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ABSTRACT 

 

 This study developed mixed-traffic simulation models of connected automated vehicles 

(CAVs) and manually-driven vehicles (MDVs) at the full-spectrum of mixed penetration rates on 

a freeway segment by incorporating the car-following and lane-changing models via a conditional 

linkage to investigate the sensitivities in highway capacity and travel time.  The car-following 

models for CAVs and MDVs were modified from the full-velocity difference (FVD) car-following 

model, while the lane-changing logic was adopted to regulate the lane-changing decisions for both 

CAVs and MDVs. The desired speeds of each MDVs were determined on the basis of stochasticity 

to represent various desired speeds taken by human drivers, while the uniform desired speed was 

employed for CAVs. The stochastic gap acceptance was applied for MDVs to replicate the 

stochasticity of the gaps accepted by human drivers, whereas the static gap acceptance was adopted 

to establish the safe decision-making thresholds for CAVs prior to performing lane changes. Two 

algorithms were proposed separately for governing the movements of CAVs and MDVs in the 

traffic simulation models. The proposed algorithms, along with a 3-to-2 virtual freeway lane drop, 

were coded in JAVA to develop a simulation platform, prior to calibrating the default model with 

field data.  Eleven mixed traffic scenarios were simulated in the developed platform, along with 

parallel simulation in VISSIM, to generate and validate the resultant speed-flow diagrams.  

 The results were then analyzed and compared to determine the changes in highway capacity 

and travel time with respect to the variations in CAV penetration rate. The resultant vehicular 

trajectories in the scenarios of interest were also analyzed to perceive the impact of CAVs on the 

trajectories and speeds of the interacting vehicles in traffic. The results showed increase in 

capacities in the range of 25.9 – 26.9 percent, while travel time decreased by up to 55.4 percent, 

as the CAV penetration rate shifted from 0 to 100 percent.  The trajectory analysis indicated that 

CAVs have an influence on guiding the smoother speed and acceleration rates of MDVs while an 

MDV is following a CAV. The results suggest that although headways increased with increasing 

CAV penetration rate, capacity also increased; however, there should be an optimal headway that 

maximizes the capacity. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

 Connected Automated Vehicles (CAVs) are an emerging technology which is speculated 

to supersede the human-driven vehicle technologies on the roadways in the near future. They are 

expected to improve the efficiency and capacity of the roadways, reduce non-productive vehicle-

occupancy time that passengers need to spend traveling in vehicles, as well as enhance traffic 

safety (Naumann et al., 1998; Zhao and Sun, 2013; Le Vine et al, 2015; Lefèvre et al., 2015). So 

far, twenty-nine states and Washington D.C. have already enacted legislations related to automated 

vehicles to prepare for this upcoming change (National Conference of State Legislature, 2019).  

However, it is still uncertain when exactly CAVs will penetrate the roadways and to what extent 

they will improve traffic operations since this type of vehicle has neither fully developed nor 

physically been implemented on roadways in real life yet. 

There are two major technologies in vehicles: automation and connectivity. Automated 

vehicles (AVs) operate using on-board sensors and have at least one aspect of a safety-critical 

control function performed without direct driver input required (Schubert et al., 2010; Luettel et 

al., 2012; Zhao and Sun, 2013; Talebpour and Mahmassani, 2016). Vehicles are classified by the 

Society of Automobile Engineers (SAE) into six levels of automated driving, based on the degree 

of automation. Vehicles categorized at levels 0-2 require full or partial monitoring from human 

driver, whereas vehicles at levels 3-5 apply automated driving system to monitor the driving 

environment (SAE, 2014). In addition, vehicles at levels 0-3 require a licensed driver to be present 

in the vehicle; while levels 4 and 5 allow for a completely driverless operation (Litman, 2018). 

Level 2 automated vehicles employ adaptive cruise control (ACC) system, which enables 

automatic car-following in the longitudinal direction to enhance comfort and safety for drivers 

(Ioannou and Stefanovic, 2005). 

Connected vehicles (CVs) use wireless connection systems to communicate with other 

vehicles and the roadside infrastructure (USDOT, 2019). Based on the type of connectivity, CVs 

are often classified into three types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and 
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vehicle-to-everything (V2X) (Dimitrakopoulos, 2011; UK Department for Transport, 2016; Patel 

et al., 2017). CV technology is expected to improve driver efficiency and response, along with 

enhanced safety and mobility, by providing real-time information on traffic conditions and the 

decisions from traffic management centers (Dimitrakopoulos, 2011; Tientrakool et al., 2011; 

Knorr and Schreckenberg, 2012; Tang et al., 2014; Xie et al., 2014; Talebpour et al., 2015; 

Talebpour and Mahmassani, 2016). 

Vehicles that function with both of these aspects are called automated and connected 

vehicles (CAVs). Vehicles that do not include any of these two functions are referred to as 

Manually-Driven Vehicle (MDV) (Li et al., 2015; Patel et al., 2017). CAV technology is expected 

to maximize the capability of vehicles to safely operate in all traffic conditions, roadway geometry, 

and weather conditions (UK Department for Transport, 2016). In addition, CAV technology is 

speculated to improve the efficiency and mobility of the connected vehicles to a greater extent 

since these vehicles can fully operate without drivers, as well as improve traffic safety and increase 

capacity of highways (Fernandes and Nunes, 2010; Milanes et al., 2011; Gong et al., 2016; Li et 

al., 2016; Talebpour and Mahmassani, 2016; Zhang et al., 2016; Rios-Torres and Malikopoulos, 

2017). An example of CAV technology is cooperative adaptive cruise control (CACC), which is 

adaptive cruise control (ACC) equipped with V2X communication (Zhao and Sun, 2013; Gong et 

al., 2016; Patel et al., 2017; Ramezani et al., 2017). 

 Various levels of mixture between AVs and MDVs in traffic streams are expected to yield 

varying performance under different traffic conditions (Michael et al., 1998; Ioannou and 

Stefanovic, 2005; Tientrakool et al., 2011; Knorr and Schreckenberg, 2012; Bierstedt, 2014; 

Bekiaris-Liberis et al., 2016; Levin and Boyles, 2016; Shi and Prevedouros, 2016; Talebpour and 

Mahmassani, 2016; UK Department for Transport, 2016; Wang et al., 2016; Chen et al., 2017; 

Fountoulakis et al., 2017; Ghiasi et al., 2017; Ramezani et al., 2017; Shi and Prevedouros, 2017).  

In addition, AVs are expected to have different car-following characteristics from MDVs. Various 

combinations of different types of leading and following vehicles could produce different car-

following and platooning characteristics that affect highway capacity (Fernandes and Nunes, 2010; 

Knorr and Schreckenberg, 2012; Zhao and Sun, 2013; Tang et al., 2014; Li et al., 2016; Wang et 

al., 2016; Chen et al., 2017; Fountoulakis et al., 2017; Ghiasi et al., 2017; Ramezani et al., 2017).  

Lane-changing maneuvers also play an important role in highway capacity. Lane-changing 
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behavior and frequency were found to contribute to capacity drop, traffic congestion, and collisions 

between vehicles (Lv et al., 2013; Xie et al., 2014; Talebpour et al., 2015; You et al., 2015). Lane-

changing characteristics in mixed-traffic streams could lead to complex scenarios that produce 

different levels of impact on the highway capacity due to complex interactions between different 

types of vehicles.  AVs are expected to operate with shorter headways than MDVs and, therefore, 

increase highway capacity (Bose and Ioannou, 2003; Fernandes and Nunes, 2010; Zhao and Sun, 

2013; Levin and Boyles, 2016; Shi and Prevedouros, 2016; Ramezani et al., 2017; Rios-Torres 

and Malikopoulos, 2017; Shi and Prevedouros, 2017). However, recent studies rebutted that higher 

CAV penetration rates and platooning intensities do not necessarily lead to greater mixed traffic 

capacity (Chen et al., 2017; Ghiasi et al., 2017).  Consequently, further studies are required to 

address the effects of these four types of vehicles in mixed traffic streams at various penetration 

rates under different traffic flow conditions, considering both car-following and lane-changing 

characteristics.  

 Previous studies predicted that the freeway capacity could be increased by 200 percent as 

traffic shifted from 100-percent MDVs to 100-percent CAVs (Shi and Prevedouros, 2016; Olia et 

al., 2018). However, several recent studies suggested more conservative improvements in freeway 

capacity of 32 – 149 percent when taking into account more practical parameters, such as larger 

space headways for safety and passenger comfort reasons (Devore, 2019; Fan and Liu, 2019; 

Morgan et al., 2019). A recent study suggested that the increase in capacity could be translated 

into shorter space headways, which trades off safety and stress of the passengers for the efficiency 

of the roadway facilities (Morgan et al., 2019). 

 Although the possible impacts of CAVs on the driving environment have been investigated 

by several researchers, most of the models did not distinguish between CVs and AVs in the traffic 

stream (Talebpour et al., 2016). Furthermore, previous studies focused on automation of the 

longitudinal driving task; and only a few studies took into account the effects of automated lateral 

vehicular interactions, such as lane changing and transient maneuvers on human behavior 

(Hoogendoorn, 2014). In addition, no previous works were found to incorporate both longitudinal 

and lateral movements of multiple vehicle types simultaneously in a mixed-traffic model (Lv et 

al., 2013; Wang et al., 2015). Also, as suggested by Ghiasi et al. (2017), most of the studies in 

capacity analysis were conducted based on assumed deterministic time headways; however, time 
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headways between consecutive vehicles are greatly stochastic in reality. Finally, although various 

control lane-changing algorithms were proposed for AVs (Schubert et al., 2010; Xie et al., 2014; 

Talebpour et al., 2015; Wang et al., 2015; You et al., 2015; Wang et al., 2016; Letter and 

Elefteriadou, 2017), complex interactions between different vehicle types when performing lane-

changing maneuvers have not been investigated.   

1.2 Dissertation Objectives 

 This study aims to develop a realistic simulation model of mixed traffic flow of CAVs and 

MDVs at various penetration rates on freeways by incorporating both longitudinal and lateral 

vehicular interactions altogether to investigate the sensitivity in highway capacity. This study also 

attempts to quantify a relationship between the penetration rates of various types of vehicles in 

mixed traffic and the corresponding capacity, based on the simulation results. In addition, a 

prototype of a microscopic traffic simulation platform for freeway traffic scenarios via JAVA is 

also developed. 
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CHAPTER 2 LITERATURE REVIEW 

 

 The literature review was conducted by compiling the related previous studies to 

summarize the findings and identify the shortcomings that could be addressed in this work. The 

explored recent studies were classified into three categories: traffic simulation and modeling, car-

following models, and lane-changing models.  

2.1 Traffic Simulation and Modeling 

2.1.1 Modeling and Simulation of Mixed Traffic 

 Michael et al. (1998) presented a methodology for quantifying per-lane capacity of an 

Automated Highway System (AHS), in which both the vehicles and the roadside infrastructure 

operate with automation, as a function of vehicle capabilities and control system information 

structure. AHS was assumed to be used by fully AVs only. A single-lane highway segment without 

entrances and exits was adopted in this study. The authors also assumed that the capacity was 

constrained by the minimum longitudinal spacing between AVs necessary for safe operation. Two 

safety criteria were assumed: 1) the following vehicle should be able to stop without colliding with 

the leading vehicle if maximum braking was applied until it comes to a stop and 2) the relative 

velocity at initial impact of collision should be small if the leading vehicle applies maximum 

braking and the following vehicle collides with it. Three vehicle classes were defined based on the 

level of cooperation for individual vehicles: 1) automated, 2) low cooperation, and 3) high 

cooperation. A state vector with dynamics was used to capture the car-following characteristics. 

The longitudinal spacing, which is a function of the vehicle braking capability, operating speed, 

and control loop delays, was applied to determine the capacity for a given mix of vehicle classes. 

The effectiveness of four distinct AHS designs was analyzed in terms of their corresponding 

maximum achievable per-lane capacity. The sensitivity analysis of the capacity was performed 

with regard to the degree of inter-vehicle cooperation, speed limits, vehicle mix (passenger cars, 

buses, and trucks), platoon length, lane utilization policies, vehicle braking capability, and 

dynamic safe-spacing adjustment.  The results showed that the highway capacity increases as the 

level of inter-vehicle cooperation increases or as the platoon length increases. Also, capacity peaks 

and then drops as highway speed increases. In addition, capacity drops as the vehicle mix loses its 
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homogeneity or as intra-platoon spacing increases. Finally, the online estimation of the vehicle 

braking capabilities for adjusting vehicle spacing was found to increase capacity. 

 Bose and Ioannou (2003) performed macroscopic analysis of mixed traffic flow to examine 

the resultant fundamental flow–density diagrams and shockwaves via simulation. They assumed 

that semi-automated vehicles have shorter time headways than the average time headway of 

conventional vehicles. A linear follow-the-leader human driver model was adopted to model the 

random characteristics of manually-driven vehicles in a single lane, whereas the responses of semi-

automated vehicles were modeled in deterministic fashion due to the use of computerized 

longitudinal controllers. The authors found that the flow rate increased with the presence of semi-

automated vehicles in the traffic stream. In addition, shockwaves were found to be dissipated faster 

in mixed traffic than in conventional traffic. The authors concluded that semi-automated vehicles 

can increase the traffic flow rate and traffic density. 

 Ioannou and Stefanovic (2005) evaluated the effect of ACC to examine microscopic lane 

changing characteristics and the sensitivity of benefits induced by the ACC technology. Simulation 

and experimental approaches were applied to perform the evaluation, based on variables such as 

ACC vehicles penetration rate and level of traffic disturbances. The results disproved the claim 

that large gap between the ACC vehicle and the leading vehicle created by high-acceleration 

maneuver generates greater level of disturbances. The authors concluded that the smooth response 

of the ACC vehicle technology not only has a positive effect on the environment, in terms of fuel 

consumption and emissions, but the disturbances in traffic flow due to high-acceleration 

maneuvers, lane cut-ins, and lane exiting are also alleviated. These benefits vary with the levels of 

the disturbance in a traffic stream, the position of the ACC vehicle in the platoon, and the market 

penetration of ACC vehicles. 

 Tientrakool et al. (2011) used an analytical approach to explore whether V2V applications 

and sensors for collision avoidance increase highway capacity. Their objective was to compare 

capacity for the cases when vehicles are equipped with sensors and when vehicles are equipped 

with both sensors and C2V communication. The results indicated that both V2V communication 

and sensor technologies can increase highway capacity. The authors concluded that capacity 

increases to a greater degree as the proportion of vehicles equipped with both sensors and V2V 
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communication increases, whereas the capacity improves linearly as the proportion of vehicles 

equipped with only sensors increases. 

 Zhao and Sun (2013) proposed a simulation framework for modeling vehicle platooning 

and car-following characteristics of a mixed traffic composed of: MDVs, single ACC vehicles, 

and CACC vehicles or CACC platooning. The aim of this study was to establish a procedure to 

model a CACC platoon by implementing microscopic platooning maneuvers such as joining, 

splitting, forming, adjusting, and dismissing maneuvers in VISSIM, which is a standard 

microscopic traffic simulation platform. The authors assumed that ACC technology produces a 

more favorable time headway, while CACC technology decreases the perception-reaction time. 

Wiedemann’s driver behavior model was assumed for MDVs. Also, it was assumed that the leader 

in a CACC platoon commands action sequences that should be simultaneously followed by the 

following vehicles in the platoon. The algorithm was set such that the leader CACC vehicle in 

traffic is responsible for forming a platoon and transferring information to the platoon members. 

Also, a CACC requests to join a platoon by notifying the platoon leader via the nearest member. 

The leader then responds to the request, recalculates the parameters, and informs the readjusted 

operation sequences to the platoon members. When a CACC vehicle opts to split from a platoon, 

it requests to cancel the communication and return to a free-control mode. However, the simulation 

was done based on an assumption that vehicles, including CACC, do not perform lateral 

movements in the 2-lane freeway scenario.  The microscopic characteristics of the mixed traffic 

was implemented in VISSIM as a C++ DLL (Dynamic Link Library) plug-in, which works as an 

External Driver Model (EDM) and interfaces with the VISSIM external driver during the 

simulation, as illustrated in Figure 2-1. The EDM decides the acceleration/deceleration rates, lane 

changing maneuvers, and trajectories of automated vehicles based on the x-y axis of the vehicles. 

The results illustrated that the lane capacity substantially increased as the market penetration rate 

of CACC vehicles increased. However, the platoon size was found to create little impact on the 

highway capacity. Automated vehicles were found to require special infrastructure and dedicated 

lanes since the capacity of a highway could be substantially increased only when the market 

penetration rates of these types of vehicles is sufficiently high in a traffic stream.  



8 
 

 

Figure 2-1 The interchanges between DriverModel and VISSIM (Zhao and Sun, 2013) 

 Bierstedt (2014) investigated the potential effects of AVs on travel demand, highway 

capacity, and congestion over time. The use of exclusive freeway lanes was speculated by the 

authors to be implemented in the introductory stage (between 2025 and 2030); followed by the use 

of mixed freeway lanes and AV-dominated arterials, during 2030-2035 and 2035-2040, 

respectively. The concept of multimodal streets and intersections was anticipated by the authors 

by 2040. VISSIM was adopted as a simulation tool to analyze the potential changes in vehicle 

miles of travel (VMT) and highway capacity. The analysis showed that the roadway capacity 

substantially increased only on freeways when the fleet mix is at least 75 percent automated. The 

authors concluded that AVs would either have no impact or degrade highway capacity during the 

introductory stage since vehicle densities and flow could be reduced as a result of the conservative 

programming of vehicle speeds and headways to prioritize safety. On the other hand, traffic 

operational quality could be improved when AVs reach almost full penetration of the fleet and 

when V2V communication technology is fully developed to negotiate merging and intersection 

right-of-way. In addition, the VMT is expected to increase as the market penetration of AVs grows. 
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 Hoogendoorn et al. (2014) summarized existing studies on AVs to review the potential 

influences of automation on traffic flow efficiency and behavior of the drivers and address gaps 

for future research. Traffic flow efficiency was defined in terms of capacity, capacity drop, and 

traffic stability. This literature review found that recent studies mainly focused on the longitudinal 

control; without any considerations to lane changing. Recent studies did not consider behavioral 

adaptations of the MDVs when interacting with AVs. In terms of driver behavior, it was found that 

the recent simulation studies predominantly considered the direct adaptation effects, which are the 

effects in driving behavior caused by the functional specification of the automated vehicles 

themselves, by assuming smaller headways for AVs than MDVs.  It was also found that automation 

may affect driver behavior by increasing the reaction time due to a reduction in situation awareness 

and attention.  

 Levin and Boyles (2016) developed a multiclass cell transmission model (CTM) that 

allows variations in highway capacity and backward shockwave speed in response to mixed traffic 

scenarios of MDVs and AVs. The objective of this study was to develop a dynamic traffic 

assignment (DTA) to minimize delays and travel time for the mixed traffic case. A constant 

acceleration model was adopted in this study, based on an analytical approach, to predict highway 

capacity and wave speed as a function of the proportion of each vehicle class in traffic. A collision 

avoidance car-following model with various reaction times was developed to predict highway 

capacity and backward shockwave speed for multiclass scenarios. A single intersection and a 

traffic network in the downtown Austin City, Texas were used as a case study.  Two control 

algorithms were applied to implement the reservation-based controls: 1) movements across the 

intersection for MDVs require available capacity for all possible turning movements since the 

communications between vehicles and the intersection controller are not available and 2) space for 

all possible turning movements must be assured when a space reservation for AVs is accepted.  

The empirical results indicated that intersection controls were a major bottleneck in the model. 

The results from the case studies suggested that the use of reservation-based controls decreased 

the intersection delay linearly with the increase in proportion of AVs; however, the reservation-

based controls did not overcome the use of signal control optimization until AV penetration 

reached 80 percent or greater.   
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 Talebpour and Mahmassani (2016) proposed a framework that employs different models 

to simulate mixed traffic streams to examine the effects of CAVs in the future driving environment. 

Three types of vehicles were distinguished: MDVs, CVs, and AVs. Both analytical and simulation-

based analyses of the string stability of mixed traffic streams were performed. The results showed 

that oscillation and collision thresholds increased when the platoon size decreased, or when the 

market penetration rate increased. In addition, the authors found that the throughput increased as 

market penetration rates of AVs and CVs increased.  

 Large scale impacts of CAVs on traffic flow were investigated by the UK Department for 

Transport (2016) to assess the expected average delay and travel time of the roadway network 

under various levels of mixed traffic of CAVs and MDVs using VISSIM. The study applied normal 

car-following behavior for the case when a CAV follows an MDV, whereas a shorter gap was 

modeled for the case when a CAV follows another CAV. Two traffic settings were adopted for the 

simulation models: urban road network and strategic road network (SRN).  The results indicated 

that average delay and travel time decreased as the CAV penetration rate increased from the base 

condition to the upper bound condition. The author concluded that high penetration of CAVs, at 

least between 50 percent – 75 percent, is required to achieve significant improvement in these 

performance measures. 

 Shi and Prevedouros (2016) presented a macroscopic methodology for estimating 

performance measures for freeways under two types of mixed traffic scenarios: 1) mixed traffic of 

AVs and MDVs and 2) mixed traffic of CAVs and MDVs, at various market penetration rates. The 

aim was to propose an analytical assessment for the potential capacity enhancement and LOS 

improvement based on the Highway Capacity Manual (HCM 2010) methodologies for basic 

freeway and weaving segments. The study found that the capacity increased by 200 percent as the 

traffic shifted from 100-percent MDV to 100-percent CAV. The authors concluded that driverless 

cars would provide low or no impacts on LOS under low density conditions, whereas they might 

significantly improve LOS under high density conditions. However, market penetration rates of 

CAV below 2 percent are unlikely to improve performance measures. 

 Shi and Prevedouros (2017) investigated traffic operations at a single-lane roundabout 

considering MDVs and AVs considering the HCM 2010 analytical roundabout method. AVs were 

expected to operate with shorter headways than MDVs at both roundabout entries and within 
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roundabouts. The adjusted critical and follow-up headways were estimated as the weighted 

average between the expected headway of MDVs and expected headway of the AVs, based on the 

proportion of each type of vehicle in the traffic stream. The authors concluded that the presence of 

AVs might increase capacity of single-lane roundabouts due to the expected improvements in 

driver familiarity and aggressiveness. 

 Fountoulakis et al. (2017) developed a microscopic simulation-based methodology for 

estimating performance measures in mixed traffic scenarios of CVs and MDVs, in which only 

speed measures stemming from CVs and a limited number of flow measures were employed. The 

scenarios of various penetration rates of CVs in mixed traffic streams were simulated under both 

congested and free-flow conditions on a highway stretch that contained a number of on-ramps and 

off-ramps via AIMSUN. A Kalman filter was applied to estimate the traffic state of the network. 

Two cases of CV characteristics were simulated: (1) car-following characteristics of CV and MDV 

are identical and (2) CV has different car-following characteristics from MDV due to ACC. The 

authors concluded that the ramp flow estimation is more sensitive to the choice of the filter 

parameters, whereas the density estimation is relatively less sensitive. 

 Ramezani et al. (2017) investigated traffic flow characteristics and proposed analytical 

models of mixed AV and MDV traffic on arterials in urban transportation networks. The authors 

pointed out that the differences between longitudinal driving of AVs and MDVs, along with the 

complexity of car-following dynamics within various traffic compositions of these two types of 

vehicles, contribute to the complex resultant performance measures. Four possible headways 

between two successive vehicles were assumed in this study: MDV-MDV, MDV-AV, AV-MDV, 

and AV-AV. These four possible headways were used as inputs to estimate the theoretical expected 

headway of the mixed traffic stream via theoretical and analytical approaches, based on a binomial 

distribution. Microsimulation data were used to validate the resultant headways. Four scenarios 

were adopted to analyze the performance measures at a signalized two-lane arterial: 1) mixed 

lanes, (2) one dedicated lane for each of AVs and MDVs, (3) one mixed lane and one AV lane, 

and (4) one mixed lane and one MDV lane. The authors suggested that the expected headway of a 

mixed platoon depends on the relative positions of AV in the platoon. The study speculated that 

the smallest headway is induced by AV-AV due to CACC technology. The results indicated that 
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the delays for scenario 2 and scenario 3 are similar at 0 percent AV penetration rate. In addition, 

delays for scenario 2 and scenario 4 are similar at 100 percent AV penetration rate. 

 Ghiasi et al. (2017) developed an analytical model to quantify highway capacity for mixed 

traffic of MDVs and CAVs using a Markov chain to represent the spatial distribution of 

heterogeneous and stochastic headways. An analytical stochastic formulation for mixed traffic 

highway capacity was proposed as a function of three critical factors: CAV penetration rate, CAV 

platooning intensity, and mixed traffic headway settings. The authors pointed out that most of the 

studies of capacity analysis were conducted based on assumed deterministic time headways in a 

specific technology scenario; however, time headways between consecutive vehicles are greatly 

stochastic in reality. This finding cautioned that CAV is not a sole factor to guarantee the increase 

in highway capacity since it also heavily depends on the assumed headways. Furthermore, the 

authors also suggested that apart from the market penetration rates, another important factor is the 

CAV platooning intensities. The impact of different CAV technology scenarios on mixed traffic 

capacity was also investigated in this analytical model. This model was developed on a one-lane 

highway segment, without considering lateral movements. The authors concluded that the 

proposed numerical analysis shed some lights on how the key parameters affect the optimal CAV 

lane solution and the corresponding optimal capacity. 

 Chen et al. (2017) proposed an analytical approach to investigate the operational capacity 

(defined as the maximum sustainable flow) in mixed traffic of AVs and MDVs, under the assumed 

equilibrium state of traffic. The authors pointed out that the formulation of lane capacity was overly 

simplified in recent studies since the interaction between platoons and the distribution of AVs 

across different lanes were not considered. As a result, the proposed capacity formulations 

considered three factors: (1) AV penetration rate, (2) microscopic and mesoscopic characteristics 

of AVs and MDVs, such as platoon size and spacing characteristics, and (3) lane policies to 

accommodate AVs, such as exclusive lanes for AVs or MDVs and mixed-use lanes. Four different 

critical spacing levels, based on the vehicle pairing, were identified: AV-AV, AV-MDV, MDV-

MDV, and MDV- MDV. The authors concluded that a strict lane policy to segregate AVs and 

MDVs can lead to lower capacity, while the mixed-use lane policies offer higher capacities. It was 

also found that feasible domains of AV distributions shrink as demand increases and converge to 



13 
 

a unique solution that is controlled by the AV penetration rate and efficiency gain via AV 

platooning. 

 Olia et al. (2018) conducted a study to predict capacity of the mixed traffic between various 

types of AVs and MDVs. This research applied an analytical approach to quantify and evaluate 

the impacts of AVs on the capacities of highway systems based on the microscopic traffic 

simulation point of view. The results showed that an increase in traffic capacity of 200 percent, or 

a maximum lane capacity of 6,450 veh/h/ln, could be achieved as the traffic shifted from 100-

percent MDVs to 100-percent CAVs. 

 Devore (2019) created VISSIM models to investigate the capacity of a 4.5-mile freeway 

segment on I-35W in Minnesota under various CAV penetration rates for a dedicated CAV-only 

lane. The study assumed a decrease in distance and headway between vehicles, less variability and 

oscillation in speed, communication between vehicles, and smaller reaction time for CAVs. The 

author found that CAVs would provide significantly greater benefits in a separated lane than in 

mixed traffic situations due to the restriction in interactions, such as lane change, between CAVs 

and MDVs.  The results showed that the capacity of the dedicated CAV-only lane was expected to 

be increased from 2,000 – 2,200 veh/h/ln to 3,000 – 3,300 veh/h/ln, or increased by 50 percent, as 

the CAV penetration rate in the lane shifted from 0 percent to 100 percent.  

 Fan and Liu (2019) investigated the impact of CAVs on freeway capacity by developing 

guidelines and providing recommendations on estimating the freeway capacity in mixed traffic of 

CAVs, AVs, and human-driven vehicles. VISSIM was adopted as a simulation tool to simulate 

four different freeway segments adopted from Caltrans Performance Measurement System 

(PeMS). The study employed 20-percent increment rate of CAVs, AVs, and MDVs to simulate 

mixed traffic scenarios on each selected freeway segment.  The results showed that, as the CAV 

penetration rate shifted from 0 percent to 100 percent in the mixed traffic of CAVs and MDVs, the 

capacity of freeway increased by 70 – 149 percent. 

 Morgan et al. (2019) conducted a study using microscopic traffic simulation in realistic 

networks to predict the capacities of mixed traffic of CAVs and MDVs on freeways for 14 DOTs 

to use in planning decisions. Mixed traffic simulation models were performed by adopting the 

FHWA algorithm to replicate the behavior of CAVs on basic, merge, and weaving freeway 

segments. The study concluded that CAVs have potential to increase capacity and reduce 
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bottlenecks; however, the anticipated improvements are not as aggressive as suggested in the 

previous studies for two reasons. Firstly, most of the recent CAV studies were tested in a controlled 

and isolated environment. These models were developed based on single-lane facilities and not at 

the bottleneck locations; therefore, the results are less important and relevant for agencies. 

Secondly, the headways applied in the previous studies were too close for passenger comfort and 

safety. The study pointed out that the current average headway between vehicles is 46 m when 

traveling at 112 km/h; however, to increase the capacity by 200 percent (three times), the space 

headway must be only 15 m, which could increase the stress level of the passengers. Moreover, 

the tire traction, roadway conditions, and braking system of the vehicles may be additional 

obstacles for CAVs to achieve the speculated capacities in recent studies. The simulation results 

indicated that capacity increased by 32 – 82 percent as the traffic composition shifted from 100-

percent MDVs to 100-percent CAVs, with the maximum capacity available of 3,200 veh/h/ln. In 

other words, the study suggested that CAVs would increase capacity due to the connectivity 

between vehicles and the capabilities to discard distractions; however, the degree of improvement 

tended to be at a more conservative rate. In addition, the authors suggested that bottlenecks could 

be significantly improved and congestion could be mitigated via the application of CAVs in traffic. 

2.1.2 Modeling and Simulation of CAV Traffic  

 Naumann et al. (1998) developed a traffic management strategy for AVs at intersections 

by implementing coordination between vehicles to increase safety and mitigate congestion. The 

idea of the strategy was to enable coordination for AVs traversing conflict points at an intersection 

via wireless connections to avoid collisions and improve traffic flow. The strategy consisted of 

three components: the vehicle model, the collision avoidance algorithm, and the fairness-by-

priority strategy. The vehicle model dealt with both continuous and discrete systems. The 

continuous system accounted for the lateral and longitudinal controls of the vehicular dynamics; 

while the discrete system took into account the communications, along with information-sharing 

between vehicles to assign appropriate velocities and routes for conflicting vehicles at the 

intersection. When an AV entered a sphere of influence, its discrete system received the geometry 

information of the intersection and the management strategy from a traffic signal control. Next, its 

surrounding vehicles are detected via sensors and wireless communication to recognize its inertial 

position in the sphere. Permission to traverse the intersection was individually assigned to each 
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vehicle, simultaneously with the calculation of its reference velocity. The controller of the 

continuous system then collected velocity and position values, which were feedbacked to the 

strategy when assigning permissions for the next vehicles to enter the intersection. The collision 

avoidance algorithm worked by permitting only one vehicle to occupy a region of a radius (r) 

around each conflict point at a time to avoid potential collisions. The system worked by having 

the whole set of data transferable among vehicles in the sphere of influence.   

