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Abstract

This thesis considers dynamic behavior of non-classical thermoelastic solid continua.

The mathematical model consists of the conservation and balance laws of non-classical

continuum mechanics that incorporates additional physics of internal rotations arising

due to deformation gradient tensor. We consider plane stress behavior with small de-

formation, small strain physics only. Galerkin Method with Weak Form (GM/WF)

in space is considered to construct a space-time decoupled finite element formulation

giving rise to ordinary differential equations (ODEs) in time containing mass matrix,

stiffness matrix due to classical as well as non-classical physics and acceleration and

displacement associated with nodal degrees of freedom. This formulation is utilized

to: (i) study natural undamped modes of vibration (ii) study transient dynamic re-

sponse by time integrating the ODEs in time (iii) study the transient dynamic response

by transforming the ODEs in time to modal basis using eigenvectors of the undamped

natural modes. The ODEs in modal basis are used to construct transient dynamic re-

sponse by time integrating them as well as by considering their analytical solutions.

The solutions of the model problem obtained using the mathematical model based on

non-classical continuum mechanics with internal rotations are presented and are com-

pared with those obtained using the mathematical model based on classical continuum

mechanics to demonstrate the influence of new physics due to internal rotations on the

dynamic response of solid continua.
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Chapter 1

Introduction, Literature Review and Scope

of Work

1.1 Introduction

In Lagrangian description of deforming solid continua, the Jacobian of deformation JJJ (or de-

formation gradient tensor) is a fundamental quantity of the measure of the deformation physics.

In general, JJJ varies at material points. Polar decomposition of JJJ into stretch (left or right) and

pure rotation tensors shows that if JJJ varies between material points so does the rotation tensor.

Alternatively, decomposition of JJJ into symmetric and skew symmetric tensor also confirms vary-

ing rotations between material points defined by skew symmetric part of JJJ . The rotation measures

either from polar decomposition or from skew symmetric point ofJJJ are not considered in classical

continuum theories, but are intrinsic part of the actual deformation physics in all deforming solid

continua in which JJJ is the fundamental measure of deformation physics.

In classical continuum theories only stretch tensor, stretch rate tensor or alternatively strain

tensor and strain rate tensor contribute to energy storage and dissipation mechanisms. In the theory

considered here we consider the resistance to varying rotations and rotation rates by the continua

resulting in the existence of moment tensor. The moment tensor, rotations and their rates result in
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additional mechanisms of energy storage and dissipation (new physics) that is completely ignored

in the classical continuum theories. The theory considered here is a non-classical continuum theory

based on internal rotations due to JJJ for thermoelastic solid continua. This physics exists in all

deforming solid continua. This theory should not be confused with micropolar theories [1–11] that

often incorporate the scales smaller than continuum scale and are designed for this purpose. In

short, the continuum theory considered here uses standard strain and stress measures as used in

classical continuum mechanics but additionally incorporates the deformation physics associated

with internal rotations due to JJJ . In the following we present a brief literature review of some

published works related to the work presented in this thesis.

1.2 Literature Review

The non-classical continuum theories in the published literature appear under various cate-

gories: micropolar theories, couple stress theories, non-local theories etc. A comprehensive treat-

ment of micropolar theories can be found in the works by Eringen [1–9]. The concept of couple

stresses is presented by Koiter [10]. Balance laws for micromorphic materials are presented in

reference [11]. The micropolar theories consider micro deformation due to micro constituents in

the continuum. In references [12–14] by Reddy et al. and reference [15] by Zang et al. nonlocal

theories are presented for bending, buckling and vibration of beams, with nanocarbon tubes and

bending of plates. The nonlocal effects are primarily incorporated based on the work presented

by Eringen [6] in which definition of a nonlocal stress tensor is introduced through integral re-

lationship using the product of macroscopic stress tensor and a distance kernel representing the

nonlocal effects. The continuum theory for solid continua considered and presented in this thesis

is strictly local and non-micropolar. The concept of couple stress was introduced by Voigt in 1881

by assuming a couple or moment per unit area on the oblique plane of the deformed tetrahedron in

addition to the stress or force per unit area. Since the introduction of this concept many published

works have appeared. We cite some recent works, most of which are related to micropolar cou-
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ple stress theories. Authors in reference [16] report experimental study of micropolar and couple

stress elasticity of compact bones in bending. Conservation integrals in couple stress elasticity are

reported in reference [17]. A microstructure dependent Timoshenko beam model based on modi-

fied couple stress theories is reported by Ma et al. [18]. Further account of couple stress theories

in conjunction with beams can be found in references [19–21]. Treatment of rotation gradient

dependent strain energy and its specialization to von Kármán plates and beams can be found in

reference [22]. Other accounts of micropolar elasticity and Cosserat modeling of cellular solids

can be found in references [23–25]. We remark that in references [16–25], Lagrangian description

is used for solid matter, however the mathematical descriptions are purely derived using strain en-

ergy density functional or principle of virtual work. These energy methods work well for elastic

solids in which mechanical deformation is small and is reversible. Extension of these works to

thermoviscoelastic solids with and without memory is not possible. In such materials the thermal

field and mechanical deformation are coupled due to the fact that the rate of work results in rate of

entropy production. In references [26–37] various aspects of the kinematics of micropolar theories,

couple stress theories, etc. are discussed and presented including some applications to plates and

shells.

If the varying rotations and their rates result in energy storage and dissipation, then their en-

ergy conjugate moment must exist in the deforming matter. This necessitates the existence of

moment (per unit area) on the oblique plane of the deformed tetrahedron. Thus, at the onset, we

consider average force per unit area and displacements, and average moment per unit area and the

rotations associated with the deformed tetrahedron. The work presented here follows a strictly

thermodynamic approach as presented in [38–44] (discussed in the following). We consider: (i)

Conservation of mass and present rationale for not considering conservation of inertia as a conser-

vation law [45] (ii) Balance of linear momenta (iii) Balance of angular momenta (iv) Balance of

moments of moments (or couples) (v) First law of thermodynamics and (vi) Second law of ther-

modynamics in Lagrangian description in which stress and strain rate, moment and symmetric part

of the rotation gradient rates are rate of work conjugate pairs.
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In references [38, 39], authors presented conservation and balance laws for thermoelastic solid

continua based on non-classical continuum mechanics (NCCM) incorporating internal rotations

due to the deformation gradient tensor. This work considers small deformation, small strain physics

in Lagrangian description. Authors in reference [40] presented constitutive theory for non-classical

thermoelastic solids of [38, 39] based on conjugate pairs in the entropy inequality and representa-

tion theorem. Model problem studies and comparison with classical continuum mechanics (CCM)

were also presented in reference [40] for BVPs. The non-classical continuum theory of refer-

ences [38–40] was extended in reference [41] for finite deformation using first Piola-Kirchhoff

stress tensor. In reference [42], the authors further extended the work in reference [41] for fi-

nite deformation and finite strain using second Piola-Kirchhoff stress tensor and rate of Green’s

strain tensor as rate of work conjugate pair. The non-classical continuum theory presented in

references [38, 39] based on internal rotations was extended in reference [43] to include internal

rotations as well as Cosserat rotations. The authors of reference [43] extended the work based on

internal and Cosserat rotations for solid continua to fluent continua in reference [44].

1.3 Scope of Work

In this thesis, we consider conservation and balance laws of NCCM of reference [38, 39] and

the constitutive theory of reference [40] for small deformation, small strain physics to study dy-

namic response of solids (IVPs). For the sake of simplicity, the mathematical model and the model

problem study are only considered in R2. The mathematical model consisting of balance linear

momenta is cast purely in terms of displacements. Finite element formulation is presented and ap-

plied to study model problem. The balance of linear momenta equations in displacements are used

to construct finite element formulation using space-time decoupled approach based on Galerkin

method with weak form (GM/WF) in space. The resulting ODEs in time are used to study natural

undamped vibrations and transient dynamic response. Influence of the internal rotation physics is

illustrated using a model problem.

4



Chapter 2

Mathematical Model

2.1 Conservation and Balance Laws

The mathematical model for non-classical continuum mechanics incorporating internal rota-

tions due to the deformation gradient tensor JJJ also consists of conservation of mass, balance of

linear momenta, balance of angular momenta, first and second laws of thermodynamics and the

constitutive theories for the constitutive variables depending upon the physics. These are similar

to classical continuum mechanics in appearance but there are some modifications and differences.

First, we note that due to consideration of additional physics of rotations and conjugate moment

tensor in this non-classical theory, the conservation and balance laws of classical mechanics are not

adequate to ensure equilibrium of the deforming matter. Yang et al. [16] and Surana et al. [45] have

shown that in the non-classical continuum theories additional balance law of "balance of moment

of moments is needed." The authors have discussed the necessity of the balance law and Surana et

al. [45] have presented a rate derivation (necessary for a balance law) of the new balance law and

have show that due to this balance law the Cauchy moment tensor is symmetric. Due to the new

physics of rotations the classical continuum mechanics balance laws also need modifications [38].

In the non-classical continuum theory considered here, the Cauchy stress is not symmetric, bal-

ance of angular momenta establishes the relationship between the gradients of the Cauchy moment
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tensor and the antisymmetric components of the nonsymmetric stress tensor. The energy equation

and the entropy inequality establish rate of work conjugate pairs. The entropy inequality expressed

in Helmholtz free energy facilitates derivation of the constitutive theories once a specific defor-

mation physics is chosen. In the following we present conservation and balance laws and linear

constitutive theories for thermoelastic solid continua based on small deformation, small strain as-

sumption. For this deformation physics the distinction between and covariant and contravariant

measures disappears [46]. Thus, stress tensor is simply non-symmetric Cauchy stress tensor σσσ

and strain tensor is linear strain tensor εεε, a linear function of displacement gradients. We have

the following conservation and balance laws in Lagrangian description [38]: conservation of mass

(CM), balance of linear moment (BLM), balance of angular momenta (BAM) balance of moment

of moments (BMM), first law of thermodynamics (FLT), the second law of thermodynamics (SLT),

and the linear constitutive theories.

