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Abstract: We study the fractional diffusion in a Gaussian noisy environment as described by
the fractional order stochastic heat equations of the following form: D(α)

t u(t, x) = Bu +

u · ẆH , where D(α)
t is the Caputo fractional derivative of order α ∈ (0, 1) with respect

to the time variable t, B is a second order elliptic operator with respect to the space
variable x ∈ Rd and ẆH a time homogeneous fractional Gaussian noise of Hurst parameter
H = (H1, · · · , Hd). We obtain conditions satisfied by α and H , so that the square integrable
solution u exists uniquely.
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1. Introduction

In recent years, there have been a great amount of works on anomalous diffusions in the study
of biophysics, and so on (see, for example, [1–4], to mention just a few). In mathematics, some of
these anomalous diffusions (such as sub-diffusions) can be described by the so-called fractional order
diffusion processes. As for the term “fractional order diffusion”, one has to distinguish two completely
different types. One is the equation of the form ∂tu(t, x) = −(−∆)αu(t, x), where t ≥ 0, x ∈ Rd,
α ∈ (0, 1) is a positive number ∂t = ∂

∂t
and ∆ =

∑d
i=1 ∂

2
xi

is the Laplacian. This equation is not
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associated with the anomalous diffusion. Instead, it is associated with the so-called stable process
(or, in general, the Lévy process), which has jumps. Another equation is of the form
D

(α)
t u(t, x) = ∆u(t, x), where D

(α)
t is the Caputo fractional derivative with respect to t.

It is also possible to use the Riemann–Liouville fractional derivative instead of the Caputo
one (see [5] for the study of various fractional derivatives). This equation is relevant to
the anomalous diffusion that we mentioned and has been studied by a number of researchers.
Let us mention a few recent publications concerning the applications of subdiffusive fractional
equations. The work in [3] studied the applications to the transport in biological cells. The
work in [6,7] studied the fractional chemotaxis diffusion equation. The work in [4,8] studied
the morphogen gradient formation. Anomalous electrodiffusion in nerve cells is studied in [9].
The work in [10,11] studied subdiffusive transport equations; it was argued that it is unlikely that a
Caputo form of a transport equation can be derived from a chemotaxis model on the lattice, and the
use of the Riemann–Liouville-type equation was strongly advocated if the anomalous exponent α is
space dependent.

If one considers the anomalous diffusion in a random environment, then this naturally leads to the
study of a fractional order stochastic partial differential equation of the form D

(α)
t u(t, x) = Bu(t, x) +

u(t, x)Ẇ (t, x), where B is a second order differential operator, including the Laplacian as a special
example, and Ẇ is a noise. In this paper, we shall study this fractional order stochastic partial differential
equation when Ẇ (t, x) = ẆH(x) is a time homogeneous fractional Gaussian noise of Hurst parameter
H = (H1, · · · , Hd). Mainly, we shall find a relation between α and H , such that the solution to the
above equation has a unique square integrable solution.

If α is formally set to one, then the above stochastic partial differential equation has been studied
in [12]. Therefore, our work can be considered as an extension of the work [12] to the case of fractional
diffusion (in Gaussian noisy environment). Let us also mention that when we formally set α = 1, and
we recover one of the main results in [12] (see Remark 3 in Section 2 below). Thus, our condition (2.10)
given below is also optimal.

Here is the organization of the paper. The main result of the paper is stated in Section 2. In our
proof, we need to use the properties of the two fundamental solutions (Green’s functions) Z(t, x, ξ)

and Y (t, x, ξ) associated with the equation D
(α)
t u(t, x) = Bu(t, x), which is represented by Fox’s

H-function. We shall recall some most relevant results on the H-function and Green’s function Z(t, x, ξ)

and Y (t, x, ξ) in Section 3. A number of preparatory lemmas are needed to prove our main result, and
they are presented in Section 4. Finally, Section 5 is devoted to the proof of our main theorem.

2. Main Result

Let:

B =
d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

d∑
j=1

bj(x)
∂

∂xj
+ c(x)

be a uniformly elliptic second-order differential operator with bounded continuous real-valued
coefficients. Let u0 be a given bounded continuous function (locally Hölder continuous if d > 1).
Let {WH(x) , x ∈ Rd} be a time homogeneous (time-independent) fractional Brownian field on
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some probability space (Ω,F , P ) (like elsewhere in probability theory, we omit the dependence of
WH(x) = WH(x, ω) on ω ∈ Ω). Namely, the stochastic process {WH(x) , x ∈ Rd} is a
(multi-parameter) Gaussian process with mean zero, and its covariance is given by:

E
(
WH(x)WH(y)

)
=

d∏
i=1

RHi(xi, yi) , (2.1)

where H1, · · · , Hd are some real numbers in the interval (0, 1). Due to some technical difficulty, we
assume that Hi > 1/2 for all i = 1, 2, · · · , d. The symbol E denotes the expectation on (Ω,F , P ) and:

RHi(xi, yi) =
1

2

(
|xi|2Hi + |yi|2Hi − |xi − yi|2Hi

)
, ∀ xi, yi ∈ R

is the covariance function of a fractional Brownian motion of Hurst parameter Hi.
Throughout this paper, we fix an arbitrary parameter α ∈ (0, 1) and a finite time horizon T ∈ (0,∞).

We study the following stochastic partial differential equation of fractional order:D
(α)
t u(t, x) = Bu(t, x) + u(t, x) · ẆH(x), t ∈ (0, T ], x ∈ Rd ;

u(0, x) = u0(x) ,
(2.2)

where:

D
(α)
t u(t, x) =

1

Γ(1− α)

[
∂

∂t

∫ t

0

(t− τ)−αu(τ, x)dτ − t−αu(0, x)

]
is the Caputo fractional derivative (see, e.g., [5]) and ẆH(x) = ∂d

∂x1···∂xd
WH(x) is the distributional

derivative (generalized derivative) of WH , called fractional Brownian noise.
Our objective is to obtain condition on α and H , such that the above equation has a unique solution.

However, since WH is not differentiable or since ẆH(x) does not exist as an ordinary function, we
have to describe under what sense a random field

{
u(t, x) , t ≥ 0 , x ∈ Rd

}
is a solution to the above

Equation (2.2).
To motivate our definition of the solution, let us consider the following (deterministic) partial

differential equation of fractional order with the term u(t, x) · ẆH(x) in Equation (2.2) replaced
by f(t, x): D

(α)
t ũ(t, x) = Bũ(t, x) + f(t, x), t ∈ (0, T ], x ∈ Rd ;

ũ(0, x) = u0(x) ,
(2.3)

where the function f is bounded and jointly continuous in (t, x) and locally Hölder continuous in x.
In [13], it is proven that there are two Green’s functions

{
Z(t, x, ξ) , Y (t, x, ξ) , 0 < t ≤ T , x, ξ ∈ Rd

}
,

such that the solution to the Cauchy problem Equation (2.3) is given by:

ũ(t, x) =

∫
Rd
Z(t, x, ξ)u0(ξ)dξ +

∫ t

0

ds

∫
Rd
Y (t− s, x, y)f(s, y)dy. (2.4)

In general, there is no explicit form for the two Green’s functions {Z(t, x, ξ) , Y (t, x, ξ)}. However,
their constructions and properties are known (see [13–15] and the references therein). We shall recall
some needed results in the next section.