 Fernandes and Nunes (2010) developed an approach to increase the roadway capacity, as 

well as to eliminate the stop-and-go characteristics in urban traffic, by reducing the longitudinal 

spacing between CAVs in a platoon. The constant-spacing platooning method with inter-vehicle 

communications (IVC) was analyzed and simulated. Simulation was performed via SUMO 

(Simulation for Urban MObility) software (Behrisch et al., 2011) to test this concept. The platoon 

leaders were assigned to be controlled by an external application, and the simulation platform was 

performed at the sub-second level. The study analyzed only the longitudinal control of vehicles, 

without any lateral movements considered. In addition, the study assumed flawless 

communications between vehicles. The study also assumed that no packet collisions occurred 

within a platoon. 

 Milanes et al. (2011) developed an automated on-ramp merging system to automatically 

merge vehicles from a minor road to a major road under congested conditions. The research 

objectives were: 1) to minimize congestion at the merge zone by automatically guiding the 

merging vehicle to smoothly enter the major road and 2) to maintain the speed of vehicles on the 

main road by minimizing effects of the conflicts at the merge zone. Wireless V2I communication 

was proposed to exchange data between vehicles. A decision algorithm was developed to 

determine a target gap for each vehicle to perform a smooth transition between the position of the 

merging vehicle on the on-ramp and the final merging point. A fuzzy longitudinal controller was 

developed to automatically command the longitudinal control of vehicles via throttle and brake 

pedals to guide the merging vehicle to merge into the main road as precisely as possible to the 

suggested gap determined by the decision algorithm. The results showed that the system was 

capable of guiding the vehicle to smoothly merge into the main road using an appropriate gap 

under congested conditions. The results also indicated that the speeds of the vehicles involved in 

the merging maneuver were automatically adjusted prior to the occurrence of the maneuver. 
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 Li et al. (2013) used VISSIM’s EDM to model the automated control of urban traffic 

(ACUTA), which is a reservation-based intersection control system for automated intersections. 

The proposed system applies a centralized control strategy, using an intersection manager (IM) for 

communications between vehicles, for organizing fully AVs at an intersection on the first-come-

first-serve (FIFO) basis. ACUTA was modeled at a four-leg intersection with three lanes per 

direction. Each lane was built as a separate link to simplify the simulation model to eliminate the 

lane changes since it was assumed that vehicles can turn from any lane. Capacity was measured as 

the maximum throughput among all demand conditions, while the volume was directly obtained 

from VISSIM’s output for that specific demand condition.  The authors found that the results 

obtained from the use of ACUTA showed significantly reduced delays, higher capacity, and lower 

volume-to-capacity (V/C) ratios under various demand levels at the intersection; compared to the 

results obtained from the normal optimized signalized control.  

 Zhang et al. (2016) developed a decentralized optimal control framework to yield real-time 

optimal acceleration and deceleration rates for CAVs traversing urban intersections to minimize 

fuel consumption. Hamiltonian analysis was applied to formulate the analytical solution and online 

implementation of the decentralized problem. The proposed solution was validated in VISSIM, 

considering two adjacent intersections located in downtown Boston. The FIFO queuing system 

was adopted to govern the service for CAVs at each intersection. When a vehicle entered a control 

zone, a unique identity (i, j) is assigned to the vehicle by the coordinator. These two intersections 

in the model were considered to be interdependent since potential congestion on the connecting 

roadway can affect the overall traffic flow. The algorithm was found to enable vehicles to traverse 

the intersections without the use of signal control, without creating impacts of congestion on the 

connecting roadways, and without collisions between vehicles, as restricted by the strict safety 

constraint proposed.  It was concluded that the coordination of CAVs can significantly reduce both 

average fuel consumption and travel time for CAVs crossing intersections in urban setting.  

 Rios-Torres and Malikopoulos (2017) investigated the optimal vehicle coordination for 

CAVs at a merging roadway, in terms of fuel consumption under a constraint of collision 

avoidance, and derived a solution to optimize the traffic flow by eliminating the stop-and-go 

characteristics. In this study, an analytical online closed-form solution using Hamiltonian analysis 

and an optimization framework for the online coordination of vehicles at a merging zone were 
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proposed in a centralized fashion. Simulation was employed to validate the effectiveness of the 

proposed solution. The authors developed an algorithm to formulate the queuing characteristics of 

the CAVs at the merging zone by assuming a dynamic FIFO queuing manner. The results showed 

that the coordination of vehicles at the merging zone could substantially reduce the travel time and 

fuel consumption of vehicles.  

2.1.3 Modeling and Simulation of AV Traffic 

 Fiosins et al. (2011) used multi-agent simulation in AIMSUN to model AVs in urban 

traffic, based on assumptions that these vehicles attempt to reach their destinations as quickly as 

possible and act individually with regard to their own characteristics. Two stages of the planning 

process for an automated vehicle agent were presented: strategic planning for selecting the optimal 

route (SP) and tactical planning for optimizing travel time when traversing a street (TP). The study 

analyzed the vehicle routing as a stochastic shortest path problem with imperfect knowledge about 

the network conditions, while the tactical planning was performed as a function of collaborative 

communications between adjacent vehicles. Planning algorithms for both stages were presented, 

and interactions between these stages were illustrated in this study. For the strategic planning 

process, vehicles were assigned to plan their routes independently, based on the historical and real-

time information about travel time of the roadway link. For the tactical planning process, AVs 

were assigned to plan their cooperative decisions with other adjacent vehicles, on which speed 

change and lane change were adopted as their functions, to minimize travel time of the whole 

group. The results showed that application of integrated strategic and tactical planning offered the 

greatest effectiveness since the average travel time was reduced by 10 percent.  

 Asplund et al. (2012) illustrated how a vehicular coordination problem for AV traffic can 

be formalized via a constraint specification language called the Satisfiability Modulo Theories 

(SMT) solver. The authors found that setting up a central controller at all intersections would not 

be a cost-effective alternative; therefore, a fully distributed approach was adopted. An intersection 

collision avoidance (ICA) scenario, which is a case study for a distributed coordination problem, 

was modeled to evaluate the feasibility of the proposed approach. The system was modeled that 

each vehicle has its own control and dynamics automation that works interdependently with the 

network, coordination protocol, surrounding vehicles, and environment. A basic four-leg 

intersection scenario was modeled and validated to demonstrate the applicability of this approach. 
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The results showed that the proposed model was found to capture continuous time and space, along 

with an unbounded number of vehicles and messages. The authors concluded that the proposed 

approach to perform distributed coordination was an appropriate approach to formalize the system 

safety at intersections.  

2.1.4 Modeling and Simulation of CV Traffic 

 Dimitrakopoulos (2011) proposed the concept of an internet of vehicles (IoV) as the IP-

based connections between a vehicle and other vehicles in its vicinity, and between vehicles and 

objects of the transportation infrastructure, to exchange information for enhancing safety and 

efficiency of traffic; yet promoting green transportation. Four basic components of the IoV 

solution are: the autonomic management algorithms, the internet of vehicles as enablers of future 

green ITS, the IoV architecture fundamental functional blocks, and the scenario-driven approach. 

In order to achieve this concept, the autonomic management algorithms for vehicles needs to be 

established to provide a modeling and evaluation chain to model the status of vehicles and 

environment, which shall be interpreted and distributed in real-time. In addition, an integration 

between vehicles and the internet needs to be pursued via a properly designed and developed 

system to establish an appropriate platform for the IoV. Finally, the author suggested that the 

concept of IoV could resolve several issues of transportation; and lead to safer, more efficient, and 

eco-friendly driving environment. 

 Wang et al. (2014) conducted research to propose a radio-frequency-identification-based 

(RFID) vehicle positioning approach to facilitate the applications of CVs. The system was 

designed by providing a series of RFID tags on the road surface, while each vehicle is equipped 

with an on-board RFID antenna and RFID reader, connected by a cable. RFID tags were designed 

to contain position information, such as distance to a reference point, lane number, and direction 

of the roadway. The system works when a vehicle passes above an RFID tag embedded on the 

road surface, the RFID reader and antenna carried by a vehicle activates the RFID tag and reads 

the accurate position information from it. However, at locations without RFID coverage, the 

vehicle position is estimated from the most recent tag location using a kinematics integration 

algorithm until the updates from the next RFID tag are available. A calibration algorithm was 

proposed to mitigate positioning errors due to the speed changing of vehicles when traversing 

roadway segments without RFID coverage. It was found that RFID-based positioning offered high 
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accuracy for vehicular tracking. The authors concluded that the use of RFID positioning is a 

promising approach for facilitating the applications of CVs due to its low cost and reasonable 

accuracy. 

2.2 Car-Following Models 

2.2.1 Car-Following Models for MDVs 

 A car-following model is a mathematical model developed to describe the longitudinal 

interaction between vehicles in the same lane in a traffic stream. Car-following is an essential 

component of microscopic simulation modeling. In recent years, the importance of the car-

following model has increased since it formed a basis for the development of AV technologies. 

According to Brackstone and McDonald (1999) car-following models were categorized into five 

types: Gazis-Herman-Rothery (GHR), Collision Avoidance models (CA), linear (Helly) models, 

psychophysical or Action Point models (AP), and fuzzy logic-based models. 

 1) The GHR model, which was initially developed in late 1950s, applies a stimulus-

response type function that a driver's acceleration was proportional to the relative speed between 

vehicles and deviation from a following distance, as shown in Equation (2-1). Due to the miss-

match between the macroscopic relationship obtained from the microscopic equation, the model 

has been calibrated and validated to yield the more realistic results by defining the best 

combination of m and l in the equation. However, the authors commented that the exact values of 

m and l might not be obtainable since car-following characteristics are likely to vary with traffic 

flow conditions and the empirical studies often took place at relatively lower speeds than the actual 

traffic. 

𝑎𝑛(𝑡) = 𝑐𝑣𝑛
𝑚(𝑡)

∆𝑣(𝑡−𝑇)

∆𝑥𝑙(𝑡−𝑇)
  (2-1) 

 A sub-category of the stimulus-response models is the Optimal Velocity Model (OVM) 

resolves limitations of these models, based on the perspective that each vehicle has an optimal 

velocity as a function of the space headway, V(𝑠). The form of the OVM is presented by Bando et 

al., as presented by Equations (2-2). 

𝑑𝑣 𝑛+1(𝑡)/𝑑𝑡 = κ [V(𝑠)− 𝑣 𝑛+1(𝑡)] (2-2) 
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Where   κ = sensitivity constant        

  V(𝑠) = calibrated optimal velocity as a function of the space headway  

 The value of V(𝑠) was then calibrated using empirical data by Helbing and Tilch (1998) to 

yield the realistic acceleration and deceleration profiles of a vehicle, as displayed by Equation (2-

3). Note that all the values were calibrated in the metric system. 

V(𝑠) = 𝑉1 + 𝑉2 tanh [C1(s – LS) – C2] (2-3) 

Where   LS  = length of the vehicles (5 meters)     

  𝑉1  = 6.75 m/s        

  𝑉2  = 7.91 m/s        

  C1  = 0.13 m-1         

  C2  = 1.57 m-1 

 However, the OVM was found to yield a relatively high acceleration rate, while the 

deceleration rate produced by the model was discovered to be unrealistically low. Consequently, 

the model was once again improved and called the General Force Model (GFM) by Helbing and 

Tilch. The model was proposed by including a term on the right-hand-side of the OVM equation 

to account for the negative interaction force between the pair of vehicles. Therefore, the negative 

velocity difference (-∆𝑣) was added to Equation (2-2). In addition, the sensitivity constant (κ) was 

recalibrated and the value of 0.41 s-1 was suggested, as presented by Equation (2-4). 

𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = κ [V(𝑠)− 𝑣 𝑛+1(𝑡)] + 𝜆𝜣(−∆𝑣)(∆𝑣) (2-4) 

Where   𝜣 = Heaviside function, which can only yield the value of 0 or 1  

  κ = 0.41 m-1                                                                                                                              

 Later, researchers discovered that when the leading vehicle is moving at a much faster 

speed, the follower does not have the tendency to decelerate even if the space headway between 

the vehicles is smaller than the safe distance (Treiber et al., 1999). 

 Jiang et al. (2001) developed a car-following model that simultaneously takes the positive 

velocity difference (∆𝑣) and negative velocity difference (-∆𝑣) between the subject vehicle and its 

leader into account. The reason was that the velocity difference affects the acceleration rate of the 

follower not only when the velocity of the follower is larger than the leader, but also when the 
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velocity of the follower is smaller than the leader. Therefore, the positive ∆𝑣 factor was added to 

the equation of GFM to yield a new car-following model called Full Velocity Difference (FVD) 

Model. The main equation of the FVD model is presented by Equation (2-5), while the value of 

V(𝑠) is adopted from Equation (2-6) in the OVM model. 

𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = κ [𝑣𝑚 − 𝑣𝑛+1(𝑡)] + κ [V(𝑠)− 𝑣𝑚] + 𝜆𝜣(−∆𝑣)(∆𝑣) + 𝜆𝜣(∆𝑣)(∆𝑣) (2-5) 

Where   𝑣𝑚 = maximum longitudinal velocity allowed on the roadway (speed limit) 

  κ = 0.41 m-1         

  λ          = {
0.5, 𝑠 ≤ 𝑠𝑐

0, 𝑠 > 𝑠𝑐
        

  sc = 100 m 

V(𝑠) = 𝑉1 + 𝑉2 + tanh [C1(s – LS) – C2] (2-6) 

Where   LS  = length of the vehicles (5 meters)     

  𝑉1  = 6.75 m/s        

  𝑉2  = 7.91 m/s        

  C1  = 0.13 m-1         

  C2  = 1.57 m-1 

Accordingly, the FVD model can be rewritten using all the calibrated parameters as 

presented in Equations (2-7). The units used in this model are in metric. 

 𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = 0.41[V(𝑠)− 𝑣𝑛+1(𝑡)] + 𝜆𝜣(−∆𝑣)(∆𝑣) + 𝜆𝜣(∆𝑣)(∆𝑣)  (2-7)  

Where   λ          = {
0.5, 𝑠 ≤ 100 𝑚

0, 𝑠 > 100 𝑚
        

  V(𝑠) = 14.66 + tanh [0.13 (s – 5) – 1.57]    

 It was also suggested that the smaller sensitivity constant (κ) produces the greater value of 

delay time of motion and the smaller value of jam density. Furthermore, the authors pointed out 

that the effect of a positive ∆𝑣 on traffic dynamics is not included in the GFM model; therefore, 

the delay time of motion and jam density produced are not accurate (Jiang et al., 2001). 

 In 2019, Yu et al. recalibrated the FVD model with the NGSIM trajectory data (FHWA, 

2008) to create a more realistic model called the confined Full Velocity Difference Model (c-FVD 
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Model). The form of the original FVD model’s equation was still applied; however, the calibrated 

parameter values of the original FVD model (𝑉1, 𝑉2, C1, and C2) and the sensitivity parameter (λ) 

were revised. The parameters 𝑉1 and 𝑉2 were recalibrated as 14.300 m/s and 15.997 m/s, 

respectively; while C1 and C2 were modified as 0.066 m-1 and 1.508 m-1, respectively. Besides, the 

sensitivity constant (κ) and the sensitivity parameter (λ) were revised as 0.895 and 0.3405, 

respectively. The study found that the maximum acceleration rate in the original FVD model was 

18 m/s2, which was extremely high; therefore, the authors also bounded the acceleration rate in the 

C-FVD model to be 3.4 m/s2 for producing the milder vehicular trajectories (Yu et al., 2019; Qu 

et al., 2019).  

 2) The collision avoidance model (CA) uses the basic Newtonian equations of motion to 

identify a safe car-following distance, within which a collision would be inevitable, if the driver 

of the leading vehicle were to act unpredictably, as shown in Equation (2-8). The model, which 

was initially formulated in 1959, was further modified by Gipps in 1981 to account for mitigating 

factors such as additional safety reaction time, maximum braking rate that the driver of the 

following vehicle desires to use, and maximum braking rate of the leading vehicle that the driver 

of the following vehicle estimates (Gipps, 1981). The Gipps model has been adopted in various 

simulation platforms such as CARSIM, INTRAS, and AIMSUN. 

∆𝑥(𝑡 − 𝑇) =  𝛼𝑣𝑛−1
2 (𝑡 − 𝑇) + 𝛽𝑙𝑣𝑛

2(𝑡) + 𝛽𝑣𝑛(𝑡) + 𝑏0    (2-8) 

 3) The Linear (Helly) model is a car-following model which is similar to the GHR model, 

but it includes additional terms for the adaptation of the acceleration regarding whether the leading 

vehicle and the second vehicle in front were braking, as shown in Equation (2-9). It was noticed 

that the time delay in the relationship with the speed of the leading vehicle tends to decrease each 

time a run is made in the model. This indicates that some form of anticipation occurs in the model. 

The model also suggests that the driver considers the behavior of any two out of the three vehicles 

ahead as a justification for car-following decisions. 

𝑎𝑛(𝑡) =  𝐶1∆𝑣(𝑡 − 𝑇) + 𝐶2(∆𝑥(𝑡 − 𝑇) − 𝐷𝑛(𝑡));   𝐷𝑛(𝑡) = 𝛼 + 𝛽𝑣(𝑡 − 𝑇) + 𝛾𝑎𝑛(𝑡 − 𝑇)   (2-9) 

 4) Psychophysical or action point models (AP) are perception-based car-following models 

that were developed based on the concept that drivers would initially be able to realize they were 

approaching a leading vehicle by perceiving relative velocity through changes on the visual angle 
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subtended by the leading vehicle. Once a space-based threshold is exceeded, the driver of the 

following vehicle will decelerate until any relative velocity can be no longer perceived. If the 

threshold is not re-exceeded while the two vehicles are maintaining their speeds, the actions of the 

driver of the following vehicle will depend on whether any changes in spacing with the leading 

vehicle can be perceived. The individual properties of these two thresholds were integrated into a 

complete working simulation model by Widemann in 1986. This type of model has been adopted 

by various simulation platforms such as PARAMICS-CM and VISSIM. 

 5) Fuzzy logic-based models represent the next logical step in explaining driver behavior 

by dividing the inputs of the model into a number of overlapping fuzzy sets, each of which 

describes how adequately a variable fits the description. Once defined, it is possible to incorporate 

these fuzzy sets via logical operators (such as AND, IF, and THEN) to equivalent fuzzy output 

sets, with the actual course of action being assessed from the modal value of the output set. 

2.2.2 Car-Following Models for CAVs 

 Tang et al. (2014a) developed a new microscopic car-following model for vehicles with 

inter-vehicle communication (IVC) technology to investigate driver behavior under an accident. 

The proposed car-following model was developed by modifying the FVD model (Jiang et al., 

2001) so that drivers can adjust their acceleration rates based on the traffic in front of them. To 

illustrate, an accident in traffic can be perceived by CV drivers ahead of their sight distances and 

they can adjust their acceleration rates immediately as the information is sent. Euler forward 

difference was applied to discretize the FVD model to be a multi-regime model. The time-step of 

1 second was adopted. The simulation results showed that during an accident, the deceleration rate 

of each CV in the proposed model was greater than the deceleration rate of each vehicle in the 

FVD model under the same condition. On the other hand, after the accident was cleared and before 

the queue was dissipated, the acceleration rate of each CV in the proposed model was greater than 

the acceleration rate of each vehicle in the FVD model under the same condition. The authors 

concluded that the proposed car-following model for CV traffic can capture the effects of IVC on 

speed, acceleration, trajectory, and headway of a connected vehicle during an accident. It was also 

found that the model can overcome the shortcoming of the FVD model that collisions occur under 

an accident.  
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 Tang et al. (2014b) extended the modified FVD car-following model considering IVC 

(Tang et al. 2014a) to explore the influences of the reliability of IVC technology on the driving 

behavior of CVs, along with their corresponding fuel consumption rates and exhaust emissions.  

To take into account the effects of the failure of IVC technology on some vehicles in a traffic 

stream, a probability parameter (p) was added to the proposed model to represent the probability 

that each vehicle successfully receives the traffic information via IVC. The study assumed that any 

vehicle that fails to receive the traffic information will have a randomly produced vehicle 

trajectory. The results showed that the vehicles that were unable to receive the information 

provided by IVC might produce an abrupt deceleration when approaching an incident. It was also 

found that the vehicles which failed to be connected, had lower speeds than those that received the 

information via IVC during the dissipating process. The authors found that IVC technology 

enabled vehicles to reduce their speeds, fuel consumption rates, and tailpipe emissions during the 

braking process. On the other hand, the technology was found to enhance speeds and, thus, increase 

the corresponding fuel consumption rates and tailpipe emissions of the CVs during the acceleration 

process. 

 Lefèvre et al. (2015) developed a learning-based approach for the longitudinal control of 

AVs in the traffic stream to propose a system controller that operates vehicles in a comfortable 

and safe manner. The authors mentioned that although the current AV technology applies the 

system architecture which has been successfully used in the field of terrestrial robotics, AVs have 

an additional constraint for passenger comfort, which makes their system architecture different 

from the one for robotic applications. The authors developed a driver model designed to work in a 

machine-learning basis to imitate the driving characteristics from the drivers it learns from. The 

output of the driver model is the acceleration sequences which are as close as possible to the 

characteristics that drivers would have performed. A combination of Hidden Markov Model and 

Gaussian Mixture Regression (HMM+GMR), a non-parametric regression method, was used for 

acceleration prediction in the driver model. The proposed system works when the driver model is 

fed with real driving data in order to reproduce the driver behavior. Then the model predictive 

controller is fed with acceleration inputs from the driver model to create appropriate commands 

for the trajectory of the vehicle. The model predictive controller was designed to be bounded by 

safety constraints, such as collision avoidance. By solving the optimization constraints for the 

model predictive controller, the control inputs applied to the AVs were ensured to satisfy the safety 
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criteria. The system was validated via an experiment by implementing and testing the system in 

car-following scenarios under dangerous driving situations using artificial obstacles.  The results 

showed that the proposed system can reproduce different human driving characteristics for AVs 

under safety constraints. It was found that the driver model can learn continuously in machine-

learning manner to be evolved with the changes in driving characteristics. 

 Gong et al. (2016) developed a car-following control scheme for a platoon of CAVs on a 

straight highway segment based on constrained optimization and distributed vehicular 

coordination via an analytical approach. The authors pointed out that the conventional CACC 

technologies primarily focus on mobility and safety requirements of individual vehicles; however, 

this may have negative impacts on the platoon performance. They suggested that traffic constraints 

such as physical limitations, safety concerns, and driving comfort need to be considered to achieve 

desired platoon performance. In addition, the distributed coordination system is more favorable 

than the centralized coordination system when implementing an automated platoon control since 

the centralized system is considered infeasible based on a topological point of view.  The vehicular 

platoon was modeled as an interconnected multi-agent dynamic system subjected to acceleration, 

speed, and safety constraints. The global information structure, in which each vehicle exchanges 

information with all the other vehicles, was adopted for vehicular coordination. The car-following 

control scheme consisted of transient dynamics and asymptotic dynamics. The aim of the transient 

dynamics was to maintain a desired safe spacing between two consecutive vehicles in a platoon 

and reduce traffic flow oscillations in terms of spacing and speed changes; while the aim of the 

asymptotic dynamics was the relative distance of two consecutive vehicles should be 

asymptotically stable and converge to a constant spacing.  Car-following characteristics of vehicles 

in a platoon were modeled according to three categories of constraints: 1) control constraint, in 

which acceleration and deceleration rates of vehicles were taken into account; 2) speed constraint, 

in which longitudinal speeds of vehicles were considered; and 3) safety distance constraint, which 

was inequality based on a kinematic analysis. The efficiency of the proposed algorithms was 

validated via numerical simulation.  The results from the numerical simulation showed that the 

proposed control scheme effectively reduced the propagation of traffic oscillation in the platoon. 

The authors concluded that the proposed car-following control scheme for CAV outperforms 

CACC in a platoon. 
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 Li et al. (2016) proposed a microscopic car-following model that takes into account the 

effect of electronic throttle with opening angle to capture the characteristics of CAVs in traffic 

flow. The opening angle of the electronic throttle of the leading vehicles allows the following 

vehicle in the platoon to react accordingly to the leading vehicle by adjusting its electronic throttle 

in an automated fashion to avoid a potential collision. CAVs are equipped with electronic throttle 

control (ETC), which is a core controller of the vehicle, to command the automated functions of 

the vehicles such as cruise control, stability control, traction control, and pre-crash systems. The 

authors realized that the opening angle of the ETC affects the vehicle characteristics at a 

microscopic level. Therefore, the characteristic of the opening angle of the electronic throttle was 

integrated into the FVD model based on an assumption that the information of the electronic 

throttle dynamics is shared among vehicles in the traffic via the V2V communications. This model 

was referred to as the throttle-based FVD (T-FVD) model. The proposed model leverages the 

automated capability of the vehicles to capture the characteristics of CAVs so that information 

from the electronic throttles of all CAVs in a platoon can directly be accessed and promptly be 

adopted as input by the surrounding vehicles. The stability analysis of the proposed car-following 

model was performed based on the perturbation method to obtain the stability condition. An 

assumption was made that the initial state of the vehicular traffic flow is steady, in which all 

vehicles in the traffic stream travel at the optimal velocity under the identical space headway. To 

analyze the traffic flow characteristics of the proposed model, numerical experiments were 

performed, which showed that the proposed car-following model has a larger stable region than 

the FVD model. The theoretical analyses and numerical experiments indicated that the inclusion 

of the electronic throttle dynamics improved the smoothness and stability of the FVD model.   

Wang et al. (2016a) designed a variable speed limit (VSL) and car-following control 

system that connected a traffic controller with in-vehicle controllers via V2I communication to 

resolve stop-and-go waves in traffic. CAVs were used as main actuators for traffic control systems 

in this concept. An open-source microscopic traffic simulator named MOTUS was adopted to test 

the effectiveness of the proposed control system. In the proposed control system, the link-level 

traffic controller regulated traffic speeds which minimized stop-and-go waves via VSL gantries; 

while the acceleration/deceleration rates of the CAVs were controlled by the local in-vehicle 

controllers. The in-vehicle controllers were linked with traffic controller to command the vehicle 

propulsion and brake systems for optimizing their trajectories. These two-level controllers were 
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connected via DSRC.  The car-following algorithm used by the vehicle controller was designed 

for two modes: 1) car-following mode and 2) cruising mode. These two modes were distinguished 

by a gap between vehicles (s) and a gap threshold (sf). In the cruising mode (s>sf), the car-following 

algorithm minimized driving efficiency and comfort costs in its objective function; while safety, 

efficiency, and comfort costs were minimized in the objective function for the car-following mode 

(s<sf). The gap threshold was determined by a user-defined maximum desired time gap in the car-

following mode, the desired speed, and the minimum gap between vehicles at a standstill 

condition. The optimal acceleration rates were recalculated at every vehicle control cycle. The gap 

and speed differences with the leading vehicle were perceived by the vehicle’s on-board sensors 

only. The proposed control system was tested via simulation, and it was found that the connected 

VSL and vehicle control system improved both traffic efficiency and sustainability. 

 Wang et al. (2016b) developed controllers and implementable car-following control (CFC) 

algorithms for AVs and CAVs under a receding horizon control framework. Two CFC algorithms 

were designed separately for AVs and CAVs. An automated CFC system was developed to control 

vehicle acceleration for optimizing the vehicle’s own trajectory, whereas a cooperative CFC (C-

CFC) system was developed to coordinate accelerations of cooperative vehicles for optimizing the 

joint situation in a platoon. The decentralized algorithm was proposed for the CFC controller, 

whereas the distributed algorithm was adopted for the C-CFC controller. It was assumed that the 

lane change decisions of both the CFC and C-CFC vehicles were made by human drivers, and lane 

change maneuvers were performed by human drivers through steering wheels. A C-CFC vehicle 

predicted the behavior of its leading and following vehicles based on the information from on-

board sensors when direct neighbors are human-driven vehicles, whereas information from V2V 

communication was used when one or two of its direct neighbors are C-CFC vehicles. The 

cooperative controller was designed to compute the vehicle’s acceleration to minimize its own cost 

subjected to the situation in front, as well as the cost of its follower subjected to the situation 

behind. A simulation scenario of a two-lane freeway segment with CFC/C-CFC vehicles randomly 

distributed was created to investigate the impacts of the proposed controllers on the dynamic traffic 

flow features. The results showed that C-CFC systems induced faster stop-and-go waves 

propagating upstream due to V2V communications. The results revealed that although a 

considerable proportion of AV and CAV in traffic seemed to substantially change the flow 

characteristics, the characteristics remain qualitatively the same as the case of 100 percent HDVs 



28 
 

at penetration rates of AV and CAV less than 5 percent in traffic. The authors concluded that the 

roadside controller was necessary for resolving stop-and-go waves at low penetration rates of AVs 

and CAVs. 

2.3 Lane-Changing Models 

 Ahmed (1999) developed a microscopic model that incorporates acceleration and lane-

changing to model the gap acceptance on a freeway merge. The model was estimated using the 

empirical microscopic data collected from real traffic.  The acceleration model was designed based 

on two regimes of traffic flow: the car-following and the free-flow regimes.  The lane-changing 

decision process was developed based on a sequence of three steps: conditions for lane-changing 

decision, choice of the target lane, and gap acceptance.  According to the field data, the lead gap 

was in the range of 0.13 - 102.9 meters, whereas the lag gap ranged between 0.5 and 172.9 meters. 

 Hwang and Park (2005) designed a gap acceptance model based on the discrete choice 

theory.  The objective of the study was to determine the lag gap, which is defined as the gap 

between the subject vehicle and the vehicle behind it in the target lane, for lane changing 

maneuvers. Driver behavior data collected during actual merging situations were used to develop 

the gap acceptance model.  The research found that gap acceptance is significantly affected by 

congestion, as drivers have a tendency to accept smaller gaps to avoid delays under congested 

conditions. The results showed that the lag gap accepted for lane change during non-congested 

conditions was 32.70 meters, while the lag gap of 28.71 meters was accepted for lane change 

during congested conditions (Hwang and Park, 2005). 

 Lee (2006) developed a freeway lane-changing model to capture the gap acceptance 

behavior of drivers that merge from a ramp into a congested freeway.  The model applied the single 

critical gap function, which incorporateed explanatory variables that capture all three types of 

merging behavior: normal, forced, and cooperative lane changing.  Trajectory data collected on 

two freeway sections in California were used in this study.  The gap acceptance model was affected 

by traffic conditions such as average speed in the mainline, the interactions between the subject 

vehicle and its lead and lag vehicles, and urgency of the merge.  The results showed that the median 

lead critical spacing ranged from 1.5 to 49.2 meters. 
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 Ben-Akiva et al. (2006) conducted research to summarize several enhancements that were 

made to the generic lane changing model in order to improve its realism and identify limitations. 

The observed enhancements in lane-changing model are: 1) integration of mandatory and 

discretionary lane changes in a single framework, 2) inclusion of explicit target lane choice in the 

model, and 3) incorporation of various types of lane changing maneuvers, such as cooperative and 

forced lane changes. A mandatory lane change (MLC) occurs when a driver must change lane to 

follow a path; while a discretionary lane change (DLC) occurs when a driver changes to a lane that 

is perceived to offer better traffic conditions. These model enhancements were implemented and 

validated in MITSIMLab, a microscopic traffic simulator. The authors found that integrating MLC 

and DLC into a single utility model captured the need of drivers to be in the correct lanes, the 

relative speed advantages, and ease of driving in the current lane and in the lanes to the right and 

to the left. In addition, the model with explicit target lane choice on multi-lane roadway facilities 

was found to match the observations. Furthermore, the model that integrated cooperative and 

forced merging with gap acceptance was found to capture transitions from one type of merging to 

the other and improved fit to both microscopic and macroscopic traffic flow characteristics.  