Conservation and balance laws:

ρ
0

= |J |ρ(xxx, t) (CM) (2.1)

ρ
0

Dvi
Dt
− ρ

0
F b
i −

∂σji
∂xj

= 0 (BLM) (2.2)

mlk,l + εijkσij = 0 (BAM) (2.3)

εijkmij = 0 (BMM) (2.4)

ρ
0

De

Dt
+
∂qi
∂xi
− tr

(
[sσ][

.
ε]
)
− tr

(
[m][iΘs

.
J ]
)

= 0 (FLT) (2.5)

ρ
0

(
Dφ

Dt
+ η

Dθ

Dt

)
+
qigi
θ
− tr

(
[sσ][

.
ε]
)
− tr

(
[m][iΘs

.
J ]
)
≤ 0 (SLT) (2.6)

and

σσσ = sσσσ + aσσσ

In which vvv is velocity vector,FFF b is body force vector per unit mass,σσσ is Cauchy stress tensor,

sσσσ and aσσσ are symmetric and antisymmetric components of the Cauchy stress tensors σσσ, mmm is
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symmetric Cauchy moment tensor, εεε is permutation tensor, e is internal energy density, ρ
0

is density

in the reference configuration, qqq is heat tensor, εεε and
.
εεε are linear strain and strain rate tensors, iΘΘΘ

are internal rotations (due to (2.14)),iΘJJJ is rotation gradient tensor, iΘsJJJ is symmetric part of iΘJJJ , φ

is Helmholtz free energy density, η is entropy density, θ is absolute temperature, ggg is temperature

gradient tensor. The letter ′e′ used here to represent internal energy density is also used to represent

a typical finite element ′e′ with domain Ω̄e
x. The deformation gradient tensor JJJ or Jacobian of

deformation is defined as

[J ] =

[
∂{x̄}
∂{x}

]
= [I] + [dJ ] (2.7)

in which the displacement gradient tensor [daJ ] is given by

[dJ ] =

[
∂{u}
∂{x}

]
(2.8)

and

[dJ ] = [dsJ ] + [daJ ] = [ε] + [daJ ] (2.9)

in which d
aJ contains rotations, about oxi axes. The internal rotations iΘΘΘ are defined in the follow-

ing

[daJ ] =
1

2


0 d

aJ12
d
aJ13

−daJ12 0 d
aJ23

−daJ13 −daJ23 0

 (2.10)

d
aJ12 =

(
∂u1

∂x2

− ∂u2

∂x1

)
; d

aJ13 =

(
−∂u3

∂x1

+
∂u1

∂x3

)
; d

aJ23 =

(
∂u2

∂x3

− ∂u3

∂x2

)
(2.11)

Alternatively (2.11) can be derived as

∇∇∇×uuu = eeei × eeej
∂uj
∂xi

= εijkeeek
∂uj
∂xi

(2.12)

7



∇∇∇×uuu = eee1

(
∂u3

∂x2

− ∂u2

∂x3

)
+ eee2

(
∂u1

∂x3

− ∂u3

∂x1

)
+ eee3

(
∂u2

∂x1

− ∂u1

∂x2

)
(2.13)

∇∇∇×uuu = eee1 (iΘ1) + eee2 (iΘ2) + eee3 (iΘ3) (2.14)

Comparing (2.11) and (2.13), we note that

d
aJ12 =

1

2
(iΘ3) ; d

aJ13 = −1

2
(iΘ2) ; d

aJ23 =
1

2
(iΘ1) (2.15)

The rotations iΘ1, iΘ2, iΘ3 defined by (2.13) are positive in the counterclockwise sense. We use

this definition in the present work. Gradients of rotation angles can be easily be obtained. Let

{iΘ}T = [iΘ1, iΘ2, iΘ3] (2.16)

Gradients of rotations in (2.16)
(
[iΘJ ]

)
can be obtained using

[iΘJ ] =

[
∂{iΘ}
∂{x}

]
or ΘJjk =

∂(iΘj)

∂xk
(2.17)

The gradient tensor [iΘJ ] of rotations can be decomposed into symmetric and antisymmetric parts

[iΘs J ] and
[
iΘ
a J
]
.

[iΘJ ] = [iΘs J ] + [iΘa J ] (2.18)

[iΘs J ] =
1

2

(
[iΘJ ] + [iΘJ ]T

)
[iΘa J ] =

1

2

(
[iΘJ ]− [iΘJ ]T

) (2.19)

on the other hand polar decomposition gives

[
dJ
]

=
[
dR
] [

dSr
]

=
[
dSl
] [

dR
]

(2.20)

The right and left stretch tensors
[
dSr
]

and
[
dSl
]

are symmetric and positive-definite, and
[
dR
]

is

an orthogonal rotation tensor, a rotation matrix tensor where as
[
d
aJ
]

contains half of the rotation

8



angles. Deriving rotation angles from
[
dR
]

or [R] in general R3 may not be possible or unique [46].

Fortunately, there is no need for this here.

Incorporating dJ in its entirety in the derivation of the conservation and balance laws implies

incorporating
[
d
sJ
]
, and

[
d
aJ
]

(i.e. rotations iΘ1, iΘ2, iΘ3 about the axes of a triad located at each

material point). Rotations in
[
d
aJ
]

are internal and completely defined by skew-symmetric part of[
dJ
]

or (2.13)-(2.14).

2.1.1 Constitutive theories

The entropy inequality (2.6) expressed in terms of Helmholtz free energy density and the rate

of work (mechanical) conjugate pairs in the entropy inequality are instrumental in determining the

constitutive variables, their argument tensors as well as derivations of some constitutive theories.

Choice of Φ, η, sσσσ, mmm, and qqq as constitutive variables based on the axioms of constitutive the-

ory [46, 47] and the entropy inequality as well as other balance laws is quite obvious. It is straight

forward to chose the argument tensors of sσσσ,mmm and qqq using the conjugate pairs in (2.6) including

θ due to thermoelastic behavior.

sσσσ = sσσσ(εεε, θ) (2.21)

mmm =mmm(iΘsJJJ , θ) (2.22)

qqq = qqq(ggg, θ) (2.23)

The argument tensors of Φ and η at the onset can be chosen based on principle of equipresence

[46, 47]. Thus we have the following

Φ = Φ(εεε, iΘsJJJ ,ggg, θ) (2.24)

η = η(εεε, iΘsJJJ ,ggg, θ) (2.25)
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At this stage, (2.21)-(2.25) define constitutive variables and their argument tensors. In the present

work we consider (2.21)-(2.23), as well as (2.24), in the derivation of the constitutive theories.

Using the argument tensor of Φ in (2.24), we can write

DΦ

Dt
=

.
Φ =

∂Φ

∂εkl

.
εkl +

∂Φ

∂(iΘsJ)kl
(iΘs

.
J)kl +

∂Φ

∂gi

.
gi +

∂Φ

∂θ

.
θ (2.26)

Substituting (2.26) in the entropy inequality (2.6) and collecting terms we obtain the following(
ρ
0

∂Φ

∂εkl
− sσkl

)
.
εkl +

(
ρ
0

∂Φ

∂(iΘsJ)kl
−mkl

)
(iΘs

.
J)kl + ρ

0

(
η +

∂Φ

∂θ

) .
θ + ρ

0

∂Φ

∂gi

.
gi +

qi ·gi
θ
≤ 0

(2.27)

For arbitrary but admissible choice of
.
εεε, iΘs

.
JJJ ,

.
θ and

.
ggg, the entropy inequality (2.27), holds if

ρ
0

∂Φ

∂εkl
− sσkl = 0 =⇒ sσkl = ρ

0

∂Φ

∂εkl
(2.28)

ρ
0

∂Φ

∂(iΘsJkl)
−mkl = 0 =⇒ mkl = ρ

0

∂Φ

∂(iΘsJ)kl
(2.29)

ρ
0

(
η +

∂Φ

∂θ

)
= 0 =⇒ η = −∂Φ

∂θ
(2.30)

ρ
0

∂Φ

∂gi
= 0 =⇒ Φ 6= Φ(gi) (2.31)

qigi
θ
≤ 0 (2.32)

and

Φ = Φ(εεε, iΘsJJJ , θ) , η = η(εεε, iΘsJJJ , θ) (2.33)

Remarks

1. Equation (2.28) can be used to derive constitutive theory for sσσσ.

2. Equation (2.29) can be used to derive constitutive theory formmm.

3. Equation (2.30) implies that η is not a constitutive variable as η is deterministic from ∂Φ/∂θ.

4. Based on (2.31) we can conclude that Φ is not a function of ggg.
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5. Inequality in (2.32) must be satisfied by the constitutive theory for qqq.

2.1.1.1 Constitutive theory for [sσ] based on (2.21)

First, we consider constitutive theories for [sσ] and [m] based on (2.21) and (2.22) using rep-

resentation theorem. Since [sσ] is a symmetric tensor of rank two, the integrity based on the

combined generators (symmetric tensors of rank two) of [ε] and θ (symmetric tensor of rank two

and tensor of rank zero) consists of tensors [I], [ε], [ε]2, hence we can represent [sσ] by a linear

combination of the combined generators.

[sσ] = σα˜0[I] + σα˜1[ε] + σα˜2[ε]2 (2.34)

in which

σα˜i = σα˜i(Iε, IIε, IIIε, θ); i = 0, 1, 2 (2.35)

We introduce new notations in (2.34) and (2.35) to facilitate the subsequent details of the deriva-

tion. We define [σG˜ 1] = [ε], [σG˜ 2] = [ε]2, i.e. [σG˜ i]; i = 1, 2, · · ·, N(N = 2) as the combined

generators due to argument tensors [ε] and θ and σI˜1 = Iε, σI˜2 = IIε, σI˜3 = IIIε, i.e. σI˜j;
j = 1, 2, ···,M(M = 3) as the combined invariants of the same argument tensors.

Then, (2.34) and (2.35), can be written as

[sσ] = σα˜0 +
N∑
i=1

σα˜i[σG˜ i] (2.36)

σα˜i = σα˜i (σI˜j, θ) ; i = 1, 2, ···, N ; j = 1, 2, ···,M (2.37)

The material coefficients in the constitutive theory for [sσ] are determined by considering Taylor

series expansion of σα˜i; i = 0, 1, ···, N in σI˜j; j = 1, 2, ···,M and θ about a known configuration
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Ω and retaining only up to linear terms in σI˜j; j = 1, 2, ···,M and θ (for simplicity).

σα˜i = σα˜i∣∣Ω +
M∑
j=1

∂σα˜i
∂σI˜j

∣∣∣∣
Ω

(
σI˜j − σI˜j∣∣Ω

)
+
∂σα˜i
∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
; i = 0, 1, . . . , N (2.38)

Substituting (2.38) in (2.34) and collecting coefficients of the terms defined in the current config-

uration and introducing new notations for the coefficients, we can obtain

[sσ] = σ˜0
∣∣
Ω

[I] +
M∑
j=1

σa˜jσI˜j[I] +
N∑
i=1

σb˜i[σG˜ i] +
N∑
i=1

M∑
j=1

σc˜ijσI˜j[σG˜ i]
−

N∑
i=1

σd˜i
(
θ − θ|

Ω

)
[σG˜ i]− αtm

(
θ − θ|

Ω

)
[I]

(2.39)

Coefficients σa˜j , σb˜j , σc˜ij , σd˜i, αtm; i = 1, 2, . . . , N ; j = 1, 2, . . . ,M are functions of σI˜j∣∣Ω and θ|
Ω

j = 1, 2, . . . ,M . These are the material coefficients.