Mathematics 2015, 3 134

From the classical solution expression Equation (2.4), we expect that the solution u(t, x) to
Equation (2.2) satisfies formally:

u(t, x) =

∫
Rd
Z(t, x, ξ)u0(ξ)dξ +

∫ t

0

ds

∫
Rd
Y (t− s, x, y)u(s, y)ẆH(y)dy .

The above formal integral
∫ t
0
ds
∫
Rd Y (t − s, x, y)u(s, y)ẆH(y)dy can be defined by Itô–Skorohod

stochastic integral
∫
Rd

[∫ t
0
Y (t− s, x, y)u(s, y)ds

]
WH(dy), as given in [12].

Now, we can give the following definition.

Definition 1. A random field
{
u(t, x) , 0 ≤ t ≤ T , x ∈ Rd

}
is called a mild solution to the

Equation (2.2) if:

(1) u(t, x) is jointly measurable in t ∈ [0, T ] and x ∈ Rd;

(2) ∀(t, x) ∈ [0, T ]× Rd,
∫ t
0

∫
Rd Y (t− s, x, y)u(s, y)dsWH(dy) is well defined in L2 = L2(Ω,F , P );

(3) The following holds in L2:

u(t, x) =

∫
Rd
Z(t, x, ξ)u0(ξ)dξ +

∫ t

0

∫
Rd
Y (t− s, x, y)u(s, y)WH(dy)ds. (2.5)

Let us return to the discussion of the two Green’s functions {Z(t, x, ξ) , Y (t, x, ξ)}. If α = 1, namely,

if D(α)
t in Equation (2.3) is replaced by ∂t and B = ∆ :=

d∑
i=1

∂2xi , then:

Z(t, x, ξ) = Y (t, x, ξ) = (4πt)−d/2 exp

{
−|x− ξ|

2

4t

}
. (2.6)

In this case, the stochastic partial differential equation of the form:

∂u(t, x)

∂t
= ∆u(t, x) + u · ẆH(x), x ∈ Rd, (2.7)

was studied in [12]. The mild solution to the above Equation (2.7) is proven to exist uniquely
under conditions:

Hi > 1/2 , i = 1, · · · , d and
d∑
i=1

Hi > d− 1 . (2.8)

The main result of this paper is to extend the above result in [12] to our Equation (2.2).

Theorem 2. Let the coefficients aij(x), bi(x) , i, j = 1, · · · , d , be bounded and Hölder continuous with
exponent γ.

Let aij(x) be uniformly elliptic. Namely, there is a constant a0 ∈ (0,∞), such that:

d∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2 ∀ ξ = (ξ1, · · · , ξd) ∈ Rd .
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Let u0 be bounded continuous (and locally Hölder continuous if d > 1). Assume:

Hi >

1
2

if d = 1, 2, 3, 4

1− 2
d
− γ

2d
if d ≥ 5

(2.9)

and:
d∑
i=1

Hi > d− 2 +
1

α
. (2.10)

Then, the mild solution to (2.2) exists uniquely in L2(Ω,F , P ).

Remark 3. (i) If α is formally set to one and B = ∆, then Hi > 1/2 implies Condition (5.8). Thus,
Condition (2.10) is the same as Condition (2.8) (which is a condition given in [12]). Therefore, in some
sense, our condition (2.10) is optimal.

(ii) Since Hi < 1 for all i = 1, 2, · · · , d, the condition is possible only when α > 1/2.

3. Green’s Functions Z and Y

3.1. Fox’s H-Function

We shall use the H-function to express the Green’s functions Z and Y in Definition 1. In this
subsection, we recall some results about the H-function and the two Green’s functions. We shall follow
the presentation in [16] (see also [13] and the references therein).

Definition 4. Let m,n, p, q be integers, such that 0 ≤ m ≤ q, 0 ≤ n ≤ p. Let ai, bi ∈ C be complex
numbers, and let αj, βj be positive numbers, i = 1, 2, · · · , p; j = 1, 2, · · · , q. Let the set of poles of the
gamma functions Γ(bj + βjs) not intersect with that of the gamma functions Γ(1− ai − αis), namely,{

bjl =
−bj − l
βj

, l = 0, 1, · · ·
}⋂{

aik =
1− ai + k

αi
, k = 0, 1, · · ·

}
= ∅

for all i = 1, 2, · · · , p and j = 1, 2, · · · , q. The H-function:

Hmn
pq (z) ≡ Hmn

pq

[
z

∣∣∣∣ (a1, α1) · · · (ap, αp)

(b1, β1) · · · (bq, βq)

]
is defined by the following integral:

Hmn
pq (z) =

1

2πi

∫
L

∏m
j=1 Γ(bj + βjs)

∏n
i=1 Γ(1− ai − αis)∏p

i=n+1 Γ(aj + αis)
∏q

j=m+1 Γ(1− bj − βjs)
z−sds , z ∈ C , (3.1)

where an empty product in Equation (3.1) means one and L in Equation (3.1) is the infinite contour,
which separates all of the points bjl to the left and all the points aik to the right of L. Moreover, L has
one of the following forms:

Case 1. L = L−∞ is a left loop situated in a horizontal strip starting at point −∞ + iφ1 and terminating
at point −∞+ iφ2 for some −∞ < φ1 < φ2 <∞;
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Case 2. L = L+∞ is a right loop situated in a horizontal strip starting at point∞ + iφ1 and terminating
at point∞+ iφ2 for some −∞ < φ1 < φ2 <∞;

Case 3. L = Liγ∞ is a contour starting at point γ − i∞ and terminating at point γ + i∞ for some
γ ∈ (−∞,∞).

To illustrate L, we give the following graphs.

Case 1 Case 2 Case 3

The integral Equation (3.1) exists when
∑q

j=1 βj −
∑p

i=1 αi ≥ 0 (see [16], Theorem 1.1).

Example 5. To compare with the classical case α = 1, we consider the case m = 2, n = 0, p = 1,
q = 2, a1 = α1 = b2 = β1 = β2 = 1 and b1 = d

2
. Let L = L−∞. Then, we have:

H20
12

[
z

∣∣∣∣ (1, 1)

(d
2
, 1), (1, 1)

]
=

1

2πi

∫
L

Γ(d
2

+ s)Γ(1 + s)

Γ(1 + s)
z−sds

=
1

2πi

∫
L

Γ(
d

2
+ s)z−sds

=
∞∑
v=0

lim
s→−( d

2
+v)

(s+
d

2
+ v)Γ(

d

2
+ s)z−s

=
∞∑
v=0

lim
s→−( d

2
+v)

Γ(v + d
2

+ s+ 1)

(s+ d
2

+ v − 1) · · · (s+ d
2
)
z−s

=
∞∑
v=0

zd/2(−1)v
1

v!
zv

= zd/2 exp(−z) . (3.2)

3.2. Green’s Functions Z and Y When B Has Constant Coefficients

In this subsection, let us consider Z and Y when the operator B in Equation (2.2) has the
following form:

B =
d∑

i,j=1

aij
∂2

∂xi∂xj
,

where the matrix A = (aij) is positive definite. In this case, Z and Y (we call them Z0 and Y0 to
distinguish from the general coefficient case) are given as follows.

