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Abstract

The random heterogeneous morphology of modern solid rocket propellant for-
mulations has traditionally been difficult to characterize and quantify. Current
computational simulations of these formulations require an accurate descrip-
tion of the packing arrangement in order to correctly model the complex geo-
metric effects that stem from the random morphology. A new and novel com-
putational packing algorithm was invented, implemented, and analyzed using
various particle starting arrangements. This was intended to be fast for use in
combinatorial chemistry applications and to provide a numerical representa-
tion of the material for use with other computational tools, including codes that
predict combustion behavior. The packing algorithms were evaluated using
homogeneous distributions of spherical particles. Both the Radial Distribution
Function (RDF) and the packing fraction were used to evaluate the validity of
the invented algorithm.
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Chapter 1

Introduction

Rocketry traces its earliest roots to 10th century (A.D.) China where primitive

fire-arrows (Ling 1947) were used in fighting between rival factions. In those

times, simply moving a weapon through the air from point A to point B was

considered a success. The fuel powering one of these projectiles had to have

two key properties: it produced the thrust required and it did not destroy the

flying object before it reached the intended target. While these properties are

still needed in modern propellants, the precision munitions of today must meet

more specific tolerances and other optimized properties.

This research aims to find computational means of finding the optimal mix

of chemical reactants to form rocket propellants. Properties that can be op-

timized include: increasing power, optimizing burn rates, reducing unwanted

burn products, and reducing shock sensitivity. Specifically, this research will

focus on techniques for modeling the structure of a propellant, as the arrange-
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ment of the individual molecules that make up formulations of propellant have

a significant bearing on it performance and characteristics.

1.1 Justification

Currently, a research chemist invents a new theoretical mix of chemicals, guess-

ing what may provide superior properties to past mixes. Computer modelers

take that fixed set of inputs and try to determine, using computational tools,

what the properties of that new mixture would be. Several computer models

would be run and, if the research chemists accepted the results of the compu-

tations, actual mixes would be produced and tested to verify or contradict the

prediction of the model.

Computing power has been constantly increasing and has recently reached

the point at which most, but not all, single-iteration fixed input problems can

be solved to an acceptable degree. A recent phenomena is the emerging re-

search area known as combinatorial computational techniques (Furka 1995),

essentially moving from solving single-input to varied-input problems. Ranges

of input can be tested to find an optimal solution. This technique is being used

heavily in the pharmaceutical industry to develop new medications.

There are several techniques for modeling a propellant. One method is

known as Propellant Equilibrium Programs, or PEP. Various implementations
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of PEP algorithms exist, but they all act more or less the same. All of the re-

actants in a propellant mix in specific amounts are entered with their known

heats of formation. The reactants are then virtually deconstructed (simulating

combustion) and, using the known heats of formation of the possible products,

an estimation of the amounts and types of different products formed is deter-

mined. PEP programs are widely used but typically only as a starting point for

propellant discovery because other important properties are missed by the PEP

algorithms.

1.2 Significance and Expected Contributions

The speed at which a propellant burns is directly related to its internal struc-

ture (Knott, Jackson & Buckmaster 2001). Researchers don’t need to model

the closest packing structure of the particles in question, although even mod-

eling that in random simulations has proven difficult (Aste & Weaire 2000).

Determining the closest packing structure is immaterial as studies show that

chemical mixtures do not approach packing perfection. Indeed, what is needed

is a way to model realistically, or realistically enough, the packing of particles

in a system. Kepler’s conjecture states that the packing fraction (space of the

particles compared to the empty space in a fixed volume) of a system consist-

ing of single diameter hard spheres is maximally π/
√

18≈ 0.74 (Hales 2005).
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Results shown by Kilgore & Scott (1969) indicate that the highest packing frac-

tion experimentally obtainable is .6366± .0005. It is clear that there is a large

difference between the theoretical and the practical.

The approaches used most frequently in current research are the kinematic

models. In this approach, particles are modeled as hard spheres (Lubachevsky

1991) and thrown into a mirror-sided box. The particles are given an initial

velocity in a random direction and the collisions are modeled until the entire

system settles into a steady state or a jammed system is detected. These models,

while fairly accurate, are more computationally expensive due to modeling of

the tremendous number of collisions that must be processed as the model pro-

gresses. These approaches are not fast enough for what is currently required by

a high-speed combinatorial chemistry system. Many approaches like this re-

quire large clusters of computers and complex systems such as those described

by Bagrodia, Chandy & Liao (1991). Indeed, a fast algorithm could be run

on single processor systems having very little system complexity. Kinematic

models also must take into account motion-based issues like many of those

summarized in Agarwal, Guibas, Edelsbrunner, Erickson, Isard, Har-Peled,

Hershberger, Jensen, Kavraki, Koehl, Lin, Manocha, Metaxas, Mirtich, Mount,

Muthukrishnan, Pai, Sacks, Snoeyink, Suri & Wolefson (2002).

The goal of this research is to devise a particle-packing algorithm that is

both computationally fast and sufficiently correct in modeling propellant parti-
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cle systems. The scope of this work will be restricted to mono-modal (particles

of only one size) systems, but further work should include more realistic multi-

modal particle packs. Also of interest in future research would be verification

of the model similar to the methodology described by Balci (2001) in which

common metrics are defined and subject matter experts are employed to deter-

mine the quality of a particular model.

1.3 Research Methodology

The approach taken in this research attempts to develop highly efficient pack-

ing models and to avoid the computationally expensive kinematic calculations.

Torquato (2002) states that computer models of packing structures are difficult

because the results tend to be “protocol dependent.” This is true if a unified

modeling algorithm is used for packing generic particles. This research’s goal

is to find a way to model propellants with a relatively small set of candidate

particles. All computer modeling to this date, and into the foreseeable future,

attempts to reflect reality which falls short of perfection. The aim is to take

advantage of this imperfection, because perfection need not exist in this range

of applications.

The author has invented a gravity-simulation algorithm that will be exer-

cised in multiple ways. There are two parts to the algorithm. The first in-
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volves the pattern in which the particles are suspended above the control vol-

ume. Four different arrangements will be tested: Single Column, Small Dense,

Large Dense, and Loose Random. Once the particles are in their starting po-

sitions, the second part, the gravity simulation, will take effect. It involves

moving particles downward in space until they contact the floor, wall, or an-

other particle. If a floor or wall is contacted, that particle is fixed in place and

the next particle is selected. If the falling particle contacts another particle in

the pack, the Spin Gap Move Protocol (SGMP) begins. The SGMP starts by

doing a spherical sweep of the falling particle around the contacted particle

to see if a non-contact area can be found. If a sufficiently large open space

can be found, the falling particle is moved in that direction, and the downward

movement begins again. This action simulates the falling and rolling motion of

particles onto a complex surface of already packed particles.

1.4 Evaluation Criteria

The quality of a packing algorithm is evaluated by measuring several proper-

ties: packing density, randomness, average coordination number, speed of algo-

rithm, and scalability. The first three regard the “correctness” of the algorithm

whereas the latter two merely reflect how effective it will be in combinatorial

chemistry applications.
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A “correct” algorithm will generate a particle pack that reflects reality. The

packing density is a measure of the total volume of the particles in a chamber

divided by the chamber volume. The density can vary depending on the modal

distribution of the particles in the pack, but for mono-modal packs, the target

density for this research is in the range of 63%; anything less is not realistic

enough.