Remarks

1. This constitutive theory contains (N = 2, M = 3) fourteen material coefficients and con-

tains up to fifth degree terms in the components of [ε], but is linear in temperature θ.

2. A linear constitutive theory in which the products of σI˜j , [σG˜ i] and
(
θ − θ|

Ω

)
are neglected

and only up to linear terms in [ε] are retained is given by

[sσ] = σ˜0
∣∣
Ω

[I] + σa˜1
σI˜1[I] + σb˜1

[σG˜ 1] + αtm|Ω
(
θ − θ|

Ω

)
[I] (2.40)

Using the notation σb˜1
= 2 µ|

Ω
, σa˜1

= λ|
Ω

and using σI˜1 = tr[ε], [σG˜ 1] = [ε]. We can write

(2.40) as

[sσ] = σ˜0
∣∣
Ω

[I] + 2 µ|
Ω

[ε] + λ|
Ω

(tr[ε])[I]− αtm|Ω
(
θ − θ|

Ω

)
[I] (2.41)

This is Hooke’s Law in which µ and λ are Lame’s constants defined in a known configuration

Ω.
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2.1.1.2 Constitutive theory for [m] based on (2.22)

This derivation is exactly the same as for [sσ]. Based on representation theorem, we begin with

[m] = mα˜0[I] +
N∑
i=1

mα˜i[mG˜ i] (2.42)

mα˜i = mα˜i (mI˜j, θ) ; i = 1, 2, . . . , N ; j = 1, 2, . . . ,M (2.43)

in which

[mG˜ 1] = [iΘsJ ] , [mG˜ 2] = [iΘsJ ]2 ; [mG˜ i] ; i = 1, 2, . . . , N ; N = 2

mI˜1 = I
(i

Θ
sJ)

, mI˜2 = II
(i

Θ
sJ)

, mI˜3 = III
(i

Θ
sJ)

; [mI˜j] ; j = 1, 2, . . . ,M ; M = 3

(2.44)

Material coefficients in (2.42) are determined using Taylor series expansion of mα˜i; i = 0, 1, 2 in

mI˜j; j = 1, 2, . . . ,M and θ about a known configuration Ω and retaining only up to linear terms in

mI˜j; j = 1, 2, . . . ,M and θ (for simplicity).

mα˜i = mα˜i∣∣Ω +
M∑
j=1

∂mα˜i
∂mI˜j

∣∣∣∣
Ω

(
mI˜j − mI˜j∣∣Ω

)
+
∂mα˜i
∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
[I]; i = 0, 1, . . . , N (2.45)

Substituting (2.45) in (2.42) and collecting coefficients of the terms defined in the current config-

uration and introducing new notations for the coefficients, we can write

[m] =m˜ 0[I] +
M∑
j=1

ma˜jmI˜j[I] +
N∑
i=1

mb˜i[mG˜ i] +
N∑
i=1

M∑
j=1

mc˜ijmI˜j[mG˜ i]
−

N∑
i=1

md˜i
(
θ − θ|

Ω

)
[mG˜ i]− mαtm

(
θ − θ|

Ω

)
[I]

(2.46)

Coefficients ma˜j , mb˜i, mc˜ij , md˜i, mαtm are material coefficients that can be functions of mI˜j∣∣Ω and θ|
Ω

.

Remarks

1. This constitutive theory also contains (N = 2, M = 3) fourteen material coefficients and

contains up to fifth degree terms in the components of [iΘsJ ], but is linear in θ.
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2. A linear constitutive theory in which the products of mI˜j , [mG˜ i] and
(
θ − θ|

Ω

)
are neglected

and only up to linear terms in [iΘsJ ] are retained is given by

[m] = m˜ 0
∣∣
Ω

[I] + ma˜1
mI˜1[I] + mb˜1

[iΘsJ ]− mαtm|Ω
(
θ − θ|

Ω

)
[I] (2.47)

Using the notation ma˜1
= µ˜ and noting that mI˜1 = tr[iΘsJ ] = 0, we can write the following

form (2.47)

[m] = m˜ 0
∣∣
Ω

[I] + µ˜[iΘsJ ]− mαtm|Ω
(
θ − θ|

Ω

)
[I] (2.48)

A further simplified theory in which the first and the last term in (2.48) are neglected is given

by

[m] = µ˜[iΘsJ ] (2.49)

in which the material coefficient µ˜ can be dependent on the invariants of [iΘsJ ] and θ in a

known configuration Ω, i.e.

µ˜ = µ˜
(
I

(i
Θ
sJ)

∣∣∣
Ω

, II
(i

Θ
sJ)

∣∣∣
Ω

, III
(i

Θ
sJ)

∣∣∣
Ω

, θ|
Ω

)
(2.50)

2.1.1.3 Constitutive theory for [sσ] based on (2.28) and (2.33)

Substituting (2.33) into (2.28) we obtain

sσσσ = ρ
0

∂Φ
(
εεε, iΘsJJJ , θ

)
∂εεε

(2.51)

Due to frame invariance requirement, Φ must be a function of the invariants of εεε, iΘsJJJ as well as the

invariants containing both εεε and iΘ
sJJJ . Let σI˜j; j = 1, 2, . . . ,M be the combined invariants between

εεε and iΘ
sJJJ excluding the invariants of iΘ

sJJJ (i.e. I
(i

Θ
sJ)

, II
(i

Θ
sJ)

, III
(i

Θ
sJ)

), then

sσlk = ρ
0

M∑
j=1

∂Φ

∂σI˜j
∂σI˜j
∂εlk

(2.52)
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Using σI˜j; j = 1, 2, . . . ,M , we can obtain the following from (2.52)

[sσ] = σα˜0[I] +
N∑
i=1

σα˜i[σG˜ i] (2.53)

where [mG˜ i] are the generators, symmetric tensors of rank two and

σα˜i = σα˜i
(
σI˜j, I(i

Θ
sJ)
, II

(i
Θ
sJ)
, III

(i
Θ
sJ)
, θ
)

; i = 0, 1, 2, . . . , N ; j = 1, 2, . . . ,M (2.54)

The material coefficients in (2.54) are determined by expanding σα˜i; i = 0, 1, . . . , N in Taylor

series in σI˜j; j = 1, 2, . . . ,M and θ about a known configuration Ω and retaining only up to linear

terms in σI˜j; j = 1, 2, . . . ,M and θ (for simplicity).

σα˜i = σα˜i∣∣Ω +
M∑
j=1

∂σα˜i
∂σI˜j

∣∣∣∣
Ω

(
σI˜j − σI˜j∣∣Ω

)
+
∂σα˜i
∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
; i = 0, 1, . . . , N (2.55)

Substituting (2.55) in (2.53) and collecting coefficients of the terms defined in the current config-

uration and introducing new notations for the coefficients, we obtain

[sσ] =σ0
∣∣
Ω

[I] +
M∑
j=1

σaj
σI˜j[I] +

N∑
i=1

σbi[
σG˜ i] +

N∑
i=1

M∑
j=1

σcij
σI˜j[σG˜ j]

−
N∑
i=1

σdi

(
θ − θ|

Ω

)
[σG˜ i]−αtm(θ − θ|

Ω
)[I]

(2.56)

In which σaj ,
σbi,

σcij ,
σdi andαtm; i = 1, 2, . . . , N ; j = 1, 2, . . . ,M are material coefficients that

can be functions of σI˜j∣∣Ω ; j = 1, 2, . . . ,M , I
(i

Θ
sJ)

∣∣∣
Ω

, II
(i

Θ
sJ)

∣∣∣
Ω

, III
(i

Θ
sJ)

∣∣∣
Ω

, θ|
Ω

.

Remarks

1. This constitutive theory contains (M + 2N + MN + 1) material coefficients.

2. A linear constitutive theory in [ε] in which all product terms of σI˜j , [σG˜ i] and
(
θ − θ|

Ω

)
are

neglected is given by

[sσ] = σ0
∣∣
Ω

[I] + σa1(tr[ε])[I] + σb1[ε]−αtm
(
θ − θ|

Ω

)
[I] (2.57)
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Using the notation σa1 = λ|
Ω

, σb1 = 2 µ|
Ω

we can write (2.57) as

[sσ] = σ0
∣∣
Ω

[I] + λ|
Ω

(tr[ε])[I] + 2 µ|
Ω

[ε]−αtm
(
θ − θ|

Ω

)
[I] (2.58)

where µ and λ (Lame’s constants) that can be functions of σI˜j∣∣Ω ; j = 1, 2, . . . ,M , I
(i

Θ
sJ)

∣∣∣
Ω

,

II
(i

Θ
sJ)

∣∣∣
Ω

, III
(i

Θ
sJ)

∣∣∣
Ω

, θ|
Ω

.

2.1.1.4 Constitutive theory for [m] based on (2.29) and (2.33)

Substituting (2.33) into (2.29) we obtain

mmm = ρ
0

∂Φ
(
εεε, iΘsJJJ , θ

)
∂(iΘsJJJ)

(2.59)

Again, due to frame invariance requirement, Φ must be a function of the invariants of εεε, iΘsJJJ as well

as the invariants containing both εεε and iΘ
sJJJ . Let mI˜j; j = 1, 2, . . . ,M be the combined invariants

between εεε and iΘ
sJJJ excluding the invariants of εεε (i.e. Iε, IIε, IIIε), then

mlk = ρ
0

M∑
j=1

∂Φ

∂mI˜j
∂mI˜j

∂(iΘsJ)lk
(2.60)

Using invariants mI˜j; j = 1, 2, . . . ,M we obtain the following form of (2.60)

[m] = mα˜0[I] +
N∑
i=1

mα˜i[mG˜ i] (2.61)

where [mG˜ i]; i = 1, 2, . . . , N are generators, symmetric tensors of rank two and

mα˜i = mα˜i (mI˜j, Iε, IIε, IIIε, θ) ; i = 1, 2, . . . , N ; j = 1, 2, . . . ,M (2.62)

The material coefficients in (2.61) are determined by expanding mα˜i; i = 0, 1, . . . , N in Taylor

series in mI˜j; j = 1, 2, . . . ,M and θ about a known configuration Ω and retaining only up to linear

terms in mI˜j; j = 1, 2, . . . ,M and θ (for simplicity).

mα˜i = mα˜i∣∣Ω +
M∑
j=1

∂mα˜i
∂mI˜j

∣∣∣∣
Ω

(
mI˜j − mI˜j∣∣Ω

)
+
∂mα˜i
∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
; i = 0, 1, . . . , N (2.63)
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Substituting (2.61) in (2.63) and collecting coefficients of the terms defined in the current config-

uration and introducing new notations for the coefficients, we obtain

[m] =m0
∣∣
Ω

[I] +
M∑
j=1

maj
mI˜j[I] +

N∑
i=1

mbi[
mG˜ i] +

N∑
i=1

M∑
j=1

mcij
mI˜j[mG˜ i]

−
N∑
i=1

mdi(θ − θ|
Ω
)[mG˜ i]−αtm

(
θ − θ|

Ω

)
[I]

(2.64)

in which mai,
mbj ,

mcij ,
mdi andαtm; i = 1, 2, . . . , N ; j = 1, 2, . . . ,M are material coefficients that

can be functions of mI˜j; j = 1, 2, . . . ,M , Iε|Ω, IIε|Ω, IIIε|Ω and θ|
Ω

.

