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ENUMERATION THEOREMS IN INFINITE ABELIAN GROUPS 

INTRODUCTION W. R. Scott has proved, [6, theorem 9] that i£ G is 
. A . an Abelian group of order A > ,'-i,., then G has 2 subgroups of order A and 

the intersection of all these subgroups is the identity. The present paper 

gives a partial extension of this theoTem in one direction, and an extension 

of the theorem in another direction. 

Ffrstly, i:ri chapter 2, the case where G is a countable Abelian group 

is considered and a partial extension of the above-mentioned theorem is 

made by characterizing those countable. Abelian groUf>S that have a 

countable number of subgroups and by showing that all others have 2}{0 

subgroups. Secondly, in chapter 3, the above-mentioned theorem is 

extended to modules over a principal ideal ring2 with a restriction on 

the order of the ring. 

In chapter 4 the problem of determining the order of the automorphism 

group of an infinite Abelian group is considered and it is proved that the 
I 

order of the· automorphism .group of a countable torsion Abelian group 

is 2 ,'-(o. 

The first chapter of this paper contains the necessary definitions 

and theorems which are well-known. They have been taken mainly from 

[4] and they have been listed, without proofs, for the convenience of the 

reader. 

Hereafter when the word group is used it will mean an Abelian group 

un~ess it is used in the phrase autom-oTjrhism group or unless the contrary 

is explicitly stated. The additive notation will be employed. In the 

1. References of this type are to the bibliography. 
2. cf. article 1.1. 
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statement of the theorems H. stands for hypothesis and C. stands for 

conclusion. 
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CHAPTER 1 

PRELIMINARIES 

ARTICLE 1. 1 DEFINITIONS 

A group is said to be a torsion group if every element·has finite 

order. If every element ha_s infinite order the group is said to be 

torsion-free. A group in which the order of each element is a power 

o~ a fixed prime p is called a primary group or a p-group. An element 

x of a group is said to be divisible by the integer n if }~e.re is some 

element y in the group such that ny = x. A group is said to be divisible1 

if every element of the group is divisible by ·every int~ger. A group is 

said to be reduced2 if it contains no non-trivial subgroups which are 

divisible groups. A group is said to be free if it is a weak direct sum 

of infinite cyclic groups. A subgroup of a group is said to be inextensible 3 

if g is in the subgroup whenever ng is, n being an integer. Since the 

intersection of a set of inextensible subgroups .is inextensibl~, the 

~ntersectio~ of all the inextensible subgroups containing a given set of 

elements of a group is an inextensible subgroup. This subgroup is said 

to, be the extension of that set of elements. 

Let S be a principal ideal ring, i.e. an integ,al domain in which 

every ideal is principal. Then a group M · is said to be. an S-module 
I 
i 

(or simply a module if no misunderstanding can arise) if there is .a; 
product AX d_efined for A in ·s and x in.: M which satisfies 

1. For the form o'f all divisible groups cf. theorem 1. 3. 
2. FQr an example of a reduced group cf. (4, remark (b), page 31] • 
3. Notice that an inextensible subgroup contains the torsion subgroup. 
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X.(x t y) = A.X t \y 

(X. + µ)x = )I.. x + µx 

()l..µ)x = )l..(µx) 

l· X = x. 

A subset N of an S-module M is said to be a submodule of M if N is a 

subgroup of M which satisfies ~s~_S for every A. ins. An S-module C is 

said to be cyclic if C = Sx for some x in C. The order ideal of an element 

x of an S-module is that ideal of S which consists of all X. in S such that 

)l..x = 0. The collection of all eiements of a module M that have a nonzero 

order ideal forms a submodule T which is said to be the torsion submodule 

of M. M is said to be a torsion module if T =. M, and M is said to be 
' 

torsion-free if T = 0. An S-module Mis said to be a primary module 

or a p-module if some power of the prime p, an. element of S, belongs 

to the order ideal of each element of M. A module M is said to be of 

bounded order if the intersection of the order ideals of every element 

of M is nonzero • 

. ARTICLE 1,2 NOTATION 

Throughout this paper we shall use the following notation: C will n 
denote a cyclic group of order n. R + will denote the 0additive group of 

rational numbers. Z(p00 ) will denote the quotient group PIZ, where P is the 
. + ' the subgroup of R whose denominators are powers of.a fixed prime p, 

i 
and Z is the additive group of integers. o (S) will denote the cardin11 

number of the set S. R(A) will denote the extension of the set A of 

eleme=nts of a group. s(G) will denote the number of ~ubgroups (submodules) 

of the group (module) G. d will denote the cardinal H~. A U B and 

A fl B will denote the set theoretic union and intersection, respectively. 

A + B will denote the group the~:>retic union and A 0 B will denote the 
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direct sum. L t A. will -denote the weak direct sum of the groups a. a. . 

(modules) A , and a. f. 0 Aa. will denote. the strong direct sum of the 

groups· (modules) Ao.. Hereafter, the words direct~ will mean the 

weak direct sum. A(G) will denote .the automorphism group ~f G. 

AR TIC LE 1. 3 . THEOREMS 

The following theorems are proved in [4] . For the history of 

these theorems see the Guide~ the Literature, pages 73-80, ·of [4] • 

Although the theorems are stated for groups,· they are. yalid for modules 

over a principal ideal ring, and we shall refer to them for both groups 

and module·s. 

THEOREM 1.1 

THEOREM l.Z 

THEOREM l. 3 

THEOREM 1.4 

THEOREM 1. 5 

H. G is a torsion group. 
/ 

C. G is a unique direct sum of p,rimary groups. 

H. G is a group. 

C. (i) G has a largest divisible subgroup, D. 

(ii) G = D t R, where R is reduced. 