 Schubert et al. (2010) developed an automatic system that can perceive the vehicle’s 

surrounding environment, assess the traffic situation, and recommend appropriate occasions for 

lane-changing maneuvers. The algorithm behind the proposed lane-changing control was 

presented with the image processing for lane and vehicle detection, Kalman Filtering for 

parameters estimation and tracking, and a Bayesian Network (BN) approach for automatically 

dealing with maneuvering decisions under uncertainty. The experiment of the prototypical 

automatic lane-changing maneuvers using the concept vehicle was also performed on a highway. 

The prototype vehicle equipped its front bumper with a 77-GHz long-range radar (LRR), while 

two 24-GHz short-range radars (SRRs) were installed at its rear end, for collision avoidance. Since 

lanes needed to be perceived by the vehicle prior to performing automatic lane-keeping and lane-

changing maneuvers; two gray-scale cameras with video graphics array (VGA) resolution were 

installed to cover the frontal and the rear-end areas of the vehicle. The vehicle was equipped with 

an internal controller area network (CAN) to perceive its motion information, which can be 

exchanged with other vehicles. Finally, a decision on the appropriate maneuver was made and 

passed as a recommendation to the driver via a human–machine interface (HMI).  The Unscented 

Kalman Filter (UKF) was applied for estimating the motion of the subject vehicle and the 
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surrounding vehicles, as well as quantifying a mathematical description of the lane. Bayesian 

Network (BN) was applied for both the situation assessment and the decision-making algorithms 

since its main feature was the capability to perform probabilistic reasoning that can be used to 

handle situations under uncertainties. Situation parameters, represented by random variables, were 

defined to account for surrounding conditions such as a dashed or solid lane border, the status of 

a certain lane with respect to its occupancy, and the feasibility of a lane-changing maneuver to the 

left or right. Likelihood evidence parameters were defined to account for the probability 

distributions if certain actions are considered safe. The expected utility (EU) was adopted for the 

decision-making process in the algorithm. The alternative with the greatest EU is considered the 

optimal decision.  

 Sun and Elefteriadou (2010) proposed a framework for modeling lane-changing maneuvers 

in urban traffic based on the empirical driver-behavior data obtained through focus groups and 

from instrumented vehicle experiments. The focus group study categorized drivers into four types 

based on aggressiveness: a) type A, drivers who would not change lanes in most situations; b) type 

B, drivers who seek to get a better position or speed advantage under lower-risk situations; c) type 

C, drivers who seek to get a better position or speed advantage under higher-risk situations; and d) 

type D, drivers who always try to get a better position or speed advantage without hesitation. The 

authors developed a binary logistic regression model that predicted the probability of changing 

lanes. The model consisted of two components: 1) lane-changing component, in which driver’s 

decision on each lane-changing reason was taken into account, and 2) gap acceptance component, 

which contained gap acceptance models for various driver types and various types of lane-

changing (such as free, cooperative/competitive, and forced maneuvers). The proposed lane-

changing model was implemented in CORSIM microscopic simulation platform and was 

calibrated and validated using real-world data. The results of the proposed model and the original 

lane-changing model embedded in CORSIM were compared and the authors concluded that the 

observed traffic under different levels of congestion was better replicated by the proposed model. 

 Sun and Kondyli (2010) developed a lane-changing model that takes into account the 

vehicle interactions during a lane-changing maneuver on arterial streets by using the negotiation 

procedure in computer communications. Conditions were established to distinguish three lane-

changing types: free lane changes, forced lane changes, and competitive/cooperative lane changes.  
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A lognormal model was applied to estimate the duration of lane change (tLC). A sequence of “hand-

shaking” negotiations, based on the “TCP/IP” protocol in computer network communications, was 

designed to model the competition and cooperation among vehicles in the lane-changing process. 

When a lane-changing request was sent from the subject vehicle (S1) to the potential lagging 

vehicles in the target lane (T2), it was a cooperative lane change if the request was accepted by the 

potential lagging vehicles in the target lane; otherwise, it was a competitive lane-changing 

maneuver. Under the cooperative lane-changing maneuver, the potential lagging vehicles in the 

target lane decelerated to allow the subject vehicle to pull ahead of it. On the other hand, there 

were three scenarios under the competitive lane-changing maneuver: 1) if the potential lagging 

vehicles in the target lane accelerated, the subject vehicle assessed the next gap to perform the 

lane-changing maneuver; 2) if the potential lagging vehicles in the target lane maintained its speed, 

and the subject vehicle was not aggressive, the subject vehicle sought for the next gap to perform 

the maneuver; and 3) if the potential lagging vehicles in the target lane maintained its speed, and 

the subject vehicle was aggressive, a forced lane change was performed by the subject vehicle. 

The algorithm for modeling competitive/cooperative lane-changing maneuver is shown in Figure 

2-2. CORSIM was used to implement and validate the proposed model. The simulation capabilities 

of the proposed and original lane-changing models were compared, based on the results produced 

by CORSIM.  The results indicated that the observed traffic under different levels of congestion 

was better replicated by the proposed lane-changing model than the original model. 

 

Figure 2-2 Algorithm for modeling competitive/cooperative lane changes (Sun et al., 2010) 

 Kondyli and Elefteriadou (2011) developed a ramp-merging model to examine how driver 

behavior affects traffic operations and gap-acceptance decisions at freeway-merging segments and 
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to determine the relationship between vehicle interactions and breakdowns, which might explain 

the observed variability in capacity of freeways. In-vehicle experiments were performed using an 

instrumented vehicle and simultaneous video recording, to observe the merging behavior of the 

drivers. Different types of drivers were taken into account. A gap-acceptance model under different 

merging conditions and a driver behavior model for predicting vehicle interactions with merging 

vehicles on freeway segments were developed, based on the actual data obtained from the 

experiments. A conceptual framework of the merging process based on gap acceptance and driver 

behavior was developed. The gap-acceptance model was developed based on regression analysis 

to predict the total accepted gaps as a function of driver type (aggressive and nonaggressive), 

merging maneuver type, average freeway density, location of the ramp vehicle in the acceleration 

lane, and acceleration of the ramp vehicle.  Three types of merging maneuvers were defined in this 

study: free, cooperative, and forced merges. Probability models were developed to determine the 

probability that any vehicle on freeway would decelerate when encountering a cooperative or 

forced merging situation. A merging turbulence model that analyzed the effect of vehicle 

interactions on traffic flow was also proposed. The results showed that the merging turbulence 

increases before the breakdown and could be used as an indicator for the breakdown events. 

 Gurupackiam and Jones (2012) conducted a study to observe variations in gap acceptance 

and lane change duration on arterials under recurrent and non-recurrent traffic congestion. 

Hypothesis testing via Mann-Whitney U-Test was performed and found that the means of accepted 

gaps and lane change durations were significantly different between the congested and non-

congested traffic conditions. The results showed that the accepted gaps under the recurrent traffic 

congestion ranged between 1.60 and 7.80 seconds, with the mean of 4.04 seconds; whereas the 

mean accepted gap for the non-recurrent congestion was 3.52 seconds. The lane-changing 

durations under the recurrent traffic congestion ranged between 2.60 and 6.00 seconds, with the 

mean of 4.19 seconds; while the mean lane-changing durations for the non-recurrent congestion 

was 4.71 seconds.  The study concluded that drivers tend to accept smaller gaps, while spending 

longer lane changing durations under non-recurrent congested traffic conditions.   

 Lv et al. (2013) proposed a microscopic lane-changing process (LCP) model by simplifying 

the lane-changing process to the single car-following framework via simulation to imitate the 

realism that a lane-changing maneuver was a continuous process than an instantaneous action. 
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Specifically, this study focused on the lane-changing process and the impact of lane changing on 

the following cars on different lanes. Jiang’s FVD model (Jiang et al., 2011) was selected as the 

basic car-following model in the simulation, with the adoption of the optimal velocity function 

proposed by Helbing and Tilch (Helbing and Tilch, 1998). The lane-changing characteristics in 

the simulation model were developed considering two criteria: 1) the incentive criterion, which is 

a good reason for a driver to change lane, such as changing lane to maintain high speed or avoid 

congestion, and 2) the security criterion, in which a driver perceives that the changing lane is safe 

before performing the maneuver.  The authors concluded that the lane-changing maneuvers might 

strengthen velocity variation at medium density and weaken velocity variation at high density. 

 Hill et al. (2015) conducted research on freeway lane changing based on driver behavior to 

find the fitted distributions for various lane-changing durations and accepted gaps.  The field study 

results suggest that the mean lag gap accepted under uncongested conditions was 26.60±13.76 

meters and was gamma-distributed; whereas the mean lag gap accepted under congested 

conditions was 13.92±9.44 meters, and was gamma-distributed as well. In addition, the DLC 

duration for uncongested conditions followed a normal distribution, with the mean of 5.28±1.00 

seconds. Furthermore, the mean uncongested and congested DLC and MLC accepted lag gap was 

24.70±13.96 meters, with a gamma distribution. The mean uncongested and congested DLC and 

MLC lead gap accepted was found to be 34.66 ±42.85 meters, with a Johnson SL distribution.  

 Xie et al. (2014) proposed an optimization-based on-ramp control strategy and developed 

a simulation model to investigate the potential benefits of collaborative merging behaviors enabled 

by CV technology. In addition, an empirical gradual speed-limit control strategy was proposed. 

The proposed nonlinear optimization model employs accelerations of all vehicles in traffic as the 

decision variables for maximizing the total speed of all vehicles over the upcoming short time 

period, as defined in the objective function. To ensure traffic safety, a constraint was also set, so 

that when a vehicle arrived at the merging point, the distance headways between the vehicle and 

adjacent vehicles were greater than a minimum value. Freeway vehicles were modeled to slow 

down, accelerate, or shift to the left lane when approaching an on-ramp merge. The proposed 

model assumed that vehicles are connected via Dedicated Short-Range Communications (DSRC). 

The model also assumed that as freeway and ramp vehicles approach a 500-meter radius ahead of 

the on-ramp gore, the vehicles strictly followed the instructions received from a central traffic 
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controller.  An integrated modeling framework was developed to simulate traffic operations at 

freeway on-ramps via VISSIM. The VISSIM simulator and the add-on Car2X module were 

applied to capture the accelerations, speeds, and positions of vehicles in the model (Figure 2-3). 

Next, this information was fed into an optimization module coded in MATLAB. Finally, the 

optimal strategies were sent back to the VISSIM simulator for vehicle control. The results showed 

that the proposed optimal control strategy can effectively coordinate all merging vehicles at 

freeway on-ramps and significantly improve traffic safety and efficiency on the freeway, especially 

under oversaturated conditions. 

 

Figure 2-3 Integrated platform architecture for modeling lane changes for CV (Xie et al., 2014) 

 Talebpour et al. (2015) proposed a lane-changing model based on a game-theoretical 

approach accounting for the real-time information exchange between CVs in traffic. The objective 

of this study was to show that game theory may be applied to develop robust lane-changing models. 

A calibration approach based on the method of simulated moments (MSM) was proposed. The 

prediction capability of the simplified version of the proposed framework was calibrated against 

NGSIM data and then validated. Two game types were suggested in this model: two-person non-

zero-sum non-cooperative game under complete information (Game 1), which represents lane-

changing decisions in a connected environment, and two-person non-zero-sum non-cooperative 

game under incomplete information (Game 2), which represents lane-changing decisions in a 

situation that the other drivers’ decisions are unknown. The model assumed that drivers play a 

repeated game until a Nash equilibrium is reached. Both MLC and DLC maneuvers were 
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considered in this study. In both cases, the subject vehicle had two strategies: change lane and 

wait, while the lagging vehicle had three strategies: accelerate, decelerate, and change lane. The 

payoff functions for a pair of subject and lag vehicles in all possible scenarios were then defined. 

Root Mean Square Error (RMSE) was used to validate the proposed model. The simulation model 

assumed that V2V communications reduced drivers’ reaction time by 50 percent.  The simulation 

results indicated that the proposed lane-changing model provides a greater degree of realism than 

a basic gap-acceptance lane-changing model, and was capable of predicting lane-changing 

behavior; however, there were still limitations that needed to be identified.  For example, the 

authors noted that applying game theory to microscopic driving decisions modeling may induce 

computationally slow algorithms rendering the adopted approach to be impractical for real-time 

decision making. 

 You et al. (2015) developed a trajectory planning algorithm for automated lane change 

based on the cooperative vehicle infrastructure for CAVs. Two main functions of lane-changing 

maneuvers were considered in the model: trajectory planning and trajectory tracking. The 

polynomial method was applied for modeling the trajectory planning function, while the trajectory 

tracking function was modeled using a back stepping principle. For the trajectory planning system, 

the subject vehicle motion and the collision detection were incorporated into the algorithm. For 

trajectory tracking system, a tracking controller with global convergence property was validated 

based on the Lyapunov function. The cooperative trajectory planning was performed based on 

V2X technology to consider not only the motion of the subject vehicle, but also the driving state 

of the surrounding vehicles. The proposed trajectory planning algorithm and tracking controller 

for trajectories were then tested via simulation and experimental analysis to validate their 

performances. The simulation was performed for a vehicle in MATLAB/Simulink, while the 

experiment was conducted on a basis that vehicles are coordinated in the lane-changing scenario 

and enable to connect with the infrastructure. The results from the simulation models and the 

experiments indicated that the proposed automated lane-changing system was feasible and 

effective to be adopted in CAV technologies. 

 Wang et al. (2015) developed a jointly evaluated model of discrete lane-changing decisions 

and continuous car-following accelerations for AVs under a central mathematical framework. The 

optimal control decisions generated by the approach determined a unique and continuous trajectory 
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that could be adopted by the AV actuators to follow. Simultaneously, the approach anticipated lane 

changes and dealt with the interaction and cooperation of multiple vehicles in conflicting 

situations. The interactions between controlled vehicles and surrounding vehicles were captured 

in the cost function to correspond for undesirable future situations. The proposed model was 

designed to be flexible and compatible for both AV systems and CAV systems. The control 

objectives of the lane-changing and car-following control system (LCCS) incorporated multiple 

criteria of maximizing travel efficiency, minimizing risk of collision, and maximizing passenger 

comfort; while traffic regulations were still obeyed. The problem was formulated as a dynamic 

game in which controlled vehicles made decisions based on the expected behavior of other 

vehicles. The control decisions were updated at regular frequency to utilize the latest information 

regarding the state of controlled vehicles and surrounding vehicles available. An iterative 

algorithm based on Pontryagin’s Principle was applied to solve the formulated problems. 

Numerical examples presented the proposed controller properties and performance at the 

microscopic level.  The results indicated that the proposed model can produce efficient lane-

changing maneuvers under safety and comfort constraints.  

 Letter and Elefteriadou (2017) developed a longitudinal freeway merging control algorithm 

for maximizing the average travel speed of CAVs. A roadside controller provided communications 

that allows the computation and transmission of optimized trajectories in a centralized fashion. 

These vehicles then carried out the computed trajectories and resume normal operation once the 

communication with the roadside controller was terminated. It was assumed that all vehicles in the 

network were fully automated and equipped with V2I communication devices. A tool was 

developed to simulate and determine the merging algorithm, using LINGO as an optimization 

software. A safe time gap constraint was defined in the algorithm to ensure that at every interval 

the time gap between the leading vehicle trajectory and the subject vehicle was greater than the 

safe time gap. A hypothetical merging segment was created and simulated in CORSIM to assess 

the effectiveness of the proposed merging algorithm. The performance of the merging algorithm 

was then compared to the performance of the conventional vehicle traffic. The results suggested 

that the algorithm can reduce travel time, increase average travel speed, and improve throughput 

during uncongested conditions. The authors also found that the capacity of the merge segment was 

directly related to the safe time gap selected to run in the algorithm. It was also found that once 

capacity was reached, queuing formed on both the ramp and mainline segments upstream of the 
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merge area. The authors concluded that the proposed algorithm induced safe merging operations 

under the congested traffic state. 

2.4 Simulation Model Implementation 

 Several researchers have used VISSIM as a tool to evaluate different algorithms for CAVs. 

VISSIM is equipped with various add-on modules programming interfaces (API), in which users 

are allowed to integrate their own algorithm. There are two major programming interfaces in 

VISSIM: 1) COM interface and 2) External Driver Model Dynamic Linked Library (EDM.dll) 

interface. COM allows external programs to access to simulation objects. In COM interface, users 

can start VISSIM from other applications and access to the attributes of vehicles in the VISSIM 

network. The EDM DLL interface allows for replacing the internal driving behavior of vehicles 

by a user-defined behavior for some or all of the vehicles in the simulation. COM can be written 

in various programming languages such as VB, C#, C++, JavaScript, or Python, whereas the EDM 

interface can only be coded in C++ (Li et al., 2013; Zhao and Sun, 2013; Songchitraksa et, al., 

2016; and PTV, 2018). 

 The user-defined algorithm of CAV can be implemented in the External Driver Model 

interface via C++. Next, the dynamic-link library (.dll) is generated after the code is compiled. In 

addition, a folder named DriverModelData is created in the same directory where the VISSIM.exe 

folder exists to avoid run-time error from VISSIM. The drivermodel.dll then returns the command 

back to the VISSIM network. Ultimately, the .dll file controls the behavior of vehicles that are 

using the EDM.  (Zhao and Sun, 2013; Songchitraksa et, al.; 2016; and PTV, 2018).  

 The current state of the vehicle and its surroundings are sent by VISSIM to the .dll, in 

which the reaction of the vehicles from the user defined algorithm is computed. Some or all 

vehicles in the simulation run can be modeled with the user-defined drivermodel.dll, which can 

specify all driving behaviors based on the logic input (PTV, 2016). 

2.5 Summary of Literature Review 

 Several car-following and lane-changing models have been proposed for simulating traffic 

scenarios; however, no previous works were found to combine these models via a conditional 

linkage in a mixed-traffic model.  In addition, although several studies have been conducted on 
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testing mixed traffic scenarios, a study that covers the full spectrum of vehicle composition 

between CAVs and MDVs in mixed traffic has not been done yet. Also, only a few studies have 

considered the effects of automated lateral vehicular interactions, such as lane changing and 

transient maneuvers on human behavior. Finally, although various control lane-changing 

algorithms were proposed for AVs, complex interactions between different vehicle types have not 

been considered.   
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CHAPTER 3 THE PROPOSED ALGORITHMS 
 

 This chapter describes the proposed CAV Algorithm, in which the car-following and lane-

changing models are incorporated, followed by the methods proposed for developing the 

microscopic mixed-traffic simulation model on a freeway segment. The proposed linkage between 

the car-following and lane-changing models, which was newly defined to simultaneously control 

the longitudinal and lateral movements of CAVs, is also presented.  

3.1 The CAV Algorithm 

 The proposed CAV algorithm was developed to control the longitudinal and lateral 

movements of CAVs in a traffic stream. In this research, CAVs are assumed to be equipped with 

level 5 automation (fully automated). The algorithm is a combination of car-following/cruising 

and lane-changing models, with the conditional linkage, for supervising the decision-making of 

CAVs when interacting with the surrounding vehicles and the geometry of a freeway segment.  A 

schematic of the car-following and lane-changing vehicles in the traffic stream is presented in 

Figure 3-1. As seen in the schematic, the order of the vehicle in the platoon in the lane where the 

subject vehicle is occupying is symbolized as n, whereas the order of the vehicle in the platoon in 

the adjacent lane is denoted by m.  In addition, the middle lane is symbolized as lane i; while the 

adjacent lane on the left and right sides are designated as lane i+1 and lane i-1, respectively.  

Therefore, the subject vehicle traversing the roadway in the middle lane is denoted by veh(n+1, i), 

while its leader is symbolized as veh(n, i).  The longitudinal and lateral displacements of the 

vehicles in the traffic stream are designated as x and y, respectively. The space headway between 

a pair of vehicles, denoted by s, is measured as the longitudinal distance difference between the 

front ends of the vehicles; whereas the gap is measured as the longitudinal distance difference 

between the rear end of the leader and the front end of the follower. 
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Figure 3-1 Schematic of the car-following and lane-changing vehicles in the traffic stream 

 The CAV algorithm is composed of two sub-algorithms: 1) Automated Car-

Following/Lane-Changing Algorithm and 2) Automated Platoon-Leading/Lane-Changing 

Algorithm. The subject vehicle is programmed to switch between these sub-algorithms based on 

the current status and conditions of the vehicle. The vehicle is governed by the Automated Car-

Following/Lane-Changing Algorithm when its leader is CAV or MDV, given that the space 

headway between the vehicle and its leader is smaller than the free-flow space headway (sfree flow). 

Otherwise, the vehicle is assigned to follow the Automated Platoon-Leading/Lane-Changing 

Algorithm when there is no leading vehicle ahead in that lane or when the space headway between 

the vehicle and its leader is greater than the free-flow space headway, as illustrated in Figure 3-2.  
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Veh (n,i) is CAV
AND

s    sfree flow

No vehicle ahead
OR

s > sfree flow

Veh (n,i) is MDV
AND

s    sfree flow

Veh (n+1,i) is CAV

Automated Platoon-Leading/
Lane-Changing Algorithm

Automated Car-Following/
Lane-Changing Algorithm  

Figure 3-2 Flowchart of the CAV algorithm 

 The algorithm was developed to run using the time step of one second to update the real-

time status and conditions of the subject vehicles and the vehicles surrounded in the traffic stream. 

Each sub-algorithm is composed of two main models: car-following and lane-changing models 

that govern the longitudinal and lateral movements of the vehicle. In addition, the linkage between 

the car-following and lane-changing models was established to make these two models run 

interchangeably in the sub-algorithm. The mechanisms behind the sub-algorithms are explained in 

the following section. 

3.1.1 Automated Car-Following/Lane-Changing Algorithm 

 The Automated Car-Following Algorithm is the sub-algorithm that governs the 

longitudinal and lateral movements of a CAV when the vehicle is following a CAV or MDV in 

the traffic with the space headway of smaller than the free-flow headway (sfree flow). The algorithm 

starts by recognizing that the subject vehicle itself occupying lane i, denoted by veh(n+1, i), is a 

CAV and its leader that is occupying the same lane, denoted by veh(n, i), is a MDV or CAV. Next, 

if the current space headway between the vehicles is smaller than the defined free-flow headway, 

the subject vehicle will proceed to the CAV Car-Following Model. Otherwise, it is promptly 

switched to the Automated Platoon-Leading/Lane-Changing Algorithm. 

3.1.1.1 The CAV Car-Following Model 

 The CAV Car-Following Model was adopted from the Full Velocity Difference car-

following model (FVD) and the confined Full Velocity Difference model (c-FVD) with an 

adjustment in the sensitivity value (𝜆) from 0.5 in the original model to 0 to fit the characteristics 
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of CAV. The acceleration rate is based on the optimal velocity function (V(𝑠)), which depends on 

the real-time space headway (s), without accounting for the velocity difference between vehicles. 

This model generates the acceleration rate of the subject vehicle based on the current space 

headway (s) and the velocity difference between vehicles (∆𝑣), as shown in Figure 3-3. For any 

velocity difference that occurs under the current space headway greater than the critical space 

headway (sc), the subject vehicle will accelerate under the cruising mode as shown in the Equation 

(3-1). 

𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = κ [𝑣𝑚 − 𝑣𝑛+1(𝑡)] + κ [V(𝑠) − 𝑣𝑚] (3-1) 

 If the current space headway is smaller than the critical space headway (sc), the acceleration 

rate of the subject vehicle is determined based on the current velocity difference between the 

vehicles. If the current speed of the subject vehicle (𝑣𝑛+1(𝑡)) is less than the current speed of the 

leading vehicle (𝑣𝑛(𝑡)), the positive term of 𝜆𝜣(∆𝑣)(∆𝑣) will be added to the acceleration rate of 

the subject vehicle to narrow the space headway between the vehicles and maintain the car-

following mode. The acceleration rate of the CAV is illustrated in the Equation (3-2). 

𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = κ [𝑣𝑚 − 𝑣𝑛+1(𝑡)] + κ [V(𝑠) − 𝑣𝑚] + 𝜆𝜣(∆𝑣)(∆𝑣) (3-2) 

 If the current speed of the subject vehicle (𝑣𝑛+1(𝑡)) is greater than the current speed of the 

leading vehicle (𝑣𝑛(𝑡)), the negative term of 𝜆𝜣(−∆𝑣)(∆𝑣) will be added to the acceleration rate of 

the subject vehicle to stretch the space headway and avoid collision (Equation (3-3)). 

𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = κ [𝑣𝑚 − 𝑣𝑛+1(𝑡)] + κ [V(𝑠) − 𝑣𝑚] + 𝜆𝜣(−∆𝑣)(∆𝑣) (3-3) 

 The maximum acceleration rate of 9.8 m/s2 (1g) – which can be exceeded by some modern 

supercars, such as Tesla Model S and Bugatti Veyron (Murphy et al., 1982; Wojdyla, 2011; 

Markus et al., 2017) – is adopted for bounding the possible acceleration and deceleration rates of 

all vehicles in the simulation. The value of the sensitivity parameter (𝜆) of 0 is applied in this 

algorithm to reflect the proposed submissive driving characteristics of the CAV; while the critical 

space headway (sc) of 30 meters and the vehicle length of 4.5 meters were applied. The sensitivity 

constant (κ) of 0.30 is used, and the empirical values of C1 and C2 are adopted from the c-FVD 

model in section 2.2.1 (Yu et al., 2019; Qu et al., 2019); however, the values of the calibrated 

parameters V1 and V2 are modified as 32.000 and 1.997, respectively, based on the model 

calibration.  
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FVD Car-Following Model

If s < sc

If vn(t)   vn+1(t) If vn+1(t) > vn(t)

     (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

     (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

     (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)     

 

Figure 3-3 Flowchart of the car-following model  

 Next, after the subject vehicle accelerates based on the FVD model, the algorithm checks 

whether the leading vehicle still exists in the current lane (lane i). If the leading vehicle has just 

moved to the adjacent lane, the algorithm will restart to recheck the type of the leading vehicle and 

the instantaneous space headway between the subject vehicle and its leader. However, if the 

leading vehicle still exists in the current lane (lane i), the algorithm will check whether any vehicle 

from the adjacent lane is performing a lane-changing maneuver into lane i ahead of the subject 

vehicle, as illustrated in Figure 3-4. 

Restart

Check if veh (n,i) still exists in the 
lane (no LC)

Restart, 
n+1 = n for all 

vehicles behind

( n: n   n+1)

t++

YES

Check if veh (m,i+1) or veh (m,i-1) 
performing lane-changing maneuver 
ahead of the vehicle into lane i (LC)

The subject vehicle veh (n+1,i) 
accelerates

Veh (n+1,i) is CAV

NO

 

Figure 3-4 Process for checking the existence of the leading vehicle 



44 
 

 If the leading vehicle still maintains its position in the current lane, the model will check 

whether a lane change is performing ahead by a vehicle from the adjacent lane (lane i+1 or lane i-

1).  If so, the algorithm checks if the lane-changing vehicle is MDV or CAV. If the lane-changing 

vehicle is MDV, the algorithm restarts and the lane-changing vehicle will be the new leader for 

the subject vehicle. Furthermore, the order of the subject vehicle and all the vehicles behind in the 

platoon are moved down by one position to account for the lane-changing vehicle and the time 

step is counted forward by one second.  If the lane-changing vehicle from the adjacent lane is 

CAV, the time step will also be forwarded by one second and the algorithm advances to check the 

longitudinal distance between the subject vehicle and the lane-changing vehicle to prepare for a 

gap-creation process that allows for the connected-environment lane change in the next phase.  

Otherwise, if no lane-changing maneuver is occurring, the algorithm checks if there is a lane drop 

within 0.8 km (2,640 ft), ahead of the vehicle, as seen in Figure 3-5. 

 

Figure 3-5 Process for checking the occurrence of lane-changing maneuver ahead of CAV 

3.1.1.2 The CAV-CAV Cooperative Gap-Creation Model 

 If the lane-changing vehicle from the adjacent lane is CAV, the lane-changing process is 

programmed to occur in a cooperative manner. The algorithm checks the longitudinal distance 
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between the subject vehicle and the lane-changing vehicle. In this situation, there are two possible 

cases that can occur: case 1) the lane-changing vehicle is performing lane change from lane i-1 to 

lane i and case 2) the lane-changing vehicle is performing lane change from lane i+1 to lane i, as 

illustrated in Figure 3-6. 

The Veh (m,i+1) or Veh (m,i-1) that 
changing lane (LC) ahead is CAV

Check the distance between two vehicles
Case 1) The lane-changing vehicle is veh (m,i-1)

Check if x(n+1,i) - x(m+1,i-1)   LS1 + gminCC_1

AND v(m+1,i-1) - v(n+1,i)    Threshold_1 

OR

Case 2) The lane-changing vehicle is veh (m,i+1)
Check if x(n+1,i) - x(m+1,i+1)    LS1 + gminCC_2

AND v(m+1,i+1) - v(n+1,i)    Threshold_2 

NO

Lane Change (LC) occurs

n+1 = n+2 for all vehicles 
behind

( n: n   n+1)

Initial t6 = 0

Check if
    (𝑡)   (0.894 m/s)

YES NO

Decelerate to stop to create gap for LC

     (𝑡) 𝑑𝑡 =       (𝑡)

t++

Initial tgc = 0

YES

The subject vehicle veh (n+1,i) 
decelerates to create gap based 

on Gap Creation CF model

t++, tgc++ t++

  

Figure 3-6 Flowchart of the CAV-CAV cooperative gap-creation model 

 For both cases, two conditions of longitudinal distance and velocity differences between 

the vehicles are checked prior to the initiation of lane change to ensure a safe and smooth lane-

changing maneuver. Firstly, for the longitudinal distance difference, the algorithm examines if the 
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difference between the current longitudinal displacement of the lane-changing vehicle (x(m+1, i-1) or 

x(m+1, i+1)) and the current longitudinal displacement of the subject vehicle (x(n+1, i)) is greater than 

or equal to the length of the lane-changing vehicle (LS) plus a minimal safe constant gap (gmin), 

where x(n+1, i) ≤ x(m+1, i+1) ≤ x(n+1, i) or x(n+1, i) ≤ x(m+1, i-1) ≤ x(n+1, i), as displayed in the Equation (3-4a) 

and (3-4b). The values of gmin for the left-side and right-side lane changing in the simulation are 

assigned as gmin_CC1 and gmin_CC2, respectively. 

x(n+1, i) - x(m+1, i-1) ≥ LS + gmin;        for right-side lane changing (3-4a) 

x(n+1, i) - x(m+1, i+1) ≥ LS + gmin;       for left-side lane changing (3-4b) 

 Secondly, for the velocity difference, the algorithm then inspects if the difference between 

the current velocity of the subject vehicle (v(n+1, i)) and the current velocity of the lane-changing 

vehicle (v(m+1, i-1) or v(m+1, i+1)) is less than or equal to a threshold, as displayed in the Equation (3-

5a) and (3-5b). 

v(n+1, i) - v(m+1, i-1) ≥ Threshold_1;      for right-side lane changing (3-5a) 

v(n+1, i) - v(m+1, i+1) ≥ Threshold_2;     for left-side lane changing (3-5b) 

 If these two conditions are simultaneously true, the lane-changing maneuver will be 

triggered to occur in the next time step.  The order of the subject vehicle and all vehicles in the 

platoon are moved down by one position to account for the lane-changing vehicle and the CAV-

CAV lane change duration (t6) of 6 seconds is initially set at zero. The CAV-CAV lane change 

duration was adopted from the literature (Hill et al., 2015). 

 However, for these two cases, if either the longitudinal distance difference and the velocity 

difference conditions or both turn out to be false, the algorithm will then proceed to check if the 

longitudinal velocity of the subject vehicle (𝑣𝑛+1(𝑡)) is greater or equal to 0.894 m/s (2 mph) prior 

to determining the deceleration rate of the vehicle to create a gap for the lane-changing maneuver. 