Remarks

1. This constitutive theory contains (M + 2N +MN + 1) material coefficients

2. A linear constitutive theory in [iΘsJ ] in which all product terms of mI˜j , [mG˜ i],
(
θ − θ|

Ω

)
are

neglected is given by

[m] = m0
∣∣
Ω

[I] + ma1

(
tr[iΘsJ ]

)
[I] + mb1[iΘsJ ]−αtm

(
θ − θ|

Ω

)
[I] (2.65)

Using ma1 = λ˜∣∣Ω [I], mb1 = µ˜
∣∣∣
Ω

we can write (2.65) as

[m] = m0
∣∣
Ω

[I] + λ˜∣∣Ω (tr[iΘsJ ]
)

[I] + µ˜
∣∣∣
Ω

[iΘsJ ]−αtm
(
θ − θ|

Ω

)
[I] (2.66)

In the work presented in this thesis, we consider the following simplified forms of the consti-

tutive theory for sσσσ andmmm (noting that tr[iΘsJ ] = 0)

[sσ] = 2µ[ε] + λ(tr[ε])[I] (2.67)

and

[m] = µ˜[iΘsJ ] (2.68)

The material coefficients µ, λ and µ˜ can be functions of invariants (shown earlier) in a known
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configuration Ω.

2.1.1.5 Constitutive theory for {q}

We consider qqq = qqq(ggg, θ) and use representation theorem [48–64]. The combined generators

of the argument tensors ggg and θ that are tensors of rank one is just ggg and the combined invariant is

ggg · ggg (or qI). Thus, we can write [46]

{q} = −qα{q} (2.69)

in which qα˜ = qα˜ (qI, θ).

Material coefficients in the constitutive theory for qqq given by (2.69) are obtained by consider-

ing Taylor series expansion of qα˜ in qI and θ about a known configuration Ω and retaining up to

linear terms in qI and θ (for simplicity).

qα˜ = qα˜ ∣∣Ω +
∂qα

∂qI

∣∣∣∣
Ω

(
qI − qI|

Ω

)
+
∂qα

∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
(2.70)

Substituting (2.70) in (2.69) and collecting coefficients gives

{q} = −k1|Ω {g} −k2|Ω ({g}T{g}){g} −k3|Ω
(
θ − θ|

Ω

)
{g} (2.71)

This constitutive theory is based on integrity, hence uses complete basis. From (2.70) we can derive

a linear constitutive theory for {q}.

{q} = −k1|Ω {g} (2.72)

The material coefficients k1, k2, and k3 are in a known configuration Ω and can be functions of qI ,

i.e. {g}T{g} and temperature θ in Ω.
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2.1.2 Mathematical Model in R2

We present expanded form of equations constituting the mathematical model in R2 for isother-

mal case. We consider the plane stress case. First, we note that in this case we have only one

rotation iΘ3 (iΘ1, iΘ2 are zero) given by

iΘ3 =

(
∂u1

∂x2

− ∂u2

∂x1

)
(2.73)

[
iΘJ
]

=

[
∂{iΘ}
∂{x}

]
=


0 0 0

0 0 0

∂(iΘ3)
∂x1

∂(iΘ3)
∂x2

0

 (2.74)

[
iΘ
sJ
]

=


0 0 1

2
∂(iΘ3)
∂x1

0 0 1
2
∂(iΘ3)
∂x2

1
2
∂(iΘ3)
∂x1

1
2
∂(iΘ3)
∂x2

0

 (2.75)

Using (2.68) and (2.75) we obtain the following constitutive theories for m13 and m23 (others

are zero)

m31 = m13 = µ˜1

2

∂(iΘ3)

∂x1

=
µ

2̃

(
∂2u1

∂x1∂x2

− ∂2u2

∂x2
1

)
m32 = m23 = µ˜1

2

∂(iΘ3)

∂x2

=
µ

2̃

(
∂2u1

∂x2
2

− ∂2u2

∂x1∂x2

) (2.76)

The complete mathematical model in R2 in the dimensionless form is given in the following

ρ
0

∂2u1

∂t2
− ρ

0
F b

1 −
∂(sσ11)

∂x1

− ∂(sσ21)

∂x2

− ∂(aσ21)

∂x2

= 0 (2.77)

ρ
0

∂2u2

∂t2
− ρ

0
F b

2 −
∂(sσ12)

∂x1

− ∂(sσ22)

∂x2

− ∂(aσ12)

∂x1

= 0 (2.78)
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∂m13

∂x1

+
∂m23

∂x2

+ 2 (aσ12) = 0;

aσ21 = −aσ12

(2.79)

sσ11 = D11
∂u1

∂x1

+D12
∂u2

∂x2

sσ22 = D21
∂u1

∂x1

+D22
∂u2

∂x2

sσ12 = sσ21 = D33

(
∂u2

∂x1

+
∂u1

∂x2

) (2.80)

m13 =
µ

2̃

E0

m0L0

(
∂2u1

∂x1∂x2

− ∂2u2

∂x2
1

)
, m23 =

µ

2̃

E0

m0L0

(
∂2u1

∂x2
2

− ∂2u2

∂x1∂x2

)
(2.81)

D11 = D22 =
E

1− ν2
, D12 = D21 =

νE

1− ν2
, D33 = G =

E

2(1 + ν)
(2.82)

The dimensionless form of the equations are obtained by first writing all equations with hat (∧)

on all quantities and variables indicating that they have their usual units or dimensions in terms of

length (L̂), force (F̂ ) and time (t̂). If we choose L0, F0 and t0 as reference length, force and time,

then the dimensionless length, force and time are defined as

L =
L̂

L0

, F =
F̂

F0

, t =
t̂

t0
(2.83)

If we let Ê = EE0, E0 = F0

L2
0
, x̂ = xL0, m̂ = mm0, m0 = τ0L0 = E0L0, τ0 = E0, µ̂˜ = µ˜E0, and

v0 =
√

E0

ρ
0

, reference speed of sound, then t0 = L0

v0
. In this case, E0

m0L0
is in fact unity. Equations

(2.77)-(2.81) are eight partial differential equations in eight variables, u1, u2, sσ11, sσ22, sσ12, aσ12,

m13, m23, and iΘ3. It is straight forward to show that if we substitute (2.80) in (2.79), then (2.79)

in (2.77) and (2.78), and (2.81) in (2.77) and (2.78), then we can reduce the complete mathematical

model into partial differential equations (2.77) and (2.78) in displacements u1 and u2 given below.

ρ
0

∂2u1

∂t2
− ρ

0
F b

1 − A11(u1, u2)− A12(u1, u2) = 0

ρ
0

∂2u2

∂t2
− ρ

0
F b

2 − A21(u1, u2)− A22(u1, u2) = 0

(2.84)
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A11(u1, u2) =

(
∂

∂x1

(
D11

∂u1

∂x1

)
+

∂

∂x2

(
D33

∂u1

∂x2

))
+

(
∂

∂x1

(
D12

∂u2

∂x2

)
+

∂

∂x2

(
D33

∂u2

∂x1

))
A21(u1, u2) =

(
∂

∂x1

(
D33

∂u1

∂x2

)
+

∂

∂x2

(
D21

∂u1

∂x1

))
+

(
∂

∂x1

(
D33

∂u2

∂x1

)
+

∂

∂x2

(
D22

∂u2

∂x2

))
(2.85)

A12(u1, u2) =
µ

4̃

(
∂4u1

∂x2
1∂x

2
2

+
∂4u1

∂x4
2

)
−
µ

4̃

(
∂4u2

∂x3
1∂x2

+
∂4u2

∂x3
2∂x1

)
A22(u1, u2) = −

µ

4̃

(
∂4u1

∂x3
1∂x2

+
∂4u1

∂x1∂x3
2

)
+
µ

4̃

(
∂4u2

∂x4
1

+
∂4u2

∂x2
1∂x

2
2

) (2.86)

Remarks

1. We note that the complete mathematical model now consists of two fourth order partial

differential equations in displacements u1 and u2 resulting from balance of linear momenta.

2. A11(u1, u2) and A21(u1, u2) are due to classical continuum mechanics. These contain only

up to second order derivatives of displacements u1 and u2.

3. A12(u1, u2) and A22(u1, u2) are due to internal rotations (non-classical continuum mechan-

ics). These contain up to fourth order derivatives of displacements u1 and u2.

4. Equation (2.84) are ideally suited for finite element formulation based on space-time decou-

pled method using Galerkin method with weak form (STDGM/WF) in space. The resulting

finite element formulation can be used to study: (i) natural modes of vibrations (ii) un-

damped transient response using mode superposition method or by using direct integration

of ordinary differential equations in time.
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Chapter 3

Finite Element Method Considerations and

Formulation

3.1 Considerations in the Finite Element Formulation

For thermoelastic non-classical solid continua with internal rotations in which the mechanical

deformation is reversible we consider the following.

(i) Undamped natural vibrations for which the BLM equations (2.84) in u1 and u2 are ideally

suited. We consider the finite element method using space-time decoupled Galerkin method

with weak form in space yielding mass and stiffness matrices. Eigenpairs using this finite

element formulation based on classical continuum mechanics and non-classical continuum

mechanics are calculated using subspace iteration method or Householder-QR method and

are compared.

(ii) Undamped transient dynamic response is calculated for the mathematical model based on

classical continuum mechanics and non-classical continuum mechanics using normal mode

synthesis (or mode superposition) techniques utilizing the normal modes determined in (i).