Z0(t, x) =
π−d/2

(detA)1/2

[ d∑
i,j=1

A(ij)xixj

]−d/2
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×H20
12

[
1

4
t−α

d∑
i,j=1

A(ij)xixj

∣∣∣∣ (1, α)

(d
2
, 1), (1, 1)

]
,

where (A(ij)) = A−1 and

Y0(t, x) =
π−d/2

(detA)1/2

[ d∑
i,j=1

A(ij)xixj

]−d/2
tα−1

×H20
12

[
1

4
t−α

d∑
i,j=1

A(ij)xixj

∣∣∣∣ (α, α)

(d
2
, 1), (1, 1)

]
.

It is easy to see that for the constant coefficients, both of the Green’s functions are homogeneous in
time and space. Namely,

Z0(t, x, ξ) = Z0(t, x− ξ) , Y0(t, x, ξ) = Y0(t, x− ξ) .

In particular, when α = 1, it is easy to see from the above expression and the explicit form
Equation (3.2) of H20

12 (z) that:

Z0(t, x, ξ) = Y0(t, x, ξ) = (4π)−d/2 det(A)−1/2 exp

{
−
∑d

i,j=1A
(ij)(xi − ξi)(xj − ξj)

4t

}
,

which reduces to Equation (2.6) when A = I is the identity matrix.
With the above expressions for Z0 and Y0 and the properties of the H-function, one can obtain the

following estimates.

Proposition 6. Denote:

p(t, x) = exp
(
− σt−

α
2−α |x|

2
2−α
)
, t > 0 , x ∈ Rd , (3.3)

where and in what follows the positive constants C and σ are generic, which may be different in different
occurrences. Then, we have the following estimates:

|Z0(t, x)| ≤


Ct−

α
2 p(t, x) when d = 1

Ct−α[| log |x|
2

tα
|+ 1]p(t, x) when d = 2

Ct−α|x|2−dp(t, x) when d ≥ 3 ,

(3.4)

where, for instance, |Z0(t, x)| ≤ Ct−
α
2 p(t, x) means that there are positive constant C and positive

constant σ, such that the above inequality holds.

Proof. Denote R = |x|2/tα. From [13], Proposition 1, it follows that when R ≤ 1, we have:

|Z0(t, x)| ≤


Ct−

α
2 when d = 1

Ct−α[| log |x|
2

tα
|+ 1] when d = 2

Ct−α|x|2−d when d ≥ 3 .
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Since when R ≤ 1, p(t, x) is bounded from below. This proves the inequality Equation (3.4) when
R ≤ 1.

When R > 1, then by [13], Proposition 1, we have |Z0(t, x)| ≤ Ct−
αd
2 p(t, x). It is clear that this

implies the inequality Equation (3.4) when d = 1 and d = 2. Now, we assume that d ≥ 3. We have:

|Z0(t, x)| ≤ Ct−
αd
2 p(t, x) ≤ Ct−α|x|2−d

(
|x|2

tα

) d
2
−1

p(t, x)

≤ Ct−α|x|2−dp(t, x) ,

where we used the fact that
(
|x|2
tα

) d
2
−1
p(t, x) ≤ p(t, x) for a different σ in the later p(t, x).

Similarly, we can use [13], Proposition 2 (for the d = 1 case), and [13], Section 4.2 (for the d ≥ 2

case), to obtain the following estimates for Y0(t, x).

Proposition 7. We follow the same notation p(t, x) as defined by Equation (3.3). We have:

(i) When d = 1, we have the following estimates:

|Y0(t, x)| ≤

{
Ct

α
2
−1p(t, x) when t−α|x|2 ≥ 1

Ct
α
2
−1 when t−α|x|2 ≤ 1.

(3.5)

(ii) When d ≥ 2, we have the following estimates:

|Y0(t, x)| ≤


Ct−1p(t, x) when d = 2

Ct−
α
2
−1p(t, x) when d = 3

Ct−α−1[| log |x|
2

tα
|+ 1]p(t, x) when d = 4

Ct−α−1|x|4−dp(t, x) when d ≥ 5 .

(3.6)

3.3. Green’s Functions Z and Y in the General Coefficient Case

If the coefficients of B are not constant, then the Green’s functions Z and Y are more complicated
and may be obtained by a method similar to the Levi parametrix for the parabolic equations.

Denote:

M(t, x, ξ) =
d∑

i,j=1

[aij(x)− aij(ξ)]
∂2

∂xi∂xj
Z0(t, x− ξ, ξ)

+
d∑
i=1

bi(x)
∂

∂xi
Z0(t, x− ξ, ξ) + c(x)Z0(t, x− ξ, ξ)

K(t, x, ξ) =
d∑

i,j=1

[aij(x)− aij(ξ)]
∂2

∂xi∂xj
Y0(t, x− ξ, ξ)

+
d∑
i=1

bi(x)
∂

∂xi
Y0(t, x− ξ, ξ) + c(x)Y0(t, x− ξ, ξ) .
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Let Q(s, y, ξ) and Φ(s, y, ξ) be defined by:

Q(t, x, ξ) = M(t, x, ξ) +

∫ t

0

ds

∫
Rd
K(t− s, x, y)Q(s, y, ξ)dy ;

Φ(t, x, ξ) = K(t, x, ξ) +

∫ t

0

ds

∫
Rd
K(t− s, x, y)Φ(s, y, ξ)dy .

The following proposition is proven in [13] (see the Section 2.2 of that paper).

Proposition 8. Let the coefficients aij(x) and bi(x) satisfy the conditions in Theorem 2. Recall that γ is
the Hölder exponent of the coefficients with respect to the spatial variable x. Then, the Green’s functions
{Z(t, x, ξ), Y (t, x, ξ)} have the following form:

Z(t, x, ξ) = Z0(t, x− ξ, ξ) + VZ(t, x, ξ);

Y (t, x, ξ) = Y0(t, x− ξ, ξ) + VY (t, x, ξ), (3.7)

where

VZ(t, x, ξ) =

∫ t

0

ds

∫
Rd
Y0(t− s, x, y)Q(s, y, ξ)dy;

VY (t, x, ξ) =

∫ t

0

ds

∫
Rd
Y0(t− s, x, y)Φ(s, y, ξ)dy.

Moreover, the function VZ(t, x, ξ), VY (t, x, ξ) satisfies the following estimates.

|VZ(t, x, ξ)| ≤


Ct(γ−1)

α
2 p(t, x− ξ) , when d = 1 ;

Ct
γα
2
−αp(t, x− ξ) , when d = 2 ;

Ct
γ0α
2
−α|x− ξ|2−d+γ−γ0p(t, x− ξ) , when d = 3 or d ≥ 5 ;

Ct(γ−γ0)
α
2
−α|x− ξ|−2+γ−2γ0p(t, x− ξ) , when d = 4

(3.8)

and:

|VY (t, x, ξ)| ≤


Ctα−1+(γ−1)α

2 p(t, x− ξ) , when d = 1 ;

Ct
γα
2
−1p(t, x− ξ) , when d = 2 ;

Ct(γ0+γ)
α
4
−1|x− ξ|2−d+(γ−γ0)/2p(t, x− ξ) , when d = 3 or d ≥ 5 ;

Ct(γ−γ0)
α
4
−1|x− ξ|−2+γ−2γ0p(t, x− ξ) , when d = 4 .

(3.9)

Here, γ0 is any number, such that 0 < γ0 < γ, and in the case d ≥ 3, the constant C depends on γ0.

