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Abstract

Pencil beam scanning (PBS) proton radiotherapy (RT) offers flexible proton spot placement

near treatment targets for delivering tumoricidal radiation dose to tumor targets while sparing

organs-at-risk (OAR). Currently the spot placement is mostly based on a non-adaptive sampling

(NS) strategy on a Cartesian grid. However, the spot density or spacing during NS is a constant for

the Cartesian grid that is independent of the geometry of tumor targets, and thus can be suboptimal

in terms of plan quality (e.g., target dose conformality) and delivery efficiency (e.g., number of

spots). This work develops an adaptive sampling (AS) spot placement method on the Cartesian

grid that fully accounts for the geometry of tumor targets. Compared with NS, AS places (1) a

relatively fine grid of spots at the boundary of tumor targets to account for the geometry of tumor

targets and treatment uncertainties (setup and range uncertainty) for improving dose conformality,

and (2) a relatively coarse grid of spots in the interior of tumor targets to reduce the number

of spots for improving delivery efficiency and robustness to the minimum-minitor-unit (MMU)

constraint. The results demonstrate that (1) AS achieved comparable plan quality with NS for

regular MMU and substantially improved plan quality from NS for large MMU, using merely

about 10% of spots from NS, where AS was derived from the same Cartesian grid as NS; (2) on

the other hand, with similar number of spots, AS had better plan quality than NS consistently for

regular and large MMU.
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1. Introduction

Pencil beam scanning (PBS) proton radiotherapy (RT) can provide flexible proton spot

placement for intensity modulated proton therapy (IMPT). Currently the spot placement

mostly utilizes a non-adaptive sampling (NS) strategy on a Cartesian grid (e.g., Page 359

of [1]). However, NS does not fully account for the geometry of tumor targets, as the spot

density or spacing is a constant that is independent of the geometry of tumor targets. Two

exceptions are so-called contour-scanning spot placement method [2] and mesh-based spot

placement method [3]. In the contour-scanning method, driven by penumbra improvement of

dose conformality to tumor targets, Meier et al placed spots along concentric paths based on

the target contour at the boundary of tumor targets [2]. However, the improved conformality

via the contour-scanning method came at the expense of degraded spot uniformity inside

the target volume or close to the tumor boundary, which was subsequently addressed

by the mesh-based method [3]. In the mesh-based method, to improve both lateral dose

falloff and uniformity, ur Rehman et al [3] utilized Delaunay triangulation followed by

Lloyd’s algorithm to generate a non-Cartesian mesh grid of proton spots. However, the mesh

triangulation method for uniform sampling has its own limitation such as suffering from

poor mesh quality for complex geometry [4]. Plus, delivery of spots on the non-Cartesian

grid is technically challenging, which can be inefficient or/and subject to spot positioning

error.

Given the simplicity and universality of the Cartesian grid to place spots for tumor targets

that can be arbitrarily shaped, this work will be based on the Cartesian grid and develop

an adaptive sampling (AS) method for spot placement, which will be highly adaptive to the

geometry of tumor targets. The first consideration of AS, which is the same as for [2,3], is to

improve the plan quality, particularly at the boundary of tumor targets to improve target dose

conformality. The second consideration is to minimize the number of spots for improving

delivery efficiency and also the robustness to the minimum-monitor-unit (MMU) constraint.

Specifically, AS will place (1) a relatively fine grid of spots at the boundary of tumor targets

to account for the geometry of tumor targets and treatment uncertainties (setup and range

uncertainty) for improving dose conformality, and (2) a relatively coarse grid of spots in the

interior of tumor targets to reduce the number of spots and/or increase the spot weights for

improving delivery efficiency.

2. Methods and Materials

2.1 Overview of Adaptive Sampling

For the purpose of this work, the PBS proton treatment planning process can be divided into

three steps: planning setup, spot placement and spot weight optimization. The contribution

of this work is on the spot placement via AS (Section 2.2 and 2.3). The planning setup (e.g.,

beam angles and plan objectives) is provided in Section 2.5. After the spot placement, the

robust inverse optimization for IMPT is utilized to optimize spot weights while considering

the MMU constraint for plan deliverability (Section 2.4).

During AS of spot placement, the spots are grouped first by beam angles and then by energy

layers, which is the same as NS. However, within a specific energy layer for a particular
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beam angle, AS is drastically different from NS in the sense that the spot placement in AS is

highly adaptive to the geometry of tumor targets with variable spot spacing. Examples of AS

are provided in Fig. 1, where the spot placement in AS is relatively fine at the boundary of

tumor targets and coarse in the interior of tumor targets.

For presentation clarity, we will first introduce the 2D undersampling algorithm as the AS

spot placement engine per energy layer in Section 2.2, and then provide the overall 3D

AS algorithm for all spots per beam angle in Section 2.3. Note that in 2D undersampling

algorithm, 2D refers to the 2D coordinate in beam’s eye view (BEV), while in 3D AS

algorithm, 3D refers to the 2D BEV coordinate plus the proton energy.

2.2 2D Undersampling Algorithm

This section of 2D undersampling algorithm serves as the AS spot placement engine per

energy layer, which will be an essential component of the overall 3D AS algorithm for all

spots per beam angle in Section 2.3. We will first introduce the notations and spot grouping

in Section 2.2.1, and then provide the details of 2D undersampling algorithm in Section

2.2.2 and its analysis in Section 2.2.3.