(iii) Transient dynamic response using space-time coupled finite element method based on space-
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time residual functionals (space-time least squares method) can also be determined. The

space-time integral form in this approach is space-time variationally consistent (STVC),

hence the computations remain unconditionally stable during the computation of the entire

evaluation. Time response can be computed using a space-time strip with time marching. In

this approach, the mathematical model of evolution in R2 naturally yields a space-time finite

element requiring 3D finite elements. This work is not presented in this thesis.

(iv) ODEs in time resulting from space-time decoupled method using GM/WF in space are also

integrated using Wilson’s θ method to obtain transient dynamic response. This solution is

compared with the one obtained in (ii).

(v) Since the ODEs in time when transformed in modal basis are decoupled, and each ODE has

an analytical solution, time response is also calculated using superposition of the analytical

solution of each ODE in time and compared with the time response calculated in (ii) and (iv).

3.2 Finite Element Formulations

For thermoelastic solid continua, the space-time differential operators are not self-adjoint [65],

hence space-time Galerkin method (STGM), space-time Petrov Galerkin method (STPGM), space-

time weighted residual method (STWRM) and space-time Galerkin method with weak form (STG-

M/WF) all yield space-time integral forms that are space-time variationally inconsistent [65], hence

can not ensure unconditionally stable computations. Only space-time integral forms based on

space-time residual functional (space-time least squares method or process STLSP) is space-time

variationally consistent, hence ensures unconditionally stable computations for all possible choices

of dimensionless parameter of the model problem and computational parameters (h, p, k). In

STLSP we have more than one choice of the specific form of the equations in the mathematical

model [65].

In the space-time coupled methods using STLSP [65] accurate time response computations

can be performed of the mathematical model. However, studies of normal modes of vibration
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using the mathematical model based on classical as well as non-classical continuum mechanics

requires mass and stiffness information which is only possible in space-time decoupled finite ele-

ment formulations based on Galerkin method with weak form in space. We consider this approach.

For space-time decoupled GM/WF in space, the mathematical model in terms of BLM expressed

in terms of u1 and u2 is highly meritorious, but is cumbersome to work with. In this thesis,

we present an alternative procedure that is also based on space-time decoupled approach using

GM/WF in space that has a simpler derivation but eventually yields same integral form as using

BLM in u1 and u2.

3.2.1 Space-time Decoupled Finite Element Formulation using GM/WF in

Space

We begin with the balance of linear momenta in u1, u2, sσσσ and aσσσ (equations (2.84)) ∀ (x, t)

∈ Ωxt = Ωx × Ωt,

A1(u1, u2) = ρ
0

∂2u1

∂t2
− ρ

0
F b

1 − A11(u1, u2)− A12(u1, u2) = 0 (3.1)

A2(u1, u2) = ρ
0

∂2u2

∂t2
− ρ

0
F b

2 − A21(u1, u2)− A22(u1, u2) = 0 (3.2)

in which

A11(u1, u2) =
∂(sσ11)

∂x1

+
∂(sσ21)

∂x2

; A12(u1, u2) =
∂(aσ21)

∂x2

A21(u1, u2) =
∂(sσ12)

∂x1

+
∂(sσ22)

∂x2

; A22(u1, u2) =
∂(aσ12)

∂x2

(3.3)

Let Ω̄T
x =

⋃
e

Ω̄e
x be discretization of spatial domain Ω̄x in which Ω̄e

x is a typical finite element e.

We consider nine node p-version hierarchical finite element Ω̄e
x [65, 66]. The local approximation

over Ω̄e
x are higher order and higher degree in the local approximation space Vh ⊂ Hk,p

(
Ω̄e
x

)
. Ω̄e

x

is mapped into a two unit square in natural coordinate space ξ, η [65]. We construct integral form

of (3.1) and (3.2) over Ω̄e
x using fundamental lemma of calculus of variations [65]. Let (u1)eh and
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(u2)eh be approximation of u1 and u2 over Ω̄e
x, then we can write

(u1)eh =
nu1∑
i=1

Nu1
i (ξ, η)δu1

i (t)

(u2)eh =
nu2∑
i=1

Nu2
i (ξ, η)δu2

i (t)

(3.4)

in which Nu1
i (ξ, η) and Nu2

i (ξ, η) are local approximation functions of spatial natural coordinates

ξ, η, and δu1
i (t) and δu2

i (t) are corresponding nodal degrees of freedom that are functions of time

only. Let w1 and w2 be test functions such that w1 = δ(u1)eh and w2 = δ(u2)eh, then

w1 = Nu1
j (ξ, η); j = 1, 2, . . . , nu1

w2 = Nu2
j (ξ, η); j = 1, 2, . . . , nu2

(3.5)

Consider scalar products (A1(u1, u2), w1)Ω̄ex
and (A1(u1, u2), w2)Ω̄ex

(A1 ((u1)eh, (u2)eh) , w1)Ω̄ex
=

(
ρ
0

∂2(u1)eh
∂t2

, w1

)
Ω̄ex

−
(
ρ
0
F b

1 , w1

)
Ω̄ex

− (A11 ((u1)eh, (u2)eh) , w1)
Ω̄ex
− (A12 ((u1)eh, (u2)eh) , w1)Ω̄ex

(3.6)

(A2 ((u1)eh, (u2)eh) , w2)Ω̄ex
=

(
ρ
0

∂2(u2)eh
∂t2

, w2

)
Ω̄ex

−
(
ρ
0
F b

2 , w2

)
Ω̄ex

− (A21 ((u1)eh, (u2)eh) , w2)Ω̄ex
− (A22 ((u1)eh, (u2)eh) , w2)Ω̄ex

(3.7)

First consider

(A11 ((u1)eh, (u2)eh) , w1)Ω̄ex
=

(
∂(sσ11)eh
∂x1

+
∂(sσ21)eh
∂x2

, w1

)
Ω̄ex

(3.8)

(A21 ((u1)eh, (u2)eh) , w2)Ω̄ex
=

(
∂(sσ12)eh
∂x1

+
∂(sσ22)eh
∂x2

, w2

)
Ω̄ex

(3.9)
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We transfer one order of differentiation from stress terms to w1 and w2 in (3.8) and (3.9).

(A11 ((u1)eh, (u2)eh) , w1)Ω̄ex
=−

∫
Ω̄ex

(
∂w1

∂x1

(sσ11)eh +
∂w1

∂x2

(sσ21)eh

)
dΩx

+

∮
Γe

w1 ((sσ11)ehnx1 + (sσ21)ehnx2) dΓ

(3.10)

(A21 ((u1)eh, (u2)eh) , w2)Ω̄ex
=−

∫
Ω̄ex

(
∂w2

∂x1

(sσ12)eh +
∂w2

∂x2

(sσ22)eh

)
dΩx

+

∮
Γe

w2 ((sσ12)ehnx1 + (sσ22)ehnx2) dΓ

(3.11)

(u1)eh and (u2)eh are primary variables and their coefficients are secondary variables. Let tcx1
and

ctx2 be secondary variables defined by

ctx1 = (sσ11)ehnx1 + (sσ21)ehnx2 (3.12)

ctx2 = (sσ12)ehnx1 + (sσ22)ehnx2 (3.13)

We can now write (3.8) and (3.9) as follows

(A11 ((u1)eh, (u2)eh) , w1)Ω̄ex
= cBe

11 ((u1)eh, (u2)eh;w1) + cle11(w1) (3.14)

(A21 ((u1)eh, (u2)eh) , w2)Ω̄ex
= cBe

21 ((u1)eh, (u2)eh;w2) + cle21(w2) (3.15)

where
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cBe
11 ((u1)eh, (u2)eh;w1) =−

∫
Ω̄ex

(
∂w1

∂x1

(sσ11)eh +
∂w1

∂x2

(sσ21)eh

)
dΩx (3.16)

cle11(w1) =

∮
Γe

w1
ctx1dΓ (3.17)

cBe
21 ((u1)eh, (u2)eh;w2) =−

∫
Ω̄ex

(
∂w2

∂x1

(sσ12)eh +
∂w2

∂x2

(sσ22)eh

)
dΩx (3.18)

cle21(w2) =

∮
Γe

w2
ctx2dΓ (3.19)

Next we consider (A12 ((u1)eh, (u2)eh) , w1)Ω̄ex
and (A22 ((u1)eh, (u2)eh) , w2)Ω̄ex

in (3.6) and (3.7).

First we substitute aσ21 and aσ21 = −aσ12 from (2.79).

(A12 ((u1)eh, (u2)eh) , w1)Ω̄ex
= −

(
∂

∂x2

(
1

2

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

))
, w1

)
Ω̄ex

(3.20)

(A22 ((u1)eh, (u2)eh) , w2)Ω̄ex
=

(
∂

∂x1

(
1

2

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

))
, w2

)
Ω̄ex

(3.21)

We transfer one order of differentiation with respect to x2 on w1 and one order of differentiation

with respect to x2 on w2 in (3.20) and (3.21) respectively to obtain

(A12 ((u1)eh, (u2)eh) , w1)Ω̄ex
=

1

2

∫
Ω̄ex

∂w1

∂x2

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
dΩx

− 1

2

∮
Γe

w1

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
nx2dΓ

(3.22)

(A22 ((u1)eh, (u2)eh) , w2)Ω̄ex
=− 1

2

∫
Ω̄ex

∂w2

∂x1

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
dΩx

+
1

2

∮
Γe

w1

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
nx1dΓ

(3.23)
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We transfer all of the differentiation from (m13)eh and (m23)eh to ∂w1

∂x2
and ∂w2

∂x1
to obtain

(A12 ((u1)eh, (u2)eh) , w1)Ω̄ex
=− 1

2

∫
Ω̄ex

(
∂2w1

∂x1∂x2

(m13)eh +
∂2w1

∂x2
2

(m23)eh

)
dΩx

+

∮
Γe

(
∂w1

∂x2

((m13)ehnx1 + (m23)ehnx2)

)
dΓ

−
∮
Γe

w1

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
nx2dΓ

(3.24)

Primary variables are ∂(u1)eh
∂x2

and (u1)eh and their coefficients are secondary variables

(A22 ((u1)eh, (u2)eh) , w2)Ω̄ex
=− 1

2

∫
Ω̄ex

(
∂2w2

∂x2
1

(m13)eh +
∂2w2

∂x1∂x2

(m23)eh

)
dΩx

−
∮
Γe

(
∂w2

∂x1

((m13)ehnx1 + (m23)ehnx2)

)
dΓ

+

∮
Γe

w2

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
nx1dΓ

(3.25)