H. G is a divisible group. 

C. G is a direct sum of groups each isomorphic to 

R+ or to Z(p00), for various_ primes, p. 

H. G is a reduced, torsion group. 

C. .G has a finite cyclic direct summand. 

H. H is a subgroup of a free group, G. 

C. H is a free group with at most as many summands 

as G. 
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THEOREM 1.6 H. G is a group of bounded_ order • 

. c. G: is the direct sum of cyclic groups. 

AR TIC LE 1. 4 REMARKS 

(1) The extension R(A) of a set A. of elements in a group G is the set 

G 1 of all g i~ G such that some integrai multiple_ of g can be written as 

a linear combination of elements from A. 

Proof: Let g be an element of G 1, then ng = a x + •: • + a0 x' , x 
a.1 a.1 r a.r 0'i 

an element of A and n and the a are integers. Hence ng is in every a.. 
1 

subgroup containing A. In particular, ng is in R(A). Since R(A) is 

inextensible, g is also in R(A)~ Thus G' c R(A). 

Clearly, G' is a subgroup of G, and if ng is in G 1 , then (mn)g '= 
m(ng) = a x. + ... + a x . Thus g is in G' and we have shown that 

a.1 a.l · a.r a.r 
G 1 is inextensible. Since A c G',. this means R(A) c G', which 

proves (1). 

(2) If B is the free group generated by a maximal set 13 o~ linearly 

independent elements in a g:roup G then G / B is torsio·n. 

Proof: For every g in G there is an integer n such that ng is a linear 

combination of the elements of (3, for otherwise 13 would not be maximal. 

Hence ng is in B and· G / B is torsion. 

(3) If G is a free group with r cyclic summands, where r < d, then G 

has a_:countable number of subgroups. 

Proof: By theorem 1. 5 any subgroup of G will have at most r generators. 

But there ar~ only d sets of elements of G that. haye exactly n elements, 
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wher~ n is any positive integer less than or equal to r. 

> Also, since o(G)_ = d, s(G) = d. This proves (3). 

< Hence s(G) = d. 

(4) If R is a subgroup of R \ then R has a countable number of subgroups 

if only a finite number of primes occur in the denominators of elements 

of R and R h~s 2d subgroups otherwise. 

Proof: This is an immediate consequence of [1, theorem 2, corollary 1] 

(5) A subgroup R,. of R + is cyclic if and only if only a finite number of 

primes occur in th~ denominators of elements of R and each prime that 

occurs in the denominators has only· a finite n:umber of powers occurring 

in the denominators. 

Proof: This is a restatement of [1, theorem 2, corollary 2] 

( 6) The number of subgroups in the direct· sum Z(p 00 ) $ Z(p 00) is 2d. 

Proof: Each of the sequences of elements: (1/ p, i / p), i = 0, 1, 

p - 1; (l/p2, '(i + jp)/p2), j = 0, 1, p - 1; (1/p3, (i + jp + kp2)/p3), 

k = 0, 1, • · • , p - 1; 
d 2 such sequences. 

generates a distinct subgroup and there are 

(7) If M is an S-module and S if a field, then M = $ S , S S for 
a.1 a. a. 

all a.. 

Pr-~of: This is the well-known statement that every vector space has a 

Hamel basi!:i. 
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( 8) If n < 3 or p is odd, then the automorphism group of C n is p 
---

c(p _ l)pn-1. For n >.Z the automorphism group of c 2n is Czn - 2. $ CZ. 

Pr~of: This is a statement pf the results of pa~agraph 5, pages 115-116 

of (s] . 

(9) The automorphism group of a direct sum of groups I: t G contains a. a. 
a subgroup which is isomorphic to the strong direct sum , 8 A(Ga.) of 

the automorphism groups of the sumniands. 

Proof: This follows from the fact that under the definition 
_, 

( • • • , g , • • •) V = ( • • • , g T , • • • ), T in A.(G ), V is an automorphism a. a. a. a. 0. . . 

·of I G . 
0. a. 

(10) The order of the automorphism group of the group Z(p00 ) is 2.d. 

Proof: An automorphism of Z(p 00) is given" by a sequence of 

correspondences, 

1 / p -+ h/p; o f h < p 

1/ p 2 k/p2; k < p2, k = h(p) 

Further, such a sequence can be obtained in 2d ways, w~ich proves (10). 

AR.TICLE 1. 5 BACKGROUND FOR CHAPTER 4. 

In this article a brief outline of the discussion and lemma given in 

artici~ 11 of [4] will be given. This outline will be needed for chapter 4. 

Let G be a countable, reduced p-group. ,Let G = G. For any 
0 

ordinai a. let G a. + 1 = pGa.' and for limit ordinals a. let Ga. = A, Gl3. 
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Since .there will ·finally be an ordinal >.. such that G>.. = GA + 1' i. e. such 

that GA = p GA, GX is divisible. Hence,· since G is reduced,. GA = O. 

Let P be the set of elements of G which are of order p. For any 

subgroup S of G let S = SI\ G • Since the quotient group P / P + 1 a a a. a. 
may be regarded as a vector space over t~e integers mod p, it ~-as a 

' . 

dimension which will be denoted by f(a.). f(a.) will .be called the 

a.th Ulm invariant of G. 

For the elements of G_ let the height, h(x), of the element x f O be 

a. if xis in Ga. but not in Go. + 1• Let h(O) = A + 1. Now h(x) has the 

following properties: 

(1. 5. 1) 

if h{x) < h(y),· then h(x + y) h(x). 

if h(x) = h(y), then h(x + y) h(x}. 

if x· f O,. then h(px) > h(x). 