If the velocity of the subject vehicle is currently greater than 0.894 m/s; the vehicle will decelerate 

to create a gap based on the deceleration rate suggested by the gap-creation car-following model, 

which is discussed in the next paragraph. The time step then forwards by one second and the 

algorithm recalculates the longitudinal distance and velocity differences until these conditions are 

met. If the current velocity of the subject vehicle is smaller than 0.894 m/s, the vehicle decelerates 
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at the rate of −𝑣𝑛+1(𝑡) mph. The algorithm proceeds to check the longitudinal distance difference 

and velocity difference conditions as a loop in the following time steps. 

 The gap-creation car-following model (Figure 3-7), is triggered when the current velocity 

of the subject vehicle is greater than 2 mph to prepare a sufficiently large gap for the lane-changing 

maneuver. The reason for reserving the minimum 3.22-km/h velocity for the subject vehicle in the 

gap-creation car-following model is to provide a safety factor for maintaining the positive velocity 

for the vehicle while decelerating to create gap.  There are two possible cases: 1) the current leader 

(veh(n, i)) is CAV, and 2) the current leader is MDV. 

The subject vehicle veh (n+1,i) 
decelerates to create gap based 

on Gap Creation CF model

t++

Decelerate via CAV-CAV Gap Creation CF 
model to create gap for LC

     (𝑡) 𝑑𝑡 = 𝑑𝑣 (𝑡) 𝑑𝑡          m/s2)

Veh (n, i) is MDVVeh (n, i) is CAV

t++

tgc++

Decelerate via CAV-MDV Gap Creation CF 
model to create gap for LC

     (𝑡) 𝑑𝑡 = 0.5 (𝑣    -1         -1)
   0.805 m/s2)(tgc)1/2

 

Figure 3-7 Flowchart of the CAV-CAV cooperative gap-creation model (cont.) 

 If the current leader is CAV, the CAV-CAV gap-creation car-following model starts by 

perceiving the projected longitudinal acceleration rate of its leading vehicle (𝑑𝑣𝑛(𝑡)/𝑑𝑡) in the 

current time step under the connected environment. Next, it is followed by subtracting this 

acceleration rate by the deceleration rate of 0.447 m/s (1 mph/s) to yield the acceleration rate of 

the subject vehicle in that time step, according to Equation (3-6). 

𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = 𝑑𝑣𝑛(𝑡)/𝑑𝑡 – (0.447 m/s2) (3-6) 

 The subject vehicle is programmed to pace at 0.447 m/s (1 mph) relatively slower than its 

current leading vehicle in each time step to create gap. Consequently, the additional gap of 0.447 
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meter multiplied by the number of time steps passed is expected to be provided when this model 

is applied.   

 If the current leader is MDV, where the connectivity between vehicles is not available, the 

subject vehicle is not able to precisely perceive the current longitudinal acceleration rate of its 

leader (𝑑𝑣𝑛(𝑡)/𝑑𝑡) in real time. Consequently, the CAV-MDV gap-creation car-following model 

applies Equation (3-7) to determine the acceleration rate of the subject vehicle. 

𝑑𝑣𝑛+1(𝑡)/𝑑𝑡 = 0.13 (𝑣𝑛, t-1 – 𝑣𝑛+1, t-1) − (0.805 m/s2)(tgc)
1/2 (3-7) 

where  tgc = the consolidated time in the gap-creation car-following model 

 This equation was tested and calibrated to yield similar results, in terms of longitudinal 

velocity and gap as a function of time, as that produced by the equation in the CAV-CAV car-

following case.  After this acceleration rate is applied, the time step (t) and the consolidated time 

in the gap-creation car-following model (tgc) are counted by one second and the algorithm proceeds 

to recheck the updated conditions of the longitudinal distance and velocity differences between the 

vehicles at the beginning of this model as a loop until the conditions for the lane change are true. 

 If the longitudinal distance difference and velocity difference conditions simultaneously 

turn out to be true, as previously mentioned, the algorithm will then advance to the 6-second FVD 

car-following model where the new leader becomes the current lane-changing vehicle. 

Subsequently, the order of the subject vehicle and all the vehicles behind in the platoon are moved 

down by one position to account for the lane-changing vehicle and the duration for a CAV-CAV 

lane change (t6) is set at zero. 

 This FVD car-following model is programmed to last for 6 seconds to allow the lane-

changing vehicle to perform its lateral movement until it completely positions in the middle of the 

target lane (lane i). Same as the traditional FVD car-following model, this 6-second FVD model 

starts by checking the current space headway between the subject vehicle and its lane-changing 

vehicle. Then it checks the velocity difference between the vehicles to determine the acceleration 

rate for the subject vehicle in that time step, as shown in Figure 3-8.  
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Figure 3-8 Car-following process as per the occurring cooperative CAV-CAV lane change 

 The acceleration rate of the vehicle in each time step is determined based on Equations (3-

1), (3-2), or (3-3); depending on the car-following conditions in that time step. After the 

acceleration rate of the subject vehicle is determined, the time step (t) and the allowance time for 

a CAV-CAV lane change (t6) are proceeded by one second. Next, the allowance time for a CAV-

CAV lane change (t6) is checked if the target of 6 seconds is reached. If so, it means that the lane-

changing maneuver is completed, then the algorithm will be restarted. Otherwise, the algorithm 

returns back to check the current space headway (s) in this 6-second FVD car-following model as 

a loop until the final condition is true, as seen in Figure 3-8.  
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3.1.1.3 Linkage between the Car-Following and the Lane-Changing Models for CAVs 

 As it was shown in Figure 3-5, if there is no lane-changing maneuver, the algorithm checks 

if there is a lane drop within 0.8 km ahead of the vehicle. If there is no lane drop ahead, DLC 

conditions are examined next. However, if there is a lane drop ahead of the vehicle, the algorithm 

automatically performs MLC to the left. This model is considered as a linkage between the car-

following and the lane-changing models. 

 If there is no lane drop within 0.8 km ahead of the subject vehicle, the algorithm proceeds 

to check the conditions for performing lane-changing to the right (slower lane). Three conditions 

were established to control that decision, and a lane change to the right occurs only if all three are 

satisfied.  

 Firstly, the difference between the average velocity of the current lane (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖) and the 

current velocity of the subject vehicle (𝑣𝑛+1(𝑡)) is checked. If the difference is greater than 

Threshold_3 shown in Equation (3-8), the output of this condition is returned as true. 

𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_ 𝑖 − 𝑣𝑛+1(𝑡) > Threshold_3 (3-8) 

 Secondly, if the difference between the average velocity of the current lane (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖) and 

the average velocity of the target lane on the right (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖-1) is greater than Threshold_4, as 

shown in Equation (3-9), the condition is met. 

𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖 − 𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖-1  > Threshold_4 (3-9) 

 Finally, if the difference between the current velocity of the leading vehicle in the current 

lane (𝑣𝑛(𝑡)) and the velocity of the subject vehicle (𝑣𝑛+1(𝑡)) exceeds by Threshold_5, as shown in 

Equation (3-10). 

𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡) > Threshold_5 (3-10) 

 If all of these conditions simultaneously turn out to be true, the lane-changing maneuver to 

the right lane (lane i-1) will be performed. Otherwise, the algorithm will proceed to check the 

conditions for performing lane-changing maneuver to the left (faster lane). 

 The decision for performing a lane change to the left will occur only if all three of the 

following conditions simultaneously turn out to be true.  
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 Firstly, if the difference between the permitted maximum longitudinal velocity or the speed 

limit (𝑣m) and the current velocity of the subject vehicle (𝑣𝑛+1(𝑡)) is greater than Threshold_6, as 

seen in Equation (3-11), this condition will be returned as true. 

𝑣m – 𝑣𝑛+1(𝑡) > Threshold_6 (3-11) 

 Secondly, if the difference between the average velocity of the target lane on the left (𝑣𝐴𝑉𝐺 

𝑙𝑎𝑛𝑒_𝑖+1) and the average velocity of the current lane (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖) exceeds Threshold_7, as shown in 

the Equation (3-12), the condition is met. 

𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖+1  − 𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖  > Threshold_7 (3-12) 

 Finally, if the difference between the current velocity of the leading vehicle in the current 

lane (𝑣𝑛(𝑡)) and the velocity of the subject vehicle (𝑣𝑛+1(𝑡)) is less than Threshold_8, as shown in 

Equation (3-13), the condition is met. 

𝑣𝑛(𝑡) – 𝑣𝑛+1(𝑡) < Threshold_8 (3-13) 

 If all three of these conditions simultaneously turn out to be true, the lane-changing 

maneuver to the left lane (lane i+1) will be performed by the subject vehicle. Otherwise, the subject 

vehicle will remain in the current lane (lane i) and the algorithm will be restarted back to the 

beginning to recheck the type of the leading vehicle, as presented in Figure 3-9. 
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Figure 3-9 Linkage between the car-following and the lane-changing models for CAVs 

3.1.1.4 The CAV-MDV Left-Lane-Changing Models 

 Two possible cases can occur if the subject vehicle is performing a lane change to the left: 

1) the potential follower in the target lane (veh(m+1, i+1)) is MVD and 2) the potential follower 

in the target lane is CAV. 
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 If the potential follower is MDV, the current gap on the target lane on the left (gapi+1) is 

assessed in the next step. The current gap on the target lane on the left is defined as the difference 

in the longitudinal displacements between the rear-end of the potential leading vehicle (x(m,i+1) - 

LS) and the front-end of the potential follower (x(m+1,i+1)), as displayed in Equation (3-14a). 

gapi+1 = (x(m,i+1) – LS) - x(m+1,i+1);     where x(m+1, i+1) ≤ x(n+1, i) ≤ x(m, i+1) (3-14a) 

gapi-1 = (x(m,i-1) – LS) - x(m+1,i-1);       where x(m+1, i-1) ≤ x(n+1, i) ≤ x(m, i-1) (3-14b) 

 There are three possible cases that can occur while the gap in the target lane is being 

assessed. Firstly, if the current gap in the target lane is greater than the minimum gap for free lane 

change (gapi+1 ≥ gapFree), the conditions for free lane change will be checked by the algorithm in 

the next step.  Secondly, if the current gap in the target lane is smaller than the minimum gap for 

free lane change, but still greater than or equal to the length of the subject vehicle plus a minimal 

safe constant gap (LS + gmin ≤ gapi+1 < gapFree), the conditions for cooperative and competitive 

lane changes will be respectively checked in the next step.  Finally, if the current gap in the target 

lane is smaller than the length of the subject vehicle plus a minimal safe constant gap (gapi+1 < 

gmin + LS), the subject vehicle will be made to assess the next gap and the process will be restarted, 

as illustrated in Figure 3-10. 

Next, if the algorithm detects that the current gap on the target lane is available for a free 

lane change (gapi+1 ≥ gapFree), two conditions of longitudinal distance and velocity differences 

between the subject vehicle and the potential follower in the target lane will be checked prior to 

the initiation of lane change to ensure for a safe lane-changing maneuver.  

 Firstly, for the longitudinal distance difference (lag gap), the algorithm assesses if the 

difference between the current longitudinal displacement of the subject vehicle (x(n+1, i)) and the 

current longitudinal displacement of the potential follower in the target lane (x(m+1, i+1)) is greater 

than or equal to the length of the lane-changing vehicle (LS) plus a minimal safe constant gap 

(gmin), as shown in Equation (3-4b). The corresponding value of gmin in this case is assigned as 

gmin_CM9 in the simulation models. 
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If Veh (m+1,i+1) = MDV

If gapi+1 < gmin + LS

 Assess the next gap
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Figure 3-10 Flowchart of the CAV-MDV left-lane-changing model 

 Secondly, the algorithm assesses if the difference between the current velocity of the 

subject vehicle (v(n+1, i)) and the current velocity of the potential follower in the target lane (v(m+1, 

i+1)) is less than or equal to the threshold, as presented in Equation (3-15). 
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v(m+1, i+1) - v(n+1, i) ≤ Threshold_9 (3-15) 

 If both of these conditions are true, the free lane-changing maneuver to the left will be 

initiated by the subject vehicle in the next step. In addition, the anticipated lateral displacement for 

a lane change (Δ𝑦𝑛+1) will be initiated as 3.66 m (12 ft), which is the lane width used in the model. 

Otherwise, the subject vehicle will assess the next gap and the process will restart, as shown in 

Figure 3-10.  The CAV-MDV free left-lane-changing model is illustrated in Figure 3-11. 
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Figure 3-11 CAV-MDV free left-lane-changing model 

 Similarly, if the current gap on the target lane is available for a cooperative lane change 

(LS + gmin ≤ gapi+1 < gapFree), the lag gap between the subject vehicle and the potential follower in 
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the target lane are assessed, as shown in Equation (3-4b).  The corresponding value of gmin in this 

case is assigned as gmin_CM10. Secondly, the algorithm then assesses if the difference between the 

current velocity of the subject vehicle (v(n+1, i)) and the current velocity of the potential follower in 

the target lane (v(m+1, i+1)) is less than or equal to the threshold, as presented in the Equation (3-16). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_10 (3-16) 
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Figure 3-12 CAV-MDV cooperative left-lane-changing model 

 If both of these conditions simultaneously become true, the cooperative lane-changing 

maneuver to the left will be initiated by the subject vehicle in the next step. Otherwise, the subject 
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vehicle will check for the competitive lane change conditions, as presented in Figure 3-10.  The 

CAV-MDV cooperative left-lane-changing model is shown in Figure 3-12. 

 The competitive lane change conditions are assessed in case the cooperative lane change 

conditions are false. There are two conditions of longitudinal distance and velocity differences; 

however, the form of the velocity difference condition is different from that in the free and 

cooperative lane change conditions. 

 Firstly, the algorithm assesses if the lag gap is greater than or equal to LS + gmin, as shown 

in Equation (3-4b). The corresponding value of gmin in this case is assigned as gmin_CM11.  Secondly, 

for the velocity difference, the algorithm then inspects if the difference between the current 

velocity of the subject vehicle (v(n+1, i)) and the current velocity of the potential follower in the 

target lane (v(m+1, i+1)) falls between these thresholds, as presented in Equation (3-17). 

Threshold_10 < v(m+1, i+1) - v(n+1, i) < Threshold_11 (3-17) 

If both of these conditions simultaneously are true, the competitive lane-changing 

maneuver to the left will be initiated by the subject vehicle in the next step. Otherwise, the subject 

vehicle will assess the next gap and the process will be restarted back to the beginning of the 

algorithm, as seen in Figure 3-10. The CAV-MDV competitive left-lane-changing model is 

illustrated in Figure 3-13. 



58 
 

YES [COMPETITIVE LC] NO

Lateral:
IF  Δ        0.91 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.91 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.91 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.91 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.76 

m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i+1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i+1)(t)

If s   sc

Check COMPETITIVE LC condition
If 

x(n+1,i) - x(m+1,i+1)   LS + gminCM_11  

AND
Threshold_10 < v(m+1, i+1) - v(n+1, i) < Threshold_11

GIVEN: Initial Δ     =  .   m  (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

LC completed,
Restart

NO

Check COOPERATIVE LC 
conditions

Restart

Veh (n+1,i) is CAV

YES [COOPERATIVE LC]

 

Figure 3-13 CAV-MDV competitive left-lane-changing model 

 The lane-changing models were developed based on the concept used in the FVD car-

following model for the longitudinal movement of the subject vehicle, with the application of the 

lateral movement conditions to generate the two-dimensional trajectory for the vehicle. The model 

runs as a loop to produce the longitudinal and lateral accelerations in each time step until the lane-

changing process is completed when the vehicle is settled in the middle of the target lane. 

 All the CAV-MDV left-lane-changing models begin with the car-following part by 

checking the current space headway (s) with the critical space headway (sc), followed by assessing 

the longitudinal velocity difference between the subject vehicle (𝑣(𝑛+1, i)(𝑡)) and the potential 

leading vehicle in the target lane (𝑣(m, i+1)(𝑡)), prior to determining the longitudinal acceleration for 
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the vehicle in the current time step.  The acceleration rate of the subject vehicle in each time step 

is determined based on the FVD car-following model by applying Equations (3-1), (3-2), or (3-3); 

depending on the car-following conditions in that time step. 

 Since the longitudinal acceleration of the subject vehicle is calculated, the model then 

determines the lateral velocity of the vehicle based on the remaining anticipated lateral 

displacement for lane change (Δ𝑦𝑛+1), which is initially set as 3.66 m (12 ft) by the beginning of 

the lane-changing process. In each time step, the anticipated lateral displacement for a lane change 

(Δ𝑦𝑛+1) is offset by the lateral displacement that the vehicle traverses while changing lanes to yield 

the remaining anticipated lateral displacement for a lane change for the next time step. 

 If the remaining anticipated lateral displacement for a lane change in the time step is greater 

than or equal to α m (Δ𝑦𝑛+1 ≥ α m), where α is the default lateral displacement in the current case; 

the lateral velocity of the subject vehicle in that time step will be α m/s, as illustrated by Equation 

(3-18). 

𝑑𝑦𝑛+1(𝑡)/𝑑𝑡 = α m/s (3-18) 

 It means that the vehicle will be displaced in the lateral direction by α m by the end of the 

time step. Therefore, the remaining anticipated lateral displacement for a lane change for the next 

time step (Δ𝑦𝑛+1, t+1) will be the previous anticipated lateral displacement for a lane change (Δ𝑦𝑛+1, 

t) subtracted by the distance of α m, as displayed by Equation (3-19). 

   Δ𝑦𝑛+1, t+1 = Δ𝑦𝑛+1, t – α m      (3-19) 

 The default lateral velocity of the subject vehicle is 0.61 m/s (α = 0.61 m/s) for all cases in 

the CAV-MDV free left-lane-changing model, as seen in Figure 3-11.  In the CAV-MDV 

cooperative left-lane-changing model, the default lateral velocity of the subject vehicle is 0.61 m/s 

(α = 0.61 m/s) when the current space headway between the subject vehicle and its leader is greater 

than the critical space headway (s > sc); whereas the default lateral velocity of the subject vehicle 

is 0.76 m/s (α = 0.76 m/s) when the current space headway is smaller than or equal to the critical 

space headway (s ≤ sc), as seen in Figure 3-12.  However, in the CAV-MDV competitive left-lane-

changing model, the default lateral velocity of the subject vehicle is 0.76 m/s (α = 0.76 m/s) when 

the current space headway is greater than the critical space headway (s > sc); while the default 
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lateral velocity of the subject vehicle is 0.91 m/s (α = 0.91 m/s) when the current space headway 

is smaller than or equal to the critical space headway (s ≤ sc), as seen in Figure 3-13.   

 This loop runs until the remaining anticipated lateral displacement for lane change (Δ𝑦𝑛+1) 

in that time step is smaller than the default lateral displacement in the current case where the space 

headway and velocity difference conditions fall into (Δ𝑦𝑛+1 < α m). In this phase, the calculated 

lateral velocity of the subject vehicle in that time step is Δ𝑦𝑛+1 m/s, as displayed by Equation (3-

20), so that the vehicle can complete its lane-changing maneuver by positioning in the middle of 

the target lane. 

𝑑𝑦𝑛+1(𝑡)/𝑑𝑡 = (Δ𝑦𝑛+1) m/s (3-20) 

3.1.1.5 The CAV-CAV Left-Lane-Changing Models 

 If the subject vehicle is anticipated to have a CAV as a potential follower in the target lane, 

the CAV-CAV left-lane-changing model will be triggered. Fundamentally, the structure of this 

model is similar to the CAV-MDV left-lane-changing model; however, the competitive lane-

changing interaction between CAVs was not programmed to occur. The reason is that the CAV-

CAV lane-changing maneuvers are expected to occur only in cooperative characteristics by 

utilizing the benefits of a connected environment to maximize traffic safety. 

At the beginning of this model, the current gap on the target lane on the left (gapi+1) is 

assessed by the algorithm; as determined by Equation (3-14a). The current gap is then used to 

identify whether the anticipated lane-changing maneuver is a free lane change (gapi+1 ≥ gapFree), 

cooperative lane change (LS + gmin ≤ gapi+1 < gapFree), or the next gap needs to be assessed prior 

to the emergence of the lane-changing maneuver (gapi+1 < gmin + LS), as shown in Figure 3-14. 
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If Veh (m+1,i+1) = CAV

If gapi+1 < gmin + LS

 Assess the next gap

If LS1 + gmin   gapi+1 < gapFree

  where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check COOPERATIVE LC conditions
If 

x(n+1,i) - x(m+1,i+1)   LS + gminCC_13  

AND

v(m+1,i+1) - v(n+1,i)   Threshold_13 

GIVEN: Initial Δ     =  .   m (lane width)  

If gapi+1   gapFree

where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i+1)   LS + gminCC_12  

AND

v(m+1,i+1) - v(n+1,i)   Threshold_12

GIVEN: Initial Δ     =  .   m  (lane width)  

Veh (n+1,i) performs LC to 
the left (lane i+1)

t++

COOPERATIVE LC

NO

FREE LC

YESNOYES

Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV
 

Figure 3-14 Flowchart of the CAV-CAV left-lane-changing model 

 In case the algorithm detects that the current gap in the target lane is available for a free 

lane change (gapi+1 ≥ gapFree), firstly, the lag gap is assessed based on Equation (3-4b).  The 

corresponding value of gmin is assigned as gmin_CC12. Secondly, the velocity difference between the 

subject vehicle and the potential follower is assessed, as displayed in Equation (3-21). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_12 (3-21) 

If both of these conditions simultaneously turn out to be true, the free lane-changing 

maneuver to the left lane (lane i+1) will be initiated.  Otherwise, the subject vehicle will assess 

the next gap, as presented in Figure 3-14.  The CAV-CAV free left-lane-changing model is 

illustrated in Figure 3-15. 
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YES [FREE LC] NO

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i+1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i+1)(t)

If s   sc

If gapi+1   gapFree

where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Free LC

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i+1)   LS + gminCC_12

AND

v(m+1,i+1) - v(n+1,i)   Threshold_12 

GIVEN: Initial Δ     =  .   m  (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV

LC completed,
Restart

 

Figure 3-15 CAV- CAV free left-lane-changing model 

Similarly, if the current gap on the target lane is available for a cooperative lane change 

(LS + gmin ≤ gapi+1 < gapFree), the lag gap will be assessed based on Equation (3-4b).  The 

corresponding value of gmin in this case is gmin_CC13. Secondly, the velocity difference between the 

subject vehicle and the potential follower is examined, as presented in Equation (3-22). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_13 (3-22) 

 If both of these conditions are true, the cooperative lane-changing maneuver to the left lane 

(lane i+1) will be initiated. Otherwise, the subject vehicle will assess the next gap, as illustrated 

in Figure 3-14. The CAV-CAV cooperative left-lane-changing model is illustrated in Figure 3-16. 
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YES [COOPERATIVE LC] NO

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.76 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.76 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i+1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i+1)(t)

If s   sc

If LS + gmin   gapi+1 < gapFree

 where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

COOPERATIVE LC

Check COOPERATIVE LC condition
If 

x(n+1,i) - x(m+1,i+1)   LS + gminCC_13  

AND

v(m+1,i+1) - v(n+1,i)   Threshold_13 

GIVEN: Initial Δ     =  .   m  (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

LC completed,
Restart

Restart

Veh (n+1,i) is CAV

Figure 3-16 CAV- CAV cooperative left-lane-changing model 

 All the CAV-CAV left-lane-changing models also begin with the car-following part.  The 

acceleration rate of the subject vehicle in each time step is also determined based on the FVD car-

following model by adopting Equations (3-1), (3-2), or (3-3); depending on the car-following 

conditions in that time step. 

 Once the longitudinal acceleration of the subject vehicle is calculated, the model then 

determines the lateral velocity of the vehicle based on Equation (3-19).  The default lateral velocity 

of the subject vehicle is 0.61 m/s (α = 0.61 m/s) for all cases in the CAV-CAV free left-lane-

changing model, as seen in Figure 3-15.  However, in the CAV-CAV cooperative left-lane-

changing model, the default lateral velocity of the subject vehicle is 0.61 m/s (α = 0.61 m/s) when 
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the current space headway between the subject vehicle and its leader is greater than the critical 

space headway (s > sc); whereas the default lateral velocity of the subject vehicle is 0.76 m/s (α = 

0.76 m/s) when the current space headway is smaller than or equal to the critical space headway 

(s ≤ sc), as seen in Figure 3-16.   

3.1.1.6 The CAV-MDV Right-Lane-Changing Models 

 If the lane drop condition is assessed and it turns out that there is currently no lane drop 

within the distance of 0.8 km ahead of the subject vehicle; the algorithm will then proceed to check 

the conditions for performing lane-changing maneuver to the right, which is the slower lane.  Next, 

if three of the right-lane-changing conditions simultaneously turn out to be true, the lane-changing 

maneuver to the right lane (lane i-1) will be performed by the subject vehicle.  There are two 

possible cases that can occur under this category: 1) the potential follower in the target lane is 

MVD and 2) the potential follower in the target lane is CAV, as presented in Figure 3-17. 

Veh (n+1,i) performs LC to 
the right (lane i-1)

t++

If Veh (m+1,i-1) = CAVIf Veh (m+1,i-1) = MDV
 

Figure 3-17 Two possible cases in the CAV-MDV right-lane-changing model 

 If the anticipated lane change falls into the category that the potential follower in the target 

lane is MDV, first of all, the current gap in the target lane on the right (gapi-1) will be assessed by 

the algorithm in the next step based on Equation (3-14b). Next, the current gap is used to identify 

whether the anticipated lane-changing maneuver is a free lane change (gapi-1 ≥ gapFree), a 

cooperative and competitive lane changes (LS + gmin ≤ gapi-1 < gapFree), or the next gap needs to 

be assessed prior to the occurrence of the lane change (gapi-1 < gmin + LS), as shown in Figure 3-

18. 
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If Veh (m+1,i-1) = MDV

If gapi-1 < gmin + LS

 Assess the next gap

If LS1 + gmin   gapi-1 < gapFree

  where:  gapi-1 = (x(m,i-1) - LS) - x(m+1,i-1)

Check COOPERATIVE LC conditions
If 

x(n+1,i) - x(m+1,i-1)   LS1 + gminCM_15  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_15 

GIVEN: Initial Δ     =  .   m  (lane width)  

If gapi-1   gapFree

where:  gapi-1 = (x(m,i-1) - LS) - x(m+1,i-1)

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS1 + gminCM_14  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_14

GIVEN: Initial Δ     =  .   m  (lane width)  

Veh (n+1,i) performs LC to 
the right (lane i-1)

t++

COOPERATIVE LC

NO

Check COMPETITIVE LC conditions   
If 

x(n+1,i) - x(m+1,i-1)   LS1 + gminCM_16  

AND

Threshold_15 < v(m+1,i-1) - v(n+1,i) < Threshold_16 

GIVEN: Initial Δ     =  .   m  (lane width)  

FREE LC

YESNOYES

Restart

Veh (n+1,i) is CAV

COMPETITIVE LC

NOYES

Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV
 

Figure 3-18 Flowchart of the CAV-MDV right-lane-changing model 

 If the current gap in the target lane is available for a free lane change (gapi-1 ≥ gapFree), 

firstly, the algorithm will assess if the lag gap is greater than or equal to LS + gmin, as shown in 

Equation (3-4a). The corresponding value of gmin in this case is assigned as gmin_CM14 in the 

simulation models. 
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 Secondly, the velocity difference between the subject vehicle and the potential follower in 

the target lane is assessed, as presented in Equation (3-23). 

v(m+1, i-1) - v(n+1, i) ≤ Threshold_14 (3-23) 

YES [FREE LC] NO

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i-1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i-1)(t)

If s   sc

If gapi-1   gapFree

where:  gapi-1 = (x(m,i-1) - LS) - x(m+1,i-1)

Free LC

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS + gminCM_14  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_14 

GIVEN: Initial Δ     =  .   m  (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV

LC completed,
Restart

 

Figure 3-19 CAV-MDV free right-lane-changing model 

 If both of the conditions simultaneously turn to be true, the free lane-changing maneuver 

to the right lane (lane i-1) will be initiated by the subject vehicle in the next step. Otherwise, the 

subject vehicle will assess the next gap and the process will restart back to the beginning of the 

algorithm to recheck the type of the leading vehicle, as presented in Figure 3-19. 
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 Similarly, if the current gap in the target lane is detected to be available for a cooperative 

lane change (LS + gmin ≤ gapi-1 < gapFree), firstly, the lag gap will be assessed using Equation (3-

4a). The corresponding value of gmin in this case is assigned as gmin_CM15 in the simulation models. 

Secondly, the velocity difference between the subject vehicle and the potential follower is 

assessed, as displayed in Equation (3-24). 

v(m+1, i-1) - v(n+1, i) ≤ Threshold_15  (3-24) 

YES [COOPERATIVE LC] NO

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.76 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.76 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i-1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i-1)(t)

If s   sc

If LS + gmin   gapi-1 < gapFree

 where:  gapi-1 = (x(m,i-1) - LS) - x(m+1,i-1)

COOPERATIVE LC

Check COOPERATIVE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS + gminCM_15  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_15 

GIVEN: Initial Δ     =  .    (lane width)  

LC completed,
back to CF Model

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
back to CF Model

Veh (n+1,i) is CAV

Check COMPETITIVE LC 
conditions

LC completed,
back to CF Model

 

Figure 3-20 CAV-MDV cooperative right-lane-changing model 
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 If both of these conditions simultaneously turn to be true, the cooperative lane-changing 

maneuver to the right lane (lane i-1) will be initiated by the subject vehicle in the next step. 

Otherwise, the competitive lane change conditions will be checked, as presented in Figure 3-20. 

 The competitive lane change conditions are assessed in case the cooperative lane change 

conditions are false. Similarly, there are two conditions of longitudinal distance and velocity 

differences between the subject vehicle and the potential follower in the target lane. However, the 

form of the velocity difference condition is different from those in the free and cooperative lane 

change conditions, as illustrated in Figure 3-21. 

YES [COMPETITIVE LC] NO

Lateral:
IF  Δ        0.91 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.91 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.91 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.91 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.76 

m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i-1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i-1)(t)

If s   sc

Check COMPETITIVE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS + gminCM16  

AND

Threshold_15 < v(m+1,i-1) - v(n+1,i) < Threshold_16 

GIVEN: Initial Δ     =  .    (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

LC completed,
Restart

NO

Check COOPERATIVE LC 
conditions

Restart

Veh (n+1,i) is CAV

YES [COOPERATIVE LC]

 

Figure 3-21 CAV-MDV competitive right-lane-changing model 
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 Firstly, the lag gap is assessed based on Equation (3-4a).  The corresponding value of gmin 

in this case is assigned as gmin_CM16 in the simulation models. Secondly, the algorithm then inspects 

the velocity difference between the subject vehicle and the potential follower, as presented in 

Equation (3-25). 

Threshold_15 < v(m+1, i+1) - v(n+1, i) < Threshold_16 (3-25) 

 If both of these conditions simultaneously turn out to be true, the competitive lane-

changing maneuver to the right lane (lane i-1) will be initiated by the subject vehicle in the next 

step. Otherwise, the next gap will be assessed and the algorithm will restart back to the beginning 

to recheck the type of the leading vehicle. 