4. Auxiliary Lemmas

To prove our main theorem, we need to dominate certain multiple integrals involving Y (t, x, ξ) and
Z(t, x, ξ). Since both Y (t, x, ξ) and Z(t, x, ξ) are complicated, we shall first bound them by p(t, x− ξ)
from the estimations of |Y0(t, x, ξ)| and |VY (t, x, ξ)|. More precisely, we have the following bounds for
Y (t, x, ξ).
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Lemma 9. Let x ∈ Rd, t ∈ (0, T ]. Then:

|Y (t, x, ξ)| ≤


Ct−1+

α
2 p(t, x− ξ), d = 1;

Ct−1p(t, x− ξ), d = 2;
Ct−(γ−2γ0)

α
2
−1|x− ξ|−2+γ−2γ0p(t, x− ξ), d = 4;

Ct−(γ−γ0)
α
4
−1|x− ξ|2−d+(γ−γ0)/2p(t, x− ξ), d = 3 or d ≥ 5.

(4.1)

Proof. We shall prove the lemma by the above different cases. First, when d = 1, by Proposition 7,
we have:

|Y0(t, x− ξ, ξ)| ≤

{
Ct

α
2
−1p(t, x− ξ), t−α|x− ξ|2 ≥ 1;

Ct
α
2
−1, t−α|x− ξ|2 ≤ 1.

If t−α|x− ξ|2 ≤ 1, then:

|Y0(t, x− ξ, ξ)| ≤ Ct−1+
α
2 · p(x, t)

e−σ
≤ Ct

α
2
−1p(t, x− ξ).

Therefore:

|Y (t, x, ξ)| ≤ |Y0(t, x− ξ, ξ)|+ |VY (t, x, ξ)|
≤ Ctα−1+(γ−1)α

2 p(t, x− ξ) + Ct−1+
α
2 p(t, x− ξ)

≤ Ct−1+
α
2 p(t, x− ξ) .

Now, we consider the case d = 2. From the following inequalities:

|VY (t, x, ξ)| ≤ Ctγ
α
2
−1p(t, x− ξ) ;

|Y0(t, x− ξ, ξ)| ≤ Ct−1p(t, x− ξ)

we have easily:

|Y (t, x, ξ)| ≤ |Y0(t, x− ξ, ξ)|+ |VY (t, x, ξ)| ≤ Ct−1p(t, x− ξ) .

We are going to prove the lemma when d = 3. From Proposition 7, we have:

|Y0(t, x− ξ, ξ)| ≤ Ct−
α
2
−1p(t, x− ξ)

= Ct−(γ−γ0)
α
4
−1|x− ξ|−1+(γ−γ0)/2

∣∣∣∣x− ξt
α
2

∣∣∣∣1−(γ−γ0)/2p(t, x− ξ)
≤ Ct−(γ−γ0)

α
4
−1|x− ξ|−1+(γ−γ0)/2p(t, x− ξ) .

Combining this inequality with Proposition 8, we obtain:

|Y (t, x, ξ)| ≤ Ct−(γ−γ0)
α
4
−1|x− ξ|−1+(γ−γ0)/2p(t, x− ξ) .

We turn to consider the case d = 4. Proposition 7 yields that for any θ > 0, the following holds true:

|Y0(t, x− ξ, ξ)| ≤ Ct−α−1
[(
|x− ξ|2

tα

)θ
+

(
tα

|x− ξ|2

)θ]
p(t, x− ξ) ;

= Ct−α−1
(

tα

|x− ξ|2

)θ[( |x− ξ|2
tα

)2θ

+ 1

]
p(t, x− ξ) .
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If |x−ξ|
2

tα
> 1, then:[(
|x− ξ|2

tα

)2θ

+ 1

]
p(t, x− ξ) ≤ 2

(
|x− ξ|2

tα

)2θ

p(t, x− ξ) ≤ Cp(t, x− ξ) .

As a consequence, we have:

|Y0(t, x− ξ, ξ)| ≤ Ct−α−1
(

tα

|x− ξ|2

)θ
p(t, x− ξ) .

If |x−ξ|
2

tα
≤ 1, then the above inequality is obviously true. Now, we can choose θ > 0, such that

−2θ ≥ (−2 + γ − 2γ0). Thus, we have:

|Y0(t, x− ξ, ξ)| = Ct−α−1+αθ+(−2θ−(−2+γ−2γ0))α2 |x− ξ|−2+γ−2γ0

·
(
|x− ξ|
t
α
2

)−2θ−(−2+γ−2γ0)
p(t, x− ξ)

≤ Ct−(γ−2γ0)
α
2
−1 · |x− ξ|−2+γ−2γ0p(t, x− ξ) .

Combining the above inequality with Proposition 8, we have:

|Y (t, x, ξ)| ≤ Ct−(γ−2γ0)
α
2
−1|x− ξ|−2+γ−2γ0p(t, x− ξ)

+Ct(γ0+γ)
α
4
−1|x− ξ|−2+γ−2γ0p(t, x− ξ)

≤ Ct−(γ−2γ0)
α
2
−1|x− ξ|−2+γ−2γ0p(t, x− ξ)

since −(γ − 2γ0)
α
2
− 1 ≤ (γ0 + γ)α

4
− 1.

Finally, we consider the case d ≥ 5. From the estimates: |Y0(t, x−ξ, ξ)| ≤ Ct−α−1|x−ξ|4−dp(t, x−ξ)
we obtain:

|Y0(t, x− ξ, ξ)| ≤ Ct−(γ0+γ)
α
4
−1|x− ξ|2−d+(γ−γ0)/2

∣∣∣∣x− ξt
α
2

∣∣∣∣2−(γ−γ0)/2p(t, x− ξ)
≤ t−(γ−γ0)

α
4
−1|x− ξ|2−d+(γ−γ0)/2p(t, x− ξ) .

Therefore, we have:

|Y (t, x, ξ)| ≤ Ct−(γ−γ0)
α
4
−1|x− ξ|2−d+(γ−γ0)/2p(t, x− ξ) .

The proposition is then proven.

The bound Equation (4.1) will greatly help to simplify our estimation of the multiple integrals that
we are going to encounter. However, when the dimension d is greater than or equal to two, the multiple
integrals are still complicated to estimate, and our main technique is to reduce the computation to one
dimensional. This means that we shall further bound the right-hand side of the inequality Equation (4.1)
by the product of functions of one variable. Before doing so, we denote the exponents of t and |x− ξ| in
Equation (4.1) by ζd and κd. Namely, we denote:

ζd =


−1 + α

2
, d = 1;

−1, d = 2;

−(γ − 2γ0)
α
2
− 1, d = 4;

−(γ − γ0)α4 − 1, d = 3 or d ≥ 5 .

(4.2)
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and:

κd =


0, d = 1, 2;

−2 + γ − 2γ0, d = 4;

2− d+ (γ − γ0)/2, d = 3 or d ≥ 5 .

(4.3)

From now on, we shall exclusively use p(t, x) = exp
(
− σt−

α
2−α |x|

2
2−α
)

to denote a function of one
variable. However, the constant σ may be different in different appearances of p(t, x) (for notational
simplicity, we omit the explicit dependence on σ of p(t, x)).

With these notation, Lemma 9 yields:

Lemma 10. The following bound holds true for the Green’s function Y :

|Y (t, x, ξ)| ≤ C

d∏
i=1

tζd/d|xi − ξi|κd/dp(t, xi − ξi) . (4.4)

Proof. It is easy to see that:

|x| =

(
d∑
i=1

x2i

)1/2

≥ max
1≤i≤d

|xi| ≥
d∏
i=1

|xi|
1
d .

Thus, for any positive number α > 0, |x|−α ≤
∏d

i=1 |xi|−
α
d .