Primary variables are ∂(u2)eh
∂x2

and (u2)eh and their coefficients are secondary variables. We define

secondary variables nctx1 , nctx2 and mn as follows

nctx1 =

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
nx2 (3.26)

nctx2 =

(
∂(m13)eh
∂x1

+
∂(m23)eh
∂x2

)
nx1 (3.27)

mn = (m13)ehnx1 + (m23)ehnx2 (3.28)

Now we can write (3.24) and (3.25) as follows

(A12 ((u1)eh, (u2)eh) , w1)Ω̄ex
= ncBe

12 ((u1)eh, (u2)eh;w1) + ncle12(w1) (3.29)
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(A22 ((u1)eh, (u2)eh) , w2)Ω̄ex
= ncBe

22 ((u1)eh, (u2)eh;w2) + ncle22(w2) (3.30)

where

ncBe
12 ((u1)eh, (u2)eh;w1) =− 1

2

∫
Ω̄ex

(
∂2w1

∂x1∂x2

(m13)eh +
∂2w1

∂x2
2

(m23)eh

)
dΩx (3.31)

ncle12(w1) =

∮
Γe

∂w1

∂x2

mndΓ−
∮
Γe

w1
nctx1dΓ (3.32)

ncBe
22 ((u1)eh, (u2)eh;w2) =

1

2

∫
Ω̄ex

(
∂2w2

∂x2
1

(m13)eh +
∂2w2

∂x1∂x2

(m23)eh

)
dΩx (3.33)

ncle22(w2) =−
∮
Γe

∂w2

∂x1

mndΓ +

∮
Γe

w2
nctx2dΓ (3.34)

Using (3.14) and (3.15) and (3.29) and (3.30) in (3.6) and (3.7) we obtain the following weak form

of (3.6) and (3.7)

(A1 ((u1)eh, (u2)eh) , w1)Ω̄ex
=

(
ρ
0

∂2(u1)eh
∂t2

, w1

)
Ω̄ex

− cBe
11 ((u1)eh, (u2)eh;w1)− cle11(w1)

− ncBe
12 ((u1)eh, (u2)eh;w1)− ncle12(w1)−

(
ρ
0
F b

1 , w1

)
Ω̄ex

(3.35)

(A2 ((u1)eh, (u2)eh) , w1)Ω̄ex
=

(
ρ
0

∂2(u2)eh
∂t2

, w2

)
Ω̄ex

− cBe
21 ((u1)eh, (u2)eh;w2)− cle21(w1)

− ncBe
22 ((u1)eh, (u2)eh;w2)− ncle22(w2)−

(
ρ
0
F b

2 , w2

)
Ω̄ex

(3.36)
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or (A1 ((u1)eh, (u2)eh) , w1)Ω̄ex

(A2 ((u1)eh, (u2)eh) , w2)Ω̄ex

 =


(
ρ
0

∂2(u1)eh
∂t2

, w1

)
Ω̄ex(

ρ
0

∂2(u2)eh
∂t2

, w2

)
Ω̄ex

−

cBe

11 ((u1)eh, (u2)eh;w1)

cBe
21 ((u1)eh, (u2)eh;w2)


−


ncBe

12 ((u1)eh, (u2)eh;w1)

ncBe
22 ((u1)eh, (u2)eh;w2)

−

cle11(w1) + ncle12(w1)

cle21(w2) + ncle22(w2)


−


(
ρ
0
F b

1 , w1

)
Ω̄ex(

ρ
0
F b

2 , w2

)
Ω̄ex


(3.37)

We note that
cle11(w1) + ncle12(w1)

cle21(w2) + ncle22(w2)

 =

l
e
1(w1)

le2(w2)

 =


∮
Γe
w1

ctx1dΓ +
∮
Γe

∂w1

∂x2
mndΓ−

∮
Γe
w1

nctx1dΓ∮
Γe
w2

ctx2dΓ +
∮
Γe

∂w2

∂x1
mndΓ−

∮
Γe
w2

nctx2dΓ


=


∮
Γe
w1 (ctx1 − nctx1) dΓ +

∮
Γe

∂w1

∂x2
mndΓ∮

Γe
w2 (ctx2 + nctx2) dΓ +

∮
Γe

∂w2

∂x1
mndΓ


(3.38)

We substitute (u1)eh, (u2)eh from (3.4) in the expressions for stresses and the moments given by

(2.80) and (2.81). Then, we substitute (2.80), (2.81) and (3.5) in (3.16)-(3.19) and (3.31)-(3.34) to

obtain the following. 
cBe

11 ((u1)eh, (u2)eh;w1)

cBe
21 ((u1)eh, (u2)eh;w2)

 = − [cKe] {δe(t)} (3.39)


ncBe

12 ((u1)eh, (u2)eh;w1)

ncBe
22 ((u1)eh, (u2)eh;w2)

 = − [ncKe] {δe(t)} (3.40)
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
(
ρ
0

∂2(u1)eh
∂t2

, w1

)
Ω̄ex(

ρ
0

∂2(u2)eh
∂t2

, w2

)
Ω̄ex

 = [M e] {
..
δ e(t)} (3.41)


(
ρ
0
F b

1 , w1

)
Ω̄ex(

ρ
0
F b

2 , w2

)
Ω̄ex

 =

{F
e
1 }

{F e
2 }

 = {F e} (3.42)

in which

[cKe] =

[cKe
11] [cKe

12]

[cKe
21] [cKe

22]

 ; {δe(t)} =

{δ
u1(t)}

{δu2(t)}

 (3.43)

(cKe
11)ij =

∫
Ω̄ex

(
D11

∂Nu1
i

∂x1

∂Nu1
j

∂x1

+D33
∂Nu1

i

∂x2

∂Nu1
j

∂x2

)
dΩx; i, j = 1, 2, . . . , nu1 (3.44)

(cKe
12)ij =

∫
Ω̄ex

(
D12

∂Nu1
i

∂x1

∂Nu2
j

∂x2

+D33
∂Nu1

i

∂x2

∂Nu2
j

∂x1

)
dΩx; i = 1, 2, . . . , nu1 ; j = 1, 2, . . . , nu2

(3.45)

(cKe
21)ij =

∫
Ω̄ex

(
D33

∂Nu2
i

∂x1

∂Nu1
j

∂x2

+D21
∂Nu2

i

∂x2

∂Nu1
j

∂x1

)
dΩx; i = 1, 2, . . . , nu1 ; j = 1, 2, . . . , nu2

(3.46)

(cKe
22)ij =

∫
Ω̄ex

(
D33

∂Nu2
i

∂x1

∂Nu2
j

∂x1

+D22
∂Nu2

i

∂x2

∂Nu2
j

∂x2

)
dΩx; i, j = 1, 2, . . . , nu2 (3.47)

{cP e} =

{
cP e

1 }

{cP e
2 }

 ; (cP e
1 )i =−

∫
Γe

Ni
ctx1dΓ; i = 1, 2, . . . , nu1

(cP e
2 )i =−

∫
Γe

Ni
ctx2dΓ; i = 1, 2, . . . , nu2

(3.48)

[cKe] is the element stiffness matrix due to classical continuum mechanics only (cKe)ij = (cKe)ji,
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i.e. [cKe] is symmetric.

[ncKe] =

[ncKe
11] [ncKe

12]

[ncKe
21] [ncKe

22]

 (3.49)

and

(ncKe
11)ij = −1

4
µ˜
∫
Ω̄ex

(
∂2Nu1

i

∂x1∂x2

∂2Nu1
j

∂x1∂x2

+
∂2Nu1

i

∂x2
2

∂2Nu1
j

∂x2
2

)
dΩx; i, j = 1, 2, . . . , nu1 (3.50)

(ncKe
12)ij = −1

4
µ˜
∫
Ω̄ex

(
∂2Nu1

i

∂x1∂x2

∂2Nu2
j

∂x2
1

+
∂2Nu1

i

∂x2
2

∂2Nu2
j

∂x1∂x2

)
dΩx; i = 1, 2, . . . , nu1 ; j = 1, 2, . . . , nu2

(3.51)

(ncKe
21)ij = −1

4
µ˜
∫
Ω̄ex

(
∂2Nu2

i

∂x2
1

∂2Nu1
j

∂x1∂x2

+
∂2Nu2

i

∂x1∂x2

∂2Nu1
j

∂x2
2

)
dΩx; i = 1, 2, . . . , nu1 ; j = 1, 2, . . . , nu2

(3.52)

(ncKe
22)ij = −1

4
µ˜
∫
Ω̄ex

(
∂2Nu2

i

∂x2
1

∂2Nu2
j

∂x2
1

+
∂2Nu2

i

∂x1∂x2

∂2Nu2
j

∂x1∂x2

)
dΩx; i, j = 1, 2, . . . , nu2 (3.53)

We note that (ncKe)ij = (ncKe)ji, i.e. [ncKe] is symmetric.

[M e] =

[M e
11] [M e

12]

[M e
21] [M e

22]

 (3.54)

(M e
11)ij =

∫
Ω̄ex

ρ
0
Nu1
i N

u1
j dΩx; i, j = 1, 2, . . . , nu1

(M e
12)ij = [0]; i = 1, 2, . . . , nu1 ; j = 1, 2, . . . , nu2

(M e
21)ij = [0]; i = 1, 2, . . . , nu2 ; j = 1, 2, . . . , nu1

(M e
22)ij =

∫
Ω̄ex

ρ
0
Nu2
i N

u2
j dΩx; i, j = 1, 2, . . . , nu2

(3.55)
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(F e
1 )i =

∫
Ω̄ex

ρ
0
F b

1N
u1
i dΩ̄x; i = 1, 2, . . . , nu1

(F e
2 )i =

∫
Ω̄ex

ρ
0
F b

2N
u2
i dΩ̄x; i = 1, 2, . . . , nu2

(3.56)

Details of the secondary variable vector containing le1(w1) and le2(w2) are obtained by expanding

each of the contour integrals in there over the element closed boundary Γe [65, 66]. Details are

straightforward. Here we simply use the following compact notation [65, 66].l
e
1(w1)

le2(w2)

 =

{P
e
1 }

{P e
2 }

 = {P e} (3.57)

Lastly {δe(t)} is a vector of nodal degrees of freedom for (u1)eh and (u2)eh, i.e.