 All the CAV-MDV right-lane-changing models also begin with the car-following part.  The 

acceleration rate of the subject vehicle in each time step is also determined based on the FVD car-

following model by adopting Equations (3-1), (3-2), or (3-3); depending on the car-following 

conditions in that time step.  Once the longitudinal acceleration of the subject vehicle is calculated, 

the model then determines the lateral velocity of the vehicle based on Equation (3-19).  The default 

lateral velocity of the subject vehicle is 0.61 m/s (α = 0.61 m/s) for all cases in the CAV-MDV 

free right-lane-changing model, as seen in Figure 3-19.  In the CAV-MDV cooperative right-lane-

changing model, the default lateral velocity of the subject vehicle is 0.61 m/s (α = 0.61 m/s) when 

the current space headway between the subject vehicle and its leader is greater than the critical 

space headway (s > sc); whereas the default lateral velocity of the subject vehicle is 0.76 m/s (α = 

0.76 m/s)  when the current space headway is smaller than or equal to the critical space headway 

(s ≤ sc), as seen in Figure 3-20.  However, in the CAV-MDV competitive right-lane-changing 

model, the default lateral velocity of the subject vehicle is 0.76 m/s (α = 0.76 m/s) when the current 

space headway is greater than the critical space headway (s > sc); while the default lateral velocity 

of the subject vehicle is 0.91 m/s (α = 0.91 m/s) when the current space headway is smaller than 

or equal to the critical space headway (s ≤ sc), as seen in Figure 3-21.   

3.1.1.7 The CAV-CAV Right-Lane-Changing Models 

 On the other hand, if the anticipated lane change is in the situation that the potential 

follower is CAV, the CAV-CAV right-lane-changing model will be activated. The structure of this 

model is similar to the CAV-MDV right-lane-changing model; however, the competitive lane-

changing interaction between CAVs was not programmed to occur. Again, the reason is that the 
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CAV-CAV lane-changing maneuvers are expected to occur only in cooperative characteristics by 

utilizing the benefits of connected environment to maximize traffic safety. 

If Veh (m+1,i-1) = CAV

If gapi-1 < gmin + LS

 Assess the next gap

If LS1 + gmin   gapi-1 < gapFree

 where:  gapi-1 = (x(m,i-1) - LS)- x(m+1,i-1)

Check COOPERATIVE LC conditions
If 

x(n+1,i) - x(m+1,i-1)   LS + gminCC_18  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_18 

GIVEN: Initial Δ     =  .   m  (lane width)  

If gapi-1   gapFree

where:  gapi-1 = (x(m,i-1) - LS)- x(m+1,i-1)

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS + gminCC_17  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_17 

GIVEN: Initial Δ     =  .   m  (lane width)  

Veh (n+1,i) performs LC to 
the right (lane i-1)

t++

COOPERATIVE LC

NO

FREE LC

YESNOYES

Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV
 

Figure 3-22 Flowchart of the CAV-CAV right-lane-changing model 

 First of all, the current gap in the target lane on the left (gapi-1) is assessed by the algorithm; 

as determined by Equation (3-14b). The current gap is then used to identify the potential type of 

the lane change, as shown in Figure 3-22. 

 Next, if the algorithm detects that the current gap in the target lane is available for a free 

lane change (gapi-1 ≥ gapFree), firstly, the lag gap is assessed based on Equation (3-4a).  The 

corresponding value of gmin in this case is assigned as gmin_CC17 in the simulation models.  Secondly, 

the velocity difference between the subject vehicle and the potential follower is assessed, as 

displayed in Equation (3-26). 

v(m+1, i-1) - v(n+1, i) ≤ Threshold_17 (3-26) 



71 
 

YES [FREE LC] NO

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i-1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i-1)(t)

If s   sc

If gapi-1   gapFree

where:  gapi-1 = (x(m,i-1) - LS)- x(m+1,i-1)

Free LC

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS + gminCC17  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_17 

GIVEN: Initial Δ     =  .   m  (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV

LC completed,
Restart

 

Figure 3-23 CAV-CAV free right-lane-changing model 

 If both of these conditions are true, the free lane-changing maneuver to the right lane (lane 

i-1) will be initiated. Otherwise, the subject vehicle will be made to assess the next gap, as 

presented in Figure 3-23. 

 Similarly, if the current gap in the target lane is detected to be available for a cooperative 

lane change (LS + gmin ≤ gapi-1 < gapFree), the lag gap in the target lane will be assessed using 

Equation (3-4a). The corresponding value of gmin in this case is assigned as gmin_CC18 in the 

simulation models.  The velocity difference between the subject vehicle and the potential follower 

is assessed, as presented in Equation (3-27). 

v(m+1, i-1) - v(n+1, i) ≤ Threshold_18 (3-27) 
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YES [COOPERATIVE LC] NO

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.76 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ     <  0.76 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Lateral:
IF  Δ        0.76 m;

     (𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ        0.61 m;

     (𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ      t+1 = 
Δ      t        m

t++

Lateral:
IF  Δ     <  0.61 m;

     (𝑡) 𝑑𝑡 = 
(Δ    )

t++

Longitudinal: 
      (𝑡) 𝑑𝑡 = 

           (𝑡)  +   𝑉(𝑠)     

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
       (𝑡) 𝑑𝑡 = 
           (𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i-1)(t)   v(n+1, i)(t) If v(n+1, i)(t) > v(m, i-1)(t)

If s   sc

If LS + gmin   gapi-1 < gapFree

 where:  gapi-1 = (x(m,i-1) - LS)- x(m+1,i-1)

COOPERATIVE LC

Check COOPERATIVE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS + gminCC18

AND

v(m+1,i-1) - v(n+1,i)   Threshold_18 

GIVEN: Initial Δ     =  .    (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

LC completed,
Restart

Restart

Veh (n+1,i) is CAV

 

Figure 3-24 CAV-CAV cooperative right-lane-changing model 

 If both conditions are true, the cooperative lane-changing maneuver to the right lane (lane 

i-1) will be initiated. Otherwise, the subject vehicle will assess the next gap, as illustrated in Figure 

3-24. 

 All the CAV-CAV right-lane-changing models also begin with the car-following part, 

followed by examining the lane-changing conditions.  The acceleration rate of the subject vehicle 

in each time step is also determined based on the FVD car-following model by adopting Equations 

(3-1), (3-2), or (3-3); depending on the car-following conditions in that time step. 

 When the longitudinal acceleration of the subject vehicle is calculated, the model then 

determines the lateral velocity of the vehicle based on Equation (3-19).  The default lateral velocity 
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of the subject vehicle is 0.61 m/s (α = 0.61 m/s) for all cases in the CAV-CAV free right-lane-

changing model, as seen in Figure 3-23.  However, in the CAV-CAV cooperative right-lane-

changing model, the default lateral velocity of the subject vehicle is 0.61 m/s (α = 0.61 m/s) when 

the current space headway between the subject vehicle and its leader is greater than the critical 

space headway (s > sc); whereas the default lateral velocity of the subject vehicle is 0.76 m/s (α = 

0.76 m/s) when the current space headway is smaller than or equal to the critical space headway 

(s ≤ sc), as seen in Figure 3-24. 

 If any time the status of the subject vehicle is examined and it turns out that the vehicle is 

the first vehicle traversing the lane or the space headway between the subject vehicle and its 

predecessor is greater than or equal to the free-flow space headway (s ≥ sfree flow), the vehicle will 

be automatically switched from the Automated Car-Following/Lane-Changing Algorithm to the 

Automated Platoon-Leading/Lane-Changing Algorithm.   

3.1.2 Automated Platoon-Leading/Lane-Changing Algorithm 

 The Automated Platoon-Leading/Lane-Changing Algorithm is the sub-algorithm that 

controls the longitudinal and lateral movements of a CAV when the vehicle is the platoon leader, 

without any leading vehicle ahead or with a leading vehicle maintaining the space headway of 

greater than or equal to the free-flow headway (sfree flow).  Subsequently, the status of the subject 

vehicle is denoted by veh(1, i), indicating that the vehicle is the platoon leader in lane i.  

 The algorithm starts by recognizing that the subject vehicle itself occupying lane i, denoted 

by veh(1, i) is a CAV.  Next, the algorithm proceeds to check if there is a vehicle traveling ahead 

in the lane it is occupying. If the vehicle perceives that there is a vehicle ahead, the current space 

headway (s) between the vehicle and its leading vehicle will be checked whether it exceeds the 

free-flow space headway (sfree flow).  If there is no leading vehicle in the occupying lane (lane i) or 

the current space headway between the vehicles is greater than or equal to the defined free-flow 

headway (s ≥ sfree flow), the subject vehicle will accelerate to free flow speed, as shown in the 

diagram below.  The acceleration rate of the subject vehicle (veh(1, i)) at this stage is determined 

based on the difference between the maximum allowable velocity in the traffic stream (or the speed 

limit) and the longitudinal velocity of the subject vehicle, multiplied by the constant value  , as 

seen in Equation (3-28). 
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𝑑𝑣1(𝑡)/𝑑𝑡 = κ[𝑣𝑚 – 𝑣1(𝑡)] (3-28) 

 However, if the space headway between the subject vehicle and its leading vehicle is found 

to be smaller than the free-flow space headway, the algorithm will promptly be alternated to the 

Automated Car-Following/Lane-Changing Algorithm, as shown in Figure 3-25. 

Veh (1,i) is CAV

ACCELERATE TO FREE FLOW SPEED

  1(𝑡) 𝑑𝑡 =   𝑣     1(𝑡) 

Check Space Headway with the Vehicle Ahead
IF

s   s free flow

OR
No Vehicle Ahead

YES NO

Switch to 
Automated Car-Following/Lane-

Changing Algorithm  

Figure 3-25 Mechanism for switching between the automated platoon-leading/lane-changing 

algorithm and the automated car-following/lane-changing algorithm 

 In case the subject vehicle is indicated as the platoon leader and the acceleration rate is 

determined as explained, the algorithm then proceeds to check if there is a lane drop within 0.8-

km ahead of the vehicle. If there is currently no lane drop ahead within the distance defined, the 

subject vehicle will be programmed to continue on the current lane. In addition, the time step will 

proceed by one second to mark the end of the lane-drop checking process and the algorithm will 

return to check the space headway with its leading vehicle as a loop. However, if there is a lane 

drop ahead of the vehicle within the 0.8-km distance, the algorithm will automatically proceed to 

perform the mandatory lane change to the left (lane i+1) to continue on the freeway without 

stopping. Likewise, the time step will be counted forward by one second and the algorithm will 

proceed to check the lane-changing conditions in the next phase, as presented in Figure 3-26. 
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Check Lane Drop Conditions
IF

Dlane drop       km

Mandatory LC Continue on the current lane

t++Veh (1,i) performs LC to 
the left (lane i+1)

t++

ACCELERATE TO FREE FLOW SPEED

  1(𝑡) 𝑑𝑡 =   𝑣     1(𝑡) 

YES NO

Check Space Headway with the Vehicle Ahead
IF

s   sfree flow

OR
No Vehicle Ahead

YES NO

Switch to 
Automated Car-Following/Lane-

Changing Algorithm

 

Figure 3-26 Flowchart of the automated platoon-leading/lane-changing algorithm 

 In case the subject vehicle is forced by the lane drop condition to perform a lane change to 

the left (lane i+1), there are two possible cases that can occur under this circumstance: 1) the 

potential follower in the target lane (veh(m+1, i+1)) is MVD and 2) the potential follower in the target 

lane is CAV, as shown in Figure 3-27. 

If Veh (m+1,i+1) = CAV

Veh (1,i) performs LC to 
the left (lane i+1)

t++

If Veh (m+1,i+1) = MDV
 

Figure 3- 27 Possible lane-changing scenarios for platoon-leading vehicles 
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3.1.2.1 The CAV-MDV Left-Lane-Changing Models for Platoon-Leading Vehicles 

 In case the anticipated lane change is occurring when the potential follower is a MDV, the 

current gap in the target lane on the left (gapi+1) is assessed by the algorithm in the first place. The 

current gap in the target lane on the left is defined as the difference in the longitudinal 

displacements between the rear-end of the potential leading vehicle (x(m,i+1) - LS) and the front-end 

of the potential follower (x(m+1,i+1)), where x(m+1, i+1) ≤ x(1, i) ≤ x(m, i+1), as displayed in Equation (3-

14a). 

 There are three possible lane-changing cases that can occur while the gap in the target lane 

is being assessed: 1) free lane change (gapi+1 ≥ gapFree), 2) cooperative or competitive lane changes 

(LS + gmin ≤ gapi+1 < gapFree), and 3) the next gap needs to be assessed (gapi+1 < gmin + LS). 

 In case the subject vehicle is programmed by the algorithm to assess the next gap, the 

vehicle proceeds to adjust its acceleration rate towards the average speed of the target lane (lane i 

+1) prior to returning to check the lane drop condition whether the distance between the vehicle 

and the lane drop ahead is less than or equal to 0.8 km, as a loop as illustrated in Figure 3-28.  The 

adjusted acceleration rate towards the average speed of the target lane for the subject vehicle is 

determined by the difference between the longitudinal velocity subject vehicle (𝑣1(t)) and the 

average longitudinal velocity of the target lane (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖+1) multiplied by the constant value k, as 

displayed in Equation (3-29). 

𝑑𝑣1(𝑡)/𝑑𝑡 =   [𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖+1 − 𝑣1(𝑡)] (3-29) 
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If Veh (m+1,i+1) = MDV

If gapi+1 < gmin + LS

 Assess the next gap

If LS + gmin   gapi+1 < gapFree

  where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check COOPERATIVE LC conditions
If 

x(1,i) - x(m+1,i+1)   LS + gminCM_20  

AND

v(m+1,i+1) - v(1,i)   Threshold_20

GIVEN: Initial Δ 1 =  .   m  

If gapi+1   gapFree

where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check FREE LC condition
If 

x(1,i) - x(m+1,i+1)   LS + gminCM_19  

AND

v(m+1,i+1) - v(1,i)   Threshold_19 

GIVEN: Initial Δ 1 =  .   m  

Veh (1,i) performs LC to the 
left (lane i+1)

t++

COOPERATIVE LC

NO

Check COMPETITIVE LC conditions   
If 

x(1,i) - x(m+1,i+1)   LS + gminCM_21  

AND

Threshold_20 < v(m+1,i+1) - v(1,i) < Threshold_21 

GIVEN: Initial Δ 1 =  .   m  

FREE LC

YESNOYES

COMPETITIVE LC

NOYES

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED 
OF THE TARGET LANE (i+1)

  1(𝑡) 𝑑𝑡 = 
                   1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED 
OF THE TARGET LANE (i+1)

  1(𝑡) 𝑑𝑡 = 
                   1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED 
OF THE TARGET LANE (i+1)

  1(𝑡) 𝑑𝑡 = 
                   1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km

 

Figure 3-28 Flowchart of the CAV-MDV left-lane-changing model for platoon-leading vehicles 
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 If the algorithm detects that the current gap in the target lane is available for a free lane 

change (gapi+1 ≥ gapFree), two conditions of longitudinal distance and velocity differences between 

the subject vehicle and the potential follower in the target lane will be inspected prior to the 

initiation of lane change to ensure a safe lane-changing maneuver. These two conditions are 

elaborated as follows: 

 Firstly, for the longitudinal distance difference, the algorithm assesses if the lag gap is 

greater than or equal to LS + gmin, as shown in Equation (3-30). The corresponding value of gmin in 

this case is assigned as gmin_CM19 in the simulation models. 

x(1, i) – x(m+1, i+1) ≥ LS + gmin (3-30) 

 Secondly, the velocity difference between the subject vehicle and the potential follower is 

assessed, as presented in Equation (3-31). 

v(m+1, i+1) – v(1, i) ≤ Threshold_19 (3-31) 

 If both of these conditions simultaneously turn out to be true, the free lane-changing 

maneuver to the left lane (lane i+1) will be initiated by the subject vehicle in the next step. In 

addition, the anticipated lateral displacement for lane change (Δ𝑦𝑛+1) will be initiated as 3.66 m 

(12 ft), which is the lane width used in the model. Otherwise, the subject vehicle will proceed to 

adjust its acceleration rate towards the average speed of the target lane prior to returning to check 

the lane drop condition whether the distance between the vehicle and the lane drop ahead is less 

than or equal to 0.8 km, as a loop, as presented in Figure 3-29.  The adjusted acceleration rate 

towards the average speed of the target lane for the subject vehicle is determined by Equation (3-

29). 
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YES [FREE LC]

NO

Lateral:
IF  Δ 1    0.61 m;

  1(𝑡) 𝑑𝑡 = 0. 1 m/s

AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1 <  0.61 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Lateral:
IF  Δ 1 <  0.61 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Lateral:
IF  Δ 1    0.61 m;

  1(𝑡) 𝑑𝑡 = 0.61m/s

AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1    0.61 m;

  1(𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1 <  0.61 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Longitudinal: 
   1(𝑡) 𝑑𝑡 = 

        1(𝑡)  +   𝑉(𝑠)     

Longitudinal: 
    1(𝑡) 𝑑𝑡 = 
        1(𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
    1(𝑡) 𝑑𝑡 = 
        1(𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i+1)(t)   v(1, i)(t) If v(1, i)(t) > v(m, i+1)(t)

If s   sc

If gapi+1   gapFree

where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Free LC

Check FREE LC condition
If 

x(1,i) - x(m+1,i+1)   LS + gminCM_19 

AND
v(m+1,i+1) - v(1,i)   Threshold_19

GIVEN: Initial Δ     =  .   m (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

LC completed,
Restart

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED OF 
THE TARGET LANE (i+1)

  1(𝑡) 𝑑𝑡 =   𝑣                1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km

 

Figure 3-29 CAV- MDV free left-lane-changing model for platoon-leading vehicles 

 Similarly, if the current gap in the target lane is detected to be available for a cooperative 

lane change (LS + gmin ≤ gapi+1 < gapFree), firstly, the algorithm will assess if the lag gap is greater 

than or equal to LS + gmin, as displayed by Equation (3-30). The corresponding value of gmin in this 

case is assigned as gmin_CM20 in the simulation models.  Secondly, the velocity difference between 

the subject vehicle and the potential follower is examined, as presented in Equation (3-32). 

v(m+1, i+1) – v(1, i) ≤ Threshold_20 (3-32) 
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 If both of these conditions simultaneously turn to be true, the cooperative lane-changing 

maneuver to the left lane (lane i+1) will be initiated by the subject vehicle in the next step. 

Otherwise, the competitive lane change conditions will be assessed, as presented in Figure 3-30. 

YES [COOPERATIVE LC] NO

Lateral:
IF  Δ 1    0.76 m;

  1(𝑡) 𝑑𝑡 = 0.   m/s

AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1 <  0.76 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Lateral:
IF  Δ 1 <  0.76 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Lateral:
IF  Δ 1    0.76 m;

  1(𝑡) 𝑑𝑡 = 0.   m/s

AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1    0.61m;

  1(𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1 <  0.61 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Longitudinal: 
   1(𝑡) 𝑑𝑡 = 

        1(𝑡)  +   𝑉(𝑠)     

Longitudinal: 
    1(𝑡) 𝑑𝑡 = 
        1(𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
    1(𝑡) 𝑑𝑡 = 
        1(𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i+1)(t)   v(1, i)(t) If v(1, i)(t) > v(m, i+1)(t)

If s   sc

If LS + gmin   gapi+1 < gapFree

 where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

COOPERATIVE LC

Check COOPERATIVE LC condition
If 

x(1,i) - x(m+1,i+1)   LS + gminCM_20  

AND
v(m+1,i+1) - v(1,i)   Threshold_20 

GIVEN: Initial Δ     =  .   m  (lane width)  

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

Check COMPETITIVE LC 
conditions

LC completed,
Restart

 

Figure 3-30 CAV- MDV cooperative left-lane-changing model for platoon-leading vehicles 

 The competitive lane change conditions are assessed in case the cooperative lane change 

conditions are false. There are two conditions of longitudinal distance and velocity differences 

between the subject vehicle and the potential follower in the target lane. The longitudinal distance 

difference condition is identical among the models; however, the form of the velocity difference 

condition is different from those in the free and cooperative lane change conditions. 
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 Firstly, the longitudinal distance difference between the subject vehicle (x(1, i)) and the 

potential follower in the target lane (x(m+1, i+1)) is assessed based on Equation (3-30). The 

corresponding value of gmin in this case is assigned as gmin_CM21 in the simulation models.   

Secondly, for the velocity difference, the algorithm then inspects if the difference between the 

current velocity of the subject vehicle (v(1, i)) and the current velocity of the potential follower in 

the target lane (v(m+1, i+1)) falls between these thresholds, as presented in Equation (3-33). 

Threshold_20 < v(m+1, i+1) – v(1, i) < Threshold_21 (3-33) 

YES [COMPETITIVE LC]

NO

Lateral:
IF  Δ 1    0.91 m;

  1(𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1 <  0.91 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Lateral:
IF  Δ 1 <  0.91 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Lateral:
IF  Δ 1    0.91 m;

  1(𝑡) 𝑑𝑡 = 0. 1 
m/s
AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1    0.76 m;

  1(𝑡) 𝑑𝑡 = 0.   
m/s
AND

Δ 1, t+1 = 
Δ 1, t        m

t++

Lateral:
IF  Δ 1 <  0.76 m;

  1(𝑡) 𝑑𝑡 = (Δ 1)

t++

Longitudinal: 
   1(𝑡) 𝑑𝑡 = 

        1(𝑡)  +   𝑉(𝑠)     

Longitudinal: 
    1(𝑡) 𝑑𝑡 = 
        1(𝑡)  +   𝑉(𝑠)      +   (       

Longitudinal: 
    1(𝑡) 𝑑𝑡 = 
        1(𝑡)  +   𝑉(𝑠)      +   (        

If s > sc

If v(m, i+1)(t)   v(1, i)(t) If v(1, i)(t) > v(m, i+1)(t)

If s   sc

Check COMPETITIVE LC condition
If 

x(1,i) - x(m+1,i+1)   LS + gminCM_21  

AND
Threshold_20 < v(m+1,i+1) - v(1,i) < Threshold_21 

GIVEN: Initial Δ     =  .   m  (lane width)    

LC completed,
Restart

Veh (n+1,i) is CAVVeh (n+1,i) is CAV

LC completed,
Restart

Veh (n+1,i) is CAV

LC completed,
Restart

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED OF 
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  1(𝑡) 𝑑𝑡 =   𝑣                1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km

NO

Check COOPERATIVE LC 
conditions
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Figure 3-31 CAV- MDV competitive left-lane-changing model for platoon-leading vehicles 
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 If both of these conditions simultaneously turn out to be true, the competitive lane-

changing maneuver to the left lane (lane i+1) will be initiated by the subject vehicle in the next 

step. Otherwise, the subject vehicle will proceed to adjust its acceleration rate towards the average 

speed of the target lane prior to returning to check the lane drop condition whether the distance 

between the vehicle and the lane drop ahead is less than or equal to 0.8 km, as a loop, as shown in 

Figure 3-31.  The adjusted acceleration rate towards the average speed of the target lane for the 

subject vehicle is determined by Equation (3-29). 

 All the CAV-MDV left-lane-changing models for platoon-leading vehicles begin with the 

car-following part, followed by determining the lateral movement conditions. The acceleration 

rate of the subject vehicle in each time step is also determined based on the FVD car-following 

model by adopting Equations (3-1), (3-2), or (3-3); depending on the car-following conditions in 

that time step. 

 After the longitudinal acceleration of the subject vehicle is determined, the model then 

determines the lateral velocity of the vehicle based on the remaining anticipated lateral 

displacement for a lane change (Δ𝑦1).  When the remaining anticipated lateral displacement for 

lane change in the time step is greater than or equal to β m (Δ𝑦𝑛+1 ≥ β m), where β is the default 

lateral displacement in the current case in which the space headway and velocity difference 

conditions fall into, the lateral velocity of the subject vehicle in that time step will be β m/s, as 

displayed by Equation (3-34). 

𝑑𝑦1(𝑡)/𝑑𝑡 = β m/s (3-34) 

 It means that the vehicle will displace in the lateral direction by β m by the end of the time 

step. Therefore, the remaining anticipated lateral displacement for lane change for the next time 

step (Δ𝑦1, t+1) will be the previous anticipated lateral displacement for lane change (Δ𝑦1, t) 

subtracted by the distance of β m, as displayed by Equation (3-35). 

Δ𝑦1, t+1 = Δ𝑦1, t – β m (3-35) 

 The default lateral velocity of the subject vehicle is 0.61 m/s (β = 0.61 m/s) for all cases in 

the CAV-MDV free left-lane-changing model for platoon-leading vehicles, as seen in Figure 3-29.  

In the CAV-MDV cooperative left-lane-changing model for platoon-leading vehicles, the default 

lateral velocity of the subject vehicle is 0.61 m/s (β = 0.61 m/s) when the current space headway 
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between the subject vehicle and its leader is greater than the critical space headway (s > sc); 

whereas the default lateral velocity of the subject vehicle is 0.76 m/s (β = 0.76 m/s) when the 

current space headway is smaller than or equal to the critical space headway (s ≤ sc), as seen in 

Figure 3-30.  However, in the CAV-MDV competitive left-lane-changing model for platoon-

leading vehicles, the default lateral velocity of the subject vehicle is 0.76 m/s (β = 0.76 m/s) when 

the current space headway is greater than the critical space headway (s > sc); while the default 

lateral velocity of the subject vehicle is 0.91 m/s (β = 0.91 m/s) when the current space headway 

is smaller than or equal to the critical space headway (s ≤ sc), as seen in Figure 3-31.   

 Next, the process then starts over to check the current space headway (s) between the 

subject vehicle and the potential leader in the target lane, as a loop.  This loop runs until the 

remaining anticipated lateral displacement for a lane change (Δ𝑦1) in that time step is smaller than 

the default lateral displacement in the current case where the space headway and velocity 

difference conditions fall into (Δ𝑦1 < β m). In this phase, the calculated lateral velocity of the 

subject vehicle in that time step is Δ𝑦1 m/s, as displayed by Equation (3-36), so that the vehicle 

can complete its lane-changing maneuver by positioning in the middle of the target lane at the end 

of this time step. 

𝑑𝑦1(𝑡)/𝑑𝑡 = (Δ𝑦1) m/s (3-36) 

 Further, the time step is then proceeded by one at the end of this step to indicate the 

completion of the CAV-MDV left lane-changing model for platoon-leading vehicles. 

Subsequently, the algorithm then restarts back to the beginning of the algorithm by recognizing its 

type of the vehicle and rechecking the type of the new leader in this newly changed lane in the 

next phase. 

 However, if either of the conditions of longitudinal distance or velocity differences 

between the subject vehicle and the potential follower in the target lane, or both, are not met at the 

beginning of this model; the subject vehicle will proceed to adjust its acceleration rate towards the 

average speed of the target lane based on Equation (3-29). Finally, the algorithm will proceed to 

recheck the lane drop condition whether the distance between the vehicle and the lane drop ahead 

is less than or equal to 0.8 km, as a loop.  
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3.1.2.2 The CAV-CAV Left-Lane-Changing Models for Platoon-Leading Vehicles 

 On the other hand, if the potential follower of the lane-changing platoon leader in the target 

lane is a CAV, the CAV-CAV left-lane-changing model for platoon-leading vehicles will be 

triggered to activate. Fundamentally, the structure of this model is similar to the CAV-MDV left-

lane-changing model; however, the competitive lane-changing interaction between CAVs was not 

programmed to occur. The reason is that the CAV-CAV lane-changing maneuvers are expected to 

occur only in cooperative characteristics by utilizing the benefits of connected environment to 

maximize traffic safety on freeways. 

 In this model, first of all, the current gap in the target lane on the left (gapi+1) is assessed 

by the algorithm, as determined by Equation (3-14a). The current gap is then adopted to justify 

whether the anticipated lane-changing maneuver is a free lane change (gapi+1 ≥ gapFree), a 

cooperative lane change (LS + gmin ≤ gapi+1 < gapFree), or the next gap needs to be assessed prior 

to the emergence of the lane-changing maneuver (gapi+1 < gmin + LS). 

 If the subject vehicle is programmed by the algorithm to assess the next gap, the vehicle 

will adjust its acceleration rate towards the average speed of the target lane (lane i +1) prior to 

returning to check the lane drop condition whether the distance between the vehicle and the lane 

drop ahead is less than or equal to 0.8 km, as a loop, as seen in Figure 3-32.  The adjusted 

acceleration rate towards the average speed of the target lane for the subject vehicle is determined 

by Equation (3-29). 
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If Veh (m+1,i+1) = CAV

If gapi+1 < gmin + LS

 Assess the next gap

If LS + gmin   gapi+1 < gapFree

  where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)
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x(1,i) - x(m+1,i+1)   LS + gminCC_23  

AND

v(m+1,i+1) - v(1,i)   Threshold_23 

GIVEN: Initial Δ 1 =  .   m  

If gapi+1   gapFree

where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check FREE LC condition
If 

x(1,i) - x(m+1,i+1)   LS + gminCC_22 

AND

v(m+1,i+1) - v(1,i)   Threshold_22 

GIVEN: Initial Δ 1 =  .   m

Veh (1,i) performs LC to the 
left (lane i+1)

t++

COOPERATIVE LC

NO

FREE LC

YESNOYES

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED 
OF THE TARGET LANE (i+1)

  1(𝑡) 𝑑𝑡 = 
                   1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED 
OF THE TARGET LANE (i+1)

  1(𝑡) 𝑑𝑡 = 
                   1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km

ADJUST ACCELERATION RATE 
TOWARDS THE AVERAGE SPEED 
OF THE TARGET LANE (i+1)

  1(𝑡) 𝑑𝑡 = 
                   1(𝑡) 

Restart

Check Lane Drop Conditions

IF  Dlane drop       km
 

Figure 3-32 Flowchart of the CAV-CAV left-lane-changing model for platoon-leading vehicles 

 However, if the algorithm detects that the current gap in the target lane is available for a 

free lane change (gapi+1 ≥ gapFree), firstly, the lag gap will be assessed based on Equation (3-30), 

where x(m+1, i+1) ≤ x(1, i) ≤ x(m, i+1).  Secondly, the algorithm then assesses the velocity difference 

between the subject vehicle and the potential follower, as presented in Equation (3-37). 

v(m+1, i+1) - v(1, i) ≤ Threshold_22 (3-37) 
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 If both of these conditions simultaneously turn out to be true, the free lane-changing 

maneuver to the left lane (lane i+1) will be initiated in the next step. Otherwise, the subject vehicle 

will proceed to adjust its acceleration rate towards the average speed of the target lane, via 

Equation (3-29), prior to returning to check the lane drop condition whether the distance between 

the vehicle and the lane drop ahead is less than or equal to 0.8 km, as a loop, as illustrated in Figure 

3-33.   

YES [FREE LC]

NO

Lateral:
IF  Δ 1    0.61 m;
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Figure 3-33 The CAV-CAV free left-lane-changing model for platoon-leading vehicles 
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 Finally, if the current gap in the target lane is detected to be available for a cooperative lane 

change (LS + gmin ≤ gapi+1 < gapFree), firstly, the lag gap between the subject vehicle and the 

potential follower in the target lane will be assessed based on Equation (3-30).  Secondly, the 

velocity difference between the subject vehicle and the potential follower in the target lane is 

assessed, as displayed in Equation (3-38). 

v(m+1, i+1) - v(1, i) ≤ Threshold_23  (3-38) 
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Figure 3-34 CAV- CAV cooperative left-lane-changing model for platoon-leading vehicles 
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 If both of these conditions simultaneously turn to be true, the cooperative lane-changing 

maneuver to the left lane (lane i+1) will be initiated. Otherwise, the subject vehicle will proceed 

to adjust its acceleration rate towards the average speed of the target lane, based on Equation (3-

29), prior to returning to check the lane drop condition whether the distance between the vehicle 

and the lane drop ahead is less than or equal to 0.8 km, as a loop, as presented in Figure 3-34.   

 All the CAV- CAV left-lane-changing models for platoon-leading vehicles also begin with 

the car-following process, followed by assessing the lane-changing conditions.  The acceleration 

rate of the subject vehicle in each time step is determined based on the FVD car-following model 

by adopting Equations (3-1), (3-2), or (3-3); depending on the car-following conditions in that time 

step. 

