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Objectives 

Horizontal take-off and horizontal landing hypersonic vehicles are a subject of great 

interest for future space launch missions. The ramjet/scramjet engine has the potential 

to enable a new class of spacecraft, missiles, and launch vehicles. This research 

covers the six degrees-of-freedom (6-DoF) modeling and simulation of a generic 

hypersonic vehicle (GHV) including a ramjet/scramjet propulsion system and an 

aerodynamic database. Newton’s and Euler’s equations are used to develop the 

longitudinal and the lateral-directional equations of motion. Analytical methods are 

employed to find the aerodynamic and propulsion models. The optimized trajectory 

for a generic hypersonic vehicle is developed exclusively for modeling and 

simulation purposes. The key contributions of this research are: 

1. This model is the first complete and comprehensive 6-DoF simulation of an 

airbreathing hypersonic vehicle in the open literature.   This model uses both 

traditional lookup tables as well as a unique approach using nonlinear analytical 

expressions. The developed simulation framework includes: 

A. The aerodynamic model is developed using wind tunnel experimental 

investigations and the best available CFD results from high fidelity 

and engineering level codes (STARS and APAS) uniquely integrated 

and verified.  This technique in developing the aerodynamic model is 

used efficiently in a multidisciplinary manner to improve the CFD 

results for the generic hypersonic vehicle. 

B. The integrated aero-propulsion system model is the first analytical 

model for a generic hypersonic vehicle published including 
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regenerative cooling effects. The mathematical model of the 

aerodynamics and the propulsion system can be implemented easily 

within a conceptual design frame. The propulsion system model is 

applicable to hypersonic missiles, manned aircraft, unmanned aerial 

vehicle systems, and access-to-space systems. 

C. The developed aerodynamic and propulsion systems for the generic 

hypersonic vehicle allow a trajectory to be optimized for the vehicle. 

The optimized trajectory for the generic hypersonic vehicle is uniquely 

designed including both thrust and aerodynamic forces rather than the 

simple point mass model usually seen in the open literature. 

2. The linearized model of the generic hypersonic vehicle includes all pertinent 

lateral-directional states. This is the exception for published hypersonic vehicle 

models in the open literature. The combined longitudinal and lateral-directional 

models of the generic hypersonic vehicle can be used for control and navigation 

research. 

3. The developed generic hypersonic vehicle model contains aerodynamic, 

propulsion, atmospheric, and mathematical modules. The modular structure of 

the simulation makes it easy to change any module efficiently according to the 

design criteria.  
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Chapter 1: Introduction and Technical Background 

1.0. Introduction 

Horizontal take-off and horizontal landing hypersonic vehicles are a subject of great 

interest for future space launch missions. The ramjet/scramjet engine has the potential 

to enable a new class of spacecraft, missiles, and launch vehicles. This dissertation 

covers the six degrees-of-freedom (6-DoF) modeling and simulation of a generic 

hypersonic vehicle (GHV) including a ramjet/scramjet propulsion system and an 

aerodynamic database. 

1.1. Early Research on Ramjet Powered Vehicles and their Engines 

The story of the ramjet begins with theoretical studies by Rene Lorin in France in the 

years prior to World War I. Fellow Frenchman Rene Leduc actively pursued ramjet 

development during the 1930s and designed a pioneering ramjet-powered aircraft, the 

Leduc 0.10, the intervention of World War II prevented it from flying until 1949. 

Meanwhile, a group of former Soviet Union engineers and scientists pushed ramjet 

research further than advocates in other nations in the years prior to World War II. In 

the early 1930s, Yuri A. Pobedonostsev and his team bench-tested a small ramjet engine 

for a couple of minutes. Pobedonostsev realized that the ramjet advantages are only 

relevant at supersonic speeds. He decided to build test ramjets from hollowed-out 76 

mm shells, firing them from artillery field pieces. This advanced idea was originally 

developed by British researchers in 1926. The Pobedonostsev team modified the shells 

by removing the nose caps in favor of aerodynamic inlets.  They also used solid fuel 

(white phosphorus) instead of a bursting charge. To prevent the powder charge of the 
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cannon from destroying the ramjet as it was fired, Pobedonostsev replaced the 

baseplate of the shell with a nozzle throat, and a sabot was inserted into the nozzle to 

support the structure. From 1933 to 1935 the Pobedonostsev team tested a series of 

cannon-launched ramjets, achieving speeds up to Mach 2. The muzzle velocity of the 

projectile was approximately Mach 1.72, so this early ramjet boosted the projectile’s 

speed by approximately Mach 0.28 or 16%. Although Pobedonostsev was challenged 

by numerous problems, his tests encouraged Soviet ramjet enthusiasts to build small 

two-stage rocket-boosted ramjets using solid fuel.  A research team led by Igor A. 

Merkulov launched several of these two-stage ramjets in 1939. After successful testing of the 

two-stage rocket-boosted ramjet up to 6,000 ft above sea level,  Merkulov and Aleksei 

Shcherbakov decided to test  ramjets on aircraft to evaluate their potential as combat boosters; 

for example, to enable obsolete fighters to engage higher-performance opponents.  

 

 

Figure 1: Polikarpow I-153 
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For the first time, in 1940, test pilot Petr Loginov flew a modified Polikarpov 1-152 

biplane fighter powered by two auxiliary liquid-fuel ramjets:  this was the first flight 

by a ramjet-powered aircraft in aviation history. Later on, the Soviets conducted fur-

ther tests on modified 1-153 and Yak-7 fighters. The rapid development of Soviet gas 

turbines applying German and British technologies for such auxiliary propulsion in 

the late 1940s. W. Trommsdorff directed German research on ramjet engines before and 

during World War II. In Nazi Germany another version of the ramjet artillery shell 

concept was tested and eventually modified Dornier Do 17Z and Do 217E-2 bombers 

carried out experimental flight of ramjets. 