Randomness is a much more difficult value to measure. A relatively easy

way to measure randomness utilizes a statistical pairwise correlation function

called the Radial Distribution Function, or RDF. The RDF measures the cor-

relation from one particle to all the other particles. At distances close to the

particle, the RDF will be relatively high. As the distance from the particle

gets larger, the RDF will approach 1, indicating that there is no correlation (no

predictable pattern) between particles.

Coordination number is a count of how many other particles any specific

particle is in contact with. The average coordination number is simply the

average of all of the coordination numbers for each particle in the finished

pack. At this time, the SGMP algorithm does not have any method for bringing

particles in contact with each other. They will be very close to each other,

but there will be a measurable distance between all of the particles. This is a

deficiency that will be addressed in future research. In essence, the average

coordination number will be zero.
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The direct goal of this research is to find a packing algorithm that is fast

enough to run thousands to millions of runs in a calendar day. According to

unpublished research by Tom Jackson and his team at the Center for Simula-

tion of Advanced Rockets (CSAR), their best kinematic simulation is able to

determine a single 100,000 particle pack in around 100 hours on a 64 processor

computer system. This speed is a step forward compared to past systems, but

it is clearly not fast enough for combinatorial chemistry.

Also of importance is scalability. If 10,000 particle packs are our goal,

then having an excellent result at 1,000 or 2,000 particles, but poor results for

anything higher, is unacceptable. Each of the algorithms in this research will

be analyzed as to their Big(O) complexity. Also, each will be exercised and

timed with different numbers of particles to examine how well they scale up to

realistic numbers of particles found in complex systems.

1.5 Thesis Organization

The thesis will be organized into the following sections:

• Chapter 1: Introduction – The background and justification for the work
contained in this thesis.

• Chapter 2: Previous Work – A detailed account of previous work in
packing algorithms.

• Chapter 3: Problem Domain and Evaluation Criteria - A look at the
details of the testing framework and how the results will be interpreted.



9

• Chapter 4: SGMP: The Spin Gap Move Protocol – A description of
the algorithm invented for this research.

• Chapter 5: SGMP – Single Column Starting Pack – The SGMP algo-
rithm applied to a single tall column of particles as a starting arrangement.

• Chapter 6: SGMP – Small Dense Starting Pack – The SGMP algorithm
applied to a small densely packed starting arrangement of particles.

• Chapter 7: SGMP – Large Dense Starting Pack – The SGMP algorithm
applied to a large densely packed starting arrangement of particles.

• Chapter 8: SGMP – Loose Random Starting Pack – The SGMP algo-
rithm applied to a loose randomly packed starting arrangement of parti-
cles.

• Chapter 9: Comparison and Analysis – A comparison of the different
starting arrangements and the performance of the SGMP in general.

• Chapter 10: Conclusion and Future Work – A conclusion regarding
the results of this research and possible future work or improvements.
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Chapter 2

Previous Work

Early historical efforts to quantify the nature of random packing arrangements

consisted primarily of empirical experiments using large numbers of spherical

particles. McGeary (1961) examined the packing of spheres of various sizes in

the early sixties, in which the emphasis was on the determination of the pack-

ing fraction, or the amount of the packed volume that is occupied by particles.

The experiments were conducted by placing steel shot into 100 mL graduated

cylinders using various deposition methods. McGeary concluded that the best

method was to place a single layer of particles at a time, followed by mechani-

cal vibration of the system. This produced a “stationary filter bed” upon which

the next layer would be deposited. McGeary also found that the final density

of the pack was “essentially independent” of the amount of time that it took to

form the pack. This study also included investigations of bimodal packs and an

identification of the optimal packing ratios.
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An early attempt with computer-assisted packing of spheres was done by

Bennett (1972). His model starts with a ‘seed’ cluster of three particles formed

in the shape of an equilateral triangle. The fixed pack (that starts with the

three particles) is scanned to find all of the “pockets” where a new particle

might be placed to be in contact with the three fixed particles. A pocket is

defined simply as “a point lying exactly one particle diameter (σ) away from

each of three particle centers and at least σ away from all of the other particle

centers in the cluster.” Bennett had two methods for the selection of which

pocket to place the particle. The first, called the “global” method, selected

the pocket that was closest to the original center of the cluster. The “local”

method selected a pocket “at the site having the least distance from the plane

of its three nearest neighbors” (Bennett 1972); in other words, the ‘deepest’

pocket on the fixed cluster. The local method created an egg-shaped pack at a

packing density of .57 and was discarded in favor of the global method. The

global method created pack had a .61 packing fraction, short of .6366, and its

Radial Distribution graph showed nearly as much pattern (non-randomness) as

an experimental close pack of ball bearings similar to the work of McGeary

(1961).

More recent experimental investigations also have been performed using

actual energetic material. Miller (1982) created a number of carefully quanti-

fied packs as part of an investigation into the ballistic performance of reduced
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smoke propellants. These data have been used in a variety of computational

efforts as a means to validate and quantify the predicted packing arrangements

by Knott et al. (2001) and Wang, Jackson & Massa (2004). Such quantifica-

tion experiments have also been extended to non-spherical particles (Zou &

Yu 1996).

Another attempt at computational simulation of random media was made by

Clarke & Wiley (1987). They created a collective rearrangement algorithm that

addressed the atomic structure in amorphous metals. It started with randomly

distributed particles that were initially allowed to overlap. As the simulation

progressed, the particles were systematically rearranged until a dense packing

arrangement was achieved. To avoid a “lockup” state prematurely, they intro-

duced a vibration step, in which each particle is moved a short random distance.

Interestingly, changing the vibration parameters, like frequency and amplitude,

had no effect on the final outcome, only on how long it took to get to the final

state. Clarke and Wiley reported packing fractions of 0.64-0.68 for their algo-

rithm. It is this range that is generally accepted as the random packing limit for

uniform hard spheres.

Lubachevsky & Stillinger (1990), initially interested in 2-dimensional disks,

proposed another simple algorithm that has been used successfully in a variety

of applications. Rather than the traditionally sequential algorithm, they pro-

posed an “event-driven” dynamic simulation where hard disks and spherical
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particles were allowed to interact with each other and collide. Notable elements

of their algorithm were: 1) a particle growth function in which the initially ran-

domly seeded particles were allowed to grow at fixed rates, 2) the definition

of periodic boundary conditions for the particle simulation domain (ensuring

no initial overlap of the disks or spheres and that particle interaction with the

boundaries were neglected), and 3) assignment of random velocity vectors that

allowed the particles to move through the domain. Contact between particles

was determined using a simple functional relationship. Rather than progress

through fixed time increments, Lubachevsky (1991) suggested that substantial

gains in computational performance could be achieved if the simulation moved

from one collision to the next future collision, regardless of the amount of time

between collisions. Computational results for the packing fractions were re-

ported to be within the range of 0.63-0.65. The model results in two types of

packings: a completely jammed system and a system with a rattler. A rattler

is a particle that is completely caged by other particles yet has some degree of

freedom to move.

