
Symmetric Multiprocesser Design for
Hybrid CPU/FPGA SoCs

Shane R. Santner

Submitted to the Department of Electrical Engineering &
Computer Science and the Faculty of the Graduate School

of the University of Kansas in partial fulfillment of
the requirements for the degree of Master’s of Science

Thesis Committee:

Dr. David Andrews: Chairperson

Dr. Perry Alexander

Dr. Arvin Agah

Date Defended

c© 2007 Shane R. Santner



The Thesis Committee for Shane R. Santner certifies

That this is the approved version of the following thesis:

Symmetric Multiprocesser Design for Hybrid CPU/FPGA SoCs

Committee:

Chairperson

Date Approved

i



Abstract

This thesis presents the design of a Symmetric Multiprocessor (SMP) hy-

bridthreads (hthreads) system that allows multiple threads to execute in par-

allel across multiple processors controlled by a single hardware scheduler. This

approach increases the performance of software at a minimal cost to hardware.

The issues that must be addressed for extending a uniprocessor kernel include

system initialization, processor identification, context switching and concurrency

control. As a proof of concept this thesis shows how hthreads, an existing hard-

ware/software co-designed kernel can be extended to control multiple processors

from a single, centralized hardware scheduler. Analysis results from executing on

hardware reveal that for computationally intensive programs the typical speedup

is in the range of 1.65x. This shows improvement in system performance while

also illustrating issues associated with bus arbitration and memory access times.
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Chapter 1

Introduction

Multiple processors embedded on the same die are becoming common in to-

day’s reconfigurable computing world. Advances in multicore scheduling support

[3] provide increased performance on software based systems. The hybridthreads

project at the University of Kansas [10] extended thread scheduling support to

a hardware/software co-design. The work of this thesis builds upon the previous

hthreads design, expanding it to provide support for multiple processors.

SMP architectures consist of two or more identical processors connected to a

single shared main memory. This shared access allows multiple threads of execu-

tion to run on several different processors concurrently. One of the features of an

SMP architecture is the concept of processor affinity which enforces processor spe-

cific execution of threads. This feature was developed because many applications

rely heavily on cache utilization [11], however the functional SMP hthreads sys-

tem does not use data caching and therefore the use of processor affinity is outside

the scope of this thesis. Another feature of SMP architectures is load balancing.

Typically the scheduler will assume the role of attempting to balance the workload

for each processor in the system. This implementation in the SMP hthreads sys-
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tem occurs through the check preempt function which will be discussed in greater

detail in section 6.1. Using the hthreads system as the foundation for the design,

the next logical step is to migrate the existing hardware/software co-design to

account for both PowerPC Processors embedded in the Virtex-II Pro FPGA.

Modifying the hardware scheduler and thread manager to account for the

additional processor is required. Additional registers are also needed to track this

new information that must be stored. The finite state machine of the hardware

scheduler will also require significant modifications to many of the internal states.

Traditional scheduling operations such as ENQUEUE and DEQUEUE will now

have to determine which processor is requesting the operation. Also, with the

addition of another valid processor into the system the hardware design will have

to be modified so that interrupts are sent to the appropriate processor.

As complex as the changes will be to the hardware portion of the design,

the software changes will require an even greater amount of modification. SMP

system initialization will be the first obstacle to overcome. This involves request-

ing a processor id from the thread manager, creating a separate stack for each

processor to use during initialization, setting up mutexes to perform thread-safe

memory allocation and deallocation, creating a separate stdout for each proces-

sor if requested, creating the initial main and idle threads and finally enabling

preemption. Interleaved with SMP initialization issues are run-time issues such

as memory allocation and deallocation, cache coherency and concurrency control.

These potential problems will need to be addressed and resolved to achieve a

functionally correct and stable system.

The remainder of the paper is partitioned as follows: The problem statement

of this thesis work is developed in chapter 2 with a list of contributions shown in
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section 2.2. A brief background of the uniprocessor hthreads design is discussed in

chapter 3. Related work including the latest SMP application note [30] by Xilinx

is covered in chapter 4. System initialization relating to the hardware setup and

software initialization (including processor identification) are discussed in chapter

5, sections 5.1 and 5.2. The hardware and software design is covered in chapter

6, with a detailed look at the hardware portion in section 6.1 and the software

portion in section 6.2. Performance results of the various versions of the design

are shown in chapter 7. Finally, a summary will be provided in chapter 8 with

future work being discussed in chapter 9.
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Chapter 2

Statement of Problem

2.1 SMP Systems, Coherency and Concurrency

Why migrate the current design of hthreads to be SMP compatible? Quite

simply, there exists an additional resource with tremendous computational power

that is sitting idle on the FPGA. If this resource could be used then two threads

of execution could be run in parallel with the potential to linearly increase the

overall system performance. This would be useful for a wide range of applications

where performance and real-time execution are critical factors.

In general, hardware/software co-design is very difficult. Unforeseen bugs in

the hardware can cause bugs in the software with the opposite also holding true.

Furthermore, predicting the interaction of the hardware portion of the design

with the software portion can also be extremely difficult, leaving the developer

frustrated. Fortunately, much of this frustration was handled during the initial

hthreads design. The hthreads project has matured to a point where much of the

interaction between the two contrasting sides of development is stable. Although

this is helpful, debugging real-time system-level software issues that might also
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be related to hardware issues can be nearly impossible. Often the majority of the

time spent debugging is to determine the problem, rather than correcting it. This

is mainly due to the lack of debugging tools available for SMP systems, and more

specifically for System On Chip (SoC) SMP systems. Without these critical tools

available to isolate software and hardware issues, finding bugs (if they are found

at all) can take a significant amount of time and effort.

Hardware limitations can also prove to be insurmountable obstacles when at-

tempting to design something unique to the field of study. This will later be

shown to be a profound impediment to system performance. The first hardware

limitation encountered was the arbitration scheme used for the Processor Local

Bus (PLB). Both PowerPC’s connect to the PLB, and Xilinx’s PLB arbitration

scheme allows one processor to always be granted access to the bus in the case

of a tie [28]. Under heavy PLB load, this equates to one processor sitting idle

while the other processor gets exclusive access to the bus. The worst case sce-

nario would nearly reduce the SMP system to a uniprocessor design. The second

limitation to the hardware is the lack of cache coherency. Xilinx does not bring

out the necessary hardware lines from the PowerPC’s to implement a standard

snoopy cache protocol [27], therefore when data is shared among resources the

possibility exists for that data to be incoherent. Typically this can be avoided

completely by turning off data cache for the entire system which is the approach

taken by the uniprocessor hthreads design. This is also the approach taken for

the SMP hthreads design which will be discussed further in section 6.2.

Finally, intrinsic to all SMP systems is the concept of concurrency control. This

refers to the idea of multiple threads of execution requesting the same resources

at the same time. Consequently, which resource is granted to which thread(s)
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and what process is used to ensure that race conditions are avoided needs to

be determined. To further complicate the implementation of concurrency is the

hthreads design itself. Because hthreads uses soft hardware cores to perform many

traditional operating system services, the typical methods to ensure concurrency

control may not be available to use, or if they are available then the scope of

what is useful to the SMP hthreads system might be limited. For example, in the

uniprocessor hthreads design a system call will typically contain a combination

of software routines with soft hardware core requests. This means that critical

thread information is stored in hardware registers specific to the soft hardware

cores and in system software data structures. To execute a system call correctly

in an SMP hthreads system it may be necessary to lock around the entire system

call, or just the hardware or software portions of the call. This is also highly

dependent on which system call is requested and the data structures that are

modified during the system call. To implement concurrency efficiently in any

system the goal is to maximize the amount of parallelism that is present in the

system, yet still ensuring correct functional operation. Therefore, it would be

inefficient to provide a single heavy-weight lock around all system calls because it

may not always be necessary to lock down every system call available to the user.