 

 

Figure 2: Do-217E 

By the end of the war, German designers Alexander Lippisch and Eugen Sanger were able 

to demonstrate that artillery shells were fired at Mach 2.9 muzzle velocities, 

accelerating using ramjet propulsion to speeds of Mach 4.2. The Nazi achievement 

with ramjet artillery contrasts sharply with the Soviet failure. Their success was in 

part due to the greater care taken by the Germans to understand inlet and combustion 

processes and the behavior of a variety of solid and liquid fuels. 
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Figure 3: German Ramjet Rig, 1942-43 

In the United States, engineer Roy Marquardt pioneered ramjet development during 

World War II, working under a Navy grant with the University of Southern 

California. The Army Air Force tested some of his engines on modified aircraft in 

1945. Two M.I.T. designed 20 in. diameter ramjets mounted on the wingtips of a 

modified North American P-51D Mustang boosted the fighter's speed by 40 mph 

during trials in 1945 at Wright Field.  

 

Figure 4: North American P-51D Mustang 
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Early in 1952, Hiller proposed that the Navy authorize the construction of an 

evaluation quantity of ramjet powered helicopters. The Hiller HOE (Hornet) was a 

helicopter powered by ramjets located on the tips of the rotor, and it was produced 

around 1954. The design was a failure; the vehicle had very poor fuel economy, a low 

top speed, poor range, and was very noisy. It did have a relatively high lifting 

capacity. The Army and Navy flew a small number of these aircraft for a short time to 

test and evaluate the technology. 

 

Figure 5: Hiller HOE 

In 1959, a French experimental aircraft called the canard delta Nord 1500 Griffon 

reached Mach 2.19 (1448 mph) under the combined power of a turbojet and ramjet, 

with the ramjet contributing approximately 80% of the total thrust of the propulsion 

system.  
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Figure 6: Nord 1500 Griffon 

The United States Air Force supported Nord research via trans-Atlantic research 

contracts. These projects were the exceptions; the success of the turbojet 

overshadowed that of the temperamental and fuel-hungry ramjet. There were some 

areas where the ramjet excelled, involving primarily the field of missile development. 

In 1949 and 1950, the NACA tested the more advanced ethylene-fueled F23 ramjet , 

which reached Mach 3.12 at an altitude of 67,200 feet. NACA also started air-

launched ramjet trials, launching them from modified North American F-82 Twin 

Mustang and McDonnell F2H-2 Banshee fighters. One such test vehicle had a 

Thiokol T55 solid-fuel rocket booster contained within the ramjet that expelled 

through the nozzle as the ramjet fired up.   

 

Figure 7: McDonnell F2H-2 Banshee Fighter 
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Figure 8: Pentaborane-Fueled Ramjet 

This ramjet, designed by the Lewis laboratory, burned pentaborane fuel. In 1956, it 

demonstrated satisfactory operation using pentaborane up to Mach 3.02 following air-

launch from an F2H-2 at 42,000 feet. 

1. 2. Ramjet-Scramjet Engines 

The National AeroSpace Plane (NASP) program originated in the early 1980s with 

the intention of designing a jet aircraft that could fly fast enough to attain orbital 

velocity. A large part of the research and development (R&D) community, NASA, 

the Air Force, and the Navy supported the program as it promised to produce a 

research aircraft and advance the hypersonic technology base that would address 

questions about hypersonic flight. The program advanced hypersonic technology 

across several disciplines, including the creation and application of Computational 

Fluid Dynamics codes for predicting airflows and combustion results; production of 

advanced materials; practical and theoretical work in scramjet engine flowpath 

performance and the use and storage of hydrogen-based fuels.  
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Figure 9: X-43-A 

* References [1], [2], and [3] are the main references for this Chapter. 

NASA made aviation history with the first successful flight of a scramjet-powered 

airplane, the X-43A, at hypersonic speeds, speeds greater than Mach 5 or five times 

the speed of sound. At Mach 7 the X-43A research vehicle was traveling at nearly 

5,000 mph during the March 2004 flight. Later, in 2005, the world recognized 

NASA's X-43A scramjet with a new world speed record for a jet-powered aircraft, 

Mach 9.6, or nearly 7,000 mph. 

1. 3. Hypersonic Models 

Although NASA and the U.S. Air Force have a long history of hypersonic research 

there are not many hypersonic vehicle models in the open literature. The first 

dynamic analytical aeropropulsive/aeroelastic hypersonic vehicle model in the open 

literature was developed and published by Dr. Frank Chavez and Dr. David Schmidt 

[4]. In this model, a two-dimensional hypersonic aerodynamic analysis utilizing 

Newtonian theory, coupled with a one-dimensional aerodynamics/thermodynamics 

analysis of the flow within a SCRAM jet type propulsion system was used. In 2005, 



  9

another nonlinear model for the longitudinal dynamics (3-DoF) of a hypersonic air-

breathing vehicle was developed by Air Force Research Laboratory researchers. This 

model was derived from first principles, and captures a number of complex 

interactions between the propulsion system, aerodynamics, and structural dynamics 

[5].  Two additional effects were considered in this dynamic model that were not 

considered in the references mentioned previously. The first effect considered was the 

on-design and off-design propulsion system performance resulting from an oscillating 

bow shock and the second effect they considered the presence of coupling between 

the rigid-body accelerations and flexible body dynamics. Both models were 

developed using pure analytical methods and did not included the wind tunnel 

experimental investigations or the results from CFD code analysis. This research 

covers the development and mathematical implementation of a 6-DoF model and 

simulation of a Generic Hypersonic vehicle using analytical methods, experimental 

wind tunnel investigations, and CFD modeling.  
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Chapter 2: Simulation of Hypersonic Aerospace Vehicles 

 

2.1. Mathematical Concepts in Modeling  

Tensor Elements 

Tensors provide a natural and concise mathematical framework for formulating and 

solving problems in areas of physics such as flight dynamics, elasticity, fluid 

mechanics, and general relativity. Applying Newtonian mechanics is an adequate way 

to describe the dynamic of systems. For simplification, in flight dynamics, the 

Euclidean metric to finite differences Δ , or the Cartesian metric, is: 

2 2 2 2
1 2 3S x x xΔ = Δ + Δ + Δ  

The elements of ixΔ  are reciprocally orthogonal. Using the Pythagorean Theorem SΔ  

can be calculated. 