Davis & Carter (1990) performed one of the first applications of random

packing simulations to heterogeneous propellants. They used a reduced di-

mensional algorithm to create their propellant packs. This approach involves

particles of different sizes and densities. Particles are randomly selected from

a list of particles in the amounts that they would naturally occur in a studied
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propellant. As a particle is selected, it is randomly placed to be in contact with

a vertical line in three-dimensional space. The particle is moved downward

until it hits the floor (the first particle) or comes into contact with the previous

particle on the line. The discovery made using this technique is the “realization

that an arbitrary straight line drawn through a uniformly random pack spends

the same fraction of its length inside solid particles as the packing fraction”

(Davis & Carter 1990). They would create many of these “strings” of particles

and use a perturbation method to bring them together in order to create random

packs.

Researchers at the French aerospace laboratory ONERA also generated ran-

dom propellant packings for use in their propellant combustion models (Groult

& Bizot 2004). Groult and Bizot randomly position the spheres’ centers and al-

low them to grow. When collisions occur between particles, they are allowed to

move and reorient themselves. Periodic boundary conditions are used to sim-

plify the computational domain. A secondary growing phase is also performed

where non-spherical shape characteristics can be added.

A significant amount of propellant packing and combustion research has

been performed by the Center for Simulation of Advanced Rockets (CSAR) at

the University of Illinois at Urbana-Champaign (Knott et al. 2001) and (Wang

et al. 2004). Researchers at CSAR developed a fully dynamic, kinetics-based

particle packing code. The computational packing results show good agree-
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ment with the experimental data generated by Miller (1982). Although effec-

tive, the algorithm tends to consume a large amount of computational resources

for large amounts of time.

The most recent attempt at computerized random packing is a novel concept

invented by Shi & Zhang (2006). Their approach involves dropping spheres,

one at a time, into a control volume. When a sphere contacts a particle, they

have “rolling rules” that simulate the actual physical process of one particle

hitting another and being pulled down over the stationary particle by gravity.

When the falling particle hits a second stationary particle, different rules take

effect and the falling particle rolls down over the two particles as if by gravity.

The particle stops and is fixed in place when it comes into contact with three

fixed particles and is determined to be in a stable position. Periodic boundaries

are used to eliminate edge effects. The results obtained by this method are a

packing fraction in the range of .56 to .58, depending on various particle sizing

parameters.
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Chapter 3

Problem Domain and Evaluation Criteria

3.1 Particle Testbed

In order to simulate the packing of particles (or, in this case, perfect spheres),

a simulated chamber is needed. To simplify calculations later, a three-axis

chamber with a unit volume of one is used and will be known as the control

volume. The chamber is visualized as a simplified particle system like that

described by Ebert (1996). The control volume is the smaller (inside) cube

shown in Figure 3.1. Each side of the chamber has a length of one with the

origin of each axis being at the center of each side. This puts the origin (0,0,0)

of the X, Y, Z coordinate system at the center of the chamber. The outer cube

in Figure 3.1 is the expanded volume and is 1.25 units per side. Its use will be

discussed in Section 3.2. As seen in the following figures, the X-Axis is left-

to-right (Figure 3.2), the Z-Axis is front-to-back (Figure 3.4), and the Y-Axis
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is top-to-bottom (Figure 3.3).

Figure 3.1: Control Volume and Expanded Volume Bounding Boxes

Each particle has three properties: center position, diameter, and color. The

color is for visual differentiation and has no bearing on the particle itself.

The algorithm requires that the particles not overlap in space, so there needs

to be a method of detecting if a particle is overlapping; in other words, if one

particle has collided with another particle. In simple terms, a particle is said to
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Figure 3.2: Particles Along X-Axis (X = 0)

have collided with another if Equation 3.1 is true. The sum of their radii is less

than the distance between the particles’ centers.

r1 + r2 < Distancer1,r2 (3.1)

The sum of the particles’ radii is easily calculable. The distance between

the particles’ centers can be found with Equation 3.2, a three-dimensional
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Figure 3.3: Particles Along Y-Axis (Y = 0)

Pythagorean theorem-type formula.

Distancer1,r2 =
√

(x1 + x2)∗ (y1 + y2)∗ (z1 + z2) (3.2)

If there’s a collision between two particles, Equation 3.3 will be true.

r1 + r2 <
√

(x1 + x2)∗ (y1 + y2)∗ (z1 + z2) (3.3)
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Figure 3.4: Particles Along Z-Axis (Z = 0)

Since the collision detection calculation will be done more than any other in

the simulation, it should be as efficient as possible. The square root function,

as described by Soderquist & Leeser (1996), is computationally expensive –

much more so than a simple floating point multiply. Therefore, Equation 3.4 is

calculated instead.

(r1 + r2)∗ (r1 + r2) < (x1 + x2)∗ (y1 + y2)∗ (z1 + z2) (3.4)
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The particle system is intended to contain a certain number of particles in

the chamber at a given packing fraction. Specifically, based on a given packing

fraction (.6300 in all cases), the particles are scaled in size to fit 1/3 of them

in the control volume. The other 2/3 of the particles will fall outside of the

control volume. The 1/3, 2/3 split is done to eliminate edge effects that can

cause non-random patterns in the chamber.

All data from models run for this research was calculated on a MacBook

Pro running Windows XP with a 2.0 GHz Intel T2500 (Core Duo) CPU and

2 GB of memory. While the processor is a dual-core model, every program

implementation is single threaded, and each program run was restricted to one

CPU core.

Four sets of runs using this algorithm are presented in this research. Each

set of data differs only in the arrangement of the particles before the algorithm

begins. The first will be a single particle-width column above the center of the

control volume. The second and third will be densely packed rows of particles.

The second will span only the control volume and the third will span the ex-

panded volume. It’s worth noting that the first three starting arrangements are

not random in any way, other than the color of the particles.

The fourth starting arrangement will be a random pattern. Particles will

be positioned in the control volume on the floor (the minimum Y-Axis value)

with a random X- and Z-Coordinate. Particles will continue to be placed until
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there is a collision with a previously fixed particle. The Y-Axis value will be

increased until the collision is resolved, so there is no more collision. Particles

will be randomly initialized with a new Y-Axis value until there is another

collision. This will be repeated until there are no particles left.

Ten colors are used in each particle pack and distributed as evenly as pos-

sible in each run. Particles start in virtual ’bins’ where each bin is assigned a

color. For each starting arrangement, when particles are placed into the testing

framework, they are selected one by one from random bins until all bins are

empty. The differing colors are used only to aid in visualization and give a

general view of randomness.

3.2 Evaluation Criteria

There will be four metrics used to evaluate the model with different starting

positions: packing density, randomness, speed of algorithm, and scalability.

Packing density and randomness involve the “correctness” of the algorithm.

The latter two show the efficacy of use in combinatorial chemistry applications.