There could be dozens of pairs of system calls that would not require concurrency

control, or that might only require a small amount of concurrency control and

therefore locking around all system calls could as much as double the amount of

time it would take for both processors to complete their requests. This difficulty

and others closely associated to SMP concurrency control stem from the fact that

in the initial hthreads design only a minimal effort was put into making it SMP

compatible for future revisions. This meant that only two of the three standard
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types of concurrency were considered, thread and interrupt - physical concurrency

was not a priority at the time. Consequently, system-level software was not written

to take into account the architectural concepts of SMP systems, which means that

modifying the system-level code will be extremely challenging.

2.2 Thesis Contributions

• Modified hardware scheduler and thread manager to account for multiple

processors

– Designed the check preempt hardware function which is used to sched-

ule multiple threads of execution on multiple processors

– Added multiple states to the finite state machines in the hardware

scheduler and thread manager

• Developed an initialization routine to synchronize the hardware and software

– Processor Identification Assignment

– Unique stack creation for each processor

– Idle thread creation

– Interrupt initialization

• Implemented multiple hardware locks in the hardware scheduler for concur-

rency control and system stability

– Processor lock used to protect system-level software

– Thread specific lock which is used by malloc lock() and malloc unlock()

for thread safety
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• Created custom hthreads kernel software

– System initialization software

– Concurrency control software used in conjunction with the hardware

scheduler locks
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Chapter 3

Background

The hthreads project was developed to allow pthreads applications to be mi-

grated to a hybrid FPGA/CPU SoC to increase the performance of multi-threaded

applications. To achieve this goal the hthreads design uses a hardware/software

co-design to implement system services that are available to the user application.

These services are part of the hthreads kernel which provides the majority of the

standard pthreads system calls to the application. Many of these services are con-

trolled by software, however to increase performance some operations were moved

into hardware. These services include operations involving mutexes, thread man-

agement (such as create, join, exit, etc.) and scheduling. Moving this functionality

into hardware increases system performance, however the difficulty of achieving a

functionally correct design becomes challenging.

The first system software service to be migrated into hardware involved mutex

operations. It was observed that mutex operations required a significant portion

of processor clock cycles to satisfy requests. Soon after, the mutex manager was

created which is a soft hardware core used to grant and release mutexes. Be-

cause the pthreads standard requires the implementation of pthread mutex lock
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and pthread mutex unlock [12] for correct thread locking/unlocking operation,

the mutex manager created blocking, non-blocking, recursive and spin-lock type

mutexes to enforce this standard.

The thread manager and hardware scheduler [1] are closely related soft hard-

ware cores due to the nature of the operations they perform. Originally they were

combined into one hardware core - only later in the design was the decision made

to separate their combined functionality. They are so tightly intertwined that

the decision was made to implement a dedicated communication channel between

them. This would eliminate OPB transactions when the thread manager requests

an operation from the hardware scheduler. Because of the recurring nature of

these operations, this design decision improves overall system performance.

The thread manager was created to perform a managerial type of role within

the design. Examples include allocating and clearing thread id’s and tracking

thread specific information in hardware registers. The thread manager handles

many typical pthreads operations, many times in conjunction with the scheduler.

Common thread specific requests that are serviced by the thread manager includes

hthread create, hthread join and hthread exit. The thread manager implements

this managerial type of role by providing an interface among the processing com-

ponents in the system and the hardware scheduler. This interface among resources

tracks the thread-specific data as it passes through. This thread-specific informa-

tion is then used to perform hthread system calls and ensure correct functional

output.

The hardware scheduler core is used to implement the ready-to-run queue for

the hthreads system. Using information stored in local BRAM’s the hardware

scheduler makes scheduling decisions about which threads on the ready-to-run
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queue should be executed next. Offloading these features from the kernel code

has been shown to reduce the jitter [1] in the system and consequently increase

the overall performance of user applications running on the hthreads system. The

hardware scheduler implements the ready-to-run queue as a fixed-priority FIFO

queue to perform scheduling operations. The queue contains 128 priority levels

with each level containing a pointer to the thread id for the head and the tail of the

FIFO. The scheduler reduces the jitter in the system by eliminating unnecessary

interrupts to the processor. Consequently the scheduler will only interrupt the

processor if a thread with a better priority is ready to run. This is in direct

contrast to software schedulers which repeatedly interrupt the processor to check

if there exists a better thread id to run. In the case where the thread with the

best priority is executing then the interrupt sent to the processor results in a

significant waste of processor clock cycles. Again, this scenario is eliminated by

using the hardware scheduler.

The glue that holds the hthreads hardware/software design together is the

hthreads RTOS kernel [4]. This system-level software seamlessly provides hthreads

services to the user application. The kernel handles system calls, interrupts and

I/O for the user application. This is done through a combination of memory-

mapped reads to the soft hardware cores and system-software data structures

which also track thread-specific information. The existing kernel design approach

is to limit the amount of time required to perform system services while carry-

ing out the pthreads POSIX standard. Migrating this portion of the design to

become SMP compatible will be the most challenging of all the hthreads system

components.

Recently, the hardware thread interface (HWTI) [2] has been added as an
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additional component into the hthreads system. This is a custom hardware core

that is wrapped around hardware threads and is used to perform services such as

reading from and writing to memory. This interface also allows hardware threads

to communicate with other threads in the system. This is a key component of

the hthreads system because it eases the amount of work required for a developer

to transition a software routine into hardware. This transfer from software to

hardware also holds the greatest opportunity for speedup, which is why the HWTI

is so critical.

In summary, hthreads will allow a typical pthreads application to spawn mul-

tiple threads of execution which can run concurrently in software and hardware.

Furthermore, the operating system has reduced overhead because tasks that are

typically serviced by the kernel have been moved into hardware where they can

run in parallel with the operating system. These vital components of the hthreads

system allow significant speedups which directly benefit the converted pthreads

user application.

The hthreads design has matured significantly over the life of the design, and

the next logical progression is to use both PowerPC processors that are embedded

in the Xilinx FPGA. This has the potential to increase the performance of the sys-

tem without substantially increasing the amount of space required to implement

the design in the FPGA. The second processor is valuable computational resource

that has been idle, and the opportunity to modify the design to take advantage

of this idle processor is promising. The modifications necessary will be substan-

tial, requiring significant changes to the thread manager and hardware scheduler

to account for the additional processor. Furthermore, the software will require

substantial modifications to ensure that the system is stable and yet efficient.
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Chapter 4

Related Work

The earliest related work found was done by Dr. John K. Bennett at the

University of Colorado at Boulder [6]. He was able to construct an architecture

that could use both PowerPC’s embedded in the Xilinx Virtex-II Pro FPGA. His

approach employed two PLB’s, one for each PowerPC. He also placed the DDR

memory on the OPB bus which requires a bridge from the PLB to OPB in or-

der for the PowerPC’s to gain access to main memory. Also, he used local block

RAM’s (BRAM’s) for each PowerPC to store the application program. Finally,

he considered the UART to be a shared resource between both processors and

therefore used PowerPC specific instructions to create atomic operations to in-

stitute locks around gaining access the UART. The lock was placed in a shared

BRAM (shared by both PowerPC’s) section of memory and a simple test was ex-

ecuted to demonstrate both PowerPC’s running in parallel. Although this design

illustrates the possibility of using both PowerPC’s concurrently on the Virtex-II

Pro FPGA, it does not perform any computationally intensive tasks. The design

itself is targeted as a basic introduction into multiprocessing using the embedded

PowerPC’s on the Virtex-II Pro FPGA. Also, this design does not use an operat-
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ing system and therefore does not implement multiple threads of execution which

can be queued, blocked or transferred between processors in the system.

A Research Accelerator for Multiple Processors (RAMP) [13] is a relatively

new project from the University of California, Berkeley in which they attempt

to provide an architecture that can support hundreds of processors executing

concurrently. While the scope of this project is much larger than the scope of

SMP hthreads, some interesting similarities exist. RAMP White is a subset of

the RAMP project with the focus on coherently sharing memory among multiple

processors [5]. In their research they have identified several possible solutions

to the cache coherency issue with timelines for completion. Depending on the

outcome of this work, it could certainly be ported to the SMP hthreads design in

the future to allow data caching within the system.