Coordinate System 

Coordinates are ordered algebraic numbers called triples or n-tuples. Coordinate 

systems are abstract entries that establish the one-to-one correspondence between the 

elements of the Euclidean three-space and the coordinate [6]. Generally, a coordinate 

system is a system for assigning a tuple of numbers to each point in an n-dimensional 

space. Coordinate transformation means relabeling each element in the Euclidean 

space with new coordinates according to a certain mathematical algorithm.  

Cartesian Tensors 

A first-order tensor (vector) X is a combination of ordered triples, any two of which 

satisfy the transformation law as follows: 
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[ ] [ ] [ ]ABAB XTX =    (2-1) 

] A   and ] B  are any allowable coordinate system. 

A second-order tensor is a combination of ordered 9-tuples, any two of which satisfy 

the transformation law as follows: 

[ ] [ ] [ ] [ ]BAABAB TXTX =   (2-2) 

where ] A   and  ] B are any allowable coordinate system. 

This approach is useful in two ways:  

From a mathematical point of view - because tensors are the total of all ordered n-

tuples and are defined in all coordinate systems. Consequently, they are not tied to 

any particular system. 

1. From a physical point of view, tensors describe properties of relating to the 

essential nature of geometrical or physical objects, i.e. objects that do not 

depend on the form of presentation (coordinate system). 

There are four important rules followed by Cartesian tensors: 

Rule 1: Subscript reversal of displacement vectors (tensors) changes their sign. 

AB BAS S= −  

Rule 2: Vectors addition of displacement vectors must be consistent with subscript 

contraction. 

             
Contraction

BC B A A C←⎯⎯ +    (2-3) 

Rule 3: Coordinate systems have no origins. 

Rule 4: The displacement vectors can be transformed from one coordinate system to 

another coordinate system like a first-order tensor [6].  
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[ ] [ ] [ ]B BA A
AB BAS T S=    (2-4) 

Coordinates and Frames  

Coordinates systems are abstract entities that establish the one to one correspondence 

between the elements of the Euclidean three space and the coordinates. 

2.2. Frames 

A frame is a bounded continuous set of points over the Euclidean three-space with 

invariant distances and which processes, as a subset, at least three nonlinear points. 

Reference Frames 

A frame of reference is a particular perspective from which motions are observed. 

Without reference points and frames, the positions and motions of air vehicles are 

ambiguous. 

Geocentric-Inertial Frame 

The most useful inertial frame is collocated with the center of the Earth; the location 

of the frame is given by the displacement vector SIH of the center of the Earth I with 

respect to the center of the sun H. Its orientation is described by the base 

vector 1 2 3i , i  & i . The positive X axis points toward the mean vernal equinox, the 

positive Z points along the mean rotation axis of the Earth, and the Y positive 

direction can be found by applying the right-hand rule. 

Earth Frame 

The base point is at the Earth’s center, and the triad consists of the base 

vectors 1 2 3ˆ ˆ ˆe , e  and e . One meridian of the Earth assumes a particular significance. It is 

the prime meridian that traces through the Royal Observatory at Greenwich, located 
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in a suburb of London. Its intersection with the equator establishes the penetration 

point of the first vector 1ê .  The base vector 3 2 ˆ ˆe , and e completes the right-hand rule. 

Body Frame 

Although this system is usually not used as a reference, it is nevertheless important 

for modeling the location and orientation of vehicles under study. Its base point B is 

coincident with the center of mass (C.M.) as a function of time. The b1 base vector is 

out of the nose, b2 is out of the right wing, and b3 is the principal axis defined by right 

hand rule to be positive in the down direction. 

2.3. Coordinate Transformation Matrix 

General Transformation Matrix 

A first-order tensor [ ]x , and any two allowable coordinate systems] A and ] B with the 

transformation [ ]BAT is introduced using the definition of the first-order tensor 

equation (2-1): 

[ ] [ ] [ ]ABAB xTx =  

 

 

 

 

 

 

Figure 10: The x Vector (triad) in the ]A Coordinate System 

The decomposition of x in the ] A coordinate system is as follows [6]: 

x
a2

a1

a3
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1 1 2 2 3 3= + +A A Ax x a x a x a   (2-5a) 

Now if x is expressed in ] B coordinates: 

[ ] [ ] [ ]1 1 2 2 3 3= + +B B BA A Ax x a a x a   (2-5b) 

The equation can be written in linear algebra matrix form as follows: 

 

[ ] [ ] [ ] [ ]
1

1 2 3 2

3

⎡ ⎤
⎢ ⎥⎡ ⎤= ×⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

A

B B B B A

A

x
x a a a x

x
  (2-6) 

Comparing equation (2-6) with the first-order tensor transformation, the 

representation of the transformation matrix becomes: 

[ ] [ ] [ ] [ ]1 2 3
⎡ ⎤= ⎣ ⎦

BA B B BT a a a    (2-7) 

The x vector in the ]B coordinate system is decomposed as: 

1 1 2 2 3 3= + +B B Bx x b x b x b   (2-8) 

The coordinate x in the] A system is: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 1 2 2 3 3 1 2 3
⎡ ⎤= + + = ⎣ ⎦

A A A A A A A BB B Bx x b x b x b b b b x   (2-9) 

Solving for [ ]Bx  and comparing it with the first-order tensor transformation yields 

another representation of [ ]BAT which is: 

 

[ ]

1

2

3

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥
⎡ ⎤= ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎣ ⎦

A

ABA

A

b

T b

b

    (2-10) 
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The representation of [ ]BAT may be summarized as: 

[ ]
11 12 13

21 22 23

31 32 33

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

BA
t t t

T t t t
t t t

   (2-11) 

 

Direction Cosine Transformation Matrix 

The interpretation of each [ ]B
ia  i=1, 2, and 3 in equation (2-5) is: 