{δe(t)} =

{δ
u1}

{δu2}

 (3.58)

in which {δu1} and {δu2} are nodal degrees of freedom for (u1)eh and (u2)eh for an element e with

spatial domain Ω̄e
x. Substituting (3.39)-(3.57) in (3.37) we obtain(A1 ((u1)eh, (u2)eh) , w1)Ω̄ex

(A2 ((u1)eh, (u2)eh) , w2)Ω̄ex

 = [M e]{
..
δ e(t)}+ [[cKe] + [ncKe]] {δe(t)} − {F e} − {P e} (3.59)

Assembly of the element equation (3.59) follows standard procedure [65, 66] and we obtain

∑
e

(A1 ((u1)eh, (u2)eh) , w1)Ω̄ex

(A1 ((u1)eh, (u2)eh) , w2)Ω̄ex

 = [M ]{
..
δ (t)}+ [[cK ] + [ncK ]] {δ(t)} − {F} = {0} (3.60)
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in which

[M ] =
∑
e

[M e] ; [cK ] =
∑
e

[cKe] ; [ncK ] =
∑
e

[ncKe]

{
..
δ (t)} =

⋃
e

{
..
δ e(t)}; {δ(t)} =

⋃
e

{δe(t)}

{P} =
∑
e

{P e} and {F} =
∑
e

⋃
e

{F e}

(3.61)

Through interelement conditions and specified nodal loads some components of {P} are zero

and the nonzero known components are absorbed in {F}. Equations (3.60) are a system of second

order ODEs in time in which [cK ] and [ncK ] are stiffness matrices due to classical and non-classical

physics and [M ] is the mass matrix for discretization Ω̄T
x of the spatial domain Ω̄x.
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Chapter 4

Solution Methods of ODEs in time

4.1 Methods

In this chapter, we consider solutions of ODEs in time (3.60) resulting from decoupling of

space and time using GM/WF in space. We consider:

(i) Natural modes of vibrations associated with (3.60)

(ii) Transient dynamic response using normal mode synthesis and direct numerical integration of

the ODEs in time.

Details of the three types of studies considered here are given in the following.

4.1.1 Natural Modes of Vibrations

Consider (3.60) with [K] = [cK ] + [ncK ], total stiffness matrix for the discretization Ω̄T
x .

[M ]{
..
δ (t)}+ [K]{δ(t)} = {F (t)} (4.1)

For harmonic excitation

F (t) = {F˜} sin(ωt+ α) (4.2)
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the response

{δ(t)} = {Φ} sin(ωt+ α) (4.3)

holds. Using (4.2) and (4.3) in (4.1) we obtain

[
[K]− ω2[M ]

]
{Φ(t)} = {F˜} (4.4)

For natural vibrations {F˜} = {0} and we have the following

[
[K]− ω2[M ]

]
{Φ} = {0} (4.5)

eigenvalue problem with the eigenpairs (ω2
i , {Φ}i) ; i = 1, 2, . . . , n, in which ωi is the ith natural

frequency of vibrations in (Hz) and {Φ}i is the corresponding mode shape. These are calculated

using subspace iteration method or QR-Householder method.

Remarks

1. Since [cK ] + [ncK ], progressively increasing non-classical physics due to progressively in-

creasing µ˜ will result in higher stiffness [K]. Thus when µ˜ 6= 0 the natural frequencies ωi

are always higher than the classical case (µ˜ = 0).

2. Since increase in stiffness results in reduced deflections, the mass normalized eigenvectors

{Φ}i are expected to exhibit progressively lower amplitude with progressively µ˜ compared

to classical case.

3. In the model problem study we present results for different values of µ˜ and comparisons with

the classical case (µ˜ = 0).
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4.1.2 Time Response using Direct Numerical Integration of ODEs in Time:

Wilson’s θ method

We can consider direct numerical integration of ODEs in (4.1) using unconditionally stable

integration methods such as: Houbolt method, Newmark method, Wilson’s θ method etc. [65, 67].

Alternatively, we could also consider finite element method in time [65] with local approximation

in higher order, higher degree scalar product space in time. In the present work we present model

problem studies using Wilson’s θ method to demonstrate the influence of non-classical physics on

the evolution. A summary of Wilson’s θ method is given in the following.

In Wilson’s θ method with linear acceleration, the acceleration {
..
δ} is assumed to be linear in

the interval [t, t + θ∆t], where θ > 1. For this method to be unconditionally stable, θ ≥ 1.37, but

θ = 1.4 is generally used. Consider

[M ]{
..
δ}+ [K]{δ} − {F} − {P} = 0 (4.6)

The method to time integrate equation (4.6) using Wilson’s θ method with linear acceleration is

briefly outlined below (see reference [65] for more details).

(i) When the initial conditions at time t0 is given, say {δ}t0 and {
.
δ}t0 , then the initial acceleration

{
..
δ}t0 is obtained by solving for {

..
δ}t0 in equation (4.6) at time t0.

{δ[2]}t0 = [M ]−1 ({F}t0 + {P}t0 − [K]{δ}t0) (4.7)

(ii) Calculate {δ}t+θ∆t by solving the equation below [65].[
6

(θ∆t)2
[M ] + [K]

]
{δ}t+θ∆t = {f}t+θ∆t +

6

(θ∆t)2
[M ]{δ}t +

6

θ∆t
[M ]{

.
δ}t + 2[M ]{

..
δ}t

(4.8)

(iii) We calculate {
.
δ}t+θ∆t using the equation below.

{
.
δ}t+θ∆t =

3

θ∆t
({δ}t+θ∆t − {δ}t)− 2{

.
δ}t −

θ∆t

2
{

..
δ}t (4.9)
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(iv) Calculate {
..
δ}t+θ∆t using the equation below.

{
..
δ}t+θ∆t =

6

(θ∆t)2
({δ}t+θ∆t − {δ}t)−

6

θ∆t
{

.
δ}t − 2{

..
δ}t (4.10)

(v) Then, the solution ({δ}, {
.
δ}, and {

..
δ}) at the next time step t + ∆t is calculated by the

following equation.

{δ}t+∆t = {δ}t + ∆t{
.
δ}t +

(∆t)2

2
{

..
δ}t +

(∆t)2

6θ
({

..
δ}t+θ∆t − {

..
δ}t)

{
.
δ}t+∆t = {

.
δ}t + ∆t{

..
δ}t +

∆t

2θ
({

..
δ}t+θ∆t − {

..
δ}t)

{
..
δ}t+∆t = {

..
δ}t +

1

θ
({

..
δ}t+θ∆t − {

..
δ}t)

(4.11)

Steps (ii) to (v) are repeated until the desired final time is reached.

Wilson’s θ method if applied to the ODEs in time before transformation to modal basis will re-

quire damping coefficients. θ ≥ 1.37 is a requirement for Wilson’s θ method to be unconditionally

stable [65, 67]. But a small enough ∆t must still be chosen for accuracy of the solution [65].

4.1.3 Time Response using Normal Mode Synthesis

In this method, the ODEs in time given in (4.1) are transformed to modal basis using change

of basis. Let (ωi, {Φ}i); i = 1, 2, . . . , n be the frequencies and the mode shapes obtained using

(4.5) and let ωi be arranged in ascending, i.e. ω1 < ω2 < · · · < ωn. We construct a matrix [Φ]

containing mass normalized eigenvectors corresponding to ω1, ω2, . . . , ωn as its columns. It is well

known that the transient dynamic response of a dynamic system can be constructed using only few

lower modes (m) of natural modes of vibration [65], hence the motivation for choosing only m

modes. Consider change of basis using

{δ(t)} = [Φ]{x(t)} (4.12)

in which {x(t)} are the modal participation factors and [Φ] contains m columns of eigenvectors.

We substitute (4.12) in (4.1) and premultiply by [Φ]T and noting that {
..
δ (t)} = [Φ]{ ..

x}, we can
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obtain

[Φ]T [M ][Φ]{ ..
x}+ [Φ]T [K][Φ]{x} = [Φ]{F (t)} (4.13)

[I]{ ..
x(t)}+ [ω2]{x} = {F̂} (4.14)

Equation (4.14) are m decoupled second order ODEs in time, thus these can be written as

..
xi(t) + ω2

i xi(t) = F̂i; i = 1, 2, . . . ,m (4.15)

For simple F̂i (constant, harmonic etc.), (4.15) has analytical solution [65]. Equation (4.15) can

also be integrated in time using explicit or implicit time integration methods [65]. In the present

work we use analytical solutions of (4.15) [65].
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Chapter 5

Model Problem Studies

5.1 Description of Solution Methods Used

The ODEs resulting from decoupling of space and time using GM/WF in space are used to

study

(i) Normal modes of vibration

(ii) Time response or transient response

(a) Using normal mode synthesis

(b) Direct numerical integration using Wilson’s θ method

The model problem consists of a plane strip of length 60" width 1" and thickness 1" shown in

figure 5.1 with a load of magnitude P applied at the midspan of the strip. The following reference

and dimensional quantities are used to nondimensionalize the mathematical model (see reference

[65]) and the model problem: L0 = 1 in , ρ
0

= 0.289018 lbm/in3, E0 = 30 × 106 psi, v0 =
√

E0/ρ
0
,

t0 = L0/v0 in which L0, ρ
0
, E0, v0 and t0 are reference length, density, modulus of elasticity,

velocity and time. Properties of the strip (quantities with units, indicated by hat (∧) on them)

and dimensions are given in the following (figure 5.1). Ê = 30 × 106 psi, ρ̂ = 0.289018 lbm/in3,

ν = 0.3. We choose L̂ = 60", ĥ × b̂ = 1"×1", hence L = 60, h × b = 1 × 1, E = 1, ρ = 1.

40



The quantities without hat are dimensionless quantities. We choose magnitude P = −2.96× 10−5

which corresponds to static deflection of −0.4 if the strip is treated as an Euler-Bernoulli beam.

A uniform discretization of nine p-version plane stress elements is considered. We consider local

approximation of class C1(Ω̄e) is higher order scalar product space V ⊂ Hk,p(Ω̄x); k = 2 with

pξ = pη = 7. Initial convergence studies performed for progressively increasing p-levels (p ≥ 3)

confirm that for p = 7, the completed solutions are converged. In the numerical studies we consider

dimensionless µ˜ of 0.001, 0.01 and 0.1 that correspond to progressively increasing influence of

internal rotation physics. The µ˜ value of 0.0 obviously corresponds to CCM only.