May 10th, 2007 Xilinx released xapp996 citexapp996 which is their dual pro-

cessor reference design suite. In this application note they provide three different

scenarios for running dual processors. The first example illustrates running two

Microblaze processors in parallel. Next they show two PowerPC’s running con-

currently, and finally they illustrate how to run one Microblaze and one PowerPC

concurrently. Initially the dual PowerPC example looks very promising, however

they use a different linker script for the same application to ensure that each pro-

gram is stored in a separate location in main memory. In direct contrast to this

approach, the SMP hthreads design seeks to execute software by both PowerPC’s

stored in one location in main memory. Also, the application note provides four

different software applications which test the functionality of both processors exe-

cuting concurrently. These examples do illustrate concurrent software execution,

however they are not multi-threaded examples and do not require a kernel for ex-
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ecution, therefore like the previous work they are somewhat trivial in comparison

to the capabilities of an SMP hthreads system. These differences aside, the hard-

ware setup included in the microprocessor hardware specification (mhs) file was

useful to check the implementation of the hardware design for the SMP hthreads

system. Although Xilinx has yet to develop a true SMP system using their line

of Virtex FPGA’s, progress is being made.
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Chapter 5

System Initialization

SMP systems require a substantial amount of setup before any custom hard-

ware/software co-design can be carried out. Several issues have to be considered,

such as setting up the initial hardware to function correctly. In a broad sense

this includes processor initialization, bus connections, memory configuration and

custom hardware core setup. Once the hardware setup is complete, the focus

then turns to the software setup which includes modifying the software kernel to

account for multiple processors and editing configuration files to account for the

new SMP modifications during the software build cycle. Once the hardware and

software have been correctly setup and initialized the next step is to acquire a

processor identification number (PIN). This allows the kernel to request services

from the various hardware cores based on which processor is requesting the ser-

vice. Finally, idle threads will be defined and issues involving multiple processors

and idle threads will be addressed.
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5.1 Hardware Setup

The Xilinx University Program (XUP) development board was used to setup

and test the hthreads SMP system. The hardware contains a Virtex-II Pro FPGA

with two embedded PowerPC’s, a DIMM slot for DDR SDRAM memory, ps2 ports

for a mouse and keyboard, a VGA connector for communicating with an external

monitor, an RS232 and ethernet connector for serial I/O, a USB connector for

downloading bitstreams, a microphone input and two audio connectors. This de-

velopment board from Xilinx is targeted to the undergraduate engineering student

who can purchase this board as part of their curriculum and use it throughout

their academic career. That being said, much of what is actually on the board

is irrelevant for the hthreads system to function properly, therefore a significant

portion of the hardware is not used. The interesting portion of the hardware is

the on-chip setup - the intricacies of what is involved with setting up the system

to function properly when using both PowerPC’s embedded within the FPGA.

The following sections will cover the hardware configuration of the SMP hthreads

system with the necessary modifications to allow utilization of both processors.

The hardware configuration for the SMP hthreads system is a combination of

processors, bus architectures, memory and hardware cores. The performance of

the processors embedded in the FPGA will be severely crippled if they cannot

access shared resources such as memory and the custom hardware cores. This is

the job of the buses within the system, to connect these vital components together.

Figure 5.1 shows a block diagram view of the SMP version of hthreads.

The first bus that is used is the processor local bus (PLB) [28]. This bus

(single PLB in the SMP hthreads system) connects directly to both PowerPC’s,

main memory, and the plb2opb [24] and opb2plb [23] bridges which, as the name
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Figure 5.1. High-level overview of the SMP hthreads system

infers provides a ’bridge’ between the PLB and OPB [22](On-Chip Peripheral

Bus) buses in the design. The decision to use one PLB for both processors in the

system was rooted in the design decision to allow fast access to main memory for

both processors, which requires connecting main memory directly to the PLB. If

the decision instead would have been to use two PLB’s, one for each processor,

then main memory would need to be connected to the OPB bus which would have

introduced additional latencies when accessing main memory from the PowerPC’s
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because of the plb2opb bridge.

The OPB is a bus that is used to offload slower and less time-critical cores,

keeping the PLB free for memory transactions. Deciding how to attach the hard-

ware cores to the different bus architectures can be difficult to determine. Finding

the most efficient balance is the ultimate goal. If too many cores are added to

the PLB then the PLB becomes overloaded with transactions and the system as

a whole suffers. However if the only devices attached to the PLB are both Pow-

erPC’s then this too can be detrimental to the entire system because every access

to outside resources would require a transaction over the plb2opb bridge which

adds additional latencies. In the SMP hthreads design, determining the balance

was based on the fact that access times to memory are critical, therefore other

than the PowerPC’s, main memory is the only core (besides the shared BRAM)

that is on the PLB.

Concerning memory, the SMP hthreads system contains three layers. The

largest and correspondingly slowest memory is the DDR SDRAM memory, also

called main memory or global memory. This memory is configurable in size be-

cause it plugs directly into the DIMM connector provided with the board. Again,

this memory has been placed directly on the PLB in an attempt to reduce the

latency when requesting read and write operations from main memory.

The second level of memory in the hthreads system is the on-chip BRAM’s

(Block RAM) which are synthesized into the FPGA. These memories can be

application specific or they can be used as OCM’s (On-Chip Memory) for the

PowerPC’s. When used as OCM’s for the PowerPC’s the BRAM’s act as an L2

cache [20]. These access times are significantly faster than main memory, however

because of the clock difference between the system clock and the PLB clock,
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they are still slower than accessing the L1 caches. This type of memory is used

in conjunction with many of the custom hardware cores, however because data

coherency is an issue in the multiple processor design, this memory can not be

used as OCM’s for the PowerPC’s. This memory architecture can also be used

directly on the PLB to store user application programs. However because many

applications are too large to fit entirely into the PLB BRAM, only small sections

or more typically just the .boot0 section is stored in the PLB BRAM and is then

used to jump to the main application in DDR SDRAM.

Local PowerPC caches are the final level of memory in the system. The Pow-

erPC’s each have two L1 caches, one for instructions and the other for data. Both

L1 caches are 16kB in size [18]. This is also the most interesting level regarding

the multiprocessor design because in the Virtex-II Pro FPGA’s there is no cache

coherency between processors, therefore to implement data caching in this setup

would require a snoopy cache protocol which is a way to ensure that when data

has been updated outside one of the local processor caches that a section of that

cache becomes invalidated. It would also be required that if a value in the data

cache was changed, then that value would be written out to main memory and

that any other resource which held this value in its cache would invalidate this

data as well. The implementation of this protocol has not taken place in the SMP

hthreads system and in previous designs the work-around was simple - disable

data caching. This is the necessary approach dictated by current limitations and

is also the approach that will be taken for the SMP hthreads design.

Finally, the custom hardware cores in the hthreads system can be classified

as either operating system specific or hardware threads. The operating system

specific cores include the thread manager, scheduler and mutex manager. These
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cores were designed to reduce the load of a typical operating system so that the

processor can spend more time executing applications and less time managing

them. For example, in the previous design the scheduler was designed to only

interrupt the processor if a thread with a better priority was ready to run. This

eliminated a substantial amount of jitter in the system compared to a software

only implementation of the kernel. To take advantage of these performance im-

provements for multiple processors the thread manager and scheduler will both

require modifications. This will be covered extensively in section 6.1.

5.2 Software Setup

Using the hardware support built into the system, the first problem to solve

is how to initialize a multi-processor software system. Many variables become a

factor when trying to consistently bring the system up into a known state. For

instance, which processor reads the processor identification register first? Which

processor performs system component initialization? What ensures that each

processor during initialization is given a unique stack? Which processor should

run the main thread, and which one should execute the idle thread (enter an

infinite while loop and wait for an event to occur)? These are all issues that must

be addressed to ensure proper operation.