    [ ]
B

1i
B B

i 2i
B

i2

a
a a i 1, 2, 3

a

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

           (2-12) 

With this definition of [ ]B
ia , the transformation matrix [ ]BAT  becomes a 3x3 matrix 

as: 

 

[ ]
11 12 13

21 22 23

31 32 33

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B B B

BA B B B

B B B

a a a
T a a a

a a a
      (2-13) 

 

To calculate each element as the cosine of the angle between two base vectors bi and 

ai  the scalar product (dot product) is applied and expressed in the ]B coordinate 

system as: 

[ ]1 1 1 2 3 1

1
cos ( , ) 0 1, 2, 3

0

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤∠ = = = =⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

B B B B B B
k k k k k ka b a b a a a a k  (2-14) 

The general form is: 

cos ( , ) ; 1, 2, 3 1, 2, 3∠ = = = =B
k i ik ika b a t i k  (2-15) 
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Kinematics of Changing Times 

The time derivatives of the vector “s” transformed from the A to the B coordinate 

system is [6]: 

A B

d s d s s
d t d t

ω
⎤ ⎤

= + ×⎥ ⎥
⎦ ⎦

   (2-16) 

 

where ω  is the angular velocity between the B and the A coordinate systems. 

Applying equation (2-1) through (2-16) follows: 

[ ] [ ] [ ]A AB Bs T s= ×    (2-17) 

 

Taking the time derivative from (2-17) gives: 

 

[ ] [ ]
A AB B

B ABds dT dss T
dt dt dt

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
      (2-18-a) 

then factoring out [ ]ABT yields: 

[ ] [ ]
A AB B

ABAB Bds dT dsT T s
dt dt dt

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= × × +⎜ ⎟⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
    (2-18-b) 

ABAB 1where T T−⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦   

[ ]
BAAB 1

AB BAdT dTAlso, T T so,
dt dt

−⎡ ⎤⎡ ⎤ ⎛ ⎞⎡ ⎤ × = × ⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
 

[ ] [ ] [ ]
BAA 1 B

AB BA Bds dT dsT T s
dt dt dt

−⎛ ⎞⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎡ ⎤⎜ ⎟= × × +⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠
    (2-19) 
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The angular velocity vector ω corresponds to: 

[ ]
BA1

BA dTT
dt

ω
−⎡ ⎤⎛ ⎞= × ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
       (2-20) 

2.4. Coordinate Systems and their Transformations 

Earth Coordinate System 

The transformation matrix [T] EI from the Earth coordinate frame to the inertial 

coordinate is obtained by inspection: 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

θθ
θθ

EIT    (2-21) 

 

The angle between 1E and 1 is called the hour angle θ , and establishes the Greenwich 

meridian relative to the vernal equinox. 

Geographic Coordinate System  

At a specific point on the surface of the Earth, with its longitude ι and latitude λ, the 

geographic coordinate system ]G  is defined as: 

 

[ ]
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

GE
sin cos sin sin cos

T sin cos 0
cos cos cos sin sin

λ ι λ ι λ
ι ι

λ ι λ ι λ

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 (2-22) 
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Body Coordinate System 

The body coordinate system is a preferred coordinate system since it is aligned with 

the body. The transformation from the body coordinate frame to the geometric 

coordinate can be achieved by completing three transformations using the Euler 

angles: Yaw, Pitch, and Roll, or ψ, θ, and ϕ . 

 

[ ] [ ] [ ] [ ]XGYXBYBG TTTT )()()( ψθφ=   (2-23) 

These three transformations lead us to the body axes through Euler’s angles. 

[ ]BG
cos cos sin cos sin

T cos sin sin sin cos sin sin sin cos cos cos sin (2 24)
cos sin cos sin sin sin sin cos cos sin cos cos

ψ θ ψ θ θ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ
ψ θ φ ψ φ ψ θ φ ψ φ θ φ

−⎡ ⎤
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 

 

2.5. The Six Degrees of Freedom (DoF) Equations of Motion 

In this research the flat Earth approximation is used. In many studies, the elliptical 

Earth assumption is used to simulate the equations of motion for missiles and 

hypersonic vehicles. 

Vector Small Rotation 

Consider the vector b rotation from its initial position b(t0) to its current position 

through the rotation tensor R given by: 

0( ) ( )= ×b t R b t  

Applying vector algebra, the difference between the initial position b(t0) and the 

current position of the vector b(t) is shown in Figure 11. 
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  Figure 11: Vector Analysis 

 
0b(t)= b(t )- b(t)ε    (2-25) 

Also, from the rotation tensor definition: 

0b(t)= Rb(t )     (2-26-a) 

Substitution of equation 2-23 into equation 2-24 yields: 

( )0b= b(t ) R-Eε   (2-26-b) 

where E is the identity matrix. 

Now the perturbation tensor of rotation can be defined as: 

( )R= R-Eε     (2-27) 

( )0b= Rb tε ε     (2-28) 

The replacement of the vector b in time t, εb, is the result of the multiplication of a 

tensor εR with the initial vector. 

The time derivative of the perturbation tensor of rotation εR is related to the angular 

velocity tensor: 

( ) ( )BA BA BAd R
 = D R R

dt
ε

Ω = ×    (2-29) 

Since the tensor εR is skew symmetric then so is ΩBA. 

0
0

0

BA BA

p r q
 = q skew symmetric matrix r p

r q p
ω

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⇔ Ω = −⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (2-30) 

b(t0) 
b(t) 

εb(t) 



  20

The Flat-Earth Equations of Motion 

The transitional equations for a flight vehicle are subject to the aerodynamics and 

proportional force Fa,p  and the gravitational force mg. These are simulated next. 

Newton’s 2nd law with respect to the inertial frame “I” states that the time rate of 

change of linear momentum equals the externally applied forces. These consist of the 

aerodynamics and proportional force Fa,p  and the gravitational force mg. This is 

shown as: 

I I
B a,pmD v f mg= +         (2-31) 

I
Bv is the velocity of the center of mass with respect to the inertial reference frame I. 