L

x2

x1
iΘ3 = 0

h = 1

b = 1L/2

P/2

P/2

u1 = 0

u2 = 0
u1 = 0

iΘ3 = 0
x1 = L

x1 = 0

u2 = 0

Figure 5.1: Clamped-clamped strip schematics, loading and boundary conditions

5.1.1 Natural modes of vibrations

Natural modes of vibration are calculated using mass matrix [M ] and the stiffness matrix [K]

corresponding to µ˜ = 0.0 (CCM) and µ˜ = 0.001, 0.01, 0.1. The eigenpairs are calculated us-

ing Householder QR as well as subspace iteration method. Eigenvectors are mass normalized

and scaled proportionately so the their magnitude are truly relative to each other. In this thesis, we

report first six eigenpairs. Figures 5.2(a)–(c) and figures 5.3(a)–(c) show plots of first six eigenvec-

tors corresponding to the bending modes of the strip. We note that with progressively increasing

µ˜ the stiffness increases but the mass remains unchanged, hence for µ˜ = 0.0 (CCM) we expect

the lowest frequencies of vibration. With progressively increasing µ˜, the natural frequencies will

increase and the corresponding time period will decrease for each mode. This is confirmed by the

frequencies reported in the plots in figures 5.2 and 5.3. Since for µ˜ = 0.0 the stiffness is lowest
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compared to all other values of µ˜, hence the amplitudes of the scaled mode shapes are largest for

µ˜ = 0.0 and progressively decrease with progressively increasing value of µ˜. Most dramatic illus-

tration of progressively reducing magnitudes of the eigenvectors with progressively increasing µ˜
values is seen in figure 5.3(c) (sixth eigenvector).

5.1.2 Transient response using normal mode synthesis

We consider load P applied at time t0 = 0 at the midspan of the strip and maintained for all

values of time t > 0. The ODEs in modal basis are decoupled second order system of equations

that have analytical solution (used here). The time response calculations using one to three modes

of vibration show that for the illustrative study considered here, use of first normal mode suffices.

From the natural modes of vibration we note that the progressively increasing value of µ˜ results in:

(i) progressively increasing stiffness (ii) progressively increasing natural frequencies (iii) progres-

sively decreasing time period for each mode. Thus, time response for µ˜ > 0 will always lag the

time response for µ˜ = 0. Figures 5.4–5.6 show time response for µ˜ = 0.001, 0.01, 0.1 as well as

µ˜ = 0 (CCM) for 0 ≤ t ≤ 1.5T , T being the time period for the first mode when µ˜ = 0.

Figures 5.4(a), (b), (c) show time response for µ˜ = 0 and 0.001. These graphs correspond

to 0 ≤ t ≤ T/2, T/2 ≤ t ≤ T , T ≤ t ≤ 1.5T . First, we describe the motion of the strip for

µ˜ = 0. For 0 ≤ t ≤ T/2, the motion of the strip is in the negative x2 direction, reaching maximum

deflected position at t = T/2 (figure 5.4(a)). For T/2 ≤ t ≤ T , the strip motion is upward, reaching

a stationary undeflected state at t = T . For t ≤ t ≤ 1.5T , the strip deflects in the negative x2

direction from its undeflected position at t = T to maximum deflected position at t = 1.5T . Upon

continued evolution, the cycle 0 ≤ t ≤ T repeats without amplitude decay. When we compare the

strip deflection for µ˜ = 0.001 in figures 5.4(a), (b) and (c) with the strip reflection for µ˜ = 0, we

note that: to arrive at a chosen deflected position for µ˜ = 0, the evolution requires more time. The

deflection of the strip for t = T/2, T and 1.5T when µ˜ = 0 is never achieved when µ˜ = 0.001 to

increased stiffness at µ˜ = 0.001. From figures 5.5(a)–(c) and figures 5.6(a)–(c) for µ˜ = 0.01 and

0.1, we observe similar behavior as in figures 5.4(a)–(c) but more pronounced due to increasing
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Figure 5.2: Mode shapes 1-3 using QR-Householder method
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Figure 5.3: Mode shapes 4-6 using QR-Householder method
44



stiffness with increasing µ˜. Deviation between the deflected position at t = T/2, T and 1.5T for

µ˜ = 0 and the maximum deflected corresponding position for µ˜ = 0.01 and 0.1 increases as µ˜
increases. Progressively increasing stiffness, increasing natural frequencies, reducing time period

with progressively increasing µ˜ is clearly observed in figures 5.4–5.6.

5.1.3 Transient dynamic response using Wilson’s θ method

We consider ODEs in time resulting from the space-time decoupled GM/WF in space and

integrate these using Wilson’s θ method with linear acceleration. We choose an integration time

step ∆t = T/100 in which T = 2π/ω1, ω1 being the first natural frequency corresponding to µ˜ = 0.

This choice of ∆t is quite conservative and works well for µ˜ = 0.001, 0.01, 0.1. Figures 5.7(a)–

(c) through figures 5.9 show time response for 0 ≤ t ≤ 1.5T for µ˜ = 0.001, 0.01, 0.1 as well as

for µ˜ = 0.0. We observe exactly similar behavior as in figures 5.4–5.6.

We remark that response in figures 5.7–5.9 are different than in figure 5.4–5.6 due to the fact

that normal mode synthesis requires large number of modes and high accuracy of the mode shapes

for accurate time response. The numerical studies demonstrate the differences in time response for

classical and non-classical continuum mechanics using direct integration methods.
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(c) Transient response: 3490 ≤ t ≤ 5230

Figure 5.4: Transient response (Normal mode Synthesis) for Classical and Non-Classical
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Figure 5.5: Transient response (Normal mode Synthesis) for Classical and Non-Classical
47



-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  10  20  30  40  50  60

Direction of Motion

t = 0 t = 0

t = 420 t = 470

t = 610 t = 720

t = 760 t = 1180

t = 940

t = 1160

t = 1750 = T/2
~

D
ef

le
ct

io
n 

u
2
 a

t 
x 2

 =
 0

.5

Distance x
1

Classical        

Non-Classical

µ = 0.1           

(a) Transient response: 0 ≤ t ≤ 1750

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  10  20  30  40  50  60

Direction of Motion

t = 2740 t = 1180

t = 2890 t = 1630

t = 3070 t = 1880

t = 3490 = T; t = 2340

t = 1750 = T/2

t = 2560

t = 2340

~

D
ef

le
ct

io
n 

u
2
 a

t x
2
 =

 0
.5

Distance x
1

Classical        
Non-Classical
µ = 0.1           

(b) Transient response: 1750 ≤ t ≤ 3490

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  10  20  30  40  50  60

Direction of Motion

t = 3490 = T; t = 2340

t = 3900 t = 2800

t = 4090 t = 3050

t = 4240 t = 3510

t = 5230 = 1.5T

t = 4420

t = 4640

~

D
ef

le
ct

io
n 

u
2
 a

t x
2
 =

 0
.5

Distance x
1

Classical        
Non-Classical
µ = 0.1           

(c) Transient response: 3490 ≤ t ≤ 5230

Figure 5.6: Transient response (Normal mode Synthesis) for Classical and Non-Classical
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(c) Transient response: 4140 ≤ t ≤ 5250

Figure 5.7: Transient response (Wilson’s θ = 1.4 Method) for Classical and Non-Classical
49



-0.8

-0.6

-0.4

-0.2

 0

 0  10  20  30  40  50  60

Direction of Motion

t = 650 t = 660

t = 960 t = 1000

t = 1400 t = 1620

t = 1710 = T/2~

D
ef

le
ct

io
n 

u
2
 a

t 
x 2

 =
 0

.5

Distance x
1

Classical        

Non-Classical

µ = 0.01         

(a) Transient response: 650 ≤ t ≤ 1710

-0.8

-0.6

-0.4

-0.2

 0

 0  10  20  30  40  50  60

Direction of Motion

t = 2110 t = 1620

t = 2510 t = 2290

t = 2870 t = 2660

t = 1710 = T/2~

D
ef

le
ct

io
n 

u
2
 a

t 
x 2

 =
 0

.5

Distance x
1

Classical        

Non-Classical

µ = 0.01         

(b) Transient response: 1710 ≤ t ≤ 2870

-0.8

-0.6

-0.4

-0.2

 0

 0  10  20  30  40  50  60

Direction of Motion

t = 4110 t = 3910

t = 4480 t = 4310

t = 4820 t = 4950

t = 5250 = 1.5T~

D
ef

le
ct

io
n 

u
2
 a

t 
x 2

 =
 0

.5

Distance x
1

Classical        

Non-Classical

µ = 0.01         

(c) Transient response: 4110 ≤ t ≤ 5250

Figure 5.8: Transient response (Wilson’s θ = 1.4 Method) for Classical and Non-Classical
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Figure 5.9: Transient response (Wilson’s θ = 1.4 Method) for Classical and Non-Classical
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Chapter 6

Summary and conclusions

In this thesis, we have considered dynamic behavior of thermoelastic solids using the mathe-

matical model based on non-classical continuum mechanics incorporating internal rotations. Math-

ematical model for plane stress problem in R2 is considered to present details of the explicit equa-

tions in the mathematical model including constitutive theories. The space-time differential oper-

ator in the mathematical model is linear but not symmetric. To study natural modes of vibration,

mass and stiffness are essential. This necessitates that we consider space-time decoupled finite ele-

ment method using GM/WF in space. It is shown that GM/WF in space results in symmetric mass

matrix and the symmetric stiffness matrix that is sum of the stiffness matrices due to CCM and

NCCM. The stiffness matrix due to CCM contain up to first order derivatives of the approxima-

tion functions in space whereas the stiffness matrix corresponding to the non-classical continuum

mechanics contains up to second orders of the approximation functions. This necessitates that at

the very least we must consider local approximations of class C1 when considering both CCM and

NCCM. For this choice of the integrals over Ω̄T
x (discretization in space) for classical mechanics

are Riemann but are in Lebesgue sense for the non-classical part. We consider model problem

with solutions smooth enough so that weak convergence of the solutions of lower class to the solu-

tions of higher class are achievable. We make the following specific observations and draw some

conclusions.
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(i) When considering CCM the stiffness is lowest, this yields largest deflections, lowest frequen-

cies (natural modes) and faster time response compared to NCCM with internal rotations.

(ii) Presence of internal rotation physics when resisted by the deforming solid continua results

in additional energy storage, increased stiffness, higher natural frequencies and slower time

response. This has been illustrated clearly in the model problem studies for: natural modes

of vibration and transient dynamic response.

(iii) We remark that the internal rotation physics can not exist by itself without the presence of

CCM. That is the ODEs in time in the absence of stiffness due to CCM can neither be used

for natural vibration calculations nor transient dynamic response.

(iv) Since the physics of internal rotations is due to the antisymmetric part of the deformation gra-

dient tensors [J ], it is always present in all deforming solid continua. In some applications,

it may be more significant than the others. Varying internal rotations between neighboring

material points when resisted by the deforming solid, result in moments. Thus, in the present

work the moments (and Cauchy moment tensor) exist due to the presence of internal rota-

tions. Whereas in couple stress theories assumption of the existence of moment necessitates

existence of rotations.
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