2.2.1 Notations and Spot Grouping—Let us consider a set of X × Y spots

Ω2D = {(x, y):1 ≤ x ≤ X, 1 ≤ y ≤ Y } (1)

with the corresponding set of indexes

Π2D = {l, 1 ≤ l ≤ Ω2D }, (2)

where the operator |⋅| represents the counting measure of the set, i.e. the number of spots in

the set.

For the purpose of spot grouping, we define the center spot I = (x0, y0) of Ω2D, which

is determined through the following process: first Iso = mean(Ω2D), where mean is the

averaging operator, and then one of the nearest spots to Iso in Ω2D is taken as the center spot

I.

Then for spot grouping, we start from the center spot I, and expand the 2D coordinates

simultaneously with an equal step Δ= 1, i.e., the generation of concentric squares Ωc with the

side length 2(c – 1) (Fig. 2), where c ∈ [1, C], C = max{|X – x0| + 1, |Y – y0| + 1}. The

number of spots of Ωc satisfies

|Ωc| ≤ 1, c = 1
8(c − 1), c ≥ 2 . (3)

Thus

|Ω2D| = ∑c = 1
C |Ωc| ≤ 4C2 − 4C + 1 . (4)
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Each subset Ωc (c ∈ [2, C]) and its corresponding index subset Πc are denoted as

Ωc = { mci, nci :1 ≤ i ≤ |Ωc|}, (5)

Πc = {lci : 1 ≤ i ≤ |Ωc|}, (6)

And Ωc ⊂ Ω2D, Πc ⊂ Π2D; Ω2D = ∪c = 1
C Ωc, Π2D = ∪c = 1

C Πc.

For the convenience of undersampling, the polar coordinate values of the Cartesian

coordinates are computed. This goes as follows: after subtracting the coordinate of the center

spot I from all spots in Ωc, the coordinates of these spots are normalized to [0, 1], and then

the following polar coordinate values are computed

Ωc
p = { ρci, θc

i : 0 ≤ ρci ≤ 1, − π < θc
i ≤ π, 1 ≤ i ≤ |Ωc|} . (7)

Note that we do not actually transform Cartesian coordinates into polar coordinates, but

only use polar coordinate values for the purpose of grouping Cartesian coordinates. That

is, the spots in each subset Ωc are sorted in non-descending order with respect to the θ
coordinate. For the notion convenience, we will still denote the reordered spot subset and its

corresponding index subset as Ωc and Πc respectively in the following.

2.2.2 2D Undersampling Steps—The 2D undersampling for each subset Ωc (c ∈ [2,

C]) consists of three steps.

2.2.2.1 Step 1: The first undersampling step has two scenarioes.

Case 1.1: mod(c, 2) = 1, where mod is the modulus operator. The undersampling starts from

the first spot of Ωc, and the undersampling step size is 2, i.e., the alternative undesampling

during which all spots with odd indexes are removed and all spots with even indexes are

kept. The set of removed spots is denoted by Ωc,1 with the corresponding index set Πc,1, and

the set of remianing spots is denoted by Ωc, 1 with the corresponding index set Πc, 1.

Case 1.2: mod(c, 2) = 0. The undersampling starts from the second spot of Ωc, while the

remaining process is the same as Case 1.1.

2.2.2.2 Step 2: The second undersampling step is peformed with respect to Ωc, 1, c ∈ [2, C]
obtained from the first undersampling. With two-to-one grouping of consecutive concentric

sets Ωc, 1, the second undersampling step has two scenarioes.

Case 2.1: mod(C – 1,2) = 0. First the spots are re-combined into J = C − 1
2  groups by
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G =

[2, 3]
[4, 5]

⋮
[c, c + 1]

⋮
[C − 1, C]

1
2
⋮
i′
⋮
J

, 1 ≤ i′ ≤ J (8)

Then the alternative sampling similar to Step 1 is applied onto the re-combined groups, i.e.,

F =

1
0
1
⋮
0
1
⋮

mod(J, 2)

1
2
3
⋮
i′

i′ + 1
⋮
J

, (9)

where F(i′) = 0 means that all evenly-indexed spots from the i′ group are kept, and F(i′) =
1 means that all oddly-indexed spots from the i′ group are kept. The set of removed spots

is denoted by Ωc,2 with the corresponding index set Πc,2, and the set of remianing spots is

denoted by Ωc, 2 with the corresponding index set Πc, 2.

Case 2.2: mod(C – 1,2) = 1. Now the spots are re-combined into J = ceil C − 1
2  groups,

where ceil is a rounding operator towards positive infinity, i.e.,

G =

[2, 3]
[4, 5]

⋮
[c, c + 1]

⋮
[C]

1
2
⋮
i′
⋮
J

, 1 ≤ i′ ≤ J, (10)

while the remaining process is the same as Case 2.1.

2.2.2.3 Step 3: The third undersampling step is peformed with respect to Ωc, 2, c ∈ [2, C]
obtained from the second undersampling, with the following two scenarioes.

Case 3.1 mod(c, 2) = 0. All spots are removed. Following prior notations, we have

Ωc, 3 = Ωc, 2, Πc, 3 = Πc, 2, Ωc, 3 = ∅, and Πc, 3 = ∅.

Case 3.2 mod(c, 2) = 1. All spots are kept. That is, Ωc, 3 = ∅ , Πc, 3 = ∅ , Ωc, 3 = Ωc, 2 and

Πc, 3 = Πc, 2.
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2.2.3 Algorithm Summary and Analysis—The 2D undersampling algorithm has up

to three aforementioned undersampling steps, i.e., the number of undersampling steps N≤3.