The flat Earth assumption lets us take the Earth frame ’E’ as an inertial frame. 

Equation 2-29 becomes: 

E E
B a ,p

E E B E BE E
B B B

B E BE E
B B a ,p

mD v f mg

mD v m D v v

m D v v f mg

= +

⎡ ⎤= + Ω⎣ ⎦

⎡ ⎤+ Ω = +⎣ ⎦

      (2-32) 

ΩBE is the angular velocity between the coordinate system ]A, ]B. To generate the 

ordinary time derivative, all terms should be expressed in the coordinate system ] B. 

[ ] [ ] [ ] [ ]BB
pa

BE
B

BBE
V
B gmfvm

dt
vdm +=Ω+⎥

⎦

⎤
⎢
⎣

⎡
,   (2-33) 

The gravitational acceleration [ ] Bg is modeled in a level coordinate system as: 

[ ] [ ]gg
L

00= .  
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To transform the ] B coordinate system into the ] L coordinate system, just apply 

equation (2-1). The transitional equations in matrix form become: 

[ ] [ ] [ ] [ ] [ ]LBLB
pa

BE
B

BBE
V
B gTmfvm

dt
vdm +=Ω+⎥

⎦

⎤
⎢
⎣

⎡
,  (2-34) 

Written in the coordinate form: 

             [ ]
, 1

, 2

, 3

0 0
0 0

0

⎧ ⎫⎡ ⎤
⎪ ⎪ ⎡ ⎤−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎪ ⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ + − = +⎨ ⎬ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎪ ⎪ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

B
BB B L

a p
BL

a p

a p

du
dt r q u f

dvm r p v f Tdt
q p w f mgdw dt

 (2-35) 

 If the matrix multiplications are further developed the transitional differential 

equations become: 

                                              

, 1
13

, 2
23

, 3
33

= − + +

= − + +

= − + +

a p

a p

a p

fdu rv qw t g
dt m

fdv pw ru t g
dt m

fdw qu pv t g
dt m

   (2-36) 

Euler’s law states that the time rate of change of angular momentum equals the 

externally applied moments, and it governs the rotational degrees of freedom. E is 

picked as an inertial frame. 

     B
BEB

B
E MID =ω      (2-37) 

To transfer the rotational derivative into the body frame: 

 B
BEB

B
BEBEB

B
B MIID =Ω+ ωω   (2-38) 

Expanding the angular momentum vector: 

  ( ) = +ω ω ωB B BE B B BE BE B b
B B bD I I D D I     
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The term B
B

BID is zero because we assumed the airplane as a rigid body. 

 BEBB
B

BEB
B

B DIID ωω =)(    (2-39) 

Then equation (2-38) changes to  

 B
BEB

B
BEBEBB

B MIDI =Ω+ ωω    (2-40) 

As a coordinate system, body coordinate is chosen because it expresses the moment 

of inertia tensor in a constant form [6]. 

[ ] [ ] [ ] [ ] [ ]B
B

BBEBB
B

Bbe
BBE

BB
B MI

dt
dwI =Ω+⎥

⎦

⎤
⎢
⎣

⎡
ω  

( ) [ ]( )1

  
−⎡ ⎤

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − Ω +⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎣ ⎦

BBE B B B B BB be B BE
B B B

dw I I M
dt

ω      (2-41) 

Figure 12 shows the modeling and simulation flow chart. Now the developed 

equations of motion can be used for modeling and simulation purposes. As shown in 

equations (2-34) and (2-41), the simulation of the GHV cannot be done successfully 

unless the aerodynamic and the propulsion analytical models are developed prior to 

the simulation process. 
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Figure 12: Simulation and Modeling Procedure 

The following chapters discuss the aerodynamic and propulsion models of the GHV.  
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[ ] [ ] [ ] [ ] [ ]LBLB
pa

BE
B

BBE
E
B gTmfvm

dt
vdm +=Ω+⎥⎦

⎤
⎢⎣
⎡

,
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[ ] [ ] [ ] [ ] [ ]LBLB
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B
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E
B gTmfvm
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⎤
⎢⎣
⎡
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Chapter 3: Aerodynamics 

3.0. Introduction 

As discussed in chapter two, the aerodynamic forces and moments are required for 

the six degrees of freedom simulation and modeling effort (see equations (2-34), (2-

41)). An overview of the aerodynamic characteristics, along with the process for 

developing the aerodynamic model using the wind tunnel and the CFD-based results 

for the Generic Hypersonic Vehicle (GHV), known as the “Winged-Cone,” is 

presented in this chapter [7].  The experimental investigations of the aerodynamic 

characteristics for the body of the GHV are used as the core of the simulation model.  

The gaps in the wind tunnel data are filled using the best available CFD results. The 

aerodynamic characteristics of the vehicle are developed using CFD studies 

conducted at NASA Langley, Rockwell International [8], and California State 

University, Los Angeles [9]. These are blended with the wind tunnel results for a 

similar configuration tested at NASA Langley [8]. For guidance, control, and 

navigation purposes, analytical expressions for the aerodynamic forces and moments 

acting on the GHV are developed.  The aerodynamic database covers the range of 

flight Mach numbers, angles of attack, sideslip angles, and control surface 

deflections.  The aerodynamic model is then used for the simulation of the GHV. 

3.1. Vehicle Description 

The GHV mass model is based on the assumption of a rigid vehicle structure.  

However, the equations of motion used in the simulation account for the time varying 

center of mass, the center of gravity, and the moments of inertia.  The total mass of 
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the vehicle, its c.g. location, and the products of inertia vary as fuel is consumed.  It is 

assumed that the c.g. moves only along the body x-axis as the fuel is consumed.  Fuel 

slosh is not considered, and the products of inertia are assumed to be negligible.  A 

sizing analysis of the generic hypersonic vehicle yielded a full-scale gross weight of 

300,000 lbs and an overall fuselage length of 200 ft.  The top view and side view 

drawing of the vehicle is given in Figure 13.  The geometric characteristics of the 

vehicle are given in Table 1.  Deflections of the elevons are measured with respect to 

the hinge line (perpendicular to the fuselage centerline).  A fuselage-centerline-

mounted vertical tail has a full span rudder with its hinge line at 25 percent chord 

from the trailing edge.  Deflections of the rudder are measured with respect to its 

hinge line.  Positive deflections are with the trailing edge left.  The small canards (65 

A series airfoil) are deployed at subsonic speeds for improved longitudinal stability 

and control.  