An element x of G will be called proper with respect to the subgroup 

S of G if h(x) h(x + s) for every s in S. 

Let S be any subgroup of G and let a. be any ordinal. Let S: = 
- :.1 -1 . S = S /') p G 2. where p G f 2. 1s the set of all z such that ·pz a. a a+ a 

is in Ga + 2 • No~ for any x ins:, there is a y in Go. •+ 1 such that 

px = py, and y may be changed by any element in Pa.+ 1• The mapping 
.-· 

x x - y, followed by the natural homomorphism from P to . . a. 

P / P 1 is a homomorphism of Sf- into P / P + 1, and the a a.+ a a. a. 

kernel is S 1• Hence this defines an isomorphism U of 5:f / S + 1 . a.+ . a. a. 

int,o pa../ pa. + r 
We now restate lemma 13 of [4] as follows: 
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LEMJt.,1A 1.1 H. U is the mappi~g just defined. 

.c. T_he following two ·statements are equi~alent: 

(af· The range of U is not all of Pa./ :J? a. + 1. 

{b) There exists in P an element of height a. a. 
that is proper with.respect to S. 
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CHAPTER 2 

SUBGROUPS OF A COUNTABLE ,ABELIAN GROUP 

This chapter will be devoted to characterizing those countable 

groups G with s(G) = d .and showing that otherwise s·(G) == 2d. 

AR TIC LE 2. 1 THE THEOREM 

We first prove the following lemma for a group G that ~s not 

necessarily abelian: 

LEMMA Z.l H. H is a finite, normal subgroup of G, 

> s ( G / H) = A = d. 

C. s(G) = A. 

Proof: Since each subgroup of G / H is associated with a subgroup of 

G, s(G) A. Assume s(G) > A and let {K~i be the subgroups of G. 

Notice first that there is some G1 C G such that H + Ka. = G1 for 

·more than A of the K ; for otherwise, since s(G / H) = A, there would a . 

be only A of the Ka. Notice also that H is normal in G 1 and s 

s(G1 / H) s(G / H) = A. Since H is finite and H + Ka. = G1, 

iG (K ) < d. Hence for each K , there exists ·an.N C K such that 1 a. a. a. a.· 
N is no:cmal in G1 and iG (N ) < d. Hence there are 1only a finite 

0. 1 Q. I 

number of K such that N C K C G1, i, e. only a finite numbel" of a. a. a . 

the K can correspond to a given N . Hence there are more than A of a. a. 
the N •. 

a. 

Now there is ·a subgroup G 2 C G1 and a subgroup H, 1 C: H such 

that H + N = G 2 and H n N = H1 for more than A of the N , for a. a. a. 
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otherwise there would be at most A of the Na.. Also notice that H1 is 

normal in G 2 . The situation is now as follows: 

(i) H / H1 is finite. 

(ii) H / H1 is normal in G2 / H1, since H is normal in G2 . 

(iii) (Gz/ H1) / (H / H1) G2 /H and s(G"2 /.H) A • 
.. 

(iv) (Na./ H1) + (H / H1} = G2/ H1 and (Na./ H1} n (H / H1) = 

H1 / H1 for ·more than A of the Na., hence 

For a fixed a., let P(3 / H1 = (Na./ H1) () (Nl3/ H1). 

iG / H (PA./ Hl) iG / H (N / H1)· iG / H (N(3 / 
2 11" 2 1 a. 2 1 

Hence 

Since P l3/ H1 C Nl3 / H1 C G2 / H1 for every (3, since there are 

more than A of the N~, and since there are only a finite number of 

N13 / H1 between a given P l3 / H1 and G2 / Hl' there are more than 

A of the P l3. Hen~e s(Na./ H1) > A, since there are more than A of 

the Pl3/ H1 such that Pl3/ H1 C Na./ Hl" But by (iii) and (iv) 

Na./ H1 (G2 / H1)/.(H/ H1) ';t G 2 / H and s(G2 / H) A, 

which is a contradiction. Hence s(G) = A. 

Next the question will be settled for torsion groups as follows: 

LEMMA 2.2 H. G is a countable torsion group. 1 

C. (i) s(G) = d if G = Z(pf) 9 • • • ' Z(pn 00 ) $ F, 

where p. + p. for i + j and F is finite: 
1 J 

(ii) s(G) :;. 2d otherwise. 

1. Hereafter the form of G given in C. (i) will. be called countable form. 
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Proof: By theorem 1. 2, G = D $ R, with D divisible and R reduced. . ' 

Consider the following ~we cases: 

case 1. R is countable. By theorem 1. 1 R is the direct sum of 

primary groups. If there are d summands of R then s{G) = 2d si~ce 

the direct sum of any collection of the summands forms a subgroup. 

If R = RP 4l ,. • • 4l R , where the R are primary with respect to the 
1 Pn pi 

prime p., then at least one summand, say R , is countable since R is 
1 p 

countable. By theorem 1. 4 R = C t R'; again by theorem 1. 4 
p nl p 

R' = C $ R 11 • Continuing in this way we get a sequence of finite 
p n2 p . 

cyclic groups f Cn} such that no C is contained in the direct sum 
i ni 

of any of the others. Hence the direct sum of any subcolle'ction of these 

cyclic groups forms a subgroup of G and s(G) = 2d. Thus it has been 

proved that if R is' countable, then s(G) = 2d. 

case 2. R is finite, ·By theorem 1. 3, D = Z(p/0 ) $ • • • (I Z(pn 00) $ • • ·, 

where by remark (6) if p. = p. for if j, then s(G) = 2d. If there are d 
1 J 

summands of D then by the reason used twice in case 1 s{G) = 2d. 