Two source files are used to perform the majority of the initialization, crt0-

smp.S and init.c. The first file is an assembly language file which reads the PIN

from the thread manager and depending on the value returned will branch to

create the appropriate stack for the current processor. It is important that each

processor is given a unique stack, otherwise both processors would be using the

same stack which would lead to the corruption of data and ultimately system fail-
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ure. Once the stacks have been initialized, the global variables used for reentrancy

are stored in user special purpose register zero (usprg0). This information is criti-

cal for the implementation of malloc in a thread-safe fashion and will be discussed

further shortly. Once the reentrancy variables have been stored locally to the

processors registers, the next step is to initialize the libc locking and unlocking

code used for malloc. This completes the major portion of system initialization

specified in crt0-smp.

Next, the software branches to the init.c file, and more specifically the hthread init

function call. At this point the processor running has a unique PIN and based on

that identification performs differing tasks. The processor which was assigned PIN

zero is used to perform most of the system initialization. This includes sending

a reset to the soft hardware cores in the system, initializing the thread manager

and setting the stack pointer for each thread in the system to NULL. Following

the system initialization, this processor will then request a thread id from the

thread manager and set this id as the idle thread for this processor. To complete

the setup the processor will enable interrupts, enter user mode of operation and

branch to the idle thread function. The processor which was assigned PIN one

receives two thread id’s from the thread manager. Thread id one is used as the

main system thread and thread id two is used as the idle thread for this proces-

sor. Similar to processor zero, processor one finishes the initialization by enabling

interrupts, entering user mode and running the main thread.

Assigning PIN’s is an important task because it allows each processor in the

system to be uniquely identified. The PIN is used throughout the software ini-

tialization and is important for ensuring correct functional output from the appli-

cation. This task is challenging because in many ways it is similar to the ’chicken
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or the egg’ metaphor. For instance, when assigning PIN’s to their corresponding

processors what assurance is there that you have assigned the correct PIN to the

corresponding physical processor on the die.

Due to the limitations of the PowerPC’s embedded in the Virtex-II Pro it

is extremely difficult to distinguish between the physical processors on the die

of the chip. The embedded PowerPC’s in the Virtex-4 FPGA’s have a PVR

(Processor Version Register) register dedicated for identifying processors, however

this register is not available for the PowerPC’s in the Virtex-II Pro’s [26]. Due

to these hardware limitations, a custom solution had to be developed. To achieve

this, the thread manager was chosen to be responsible for distributing PIN’s to the

requesting processor. Since requests to all hardware cores are memory mapped,

the address 0x60007C00 was designated as a request to receive a PIN from the

thread manager. The value of the PIN is returned on the two least significant

bits of the data lines on the OPB and it is stored in Special Purpose Register

7 (sprg7) within the PowerPC so that all future lookups will be local. Because

the number of processors in the hybridthreads system has been limited to four,

the thread manager simply increments a two bit register after a request has been

received and processed. This will cause the register to overflow back to zero after

the fourth processor has received the PIN value of three. This ensures that the

highest PIN that can be granted from the thread manager is a value of three.

This accounts for PIN assignment, however what confidence is there that the

correct physical processor will be mapped to the correct PIN, and is this even

necessary? In a general sense, it is not. However the interrupt controller provided

by Xilinx is not flexible enough to support arbitrary PIN assignment. The solution

to this problem is to force sequential operation during system initialization. This
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will force processor zero to execute first, ensuring that the next processor does

not get an opportunity to request a PIN from the thread manager until the first

processor completes initialization. Therefore the first physical processor on the

die (the right PowerPC) [25] will execute first, securing a PIN value of zero. Next,

the second physical processor on the die (the left PowerPC) [25] will secure a PIN

value of one.

Setting up interrupts is the next problem to address in this multiple processor

design and is tightly coupled to arbitrary PIN assignment and the limitations of

the Xilinx interrupt controller. Initially, the interrupts were hard-coded into the

.mhs file which is the hardware description file used in the Xilinx build process.

However this limits the design by forcing only one interrupt to be sent to each

processor. This means that if the sequence of acquiring the PIN from the thread

manager is out of order, then the scheduler could be sending an interrupt to the

wrong processor. In an attempt to solve this problem, the .mhs file was modified

to send both interrupts to both Processor Interrupt Controller’s (PIC) for each

PowerPC, and then depending on the PIN for that particular processor one of the

interrupts becomes masked, ensuring that the correct processor is servicing the

interrupt. This solution seemed promising at first, however because the design uses

two PIC’s, one for each processor, then each processor has no way to tell which

PIC it is assigned (this address is hard-coded). This could lead to situations where

PowerPC zero is reading from or writing to the incorrect PIC. Clearly this is not

functionally correct. In section 9 a possible solution to arbitrary PIN assignment

and interrupt masking will be explored.

The next topic regarding initialization is how to initialize the stack for the

software initialization portion of the code. Although only one main thread is
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used, both processors execute very similar portions of the initialization code and

therefore require a stack. The issue arises when they both use the same stack,

and the second processor wipes out data that was setup during the initialization

phase of the first processor. To solve this issue, the first statement executed in

software is to acquire a PIN from the thread manager. This allows each processor

to identify itself, and then branch to the correct section of the crt0-smp file for

stack initialization. Based on this identifier, each processor then create a unique

stack and therefore eliminates the possibility of data corruption through a shared

stack.

Finally, in hthreads there exists the concept of an idle thread. This thread is

issued a priority of 127, the worst priority assignment possible. This ensures that

all other threads will preempt the idle thread if they are in the ready-to-run state.

Functionally, the idle thread is simply an infinite while loop that executes when

there is nothing else for the processor to run. Inside this infinite while loop is a

call to hthread sched. hthread sched is a system call used to run the scheduler.

This gives the idle thread the opportunity to find something better to execute.

In the context of initialization, the first processor branches to the idle thread

after completing initialization. It then ’waits’ for the second processor to begin

executing the main thread where new threads will be created and executed on the

both processors.
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Chapter 6

Design & Architecture

To achieve correct operation using multiple processors in the hthreads system,

significant architectural hardware changes were required for the thread manager

and hardware scheduler. Similarly, to mirror the changes that occurred in hard-

ware, the software also needed to incorporate these updates to guarantee correct

functional operation. This translates into very low-level changes on how oper-

ations are performed within the hthreads system. The scope of these changes

ranged from modifying memory-mapped commands that are sent over the bus to

changing the way I/O is serviced by each PowerPC in the system.

6.1 SMP Hardware Design

The initial step in the design was to become familiar with the original unipro-

cessor hthreads system to gain a better understanding of what issues needed to

be addressed to expand the design to include multiple processors. This involved

learning the directory structure, where files are stored and which files require mod-

ifications. This is not exclusive to hthreads, however what is unique to hthreads is
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the originality of the design and the locations of files that required modifications.

Also, learning the hthreads build process and how it interacts with the Xilinx

toolsuite is critical to the overall system design. Although this sounds trivial

compared to the actual design, it was a significant undertaking because the learn-

ing curve for the Xilinx toolsuite is substantial and requires much time and effort

to become competent. Once an understanding of the basic toolsuite was acquired,

a more in-depth look at the hardware cores in the hthreads system was the next

step in the process. Specifically, understanding in great detail the scheduler and

thread manager cores that are used in conjunction with one another to perform

thread management and thread scheduling tasks for the hthreads system was an

important step in the SMP hthreads system design. Each of these modules im-

plements a large number of states in their respective state machines with dozens

of registers and signals to control in each core.