The total set of removed spots and its corresponding index set are

Ω = ∪c = 1
C ∪1

N Ωc, n (11)

Π = ∪c = 1
C ∪1

N Πc, n, (12)

and the set of remaing spots and its corresponding index set are

Ω = ∪c = 1
C Ωc, N (13)

Π = ∪c = 1
C Πc, N . (14)

Thus

Ω2D = Ω ∪ Ω, Π2D = Π ∪ Π . (15)

To further illstruate our 2D undersampling algorithm, an example based on Fig. 2 is

provided in Appendix A. Note that the undersampling is not applied to the set with no

more than β spots, i.e., when |Ωc| ≤ β or |Ωc, n| ≤ β. For the convenience of implementation,

the overall 2D undersampling algorithm is summarized as follows.

Algorithm 1:

2D Undersampling

1: Inputs and parameters: Ω2D, Π2D, N, β
2: Initialization: Ω = ∅ , Π = ∅ , Ω = ∅ , Π = ∅ , c = 1
3: Calculate the isocenter Iso of Ω2D
4: Determine the center spot I

5: Calculate C and determine spot groups Ωc, c ∈ [1, C], and Πc

6: while c ≤ C

7:   Normalize the spot coordinates in Ωc to [0,1]

8:   Compute polar coordinate values of Ωc
9:   Sort the spots in Ωc and the corresponding index set Πc by θ

10:   n = 1, Ω0 = Ωc, Π0 = Πc
11:   while n ≤ N

12:  if |Ω0| ≤ β
13:   Ωc, n = Ω0, Πc, n = Π0
14:   break
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15:  else

16:    Perform the n-th undersampling processing to get Ωc, n, Πc, n, Ωc, n and Πc, n
17:    Ω0 = Ωc, n, Π0 = Πc, n
18:  end if

19:    n = n + 1

20:  Ω = Ω ∪ Ωc, n, Π = Π ∪ Πc, n
21: end while

22: Ω = Ω ∪ Ωc, N, Π = Π ∪ Πc, N
23: c = c + 1

24: end while

25: Outputs: Ω, Π, Ω and Π

Note that Line 12 of Algorithm 1 indicates that the undersampling step is not applied to

the subset with no more than β spots, i.e., when |Ω0| ⩽ β; otherwise, the spot density may

be too sparse, which can degrade the plan quality. For the same reason, the number of

undersampling steps N is an input variable to Algorithm 1. That is, only when the number of

spots derived from a given Cartesian grid is still sufficiently large, we set N=3.

Next we will provide a complexity analysis for the proposed 2D undersampling algorithm.

Let us start from the concentric squares Ωc (Fig. 2), for which the number of spots is

determined by Eq. (3).

After the first undresamping,

Ω = ∑c = 1
C |Ωc, 1| = 1 + 2C(C − 1) . (16)

After the second undresamping,

Ω = ∑c = 1
C |Ωc, 2| = 1 + C(C − 1) . (17)

After the third undresamping,

|Ω | = ∑c = 1
C |Ωc, 3| =

(C − 1)2 + 1
2 , mod(C, 2) = 0

C2 + 1
2 , mod(C, 2) = 1

. (18)

Thus, for a general 2D Cartesian grid after AS, which will be covered by a subset of the

concentric squares Ωc, the total number of remaining spots satisfies:
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|Ω | ≤
1 + 2C(C − 1), N = 1
1 + C(C − 1), N = 2

[(2ceil(C/2) − 1)2 + 1]/2 N = 3
(19)

2.3 3D AS Algorithm

Assuming there are J proton beams, the entire coordinate set of proton spots is

Ω3D = ∪j = 1
J Ωj, (20)

and the corresponding index set is

Π3D = ∪j = 1
J Πj, (21)

where Ωj and Πj correspond to the jth beam.

3D AS algorithm is performed for each beam. The notations and 3D spot grouping are

discussed in Section 2.3.1; the adaptive separation of spots into boundary and interior target

sub-regions for each energy layer is described in Section 2.3.2; the oerall 3D AS algorithm

is provided in Section 2.3.3.

2.3.1 Notations and 3D Spot Grouping—In the BEV, the 3D spots are axially

organized in energy layers, while spots on each energy layer can be regarded as a group

of 2D concentric squares (Fig. 2) or its subset. To overlay the proton spots with tumor

targets, for each energy layer, the proton spots are projected into the patient volume, i.e.,

to determine the radiological depth of the Bragg peak for each spot. Then these depths are

averaged for all spots for this energy layer, and the contours of tumor targets at this mean

radiological depth are overlayed together with the spots for this energy layer. When there is

no tumor target at this radiological depth, the nearest tumor slice to this radiological depth is

used.

Let Kj be the number of energy layers for the jth beam. Then,

Ωj = ∪k = 1
Kj Ωj, k . (22)

Πj = ∪k = 1
Kj Πj, k . (23)

where Ωj, k and Πj, k are respectively the coordinate set and the index set for the kth energy

layer in the jth beam.

Moreover, we account for multiply connected regions from tumor targets, i.e., to define the

target boundary set as
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Bj, k = ∪s = 1
Sj, k Bj, k, s, (24)

where, the subset Bj,k,s represents the set of boundary coordinates of the s-th target region

and Sj,k is the number of connected regions, for the kth energy layer in the jth beam.

2.3.2 Classification of Boundary and Interior Spots—In this section, the proton

spots are classified into boundary and interior spots, so that different undersampling rates

can be applied to achieve the sharp dose falloffs at tumor boundaries and also the overall

efficient utility of proton spots.