 Since the longitudinal acceleration of the subject vehicle is calculated, the model then 

determines the lateral velocity of the vehicle based on Equation (3-34).  The default lateral velocity 

of the subject vehicle is 0.61 m/s (β = 0.61 m/s) for all cases in the CAV- CAV free left-lane-

changing model for platoon-leading vehicles, as seen in Figure 3-33.  However, in the CAV-CAV 

cooperative left-lane-changing model for platoon-leading vehicles, the default lateral velocity of 

the subject vehicle is 0.61 m/s (β = 0.61 m/s) when the current space headway between the subject 

vehicle and its leader is greater than the critical space headway (s > sc); whereas the default lateral 

velocity of the subject vehicle is 0.76 m/s (β = 0.76 m/s) when the current space headway is smaller 

than or equal to the critical space headway (s ≤ sc), as seen in Figure 3-34.   

 This process then starts over to check the current space headway (s) between the subject 

vehicle and the potential leader in the target lane as a loop.  This loop runs until the remaining 

anticipated lateral displacement for lane change (Δ𝑦1) in that time step is smaller than the default 

lateral displacement in the current case where the space headway and velocity difference 

conditions fall into (Δ𝑦1 < β m). In this phase, the calculated lateral velocity of the subject vehicle 

in that time step is Δ𝑦1 m/s, as displayed by Equation (3-36). 

 Further, the time step is then proceeded by one at the end of this step to indicate the 

completion of the CAV-CAV left lane-changing model for platoon-leading vehicles. 

Consequently, the algorithm then restarts back to the beginning of the algorithm by rechecking the 

type of the new leader in this newly changed lane in the next phase. 
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 However, if either of the conditions of longitudinal distance or velocity differences 

between the subject vehicle and the potential follower in the target lane, or both, are not met at 

the beginning of this model; the subject vehicle will proceed to adjust its acceleration rate 

towards the average speed of the target lane based on Equation (3-29). In the end, the algorithm 

will proceed to recheck the lane drop condition whether the distance between the vehicle and the 

lane drop ahead is less than or equal to 0.8 km, as a loop.  

3.2 The MDV Algorithm 

 The MDV algorithm is a set of logic for replicating the driving behavior of MDVs in both 

the longitudinal and lateral directions in a traffic stream.  The algorithm is composed of the car-

following/cruising and lane-changing models, with the conditional linkage between these models, 

for governing the decision-making of MDV when interacting with the surrounding vehicles and 

the geometry of a freeway segment.   

 Basically, the structure of the MDV algorithm and the logic behind it are comparable to 

those of the CAV algorithm. However, the decisive thresholds in most of the decision-making 

equations and the stochasticity of the parameters in the MDV algorithm differentiate this algorithm 

from the CAV algorithm, in which the parameters were designed to be more deterministic as the 

driving behavior of this type of vehicle are speculated to be. 

No vehicle ahead
OR

s > sfree flow

Veh (n+1,i) is MDV

MDV Platoon-Leading/Lane-
Changing Algorithm

MDV Car-Following/Lane-
Changing Algorithm

s    sfree flow

 

Figure 3-35 Flowchart of the MDV algorithm 

 The MDV algorithm is also composed of two sub-algorithms: 1) MDV Car-

Following/Lane-Changing Algorithm and 2) MDV Platoon-Leading/Lane-Changing Algorithm. 

The subject vehicle is programmed to switch between these sub-algorithms based on the current 

space headway (s) between the vehicle and its leader.  The MDV Car-Following/Lane-Changing 
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Algorithm is activated when the space headway between the vehicle and its leader is smaller than 

the free-flow space headway (sfree flow). Otherwise, the vehicle is assigned to follow the MDV 

Platoon-Leading/Lane-Changing Algorithm when there is no leading vehicle ahead or when the 

space headway between the vehicle and its leader is greater than sfree flow, as seen in Figure 3-35. 

3.2.1 MDV Car-Following/Lane-Changing Algorithm 

 Although the MDV algorithm shares the same structure with the CAV algorithm, the major 

differences between these algorithms are the values of the decisive thresholds in most of the 

decision-making equations and the level of stochasticity of the parameters in the MDV algorithm.  

Another major difference between these two algorithms is that the ability of the subject vehicle to 

identify the types of the interacting vehicles, whether they are MDV or CAV, is diminished in the 

MDV algorithm. This assumption is established to replicate the typical driving behavior of the 

conventional vehicles due to the lack of connection and communication capabilities that the CAVs 

are assumed to possess.  Consequently, the subject vehicle, veh(n+1, i) in the MDV Car-

Following/Lane-Changing Algorithm follows the mechanism of the Automated Car-

Following/Lane-Changing Algorithm without considering the difference between the type of its 

leader occupying the same lane, veh(n, i), as shown in Figure 3-36. 

Check space headway with the vehicle ahead

IF

s < sfree flow

YES NO

Switch to 
MDV Platoon-Leading/Lane-

Changing Algorithm

Veh (n+1,i) is MDV

MDV Car-Following 
Model

 

Figure 3-36 Flowchart of the MDV Car-Following/Lane-Changing Algorithm 
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3.2.1.1 The MDV Car-Following Model 

 The structure of the MDV Car-Following Model is basically the same as Automated Car-

Following Model, with the elimination of the cooperative gap creation model between CAVs and 

the capability to identify the types of the interacting vehicles. 

 The MDV Car-Following Model used in this study was adopted from the Full Velocity 

Difference (FVD) car-following model and confined Full Velocity Difference model (c-FVD) with 

an adjustment in the sensitivity value (𝜆), as described in Equation (2-7) with the application of all 

the default parameters to replicate the driving behavior of MDVs.  The value of the sensitivity 

parameter (𝜆) of 0.13 is applied in this algorithm instead of 0.5 suggested in the original FVD 

model, based on the results from the calibrated model. The critical space headway (sc) of 30 meters 

and the vehicle length of 4.5 meters were applied. The sensitivity constant (κ) and the empirical 

value of V(𝑠) are adopted from the c-FVD model in section 2.2.1 (Yu et al., 2019; Qu et al., 2019); 

however, the values of the calibrated parameters V1 is modified as 23.610. The acceleration rate 

of the subject vehicle is generated based on the current space headway (s) and the velocity 

difference between vehicles (∆𝑣), as presented in Figure 3-3. 

 Once the acceleration rate of the subject vehicle is determined for a time step based on the 

conditions in FVD model, the algorithm proceeds to check whether its current leader still exists in 

the current lane (lane i). This process follows the same logic of the CAV car-following model 

described in section 3.1.1.1, as illustrated in Figure 3-4. 

 If the leading vehicle is still occupying the current lane, the model will check if there is a 

lane change performing ahead by a vehicle from the adjacent lane (lane i+1 or lane i-1).  Although 

following the same logic, this process in the MDV car-following model is different from the CAV 

car-following model due to the assumption that types of the lane-changing vehicle ahead cannot 

be detected by the MDV.  As a result, if the lane changing maneuver is being performed ahead of 

the MDV by any types of vehicle, the subject vehicle will only recognize the lane-changing vehicle 

as a new leader and the order of the subject vehicle and all the vehicles behind in the platoon will 

be moved down by one position, while the time step is forwarded by one second.  However, if 

there is no lane change occurring ahead of the subject vehicle, the algorithm will proceed to assess 

the distance to the lane drop whether it is smaller than 0.8 km, which is the same as in the CAV 

car-following model, as seen in Figure 3-37. 
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Check if veh (m,i+1) or veh (m,i-1) 
performing lane-changing maneuver 
ahead of the vehicle into lane i (LC)

Restart

Check Lane Drop Conditions
IF

Dlane drop       km

YES

Restart, 
n+1 = n+2 for all 
vehicles behind

( n: n   n+1)

t++

Veh (n+1,i) is MDV

NO

 

Figure 3-37 Process for checking the occurrence of lane-changing maneuver ahead of MDV 

3.2.1.2 Linkage between the Car-Following and the Lane-Changing Models for MDVs 

 The linkage between the car-following and the lane-changing models for MDVs is quite 

similar to the linkage between these models for CAVs, except that a speed difference condition for 

the right lane change is eliminated and the desired speed (𝑣d) of an MDV is used instead of the 

current speed in some speed difference conditions.  In addition, the desired speed is assigned for 

each MDV as a permanent attribute of that vehicle in this algorithm.  Based on the study performed 

by Hill et al., the mean desired speed sampled from 46 drivers on freeways was found to be 

111.89±7.83 km/h. Therefore, this value will be assigned to the MDVs in this model in a stochastic 

manner. Besides, the average number of discretionary lane changes of 0.74±0.60 times per 

kilometers was also found from the field experiment in that study (Hill et al., 2015).  

 The algorithm initially proceeds to check whether there is a lane drop within 0.8 km ahead 

of the vehicle. If there is currently no lane drop ahead within the distance, the discretionary lane-

changing conditions will be assessed in the next step. However, if there is a lane drop ahead of the 

vehicle within the specific distance, the algorithm will automatically proceed to perform the 

mandatory lane change to the left.  

 In case there is no lane drop within 0.8 km ahead of the subject vehicle, the conditions for 

performing lane-changing maneuver to the right (slower lane) is assessed. The decision for 
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performing a lane change to the right will occur only if the following conditions simultaneously 

are true.  

 Firstly, the velocity difference is checked whether the average velocity of the current lane 

(𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖) is actually greater than the average velocity of the target lane on the right (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖-

1) by the threshold, as shown in Equation (3-39). 

𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖 − 𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖-1  > Threshold_4M (3-39) 

 Secondly, the velocity difference is checked if the current velocity of the leading vehicle 

in the current lane (𝑣𝑛(𝑡)) exceeds the desired speed of the subject vehicle (𝑣d 𝑛+1(𝑡)) by 

Threshold_5M, as shown in Equation (3-40). 

𝑣𝑛(𝑡) − 𝑣d 𝑛+1(𝑡) > Threshold_5M (3-40) 

 Otherwise, the algorithm will proceed to check the conditions for performing a lane-

changing maneuver to the left (faster lane).  The decision for performing a lane change to the left 

will occur only if three of these conditions simultaneously turn out to be true.  

 Firstly, the velocity difference between the permitted maximum longitudinal velocity or 

the speed limit (𝑣m) and the current velocity of the subject vehicle (𝑣𝑛+1(𝑡)) is assessed if the margin 

is greater than the threshold, as seen in Equation (3-41). If the permitted maximum longitudinal 

velocity (𝑣m) is greater than the current velocity of the subject vehicle (𝑣𝑛+1(𝑡)) by Threshold_6M, 

the output of this condition will be returned as true. 

𝑣m − 𝑣𝑛+1(𝑡) > Threshold_6M (3-41) 

 Secondly, the velocity difference is assessed if the average velocity of the target lane on 

the left (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖+1) is actually greater than the average velocity of the current lane (𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖) 

by Threshold_7M, as shown in the Equation (3-42). 

𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖+1  − 𝑣𝐴𝑉𝐺 𝑙𝑎𝑛𝑒_𝑖  > Threshold_7M (3-42) 

 Finally, the velocity difference is checked if the current velocity of the leading vehicle in 

the current lane (𝑣𝑛(𝑡)) is smaller than the desired speed of the subject vehicle (𝑣d 𝑛+1(𝑡)) by 

Threshold_8M, as shown in Equation (3-43). 

𝑣d 𝑛+1(𝑡) − 𝑣𝑛(𝑡) > Threshold_8M (3-43) 
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Veh (n+1,i) performs LC to 
lane i-1

t++

NO 
( Check Discretionary LC )

Check Lane Drop Conditions
IF

Dlane drop       km

YES 
( Mandatory LC )

Veh (n+1,i) performs LC 
to lane i+1

t++

Check LC to the right conditions: IF

                           -1  > Threshold_4M

AND

  (𝑡)    d   (𝑡) > Threshold_5M

NO

Check LC to the left conditions: IF

 m       (𝑡) > Threshold_6M

AND
                              > Threshold_7M

AND
  d   (𝑡)     (𝑡)  > Threshold_8M

Veh (n+1,i) stays in 
lane i
 t++

YES

YES NO

Restart

Veh (n+1,i) is MDV
 

Figure 3-38 Linkage between the car-following and the lane-changing models for MDVs 

 Otherwise, the subject vehicle will be assigned to maintain in the current lane (lane i) and 

the algorithm will be restarted back to the beginning to recheck the type of the leading vehicle, as 

presented in Figure 3-38.  These parameters will eventually be adjusted in the simulation run to 

make the calibrating parameter, which is capacity in this study, of the model and the field data fit 

each other in the calibration process.   



95 
 

3.2.1.3 The MDV Left-Lane-Changing Model 

 Besides the values of the parameters used, the difference between the left-lane-changing 

models for MDVs and CAVs is that the capability to recognize the types of the surrounding 

vehicles is eliminated in the MDV left-lane-changing model.  Furthermore, the stochasticity of the 

parameters used in the MDV left-lane-changing model is another difference.  However, the 

fundamental structure of the MDV left-lane-changing model still follows the similar structure used 

in the CAV left-lane-changing models. 

 The model starts by assessing the current gap in the target lane on the left (gapi+1), as 

determined by Equation (3-14a). Three cases of the current gap are also used to identify whether 

the anticipated lane-changing maneuver is a free lane change (gapi+1 ≥ gapFree), a cooperative and 

competitive lane changes (LS + gmin ≤ gapi+1 < gapFree), or the next gap needs to be assessed prior 

to the occurrence of the lane-changing maneuver (gapi+1 < gmin + LS), as shown in Figure 3-39. 

If the algorithm detects that the current gap in the target lane is available for a free lane 

change (gapi+1 ≥ gapFree), two conditions of the longitudinal distance and velocity differences 

between the subject vehicle and the potential follower in the target lane will be assessed prior to 

the initiation of lane changing maneuver. The free lane changing maneuver will occur only if these 

two conditions simultaneously turn to be true.  The longitudinal distance difference condition in 

the MDV free left-lane-changing model is determined by Equation (3-4b); however, the minimum 

gap accepted for MDVs in this model is programmed to be a stochastic parameter, instead of the 

deterministic ones applied for CAVs. The corresponding value of gmin in this case is assigned as 

gmin_M24 in the simulation models. 

Based on the study conducted by Hill et al., the mean lag gap accepted under uncongested 

and congested conditions were found to be 26.60±13.76 meters and 13.92±9.44 meters, 

respectively, with gamma distribution (Hill et al., 2015). Therefore, one of these values of gmin will 

be assigned for MDVs in this model in a stochastic manner, based on the immediate density in the 

vicinity of the vehicle.  To be specific, if the density in the vicinity of 200 meters surrounding the 

vehicle (100-meter distance ahead and behind the vehicle) is greater than 25 veh/km/lane (40 

veh/mi/lane), the lag gap of 13.92±9.44 meters will be accepted under congested conditions; 

otherwise, the lag gap of 26.60±13.76 meters will be accepted under uncongested conditions. 



96 
 

If gapi+1 < gmin + LS

 Assess the next gap

If LS1 + gmin   gapi+1 < gapFree

  where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check COOPERATIVE LC conditions
If 

x(n+1,i) - x(m+1,i+1)   LS + gminM_25 

AND

v(m+1,i+1) - v(n+1,i)   Threshold_25

GIVEN: Initial Δ     =  .   m  (lane width)  

If gapi+1   gapFree

where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i+1)   LS + gminM_24  

AND

v(m+1,i+1) - v(n+1,i)   Threshold_24

GIVEN: Initial Δ     =  .   m  (lane width)  

Veh (n+1,i) performs LC to 
the left (lane i+1)

t++

COOPERATIVE LC

NO

Check COMPETITIVE LC conditions   
If 

x(n+1,i) - x(m+1,i+1)   LS + gminM_26  

AND

Threshold_25 < v(m+1,i+1) - v(n+1,i) < Threshold_26 

GIVEN: Initial Δ     =  .   m  (lane width)  

FREE LC

YESNOYES

Restart

Veh (n+1,i) is MDV

COMPETITIVE LC

NOYES

Restart

Veh (n+1,i) is MDV

Restart

Veh (n+1,i) is MDV
 

Figure 3-39 Flowchart of the MDV left-lane-changing model 

 In addition, the velocity difference conditions in the MDV free left-lane-changing model 

is displayed by Equation (3-44). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_24  (3-44) 

 Once the current gap in the target lane is detected to be available for a cooperative lane 

change (LS + gmin ≤ gapi+1 < gapFree), the cooperative lane changing maneuver will occur only if 
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the following two conditions simultaneously turn out to be true.  Firstly, the lag gap is assessed, 

as shown in Equation (3-4b).  A lag gap of 26.60±13.76 meters or 13.92±9.44 meters will be 

assigned for gmin of MDVs in a stochastic manner, depending on whether the traffic is under 

uncongested or congested conditions.  The corresponding value of gmin in this case is assigned as 

gmin_M25 in the simulation models.  Secondly, the velocity difference conditions in the MDV 

cooperative left-lane-changing model is assessed, as displayed by Equation (3-45). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_25  (3-45) 

 The competitive lane change conditions are assessed in case the cooperative lane change 

conditions are false for the same range of gap in the target lane. The competitive lane changing 

maneuver will occur only if the following two conditions simultaneously turn out to be true.  

Firstly, the lag gap is examined, as shown in Equation (3-4b).  Similar to the cooperative lane 

change, a lag gap of 26.60±13.76 meters or 13.92±9.44 meters will be assumed for gmin of MDVs 

in a stochastic manner, depending on whether the traffic is under uncongested or congested 

conditions.  Secondly, the velocity difference conditions in the MDV competitive left-lane-

changing model is assessed, as displayed by Equation (3-46). 

Threshold_25 < v(m+1, i+1) - v(n+1, i) < Threshold_26  (3-46) 

 When the longitudinal acceleration of the subject vehicle is calculated, the model then 

proceeds to determine the lateral velocity of the vehicle based on the remaining anticipated lateral 

displacement for lane change (Δ𝑦𝑛+1), which is initially set as 3.66 m (12 ft) by the beginning of 

the lane-changing process.  This process for the MDV left-lane-changing models was designed to 

be consistent with the comparable process in the CAV left-lane-changing models, as described in 

section 3.1.1.3. 

3.2.1.4 The MDV Right-Lane-Changing Model 

 Similar to the MDV left-lane-changing model; the stochasticity of the parameters also 

exists in the MDV right-lane-changing model, as well as the elimination of the capability of the 

subject vehicle to recognize the types of the surrounding vehicles. 

 The model begins with the assessment of the current gap in the target lane on the right 

(gapi-1), as determined by Equation (3-14b). Again, three cases of the current gap are also used to 

identify whether the anticipated lane-changing maneuver is a free lane change (gapi-1 ≥ gapFree), a 
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cooperative and competitive lane changes (LS + gmin ≤ gapi-1 < gapFree), or the next gap needs to 

be assessed prior to the occurrence of the lane-changing maneuver (gapi-1 < gmin + LS), as shown 

in Figure 3-40. 

If gapi-1 < gmin + LS

 Assess the next gap

If LS1 + gmin   gapi-1 < gapFree

  where:  gapi-1 = (x(m,i-1) - LS) - x(m+1,i-1)

Check COOPERATIVE LC conditions
If 

x(n+1,i) - x(m+1,i-1)   LS1 + gminM_28 

AND

v(m+1,i-1) - v(n+1,i)   Threshold_28 

GIVEN: Initial Δ     =  .   m (lane width)  

If gapi-1   gapFree

where:  gapi-1 = (x(m,i-1) - LS) - x(m+1,i-1)

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i-1)   LS1 + gminM_27  

AND

v(m+1,i-1) - v(n+1,i)   Threshold_27

GIVEN: Initial Δ     =  .   m (lane width)  

Veh (n+1,i) performs LC to 
the right (lane i-1)

t++

COOPERATIVE LC

NO

Check COMPETITIVE LC conditions   
If 

x(n+1,i) - x(m+1,i-1)   LS1 + gminM_29

AND

Threshold_28 < v(m+1,i-1) - v(n+1,i) < Threshold_29 

GIVEN: Initial Δ     =  .   m (lane width)  

FREE LC

YESNOYES

Restart

Veh (n+1,i) is CAV

COMPETITIVE LC

NOYES

Restart

Veh (n+1,i) is CAV

Restart

Veh (n+1,i) is CAV
 

Figure 3-40 Flowchart of the MDV right-lane-changing model 
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 If the algorithm detects that the current gap in the target lane is available for a free lane 

change (gapi-1 ≥ gapFree), two conditions of the longitudinal distance and velocity differences 

between the subject vehicle and the potential follower in the target lane will be assessed prior to 

the initiation of the lane changing maneuver. The free lane changing maneuver will occur only if 

these two conditions simultaneously are true.  The longitudinal distance difference condition in 

the MDV free right-lane-changing model is determined by Equation (3-4a); however, the 

minimum gap accepted for MDVs in this model is programmed to be a stochastic parameter. A 

lag gap of 26.60±13.76 meters or 13.92±9.44 meters will be assigned for gmin of MDVs in a 

stochastic manner, based on the density in the 200-meter vicinity of the MDV.  The corresponding 

value of gmin in this case is assigned as gmin_M27 in the simulation models. Secondly, the velocity 

difference conditions in the MDV free left-lane-changing model is displayed by Equation (3-47). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_27  (3-47) 

 Once the current gap in the target lane is detected to be available for a cooperative lane 

change (LS + gmin ≤ gapi-1 < gapFree), the cooperative lane changing maneuver will occur only if 

the following two conditions simultaneously turn out to be true.  Firstly, the longitudinal distance 

difference between the subject vehicle and the potential follower in the target lane is assessed, as 

shown in Equation (3-4a).  A lag gap of 26.60±13.76 meters or 13.92±9.44 meters will be assigned 

for gmin of MDVs in a stochastic manner, depending on whether the traffic is under uncongested 

or congested conditions.  The corresponding value of gmin in this case is assigned as gmin_M28 in the 

simulation models.  Secondly, the velocity difference conditions in the MDV cooperative right-

lane-changing model is assessed, as displayed by Equation (3-48). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_28  (3-48) 

 The competitive lane change conditions are assessed in case the cooperative lane change 

conditions are false for the same range of gap in the target lane. The competitive lane changing 

maneuver will occur only if the following two conditions simultaneously are true.  Firstly, the 

longitudinal distance difference between the subject vehicle and the potential follower in the target 

lane is assessed, as shown in Equation (3-4a).  Similar to the cooperative lane change, a lag gap of 

26.60±13.76 meters or 13.92±9.44 meters will be assumed for gmin of MDVs in a stochastic 

manner, depending on whether the traffic is under uncongested or congested conditions.  Secondly, 
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the velocity difference conditions in the MDV competitive right-lane-changing model is assessed, 

as displayed by Equation (3-49). 

Threshold_28 < v(m+1, i+1) - v(n+1, i) < Threshold_29  (3-49) 

 The model then proceeds to determine the lateral velocity of the vehicle based on the 

remaining anticipated lateral displacement for a lane change (Δ𝑦𝑛+1).  This process for the MDV 

right-lane-changing models was designed to be consistent with the comparable process in the CAV 

right-lane-changing models, as described in section 3.1.1.6. 

3.2.2 MDV Platoon-Leading/Lane-Changing Algorithm 

 The MDV Platoon-Leading/Lane-Changing Algorithm is the sub-algorithm that controls 

the longitudinal and lateral movements of an MDV when the vehicle is the platoon leader, without 

any leading vehicle ahead or with a leading vehicle maintaining the space headway of greater than 

or equal to the free-flow headway (sfree flow).  Similar to the Automated Platoon-Leading/Lane-

Changing Algorithm, MDVs in this case are programmed to accelerate to their free-flow speeds.  

 However, unlike the Automated Platoon-Leading/Lane-Changing Algorithm where the 

CAV is programmed to accelerate to the speed limit (𝑣𝑚); the acceleration rate of the platoon-

leading  MDV in this algorithm is set to accelerate to the desired speed (𝑣d), which is a specific 

attribute that varies from vehicle to vehicle.  The acceleration rate of the subject vehicle at this 

stage is determined by Equation (3-50). 

𝑑𝑣1(𝑡)/𝑑𝑡 =  [𝑣d – 𝑣1(𝑡)] (3-50) 

Nevertheless, if the space headway between the subject vehicle and its leading vehicle is 

found to be smaller than the free-flow space headway, the algorithm will automatically be switched 

to the MDV Car-Following/Lane-Changing Algorithm, as shown in Figure 3-41. 

 Similar to the case in which a CAV is a platoon leader, the algorithm always assesses if 

there is a lane drop within 0.8 km ahead of the vehicle. If there is currently no lane drop ahead 

within the distance defined, the subject vehicle will be programmed to continue on the current 

lane.  However, if there is a lane drop within the 0.8-km distance, the vehicle will find opportunities 

to perform the mandatory lane change to the left (lane i+1). Likewise, the time step will be 
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proceeded by one second and the vehicle will assess the lane-changing conditions in the next phase, 

as presented in Figure 3-42. 

Veh (1,i) is MDV

ACCELERATE TO DESIRED SPEED

  1(𝑡) 𝑑𝑡 =   𝑣d    1(𝑡) 

Check Space Headway with the Vehicle Ahead
IF

s   s free flow

OR
No Vehicle Ahead

YES NO

Switch to 
MDV Car-Following/Lane-

Changing Algorithm  

Figure 3-41 Mechanism for switching between the MDV Platoon-Leading/Lane-Changing 

Algorithm and the MDV Car-Following/Lane-Changing Algorithm 
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Check Lane Drop Conditions
IF

Dlane drop       km

Mandatory LC Continue on the current lane

t++Veh (1,i) performs LC to 
the left (lane i+1)

t++

ACCELERATE TO DESIRED SPEED

  1(𝑡) 𝑑𝑡 =   𝑣d    1(𝑡) 

YES NO

Check Space Headway with the Vehicle Ahead
IF

s   sfree flow

OR
No Vehicle Ahead

YES NO

Switch to 
MDV Car-Following/Lane-

Changing Algorithm

 

Figure 3-42 Flowchart of the MDV Platoon-Leading/Lane-Changing Algorithm 

3.2.2.1 The MDV Left-Lane-Changing Models for Platoon-Leading Vehicles 

 Since the lane drop is always designed to be at the rightmost lane, the platoon leaders only 

need to change lane to the left to avoid the lane drop.  The model starts by assessing the current 

gap in the target lane on the left (gapi+1), as was determined by Equation (3-14a).  Like the case 

when the vehicle is in a car-following/cruising mode, there are three possible cases for a lane-

changing maneuver based on the available gap: a free lane change (gapi+1 ≥ gapFree), cooperative 

and competitive lane changes (LS + gmin ≤ gapi+1 < gapFree), or the next gap needs to be assessed 

prior to the occurrence of the lane-changing maneuver (gapi+1 < gmin + LS), as shown in Figure 3-

43. 
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If gapi+1 < gmin + LS

 Assess the next gap

If LS1 + gmin   gapi+1 < gapFree

  where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check COOPERATIVE LC conditions
If 

x(n+1,i) - x(m+1,i+1)   LS + gminM_31

AND

v(m+1,i+1) - v(n+1,i)   Threshold_31

GIVEN: Initial Δ     =  .   m (lane width)  

If gapi+1   gapFree

where:  gapi+1 = (x(m,i+1) - LS) - x(m+1,i+1)

Check FREE LC condition
If 

x(n+1,i) - x(m+1,i+1)   LS + gminM_30

AND

v(m+1,i+1) - v(n+1,i)   Threshold_30

GIVEN: Initial Δ     =  .   m (lane width)  

Veh (n+1,i) performs LC to 
the left (lane i+1)

t++

COOPERATIVE LC

NO

Check COMPETITIVE LC conditions   
If 

x(n+1,i) - x(m+1,i+1)   LS + gminM_32 

AND

Threshold_31 < v(m+1,i+1) - v(n+1,i) < Threshold_32 

GIVEN: Initial Δ     =  .   m (lane width)  

FREE LC

YESNOYES

Restart

Veh (n+1,i) is MDV

COMPETITIVE LC

NOYES

Restart

Veh (n+1,i) is MDV

Restart

Veh (n+1,i) is MDV  

Figure 3-43 Flowchart of the MDV left-lane-changing model 

 If the algorithm detects that the current gap in the target lane is available for a free lane 

change (gapi+1 ≥ gapFree), two conditions of the longitudinal distance and velocity differences 

between the subject vehicle and the potential follower in the target lane will be assessed prior to 

the initiation of the lane changing maneuver. The free lane changing maneuver will occur only if 

these two conditions simultaneously are true.  The longitudinal distance difference condition in 

the MDV free left-lane-changing model for platoon-leaders is determined by Equation (3-30); 

however, the minimum gap accepted for MDVs in this model is programmed to be a stochastic 

parameter instead of the deterministic ones applied for CAVs. A lag gap of 26.60±13.76 meters or 
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13.92±9.44 meters will be assigned for gmin of MDVs in a stochastic manner, depending on whether 

the traffic is under uncongested or congested conditions.  The corresponding value of gmin in this 

case is assigned as gmin_M30 in the simulation models. Secondly, the velocity difference conditions 

in the MDV free left-lane-changing model for platoon-leaders is displayed by Equation (3-51).  

v(m+1, i+1) - v(n+1, i) ≤ Threshold_30 (3-51) 

 When the current gap in the target lane is detected to be available for a cooperative lane 

change (LS + gmin ≤ gapi+1 < gapFree), the cooperative lane changing maneuver will occur only if 

the following two conditions simultaneously turn out to be true.  Firstly, the longitudinal distance 

difference between the subject vehicle and the potential follower in the target lane is assessed, as 

shown in Equation (3-30).  The value of gmin of 26.60±13.76 or 13.92±9.44 meters will be assigned 

for MDVs in this model in a stochastic manner.  The corresponding value of gmin in this case is 

assigned as gmin_M31 in the simulation models.  Secondly, the velocity difference conditions in the 

MDV cooperative left-lane-changing model for platoon-leaders is assessed, as displayed by 

Equation (3-52). 

v(m+1, i+1) - v(n+1, i) ≤ Threshold_31 (3-52) 

 The competitive lane change conditions are assessed in case the cooperative lane change 

conditions are false for the same range of gap in the target lane. The competitive lane changing 

maneuver will occur only if the following two conditions simultaneously turn out to be true.  

Firstly, the longitudinal distance difference between the subject vehicle and the potential follower 

in the target lane is assessed, as shown in Equation (3-30).  Similar to the cooperative lane change, 

the value of gmin of 26.60±13.76 or 13.92±9.44 meters will be assigned for MDVs in this model in 

a stochastic manner.  Secondly, the velocity difference conditions in the MDV competitive left-

lane-changing model for platoon-leaders is assessed, as displayed by Equation (3-53). 

Threshold_31 < v(m+1, i+1) - v(n+1, i) < Threshold_32 (3-53) 

 When the longitudinal acceleration of the subject vehicle is calculated, the model then 

proceeds to determine the lateral velocity of the vehicle based on the remaining anticipated lateral 

displacement for lane change (Δ𝑦𝑛+1), which is initially set as 3.66 m (12 ft) by the beginning of 

the lane-changing process.  This process for the MDV left-lane-changing models for platoon-
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leaders was designed to be consistent with the comparable process in the automated left-lane-

changing models for platoon-leaders, as explained in section 3.1.2.1. 

3.3 Summary of the Parameters in CAV and MDV Algorithms 

 The calibrated parameters used in the car-following and lane-changing models of the 

proposed algorithms are shown in Tables 3-1 and 3-2, respectively. 