Typically, the density of a particle pack is determined via a simple volume

comparison between the control volume and the total volume of the particles

contained within the volume. This simple approach requires every particle to be

entirely contained within the control volume. The problem with this approach
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is that to maintain the particles inside the boundaries of the control volume,

edge effects are introduced. Edge effects are characterized by patterns that are

formed in the particle pack that are caused by a pattern (flat walls, for example)

in the edge of the container. Space that could be filled partially by a particle

is left empty, thereby reducing the measurable packing density. Sometimes, a

Monte Carlo method is used to find the density. Random points in the control

volume are selected and tested to determine if they fall within a particle or in

the empty space of the volume. This can be time consuming and have a low

rate of precision.

The method used in this research is a hybrid between the simple and the

Monte Carlo. The volume of the control volume is known; as a unit cube, its

volume is one. The volume taken by the particles in the control volume will

be calculated in two parts: the volume of the particles totally contained in the

control volume and the volume of the particles that are only partially in the

control volume. The volume of particles totally in the control volume will be

calculated by Equation 3.5, a simple sphere volume formula.

vsphere =

4

3

πR3 (3.5)

Particles that are only partially in the control volume will have their volume

determined with the Monte Carlo method. The two particle volumes are then
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added together and the packing density ρ is calculated with Equation 3.6.

ρ =
vparticles

vcontrol
(3.6)

Randomness is a much more difficult value to measure. In one sense, ran-

domness is the absence of a predictable pattern. For example, suppose you had

a random number generator and it gave you the number eight. Is that number

random? You can’t determine randomness simply by looking at one number in

a series. You would have to examine many numbers generated before and after

the target number in order to find its randomness. Determining randomness

in particle packs is more complex. The easiest way to measure randomness

among groups of particles is by using a statistical pairwise correlation func-

tion called the Radial Distribution Function, or RDF. The RDF measures the

correlation from one particle to all of the other particles. At distances close to

the particle, the RDF will be relatively high. As the distance from the particle

gets larger, the RDF will approach 1, indicating that there is no correlation (no

predictable pattern) between particles.

The RDF, in general, is an indicator of where all of the other particles are

in a pack in relation to one particle specifically. Starting at the center of the

particle selected, the chamber is broken up into circular shells and a count is

taken of how many particle centers there are in each shell.
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Here’s a simple example in two dimensions. Figure 3.5 shows a shell cen-

tered around .8 diameters from the center of the object particle. It is easy to see

that it is physically impossible for there to be any particle centers in this shell.

Figure 3.6 shows the shell centered around a particle diameter of 1. There are

many particle centers in this shell. In a reasonably dense particle pack, there

will be many particles in the shell around a diameter of 1.

Figure 3.5: Radial Shell at .80 Diameters

Figure 3.7 shows the shell centered at a particle diameter of 1.5. Again, as
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Figure 3.6: Radial Shell at 1 Diameter

seen in the .8 diameter shell, there aren’t any particles.

Figure 3.8 shows the shell centered at a particle diameter of 2.0. There are

particle centers found in this shell, but not at the same percentage possible if

the particles were perfectly (tightly) packed. It can be seen that because of the

looseness of this pack, there are particles that fall just inside and just outside of

the shell.

Using the counts from these shells, an RDF graph of particle arrangement
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Figure 3.7: Radial Shell at 1.5 Diameters

can be made. According to Torquato (2002), the RDF is defined by Equation

3.7:

g2(R) =
n(R)

ρvshell(R)
(3.7)

Here, g2(R) represents the RDF as a function of radial distance. n(R) is an

estimate of the number of particles at a given radial location. ρ is an estimate

of the number density of the system. The most simplistic estimate of this pa-
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Figure 3.8: Radial Shell at 2 Diameters

rameter is the packing fraction, or ratio of sphere volume to control volume as

in Equation 3.8:

ρ =

N

∑
i=1

vSphere,i

vControl
(3.8)

vShell(R) is the volume of the radial shell being considered. In this analysis, a

control particle near the center of the control volume is selected at random, and
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the RDF is determined using the remainder of the particles within the control

volume of the simulation.

To compute n(R), particles at various radial locations from the control par-

ticles are placed in radial bins and summed, effectively creating a histogram

of distance from the control particle. The number in each bin, nk(R), is then

divided by the total number of particles to create a ratio for a particular bin, k,

according to Equation 3.9:

n(R) =
nk(R)

N
(3.9)

where k is the bin number and N is the total number of particles. The radial

shell volume is determined by a simple geometrical relationship in Equation

3.10:

vShell(R) =
4πR3

3



R+
∆R

2


3

−

R−
∆R

2


3

R3


(3.10)

where ∆R is the radial increment used for the bin, k. There is some depen-

dence on the radial increment chosen in this method, so the radial increment is

typically reduced until convergence in the numerical values is observed. Since
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the RDF is defined only for homogeneous distributions of spheres, all compar-

isons using the RDF were performed on mono-modal particle distributions.

To be useful in combinatorial chemistry applications, any modeling algo-

rithm must be fast and scalable. Speed is simply a measure of how fast a

particular model runs, while scalability relates to how the packing fraction and

RDF change as the number of particles in the model increase.
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Chapter 4

SGMP: The Spin Gap Move Protocol

4.1 Model Algorithm

The Spin Gap Move Protocol (SGMP), which this research will be using, is

defined by four repeating phases: downward movement, circular sweep, gap

selection, and the movement of the particle into a gap.

Before phase one begins, spin offset tables are calculated that will be used

in the circular sweep phase. These are done only once, because sine and cosine

functions are used, which are computationally expensive. The X- and Z-Axis

values for a small circle are calculated with Equations 4.1 and 4.2.

xo f f set,θ = sinθ∗ (dparticle/Factorcircle) (4.1)

zo f f set,θ = cosθ∗ (dparticle/Factorcircle) (4.2)
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The circle factor is a value that is used to decrease the size of the circular

sweep and is set to 50 in all of these experiments.

The first phase is downward movement. A particle not already in the com-

pleted pack is selected, which will be called Particle A. Then, a lower columnar

neighbor list is created, containing the closest 10 particles that are directly be-

low the selected particle. Particle A is then moved downward (in the negative

Y-Axis direction) in a very small increment. After it is moved downward, a

check for collisions with its lower columnar neighbors is done. If there is no

collision, the particle is moved downward again. If there is a collision, shown

in figure 4.1, phase two starts.

At the beginning of phase two, the circular sweep, the neighbor list is re-

calculated with particles that are near Particle A, not only the particles that are

below it to reduce the number of collision calculations that need to be made.

Particle A is moved in a circle around the Y-Axis using the spin offset tables

calculated before phase one. At each position in the circle, a check for colli-

sions with the neighbor list is made. Each non-collision position in the sweep

is stored. Figures 4.2 through 4.13 show several positions in the sweep. When

the circular sweep is complete, phase three begins.

In phase three, gap selection, the points where Particle A didn’t collide with

any other particles are merged to form non-collision arcs. In the example shown

in Figure 4.14, there is only one non-collision arc and it is 38◦. If there are mul-
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Figure 4.1: Y-Axis Cross Section, Falling Particle Initial Collision

tiple non-collision arcs, the largest non-collision arc is selected and bisected.

In phase four, movement, shown in Figure 4.15, the particle is moved in the

direction of the point of bisection.