For the purpose of spot classfication, one needs to calculate the spot-to-boundary distance,

which is via the L1 norm1. The appropriateness of L1 norm here is because the iso-value

curves of L1 norm are concentric squares, which are naturally formed on the Cartesian

grid (Fig. 2). In contract, the iso-value curves of L2 norm are concentric circles, which is

not a natural choice for the Cartesian grid. Specifically, the spot-to-boundry distance is the

minimum distance between the spot and all boundary points in Bj,k. The z coordinate is

skipped here as it is a constant for each pair of Bj,k and Ωj,k.

For each spot in Ωj,k, we first determine which connected target region it belongs to. For

example, given a proton spot A ∈ Ωj,k, and the boundary point B ∈ Bj,k,s that has the

smallest L1 distance to A, the spot A is classified into the s-th proton subgroup Ωj,k,s that is

associated with Bj,k,s.

Then we determine whether this proton spot is boundary or interior to the s-th connnected

region. For this purpose, we specify the coordinates for Bj,k,s and Ωj,k,s

Bj, k, s = { xp, yp :1 ≤ p ≤ Bj, k, s }, (25)

Ωj, k, s = { xq, yq :1 ≤ q ≤ Ωj, k, s }, (26)

and the index set Πj,k,s for Ωj,k,s

Πj, k, s = {lq:1 ≤ q ≤ Ωj, k, s }, (27)

which satisfy

Ωj, k = ∪s = 1
Sj, k Ωj, k, s, (28)

Πj, k = ∪s = 1
Sj, k Πj, k, s . (29)

1The L1-norm distance between two points A(x1,y1) and B(x2,y2) is defined as L1(A, B) = |A − B|, i.e.,

L1(A, B) = |x1 − x2| + |y1 − y2|.
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The classification of proton spots into boundary and interior spots (Fig. 3) goes as follows.

1. Average the coordinates of all points and spots in Bj, k, s ∪ Ωj, k, s, and then round

to the nearest integer to determine the center Ij, k, s, Ij, k, s ∈ Bj, k, s ∪ Ωj, k, s.

2. Subtract the coordinate of Ij,k,s from the coordinates of all points and spots in

Bj, k, s ∪ Ωj, k, s.

3. Compute polar coordinate values for Cartesian coordinates, i.e.,

Bj, k, s
P = { ρp, θp :1 ≤ q ≤ Bj, k, s }, (30)

Ωj, k, s
p = { ρq, θq :1 ≤ q ≤ Ωj, k, s } . (31)

4. Calculate the spot-to-boundary distance dq

dq = min
p

{ ρp − ρq :1 ≤ p ≤ Bj, k, s } (32)

and the spot-to-boundary distance set

Dj, k, s = {dq : 1 ≤ q ≤ Dj, k, s }, (33)

where Dj, k, s = Ωj, k, s .

5. Classify the spots into boundary and interior spots based on the signed distance

δρq = ρp − ρq, (34)

where p is the boundary point determined from Eq. (32), and the threshold

ϵ = minDj, k, s
+ + γ

2 max Dj, k, s
+ − min Dj, k, s

+ , (35)

where Dj, k, s
+  consists of the spots with positive signed distance, i.e.,

Dj, k, s
+ = {δρq:δρq > 0} . (36)

To interpret δρq, the spot is inside the boundary if δρq > 0, at the boundary if δρp = 0, and

outside the boundary if δρq < 0. γ is a classification parameter that controls the proportion

into boundary or interior spots. Specifically, when δρq ≥ ϵ, the spot q is an interior spot;

otherwise, it is a boundary spot.

The coordinate sets of boundary spots and interior spots are denoted as Ωj, k, s
b  and Ωj, k, s

in

respectively,
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Ωj, k, s
b = { xqb, yqb :1 ≤ q ≤ Ωj, k, s

b }, (37)

Ωj, k, s
in = { xqin, yqin :1 ≤ q ≤ Ωj, k, s

in } . (38)

with the corresponding index sets Πj, k, s
b  and Πj, k, s

in ,

Πj, k, s
b = {lqb:1 ≤ q ≤ Ωj, k, s

b }, (39)

Πj, k, s
in = {lqin:1 ≤ q ≤ Ωj, k, s

in } . (40)

Thus we have

Ωj = ∪k = 1
Kj ∪s = 1

Sj, k Ωj, k, s
b ∪ Ωj, k, s

in , (41)

Πj = ∪k = 1
Kj ∪s = 1

Sj, k Πj, k, s
b ∪ Πj, k, s

in . (42)

and

Ω3D = ∪j = 1
J Ωj, (43)

Π3D = ∪j = 1
J Πj . (44)

2.3.3 Algorithm Summary—For every

Ωj, k = ∪s = 1
Sj, k Ωj, k, s

b ∪ Ωj, k, s
in , k ∈ [1, Kj], j ∈ [1, J], Algorithm 1 is applied to each subset

Ωj, k, s
b  and Ωj, k, s

in  respectively, with the set of removed spots and its index set via Eq. (11)

and (12)

Ωj = ∪k = 1
Kj ∪s = 1

Sj, k (Ωj, k, s
b ∪ Ωj, k, s

in ), (45)

Πj = ∪k = 1
Kj ∪s = 1

Sj, k (Πj, k, s
b ∪ Πj, k, s

in ), (46)

and the set of remaining spots and its index set via Eq. (13) and (14)

Ωj = ∪k = 1
Kj ∪s = 1

Sj, k Ωj, k, s
b ∪ Ωj, k, s

in , (47)
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Πj = ∪k = 1
Kj ∪s = 1

Sj, k Πj, k, s
b ∪ Πj, k, s

in . (48)

To summarize, the entire set of removed spots and its index set are

Ω = ∪j = 1
J Ωj, (49)

Π = ∪j = 1
J Πj, (50)

and the entire set of remaining spots and its index set are

Ω = ∪j = 1
J Ωj, (51)

Π = ∪j = 1
J Πj . (52)

We have Ω3D = Ω ∪ Ω, Π3D = Π ∪ Π.