Otherwise D = Z(p100 ) $ • • • 4) Z(pn 00) and G has countable form. This 

_proves (ii) .. 

Now assume G has countable ~orm. Then by theorem 1. 1 
(X) CX) G = Z(p1 ) 4l F $ • • • $ Z(p ) $ F $ F 4l • • • $ F , where 

Pi n P n P n + 1 Pm 
F is the primary subgroup of F with respect to p.. If H is any 

pi . 1 

subgroup of G, by theorem 1. 1, H = Hp QI • • • $ H Hence 
' l Pm 

H C Z(p. 00) 0 F for i = 1, • • · , n and H C F for i = n + 1, · · • , m. 
pi l pi pi pi 

If K is any· subgroup of Z(p 00 ) F then K / (Kr, Z{p 00)) p 
(K + Z(p00)) /. Z(p00) C (Z(p00) $ F ) / Z{p00 ) F • Hence . p p 

iK (Kn Z(p00 )~ o (F p) < d and thus K admits the cos.et decomposition 

K CX) (X) 
= (K I'"'\ Z(p )) g1 U • • · U {K n Z(p )) gr. 
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Since Z(p00) is countable and s(Z(p00)) = d, _Kn Z(p00 ) and g1, . • •, gr can 

be obtained in at most d ways. Hence Z(p00 ) $ F p has d subgroups, and, 

since s(G) = s(Z(p100) $ F ) · • • · • s(Z(p 00 ) 4) F ) . s(F ) •.•• 
P1 n ~n Pn + 1 

• s(F ), it follows that s(G) = d. This completes the proof. 
Pm 

Now for the general case let®. be a maximal set of linearly ., 

independent elements in the countable group G and let B be the free 
I 

group generated by the elements of <A. • With this notation we prove 

the following theorem: 

THEOREM 2.1 H. G is a countable group. 

C. (i) s(G) = d if o( (ll ) < d and G/ B has countable 

form • 

. (ii) s(G) = 2d otherwi~e. 

Proof: If o( (Ii. ) = d, then s(G) = 2d since any two distinct subsets of 

@.. generate distinct subgroups of G. By remark (2) G /B is torsion, 

hence lemma 2. 2 implies s(G) = 2d if, G/ B does not have countable 

form. This· proves (ii). 

Conversely, assume o( (Ji ) < d and G / B has countable form. Let 

H be any subgroup of G such that H cf:. B and B cf: H •. Now consider 

R(H n B). By remark (1) R(H n B) / H n B is torsion. Also, since 

for every g in G, there is some integer· m such that mg is i~ 

B, R(H I) B) / (R(H (') B) r\ B) is torsion. However, 

R(HI) B)/ (R(H n B) () B) (R(Hn B) + B) / BC G /B; hence 

s(R(H I'\ B) / (R(H /) B) n B)) d. Since B is free, it follows from 

theorem 1. 5 that R(H /l B) /1 B and H n B are also free groups. Now, 

since for each generator g. of R(H n B) n B there is an integer n. 
l 1. 

such that n.g. -is. in H n B, there are only a finite number of cosets of l l · . 
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of H rl _B in R(Hn B) n B, i.e. (R(H () B) n B) / (H n B) is finite. 

Further, (R(H n B)/ (H.n B)) / ((R(H n ·B)t, B)/ (H ("I B)) ~-

R(H (1 B) / (R(H /'\ B) n B), which has at most d subgroups. Hence, by 

· lemma Z. 1, s(R(H I') B) / (H () B)) d. ·For any h in H, nh 'is in _B for 

some integer n; hence nh is in H r1 B and this implies, by remark 

(1), that his in .R(Hn B). Thus Hn BC HC R(Hn B). · Thus it 

has been proved that. for each· subgroup B' of B there are at most d 

subgroups H of G such that H n B = B'. Since, by _remark (3), B has 
. . . < . 
d subgroups, it follows that s(G) = d. Also, since G is countable, 

s(G) d. _Hence s(G) = d, which was to be proved. 

ARTICLE 2. Z EXAMPLE 

One may be tempted to conjecture that if o( 6).) < d and s(G) = d, 

where G is a countable group, then G is a direct sum of rational groups, 

i.e. subgroups of R+ or Rt /z, where Z is the additive group of 

integers. However, this conjecture is defeated by the following example, 

which is a modification of the example given in the proof of theorem 19 

of [~1 . 
Let u and v be two symbols, let p be. a prime, and let G be the 

group of all finite .linear combinations over the integers of the 

. I 3 expressions v, w1; p, Wz p , 
Z 5 where w . = u + (1 + p . + p + • • • n 

.•• , w / p((n - 1) / Z)(n + Z) + 1, 
n 

+ p((n - l)/ Z)(n + Z))v. Let H be 
' 

the subgroup generated by u and v. Now u and v form ·a _maximal 

linearly independent set of elements in G; and it is clear by the 

association, (w1/ p) + H 1/ p; (wz/ p 2) + H 1 /p2 ; 
3 ·3 6 6 (wz/P) +H~l/p ;-;-; (w3 /p) +H<~l/p; •••, that 

G / H = Z(p00). Hence by theorem Z. 1, s(G) = d. 

Observe the following properties of G: 

15 
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1) v / p is not in G. 