On the other hand,

|x|
2

2−α =

[ d∑
i=1

|xi|2
] 1

2−α

≥
[

max
1≤i≤d

|xi|2
] 1

2−α

= max
1≤i≤d

|xi|
2

2−α ≥ 1

d

d∑
i=1

|xi|
2

2−α .

Combining the above with Equation (4.1) yields Equation (4.4), since the exponents in |x − ξ| in
Equation (4.1) are negative.

Lemma 11. Let −1 < β ≤ 0, x ∈ R. Then, there is a constant C, dependent on σ, α and β, but
independent of ξ and s, such that:

sup
ξ∈R

∫
R
|x|βp(s, x− ξ)dx ≤ Cs

αβ
2
+α

2 .

Proof. Making the substitution x = ys
α
2 , we obtain:∫

R
|x|βp(s, x− ξ)dx = s

αβ
2
+α

2

∫
R
|y|β · exp

(
− σ

∣∣∣∣y − ξ

s
α
2

∣∣∣∣ 2
2−α
)
dy

≤ s
αβ
2
+α

2

(∫
|y|≤1
|y|βdy +

∫
R

exp

(
− σ

∣∣∣∣y − ξ

s
α
2

∣∣∣∣ 2
2−α
)
dy

)
≤ Cs

αβ
2
+α

2

since the two integrals inside the parenthesis are finite (and independent of s and ξ).
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The following is a slight extension of the above lemma.

Lemma 12. There is a constant C, dependent on σ, α and β, but independent of ξ and s, such that:

sup
ξ∈R

∫
R
|x|β |log |x|| p(s, x− ξ)dx ≤ Cs

αβ
2
+α

2 [1 + |log s|] .

Proof. We shall follow the same idea as in the proof of Lemma 11. Making the substitution x = ys
α
2 ,

we obtain:∫
R
|x|β |log |x|| p(s, x− ξ)dx

≤ Cs
αβ
2
+α

2

∫
R
|y|β [| log |y||+ | log s|] · exp

(
− σ

∣∣∣∣y − ξ

s
α
2

∣∣∣∣ 2
2−α
)
dy

≤ Cs
αβ
2
+α

2 (1 + | log s|)
(∫

|y|≤e
|y|β| log |y||dy +

∫
R

exp

(
− σ

∣∣∣∣y − ξ

s
α
2

∣∣∣∣ 2
2−α
)
dy

)
≤ Cs

αβ
2
+α

2 (1 + | log s|) .

This proves the lemma.

Lemma 13. Let θ1 and θ2 satisfy −1 < θ1 < 0 and −1 < θ2 ≤ 0. Then, for any ρ1, τ2 ∈ R, ρ1 6= τ2,

(i) If θ1 + θ2 = −1, then:∫
R
|ρ1 − τ1|θ1|ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1 ≤ C + C| log(ρ2 − τ1)| .

(ii) If θ1 + θ2 < −1, then:∫
R
|ρ1 − τ1|θ1|ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1 ≤ C|ρ2 − τ1|1+θ1+θ2 .

Proof. Without loss of generality, we suppose τ1 ≤ ρ2. We divide the integral domain into four intervals.∫
R
|ρ1 − τ1|θ1 |ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1

=

∫ 3τ1−ρ2
2

−∞
|ρ1 − τ1|θ1|ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1

+

∫ τ1+ρ2
2

3τ1−ρ2
2

|ρ1 − τ1|θ1|ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1

+

∫ 3ρ2−τ1
2

τ1+ρ2
2

|ρ1 − τ1|θ1|ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1

+

∫ ∞
3ρ2−τ1

2

|ρ1 − τ1|θ1|ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1

=: I1 + I2 + I3 + I4 .
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Let us consider I2 first. When ρ1 ∈
[

3τ1 − ρ2
2

,
τ1 + ρ2

2

]
, we have |ρ2 − ρ1| ≥ ρ2−τ1

2
. Noticing

p(s2 − s1, ρ2 − ρ1) ≤ 1, we have the following estimate for I2:

I2 ≤
(
ρ2 − τ1

2

)θ2 ∫ τ1+ρ2
2

3τ1−ρ2
2

|ρ1 − τ1|θ1dρ1

≤
(
ρ2 − τ1

2

)θ2 [∫ τ1+ρ2
2

τ1

(ρ1 − τ1)θ1dρ1 +

∫ τ1

3τ1−ρ2
2

(τ1 − ρ1)θ1dρ1

]

= C

(
ρ2 − τ1

)1+θ1+θ2

.

With the same argument, we have:

I3 ≤ C

(
ρ2 − τ1

)1+θ1+θ2

.

Now, we study I1. The term I4 can be analyzed in a similar way. Since ρ1 < 3τ1−ρ2
2

< τ1 < ρ2,
we have:

I1 ≤
∫ 3τ1−ρ2

2

−∞
(τ1 − ρ1)θ1+θ2p(s2 − s1, ρ2 − ρ1)dρ1 .

To estimate the above integral, we divide our estimation into three cases.
Case (i): θ1 + θ2 < −1.

In this case, we bound p(s2 − s1, ρ2 − ρ1) by 1. Thus, we have:

I1 ≤
∫ 3τ1−ρ2

2

−∞
(τ1 − ρ1)θ1+θ2dρ1 =

1

1 + θ1 + θ2

(
ρ2 − τ1

2

)1+θ1+θ2

.

Case (ii): θ1 + θ2 = −1, ρ2−τ1
2
≥ 1.

In this case, we have 3τ1−ρ2
2
≤ τ1 − 1. Thus, we have:

I1 ≤
∫ τ1−1

−∞
(τ1 − ρ1)−1p(s2 − s1, ρ2 − ρ1)dρ1

≤
∫ τ1−1

−∞
p(s2 − s1, ρ2 − ρ1)dρ1

≤
∫ ∞
−∞

p(s2 − s1, ρ2 − ρ1)dρ1

which is bounded when s1 and s2 are in a bounded domain.
Case (iii): θ1 + θ2 = −1, ρ2−τ1

2
< 1.

In this case, we divide the integral into two intervals as follows.

I1 =

∫ 3τ1−ρ2
2

−∞
(τ1 − ρ1)θ1+θ2p(s2 − s1, ρ2 − ρ1)dρ1

≤
∫ τ1−1

−∞
(τ1 − ρ1)−1p(s2 − s1, ρ2 − ρ1)dρ1 +

∫ 3τ1−ρ2
2

τ1−1
(τ1 − ρ1)−1p(s2 − s1, ρ2 − ρ1)dρ1

≤ C +

∫ 3τ1−ρ2
2

τ1−1
(τ1 − ρ1)−1dρ1

≤ C + C| ln(ρ2 − τ1)| .
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Similar argument works for I4. Combining the estimates for Ik, k = 1, 2, 3, 4 yields the lemma.

Lemma 14. Let θ1 and θ2 satisfy −1 < θ1 < 0,−1 < θ2 ≤ 0 and θ1 + 2θ2 > −2. Let 0 ≤ r1 < r2 ≤ T

and 0 ≤ s1 < s2 ≤ T . Then, for any ρ1, τ2 ∈ R, ρ1 6= τ2, we have:∫
R2

|ρ1 − τ1|θ1|ρ2 − ρ1|θ2|τ2 − τ1|θ2p(s2 − s1, ρ2 − ρ1)p(r2 − r1, τ2 − τ1)dρ1dτ1

≤


C(s2 − s1)

α(θ1+θ2+1)
2 (r2 − r1)

α(θ2+1)
2 , θ1 + θ2 > −1;

C(r2 − r1)
α(θ1+2θ2+2)

2 , θ1 + θ2 < −1;

C(r2 − r1)
α(θ2+1)

2 [1 + | log(r2 − r1)|] , θ1 + θ2 = −1.