To quantify the undersampling ratio, we define

ζin =
∪j = 1

J ∪k = 1
Kj ∪s = 1

Sj, k Ωj, k, s
in

∪j = 1
J ∪k = 1

Kj ∪s = 1
Sj, k Ωj, k, s

in
× 100%, (53)

ζb =
∪j = 1

J ∪k = 1
Kj ∪s = 1

Sj, k Ωj, k, s
b

∪j = 1
J ∪k = 1

Kj ∪s = 1
Sj, k Ωj, k, s

b
× 100%, (54)

ζ =
Ω

|Ω3D| × 100%, (55)

for interior, boundary, and entire spots respectively.

The overall 3D AG algorithm is summarized as follows.

Algorithm 2:

3D Adpative Sampling

1: Inputs and parameters: Ω3D, Π3D, Nb, Nin, βb, βin, γ
2: Initialization: Ω = ∅ , Π = ∅ , Ω = ∅ , Π = ∅
3: for j = 1 : J do
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4:   for k = 1 : Kj do

5:  Determine spot sets Ωj,k and Πj,k

6:
 Determine target boundary set Bj, k = ∪s = 1

Sj, k Bj, k, s

7:
 Determine Ωj, k = ∪s = 1

Sj, k Ωj, k, s and Πj, k = ∪s = 1
Sj, k Πj, k, s asociated to each connected target

region

8:  Classification of boundary and interior spots

 Ωj, k = ∪s = 1
Sj, k (Ωj, k, s

b ∪ Ωj, k, s
in ), Πj, k = ∪s = 1

Sj, k Πj, k, s
b ∪ Πj, k, s

in

9:  for s = 1 : Sj,k do

10:
  Ωj, k, s

b , Πj, k, s
b , Ωj, k, s

b , Πj, k, s
b = Algorithm 1(Ωj, k, s

b , Πj, k, s
b , Nb, βb)

11:
  Ωj, k, s

in , Πj, k, s
in , Ωj, k, s

in , Πj, k, s
in = Algorithm 1(Ωj, k, s

in , Πj, k, s
in , Nin, βin)

12:
  Ω = Ω ∪ (Ωj, k, s

b ∪ Ωj, k, s
in ), Π = Π ∪ (Πj, k, s

b ∪ Πj, k, s
in )

13:
  Ω = Ω ∪ (Ωj, k, s

b ∪ Ωj, k, s
in ), Π = Π ∪ (Πj, k, s

b ∪ Πj, k, s
in )

14:  end for

15:   end for

16: end for

17: Outputs: Ω, Π, Ω, Π

Note that different numbers of undersampling steps Nb and Nin are used for boundary

and interior region of the target respectively with Nb≤Nin, to achieve fine sampling in the

boundary region, and coarse sampling inside the interior region (Fig. 1) for balanced plan

quality and spot placement efficiency.

2.4 MMU Optimization

For either NS or AS, the treatment planning of IMPT is to solve the following MMU

optimization problem

min
x

f(x)
s.t. x ∈ {0} ∪ g, + ∞ .

(56)

In Eq. (56), x denotes the spot weight (unit: number of protons) to be optimized, g is the

planning MMU, and f is the sum of planning objectives. The plan objectives are based

on dose-volume constraints (e.g., our previous works [12,13,17]). The MMU constraint is

enforced in Eq. (56) to generate deliverable spots, which states that each entry of spot weight

vector x is nonnegative, and no less than g if positive.

The MMU optimization problem Eq. (56) is nonconvex due to the nonconvexity of the

MMU constraint. And the nonconvexity of the MMU constraint increases, as the MMU

threshold g increases. Note that the plan with larger g has higher dose rate and thus shorter

plan delivery time [13]. However, the nonconvexity from large g can severely degrade
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the plan quality. For example, as g increases, the target dose conformality can deteriorate

rapidly, which will be demonstrated in the result section. Therefore, we will consider the

MMU optimization with regular and large values of g respectively in the result section.

Various methods have been developed to solve the MMU optimization problem for

deliverable PBS plans, including postprocessing methods [5–7] and optimization methods

[8–13]. For example, Varian Eclipse treatment planning system (TPS) currently uses the

round method [5], while its research version of TPS use the optimization approach [10].

In this work, the MMU optimization is based on our previously developed iterative

convex relaxation (ICR) algorithm [12,13] with inner loops solved by alternating direction

method of multipliers [14–16], which has been shown to be effective for solving a

variety of treatment planning problems besides MMU optimization, including energy-

layer minimization [12], dose-rate optimization [13,17–19], and hybrid proton-photon

optimization [20].

Specifically, the ICR handles the MMU constraint rigorously with the analytic formula,

which is derived analytically from solving proximal operator with respect to the MMU

constraint and then applied to the dual variable of spot weights that effectively sets this dual

variable to be zero if it is value is less than g/2. Other methods may also be capable of

solving the MMU problem for large g, e.g., the spot-reduction method [8], which can handle

the MMU constraint empirically by iteratively setting certain percent of smallest weights to

zero. It will be interesting to compare these methods in a future work.