After overcoming the initial learning curve associated with this design, the

first modification was to the scheduler. To implement a multi-processor scheduler

required adding additional current thread registers to the scheduler and thread

manager cores. The purpose of the current thread register is to identify which

threads are currently executing on which processor. Since the design now includes

more than one processor the number of current thread registers were increased to

equal the number of processors in the system. The current thread register tracks

processor specific information, therefore the implementation of these registers are

in the thread manager which directly interacts with all the processors in the

system. This means that these registers are writable by the thread manager and

readable by the scheduler.

Similar in concept to the current thread register is the next thread register
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which contains the thread id of the highest priority thread on the ready-to-run

queue that is scheduled to execute next. For this design the decision was made to

continue to use only one next thread register. If the decision had been to equate

the number of next thread registers to the number of processors in the system,

then deterministic scheduling that was achieved in the previous scheduler design

would have been much more difficult to implement. The reason for this is that

instead of making one scheduling decision based on the highest priority thread

in the system, the scheduler would now be responsible for N scheduling decisions

where N is the number of processors capable of executing threads in the system.

This would lead to additional overhead and would increase the amount of time

required to make a scheduling decision. Although these are negative aspects of

using multiple next thread registers, there are also several positive aspects that

should not be ignored. First, with multiple next thread registers the scheduler

has more control over which threads run on which processors. Currently, the

scheduler makes a decision and can preempt the processor which is executing the

lowest priority thread, however this does not guarantee that the thread will actu-

ally run on the intended processor due to the interrupt latency of the PowerPC.

For example, if the scheduler interrupts the first processor and the second pro-

cessor then requests the next thread available to run then it is possible that the

second processor could ’beat’ the first processor to the DEQUEUE request from

the thread manager/scheduler. Fortunately this will only cause the first processor

to respond eventually to the interrupt and check that the thread that is execut-

ing is the best thread to be running - this adds overhead into the system but is

functionally correct. Also, multiple next thread registers would allow more flex-

ibility in scheduling threads through additional SMP scheduling constructs such
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as processor affinity. This would allow the user to force certain threads to only

execute on the specified processor. However, because the SMP hthreads system

does not use the data cache for the PowerPC’s, the implementation of processor

affinity would not be beneficial to the performance of user applications. This type

of control would only be necessary in future versions of the hthreads system when

cache coherency is no longer an issue.

An integral part of the new scheduler design was to develop a method for de-

termining the next thread to execute from the pool of available threads on the

ready-to-run queue. Several factors must be considered when making a scheduling

decision. First, the scheduler needs to know the priorities of all currently running

threads. This required creating a new register solely responsible for tracking this

information (current priority reg). Secondly, the scheduler needs to ensure that

if multiple processors could be preempted, that only one processor is interrupted

and furthermore that the processor that is interrupted is the processor currently

executing the lowest priority thread. For example, if the first processor is ex-

ecuting a thread of priority equal to ten and the second processor is currently

running a thread of priority equal to seven, and the highest priority thread on

the ready-to-run queue has a priority equal to five, then for proper operation the

scheduler must ensure that the first processor is interrupted and not the second

one (zero is the highest priority in the hthreads system). This is because the first

processor has the lowest priority thread, and if the second processor is preempted

instead then when the thread with a priority of seven is enqueued back onto

the ready-to-run queue the scheduler would then immediately preempt the first

processor and cause an unnecessary preemption. This would negatively impact

system performance because of the unnecessary preemption which would waste
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processor clock cycles. To ensure that this does not happen the check preempt

function was created to handle these scenarios. This function takes the highest

priority thread on the ready-to-run queue and the priority register as parameters,

and determines which processor if any should be preempted. The method used

to make this determination is to compare priorities, and if the highest priority

thread on the ready-to-run queue is better than the currently executing thread

then the function tracks the difference between these priorities. In the end the

highest difference corresponds to the processor that should be preempted. Figure

6.1 helps to illustrate this point.

If there does not exist a higher priority thread in the ready-to-run queue to

execute then C NUM CPUS is returned which is an indication to the caller that

preemption should not occur. This is because C NUM CPUS will always be one

value higher than the highest PIN assignment in the system.

The scheduler redesign required significant changes to the original design. Ta-

ble 6.1 highlights the states that were altered or added to the hardware scheduler

for this design.

The first modification required making changes to the ENQUEUE operation.

To account for multiple processors, the first addition is to read the processor id

from the bus, encoded into the request itself. Due to bit mapping definitions from

the previous design the mapping of the processor id bits into the request was

limited to bits 14 and 15 of all memory mapped reads, regardless if the operation

is requested from the hardware scheduler or thread manager. Extracting this in-

formation from the bus has become a common procedure in the SMP version of

the design. The second modification to the ENQUEUE operation is to determine

if the thread being added to the ready-to-run queue is an idle thread. This check
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Figure 6.1. Illustration of the check preempt function implemented
in the hardware scheduler
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Type Name Actions
TMcom Enqueue Adds a thread to the ready-to-run queue
TMcom Dequeue Removes a thread from the ready-to-run

queue
TMcom Idle Request ID Requests the processor specific idle thread
BUScom Set Sched Param Alters a threads scheduling parameters
BUScom Set Preemption Enable/disable preemption
BUScom Get Idle Thread Return the processor specific idle thread id
BUScom Set Idle Thread Set the processor specific idle thread id
BUScom Syscall Lock Request (acquire or release) the system call

lock
BUScom Malloc Lock Request (acquire or release) the lock used

by libc malloc (malloc lock() and mal-
loc unlock())

Table 6.1. Command Set Additions and Modifications to the Hard-
ware Scheduler Module

is done because idle threads cannot exist on the ready-to-run queue. The reason

for this limitation is that if idle threads were allowed on the queue then it would

be possible for an idle thread to be put into the next thread register which means

that it could be dequeued by the wrong processor. If this check returns true, then

the hardware simply returns without adding the thread to the queue. The final

modification required to the ENQUEUE request was to determine which processor

needs to be preempted when a thread with a higher priority becomes available to

execute. This is handled by the check preempt function as previously described.

Again, the check preempt function takes two parameters as its arguments. The

first parameter is the priority of the highest priority thread on the ready-to-run

queue. The second parameter passed to check preempt is a std logic vector that

tracks the priorities of the threads which are currently executing on all processors

in the system. Using this information, the check preempt function then compares

the two parameters and can take two paths to completion. The first path de-

termines that the highest priority thread on the ready-to-run queue should not
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preempt any of the processors in the system. The second path to completion is

that one or more processors could be preempted, and here the check preempt func-

tion determines which processor out of all the available processors should actually

be preempted by returning the PIN value to the requesting state.

The second modification to the hardware scheduler involved the DEQUEUE

operation. Like the ENQUEUE operation, the first modification is to again read

the processor id from the bus. This information is necessary because the scheduler

needs to track the priorities of the threads that are currently executing on all

the processors in the system. This is one of two places where this information

gets updated, the other being inside the IDLE ID DEQ operation where an idle

thread is chosen to execute on a particular processor because there are no threads

in the ready-to-run state. The other change to the DEQUEUE operation occurs

when the ready-to-run queue is empty. When this happens, the next thread is

invalidated. Previously the idle thread was set up as the next thread to run,

however due to the nature of SMP systems and how idle threads are handled, this

was changed because again if an idle thread is placed into the next thread register

it is possible that the wrong processor could attempt to dequeue and execute the

idle thread which was set up for the other processor.

SET SCHED PARAM begins as the previous two operations, by acquiring

the processor id from the bus. The PIN is used to help determine whether or

not this is a valid operation for the requested thread. This is an artifact of the

previous design. The second major change to this set of states within the finite

state machine of the scheduler is to skip the preemption check if the thread is

not on the ready-to-run queue. This is important because a thread could have its

priority elevated above a currently executing thread, however this thread that is
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being updated might not be in the ready-to-run state. Therefore this would cause

a processor to respond to an interrupt and attempt to execute a thread that is

not on the ready-to-run queue. Conversely, if the thread being modified is on the

ready-to-run queue then the check preempt function is called to determine if a

processor should be preempted in light of the updated scheduling parameters for

this particular thread. This operation and the ENQUEUE operation are the only

places in the hardware scheduler where preemption can occur.