Proof: Assume v-/ p is in G. Then p(v / p) = v, i.e. 

n1 < • • • < nr' nr is minimal, and f3(n) = {(n - 1) / 2)(n + 2). Multiplying 

A.(n ) + i A(n ) +· 1 z . a w / p"' r = a 'w / p.., r. - 1 + a 'p v, which r n r n 1 r 
r r -

contradicts the minimality of n • Hence v / p is not in G. . r 

2) No element of G ·is divisible of qa. for every a. with q f p, q a prime. 

Proof: Assume the element g is divisible by qa. for every a., i.e. for 

every a. there is a g' such that qa.g, = g; or, expressed more fully, 

Now, if·n £ m , by'muitiplying both sides of (1) by pf3(nr) + 1 and r s 

equating the .coefficients of u on both sides, it follows that 

(2) q~(a1pf3(nrl - f3(nl) + .. + ar) = p~(nr) - f3(ms) (b1pf3(ms) - f3(n:,.1) 

+ .. • + bs). 
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If nr < ms, by multiplying both sides of (1) by p(3(ms) + 1 and equating 

the coefficients .of u on.both sides, it follows that 

Hence it must_ be that qa. I (biP(3(ms) - (3(ml) + •.. + bs) for all ci, 

which is impossible unless b1 = b 2 = • • • = bs = 0, in which case, 

by (1), qa. lb for all a, a contradiction. 
0 

3) No element of G is divisible by all powers of p. 

Proof: 1 Assume there is an element g of G which is divisible by all 

(3(n ). + 1 . · (3(n ) + 1 powers of p. Let g = a 0v + a 1w / p 1 + • • • + a w / p r • n1 r nr 

Thus g = (au + bv) / p(3(nr) + 1. Since g is divi~ible by all powers of 

p, so is au + bv. In particular, au + bv is divisible by p(3(n) + 1 for 

every n, i.e. (au + bv) / p(3(n) + 1 is in G for every n. Hence 

(au+ bv)/ p(3(n) + 1 - awn /pf3(n) + 1 = ({b - a(l + p2 + ••. 

+ p(3(n)))/ p!3(n) +. l)· v is in G for every n. Hence, by 1), it must be that 

(4) b - a(l + p 2 + • • • + p(3(n)) = 0 (mod p(3(n) + 1), for every n. 

It will be shown that there is no pair of integers a and b such that· 

( 4) is satis~ied for every n. Assume there is such a pair. 

1. Computations will be made in the group Ra(u) $ Ra(v) where Ra.(x) is 
the group of all rational multiples of x. 

17 



·-- j3(n -1) j3(n· - 1) + 1 . + P ) + o.n _ 1P . Subtracting the second equation from 

f . b , (3(n - 1) + 1 n - 1 n . the 1rst, we o tamp (ap + a p - a. ) = O, since 
n n - 1 

j3(n) = (3(n - 1) + n. Hence pn - 1 j a. and it is seen that the 
· n - 1 

sharpened congruence 

must be satisfied for all n. But if n is chosen such that pn > I a I + lb I, 

it follows that pj3(n + l) = pn. pj3(n) + 1 > ( la I + lb I>· pj3(n) + 1 

+ pj3(n)) I, which proves that the congruence (5) is not possible for 

all n unless_ b - a(l + p 2 + • • • + pj3(n)) = 0 for all n, which would 

imply (1 + p 2 + • · • · + p(3(n)) I b for all n, a contradiction. This proves 3). 

Assume G is a direct sum of rational groups, i.e. subgroups of 

R +. since G is torsion-free. Also, since {u, vJ is a maximal 

linearly independent set of elements, and since the number of elements 

is the same for every such set, G must be the direct sum of two 

·rational groups. Further, since s(G) = d, it follows from remark (4) 

that ._the denominators of each summand can have only a finite number 

of primes. Also by 2), 3), arid remark (5), together with the fact that 

if no element of a subgroup of R + is divisible by all powers of a prime, 

then the denominator:s of that subgroup have only a finite number of 
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powers of tli.at prime, it follows that the summands are cyclic. Hence 

G is free with two summands and by the·orem 1. 5 and the definition of H, 

H is aiso free with two summands. Hence G / H is finite, which 

contradicts the fact that G / H ?:!. Z(p00). Thus G can not be a direct 

sum of rational groups. 

The problem of determining the number of subgroups of a finite 

group was solved simultaneously by Yeh, [7) , and Delsarte, [2] , and 

later by Kinosita [5J • 
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CHAP'.I'ER 4 

SUBMODULES OF MODULES 

In this chapter [6, theorem 9] will be extended to modules over 

a principal ideal ring with th~ restriction that the order of the ring is 

less than the order of the module. The proofs are made by translating 

the proofs in [6] into module language. 

Let M be a module over a principal ideal ring, S. 

DEFINITION 3. 11 L(pr) is the set of all elements in M whose order 

ideals contain pr 

L(oo) is the set of all elements in M whose order 

ideals contain only zero. 

Clearly, L(pr) is a submodule of M. 

LEMMA 3.1 H. M is a primary module with respect to the 

prime, p. 

r = 1, 2., 

Proof: If pg1 = pg2 , then p(g1 - g2 ) = o; and if p(g1 - g2 ) = pgl - pg2 = 0, 

then pg1 = pg2, where g1 and g2 are elements of M. Hence if g is in M, 

the number of solutions of px = g is less than or equal to o(L(p)). Thus 

the number of-x in M such that px is in L(pr-l) is at most 

o(L(pr - 1))(o(L(p) )), i.e. o(L(pr)) o(L(pr - 1))· o(L(p)) • For the 

second inequality, the first inequality and induction is used to get 

1. Here p is a prime i~ S. 
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COROLLARY H. M is a p-module. 

o(M) > d. 