2.5 Materials

AS was validated using head-and-neck (HN), liver and pancreas cases (Table 1), in

comparison with NS, with results presented in Table 2–5 and Fig. 4–8. Specifically, we

compare NS on a Cartesian grid of 3mm spot spacing (FINE), NS on a Cartesian grid

of 9mm spot spacing (COARSE), and AS based on the same Cartesian grid of 3mm spot

spacing as FINE (ADAPTIVE). Note that ADAPTIVE and FINE have the same (smallest)

spot spacing, while ADAPTIVE and COARSE have the similar number of spots (Table 2–4).

The choice that ADAPTIVE originates from the same Cartesian grid as FINE is because the

spot spacing can have a great impact on the plan quality [21], and plan comparison using the

same spacing eliminates the factor owing to the difference in spot spacing.

Robust optimization was considered with range and setup uncertainty. All plans in this study

were based on clinically used DVH planning objectives, beam angles, and uncertainty level

(Table 1). The dose influence matrix (the dose distribution per unit weight for each spot with

the unit Gy/protons; e.g., in Chapter 15 of [1]) was generated using MatRad [22] with 5mm

spot width (in both directions) and 3mm longitudinal spacing on 3mm3 grid. Here the spot

width is defined as the full width at half maximum (FWHM). Although MatRad allows for

different FWHM values for different energy, a constant 5mm was used for all energies for

simplicity, i.e., use of generic beam model as provided in MatRad [22]. For fair comparison,

the same plan objectives, the same ICR-based optimization algorithm, and the same plan

normalization (D98=100% to CTV for the worst case) were used, while the only difference

is dose influence matrix from NS or AS. The results (Table 2–4 and Fig. 4–8) are from

probabilistically weighted proton dose from all uncertainty scenarios.
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3. Results

3.1 ADAPTIVE v.s. FINE

Regarding the efficiency of spot utility, (1) the ratio of number of spots (i.e., Nx in Table

2–4) of ADAPTIVE over that of FINE was 10.5%, 11.1%, 11.0% for HN, liver, and

pancreas respectively; (2) the ratio of number of nonzero spots after optimization (i.e., #x≥g
in Table 2–4) of ADAPTIVE over that of FINE was 12.2%, 10.9%, 11.9% for HN, liver,

and pancreas respectively for g=10, and 19.5%, 14.3%, 27.2% for HN, liver, and pancreas

respectively for g=60.

Regarding the plan quality, (1) for g=10, ADAPTIVE had comparable plan quality with

FINE; (2) for g=60, ADAPTIVE had substantially better plan quality than FINE. These are

indicated by the comparison of (1) total planning objective value f and DVH values (e.g., the

maximum target dose Dmax) in Table 2–4, (2) dose plots in Fig. 4–6, (3) target DVH plots in

Fig. 7, and (4) dose profiles in Fig. 8.

In paticular, ADAPTIVE was more robust to large g than FINE. For example, for FINE, the

target dose conformality was severely degraded from g=10 to g=60, as indicated by target

DVH plots in Fig. 7, and target dose profiles in Fig. 8; in contrast, for ADAPTIVE, the target

dose conformality was preserved from g=10 to g=60.

The robustness of ADAPTIVE for large g suggests that ADAPTIVE allows for the delievery

of high dose rate [13]. Note that (1) ADAPTIVE had the same number of energy layers as

FINE, (2) total number of protons to be delievered (i.e., ‖x‖1 in Table 2–4) for ADAPTIVE

was simiar to that for FINE, and (3) ‖x‖1 for g=60 was simiar to that for g=10 for

ADAPTIVE, while ‖x‖1 for g=60 was slightly larger than g=10 for FINE (e.g., 1.44 v.s.
1.38 in Table 3, 0.81 v.s. 0.75 in Table 4). Therefore, ADAPTIVE with larger g allows

for shorter dose delivery time in higher dose rate, with preserved plan quality. In contrast,

FINE takes longer time to deliver more protons, and moreover its plan quality was severely

degraded.

The undersampling ratios from FINE to ADAPTIVE is summarized in Table 5, in which the

interior spots had more undersampling than the boundary spots, as indicated by larger values

of ζb than ζin. This is consistent with the methdology of AS (e.g., Fig. 1).

3.2 ADAPTIVE v.s. COARSE

ADAPTIVE had similar number of spots (i.e., Nx in Table 2–4) with COARSE, with

ADAPTIVE being slightly less than COARSE. To match Nx of ADAPTIVE, the spot

spacing for COARSE was chosen to be 9mm. The purpose of comparing ADAPTIVE and

COARSE is to compare the plan quality between AS and NS, when both have similar

number of spots to be optimized.

In terms of plan quality, ADAPTIVE had better plan quality than COARSE. This is

indicated by the comparison of (1) total planning objective value f and DVH values (e.g., the

maximum target dose Dmax) in Table 2–4, (2) dose plots in Fig. 4–6, (3) target DVH plots in

Fig. 7, and (4) dose profiles in Fig. 8.
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3.3 Summary

To summarize, (1) with the same (smallest) spot spacing, ADAPTIVE had comparable plan

quality with FINE for g=10, and substantially better plan quality than FINE for g=60, using

~10% of spots; (2) with the similar number of spots, ADAPTIVE had better plan quality

than COARSE. These two summaries demonstrate the advantages of AS compared to NS, in

terms of plan quality (e.g., target dose conformality) and delivery efficiency (e.g., number of

spots).