4.2 Improvements on Previous Work

Two general approaches are taken to solve packing problems, the assembly

approach and the kinematic approach. The SGMP invented by this author is an
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Figure 4.2: Y-Axis Cross Section, Circular Sweep: Zero degrees

assembly approach. Assembly models were largely abandoned by researchers

after the 1970’s but some new work has recently begun.

There are several techniques that are new inventions in this thesis, either in

the algorithm or in its analysis. The first technique is to use very few com-

putationally expensive sine and cosine operations. There is a sine/cosine pair

for each degree in a 360 degree circle. This is a constant factor no matter how

many particles are involved.
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Figure 4.3: Y-Axis Cross Section, Circular Sweep: Thirty degrees

Also in this newly created algorithm is the use of expanded boundaries.

This reduces the overhead of having periodic boundaries like most modern al-

gorithms. However, there is extra overhead in having extra particles not taking

part in the measurable pack, but this author believes that it pays for itself.

Where Shi & Zhang (2006) used a model in which a particle would ‘hinge’

downward after coming in contact with two other particles, the SGMP uses

the circular sweep technique. The Shi & Zhang (2006) method stops when a
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Figure 4.4: Y-Axis Cross Section, Circular Sweep: Sixty degrees

particle comes into contact with three others. The SGMP will allow further

compaction if three-particle contact occurs, allowing for tighter packs.

Neighbor lists are summarized by Torquato (2002) as a way of reducing the

computational overhead of collision checking; therefore, the focus is on the

probability of the existence of particles close to a specific particle in all dimen-

sions. To take advantage of that, during the downward movement phase of the

algorithm, only particles that are directly below the moving particle are consid-
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Figure 4.5: Y-Axis Cross Section, Circular Sweep: Ninety degrees

ered in the neighbor list. This reduces the number of collision calculations by

half.

To avoid the complication and complexity of a collision with a wall bound-

ary, when a particle touches one of the boundaries, it simply stops there. This

can also be considered a drawback, as pack ‘looseness’ might be higher at

the edges of the pack. This should be overcome by the fact that the extended

boundaries are not considered in the packing fraction calculation or the RDF
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Figure 4.6: Y-Axis Cross Section, Circular Sweep: One Hundred and Twenty degrees

calculation.

One area that improves that packing fraction but may be too unrealistic is

that the largest gap, after a circular sweep, is simply bisected and the particle

moved in the direction of the bisection point. If the SGMP is intended to be

a gravity simulation, this step disregards any momentum that might be built

up as a result of previous movements. However, its intent is to form a tighter

particle pack by selecting the best part of a gap. Further research should include
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Figure 4.7: Y-Axis Cross Section, Circular Sweep: One Hundred and Fifty degrees

random gap selection and particle momentum.

Because of the extended boundary condition to remove edge effects, a new

method of calculating the packing fraction was needed. Monte Carlo tech-

niques in the entire pack would work, but to get both accurate and precise

results, very high numbers of test points would be required. This was the orig-

inal approach selected by this researcher; however, the large number of test

points took almost as long as the packing model itself. A hybrid concept was
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Figure 4.8: Y-Axis Cross Section, Circular Sweep: One Hundred and Eighty degrees

invented by this author in which only particles on a boundary used a Monte

Carlo method.

4.3 Order of Operations

A complexity analysis of the SGMP is simpler than those of the kinematic

variety. Due to its assembly nature, a complex analysis like that done by Krantz

(1996) is unnecessary as the steps of the SGMP are well bounded in terms of the
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Figure 4.9: Y-Axis Cross Section, Circular Sweep: Two Hundred and Ten degrees

number operations required to generate a finished pack. Most of the operations

in the SGMP are, in terms of operational complexity, linear. Only two steps,

individually, have an operational complexity of O (n). These are both of the

nearest neighbor calculations. Each of the operations, except for initial spin

offset calculation, is executed more than once. Table 4.1 summarizes the steps

and their relative complexity.

The last four steps have an added complexity of O (n logn) when taken
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Figure 4.10: Y-Axis Cross Section, Circular Sweep: Two Hundred and Forty degrees

across the entire pack. The O (n) portion comes from the operation being done

to each particle in the pack. The O (logn) portion requires more explanation.

Each step in three through seven is processed when a falling particle first comes

into contact with the previously processed fixed bed of particles. There is a re-

duced portion of the entire pack that the particle in question could possibly

contact to find its final position. For example, in the 1002 particle run seen

in Figure 4.16, only approximately eight particles can fit from one edge of the
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Figure 4.11: Y-Axis Cross Section, Circular Sweep: Two Hundred and Seventy degrees

packing space to the other. Taken across two axes, there are only around 60-100

particles that the falling particle could potentially contact.
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Figure 4.12: Y-Axis Cross Section, Circular Sweep: Three Hundred degrees

Step One Time Total
Number Step Description Complexity Complexity

1 Calculate Spin Offsets O (1) O (1)
2 Generate Lower Neighbor List O (n) O

(
n2)

3 Downward Drop O (1) O (n)
4 Circular Sweep O (1) O (n logn)
5 Find the Largest Gaps O (1) O (n logn)
6 Move Into Gap O (1) O (n logn)
7 Generate Normal Neighbor List O (n) O

(
n2 logn

)
Table 4.1: Operational Complexity for Steps of the SGMP
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Figure 4.13: Y-Axis Cross Section, Circular Sweep: Three Hundred and Thirty degrees
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Figure 4.14: Y-Axis Cross Section, Gap: 38 degree Non-Collision Arc
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Figure 4.15: Y-Axis Cross Section, Move: New Position, Bisected Non-Collision Arc
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Figure 4.16: 1002 Particle Run, 500 Particles Fallen
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Chapter 5

SGMP – Single Column Starting Pack

5.1 Model Setup

The initial starting pattern is the single column. Particles are randomly selected

from the ten color bins and placed in the control volume at the center of the X

and Z axes, with X and Z both being equal to zero. The Y-Axis value starts

at -.625, the floor of the expanded volume. Each subsequent particle is placed

above it (keeping X- and Z-Axis values the same) by adding 1.2 times the

diameter of particle to the Y value of the previous particle. The model was

run eight times with different numbers of particles. For illustration, Figures

5.1 through 5.3 show the model at three different points. All three images are

taken at the same position and zoom level. Table 5.1 shows the summary of the

runtime and final packing fraction with various numbers of particles.
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Figure 5.1: 9000 Particle Pack, 0 Particles Fallen

Figure 5.2: 9000 Particle Pack, 1000 Particles Fallen
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Figure 5.3: 9000 Particle Pack, All Particles Fallen

Number of Particles Model Runtime (s) Packing Fraction
150 138 .6160
300 392 .6221
750 1348 .6179
1002 2140 .6160
2001 5164 .6083
3000 8965 .6053
6000 23520 .6061
9000 41424 .6020

Table 5.1: Single Column Result Summary
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Figure 5.4: Single Column – Model Speed

5.2 Speed

The slope of time vs. number of particles graph, in Figure 5.4, follows a

n2 ∗ log(n) trajectory. The line is very smooth with no outlier points. Even

with the regularity, and presumed predictability, of time it takes to make a

packing run, the total processing time is disappointing. The 9000 particle pack

is around 41,000 seconds, approximately half a day. This is much too slow for

combinatorial chemistry experiments.
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5.3 Packing Fraction

The packing fraction (Figure 5.5) varies from ≈ .62 to ≈ .60. Changes in the

packing fraction are expected. The packing fraction will vary as the relation-

ship between the width of the boundaries and the size of the particles changes.