C. o(L~p)) = o(M). 

Proof: If o(L(p)) is finite. then by the lemma o(L(pr)) (o(L(p)))r 

which is finite for all r. 
< 00 

follows that o(M) = 

Hence o(M) d. Hence o(L(p)) d and it 
i < .. o(L(p )) = o(L(p )) + o(L(p)) + • • • = o(L(p)). 

i = 1 
Hence o(M) = o(L(p)). 

Now let R be the set of submodules Mj3 of M with o(Mj3) = o(M) and 

let D be the intersection of all the submodules of R. With this notation 

the following lemma is proved: 

LEMMA 3. 2 H.- M is a module over a principal ideal ring, S. 

) >. 
L-- 41 H C M, a. E U; o(U) = o(M = d. a. a. 

C. (i) o(R) = zo(M). 

(ii) D = e. 

Proof: Since there are zo(M) subsets of M, o(R) 2o(M). Next it is 

shown that there are 2o(M) subsets U1 of U of order o(M). Assume there 

are less tha,n z0 {M). Then there are 2°(~) subsets of order less than 

o(M). But the complement of each of these is of order o(M), a 

contradiction. Hence there are zo(M) subsets U' of U of order .o(M). 

Now l~t N(U') = L. 
a. e u• 

i H . Then o(N(U')) = o(M), and if U' { U 11 then 
a. 
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N( U 1) T N(U"). Hence o(R) = zo(M). Also DC nN(U') = e, which 

proves the lemma. 

The main result of this chapter is the following theorem: 

THEOREM 3. _1 H. M is a module over the principal ideal ring S. 

o(M) d; o(S) < o(M). 

R is the set of submodules Mj3 of M with 

o(Mj3) = o(M)._ 

D is the intersection of all the submodules of R. 

C. (i) o(R) = zo(M). 

(ii) D = e. 

Proof: If o(M) = d, then o(S) is finite and S is a field. Hence by 

remark (7) M = .L. U '9 S , S S. Since o(M) = d, o(U) = d. Hence 
a.€ a. a. 

by lemma 3. 2, the theorem follows. 

Hence it may be assumed that o(M) > d. Now let T be the torsion 

_submodule pf M. The following two cases are considered: 

case 1. o(T) < o(M). In this case o(L(oo))= o(M). Letl8, be a 

maximal set of linearly independent elements, and let B be the module 

generated by the elements of (11 • It will be shown that o( (ft ) = o(L(oo)). 
1 < Assume o( ($_ ) < o(L(oo)). Then o(B) = o( d3. )• o(S) < o(L(oo)) = o(M).· 

For a fixed A { o in S, let AX= AY, then A(X - y) = o. Hence x - y is in T. 

Thus there are at most o(T) solutions of AX = b for fixed A in S and 

fixed-bin B. Therefore the number of x 1 s for which AX is in B, allowing 

A to vary, is o{T)•o(S)•o(B) < o(M). Hence there is an x in L(oo).- B such 

1. For o(-(8. ) and o(S) both finite, the first ine·quality is not true, but in 
this case o{B) < o{L(oo) since o(L(oo)) is infinite and o(B) is finite. 

22 



that £a. U {x) is an independent set, which contradicts the maximality 

of Ill . Thus o{ <S.· ) = o(L(oo)) = o(M), and the theorem follows from 

lemma 3. 2 since B is of the form L Ql H . a a. 

case 2. o(T) = o(M). From theorem 1.1, T = h. 5 e Tp, where the Tp 

are primary modules. 

case 2. 1. o(T p) = o(T) for some p. Then by the corollary· of lemma 3. 1, 

o{L(p)) = o{M). Now by theorem 1. 6, L(p) = l: Q) C , C cyclic. However, a. a. 
) < . o(C = o{S) < o{M); hence there ·are o{M) of the C and by lemma 3. 2 a. a 

the theorem follows. 

case 2. 2 o(T ) < o(T) for all p. Let U = L. Ql T for all primes p. with p p. . 1 
1 

o(T ) > d. Now the number of elements of U with one nonz-ero component 
pi 

is o(T ). The number of elements of U with two nonzero comppnents 
- pi 

is L o(Tp_). _L 'o(Tp_) = } o(Tp_) where [ 1 denotes the sum L 
1 1 1 

with some one summand omitted. Continuing in this way we see that 

the number of elements of U with n nonzero components is [ o(T ) for 
pi 

every n. Hence o(U) = L o(T p. ). Also o(U) = o{T) for clearly 
1 

o{U) o(T) and o(U) < o{T) implies o(W) = o{T) where W = L 4) T' for 
pi 

all primes p. with o{T 1 )~ d. But this is impossible since there are at 
1 pi 

most o(S) < o{T) of the T' • Now by case 2.1 each of the T has p. p . 
. (T ) 1 1 

2° pi submodu.les H(i) of order o(T p)· For each i, choose an 
1 

H(i) C T with o{H{i)) = o{T ). Then V = .L 4) H{i) is a submodule of 
pi pi 

U with o{V) = o(U). The number of submodules formed in this way is 
o(T ). .,_. o(T ) o(U) o{M) . clearlyTT 2 p. = 2 c_, p. = 2 = 2 • Also since 

1 1 

n H{i) = e for a fixed i, the intersection of all the V's is the identity. 

This proves the theorem. 
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COROLLARY H. o(G) > d and G is a group. 

R is the set of subgroups G of G with o(G ) = o(G). a. a. 
D is the intersection of the groups in R. 

C. (i) o(R) = zo(G). 

(ii) D = e. 

Th~s is the statement of [ 6, theorem. 9] . 