(4.5)

Proof. First, we write:

I :=

∫
R2

|ρ1 − τ1|θ1|ρ2 − ρ1|θ2|τ2 − τ1|θ2p(s2 − s1, ρ2 − ρ1)p(r2 − r1, τ2 − τ1)dρ1dτ1

=

∫
R
f(τ1, ρ2, s1, s2, θ1, θ2)|τ2 − τ1|θ2p(r2 − r1, τ2 − τ1)dτ1 , (4.6)

where:
f(τ1, ρ2, s1, s2, θ1, θ2) =

∫
R
|ρ1 − τ1|θ1|ρ2 − ρ1|θ2p(s2 − s1, ρ2 − ρ1)dρ1 .

We divide the situation into three cases.
Case (i): θ1 + θ2 > −1.

In this case, we apply the Hölder’s inequality to obtain:

f(τ1, ρ2, s1, s2, θ1, θ2) ≤
{∫

R
|ρ1 − τ1|θ1+θ2p(s2 − s1, ρ2 − ρ1)dρ1

} θ1
θ1+θ2

·
{∫

R
|ρ2 − ρ1|θ1+θ2p(s2 − s1, ρ2 − ρ1)dρ1

} θ2
θ1+θ2

≤ C(s2 − s1)
α(θ1+θ2)

2
+α

2 , (4.7)

where the last inequality follows from Lemma 11. Substituting the above estimate Equation (4.7) into
Equation (4.6), we have:

I =

∫
R
f(τ1, ρ2, s1, s2, θ1, θ2)|τ2 − τ1|θ2p(r2 − r1, τ2 − τ1)dτ1

≤ C(s2 − s1)
α(θ1+θ2)

2
+α

2

∫
R
|τ2 − τ1|θ2p(r2 − r1, τ2 − τ1)dτ1 .

Using Lemma 11, again we have,

I ≤ C(s2 − s1)
α(θ1+θ2)

2
+α

2 (r2 − r1)
αθ2
2

+α
2 .

Case (ii): θ1 + θ2 < −1.
In this case, from Lemma 13, Part (ii), it follows:

f(τ1, ρ2, s1, s2, θ1, θ2) ≤ C|ρ2 − τ1|θ1+θ2+1 .



Mathematics 2015, 3 146

Hence, we have:

I ≤ C

∫
R
|ρ2 − τ1|θ1+θ2+1|τ2 − τ1|θ2p(r2 − r1, τ2 − τ1)dτ1 .

Now, since from the condition of the lemma, θ1 + 2θ2 + 1 > −1, we can use Hölder’s inequality, such
as in the inequality (4.7) in Case (i), to obtain:

I ≤ C

∫
R
|ρ2 − τ1|θ1+θ2+1|τ2 − τ1|θ2p(r2 − r1, τ2 − τ1)dτ1

≤ C(r2 − r1)
α(θ1+2θ2)

2
+α .

Case (iii): θ1 + θ2 = −1.
In this case, we first use Lemma 13, Part (i), to obtain:

f(τ1, ρ2, s1, s2, θ1, θ2) ≤ C [1 + |log |ρ2 − τ1||] .

Thus, using Lemma 12, we have:

I ≤ C

∫
R
{1 + |log |ρ2 − τ1||}|τ2 − τ1|θ2p(r2 − r1, τ2 − τ1)dτ1

≤ C(r2 − r1)
α(θ2+1)

2 [1 + |log |r2 − r1||] .

The lemma is then proven.

Corollary 15. Let θ1 and θ2 satisfy−1 < θ1 < 0,−1 < θ2 ≤ 0 and θ1+2θ2 > −2. Let 0 ≤ r1 < r2 ≤ T

and 0 ≤ s1 < s2 ≤ T . Then, for any ρ1, τ2 ∈ R, ρ1 6= τ2, we have:∫
R2

|ρ1 − τ1|θ1|ρ2 − ρ1|θ2 |τ2 − τ1|θ2p(s2 − s1, ρ2 − ρ1)p(r2 − r1, τ2 − τ1)dρ1dτ1

≤

C(s2 − s1)
α(θ1+2θ2+2)

4 (r2 − r1)
α(θ1+2θ2+2)

4 ; θ1 + θ2 6= −1

C(s2 − s1)
α(θ2+1)

4 (r2 − r1)
α(θ2+1)

4 [1 + | log(r2 − r1)|+ | log(s2 − s1)|] ; θ1 + θ2 = −1 .

(4.8)

Proof. Consider first the case θ1 + θ2 < −1. Denote the integral on the left-hand side of Equation (4.8)
by I . Then, the inequality Equation (4.8) implies:

I ≤ C(r2 − r1)
α(θ1+2θ2)

2
+α .

In the same way, we have:
I ≤ C(s2 − s1)

α(θ1+2θ2)
2

+α .

Now, we use the fact that if three numbers satisfying a ≤ b and a ≤ c, then a = a1/2a1/2 ≤ b1/2c1/2.

I ≤ C(r2 − r1)
α(θ1+2θ2)

4
+α/2(s2 − s1)

α(θ1+2θ2)
4

+α/2

which simplifies to Equation (4.8). Exactly the same argument can be applied to the case
θ1 +θ2 = −1 and the case θ1 +θ2 > −1. Thus, the inequality Equation (4.7) implies Equation (4.8).
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Lemma 16. Let p1, · · · , pn > 0. Then for any T > 0,∫
0≤s1<···<sn≤T

(sn − sn−1)pn−1 · · · (s2 − s1)p2−1sp1−11 ds =
T n
∏n

k=1 Γ(pk)

Γ(p1 + · · ·+ pn + 1)
. (4.9)

Proof. This is well known. For example, it is a straightforward consequence of Formula 4.634 of [17]
with some obvious transformations.

Lemma 17. Assume that u0 is bounded. Then:

sup
x∈R

∫
Rd
Z(t, x, ξ)u0(ξ)dξ ≤ C .

Proof. We use Z(t, x, ξ) = Z0(t, x− ξ, ξ) + VZ(t, x, ξ). Since u0 is bounded,∣∣∣∣∫
Rd
Z0(t, x, ξ)u0(ξ)dξ

∣∣∣∣ ≤ C

∫
Rd
|Z0(t, x, ξ)|dξ

which is bounded by the estimates in Equation (3.4) and a substitution ξ = x + t
α
2 y. In fact, we have,

for example, when d ≥ 3,∫
Rd
|Z0(t, x− ξ)|dξ ≤ C

∫
Rd
t−αt

(2−d)α
2 t

dα
2 |y|2−d exp{−σ|y|

2
2−α}dy ≤ Ct1−α ≤ C.

Similarly, using the estimation for VZ(t, x, ξ) given in Proposition 8, we can bound
∫
Rd |VZ(t, x, ξ)|dξ

by a constant. In fact, for example, when d = 3, we have:∫
Rd
|VZ(t, x, ξ)|dξ ≤ Ct

γ0α
2
−α
∫
Rd
t
3α
2 t

(γ−γ0−1)α
2 |y|γ−γ0−1 exp{−σ|y|

2
2−α}dy ≤ Ct

γα
2 ≤ C.