For any particular size of particle, there are several sizes of volumes (exact mul-

tiples of the particles’ diameters) that will give a tighter packing. For example,

even with ‘perfectly tight’ packings, there can be differences in the packing

fraction. Among the types of close, non-random packing is Body-Centered

Cubic (BCC) and Face-Centered Cubic (FCC). An example of the particle re-

lationship in BCC packing is shown in Figure 5.6. A BCC pack gives a packing

fraction of ≈ .68. An FCC pack, shown in Figure 5.7, gives a packing fraction

of ≈ .74.

The packing fraction bounces up and down as expected. The graph line is

still moving too much from 3,000 to 6,000 to 9,000 particles, so it is difficult

to approximate where the final packing fraction would be as the number of

particles reaches ∞. Most likely, it will be far less than the .63 target that was

the goal.
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Figure 5.5: Single Column – Packing Fraction

5.4 Radial Distribution Function

The RDF graph for this model, Figure 5.8, looks decent at first glance, but upon

closer inspection, there are two disturbing features about it. It definitely has a

string peak at diameter one, and smaller peaks at two and three, but the peaks

at two and three are advanced or early. Also, there’s another anomaly. There

are two very small peaks at 0.6 and 0.75. Theoretically, this is impossible. If

there are peaks before one, it means that there are particles whose centers are

closer together than the sum of their radii. In other words, they are interfering

in each other’s space. This means that there’s an unresolved collision, in this
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Figure 5.6: Body Centered Cubic Packing Example

case, two, because there are two peaks before one.

Looking into it further, as an example, it looks like particles number 347 and

463 are in an unresolved collision state. Figure 5.9 shows the completed 9,000

particle pack with only the two collided particles. The white dots represent

the other particles in the pack. Figure 5.10 shows the offending particles much

closer, so the collision can be clearly seen.

The first question at this point is, “What does this mean for the validity
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Figure 5.7: Face Centered Cubic Packing Example

of the rest of the data?” It means that the packing fraction is slightly over-

calculated; specifically, the way that the packing fraction is calculated, the vol-

ume each particle contributes to the total particle volume inside the control vol-

ume. Therefore, the volume of intersection of any collided particles is counted

twice. In the estimation of this researcher, it probably doesn’t over-contribute

very much, maybe not even much more than the order of .01 packing fraction’s

worth.
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Figure 5.8: Single Column – Radial Distribution Function

As far as the speed of the calculation is concerned, there’s probably an even

greater effect, but that has to do with what the true problem is. It’s most likely

the neighbor list calculation. Remember that the neighbor list calculation is of

O
(
n2 logn

)
complexity. Because of this, the neighbor list calculation is done as

infrequently as possible. In this case, it may have been done too infrequently,

and a particle near ‘Particle A’ was not counted as a neighbor and, therefore,

not checked for a collision in the circular sweep. In effect, if the neighbor list

needs to capture more particles (causing more collision checks per sweep) or

be done more often, the speed will be adversely affected. Almost certainly, the
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time it takes to do a run would increase. Only a lengthy, thorough investigation

will discover the true culprit and the final effect on the results. At any rate, the

comparison from one starting arrangement to another is valid as they have the

same apparently faulty algorithm implementation.
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Figure 5.9: Single Column, 9000 Particles, Particle Number 347 and 463
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Figure 5.10: Single Column, 9000 Particles, Particle 347 and 463
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Chapter 6

SGMP – Small Dense Starting Pack

6.1 Model Setup

The second starting pattern will be the Small Dense pack. Particles are ran-

domly selected from the ten color bins and placed in the control volume in a

repeating pattern. First, a calculation is made to determine how many particles

(placed end-to-end) will fit inside the control volume. Then, the particles are

placed in flat (fixed Y-Axis values) layers extending from one edge of the unit

cube to the other. When a layer has been filled, the Y-Axis value is incremented

and the next layer begins. The model was run eight times with different num-

bers of particles. For illustration, Figures 6.1 through 6.3 show the model at

three different points. All three images are taken at the same position and zoom

level. Table 6.1 shows the summary of the runtime and final packing fraction

with various numbers of particles.
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Figure 6.1: Small Dense Pack, 9000 Particles, 0 Particles Fallen

Figure 6.2: Small Dense Pack, 9000 Particles, 1000 Particles Fallen
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Figure 6.3: Small Dense Pack, 9000 Particles, All Particles Fallen

Number of Particles Model Runtime (s) Packing Fraction
150 264 .5851
300 601 .6067
750 2826 .6092
1002 3565 .5985
2001 7519 .6027
3000 12746 .5987
6000 37388 .6038
9000 56337 .6023

Table 6.1: Small Dense Result Summary
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Figure 6.4: Small Dense – Speed

6.2 Speed

In general, the slope of the time vs. the number of particles graph line follows

a n2 ∗ log(n) trajectory. However, there are two points on the curve where the

line is skewed upwards compared to the other points. Specifically, those are at

750 and 6000.

Looking at the bottom profile of the pack before the model starts, it can be

seen that the 750 pack and the 6000 pack have a good deal of extra space inside

the control volume. There is extra space, but not quite enough to fit an extra

row and column of particles. Figure 6.5 shows each pack’s starting position
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Number of Particles Grid Size Height of Starting Pack
150 3x3 4.56
300 4x4 3.95
750 5x5 4.61
1002 6x6 3.82
2001 8x8 3.40
3000 9x9 3.53
6000 11x11 3.69
9000 13x13 3.40

Table 6.2: Small Dense Grid Size and Starting Pack Height Summary

from below so the extra space can be seen.

Extra space in the starting grid causes the starting pack to be higher; there-

fore, the particles in total, will have farther to fall. Figure 6.2 shows the grid

size and starting height of each pack.

From these details, this author would conclude that the model is very “starting-

height dependent.” The effect is compounded as the number of particles in-

creases. The starting height difference between 2001, 3000, 6000, and 9000 is

small, but as the number of particles gets relatively large, the effect is signifi-

cant.

Generally, the speed in general is decent, but not near where we need to be

in order to process many, many runs for combinatorial chemistry applications.

The 9000 particle run was on the order of 55,000 seconds or close to .65 days.