Proof: A group is a module. over the ring of integers by means of the 

multiplication already defined, i.e. ng = g + g + • • • + g, with n 

summands. Also since o(G) > d , the condition on the order of the 

ring is satisfied. Hence the corollary follows from theorem 3. 1. 
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CHAPTER 4 

THE ORDER OF THE AUTOMORJ;>HISM GROUP 

In this chapter it will be shown that the order of the automorphism 
·d group of a cauntable torsion group is 2 • The foundation laid in article 1. 5 

will be built on to attain this goal. 

ARTICLE 4.1 THE THEOREM 

First a lemma will be proved which is patterned after the proof 

of Ulm's theorem in IAl However, here automorphisms are being 

considered and since it is desired to obtain 2d automorphisms, they 

will be built up step by step such that all but at most one step can be 

taken in two ways. 

LEMMA 4.1 H. G is a countable, reduced, p-group. 

S and T are finite subgroups of G. 

V is an isomorphism of S onto T which preserves 

heights with respect to G. 

x is an element of G such that x is not in S but 
px is in S. 

< 1 h(x) =a=>.. - 2. 

S I is the subgroup generated by S and x. 

x is pl"oper with respect to S. 

h(px) is maximal among all x' s that are proper 
with respect to S. 

1. >.. is as in article 1. 5. 
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C. There exist finite subgroups T 1 :::, T and T 11 :::> ·T 

and height-presei:ving isomorphisms, V' of 5 1 onto 

T 1 and V 11 of 5 1 onto T 11 , such that V 1 ·+ V 11 and V 1 

and V 11 are extensions of V. 

Proof: Let (px)V = z. Now two elements, w and w 1, that are ne>t in T 

must be found such that pw = pw1 = z, h(w) = h(w1) = 0;, ·w and w 1 are 

proper with respect to T, and w + wl° If such elements can be found, 

then the conclusion can be obtained by defining (s + rx)V 1 = sV + rw and 

(s + rx)V'' = sV + rwl" 

In searching for the elements w and w1 the following two cases are 

considered: 

case 1. h(z) = a + 1. Hence z + 0 and consequently px_ + 0. Since 

h(z) = a + 1, z is in G 1; therefore there exists an element w in G a+ a 
such that pw = z. Since Pa + 1 f O, there is a nonzero element w 1 of 

Pa+ 1, which is a subgroup of Ga. Hence p(w + w 1 ) = pw + 0 = z. Also 

notice that w is not in Pa + 1, since z f O; hence w f w'. 

It is now claimed that the elements w and w1 = w + w 1 satisfy the 

-requirements. First notice that h(w) a. and h(w1) a. since w and w 1 

are in G . a. 
> To see that h{w) = a. assume h(w) > ci. Hence h(w) = a + 1, 

which implies h(z) = h(pw) > h(w) a. + 1, a contradiction~ Hence h(w) = a.. 

Exactly the same argument shows h(w1) = a.. Ne~t it is shown that w is 

not in T. Assume w is in T. Now w = yV, yin S, Hence pw = (py)V = z. 

But (px)V = z; therefore px = py. Also x - y is not in 5 for if it were 

then x would be also. Since xis proper with respect to 5, 

a. = h(x) ?;=h(x - y). Also, since h(y) = h(w) = a, h(x - y) h{x) = a; 

hence h(x - y) = a and x - y is proper with respect to 5. However, 

h(p(x - y)) = h(o) > a. + 1, which contradicts the maximality of h(px). 
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Thus w is not in T. As before exactly the same argument works to show 

that w1 is not in T. All that remains to ·be shown is that w and w1 are 

proper with respect to T. To this end assume w is not proper with 

respect to T, i.e. there exists a t in T such that h(w + t) a. + 1, 

t = sV, s is in S. Notice that h(p(w + t)) a. + 2. · Since (px)V = z = pw 

and (ps)V = pt, it follows that (px + ps)V = pw + pt. Therefore 

h(p(w + t)) = h(p(x + s)) a. + 2. Since h(t) < a. implies h(w + t) < a. we 

. > . > > < have h(t) :: a.. Therefore h(s) = h(t) = a. and h(x + s) = a., but h(x + s) = a.. 

Hence h(x + s) = a., i.e. x + s is proper with respect to S and 

h(p(x + s)) a. + 2 which contradicts the maximality o~ h(px). Therefore 

w is proper with respect to T. Again the same argument shows that 

w1 is proper with respect to T. Thus wand w1 satisfy the requirements 

and V' and V" can be obtained as described above. . . 
case 2. h(z) > a. + 1. Hence h(px) > a. + 1, which implies px = pv, where 

v is in G 1. Hence x - v is in P . Since x is not in G + 1, neither is . a.+ a . a. 

x - v; therefore h(x - v) = a.. Since for every s in S, h(x + s) a., and 

since h(-v) a. + 1, it follows that h(x + s) < h(-v) for every s in S. 