Because idle threads are handled differently in the SMP hthreads system, there

must now be a way to ’dequeue’ idle threads when a better thread is not available

to execute. To accomplish this the IDLE REQUEST ID state was added to the

state machine. This is a request from the thread manager when either a YIELD

or DEQUEUE system call has been requested. The thread manager checks to see

if the ready-to-run queue is empty, and if so it instead requests the idle thread

for the requesting PIN. This functionality allows each processor to have its own

unique idle thread to execute.

SYSCALL LOCK is the most critical addition to the hardware scheduler with

regards to system stability. However, because the scope of this call encompasses all

system calls from start to completion, it is also a hindrance to system performance

because of the large restriction it places on the amount of concurrency in the

system. This call uses bit 13 of the address to encode the type of operation into

the request. If bit 13 is set high, then the request is to acquire the lock. If it is

set low then the request is to release the lock. This lock is processor specific and

works by locking the bus if the lock is not already taken. However, if the lock has

already been acquired then it is not granted. The lock is also not released unless

the requesting processor owns the lock. This prevents the competing processor
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from releasing the lock held by the other processor. System concurrency issues

will be discussed in greater detail shortly.

MALLOC LOCK is also critical for system stability in SMP systems. This is

because malloc is not thread-safe by default. The libc implementation of malloc

calls two functions to lock around critical regions of software - malloc lock and

malloc unlock. However, by default these calls do nothing unless the system

designer implements these calls. This means that without modification it would

be possible for malloc to allocate the same region of memory for multiple threads.

It would also be possible for the libc function free to attempt to deallocate memory

that is still in use. This scenario only worsens when caching is enabled (because of

the lack of a snoopy cache implementation). Malloc also requires the locks to be

recursive, therefore a completely new type of lock had to be added in the hardware

scheduler, however most of the basic concepts from the SYSCALL LOCK could

be carried into the MALLOC LOCK operation. Bit 13 is still used to encode the

type of operation into the request. However this time instead of locking on the

PIN, the lock is based on the thread id. This allows the malloc call to complete

before another thread can call malloc. Also, a new signal was added to the state

machine called lock count which tracks the depth of the recursion. Only when

this signal returns to zero can the lock be released, and of course only when the

correct thread id is requesting the release. This ensures the correct functional

operation of the recursive lock required by malloc.

For the remaining operations (SET PREEMPTION, GET IDLE THREAD

and SET IDLE THREAD) the only modification made was to retrieve the PIN

from the bus to perform processor specific operations. For instance, when set-

ting the idle thread it is now required to know which processor is requesting the
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operation.

Similar to the hardware scheduler redesign, the thread manager also required

modifications to the original design. Table 6.2 highlights the states that were

altered or added to the thread manager for this design.

Type Name Actions
BUScom Assign CPU Assigns a unique PIN to the requesting

processor
BUScom Next Thread Updates thread specific data/registers,

sends DEQUEUE request to the scheduler

Table 6.2. Command Set Additions and Modifications to the
Thread Manager Module

The first addition to the thread manager was to add the ASSIGN CPU state

which returns the PIN to the requesting processor. This is a memory mapped

read from the thread manager and returns the PIN on the two least significant

bits of the bus. The logic is simple for this state - a counter tracks which PIN

should be returned on the bus. Each time this operation is requested the counter

increments. The counter is a two-bit register which allows for a maximum of four

processors in the system. When the counter returns PIN three it overflows to

zero.

The only other state requiring modification was the NEXT THREAD state

which is used to dequeue the thread stored in the next thread register by the

scheduler. The modification to this state involves dequeueing the idle thread

from the scheduler. This state initially checks to see if the next thread is valid.

Previously if the next thread was invalid then the thread manager would wait for

the scheduler and timeout if the request took too long. This is now no longer

valid because if the next thread is invalid it could be because the ready-to-run

queue is empty. Previously the next thread valid would have been true with
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the idle thread being put into the next thread register. However, because the

design now contains multiple idle threads this solution was not feasible. Now

the NEXT THREAD state will check to see if the idle thread is setup for the

requesting processor and if so will request a pseudo dequeue of the idle thread for

that processor. This ensures correct operation of the idle threads with multiple

processors.

One final note on the hardware design involves concurrency. From operating

system theory, the three standard types of concurrency are thread, interrupt and

physical concurrency [14]. In the original design of the hthreads system, the first

two types were considered and measures were taken to ensure that concurrency

could be maximized while keeping the design functionally correct, however phys-

ical concurrency was not of critical importance because more pressing tasks were

being addressed at that point. Many safeguards that are typically used to protect

against the SMP-type issues were not included in the uniprocessor design. To

counter this, the SMP version of hthreads uses spinlocks to enforce correct oper-

ation of the system. This permits all three types of concurrency to exist in the

SMP hthreads design.

System calls were one area that was identified as a critical region in the design.

These regions of code modify critical shared data which are used to store informa-

tion about threads in the system. If both processors have access to this region of

code at the same time then race conditions can occur with the outcome of the data

being read and/or written being incorrect. To protect this region of code a shared

lock between both processors has been implemented (SYSCALL LOCK). In the

first design of the hthreads system, the user would acquire a lock by performing a

system call, however system calls are the region of code that require protection.
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This presents a substantial obstacle because now a completely new technique for

locking system calls between processors will need to be designed into the system.

Adding this functionality into the system required modifying the hardware

scheduler core to include this critical lock around system calls. This is a memory-

mapped read operation from the kernel with the type of request being encoded

into the address. Two types of requests exist around the call to lock system

calls, a request to lock the critical region of code and a request to release the

lock around the critical region of the code. The scheduler implements this func-

tionality by creating two new registers, syscall mutex and syscall mutex holder.

The call to syscall mutex is used to track whether or not the mutex is locked

and the syscall mutex holder keeps track of which processor currently owns the

lock. When a request is made to acquire the lock the scheduler checks to see if

the mutex is currently in use, and if so it returns a zero on the bus and returns

to the idle state. However, if the mutex is not in use then syscall mutex is up-

dated to a value of one and the value of the requesting processor is stored in the

syscall mutex holder. This is important because it allows the scheduler to only

release a lock if it is owned by the processor requesting the release. This safeguard

is used to ensure that only the processor which owns the lock is allowed to release

the lock. In this scenario, the scheduler will update both registers and return

the value of one on the bus to show that the release operation was successful.

Conversely, the scheduler will return a zero on the bus when a request to release

the lock has been denied. Figure 6.2 illustrates the SYSCALL LOCK scheduler

implementation.
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Figure 6.2. Illustration of the SYSCALL LOCK implemented in
the hardware scheduler

6.2 SMP Software Design

Transforming non-physically concurrent system-level software into SMP com-

patible code is challenging. Several problems exist either from hardware limi-

tations or from troubleshooting concurrency issues. The following sections will

describe the natural progression of the software as the project matured, along

with the difficulties and successes that accompanied this progress.

Due to limitations of the hardware design provided by Xilinx, cache coherency

is extremely difficult to achieve. Xilinx does not implement a snoopy cache pro-

tocol which severely limits the use of cache in SMP systems. Even worse, the

implementation of a custom snoopy cache protocol is even more difficult because

Xilinx does not extend the necessary hardware cache lines to perform this type of

an operation. Initially, the SMP hthreads design attempted to incorporate data

caching into the system. To work around this issue of incoherency the cached

section of data was limited to the first 128 MB of main memory. Conversely,

the non-cached section occupied the remaining memory. Through modifications

to the linkerscript and special gcc directives, critical system variables that are
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shared between processors were specified to be stored in the non-cached region of

memory. This does not prevent race conditions, however it does keep the data that

is shared cache coherent. The data that is being stored in this region of memory

is an array of hthread thread t struct’s. The definition of the hthread thread t

struct is shown in Figure 6.3. This data is analogous to the Task Control Block

(TCB) in linux. It is critical that this information is stored in the non-cached re-

gion of memory to eliminate erroneous errors that occur from reading the incorrect

context of the thread or using the incorrect stack to access data.