Table 3-1 Car-following parameters applied in the CAV and MDV algorithms 

Car-Following Parameter Value 

Speed Limit (m/s) 33.5 

Constant k (CAV) 0.30 

Constant k (MDV) 0.41 

Critical Space Headway (m) 30 

Free Flow Space Headway (m) 200 

CAV sensitivity constant 0 

MDV sensitivity constant 0.13 

Max Deceleration rate (m/s2) -9.8 

Max Acceleration rate (m/s2) 9.8 

Desired Speed (m/s) 31.08±2.175 

Gapfree 30 

V1 (MDV) 23.610 

V2 (MDV) 15.997 

C1 (MDV) 0.066 

C2 (MDV) 1.508 

V1 (CAV) 31.500 

V2 (CAV) 1.997 

C1 (CAV) 0.066 

C2 (CAV) 1.508 
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Table 3-2 Lane-changing parameters applied in the CAV and MDV algorithms 

No. 
Threshold 

(CAV) 
Threshold_M 

(MDV) 
gminC  

(CAV lag gap) 
Uncongested gminM 

(MDV lag gap) 
Congested gminM  
(MDV lag gap) 

1 3.00 - 18.00 - - 

2 3.75 - 20.00 - - 

3 5.00 - - - - 

4 2.50 10.00 - - - 

5 2.00 10.00 - - - 

6 10.00 6.00 - - - 

7 0 10.00 - - - 

8 0 10.00 - - - 

9 3.00 - 18.00 - - 

10 3.75 - 20.00 - - 

11 5.00 - 25.00 - - 

12 3.00 - 18.00 - - 

13 3.75 - 20.00 - - 

14 3.00 - 18.00 - - 

15 3.75 - 20.00 - - 

16 5.00 - 25.00 - - 

17 3.00 - 18.00 - - 

18 3.75 - 20.00 - - 

19 3.00 - 18.00 - - 

20 3.75 - 20.00 - - 

21 5.00 - 25.00 - - 

22 3.00 - 18.00 - - 

23 3.75 - 20.00 - - 

24 2.50 - - 24.70±13.76 13.92±9.44 

25 3.75 - - 24.70±13.76 13.92±9.44 

26 5.36 - - 24.70±13.76 13.92±9.44 

27 2.50 - - 24.70±13.76 13.92±9.44 

28 3.75 - - 24.70±13.76 13.92±9.44 

29 5.36 - - 24.70±13.76 13.92±9.44 

30 2.50 - - 24.70±13.76 13.92±9.44 

31 3.75 - - 24.70±13.76 13.92±9.44 

32 5.36 - - 24.70±13.76 13.92±9.44 
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CHAPTER 4 METHODOLOGY 
 

 This chapter presents the details on the experimental studies to evaluate the proposed 

algorithms via simulation.  The simulation model development phase was started by coding and 

implementing the proposed CAV and MDV algorithms via JAVA programming language, 

followed by designing the roadway network for testing the traffic simulation. In addition, the 

parallel experiment of mixed traffic simulation in VISSIM was also conducted to provide a 

comparison and investigate the realism of the proposed model. Next, the scenario of the 100% 

MDV traffic was calibrated with field data on a comparable roadway network to validate the 

realism of the designed MDV characteristics prior to testing the mixed traffic scenarios.  Finally, 

the mixed traffic scenarios of various CAV penetration rates were simulated in JAVA and VISSIM 

to measure the changes in roadway capacity and travel times produced by the simulation runs.   

4.1 Simulation Model Development 

4.1.1 Model Implementation in JAVA 

 The proposed CAV and MDV algorithms were coded via JAVA programming language in 

Eclipse, which is a JAVA programming platform, to replicate the driving behavior of the MDVs 

and the assumed characteristics of the CAVs on freeways.  Fundamentally, the vehicle in the 

simulation is viewed as an object, in which its attributes are influenced by the interacting vehicles 

in real time. Therefore, JAVA was selected as a programming medium due to its capability to 

develop the object-oriented applications.  As a result, each vehicle in the simulation was coded as 

an object which possesses specific attributes; such as the type of the vehicle, longitudinal 

displacement, velocity, acceleration rate, occupying lane, lane-changing status, and elapsed time 

of the vehicle in the simulation run.     

 A virtual one directional three-lane freeway segment with a lane drop was developed in 

JAVA to replicate the longitudinal dimension of the roadway.  The length of the roadway segment 

and the location of the lane drop on the segment were programmed to be adjustable to provide 

flexibility when simulating various traffic scenarios.  Furthermore, the vehicles in the simulation 

were programmed to be stochastically generated based on the user-defined traffic volume and the 
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negative exponentially-distributed interarrival time, which is the characteristic of arrivals in nature, 

according to the queuing theory (Winston and Goldberg, 2004). 

 The proportion between the CAVs and MDVs in a scenario, along with the volume per 

lane, were also programmed to be adjustable to evaluate the corresponding performance measures 

of the mixed traffic. In addition, the simulation time of each run was coded to be modifiable. 

Furthermore, the parameters in the CAV and MDV algorithms were coded to be adjustable to 

support the user-defined inputs and provide flexibility in the model calibration process.  The logs 

of the longitudinal displacement and occupying lane of all the vehicles in the simulation runs were 

programmed to be exportable in the form of a spreadsheet for the purpose of data analysis.  

 To do so, JAVA packages, which work jointly and simultaneously, were created in Eclipse 

to categorize simulation entities and collect relevant classes for each entity (Table 4.1). The classes 

in these packages were assigned to run in conjunction with each other to simulate the traffic 

scenarios and produce the results. 

Table 4-1 The JAVA packages and their descriptions 

JAVA package name Description 

CarType.java Classifies vehicles as MDV or CAV 

Car.java Represents the classes and attributes of a vehicle 

Roadway.java  Contains attributes of the virtual roadway segment 

Lane.java Represents lanes in the roadway network 

Simulator.java Contains codes for the car-following and lane-changing models of 

MDVs and CAVs to emulate the interactions between vehicles in traffic 

LaneChangeType.java Classifies types of lane changing maneuver 

ReleaseSchedule.java Controls the arrivals of vehicles in traffic 

IntervalOutput.java Creates the intervals for fitting-in the resultant performance measures 

SimulationResults.java Displays the collected performance measures 

 

 All equations and conditions associated with each entity were then coded to the related 

package. The codes were compiled and run to figure out and resolve the error messages until the 

syntaxes of the whole program are logical. 
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4.1.2 Traffic Simulation Models in VISSIM 

 VISSIM 11 was used to simulate the mixed traffic scenarios since this software has the 

ability to simulate the characteristics of various types of AVs. The characteristics of the default 

car, based on Wiedemann 99 car-following model and the existing lane-changing parameters, were 

adopted for the MDVs in VISSIM. In addition, the CAVs were modeled based on the default 

characteristic of the all-knowing AVs in VISSIM, which is based on the Wiedemann 99 car-

following model. The desired speed of the MDVs was assumed to be 111.89±7.83 km/h to match 

with the desired speed used for MDVs in the JAVA simulation. This was done by adjusting the 

probability distribution of the desired speed function based on normal distribution. The desired 

speed of CAVs in VISSIM was adjusted to 120 km/h to pair with the same desired speed applied 

for CAVs in the JAVA platform. 

4.2 Test Network Design 

 Since this study aims to evaluate the effect of the CAV algorithm on freeway capacity, a 

roadway network with a bottleneck was created.  A three-lane tangent freeway segment of 4-

kilometers length with a lane drop (3-to-2 configuration) at the 3rd kilometer measured from the 

beginning of the segment was applied in both simulation platforms. The lane width was 3.66 m 

(12 ft), which is the base condition for lane width of a freeway, was adopted (Roess et al., 2011). 

In addition, the speed limit of 120 km/h was adopted for the freeway segment to bound the 

maximum longitudinal velocity available for the vehicles. Virtual speed detectors and vehicle 

counters were placed 40 meters upstream and downstream of the lane drop location to collect data 

in the simulation runs. The freeway segment was designed as a single extended section with 0% 

grade; therefore, the effects of grade was not tested.  In addition, the effects of the lateral clearance 

and the curvature of the freeway segment were neglected in this study due to the limitation of the 

models used. The schematic of the proposed freeway segment is illustrated in Figure 4-1. 
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Figure 4-1 The proposed 3-lane freeway segment with a lane drop for testing the scenarios 

4.3 Model Calibration 

 Next, the traffic scenario of 100% MDVs was calibrated in both JAVA and VISSIM using 

speed and flow field data until the acceptable statistical parameter was achieved.  Speed and 

throughput were two main performance measures used to calibrate the models.  The speed-flow 

data (shown in Figure 4-2) were adopted from a lane drop bottleneck on a German freeway, with 

comparable configuration (Brilon et al., 2005). Traffic data were collected based on 5-minute 

intervals during a period of one year and the lane drop capacity was found to be 4,284 veh/h, or 

2,142 veh/h/ln (Brilon et al., 2005). The Brilon’s speed-flow data were extracted using 

WebPlotDigitizer 4.2, which is a tool to extract the underlying numerical data of graphs (Rohatgi, 

2019), to obtain the raw data of the scatterplot.  

 

Figure 4-2 Speed-flow diagram used for calibrating the base models (Brilon, 2005) 
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 Root Mean Square Error (RMSE) was used as a main statistical indicator to evaluate the 

model calibrations. Since fluctuations around the mean is in the nature of traffic phenomena, 

penalizing small errors might lead to an over-specified model. Therefore, penalizing large values 

of RMSE is practical in the context of stochastic traffic modeling (Hollander and Liu, 2008). For 

the RMSE calculation the raw data were divided into intervals based on the throughput range of 

20 veh/h/ln. Next, the average speed of the datapoints within each interval was determined to 

represent the corresponding speed of the throughput interval. Ultimately, the datapoints of the 

calculated average speed of the raw data in each interval and the mid-value of the throughput 

interval were applied to represent the field data in the model calibration process. 

4.3.1 Calibration Method for JAVA Simulation Model 

 The field-measured speed-flow data from Brilon et al., (2005) were used to calibrate the 

100% MDV traffic scenario. Speed and throughput data were collected at 5-minute intervals and 

measured slightly downstream of the lane drop location. The simulation time of each run was set 

as one hour, with a time step of one second, to obtain datapoints for a specific demand volume. 

The datapoint obtained during the first 5-minute interval of every simulation run was discarded to 

avoid including the datapoints produced during the time that the steady state of traffic has not yet 

been reached. Therefore, 11 datapoints were obtained from each simulation run. The values of the 

throughput in vehicles per hour per lane and its corresponding space-mean speed were extracted 

for each time interval from each run. 

 Each parameter in the model was then adjusted and run to test for the sensitivity and 

impacts of the parameter on the resultant speed and throughput of the 100% MDV scenario. Once 

the positive and negative impacts of each parameter on speed and throughput were perceived, the 

viable range of the parameter was scoped for running the simulation model in the further steps.  

Initially, the models were run for the purpose of reaching the capacity in the region of around 2,100 

– 2,200 veh/h/ln; in order to closely match with the field capacity of 2,142 veh/h/ln. Other speed-

related parameters were then readjusted to calibrate the speed-flow diagram.  The parameters 

which were found to considerably affect the speed and throughput were: sensitivity function (λ), 

sensitivity constant (κ), acceleration rates, optimal velocity parameters (C1, C2, V1, and V2), critical 

space headway (sc), and desired speed (vd). Consequently, these parameters were mainly adjusted 

in the model to fit the generated speed-flow diagram with the field data. 
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 Next, each complete simulation with a specific set of parameters was run 65 times with the 

same set of various demand volumes ranging from 100 veh/h/ln to 2,000 veh/h/ln to acquire a 

speed-flow plot. Therefore, each resultant speed-flow diagram contains 715 datapoints (N = 715).  

The speed-flow datapoints were then plotted to produce a speed-flow diagram and the RMSE and 

the R-square of the simulation were calculated.  

 Eventually, the best-fit model was found to produce an RMSE of 4.78 km/h; along with 

the capacity of 2,131 veh/h/ln; which was 0.5 percent, or 11 veh/h/ln, smaller than the capacity of 

the field data. In addition, the calibrated model yielded the R2 of 0.90 with the corresponding p-

value of < 0.001, as shown in Figure 4-3.  

 

Figure 4-3 The calibrated speed-flow diagram of JAVA simulation model 

4.3.2 Calibration Method for VISSIM Simulation Model 

 The calibration method for the 100% MDV traffic scenario in VISSIM followed a similar 

process with the calibration in JAVA. Initially, the designed freeway network with a 4-kilometer 

length with a bottleneck at the third kilometer (3-to-2 lane configuration) was created in VISSIM, 

using connectors to connect the 3-lane and 2-lane freeway links together.  Next, a group of data 

collectors were placed at the bottleneck and 40-meter downstream of the bottleneck to collect 

average speed, vehicle count, and delays in each interval for further analyses. Travel time 

measurements were also placed on the links to collect the average travel time of vehicles in each 

interval, as seen in Figure 4-4.   



113 
 

 

Figure 4-4 The freeway segment with data collectors created in VISSIM 

 Next, vehicle inputs were added at the entry lanes of the network to generate vehicles in 

the traffic stream. A 5-minute interval was also established to collect the space-mean speed and 

throughput data in each simulation run. In addition, the desired speed profile of the MDVs was 

established to follow the normal distribution of 111.89±7.83 km/h, which is the desired speed 

assumed for MDVs in the JAVA simulation.  Once the network, detectors, and the desired speed 

profile were setup; the vehicle composition was modified to contain only the default car type, 

which was adopted to replicate the characteristics of MDV in VISSIM. The created desired speed 

profile was assigned to the selected vehicle type, together with the relative flow of 1.0. 

Furthermore, the edited vehicle composition profile was assigned to the vehicle inputs to generate 

vehicles with the modified characteristics in the network.  The simulation time of each run was 

also set to one hour and the datapoint gained during the first 5-minute interval of every simulation 

run was discarded to avoid including datapoints produced before the network reaches steady state.  

 Next, each complete simulation with a specific set of parameters ran multiple times with 

the same set of various demand volumes ranged from 100 veh/h/ln to 2,000 veh/h/ln to acquire a 

speed-flow plot. Each resultant speed-flow diagram contains 1,397 datapoints (N = 1,397).  In the 

calibration process, the freeway network was broken down into three parts: 3-lane upstream, 2-

lane downstream segments, and the merge area, for the purpose of fitting the speed-flow diagram 

with the field data.  Three parameters in Wiedemann 99 car-following model used for the MDVs 

were then readjusted to calibrate the model: standstill distance between vehicles (CC0), time 

headway (CC1), and following variation between vehicles (CC2).  Finally, the best-fit model was 
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achieved by assigning CC0 and CC1 in the upstream segment and merge area to be 2 meters and 

1.5 seconds, respectively; whereas the CC0 and CC1 in the downstream segment were respectively 

set at 1.2 meters and 0.5 seconds. In addition, the CC2 in the upstream and downstream segments 

were both set at 4 meters, while the CC2 in the merge area was assigned to be 7 meters. 

 The best-fit model created was found to produce an RMSE of 6.48 km/h, with the capacity 

of 2,072 veh/h/ln; which was 3.3 percent, or 70 veh/h/ln, less than the capacity of the field data.  

The R2 value of the model was 0.95, with the corresponding p-value of < 0.001, as illustrated in 

Figure 4-5.  

 

Figure 4-5 The calibrated speed-flow diagram of VISSIM model 

4.4 Mixed Traffic Simulation based on CAV Penetration Rates 

 Once both models were calibrated for 100 MDVs, the mixed traffic scenarios of various 

proportions of CAV and MDV on the designed freeway segment were simulated to evaluate the 

performance measures of interest.  The mixed traffic scenarios of partial CAVs and MDVs were 

generated based on the 10-percent increment of the CAV penetration rate, varying from 10 percent 

to 100 percent of CAVs in the traffic stream.  As a result, the total 10 scenarios of various 

proportions of CAVs in the traffic stream (scenario 2 – scenario 11) were simulated in JAVA and 

VISSIM, in addition to the scenario of 100% MDV (scenario 1), as shown in Figure 4-6.  In 

addition, each traffic scenario was simulated for a number of runs until a full curve is obtained, 

and the aggregated results were used to represent the outcome of the scenario.  Ultimately, the 
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resultant speed-flow diagrams were plotted and compared to evaluate the impacts of CAVs in 

traffic operations.  

 

Figure 4-6 Mixed traffic scenarios based on CAV and MDV penetration rates in this study 

 For this part of the analysis, the calibrated parameters in the JAVA and the VISSIM models 

were used. Similar to the calibration process, data were obtained in 5-minute intervals and the 

same lane drop network was used. Each datapoint generated in both the JAVA and VISSIM 

simulation represents the average throughput per hour per lane and its corresponding average 

space-mean speed of all the vehicles counted during an interval.  The speed-flow diagrams for 

traffic flows downstream of the lane drop were then constructed from the collected data in each 

scenario.   

 To simulate the mixed traffic scenarios in JAVA, first of all, the case of 90% MDV and 

10% CAV mixed traffic was simulated to generate the speed-flow diagrams of the upstream and 

downstream traffic.  To simulate the mixed traffic scenarios in VISSIM, the vehicle composition 

was modified to contain two vehicle types: MDV and CAV. In addition, the desired speed of all 

CAVs in VISSIM was modified to be 120 km/h, as applied for the characteristic of CAVs in JAVA. 

Once these steps were accomplished, the next scenario was simulated by increasing the penetration 

rate of CAVs by 10 percent and dropping the penetration rate of MDVs by 10 percent. The 

simulation process ran in this fashion until the speed-flow diagrams of all the 10 scenarios with 

CAV penetration rates were obtained. Each scenario ran multiple times using various demand 
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volume inputs which ranged from 100 veh/h/ln to 2,000 veh/h/ln to achieve the speed-flow plots 

that contains the datapoints in the speed-drop region. 

 This study adopted an assumption that the length of vehicle was identical among all the 

vehicles in the JAVA simulation and equal to 4.5 meters, whereas the average length of vehicles 

in VISSIM turned to be 4.4 meters. However, the length of each vehicle in VISSIM was 

randomized based on the stochasticity of the software package. In addition, the critical space 

headway for a vehicle to switch from car-following mode to cruising mode was calibrated to be 

30 meters in the JAVA model.  However, the effects of the lateral clearance, grade, and curvature 

of the freeway segment were neglected in this study due to the limitation of the fundamental 

models adopted. 

4.5 Performance Measures 

 In this study, two performance measures were evaluated: capacity and travel time. Capacity 

was measured by identifying the point of the traffic breakdown event. To do so, the average speed 

of the freeway segment measured at the capacity point was carried out for each traffic volume 

simulated to justify the speed-drop cut-off from the speed-flow graph for determining the capacity.  

In addition, the travel times produced in the traffic scenarios were measured and compared to the 

travel times of the default scenario, where the traffic was composed of 100% MDV, to ascertain 

the changes in travel time with regard to the increments in the CAV penetration rates.   

4.6 Summary of Methodology 

 This chapter presents the methodology used in the dissertation. The proposed algorithms, 

along with a 3-to-2 virtual freeway segment, were coded in JAVA to create a simulation platform, 

prior to calibrating the default model with the field data. The traffic scenario of 100-percent MDVs 

was calibrated in both JAVA and VISSIM using speed and flow field data until the acceptable 

statistical parameter was achieved. RMSE and R-Square were used as statistical indicators to 

evaluate the model calibrations. Eleven mixed traffic scenarios were simulated in the developed 

platform, along with the parallel simulation in VISSIM, to generate the resultant speed-flow 

diagrams. The comprehensive analyses on the simulation results are discussed in the next chapter. 
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CHAPTER 5 RESULTS 
 

 This chapter presents the results of the simulation obtained from JAVA and VISSIM, along 

with the analyses of the performance measures. The speed-flow diagrams of the downstream traffic 

at the bottleneck on the 3-to-2 freeway segment in each mixed traffic scenario are presented. 

Furthermore, the performance measures of traffic in each scenario are analyzed to highlight the 

changes in roadway capacity and travel times as the penetration rate of CAV increases.  A 

comparison of the results between the JAVA and VISSIM simulation models is discussed.  The 

effect of the proposed algorithm on the vehicle trajectories and their gap acceptance decisions is 

also presented. 

5.1 Simulation Results 

 The results of 11 traffic scenarios simulated in JAVA and VISSIM based on the 10-percent 

increments in penetration rates of CAV are presented in the following sections. 

5.1.1 Scenario 1: 100% MDV Traffic Scenario 

 The speed-flow diagrams measured downstream of the lane closure in scenario 1 simulated 

in JAVA and VISSIM appear to have similar shape, with comparable level of maximum 

throughput obtained. Also, the slopes of the curves simulated in both platforms appear to be 

similar.  However, the speed during uncongested conditions in the VISSIM model seems to be 

slightly higher than the speed during uncongested conditions in the JAVA model. The capacity of 

this scenario obtained from the JAVA model was estimated to be 2,131 veh/h/ln; while the capacity 

obtained from the VISSIM model was estimated to be 2,072 veh/h/ln, which is 2.8 percent less 

than the JAVA capacity. The speed-flow diagrams in scenario 1 simulated in JAVA and VISSIM 

are presented in Figure 5-1. 
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Figure 5-1 Speed-flow diagrams of the downstream traffic in scenario 1 

5.1.2 Scenario 2: 90% MDV and 10% CAV Mixed Traffic Scenario 

 The speed-flow diagram of the scenario 2 obtained from JAVA simulation shows that the 

breakdowns started to occur for the throughputs that fell in the region of 2,000 – 2,300 veh/h/ln. 

According to the analysis, the capacity of the mixed traffic in scenario 2 simulated in JAVA was 

estimated to be 2,166 veh/h/ln; which is 1.6 percent greater than the capacity in the scenario of 

100% MDV, or increased by 35 veh/h/ln. The speed-flow diagrams in scenario 2 generated by the 

JAVA model is illustrated in Figure 5-2.  

 

Figure 5-2 Speed-flow diagrams of the downstream traffic in scenario 2 
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 Figure 5-2 also illustrates the speed-flow diagram in scenario 2 generated by the VISSIM 

model. The estimated capacity in scenario 2 was 2,126 veh/h/ln, or increased by 2.6 percent from 

scenario 1. 

 It was found that both JAVA and VISSIM models yielded similar results in terms of 

capacity and shape of the curve. The capacity of scenario 2 obtained from the algorithms simulated 

in JAVA was found to be greater than the capacity obtained from the VISSIM model by 40 

veh/h/ln, or 1.9 percent. However, the speed-flow curves produced by VISSIM model are slightly 

sharper than the curves obtained from JAVA for the 90% MDV and 10% CAV mixed traffic 

scenario. In addition, there are greater number of datapoints scattering in the high-flow region in 

the JAVA model’s diagrams than in the VISSIM’s diagrams. In other words, the speed-flow data 

generated by the JAVA model seem to move slightly towards more sustained flow than the data 

obtained in VISSIM. 

5.1.3 Scenario 3: 80% MDV and 20% CAV Mixed Traffic Scenario 

 The JAVA model’s speed-flow diagram of the traffic in scenario 3 displays somewhat 

similar characteristics of the diagram in scenario 2; however, the diagram appears to move towards 

higher throughputs.  In addition, there are fewer datapoints at high flows and low speeds in this 

scenario, compared to scenario 2. The capacity of the mixed traffic in scenario 3 simulated in 

JAVA was estimated to be 2,224 veh/h/ln; which is 2.7 percent greater than the capacity in scenario 

2, or increased by 58 veh/h/ln. The capacity of scenario 3 yielded by the VISSIM model was 

estimated to be 2,143 veh/h/ln; which was found to improve from the capacity in scenario 2 by 17 

veh/h/ln, or an increase of 0.8 percent. Furthermore, the overall speed in the uncongested flow 

region in this scenario slightly increased from the speed of the same region in the previous 

scenario. The speed-flow diagrams in scenario 3 generated by JAVA and VISSIM models are 

displayed in Figure 5-3.     
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Figure 5-3 Speed-flow diagrams of the downstream traffic in scenario 3 

 Both JAVA and VISSIM models produced similar results in terms of capacity and shape 

of the curve in this scenario. The capacity of scenario 3 simulated in JAVA was found to be greater 

than the capacity obtained from the VISSIM model by 81 veh/h/ln, or 3.8 percent. Obviously, the 

speed-flow curve obtained from the VISSIM model is slightly sharper than the curve generated by 

the JAVA model. 

5.1.4 Scenario 4: 70% MDV and 30% CAV Mixed Traffic Scenario 

 The shape of the JAVA model’s speed-flow diagram of the traffic flow in scenario 4 seems 

to be similar to the diagram in scenario 3; however, the curve extends to higher throughputs.  

Obviously, the slope of the speed-flow curve appears to be slightly steeper than the downstream 

speed-flow curve in scenario 3. The capacity of the mixed traffic in scenario 4 in JAVA was 

estimated to be 2,329 veh/h/ln; which is 4.7 percent greater than the capacity in scenario 3, or 

increased by 105 veh/h/ln. The capacity of the scenario 4 produced by VISSIM was estimated to 

be 2,260 veh/h/ln; which is an increase from the capacity in scenario 3 of 117 veh/h/ln, or an 

increase of 5.5 percent. The overall speed in the uncongested flow region in this scenario seems to 

be slightly higher than the overall speed in the previous scenario. The speed-flow diagrams of this 

scenario generated by JAVA and VISSIM are displayed in Figure 5-4. 
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Figure 5-4 Speed-flow diagrams of the downstream traffic in scenario 4 

 The capacity and shape of the curves produced by VISSIM and JAVA models are similar 

in this scenario. The estimated capacity of scenario 4 obtained in JAVA turned to be greater than 

the capacity obtained from the VISSIM model by 3.1 percent, or 69 veh/h/ln.  Although, the speed-

flow curve obtained from the JAVA model is slightly sharper than the curve generated by the 

VISSIM model, the difference is smaller in this scenario than in the previous scenarios.  

5.1.5 Scenario 5: 60% MDV and 40% CAV Mixed Traffic Scenario 

 The shape of the JAVA model’s speed-flow diagram of scenario 5 appears to be similar to 

the diagram in scenario 4. However, the range of the curve slightly expanded to the higher 

throughputs, while the overall speed of the datapoints in the uncongested flow region increased 

from the overall speed of the same region in the previous scenarios.  The angle of the speed-flow 

curve seems to be sharper than the angle of the curve in scenario 4. The capacity of the mixed 

traffic in scenario 5 simulated in JAVA was estimated to be 2,416 veh/h/ln; an increase of 87 

veh/h/ln, or 3.7 percent from scenario 4. The speed-flow diagram of the JAVA model in scenario 

5 is presented in Figure 5-5. 
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Figure 5-5 Speed-flow diagrams of the downstream traffic in scenario 5 

 Figure 5-5 also shows the speed-flow diagram obtained from the VISSIM model. The 

capacity of scenario 5 in VISSIM was 2,292 veh/h/ln; which is slightly higher than scenario 4 by 

32 veh/h/ln, or 1.4 percent. Furthermore, the overall speed of the traffic in the uncongested flow 

region in this scenario seems to be slightly higher than the overall speed in the previous scenario. 

 The shape of the curves produced by VISSIM and JAVA models are slightly different in 

this scenario; however, the capacities yielded by both models are still comparable. The estimated 

capacity of scenario 5 obtained from the algorithms simulated in JAVA were greater than the 

capacity obtained from the VISSIM model by 124 veh/h/ln, or 5.4 percent. In addition, most of the 

datapoints in the congested flow of the speed-flow diagram obtained from the VISSIM model fall 

into the speed range of 40 – 55 km/h, with the corresponding throughput of 1,900 -2100 veh/h/ln, 

while there is still a considerable amount of datapoints scattered around the peak of the JAVA 

model’s curve.  

5.1.6 Scenario 6: 50% MDV and 50% CAV Mixed Traffic Scenario 

 The speed-flow diagrams of the downstream traffic in scenario 6 and scenario 5 simulated 

in JAVA appear to have similar shape. However, the range of the curve in scenario 6 slightly 

extends to higher throughputs compared to the previous scenario, while the overall speed of the 

datapoints in the uncongested flow region are slightly higher than the speed in the previous 

scenarios.  The capacity of the mixed traffic in scenario 6 simulated in JAVA was estimated to be 
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2,445 veh/h/ln; which increased from the capacity in scenario 5 by 29 veh/h/ln, or 1.2 percent. The 

JAVA model’s speed-flow diagrams in scenario 6 is presented in Figure 5-6. 

 

Figure 5-6 Speed-flow diagrams of the downstream traffic in scenario 6 

 The capacity of the scenario 6 simulated in VISSIM was estimated to be 2,362 veh/h/ln; 

which increased from the capacity in scenario 5 by 70 veh/h/ln, or 3.1 percent. Also, the overall 

speed in the uncongested flow region seems to be substantially higher than the overall speed of the 

same region in the previous scenario. The speed-flow diagram of the downstream traffic in 

scenario 6 generated by VISSIM is also presented in Figure 5-6. 

 The capacity in the JAVA model is greater than the capacity in the VISSIM model by 83 

veh/h/ln, or 3.5 percent. In addition, the shape of the speed-flow curves obtained from both models 

appear to be similar in this scenario. 

5.1.7 Scenario 7: 40% MDV and 60% CAV Mixed Traffic Scenario 

 Compared to scenario 6, the range of the downstream speed-flow curve obtained from 

JAVA simulation slightly extends to the higher throughputs. The angle of the JAVA model’s 

speed-flow curve appears to be sharper than the speed-flow curve in scenario 6. The capacity of 

scenario 7 simulated in JAVA was estimated to be 2,461 veh/h/ln; which escalated from the 

capacity in scenario 6 by 16 veh/h/ln, or 0.7 percent. The JAVA model’s speed-flow diagram in 

scenario 7 is illustrated in Figure 5-7. 
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Figure 5-7 Speed-flow diagrams of the downstream traffic in scenario 7 

 Figure 5-7 also displays the speed-flow diagram in scenario 7 obtained from VISSIM. The 

shape of the curve appears to be similar to the curve in scenario 6. The capacity of scenario 7 in 

the VISSIM model was 2,405 veh/h/ln; which increased from the capacity in scenario 6 by 43 

veh/h/ln, or 1.8 percent. Furthermore, the overall speed of the traffic in the uncongested flow 

region in this scenario seems to be slightly higher than the overall speed in the previous scenario. 

 The capacity and shape of the curves produced by VISSIM and JAVA models are very 

similar in this scenario. The estimated capacity of scenario 7 in JAVA was found to be greater than 

the capacity obtained from the VISSIM model by 56 veh/h/ln, or 2.3 percent.  

5.1.8 Scenario 8: 30% MDV and 70% CAV Mixed Traffic Scenario 

 The speed-flow diagrams in scenario 8 and scenario 7 simulated in JAVA appear to show 

similar shape. Compared to scenario 7, the range of the speed-flow curve in this scenario slightly 

extends to higher throughputs. Obviously, the overall speed of the datapoints in the uncongested-

flow region is slightly higher than the overall speed of the same region in scenario 7.  The capacity 

of the mixed traffic in scenario 8 obtained from the JAVA model was estimated to be 2,490 

veh/h/ln; an increase of 29 veh/h/ln, or 1.2 percent from scenario 7. The JAVA model’s speed-

flow diagram in scenario 8 is presented in Figure 5-8. 
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Figure 5-8 Speed-flow diagrams of the downstream traffic in scenario 8 

 The capacity of the scenario 8 in VISSIM was estimated to be 2,479 veh/h/ln; which was 

higher than the capacity in scenario 7 by 74 veh/h/ln, or 3.1 percent. The overall speed in the 

uncongested flow region appears to be slightly higher than the overall speed of the same region in 

the previous scenario. The speed-flow diagram in scenario 8 generated by VISSIM is presented in 

Figure 5-8. 

 The estimated capacity in JAVA was larger than the capacity obtained in VISSIM in this 

scenario by only 11 veh/h/ln, or 0.4 percent. The shapes of the speed-flow curves obtained from 

both models appear to be similar. 