 

Figure 13: Three View of Generic Hypersonic Vehicle 
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Figure 14: 3-D CAD Model of the GHV 

 
Table 1: Geometric Characteristics of the Generic Hypersonic Vehicle 

Wing 

Reference area ft2 3603.00 

Aspect ratio   1.00 

Span ft 60.00 

Leading edge sweep angle deg. 75.97 

Trailing edge sweep angle deg. 0.00 

Mean aerodynamic chord ft 80.00 

Airfoil section - diamond 

Airfoil thickness to chord ratio % 4.00 

Induced angle deg. 0.00 

Dihedral  deg. 0.00 
Wing flap (elevon) 

Area each ft2 92.30 

Chord (constant) ft 7.22 

Inboard section span location ft 15 

Outboard section span location ft 27.78 

Vertical tail, body centerline 

Exposed area ft2 645.70 

Theoretical area ft2 1248.80 

Span   32.48 

Leading edge sweep angle deg. 70.00 

Trailing edge sweep angle deg. 38.13 

Airfoil section - diamond 

Airfoil thickness to chord ratio % 4.00 
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Rudder 

Area ft2 161.40 

Span ft 22.80 

Chord of vertical tail chord ratio, percent % 25.00 

Canard 

Exposed area ft2 154.30 

Theoretical area ft2 5.48 

Span ft 33.60 

Leading edge sweep angle deg. 16.00 

Trailing edge sweep angle deg. 0.00 

Airfoil section - NACA 65 A 006 

Induced angle deg. 0.00 

Dihedral  deg. 0.00 

Axisymmetric fuselage 

Theoretical length ft 200.00 

Cone half angle deg. 5.00 

Cylinder radius (maximum) ft 12.87 

Cylinder length ft 12.88 

Boattail half angle deg. 9.00 

Boattail length ft 40.00 

Momentum reference center ft 124.01 

 

3.2. APAS 

For the simulation of the aerodynamic forces and moments, the output data from a 

subsonic/supersonic/hypersonic analysis code, Aerodynamic Preliminary Analysis 

System (APAS) [7], is used.  The APAS solution is based on the Potential Theory at 

subsonic/supersonic speeds and the Newton’s Impact Theory finite element analysis 

at hypersonic conditions. The APAS is often used in conceptual design studies due to 

its short process times and relatively good results. The APAS is actually a front end to 

two separate analysis codes, the Unified Distributed Panel (UDP) and the Hypersonic 

Arbitrary Body Program (HABP). The APAS uses the UDP to analyze subsonic and 
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supersonic runs, and the HABP to analyze hypersonic runs [7]. The APAS estimates 

the basic vehicle forces (the lift and drag and the side force sideslip) increment 

coefficient derivatives as functions of angle of attack and Mach number. The program 

estimates the aerodynamic force increment coefficients for the right and left elevons, 

and the rudder as functions of angle of attack, surface deflection, and Mach number. 

Changes in lift, drag, and side force due to body angular rates and aerodynamic 

coupling between control surface deflections and sideslip are negligible. The APAS 

estimates the basic vehicle roll and yaw moment sideslip derivatives, the pitch 

moment increment coefficient, and the roll, pitch and yaw dynamic derivatives as 

functions of angle of attack and Mach number. The roll and yaw moment increment 

coefficients for right and left elevon and rudder and the pitch increment coefficients 

for right and left elevon, and rudder are estimated as functions of angle of attack, 

surface deflections, and Mach number. These quantities are given relative to the 

moment reference center. The total moments relative to the c.g. are obtained by 

adding those caused by lift, drag, and side force to the above quantities. The APAS 

employs the Transonic Area Rule to calculate the drag coefficient in the transonic 

region. The Transonic Area Rule states that the wave drag of an aircraft is essentially 

the same as the wave drag of an equivalent body of revolution when they have a same 

cross-sectional area distribution as the aircraft [13]. This method works reasonably 

well in the transonic flight regime when Slender Body Theory is applied to the 

equivalent body of revolution. The APAS analysis can be done relatively quickly 

allowing multiple design iterations, and the results usually accurate within twenty 

percent of actual values. The APAS is good enough for conceptual designs, and the 
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speed with which they can be achieved allows designers to include aerodynamic 

calculations in multi-disciplinary design optimization loops. Using the APAS 

software, aerodynamic data is computed at Mach numbers 0.3, 0.7, 4.0, 6.0, 10.0, 

15.0, 20.0, and 24.2 and at angles of attack of -1°, 0°, 2°, 4°, 6°, 8°, 10°, and 12°.  At 

each Mach number and angle of attack combination, coefficients are generated for a 

range of deflections of the right elevon, the left elevon, and the rudder, each taken 

separately.  Deflections of the rudder of -20 °, -10°, 0°, 10°, and 20° are used for each 

surface.  At two subsonic Mach numbers, 0.3, 0.7, and eight angles of attack, -1°, 

0.0°, 2°, 4°, 6°, 8°, 10°, and 12. The increment coefficients caused by control surface 

deflections are determined as functions of the angle of attack, surface deflections, and 

the Mach number, and are added to the basic vehicle increments to form total 

aerodynamic force and moment coefficients. These results are digitized and organized 

into more than 80 lookup tables for the simulation. The lookup tables are available 

in Appendix A.   