Figure 6.3. hthread data structure

After many attempts to enable data caching for limited portions of the soft-

ware, it became obvious that system stability was being compromised and that it

was hindering the overall goal of porting hthreads to an SMP architecture. Due

to this limitation, data caching was completely removed from the system. Also,

because a snoopy cache implementation is extremely difficult due to the previously

mentioned hardware issues, the data cache will stay disabled for the foreseeable

future.

System stability is critical to the success of this project. To ensure stability in

the developmental stages of this project significant portions of concurrency have

been removed from the system. To accomplish this spin locks have been inserted
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around system calls in the system-level software as shown in figure 6.4.

Figure 6.4. Entry and Exit paths for acquiring system call locks

This will ensure that only one processor has access to shared system data

at a time. The initial call to acquire the lock is immediately before the system

call and inside the non-critical exception handling code. Entry into kernel-space

occurs at these two entry points exclusively. Unlock calls are placed at the end

of the system call, immediately before running a newly created thread and when

returning from a non-critical interrupt. Exiting from kernel-space occurs at these

three exit points exclusively.

After examining the possible scenarios for acquiring and releasing the system
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call lock in more detail it can be shown that in the hthreads system where a thread

’comes out’ of a context switch depends on if the thread is a new thread or has

already been executed and blocked. If the thread is new then it is ’bootstrapped’

into execution and it is critical that the system call lock is released by this proces-

sor before the new thread begins execution. The other option for ’coming out’ of

a context switch is that the context of a previously run thread has been restored

which will then release the system call lock when returning from the system call

handler. Also, interrupts acquire and eventually will release the system call lock

inside the non-critical exception handling code. It is also important to remember

that this lock is PIN specific, therefore different threads can acquire and release

the lock as long as they both execute on the same processor.

Although this lock is extremely valuable because it stabilizes the system, it is

also a hindrance to concurrency because it locks portions of software that could

safely execute concurrently. This can be detrimental to system performance and

will require a significant amount of analysis to determine the best possible solution

for balancing performance and concurrency. Future approaches will allow a finer

level of control over concurrency and identify smaller portions of software that

need protection while still maintaining the level of stability currently achieved.

Finally, several issues involving memory allocation and deallocation have been

solved. First, in the SMP hthreads system multiple calls to malloc are necessary

to allocate memory. This is not necessary in the single processor version. This

could be related to the PLB, where the processor with the highest priority is

constantly gaining access to the bus and preventing the other processor from

successfully allocating the needed memory. Further analysis will be needed to

verify this issue and possible solutions. However, the problem of not successfully
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allocating memory is temporarily solved by continuously calling malloc until the

pointer returned in not equal to NULL. This typically only takes one additional

call to malloc and ensures that the memory is allocated properly.

Another malloc issue occurred when attempting to use data caching. When a

thread exits and the parent thread has joined on it the system attempts to free the

memory used by the exited thread by calling the libc free routine. The problem

was that the free routine was attempting to deallocate memory that was still valid

- the pointer to the region of memory to be freed was actually pointing to a valid

region of memory for another thread. This was the result of cache incoherency

and the fact that malloc is not thread-safe by default.

Making malloc thread-safe was briefly described in section 6.1 with a more

detailed explanation to follow. In order to have a thread-safe implementation

of malloc, it is imperative that the system design implements the stub function

calls to malloc lock() and malloc unlock(). These are required by the libc

implementation of malloc [15] to ensure that race conditions do not occur when

attempting to allocate and deallocate memory. Furthermore, the locks which

are used inside malloc lock() and malloc unlock() must be recursive locks [15]

to ensure proper operation. The implementation of this lock is in the hardware

scheduler state machine and is an atomic operation because the bus is locked until

the scheduler returns the result of the request on the bus.
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Chapter 7

Implementation Results

Synthesis of the SMP hardware scheduler module targeting a Xilinx [29] Virtex-

II Pro 30 (speed grade -7) FPGA yields the following resource statistics: 1,553 out

of 13,696 slices, 1104 out of 27,392 slice flip-flops, 2,860 out of 27,392 4-input LUTs,

and 3 out of 136 BRAMs. The module has a maximum operating frequency of

150.991 MHz, which easily meets the hthreads goal of a 100 MHz system clock fre-

quency. This version of the scheduler module retains the O(1) ready-to-run queue

structure developed in the previous version of the design, however it incorporates

functionality to support SMP scheduling of software threads while maintaining

the backward compatibility to execute hardware threads concurrently.

Results of the SMP thread manager synthesis using the same setup as before

reveals the following FPGA resource statistics: 700 out of 13,696 slices, 594 out of

27,392 slice flip-flops, 1,317 out of 27,392 4-input LUTs, and 1 out of 136 BRAMs.

The module has a maximum operating frequency of 182.465 MHz, which again

surpasses the goal of a 100 MHz system clock frequency. This version of the thread

manager, like the hardware scheduler was developed to support SMP architectures.

Three software test cases were developed to stress the system and measure
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the capabilities of the SMP hthreads system. These tests were designed to op-

erate at both extremes of speedup. The first test performed numerous system

calls in which little performance improvement would be expected due to the lim-

ited amount of concurrency available when performing a system call. The second

test is a typical producer consumer problem in which the buffer size varies. For

the single processor system if the buffer size is small then this would equate to

nearly constant context switching between the producer and consumer threads.

However for the SMP system no context switching is required, therefore giving

a performance improvement which should be close to double the single processor

system. The final application is a computationally intensive test that was de-

veloped to test the performance under more typical circumstances. This should

reveal a more reasonable approximation for speedup that would be expected from

the SMP hthreads system.

The first software test case is simpletest.c. This program loops through a se-

ries of hthread create system calls followed immediately by hthread join system

calls. Remembering that all system calls are locked according to the processor

that is executing the system call, it is not surprising that the performance im-

provement as shown in Figure 7.1 is almost zero. This is because the program

is not computationally intensive, but instead spends the majority of its execu-

tion cycles performing system calls. This forces the SMP hthreads system into

an almost uniprocessor system once again. The output from the program verifies

this as well, showing a ’ping-pong’ effect of execution between both PowerPC’s.

This makes sense as well. The first processor will sit idle, waiting for an event.

The second processor then runs the main thread and executes an hthread create

system call. This generates an interrupt to the first processor which cannot get
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the system call lock until the second processor exits the hthread create system

call. As soon as the second processor exits this system call, the first processor

acquires the lock and switches context to the newly created thread - releasing the

lock before bootstrapping to this new thread. This frees the lock for the second

processor to run hthread join. However, inside hthread join there is nothing to

join on because the first processor is still executing the newly created thread from

the hthread create system call, and it therefore releases the lock and starts run-

ning its own idle thread. Meanwhile, the first processor finishes running the new

thread, exits and starts running the thread in the next thread register which is

the main thread (the thread with the highest priority on the ready-to-run queue).

At this point the cycle has come full circle, and the process repeats with the roles

of each processor reversed. This is what creates the ’ping-pong’ effect and lim-

its the performance of the system. There is little thread-level parallelism in this

application.

Figure 7.1. simpletest.c results

The second test is the producer/consumer problem which has the opposite

effect. This test is setup to show the best possible configuration and the cor-

responding results. A near 2x speedup executing this application in the SMP

hthreads system is illustrated in figure 7.2. This stems from the fact that the

buffer size is one, causing the uniprocessor system to context switch almost con-

stantly. This buffer size however has no effect on the SMP version because each
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thread can execute exclusively on one of the PowerPC’s, therefore eliminating

virtually all context switching. It is also interesting to note the performance re-

sults as the buffer size increases, which relieves the amount of context switching

required for the uniprocessor system. The data illustrates that as the buffer size

increases, the performance improvement of the SMP system plateaus at around

1.19x. This is because parallelism is being removed from the application and the

effect of context switching is being masked out by the increasing size of the buffer.