The other dimension cases can be dealt with the same way.

5. Proof of the Main Theorem 2

Change t to s and x to y, and the Equation (2.5) for the mild solution becomes:

u(s, y) =

∫
Rd
Z(s, y, ξ)u0(ξ)dξ +

∫ s

0

∫
Rd
Y (s− r, y, z)u(r, z)WH(dz)dr .

Substituting the above into Equation (2.5), we have:

u(t, x) =

∫
Rd
Z(t, x, ξ)u0(ξ)dξ +

∫ t

0

∫
R2d

Y (t− s, x, y)Z(s, y, ξ)u0(ξ)dξW
H(dy)ds

+

∫ t

0

∫ s

0

∫
R2d

Y (t− s, x, y)Y (s− r, y, z)u(r, z)WH(dz)drWH(dy)ds .

We continue to iterate this procedure to obtain:

u(t, x) =
∞∑
n=0

Ψn(t, x) , (5.1)
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where Ψn satisfies the following recursive relation:

Ψ0(t, x) =

∫
Rd
Z(t, x, ξ)u0(ξ)dξ

Ψn+1(t, x) =

∫ t

0

∫
Rd
Y (t− s, x, y)Ψn(s, y)WH(dy)ds , n = 0, 1, 2, · · ·

To write down the explicit expression for the expansion (5.1), we denote:

fn(t, x;x1, · · · , xn) =

∫
Tn

∫
Rd
Y (t− sn, x, xn) · · ·Y (s2 − s1, x2, x1)Z(s1, x1, ξ)u0(ξ)dξds , (5.2)

where:
Tn = 0 ≤ s1 < s1 < · · · < s1 ≤ t and ds = ds1ds2 · · · dsn .

With these notations, we see from the above iteration procedure that:

Ψn(t, x) = In(f̃n(t, x))

=

∫
Rnd

fn(t, x;x1, · · · , xn)WH(dx1)W
H(dx2) · · ·WH(dxn)

=

∫
Rnd

f̃n(t, x;x1, · · · , xn)WH(dx1)W
H(dx2) · · ·WH(dxn) , (5.3)

where In denotes the multiple Itô-type integral with respect to W (x) (see [12]) and f̃n(t, x;x1, · · · , xn)

is the symmetrization of fn(t, x;x1, · · · , xn) with respect to x1, · · · , xn:

f̃n(t, x;x1, · · · , xn) =
1

n!

∑
i1,··· ,in∈σ(n)

fn(t, x;xi1 , · · · , xin) ,

where σ(n) denotes the set of permutations of (1, 2, · · · , n).
The Expansion (5.1) with the explicit Expression (5.3) for Ψn is called the chaos expansion of

the solution.
If Equation (2.2) has a square integrable solution, then it has a chaos expansion according to a general

theorem of Itô. From the above iteration procedure, it is easy to see that this chaos expansion of the
solution is given uniquely by Equations (5.1)–(5.3). This is the uniqueness.

If we can show that the series Equation (5.1) is convergent in L2(Ω,F , P ), then it is easy to verify
that u(t, x) defined by Equations (5.1)–(5.3) satisfies Equation (2.5). Thus, the existence of the solution
to Equation (2.2) is solved, and the explicit form of the solution is also given (by Equations (5.1)–(5.3)).
We refer to [12] for more detail.

Thus, our remaining task is to prove that the series defined by Equation (5.1) is convergent in
L2(Ω,F , P ). To this end, we need to use the lemmas that we proved in the previous section.

Let now u(t, x) be defined by Equations (5.1)–(5.3). Then, we have:

E[u(t, x)2] =
∞∑
n=0

E
[
In(f̃n(t, x))

]2
=

∞∑
n=0

n!〈f̃n, f̃n〉H

≤
∞∑
n=0

n!〈fn, fn〉H , (5.4)
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where:

〈fn, fn〉H =

∫
R2nd

n∏
i=1

ϕH(ui, vi)fn(u1, · · · , un)fn(v1, · · · , vn)du1dv1du2dv2 · · · dundvn (5.5)

and the last inequality follows from Hölder inequality. Here, and in the remaining part of the paper, we
use the following notations:

ui = (ui1, · · · , uid) , dui = dui1 · · · duid , i = 1, 2, · · · , n ;

ϕH(ui, vi) =
d∏
j=1

ϕHj(uij, vij) =
d∏
j=1

Hj(2Hj − 1)|uij − vij|2Hj−2 .

We use the idea in [12] to estimate each term Θn(t, x) = n!〈fn, fn〉H in the series (5.4). By the
defining formula (5.2) for fn, we have:

Θn(t, x) = n!

∫
T 2
n

∫
R2nd+2

n∏
i=1

ϕH(ξi − ηi) Y (t− sn, x, ξn) · · ·Y (s2 − s1, ξ2, ξ1)

·
∫
Rd
Z(s1, ξ1, ξ0)u0(ξ0)dξ0 · Y (t− rn, x, ηn) · · ·Y (r2 − r1, η2, η1)

·
∫
Rd
Z(r1, η1, η0)u0(η0)dη0dξdηdsdr.

Application of Lemma 17 to the above integral yields:

Θn(t, x) ≤ Cn!

∫
T 2
n

∫
R2nd

n∏
i=1

ϕH(ξi − ηi)Y (t− sn, x, ξn) · · ·Y (s2 − s1, ξ2, ξ1)

·Y (t− rn, x, ηn) · · ·Y (r2 − r1, η2, η1)dξdηdsdr.

Using Lemma 10 for the above integral, we have:

Θn(t, x) ≤ Cnn!

∫
T 2
n

d∏
i=1

Θi,n(t, xi, s, r)dsdr, (5.6)

where:

Θi,n(t, xi, s, r) =

∫
R2n

{
n∏
k=1

ϕHi(ρk − τk)

}
|t− sn|

ζd
d |xi − ρn|

κd
d p(t− sn, xi − ρn)

· · · |s2 − s1|
ζd
d |ρ2 − ρ1|

κd
d p(s2 − s1, ρ2 − ρ1)

·|t− rn|
ζd
d |xi − τn|

κd
d p(t− rn, xi − τn) · · · |r2 − r1|

ζd
d

·|τ2 − τ1|
κd
d p(r2 − r1, τ2 − τ1)dρdτ.

Here, we use the notation ρk = ξki and τk = ηki, k = 1, · · · , n. The quantity Θi,n can be written as:

Θi,n(t, xi, s, r) = |t− sn|
ζd
d |t− rn|

ζd
d · · · |s2 − s1|

ζd
d |r2 − r1|

ζd
d

·
∫
R2n

{
n∏
k=1

ϕHi(ρk − τk)

}
|xi − ρn|

κd
d p(t− sn, xi − ρn)

·|xi − τn|
κd
d p(t− rn, xi − τn) · · · |ρ2 − ρ1|

κd
d p(s2 − s1, ρ2 − ρ1)

· · · |τ2 − τ1|
κd
d p(r2 − r1, τ2 − τ1)dρdτ . (5.7)
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From the definition Equation (4.3) of κd, we see easily that κd
d
> −1 . We assume:

2Hi +
2κd
d

> 0 . (5.8)

Under the above condition, we can apply Corollary 15 with θ1 = 2Hi − 2 > −1, θ2 = κd
d
> −1 to

the integration dρ1dτ1 in Expression (5.7) (Condition (5.8) implies that θ1 + 2θ2 > −2). Then, when
θ1 + θ2 6= −1, we have:

Θi,n(t, xi, s, r) ≤ C|t− sn|
ζd
d |t− rn|

ζd
d · · · |s3 − s2|

ζd
d |r3 − r2|

ζd
d

·|s2 − s1|
ζd
d
+
Hid+κd

2d
α|r2 − r1|

ζd
d
+
Hid+κd

2d
α

·
∫
R2n−2

{
n∏
k=2

ϕHi(ρk − τk)

}
|xi − ρn|

κd
d p(t− sn, xi − ρn)

·|xi − τn|
κd
d p(t− rn, xi − τn) · · · |ρ3 − ρ2|

κd
d p(s3 − s2, ρ3 − ρ2)

· · · |τ3 − τ3|
κd
d p(r3 − r2, τ3 − τ2)dρn · · · dρ2dτn · · · dτ2 .