4. Disscussion

Note that all spots of the ADAPTIVE exist in the FINE, because ADAPTIVE originates

from FINE with the same spot spacing. As a result, the comparison between FINE and

ADAPTIVE indeed shows FINE had slightly better plan quality than ADAPTIVE for

g=10, which is as expected. However, this is not the case for g=60, in which FINE had

substantially worse plan quality than ADAPTIVE. This is because the MMU optimization is

nonconvex and FINE with more spots is more sensitive to the nonconvexity from the MMU

constraint, especially for large g. In contrast, ADAPTIVE was still able to preserve the plan

quality for large g. Therefore, AS is more robust to the MMU constraint than NS, besides

efficient spot utility (e.g., ADAPTIVE using ~10% of spots from FINE).

Large spot spacing can compromise plan quality [21], e.g., COARSE. For NS, the spot

spacing has to be uniformly refined to improve plan quality, e.g., from COARSE to FINE.

Moreover, such uniform refinement may not lead to the improved plan quality in the

presence of strong nonconvexity from large MMU threshold, e.g., FINE for g=60 in this

study. In contrast, AS allows for variable spot spacing to increase the sampling density at the

locations (e.g., the boundary of tumor targets) that need smaller spot spacing and decrease

the sampling density at the locations (e.g., the interior of tumor targets) that larger spot

spacing is sufficient for, so that the total number of spots remains the same. This has been

shown to be efficient in spot utility and robust to the MMU constraint, e.g., ADAPTIVE in

this result section.

The Cartesian grid in this work is a square grid. Another commonly used Cartesian grid

is the hexagonal grid, which differs from the square gird by alternating line-by-line shifts.

However, they are essentially equivalent in terms of the uniformity of spot placement

concerning the plan quality, although hexagonal grid can be slightly more efficient in

boundary representation. In this study, without loss of generality, we choose the square grid,

which is relatively easy to adapt with. Note that adaptive grid via AS is drastically different

from Cartesian grid (regardless of being hexagonal or square) in the sense that the spot

spacing is a constant for Cartesian grid, but a variable for adaptive grid.

A limitation of AS is that the tumor targets need to be sufficiently large compared to the spot

width and the spot spacing, to allow AG to place fine grid at the boundary and coarse grid in

the interior of the targets.

While this work and others [2,3] only consider the AS in the lateral directions, the AS

in the longitudinal direction (i.e., the proton energy) or the optimization of energy layer
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distribution was previously studied by Kang et al [23], i.e., to determine an efficient

longitudinal arrangement of Bragg peaks in a target volume using the Nyquist-Shannon

sampling theorem.

Besides spot placement methods in this and prior works [2,3], the lateral dose falloffs can

also be sharpened using dynamic collimation system [24] and spot size reduction [25].

However, dynamic collimation system may come at the cost of prolonged treatment time

due to the mechanical movement of collimators, increased cost, and compatibility issues

with existing PBS systems, while the spot size is a machine parameter that depends on the

mechanical design and it is usually not a feasible option to reduce the spot size too much for

existing delivery systems.

In this work, the AS is with respect to the spots on the same energy layer, instead of on

the same radiological depth. In order for spots to be at the same radiological depth in

heterogenous tissues, these spots are mostly likely to have different energies, although the

energy variation can be small. As a result, although this should improve the target coverage

in terms of evenly-distributed spot placement in radiological depth, the delivery of spots

with different energies can be technically challenging and practically inefficient, as the

switching of proton energies can take a significant amount of time [23]. Therefore, we have

arranged the spots on the same energy layer instead of the same radiological depth, although

the AS algorithm is also applicable to the spots of the same radiological depth. Moreover,

the AS can be combined with our previously developed methods using sparse-energy-layer

regularization [12] and plan-delivery-time constraint [13] to further improve the delivery

efficiency of PBS plans, with further reduced number of spots and/or increased spot weights,

which will be a future work.

On the other hand, the AS has equal step sizes in the lateral directions, which may not be

ideal for the elongated target volume. AS with variable step sizes in the lateral directions

will be addressed in a future work.

5. Conclusion

We have developed an adapative spot placement method on the Cartesian grid that is fully

compatible with existing treatment planning convention and systems. Compared with NS,

AS can improve both plan quality (e.g., target dose conformality) and delivery efficiency

(e.g., number of spots). The key for AS is to place (1) a relatively fine grid of spots

at the boundary of tumor targets to fully account for the geometry of tumor targets to

improve target dose conformality, and (2) a relatively coarse grid of spots in the interior of

tumor targets to reduce the number of spots for improving delivery efficiency and also the

roboustness to the MMU constraint.

Acknowledgment

The authors are very thankful to the valuable comments from anonymous reviewers. This research is supported in
part by the NIH Grant No. R37CA250921.

Lin et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2022 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix A

To fully illstruate the 2D undersampling algorithm (Algorithm 1), An example based on Fig.

2 is provided in Fig. A1 with the remaining spots after each undersampling step.