This is far too slow for realistic use.
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(a) 150 particles (b) 300 particles (c) 750 particles

(d) 1002 particles (e) 2001 particles (f) 3000 particles

(g) 6000 particles (h) 9000 particles

Figure 6.5: Small Dense Pack, From Below
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Figure 6.6: Small Dense – Packing Fraction

6.3 Packing Fraction

The packing fraction varies from ≈ .58 to ≈ .61. It varies up and down as

expected since the number of particles spanning the volume change. It is hard

to be sure without more data, but it looks like the final packing fraction (as the

number of particles reaches ∞) would be nearly .60. This is not terrible, but

considering the slowness by which this was reached, it’s not very useful in the

applications for which it is designed.
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6.4 Radial Distribution Function

The RDF graph for this model, Figure 6.7, looks very normal in that it has

the expected characteristic peaks near diameters 1, 2, and 3, with each a little

smaller than the former one. By the time we hit the fourth diameter, a peak

is difficult to discern at all, giving us the required lack of periodicity. The

distressing part is that the unresolved collision issue discussed in the Single

Column model analysis is present as well. It’s not quite as evident here as it is

in Single Column, as there’s only one very small peak before diameter 1, but

the peaks at 2 and 3 are advanced (early) at about the same rate as in the Single

Column model.
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Figure 6.7: Small Dense – Radial Distribution Function
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Chapter 7

SGMP – Large Dense Starting Pack

7.1 Model Setup

The third starting pattern is the Large Dense starting pack. Particles are ran-

domly selected from the ten color bins and placed in the control volume in a

repeating pattern. First, a calculation is made to determine how many particles

(end-to-end) will fit inside the extended volume. The particles are then placed

in flat (fixed Y-Axis value) layers extending from one edge of the extended

volume to the other. When a layer has been filled, the Y-Axis value is incre-

mented and the next layer begins. The model was run eight times with different

numbers of particles. The results of the runs are summarized in Table 7.1. For

illustration, the images of the 9,000 particle pack at three points are shown in

Figures 7.1 through 7.3. All three images are taken at the same zoom level and

position.
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Figure 7.1: Large Dense Pack, 9000 Particles, 0 Particles Fallen

Figure 7.2: Large Dense Pack, 9000 Particles, 1000 Particles Fallen



72

Figure 7.3: Large Dense Pack, 9000 Particles, All Particles Fallen

Number of Particles Model Runtime (s) Packing Fraction
150 94 .5694
300 263 .5910
750 733 .5865

1002 999 .5863
2001 2424 .5850
3000 4864 .5984
6000 11463 .5971
9000 19699 .5928

Table 7.1: Large Dense Result Summary
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Number of Particles Grid Size Height of Starting Pack
150 4x4 2.54
300 5x4 2.35
750 7x7 2.24
1002 8x8 1.78
2001 10x10 2.05
3000 11x11 2.14
6000 14x14 2.08
9000 16x16 2.11

Table 7.2: Large Dense Grid Size and Starting Pack Height Summary

7.2 Speed

As expected by the order of operations analysis, the slope of the time vs. num-

ber of particles graph follows a n2∗ log(n) trajectory. Like its cousin, the Small

Dense model, the graph line is not perfectly smooth. It suffers from the same

problem: the particles have to fall from a higher distance in some of the start-

ing positions. It’s not as pronounced as the time variations in the Small Dense

model, but there is a bit of high point in the 2001-3000 range, where the start-

ing heights are slightly elevated compared to their neighbors, as can be seen

in Figure 7.2. The numbers are only a bit higher than their neighbors, so there

could be some other factor at work distorting the graph, but what that might be

is not apparent.

While this is the fastest model so far, the speed is still unremarkable. The

9000 particle pack took about 20,000 seconds, close to a quarter of a day. This

is not fast enough for the needed applications.
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Figure 7.4: Large Dense – Model Speed
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7.3 Packing Fraction

The packing fraction varies from ≈ .56 to ≈ .60. As seen in Figure 7.5, it rises

and falls as expected as the number of particles spanning the volume changes.

This model, more than the previous ones, has a more extreme variation. This is,

most likely, due to a lack of data points with the other models. This model came

closer to hitting the packing fraction extremes than the others. In this model,

there also seems to be quite a bit of movement from 3000 to 9000 particles,

making it difficult to estimate where the final packing fraction might be. At

any rate, the final packing fraction (as the number of particles reaches ∞) will

almost assuredly be below .60. This, like the previous models, is not close

enough to the target of .63 to be considered useful.

7.4 Radial Distribution Function

The RDF graph for this model, Figure 7.6, looks almost exactly like that of the

RDF graph for the Small Dense model. There’s a small peak just before the

major peak at diameter one. Also, there are the diminishing, but slightly early,

peaks at diameters two and three. Basically, the graphs show two things: the

model provides sufficiently random non-periodicity and unresolved collisions

are still a problem.
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Figure 7.5: Large Dense – Packing Fraction
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Figure 7.6: Large Dense – Radial Distribution Function
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Chapter 8

SGMP – Loose Random Starting Pack

8.1 Model Setup

The final starting arrangement is the Loose Random pack. Again, particles are

randomly selected from the ten color bins and placed in the control volume in

a random pattern. Particles are assigned a random X-Axis and Z-Axis value

and placed into the extended volume. If the particle collides with a previously

placed particle, its Y-Axis value is increased until the collision is resolved. This

cycle is repeated until the particle bins are empty.

The model was run eight times with different numbers of particles and the

results of the runs are summarized in Table 8.1. For illustration, the images of

the 9000 particle pack at three points are shown in Figures 8.1 through 8.3. All

three images are taken at the same position and zoom level.



79

Figure 8.1: Loose Random Pack, 9000 Particles, 0 Particles Fallen

Figure 8.2: Loose Random Pack, 9000 Particles, 1000 Particles Fallen
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Figure 8.3: Loose Random Pack, 9000 Particles, All Particles Fallen

Number of Particles Model Runtime (s) Packing Fraction
150 127 .5861
300 551 .5918
750 3456 .5892

1002 5888 .5913
2001 23120 .5904
3000 54234 .5856
6000 205797 .5904
9000 456715 .5897

Table 8.1: Loose Random Result Summary
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Number of Particles Height of Starting Pack
150 3.38
300 4.71
750 7.02
1002 7.72
2001 10.4
3000 12.9
6000 17.9
9000 21.7

Table 8.2: Loose Random Grid Size and Starting Pack Height Summary

8.2 Speed

Like the previous models, the slope of the time vs. number of particles graph

follows a n2 ∗ log(n) trajectory. Unlike the dense models, the graph line is very

smooth. The most striking thing about this model is the large amount of time

it takes to do a run. The 9000 particle pack took close to 450,000 seconds to

complete. That’s over five days of computer time, which is unacceptably poor.

Again, the author thinks the slowness comes from the height of fall. Looking at

Figure 8.2, the height of the column for the 9000 particle starting arrangement

is 21.7. That is an enormous height, especially compared to the other models.

8.3 Packing Fraction

Not only is the speed poor, but the resulting packing fraction (Figure 8.5) is not

very good either. The packing fraction varies from ≈ .585 to ≈ .592. It varies
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Figure 8.4: Loose Random – Model Speed
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Figure 8.5: Loose Random – Packing Fraction

from high to low as the number of particles spanning the volume change. More

interesting is that the range does not vary much when compared to the other

models. Again, without further runs made, the final packing fraction (as the

number of particles reaches ∞) will be no greater than .59.