5.1.9 Scenario 9: 20% MDV and 80% CAV Mixed Traffic Scenario 

 Compared to scenario 8, the range of the downstream speed-flow diagram obtained from 

JAVA simulation slightly expands to higher throughputs, while the overall speed of the datapoints 

in the uncongested flow region is slightly higher than the speed in the previous scenarios. The 

slope of the JAVA’s speed-flow curve of the downstream traffic in scenario 9 appears to be steeper 

than the angle of the speed-flow curve in scenario 8.  The capacity of the mixed traffic scenario 9 

simulated in JAVA was estimated to be 2,512 veh/h/ln; which escalated from the capacity in 

scenario 8 by 22 veh/h/ln, or 0.9 percent. The speed-flow diagram of the downstream traffic in 

scenario 9 simulated in JAVA is shown in Figure 5-9. 
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Figure 5-9 Speed-flow diagrams of the downstream traffic in scenario 9 

 Figure 5-9 also depicts the speed-flow diagram generated by the VISSIM model. The curve 

in this scenario appears to be similar to the curve in scenario 8; however, the curve in scenario 9 

seems to contain fewer datapoints around the boundary between the uncongested and congested 

flows in the high-flow region compared to scenario 8. Also, the slope of the downstream curve in 

scenario 9 appears to be slightly flatter than the slope of the curve in the previous scenario.  The 

capacity of scenario 9 in VISSIM was estimated to be 2,507 veh/h/ln; which increased from the 

capacity simulated in scenario 8 by 28 veh/h/ln, or 1.1 percent. Furthermore, the overall speed in 

the uncongested flow region in this scenario seems to be slightly higher than the overall speed in 

the previous scenario. 

 Similar to scenario 8, the capacity yielded by the JAVA model in scenario 9 was found to 

be greater than the capacity produced by the VISSIM model by only 5 veh/h/ln, or 0.2 percent. 

The shapes of the downstream speed-flow curves obtained from both models appear to be similar.   

5.1.10 Scenario 10: 10% MDV and 90% CAV Mixed Traffic Scenario 

 The speed-flow diagrams in scenario 10 and scenario 9 simulated in JAVA show similar 

shapes. However, the speed in the uncongested-flow region is substantially higher than the speed 

in scenario 9. In addition, the range of the speed-flow curve in this scenario slightly expands to 

higher throughputs compared to scenario 9. Also, the slope of the JAVA’s speed-flow in scenario 

10 appears to be slightly steeper than the angle of the speed-flow curve in scenario 9. The capacity 

of scenario 10 in the JAVA model was 2,535 veh/h/ln; an increase of 23 veh/h/ln, or 0.9 percent 
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from scenario 9. The JAVA model’s speed-flow diagram in scenario 10 is displayed in Figure 5-

10. 

 

Figure 5-10  Speed-flow diagrams of the downstream traffic in scenario 10 

 The capacity of scenario 10 in VISSIM was 2,539 veh/h/ln; slightly higher than the 

capacity in scenario 9 by 32 veh/h/ln, or 1.3 percent. The shapes of the speed-flow diagrams in 

VISSIM in scenario 10 and scenario 9 appear to be almost identical. The speed during uncongested 

conditions in this scenario appears to be comparable to the speed in the previous scenario. The 

speed-flow diagram in scenario 10 generated by VISSIM is shown in Figure 5-10. 

 The estimated capacity difference between the VISSIM and the Java models is only 4 

veh/h/ln, or 0.2 percent. The shapes of the speed-flow curves obtained from both models appear 

to be very similar. There are more datapoints scattered in the high-flow region at the speed range 

of 40 - 60 km/h in VISSIM than in JAVA, which implies that less traffic congestion occurred in 

the JAVA simulation than in the VISSIM simulation in scenario 10. 

5.1.11 Scenario 11: 100% CAV Traffic Scenario 

 The shape of the speed-flow diagram obtained from the JAVA model appears to be 

different from the speed-flow diagram obtained from the same platform in scenario 10.  The range 

of the speed-flow diagram in JAVA marginally expands to higher throughputs, while the speed 

during uncongested flows also increased from previous scenarios, with substantially less 

variations. This means that the traffic of 100% CAV could maintain the highest speed of 120 km/h 

with less chances of speed disruption, until the throughput of 2,500 veh/h/ln is reached. Also, the 
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slope of the JAVA’s speed-flow curve in scenario 11 appears to be steeper than the slope of the 

speed-flow curve in scenario 10. The congested part of the speed-flow curve obtained from the 

JAVA model was substantially smaller than that of scenario 10, with the lowest speed of 85 km/h 

obtained. Therefore, substantially less congestion occurs in the 100% CAV traffic scenario 

compared to the previous mixed traffic scenarios. The capacity of the scenario 11 in JAVA was 

2,683 veh/h/ln; an increase of 148 veh/h/ln, or 5.8 percent from scenario 10. The speed-flow 

diagram in scenario 11 simulated in JAVA is shown in Figure 5-11. 

 

Figure 5-11 Speed-flow diagrams of the downstream traffic in scenario 11 

 Figure 5-11 also displays the speed-flow diagram generated by the VISSIM model. The 

shape of the curve in this scenario appears to be marginally different from the curve in scenario 

10. The slope of the curve in scenario 11 is steeper than the slope of the curve in the previous 

scenario.  In addition, the speed of the uncongested traffic in this scenario is slightly higher than 

the speed in the previous scenario. Furthermore, the speed variation was found to be less in this 

scenario compared to the mixed traffic scenarios. The capacity of scenario 11 in VISSIM was 

2,630 veh/h/ln; which increased from the capacity of scenario 10 by 91 veh/h/ln, or 3.6 percent.  

 Capacity of scenario 11 in JAVA was greater than the VISSIM capacity by 53 veh/h/ln, or 

2.0 percent. In contrast to the previous scenarios, the VISSIM model produced longer congestion 

associated with lower speeds, compared to the JAVA model.  As such, there are some congested 

datapoints in the speed range of 40 - 50 km/h in VISSIM, while the lowest congested speeds in 

JAVA were around 85 km/h. Also, there are more datapoints scattered within the speed range of 

85- 120 km/h in the JAVA model than in VISSIM model.  As a result, it can be implied that less 
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traffic congestion occurred in the JAVA simulation than in the VISSIM simulation in the scenario 

of 100% CAV and also the queue discharge in JAVA was more efficient than in VISSIM. 

5.2 Performance Measures Analysis 

 Capacity and travel time are the key performance measures that were used to evaluate the 

performance of the simulated traffic scenarios. The resultant roadway capacities with respect to 

the changes in CAV penetration rates in both JAVA and VISSIM simulation platforms were 

analyzed and compared to highlight the trend of the capacity as the proportion of CAVs. In 

addition, the average total travel time of vehicles in traffic was analyzed based on the variations in 

CAV penetration rates and demand volumes. 

5.2.1 Capacity Analysis 

 The results showed that the capacity of the simulated traffic on the freeway segment 

increased with regard to the increase in the CAV penetration rate for both JAVA and VISSIM 

models, as presented in Figure 5-12.  

 

Figure 5-12 Comparison of the capacity between the JAVA and VISSIM models in various traffic 

scenarios 
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 In conclusion, the results showed increase in capacities in the range of 25.9 – 26.9 percent 

in both models. According to the results obtained from the JAVA simulation, as the traffic shifted 

from 100-percent MDV to 100-percent CAV, the capacity increased by 552 veh/h/ln, or 25.9 

percent. The VISSIM simulation also suggested the similar results that the capacity would increase 

by 558 veh/h/ln, or 26.9 percent, as the CAV penetration rate in traffic shifts from 0 to 100 percent 

(Table 5-1). The results also showed increase in capacities in the range of 14.0 – 14.7 percent in 

both models as the proportion of CAVs in traffic shifted from 0 percent to 50 percent. 

 Furthermore, the results also indicated that the capacities obtained from the JAVA and 

VISSIM models were not significantly different, except in scenarios 5 and 6, according to the two-

tailed t-test assuming unequal variances at 95 percent confidence level (Table 5-1). The maximum 

difference between the capacities of these two models occurred in the mixed traffic scenario of 

40% CAV, where the difference was 5.4 percent.  

Table 5-1 Comparison of the capacity between the JAVA and VISSIM models based on 

various CAV penetration rates 

Scenario 
CAV 

Penetration 
Rate 

Capacity 
(veh/h/ln) 

Difference 
Between Models 

Two-Tailed t-test  
at 95% Confidence Level 

JAVA 
Model 

VISSIM 
Model 

Vehicles 
per hour  
per Lane 

% df 
Critical 
t-value 

t stat p-value Diff. 

1 0% 2,131 2,072 59 2.8% 11 2.201 1.327 0.211 No 

2 10% 2,166 2,126 40 1.9% 15 2.131 0.734 0.474 No 

3 20% 2,224 2,143 81 3.8% 11 2.201 1.467 0.170 No 

4 30% 2,329 2,260 69 3.1% 13 2.160 1.515 0.154 No 

5 40% 2,416 2,292 124 5.4% 16 2.120 2.711 0.015 Sig 

6 50% 2,445 2,362 83 3.5% 16 2.120 2.485 0.024 Sig 

7 60% 2,461 2,405 56 2.3% 15 2.131 1.459 0.165 No 

8 70% 2,490 2,479 11 0.4% 22 2.074 0.243 0.810 No 

9 80% 2,512 2,507 5 0.2% 19 2.093 0.106 0.917 No 

10 90% 2,535 2,539 -4 -0.2% 13 2.160 0.048 0.963 No 

11 100% 2,683 2,630 53 2.0% 10 2.228 0.734 0.480 No 

 

5.2.2 Travel Time Analysis 

 The JAVA analysis results showed that the average travel time of vehicles in traffic tends 

to decrease as the CAV penetration rate increases. The average travel time also increased with 
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respect to the increase in the demand volume.  As the CAV penetration rate increases at the high 

demand volume, the average travel time tends to decrease relatively faster when the proportion of 

MDVs in traffic is relatively high; while it tends to reduce slower as the proportion of MDVs 

continues to decline.  However, at the low demand volume, the average travel time tends to reduce 

relatively slower when the proportion of MDVs in traffic is relatively high; whereas it tends to 

reduce faster as the proportion of MDVs continues to decline. Six levels of demand volume, 

ranging between 100 veh/h/ln and 1,500 veh/h/ln, in each mixed traffic scenario were used to 

display the resultant average travel times and construct a 3D profile of the travel time based on the 

corresponding CAV penetration rate and demand, as illustrated in Figure 5-13. 

 

Figure 5-13 Average travel time of vehicles in JAVA with respect to the CAV penetration rate 

and demand volume 

 The average travel time appears to reach its peak when the proportion of CAVs in traffic 

is zero and the demand volume is high, whereas the average travel time reaches its lowest value as 

the CAV penetration rate reaches 100 percent with the lowest corresponding demand volume.  

According to the experiment, as the proportion of CAVs in traffic increased from 0 to 50 percent, 

the average travel time at the demand volume of 1,500 veh/h/ln declined from 291.2 seconds to 

190.6 seconds, or reduced by 100.6 seconds; while the average speed for traversing the 4-km 

freeway segment increased from 49.4 km/h to 75.6 km/h. In addition, as the proportion of CAVs 

in traffic increased from 0 to 100 percent, the average travel time at the demand volume of 1,500 
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veh/h/ln decreased from 291.2 seconds to 129.9 seconds, or reduced by 161.3 seconds, and the 

average speed for traversing the whole 4-km distance increased from 49.4 km/h to 110.9 km/h.  

However, at the lowest demand volume of 100 veh/h/ln, as the proportion of CAVs in traffic 

increased from 0 to 100 percent, the average travel time decreased from 139.8 seconds to 124.0 

seconds, or reduced by only 15.8 seconds; while the average speed for traversing the whole 

distance increased from 103.0 km/h to 116.1 km/h. The average travel time and average speed for 

traversing the 4-km freeway segment based on the variation in CAV penetration rate and demand 

volume are displayed in Tables 5-2 and 5-3, respectively. 

Table 5-2 Average travel time of vehicles for traversing the 4-km freeway segment based on 

the variation in CAV penetration rate and demand volume 

Demand 
(veh/h/ln) 

Average Travel Time (s) 

CAV Penetration Rate (%) 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

100 139.8 138.9 139.4 139.6 137.2 134.7 133.1 131.1 128.6 127.5 124.0 

300 146.0 145.6 143.5 143.9 140.5 140.0 139.6 137.3 135.6 131.9 124.6 

600 159.6 156.3 157.5 154.0 152.2 152.2 151.6 145.2 144.4 139.7 125.3 

900 182.1 179.8 172.5 166.3 162.3 160.7 160.6 158.7 157.2 152.5 126.0 

1200 223.7 215.6 199.2 185.1 180.8 176.2 175.2 173.0 169.7 158.5 126.3 

1500 291.2 258.0 233.3 210.6 195.9 190.6 187.2 183.8 175.4 164.2 129.9 

 

Table 5-3 Average speed of vehicles for traversing the 4-km freeway segment based on the 

average travel time 

Demand 
(veh/h/ln) 

Average Speed based on Travel Time (km/h) 

CAV Penetration Rate (%) 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

100 103.0 103.7 103.3 103.2 104.9 106.9 108.2 109.9 112.0 113.0 116.1 

300 98.6 98.9 100.4 100.1 102.5 102.8 103.1 104.9 106.2 109.1 115.6 

600 90.2 92.1 91.4 93.5 94.6 94.6 95.0 99.2 99.7 103.1 114.9 

900 79.1 80.1 83.5 86.6 88.7 89.6 89.6 90.7 91.6 94.4 114.3 

1200 64.4 66.8 72.3 77.8 79.7 81.7 82.2 83.3 84.8 90.9 114.0 

1500 49.4 55.8 61.7 68.4 73.5 75.6 76.9 78.3 82.1 87.7 110.9 

  

Therefore, the effect of travel time reduction due to the increase in CAV penetration rate 

turned to be more substantial at the higher level of demand volume than at the lower level of 

demand, as shown in Table 5-4. 
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Table 5-4 Travel time reduction due to the increase in CAV penetration rate 

Demand 
(veh/h/ln) 

Travel Time Reduction (%) 

CAV Proportion 
Increased from 

0% to 50% 

CAV Proportion 
Increased from 

0% to 100% 

CAV Proportion 
Increased from 

50% to 100% 

100 -3.6% -11.3% -7.9% 

300 -4.1% -14.7% -11.1% 

600 -4.7% -21.5% -17.7% 

900 -11.8% -30.8% -21.6% 

1200 -21.2% -43.5% -28.3% 

1500 -34.6% -55.4% -31.8% 

 

 The results showed that at the demand volume of 1,500 veh/h/ln, the average travel time 

was decreased by 34.6 percent as the CAV penetration rate shifted from 0 to 50 percent, while the 

average travel time was decreased by 55.4 percent as the proportion of CAVs in traffic shifted 

from 0 to 100 percent. In addition, for the demand volumes between 100 and 1,200 veh/h/ln, the 

reduction in travel time appear to be more substantial when the proportion of CAVs increased from 

50 to 100 percent rather than from 0 to 50 percent. 

5.3 Trajectory Analysis 

 The vehicular trajectories of the vehicles in a platoon of 10 vehicles in three traffic 

scenarios: 100-percent MDV traffic, mixed traffic of 50-percent MDVs and 50-percent CAVs, and 

100-percent CAV traffic, obtained from the JAVA model, were analyzed to evaluate the effects of 

CAVs in terms of microscopic traffic flow. All the vehicles were tested by accelerating from 

standstill to the maximum speed to perceive the vehicular trajectories and speed profiles.  

 The vehicular trajectories of the 100-percent MDV traffic, in which the vehicles are 

regulated by the FVD car-following model, were then extracted to observe the longitudinal 

position (x) versus time (t), as illustrated in Figure 5-14.  The velocity profile of the vehicles in a 

platoon was also plotted to observe the velocities of the vehicles (v) over time (t) in traffic, as 

presented in Figure 5-15. 
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Figure 5-14 Tested vehicular trajectories of vehicles in the 100-percent MDV traffic scenario 

 

 

Figure 5-15 Velocity graph of vehicles in the 100-percent MDV traffic scenario 

 The vehicular trajectories of the 100-percent CAV traffic scenario were then plotted to 

observe the longitudinal position (x) versus time (t), as illustrated in Figure 5-16.  Also, the velocity 

profile of the vehicles in a platoon was plotted versus time to observe the velocities of the vehicles 

(v) over time (t) in traffic, as presented in Figure 5-17.  
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Figure 5-16 Tested vehicular trajectories of vehicles in the 100-percent CAV traffic scenario 

 

 

Figure 5-17 Velocity graph of the vehicles in the 100-percent CAV traffic scenario 

 According to the trajectory plots, the results show that the gaps between CAVs appear to 

be slightly larger than the gaps between MDVs. To be specific, at the speed of 115 km/h, the 

average gap between MDVs in the 100-percent MDV platoon turns to be 60 – 65 meters; whereas 

the average gap between CAVs in the 100-percent CAV platoon turns to be 85 – 90 meters. 

However, the gap between the leader and the first follower in the 100-percent CAV platoon was 

found to be greater than the gaps between the followers in the platoon themselves, which is 125 

meters at the speed of 115 km/h. However,  under congested conditions, the average gap between 

MDVs in the 100-percent MDV traffic turns to be in the range of 5 – 19 m at the speed of 0 – 40 
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km/h; while the average gap between CAVs in the 100-percent CAV traffic turns to be 31 – 49 m 

at the speed of 60 – 80 km/h. 

 The larger gap between CAVs compared to the gap between MDVs, together with the gap-

creation capability of CAVs, allows for more convenient lane-changing maneuvers between CAVs 

in traffic. Therefore, this leads to smoother traffic flow at the bottleneck, which in turn causes less 

disruptions due to severe braking and produces increased throughput. 

 With regard to the velocity profile graphs, the results show that the driving behavior of the 

leaders in both 100-percent MDV and 100-percent CAV scenarios is indistinguishable. However, 

it was found that CAVs appear to have milder acceleration rates when behaving as a follower in a 

platoon, while the acceleration rates of MDVs in a platoon seem to be more severe. The milder 

acceleration rates conducted by CAVs are due to the omission of the velocity difference function 

in the CAV algorithm and the smaller value of κ; therefore, the space headway (s) is left as the 

decisive factor for determining the optimal velocity (V(𝑠)) and acceleration rate for CAVs in each 

time step.  

 Next, the vehicular trajectories of the 50-percent CAV and 50-percent MDV mixed traffic 

scenario were also plotted to observe the longitudinal position (x) versus time (t), as illustrated in 

Figure 5-18.  The velocity profile of the vehicles in a platoon was plotted versus time to observe 

the velocities of the vehicles (v) over time (t) in the mixed traffic, as shown in Figure 5-19. 

 

Figure 5-18 Tested vehicular trajectories of vehicles in the 50-percent CAV traffic scenario 
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Figure 5-19 Velocity graph of the vehicles in the 50-percent CAV mixed traffic scenario 

 Based on the trajectory plot of vehicles in the 50-percent CAV mixed traffic scenario, the 

results show that CAVs still appear to follow their leaders with larger space than MDVs, as found 

in the scenarios of 100% MDV and 100% CAV traffic.  Interestingly, it was found from the 

velocity profile graph in Figure 5-19 that the acceleration rates of MDVs were milder while 

following a CAV, compared to following an MDV, especially at higher speeds. In particular, the 

results indicate that CAVs appear to have an influence on guiding the speed and acceleration rates 

of MDVs to be smoother, while an MDV is following a CAV in a platoon. 

 In conclusion, the more cautious behavior of CAVs provided benefits for passengers in 

terms of safer distance between vehicles in both car-following and lane-changing maneuvers, as 

well as more comfort for passengers, besides the benefits in terms of throughput and travel time 

that CAVs offer for the roadway facility.  On the other hand, the aggressive driving behavior of 

MDVs, compelled by the velocity difference function and the greater value of κ in the MDV 

algorithm, appears to create more adverse impacts on the roadway facility than the benefit in terms 

of speeding and maintaining closer gap between vehicles. 

5.4 Gap Acceptance Comparison 

 A gap acceptance analysis was performed to compare the gaps accepted by MDVs and 

CAVs when performing mandatory lane changes at the vicinity of the lane drop by testing the 

simulation models of 100-percent MDV and 100-percent CAV traffic scenarios at the high-flow 
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demand volume of 1,500 veh/h/ln. The results obtained from the simulation models showed that 

the average lag gap accepted by MDVs was 16.4±9.1 m; whereas the average lag gap accepted by 

CAVs was 32.5±6.8 m, which was approximately twice as large as the average gap accepted by 

MDVs.  In addition, the gap accepted by MDVs in the simulation model was found to range 

between 4.0 m and 38.3 m, while the gap accepted by CAVs ranged between 17.1 and 65.5 m.  

The size of the gap accepted by MDVs tends to be more variate, compared to the gap accepted by 

CAVs, due to the stochasticity of the gap acceptance model and the stochastic desired speed 

applied in the MDV lane-changing algorithm; while the minimum accepted gap for CAVs was set 

at 15 m in the CAV lane-changing algorithm for safety reason. 

5.5 Summary of Results 

 This chapter presents the comprehensive analyses on the simulation results. The changes 

in highway capacity and travel time with respect to the variations in CAV penetration rate were 

analyzed and compared. The resultant vehicular trajectories were also analyzed to perceive the 

impact of CAVs on the trajectories and speeds of the interacting vehicles in traffic. Finally, the 

gap acceptance analysis was conducted to compare the gaps accepted by MDVs and CAVs. The 

conclusions, recommendations, study limitations, and future research are all presented in the next 

chapter. 
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CHAPTER 6 DISCUSSION AND CONCLUSIONS 
 

6.1 Summary 

 CAVs are expected to be emerged and mixed with MDVs in traffic in the near future; 

however, the impact of various CAV penetration rates on the performance measures of the mixed 

traffic is still obscure.  Although there are several studies conducted on simulating mixed traffic 

scenarios, the complex interactions between these types of vehicles in terms of car-following and 

lane changing has not been studied comprehensively.  Also, most of the recent studies were found 

to merely focus on the longitudinal driving characteristics of CAVs, while the effects of automated 

lateral vehicular interactions were only taken into account by a few previous studies.  In addition, 

no previous works were found to incorporate the longitudinal and lateral movement functions of 

vehicles in a traffic simulation model. 

 This dissertation addresses these limitations by developing realistic mixed traffic 

simulation models of CAVs and MDVs at the full-spectrum of mixed penetration rates on a 

freeway segment by integrating the car-following and lane-changing models together via a 

conditional linkage to investigate the sensitivities in highway capacity and travel time. The car-

following models for CAVs and MDVs were modified from the FVD car-following model, while 

the lane-changing logic was adopted to regulate the lane-changing decisions for both CAVs and 

MDVs. The desired speeds of each MDVs were determined on the basis of stochasticity to 

represent various desired speeds taken by human drivers, while the uniform desired speed was 

employed for CAVs. The stochastic gap acceptance was applied for MDVs to replicate the 

stochasticity of the gaps accepted by human drivers, whereas the static gap acceptance was adopted 

to establish the safe decision-making thresholds for CAVs prior to performing lane changes. Two 

algorithms were proposed separately for governing the movements of CAVs and MDVs in the 

traffic simulation models. The proposed algorithms, along with a 3-to-2 virtual freeway segment, 

were coded in JAVA to create a simulation platform, prior to calibrating the default model with 

the field data.  Eleven mixed traffic scenarios were simulated in the developed platform, along 

with the parallel simulation in VISSIM, to generate and validate the resultant speed-flow diagrams.  
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 The results were then analyzed and compared to determine the changes in highway capacity 

and travel time with respect to the variations in CAV penetration rate. The resultant vehicular 

trajectories in the scenarios of interest were also analyzed to perceive the impact of CAVs on the 

trajectories and speeds of the interacting vehicles in traffic. 

6.2 Conclusions 

 The analysis showed that the capacity of the simulated traffic on the freeway segment 

increased with respect to the increase in the CAV penetration rate for both models simulated in 

JAVA and VISSIM.  The simulation results obtained from both models showed increase in 

capacities in the range of 25.9 – 26.9 percent as the traffic shifted from the traffic of 100-percent 

conventional vehicles to the traffic of 100-percent CAVs. The predicted capacity improvement in 

this dissertation is relatively conservative compared to increased capacity of 34 – 200 percent, as 

suggested in the literatures, due to the larger headway of CAVs applied for safety and passenger 

comfort reasons.  The simulation results also showed increase in capacities in the range of 14.0 – 

14.7 percent in both models as the proportion of CAVs in traffic shifted from 0 percent to 50 

percent. 

 Lane change rates were adopted in the previous studies to randomly assign vehicles for 

making lane changes in simulation models. However, the proposed JAVA model applies the 

conditional linkage to determine the lane-changing demand of each vehicle based on its desired 

speed, the perceived average speed of the lanes, and the speed margin between the interacting 

vehicles. Besides, this linkage is not applied in VISSIM. In addition, the gap-creation model is 

attached in the JAVA model to enhance the lane-changing cooperation between CAVs; however, 

this feature is also not applicable for CAVs in VISSIM. 

 The analysis also indicated that the differences between the capacities obtained from the 

JAVA and VISSIM models in most of the simulated traffic scenario were not statistically 

significant; except in scenarios 5 and 6, in which the capacities in JAVA models were significantly 

greater than VISSIM models, according to the t-test.  

 The analysis also shows that the average travel time of vehicles in traffic tends to decrease 

with respect to the increase in CAV penetration rate, as well as the increase in the demand volume.  
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Also, the effect of travel time reduction due to the increase in CAV penetration rate turns to be 

more substantial at the higher level of demand volume than at the lower level of demand. 

 As the CAV penetration rate increments at the high demand volume, the average travel 

time tends to decrease at a relatively great rate when the proportion of MDVs in traffic is relatively 

high; while it tends to decrease at a relatively mild rate as the proportion of MDVs continues to 

decline.  However, at a low demand volume, the average travel time tends to reduce relatively 

slower when the proportion of MDVs in traffic is relatively high, whereas it tends to reduce at a 

greater rate as the proportion of MDVs continues to decline.   

 The analysis showed that CAVs appear to have milder acceleration rates when behaving 

as followers in a platoon, while the acceleration rates of MDVs in a platoon seem to be greater. 

The milder acceleration rates conducted by CAVs was found to be caused by the smaller value of 

κ and the omission of the velocity difference function in the FVD car-following model; therefore, 

the space headway (s) is left as the decisive factor for determining the optimal velocity (V(𝑠)) and 

acceleration rate for CAVs in each time step.   

 The larger gap between CAVs compared to the gap between MDVs, together with the gap-

creation capability of CAVs, allows for more convenient lane-changing maneuvers between CAVs 

in traffic. This, therefore, leads to the smoother traffic flow at the bottleneck, which in turn causes 

less stream disruptions due to severe braking, and yields the higher level of throughput. The 

analysis also indicates that CAVs appear to have an influence on guiding the speed and 

acceleration rates of MDVs to be smoother while an MDV is following a CAV in a platoon. 

  The more cautious driving characteristics of CAVs were found to provide benefits for 

passengers in terms of safer distance between vehicles in both car-following and lane-changing 

maneuvers, as well as more comfort for passengers in motion, besides the benefits in terms of 

throughput and travel time that CAVs offer for the roadway facility.  On the other hand, it can be 

implied that the more aggressive driving characteristic of MDVs, compelled by the greater value 

of κ and the velocity difference function in the MDV algorithm, appears to create more adverse 

impacts on the roadway facility than the benefit in terms of speeding and maintaining closer gap 

between vehicles. 
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 The results obtained from the simulation models showed that the average lag gap accepted 

by MDVs was 16.4±9.1 m; whereas the average lag gap accepted by CAVs was 32.5±6.8 m, which 

was approximately twice as large as the average gap accepted by MDVs.  

 Consequently, this study suggests that minimizing headway does not maximize capacity at 

a lane drop since the small gaps can create adverse impacts on lane-changing maneuvers of the 

vehicles in the dropping lane. As a result, there should be an optimal headway that maximizes the 

capacity at a lane drop. 

6.3 Recommendations 

 The developed simulation model can be applied to estimate the capacity and travel time of 

the mixed traffic scenarios on freeways by taking into account the impact of both car-following 

and lane-changing behavior of vehicles. Ultimately, the integrated car-following and lane-

changing model via the conditional linkage, considering the speed difference and displacement 

margin between the interacting vehicles in traffic, can be applied as a basis to improve the traffic 

simulation models in the future. 

 The study suggests that the emerging CAV technology should consider maintaining a 

sizeable gap between vehicles in a platoon and attaching the gap creation capability in the 

algorithm for the purposes of providing convenient lane-changing maneuvers in traffic and 

assuring safe braking distance between vehicles.   

 In addition, the aggressive speeding characteristic should not be adopted for governing the 

movements of the emerging CAVs since such characteristic could cause instability in traffic 

streams and make lane-changing maneuvers more difficult; which eventually leads to the reduction 

in the overall capacity of the traffic flow, as well as worsens the passenger comfort. Consequently, 

the study suggests that the CAV algorithm had better enable the fairly mild acceleration and 

deceleration rates to maintain smooth flow; which can increase stability of the traffic flow and 

make room for increasing the capacity of the roadway facility, as well as providing safety and 

comfort benefits for passengers. 
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6.4 Study Limitations  

 First of all, limited aspects of the geometric design of the traffic facility are taken into 

account in the simulation. The study assumed a 3-to-2 tangent freeway segment with 0% grade as 

a test network, where the lane width of 3.66 m (12 ft) was assigned.  However, the effects of the 

lateral clearance, grade, and degree of curvature of the freeway segment, as well as the weather 

conditions, were neglected in this study due to the limitation of the models used. 

 In addition, since the FVD model was adopted as a basis for developing the proposed CAV 

and MDV algorithms, the time step of one second was automatically applied in the JAVA model, 

as limited by the FVD model.  On the other hand, the default time step for simulating the traffic 

scenarios in VISSIM is 0.1 second, which can determine the movements of the vehicles in 

simulation more precisely.  

 Also, the acceleration rate determined by the proposed model is uniform throughout the 

vehicles in traffic for a specific situation at lower speeds, and it only varies with the desired speed 

of each vehicle at higher speeds.  However, in real life, the acceleration rate is more randomized 

based on the variations in type of automobile, engine capacity, engine power, perception-reaction 

time, and driving behavior. 

 The present study does not account for the impact of vehicle automation on driver reaction 

time, or the effect of activation/deactivation of the automated features, but rather, it assumes that 

CAVs drive in high automation modes (level 4-5) and driver interventions are not needed. 

6.5 Future Research 

 Several research extensions can be attempted to improve the presented work. Firstly, the 

proposed JAVA model can be improved by converting and modifying all the equations used in the 

current model to be based on the time step of 0.1 second to improve the precision of the model.  

Secondly, the broader range of the freeway configurations can be added to increase the capability 

of the model in simulating traffic on various types of freeway facilities; therefore, the following 

elements can be added to the current simulation platform: on-ramp, off-ramp, and customizable 

number of lanes.  Thirdly, additional aspects of the roadway geometry that affect the movements 

of vehicles can be quantified and included in the future work; such as lateral clearance, grade, and 

degree of curvature of the roadway facilities.  Various acceleration characteristics which represent 
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variations in type of vehicle, engine capacity, engine power, perception-reaction time, and driving 

behaviors can be taken into account to increase the level of stochasticity of the model. Lastly, the 

developed algorithms could improve by introducing varying levels of automation and by 

considering other combinations of connectivity and automation, such as CVs and AVs in the 

vehicle mix.  
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