Figure 7.2. simple buffer.c results

Similar to simple buffer.c, dual test.c is also computationally intensive. This

application divides an array of numbers in half, allocating each half to a separate

thread. Each thread will then perform a summation operation on the data, and

the final value is the difference of the two summation results once both of the

threads have completed. One important note about this application is that the

data is not shared until the final difference operation. This frees up the overhead

of communicating between processors and should provide a greater amount of
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speedup compared to the producer/consumer test with a large buffer size. Figure

7.3 illustrates this accurately, showing a speedup of approximately 1.65x compared

to the single processor implementation for large amounts of data.

Figure 7.3. dual test.c results

It is also interesting to note that the speedup does not plateau at 2x for

this application. This is because of bus contention on the PLB between the two

PowerPC’s. Both processors are reading large amounts of data from main memory

which results in bus arbitration. When bus arbitration occurs, this restricts main

memory access to only one processor. This issue could be greatly improved by

turning on the data cache for both processors which would relieve the amount of

stress on the PLB.
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Chapter 8

Conclusion

Xilinx has stated that attempting to design an SMP system with their dual

PowerPC line of FPGA’s is not feasible [19]. However, the work of the SMP

hthreads project has shown otherwise. Not only is the project feasible, but perfor-

mance improvements are readily available for computationally intensive applica-

tions. This is ground breaking work because it allows performance improvements

from an existing resource that was previously unavailable to use. This resource,

the second PowerPC, has been sitting idle and taking up valuable space on the

FPGA. With the SMP hthreads design this previously unused resource now has a

tremendous impact on the performance of computationally intensive applications.

To achieve this success, several modifications were required to the existing

hthreads uniprocessor design. First, changes to the soft hardware cores were

necessary to account for the additional processor. This meant changes to criti-

cal states within the state machines for the hardware scheduler and the thread

manager. Issues such as acquiring processor identification numbers and how to

execute idle threads were solved. Furthermore, a new function (check preempt)

was required to make scheduling decisions for multiple processors. This function
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allows the thread(s) with the highest priorities in the system to be executing at

all times. Second, major system-level software changes were required to control

the concurrency in the system and ensure stability. This required providing locks

around system calls. To implement these locks required a combination of system-

level software and custom hardware logic. In additional to locking around system

calls, malloc also requires locking to ensure thread safety. These locks are similar

to system call locks, however they must be recursive and lock on the thread id

rather than the processor id.

Finally, three software tests were developed to show the performance of the new

SMP hthreads system. The first test, simpletest.c successively calls hthread create

and hthread join. Because this application is not computationally intensive and

instead spends most its execution time performing system calls, the performance

improvement was negligible. The next test illustrated the opposite boundary con-

dition. Using a producer/consumer model with a buffer size of one, simple buffer.c

showed a performance improvement of 1.95x. This is explained by the almost

constant context switching of the uniprocessor system between producer and con-

sumer threads, contrasted with the SMP design where each thread occupies a

PowerPC for exclusive execution. The third example, dual test.c revealed more

of a typical performance improvement for computationally intensive applications

with a speedup of 1.65x when operating on large amounts of data.

In summary, hthreads has been successfully ported to an SMP architecture.

This design takes advantage of the otherwise idle second PowerPC by making

changes to the hardware scheduler and thread manager. Furthermore, critical

software changes were also made to account for concurrency issues.
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Chapter 9

Future Work

SMP hthreads is an enormous project, and although it is now functionally cor-

rect and stable there are several improvements that if carried out would improve

the system performance substantially. First, arbitrary PIN assignment would al-

low the system to initialize using either PowerPC. Currently, sequential operation

is forced which ensures that the right PowerPC on the FPGA die always receives

PIN zero and the left PowerPC always receives PIN one. This is important be-

cause of the limitations of using one PIC (opb intc) for both PowerPC’s. To enable

arbitrary PIN assignment a hardware wrapper core would be inserted around the

PIC with two registers, one for each PowerPC. These registers would mirror the

enable register on the PIC, however these registers would be PIN specific. This

would allow both PowerPC’s to reference the same PIC, however the PIC would

contain unique registers for each processor. This allows specific interrupts to be

masked. The order of execution would require first that each processor acquires a

PIN from the thread manager followed by a request to this new hardware wrap-

per core by each processor to mask interrupts that should only be serviced by the

other processor. This functionality is not critical, however the implementation
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would be relatively simple.

The next improvement needed concerns adding concurrency back into the sys-

tem. Initially the focus was on stabilizing the system which involved removing

concurrency from the design. However, now that the design is stable, performance

could be improved by increasing the amount of concurrency. The major portion

of this improvement would come from reducing the amount of code that is locked

during a system call. Currently, the entire system is locked down when a system

call is performed. This is inefficient because much of the code does not require a

lock and therefore there exist many opportunities where both processors could be

executing in parallel and therefore improving the performance of the system. This

would have the greatest impact on applications that use system calls frequently.

Successfully adding concurrency back into the system requires an in-depth analy-

sis of the system software to determine where it is safe to remove locks and which

shared variables are critical and require locks.

Another improvement that would have a substantial effect on improving sys-

tem performance is cache coherency. This is not unique to the SMP hthreads

system, however due to hardware limitations it may not be feasible to attempt to

implement this functionality. Others have tried [5] [7] [8] [16] [17], however the

result is either unsatisfactory or would not merge well with the existing hthreads

design. Xilinx will be releasing the FX (PowerPC) version of the Virtex-5 near the

end of 2007, so it is possible that some of the hardware limitations that currently

exist would be fixed.

PLB arbitration is another issue that is affecting performance on the SMP

hthreads design. The current implementation of the PLB arbiter uses a fixed

priority scheme to allow access to the bus [28]. Even worse, if a tie exists among
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multiple PLB masters then the tie breaker also uses a fixed priority scheme [28] to

resolve the tie. This means that one PowerPC will always be granted access to the

PLB over the other PowerPC. The worst case scenario for this type of arbitration is

that the higher priority processor is constantly using the bus, virtually eliminating

the second process from the system. Similar to the cache coherency issue, this also

is a hardware limitation. Two possible solutions exist which could solve this issue.

First, use of the PLB4 citeplb4 bus provides two types of arbitration: fixed and

round-robin. Clearly using the round-robin arbitration would allow fair access to

the PLB for both PowerPC’s, however documentation on Xilinx’s implementation

of this newer bus architecture is obscure, if it exists at all. Second, Xilinx has

recently introduced the Multi-Port Memory Controller 2 (MPMC2) [21] which

allows multiple connections to external memory. Even more important however

is the arbitration scheme that is available when using the MPMC2. From the

documentation, the MPMC2 allows fixed, round-robin and custom arbitration

schemes to be used. This would clear the way for fair access to other components

in the design.

The most exciting future work involves porting the SMP hthreads design to use

the Microblaze architecture. With a Microblaze system several processors could

simultaneously execute user applications. This allows for even greater speedups

than what was shown when using both PowerPC’s. Furthermore, it allows more

stringent testing of the current design - stressing the system with congested bus

traffic and data transfers. Potentially, the design could detect the amount of free

space left on the FPGA and expand to add these processing blocks into the system

for additional processing power.

Finally, upon successful completion of the Microblaze port, work could be
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done to implement a heterogeneous processor system which uses both Microblaze

and PowerPC architectures. This would be the most difficult to implement and

could take several different paths. First, the approach could be taken to use

separate memory banks for each architecture and execute two user applications

concurrently. The second approach would be to allow threads to migrate between

different architectures. This would provide a significant increase in performance,

however the implementation would be extremely difficult to achieve.

For more information about the SMP hthreads design or the hthreads system

in general please visit the main web-site [9] and/or the developer’s web-site [10].
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