8.4 Radial Distribution Function

The RDF graph for this model, Figure 8.6, looks normal, but seems to be noisier

than the other models. This may be due to the lower packing fraction. If the

packing fraction is lower, the chance for periodicity is lessened. There are still
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Figure 8.6: Loose Random – Radial Distribution Function

peaks at diameters one and two, but if there’s a peak at three, it’s difficult to

discern. This graph shows signs of unresolved collisions in that the peak at

diameter two appears early, meaning that, most likely, there are particles closer

together than is physically possible.
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Chapter 9

Comparison and Analysis

9.1 Speed

As far as speed in concerned, none of the models are effective. They all suffer

the falling height issue. The way the SGMP algorithm is implemented, particles

fall (decrease their Y-Axis values) at a fixed rate per fall cycle, a fall cycle being

a downward movement followed by neighbor list collision checks. That value

is .001, so it takes 1000 fall cycles to drop the length of the control volume.

Looking at the graph, the Single Column is faster than the Small Dense model,

but slower than the Large Dense. The reason is the fall phase is implemented

differently in the Single Column than the others.

Specifically, in the Single Column model, after a particle finishes the SGMP

phases, the entire column is moved down at one time in a single increment to

just above the first point of contact of the last particle with the fixed pack. This
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Figure 9.1: All Models – Speed

essentially removes most of the time spent in the falling phase. But if there’s

very little time spent in the falling phase getting to the initial collision with the

fixed pack, why isn’t the Single Column model faster than Large Dense?

The second difference between Single Column and Large Dense is the fixed

particle bed that a falling particle comes into contact with. The shape of the

fixed particle bed will determine how far, on average, a particle will move once

it makes initial contact with a fixed particle. For example, in Figures 9.2 and

9.3, the shape of the fixed particle bed in the Single Column model is a steep

pyramidal structure, giving the particle an earlier first contact as well as having
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Figure 9.2: Fixed Particle Bed – Single Column – 500 out of 1002 Particles Fallen

farther to fall before others come to rest, on average. The shape of the bed in the

Large Dense model is still pyramidal, but much less high and steep. Therefore,

an average particle in the Large Dense model will have to go through fewer

SGMP phases and come to rest sooner than in the Single Column model. This

accounts for the faster pack times in the Large Dense model.

Also of interest is the observation that the pyramidal shape of the fixed par-
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Figure 9.3: Fixed Particle Bed – Large Dense – 500 out of 1002 Particles Fallen
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Figure 9.4: Fixed Particle Bed – Small Dense – 500 out of 1002 Particles Fallen

ticle bed in the Small Dense model, Figure 9.4, is slightly higher and steeper

than that of the Large Dense model. This, along with higher average falling

height, may contribute to the longer packing times of the Small Dense models.
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9.2 Packing Fraction

Along with the speed of the models, the resulting packing fractions are also a

disappointment. While the results are better than those recently obtained by Shi

& Zhang (2006), it is difficult to determine exactly how much of an effect the

unresolved collision defect had on the final packing fractions. Undoubtedly,

the lack of any actual ‘contact’ (average coordination number of zero) of any

of the particles only serves to cause an underestimation of the final possible

packing fractions. At any rate, the packing fractions, as calculated here, are not

sufficient for use in simulation applications.

It is worth noting that each of the models, regardless of starting arrangement

appear to begin to coalesce towards a similar packing fraction, as they get to

higher numbers of particles. This makes sense intuitively, as the ultimate deter-

mining factor of the packing fraction is the method by which they are packed,

which all of the models share in common.

9.3 Radial Distribution Function

The one bright light of this research is that each model, as shown in their vari-

ous Radial Distribution Function graphs, produces a sufficiently random, non-

periodic pack. In each model, at the 9000 particle level, when the distance is

three to four particle diameters away, any periodicity is not evident at all.
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Figure 9.5: All Models – Packing Fraction
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

A few conclusions can be drawn from this research. A negative conclusion

is that there’s obviously a serious defect in this particular implementation of

the SGMP algorithm which allows an unresolved collision to exist in the final

pack. If the goal is to model reality, this is the most glaring unreal result of the

model.

This implementation of the SGMP is also not nearly fast enough for use in

combinatorial chemistry applications. The eventual goal is to model a 100,000

particle pack. None of these starting arrangements (or the actual SGMP model

itself) are usable. Even if it were parallelized for multiple processors, it wouldn’t

be quick enough.

The packing fraction is not high enough, either. Reality (ball bearings in
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a real volume) creates a packing fraction of over .63. The highest that any of

the models here was able to achieve was close to .62, but that was for a special

case with a very small number of particles. Looking at the graph with all of the

packing fractions from the various runs, the final packing fraction for a suitably

large number of particles, will be below .60 if not significantly lower.

While these problems are significant, that does not mean that the algorithm

is wholly without merit. The collision defect can be fixed. There are tweaks

that can be made and features that can be added to bring the packing fraction

up to where it needs to be. The bigger question is if the speed can be brought

to a usable value. Typically, increasing the packing fraction requires more

calculations and slows down the model. Perhaps with more work, these coun-

terbalancing needs can coexist to make a tool that can be used in combinatorial

chemistry applications in the future.

10.2 Future Work

The first thing is to fix the collision defect that causes particles to intrude on

each other’s space. Calculations should be done first in order to determine the

magnitude of the problem. It’s probably an issue with not building the neighbor

list often enough during the SGMP phases. Without fixing this problem, speed

and packing fraction improvements are worthless.
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Part of the speed problem has to do with the initial falling phase before a

particle comes into contact with the fixed particle bed. The particle moves

downward at a very slow, fixed rate. There are several possible improvements

that could be made. One possibility is to implement an increasing fall distance

algorithm. Move the particle downward a fixed distance. If there’s no collision,

double the distance, and repeat this until a collision happens. Another method

could examine the fixed particles in the falling particle’s lower neighbor list to

see which one is highest. Then the falling particle could be instantly translated

to a position slightly above it. Either of these methods could cut a great deal of

time from a model run.

Another optimization that could both speed up the model and increase the

packing fraction would be a change in the circular sweep. The current im-

plementation of the SGMP algorithm only tests 120 positions on the circular

sweep. This was a balance made to attempt to get the packing fraction up with-

out taking too much time. It would be possible to do a multi-stage sweep. The

first stage would test only a few points on the circle, maybe five to ten. If a suit-

able non-collision arc is not found, then a second stage with more tested points

could be used, possibly the current 120 points. If a suitable non-collision arc is

still not found, then maybe more points could be used, possibly with 720 points

on the sweep tested. A careful analysis on multiple data-sets should be made

to select the proper number of stages and the number of points in each stage
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to test. If the right numbers are selected, it should radically speed up the easy

SGMP moves, while making the particles fit into tighter spaces than the three

degree limit where they are currently cut off.

One more optimization to increase the packing fraction would be to imple-

ment a contact model. Currently, the SGMP algorithm leaves all of the particles

out of contact with any other particle. After SGMP is done with a particle, the

moving particle could be moved slightly to force it to be in contact with its

neighbors. This should be a fairly simple (and fast) calculation and would in-

crease the packing fraction, at least somewhat. It would also add an extra dose

of realism to the result, as the particles would actually be touching each other.
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