Therefore h,(x + s - v) = h(x + s) a and so x - v is proper with respect 

to S. Now since S .is finite, so is s: / Sa.·+ 1, and since x - .v 

satisfies (b) in lemma 1.1 it follows that the dimensio:111 of s: /Sa.+ 1 

is less than f(a.), Further, since V is height preserving, it maps 

Sa onto Ta, s: onto T!, ands:/ Sa.+ 1 onto T:/ Ta.+ 1; hence the 

dimension of Ta.,tt. / Ta.+ 1 is less than f(a.). Hence lemma 1.1, (a), is 

satisfied for T an~ therefore there is an element w' such that pw' = o, 

h(w') = a.=, and w' is proper with respect to T. Also since h(z) >a.-+ 1, there 

there is an element w' 1 in Ga. + 1 such that pw' 1 = z. Now let w = w' + w' 1 

1. As a vector space over the integers (mod p). 
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and it follows that pw = z and h(w) = h(w' + w") = h(w'} = a., since 

< h(w') < h(w 11 ). Further-, for any tin T, "h(w' + t) = h(w') = a. .and 

> < .h(w'') =a+ 1; therefore h(w' + t +.w 11 ) = h(w' + t) =a= h(w' + w") and 

w' · + w" is proper with respect to T. Now let w" 1 f O be any element 

of Pa. + 1 and let w1 = w + w' 1 '. (Notice that if z = 0, it will suffice to 

let w = w' and w1 = w' + w"). Now w f w 1 and pw1 = pw = ·z. 

Also h(w1) = h(w + w 111 ) = h(w) = a. since h(w) < h(w' 11 ). Finally, since 

w is proper with respect to T I for any t in T it follows that 

h(.w + t) h(w) = a, and since h(w'") ~a.+ 1, h(w + t + w 111 ) = 
. < . h{w + t) = a. = h (w1). Therefore w1 is proper with respect to T and 

this concludes the proof of lemma 4.1, 

THEOREM 4.1 H. G is a countable, torsion group. 

C. o{A.(G)) = 2d. 

< d Proof: Clearly, o(A(G)) = 2 . By theorem 1. 2, G = D G} R. I£ 

D f O then by theorem 1. 3 D is a direct sum of Z(p00 ) groups. In 

this case the theorem follows from remarks (9) and (10). Hence the 

only case remaining to be considered is the one in which G = R. •By 

theorem 1.1, R is a direct sum of primary groups, and if there are d 

primary summands of R, then by theorem 1. 4 each summand has a finite 

cyclic direct summand. In this case the theorem follows from remarks 

(8) and (9). The only case remaining to be considered is the one in 

which R is the direct sum of a finite number of primary groups. In this 

case there will be a prime p such that the order of the corresponding 

primary group is d. Hence it must be shown that if R is a countable p 
reduced p-group, then the order of the automorphism group of R is 2d. p 
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TQ this end first order the elements of R in some order, .p 

o, g1, g 2 , • • •. Let S = .T be the cyclic subgroup generated by g1 and 

let V be the identity correspondence. V will be extended by induction 

to an automorphism of R • p At the (Zn - l)th stage S will be extended to 

include g and at the Znth stage T will be n extended to include g . n Moreover 

it will be shown that the extension can be made in two distinct ways at all 

but at most one stage. This will show that V can be extended to an 

automorphism of R in 2d ways. Since all of the arguments required for p 
the. induction are the same as the one for extending S, say, to include 

g 2 , only this argument will be given. 

If g 2 i's in S, there is nothing to prove. _If not then the order of 

g 2 is pn, i.e. 1?ng2 = o. Let r be the smallest positive integer such that 

pr + 1g2 is in S, but pr g 2 is not in S. Now S will be extended to include 

Clearly, it will suffice to extend S to include pr g 2 + s., where s. is 
1 1 

in S, r r Let p g2 + s be such that p g2 + s is proper with respect to S and 

let h(p(pr g 2 + s)) be maximal among all pr g 2 + si which are proper with 

respect to S. 'This is possible since S is finite. Now assuming 

r < r h{p g2 + s) =. >.. - 2, S can be extended to include p g 2 + s, and hence to 

include pr g2 , by using lemma 4.1. Continuing by induction S can be 

extended to include pr - 1g2 , pr - 2g2 , • • ·, pg2 , and finally g2 itself, 

making the extension in two ways at each stage prpvided the heights 

of the elements involved are all at most>.. - 2 .. 

Thus it has been seen that the only thing that could possibly 

hinder the extension at any given stage is to have to extend to include 

an element,x which satisfies all the hypotheses of lemma 4.1 except 

( < . h x) = >.. - 2, i.e. x is such that h(x) = >-. - 1. In this case px = o and 

hence z = o. Now since PX. _ 1 f 0, w can be taken as any ele1nent in 

P>.. _ 1 such that w is not in T. This will fail only if P>.. _ 1 CT, but 
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this i~plies o(P>.. _ 1) is finite and hence P>.. 1 C S also since V is 

height-preserving,• However, x is in p·>.. _ 1, and hence x is ii:i S, a 

contradiction, Therefore P >.. _ 1 q: T and w may be taken as any 

element of P>.. _ 1 that is not in T. -Also w may be changed by any 

nonzero element of P >.. _ 1 and it will still satisfy the requirements. 

Hence the only case in which the extension can be ·made in only one way 

is when h(x) = >.. - 1 and P>.. .- 1 = c 2 • Thus the required extension can be 

made in two distinct ways at all but at most one stage, which proves that 

·the_ order of the automorphism group of RP is 2d. Now the proof of 

theorem 4.1 is completed by invoking remark (9). 

'.I'he problem. considered in this chapter has not been solved for 

finite groups. It has been shown however, [~] , that if pn + 1 divides 

o(G), where p is a prime, then pn(p - 1) divides the order of the 

'automorphism group of G where G is a finite group. 

ARTICLE 4. 2 UNSOLVED PROBLEMS 

The author has been unable to solve the problem of determining 

the number of submodules of a module over a principal ideal ring 

where the order of the ring is equal to the order of the module. He has 

also been unable to determine the order of the automorphism group of 

a general_group. It is his opinion that the answers to these questions 

are not as simple as the answers given to the questions in chapters 3 and 4 

of the present paper. 
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