3.3. Aerodynamic Model-STructural Analysis RountineS (STARS) 

The STARS is a finite element-based program that analyzes a reduced mathematical 

equivalent of an object. The object is broken down mathematically into several 

elements of different shapes. The STARS has linear and nonlinear analysis 

capabilities that include such disciplines as structures, heat transfer, linear 

aerodynamics, computational fluid dynamics, and controls. Each individual analysis 

module is general-purpose in nature and is effectively integrated to yield aeroelastic 

and aeroservoelastic solutions of complex engineering problems [14], [15]. Extensive 

graphic capabilities exist for convenient model development and post processing of 
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analysis results. The program is written in modular form in standard FORTRAN 

(Visual-FORTRAN) language. The core of the nonlinear analysis routine in STARS 

is a finite element CFD algorithm based on a time-marched solution to the unsteady, 

compressible Euler equations. The STARS unsteady CFD solutions provide an 

accurate physical model of the flow field for all flight regimes with the ability to 

account for nonlinear generation and unsteady movement of shock waves [15]. 

3.4. Aerodynamic Model-Wind Tunnel 

Experimental longitudinal and lateral-directional aerodynamic coefficients are 

obtained for a GHV configuration. Data is obtained at Mach numbers from 0.6 to 

20.0; Reynolds numbers (based on model length) between 6 62.5 l0  and 5.3 l0× × ; and 

angles of attack from -4 degree to 20 degree. The proposed GHV is expected to take-

off from a conventional runway, perform an atmospheric acceleration (using 

primarily airbreathing propulsion to achieve a low-Earth orbit), re-enter, and land on 

a runway. As it is expected, extensive use of computational fluid dynamics (CFD) 

codes are required for the pre-flight analyses of this class of vehicle in different 

speeds, altitudes, and flight path angles. This increased reliance on CFD codes for 

future space transportation systems does not reduce the importance of experimental 

investigations on the GHV. The primary objective of the NASA Langley wind tunnel 

experiments was to provide timely forces and moments, flow visualization, and the 

thermal mapping measurements across the Mach number range from M = 0.6 to 20.0 

for the GHV configuration [8], [10]. Other objectives were to determine what, if any, 

modifications in the test technique would be required to perform such a fast-paced 
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study and to provide early experimental data for comparison with engineering design 

codes such as HABP.  

3.5. Aerodynamic Model- Development of an Aerodynamic Database 

An overview of the aerodynamic characteristics, along with the process for 

developing an aerodynamic database for the (GHV), is presented in this section.  The 

experimental investigations of the aerodynamic characteristics for the body of GHV 

are presented in section 3.3 and are used as the core of the database.  The gaps in the 

wind tunnel data are filled using the best available CFD results. The following 

algorithm is used to merge the different sets of aerodynamic data together. The 

incremental coefficients due to Mach number variation are calculated using either 

APAS or STARS data. 

( ) ( ) ( ) ( )( )1, , , , ,−α β = α β + Δ + Δi i iC M Ci M WT Ci APAS or Ci STARS   (3-1) 

( ) ( ) ( )1, , , ,i iCi APAS Ci M Ci M −Δ = Δ α β − Δ α β      (3-2-a) 

( ) ( ) ( )1, , , ,i iCi STARS Ci M Ci M −Δ = Δ α β − Δ α β      (3-2-b) 

The database is generated and tabulated into lookup tables for different speed 

regimes. However, in the control system design and trajectory optimization process, 

lookup tables are not the most suitable.  Mathematical methods are applied to each 

lookup table to find the best analytical expression for each aerodynamic coefficient. 

Multi-variable curve fitting is a very challenging task.  Acquiring an accurate curve to 

match a set of highly nonlinear data can be a very challenging and also time 

consuming process.  Because of this, interpolation or extrapolation of the lookup table 

values is more popular method for implementing aerodynamic models.    
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3.6. Curve Fitting with Multiple Variables 

In this research aerodynamic coefficients are a function of several independent 

variables like the vehicle’s angle of attack, Mach number, sideslip angle, and 

deflection of control surfaces. Numerical optimization techniques are employed to 

find the best fit to the sets of data. The goal of the Numerical Optimization Curve 

Fitting (NOCF) program is to solve nonlinear curve-fitting equations using the Least 

Squares Algorithm. For minimization problems Trust Region Methods are employed. 

These methods generate a new class of algorithms for minimization problems. Trust 

Region Methods are powerful, reliable and most important, they have strong 

convergence properties.  

Both the given input (including the independent variables) X and the observed output 

data Y  are considered as vectors.  

The ν( X ) is a predefined function that is fitted to the input data vector X .  

A new function, F(x), is defined as follows: 

( ) 21( ) ,
2

= υ −F x x X Y        (3-3) 

Where “x” is the starting guess for the fitting process and F(x) represents the sum of 

square errors (SSE). The optimization techniques are applied to minimize the F(x).  

( ) 21min ( ) ,
2

= υ −
x

F x x X Y        (3-4) 

The algorithm is a Subspace Trust Region Method and is based on the Interior-

Reflective Newton method described by Thomas Coleman and Yuying Li [16], [17]. 

The function F(x) takes vector arguments X , Y , x and returns scalars. The goal of 

the  minimization process is to move to a point with a lower function value than F(x) 
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from the starting point “x.” In this method Function “F” is approximated with a 

simpler function “G.” This function reflects a fairly similar behavior of function “F” 

in a neighborhood around the starting point “x.” This neighborhood is called “N,” the 

trust region. A trial step (increment) “s” is computed by minimizing “G” over the 

trust region.  

i 1 is x x+= −          (3-5) 

            

          (3-6)  

Where Hf is a symmetric approximation to a Hessian matrix ( )2∇ F x , ( )≡ ∇q F x , Di 

is a scaling matrix, and Δi represents the trust region size (a scalar). 

 

 

 

       

          (3-7) 

    

 

 

 

          (3-8) 

 

In equation 3-6, “s” is an approximate solution to a quadratic subproblem (3-6). 