Figure A1.
An example of 2D undersampling for Fig. 2. (a) The red dots represent proton spots, and the

blue concentric squares denote spot grouping into Ωc, c ∈ [1,6]. (b) The blue dots represent

the remaining spots after the first undersamplingg. (c) The dark dots represent the remaining
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spots after the second undersampling. (d) The magenta dots represent the remaining spots

after the third undersampling.
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Figure 1.
Spot maps from NS and AS.
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Figure 2.
Spot grouping into concentric squares. Here X = Y = 11, I = (6,6), and C = 6.
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Figure 3.
Classification into boundary and interior spots.
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Figure 4.
HN. (a)-(c) dose plots respectively from FINE, COARSE, ADAPTIVE with g=10; (d)-(f)

dose plots respectively from FINE, COARSE, ADAPTIVE with g=60. CTV, 80%, 100% and

105% isodose lines are highlighted in (a)-(f) for comparing target dose conformality. Note

that ADAPTIVE and FINE have the same spot spacing, while ADAPTIVE and COARSE

have the similar number of spots; the definitions of these three methods are provided in

Section 2.5.
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Figure 5.
Liver. (a)-(c) dose plots respectively from FINE, COARSE, ADAPTIVE with g=10; (d)-(f)

dose plots respectively from FINE, COARSE, ADAPTIVE with g=60. CTV, 80%, 100% and

105% isodose lines are highlighted in (a)-(f) for comparing target dose conformality. Note

that ADAPTIVE and FINE have the same spot spacing, while ADAPTIVE and COARSE

have the similar number of spots; the definitions of these three methods are provided in

Section 2.5.
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Figure 6.
Pancreas. (a)-(c) dose plots respectively from FINE, COARSE, ADAPTIVE with g=10; (d)-

(f) dose plots respectively from FINE, COARSE, ADAPTIVE with g=60. CTV, 80%, 100%

and 105% isodose lines are highlighted in (a)-(f) for comparing target dose conformality.

Note that ADAPTIVE and FINE have the same spot spacing, while ADAPTIVE and

COARSE have the similar number of spots; the definitions of these three methods are

provided in Section 2.5.
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Figure 7.
Target DVH plots. (a) HN; (b) liver; (c) pancreas. Since all plans have the same

normalization, DVH plots are truncated with the plotting window [90%, 120%] of target

dose.
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Figure 8.
Profiles. (a)-(c) profile plots respectively from HN, liver, pancreas with g=10; (d)-(f) profile

plots respectively from HN, liver, pancreas with g=60. The profiles are from the lines in Fig.

4–6(a).
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Table 1.

Validation cases.

Case Fractionation Uncertainty Beam Angles

HN 2.0Gy×33 (3mm, 3.5%) 290°, 260°, 210°, 260°
1

Liver 4.5Gy×15 (5mm, 3.5%) 145°, 215°, 180.1°

Pancreas 6.0Gy×5 (5mm, 3.5%) 150°, 300°, 200°

1
with couch kick of 30°.
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Table 2.

HN.

HN FINE COARSE ADAPTIVE

Nx 59,400 6,640 6,244

g 10 60 10 60 10 60

f 9.0 56.6 19.7 19.7 10.0 11.0

Dmax 106.5 118.4 114.3 115.4 109.9 110.8

D5cc 55.9 72.6 58.7 59.1 56.8 57.6

#x≥g 38,997 21,361 4,888 4,198 4,741 4,161

‖x‖1 1.48 1.48 1.56 1.58 1.47 1.50

Nx: number of spots available for optimization; g: MMU threshold (unit: 106 protons); f: sum of planning objectives after optimization; Dmax:

maximum dose of CTV (unit: percentage with respect to the target dose; D5cc: minimum dose for 5cc of mandible receiving the highest dose (unit:

Gy); #x≥g: number of nonzero spots after optimization; ‖x‖1: sum of nonzero spot weights after optimization (unit: 1012 protons).
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Table 3.

Liver.

Liver FINE COARSE ADAPTIVE

Nx 32,704 3,641 3,614

g 10 60 10 60 10 60

f 11.1 23.3 41.7 42.2 12.2 12.4

Dmax 106.8 111.9 118.4 118.7 107.2 107.2

Dmax_c 16.8 25.6 47.5 47.3 18.2 18.5

#x≥g 27,364 20,031 2,655 2,756 2,975 2,866

‖x‖1 1.38 1.44 1.58 1.60 1.38 1.39

Nx: number of spots available for optimization; g: MMU threshold (unit: 106 protons); f: sum of planning objectives after optimization; Dmax:

maximum dose of CTV (unit: percentage with respect to the target dose; Dmax,c: maximum dose of cord (unit: Gy); #x≥g: number of nonzero

spots after optimization; ‖x‖1: sum of nonzero spot weights after optimization (unit: 1012 protons).
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Table 4.

Pancreas.

Pancreas FINE COARSE ADAPTIVE

Nx 38,238 4,253 4,192

g 10 60 10 60 10 60

f 1.4 102.9 2.5 2.6 1.5 1.5

Dmax 106.6 154.8 110.5 110.3 106.5 106.2

D1cc 27.8 32.5 28.5 28.6 27.9 28.0

#x≥g 28,075 10,970 3,373 3,002 3,327 2,983

‖x‖1 0.75 0.81 0.79 0.80 0.74 0.76

Nx: number of spots available for optimization; g: MMU threshold (unit: 106 protons);f: sum of planning objectives after optimization; Dmax:

maximum dose of CTV (unit: percentage with respect to the target dose; D1cc: minimum dose for 1cc of small bowel receiving the highest dose

(unit: Gy); #x≥g: number of nonzero spots after optimization; ‖x‖1: sum of nonzero spot weights after optimization (unit: 1012 protons).
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Table 5.

Undersampling ratios from AS. ζb, ζin, and ζ are the undersampling ratios of spots with respect to interior,

boundary, and all target regions defined by Eq. (53)–(55) respectively.

HN Liver Pancreas

ζin (%) 10.1 10.5 10.3

ζb (%) 14.2 18.3 16.9

ζ (%) 10.5 11.1 11.0
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