Repeatedly applying this argument, we obtain:

Θi,n(t, xi, s, r) ≤ Cn

n∏
k=1

|tk+1 − tk|`i |sk+1 − sk|`i , (5.9)

where we recall the convention that tn+1 = t and sn+1 = s and where:

`i =
ζd
d

+
Hid+ κd

2d
α .

Substituting the above estimate of Θi,n into the expression for Θn, we have:

Θn(t, x) ≤ Cn

∫
T 2
n

n∏
k=1

(sk+1 − sk)`(rk+1 − rk)`dsdr

= Cn

[∫
Tn

n∏
k=1

(sk+1 − sk)`ds

]2
,

where:

` =
d∑
i=1

`i = ζd +
|H|α

2
+
κdα

2
with |H| =

d∑
i=1

Hi .

Now, we apply Lemma 16 to obtain:

Θn(t, x) ≤ Cn

[
Γ(`+ 1)

Γ(n(`+ 1))

]2
≤ Cn

Γ(2n(`+ 1))
.

This estimate combined with Equation (5.4) proves that if:

2(`+ 1) > 1 , (5.10)

then
∑∞

n=0 Θn(t, x) is bounded, which implies that the series (5.1) is convergent in L2(Ω,F , P ).
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Now, we analyze the above condition (5.10). By the definition of `, this condition can be written as:

` = ζd +
|H|α

2
+
κdα

2
> −1/2 .

or:
|H| > − 1

α
− κd −

2ζd
α
. (5.11)

Using the definitions of κd and ζd defined by Equations (4.2) and (4.3), we see that the right-hand side
of Equation (5.11) is:

− 1
α
− 0− 2

α

(
−1 + α

2

)
= 1

α
− 1 when d = 1

− 1
α
− 0− 2

α
(−1) = 1

α
when d = 2

− 1
α

+ (2− γ + 2γ0) + 2
α

(
(γ − 2γ0)

α
2

+ 1
)

= 1
α

+ 2 when d = 4

− 1
α
− 2 + d− γ−γ0

2
+ 2

α

(
(γ − γ0)α4 + 1

)
= 1

α
− 2 + d when d = 3 or d ≥ 5 .

Summarizing the above computations, we obtain that Condition (5.11) or Condition (5.10) is
equivalent to:

d∑
i=1

Hi > d− 2 +
1

α
. (5.12)

When θ1 + θ2 = −1, Corollary 15 implies that, for any ε > 0,∫
R2

|ρ1 − τ1|θ1 |ρ2 − ρ1|θ2|τ2 − τ1|θ2p(s2 − s1, ρ2 − ρ1)p(r2 − r1, τ2 − τ1)dρ1dτ1

≤ C(s2 − s1)
α(θ2+1+ε)

4 (r2 − r1)
α(θ2+1++ε)

4 .

Now, we can follow the above same argument to obtain that if:

2(`+ 1) > 1 , (5.13)

where ` = dε+κd+d
4

α, then
∑∞

n=0 Θn(t, x) is convergent in L2(Ω,F , P ). In the same way as in the case
θ1 + θ2 6= −1, we can show that Condition (5.12) implies Equation (5.13).

Now, we consider Condition (5.8). From the definition Equation (4.3) of κd, we see that when
d = 1, 2, 3, 4, Hi > 1/2 implies Equation (5.8). When d ≥ 5, then Condition (5.8) is implied by
the following:

Hi > 1− 2

d
− γ

2d

by choosing γ0 sufficiently small. Theorem 2 is then proven. �.

Acknowledgments

Yaozhong Hu is partially supported by a grant from the Simons Foundation #209206 and by the
General Research Fund of the University of Kansas.



Mathematics 2015, 3 152

The authors thank Jingyu Huang and the anonymous referees for helpful comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Bronstein, I.; Israel, Y.; Kepten, E.; Mai, S.; Shavta, Y.; Barkai, E.; Garini, Y. Transient anomalous
diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 2009, 103, 018102.

2. Hellmann, M.; Heermann, D.W.; Weiss, M. Enhancing phosphorylation cascades by anomalous
diffusion. EPL 2012, 97, 58004 .

3. Soula, H.; Caré, B.; Beslon, G.; Berry, H. Anomalous versus slowed-Down Brownian Diffusion in
the Ligand-Binding Equilibrium. Biophys. J. 2013, 105, 2064–2073.

4. Yuste, S.B.; Abad, E.D.; Lindenberg, K. Reaction-subdiffusion model of morphogen gradient
formation. Phys. Rev. E 2010, 82, 061123 (1–9).

5. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and
Applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993.

6. Langlands, T.A.M.; Henry, B.I.; Wearne, S.L. Fractional cable equation models for anomalous
electrodiffusion in nerve cells: Finite domain solutions. SIAM J. Appl. Math. 2009, 71, 1168–1203.

7. Fedotov, S. Subdiffusion, chemotaxis, and anomalous aggregation. Phys. Rev. E 2011, 83, 021110.
8. Fedotov, S.; Falconer, S. Nonlinear degradation-enhanced transport of morphogens performing

subdiffusion. Phys. Rev. E 2014, 89, 012107.
9. Langlands, T.A.M.; Henry, B.I. Fractional chemotaxis diffusion equations. Phys. Rev. E 2010,

81 , 051102.
10. Fedotov, S.; Falconer, S. Subdiffusive master equation with space dependent anomalous exponent

and structural instability. Phys. Rev. E 2012, 85, 031132.
11. Straka, P.; Fedotov, S. Transport equations for subdiffusion with nonlinear particle interation.

J. Theor. Biol. 2015, 366, 71–83.
12. Hu,Y. Heat equations with fractional white noise potentials. Appl. Math. Opt. 2001, 43, 221–243.
13. Eidelman, S.D.; Kochubei, A.N. Cauchy problem for fractional diffusion equations. J. Diff. Equ.

2004, 199, , 211–255.
14. Kochubei, A.N. Fractional-order diffusion. Diff. Equ. 1990, 26, 485–492.
15. Schneider, W. R. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144.
16. Kilbas, A.A.; Saigo, M. H-Transforms. Theory and Applications; Analytical Methods and Special

Functions, 9; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004.
17. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press:

Waltham, MA, USA, 2007.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Main Result
	Green's Functions Z and Y 
	Fox's H-Function 
	Green's Functions Z and Y When B Has Constant Coefficients
	Green's Functions Z and Y in the General Coefficient Case

	Auxiliary Lemmas
	 Proof of the Main Theorem 2