1min min
2

⎧ ⎫= ⋅ ⋅ + ⋅ ≤ Δ⎨ ⎬
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T T
i i i ix x
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( ) ( )
1 2
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…
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1 1 2 1
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2
2 1 2 2
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2
2
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⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥

= ∂ ∂ ∂ ∂ ∂⎢ ⎥
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⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
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Reference [16] provides a numerical scheme for the solution of equation (3-6). The 

solution of (3-6) can be found by determining 0λ ≥ such that λHf+ I is positive 

definite and  

          (3-9) 

If 0λ ≥  does not satisfy (3-9) then Hebden’s algorithm must be used [17]. 

 

Figure 15: Trust Region Algorithm 

Figure 15 shows the minimization algorithm using the Unconstrained Region 

Method. Also, reference [16] provides a numerical algorithm, GQTPAR, for trust 

Compute 
F(xi) and G(xi) 

Approximation 
solution to 

subproblem (3-6) 

Compute 
“s” 

Update Δ & D 
Update Δ & D

iρ ≤ μ  
(If    0<μ<1) 

x i+1=xi  x i+1=xi + si 

i ρ >μ 
(If    0<μ<1) 

( ) 1−+ λ ⋅ = Δhf I s

( ) ( )( )
( )

i i i
i

i

F x +s -F x
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G s
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region problems using Cholesky factorization. After calculating the step (increment) 

“s” the new problem is to minimize G(s), 

{ }min ( ) ∈
x

G s s N         (3-10) 

 
3.7. Aerodynamic Model- Analytical Procedure 

The aerodynamic modeling procedure is completed for all coefficients, and the 

analytical results are collected in a MATLAB function (aero.m). This function 

represents a complete aerodynamic model of the GHV for all speed ranges. This 

approach makes each element of the simulation a separate module. For any other 

hypersonic vehicle with different configuration, the aerodynamic module can be 

generated by applying the same MATLAB code (FITTERNEW.m) to the 

aerodynamic lookup tables. This makes the modeling and simulation routine robust 

and flexible for use analyzing different configurations with different aerodynamic 

characteristics. It is very important to keep the format of the lookup tables compatible 

with the MATLAB function (FITTERNEW.m).  

Table 2 and equation (3-11) show lookup table and nonlinear analytical expression 

developed for the lift coefficient. 

Table 2: Lift Coefficient - Category: Subsonic Speeds, Control: Elevon (δe) 
 

Angle of 
Attack (α) 

Mach 
Number δe CLδe 

-1 0.3 -20 0.06 
0 0.3 -20 0.06 
2 0.3 -20 0.07 
4 0.3 -20 0.07 
6 0.3 -20 0.08 
8 0.3 -20 0.08 

10 0.3 -20 0.09 
12 0.3 -20 0.1 
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Angle of 

Attack (α)
Mach 

Number δe CLδe 
-1 0.3 -10 0.03 
0 0.3 -10 0.03 
2 0.3 -10 0.03 
4 0.3 -10 0.04 
6 0.3 -10 0.04 
8 0.3 -10 0.04 
10 0.3 -10 0.05 
12 0.3 -10 0.05 
-1 0.3 0 0 
0 0.3 0 0 
2 0.3 0 0 
4 0.3 0 0 
6 0.3 0 0 
8 0.3 0 0 

10 0.3 0 0 
12 0.3 0 0 
0 0.3 10 -0.03 
2 0.3 10 -0.03 
4 0.3 10 -0.04 
6 0.3 10 -0.04 
8 0.3 10 -0.04 

10 0.3 10 -0.05 
12 0.3 10 -0.05 
0 0.3 20 -0.06 
2 0.3 20 -0.06 
4 0.3 20 -0.06 
6 0.3 20 -0.07 
8 0.3 20 -0.07 

10 0.3 20 -0.08 
12 0.3 20 -0.08 
0 0.7 -20 0.07 
2 0.7 -20 0.08 
4 0.7 -20 0.08 
6 0.7 -20 0.09 
8 0.7 -20 0.1 

10 0.7 -20 0.1 
12 0.7 -20 0.11 
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Angle of 
Attack (α)

Mach 
Number δe CLδe 

0 0.7 -10 0.03 
2 0.7 -10 0.04 
4 0.7 -10 0.04 
6 0.7 -10 0.04 
8 0.7 -10 0.05 

10 0.7 -10 0.05 
12 0.7 -10 0.06 

 
Angle of 

Attack (α)
Mach 

Number δe CLδe 

0 0.7 10 -0.03 
2 0.7 10 -0.03 
4 0.7 10 -0.03 
6 0.7 10 -0.04 
8 0.7 10 -0.04 

10 0.7 10 -0.04 
12 0.7 10 -0.05 
0 0.7 20 -0.07 
2 0.7 20 -0.06 
4 0.7 20 -0.06 
6 0.7 20 -0.07 
8 0.7 20 -0.07 

10 0.7 20 -0.08 
12 0.7 20 -0.08 

 

-4 3 4 3 4
LC = -5.1 10 10 1.4 10 e 1.3 10 M 8.6 10 M e− − − −× + ×α − × ×α×δ + × ×α× − × × ×δ   

(3-11) 

where α is the angle of attack, δe is the elevon deflection angle, and M is the flight 

Mach number. The same routine is applied to all lookup tables to find analytical 

expressions for each aerodynamic coefficient. Optimization of the fitting results and 

correspondent observed output data, based on the value of sum of square errors 

(SSE), reveals that the best point to break subsonic and supersonic regimes is at 

M=1.25 not M=1.0. The minimum SSE can be achieved by choosing M=1.25 instead 



  38

of M=1. The effect of the breaking point selection is more significant on lift and drag 

coefficients than other aerodynamic coefficients. The aerodynamic model with a 

breaking point at M=1.0 overestimates the lift and drag coefficients up to 100%. The 

important point in this observation is that it is not valid for high angles of attack. In 

fact, the angle of attack is very small at hypersonic flight conditions. The same 

observation is made for supersonic and hypersonic speed regimes. The best point to 

switch between supersonic and hypersonic regimes is at M=4.0, not at M=5.0. The 

aerodynamic model breaking point at M=5.0 underestimates the lift coefficients up to 

50%.  Selections of the breaking point does not have any significant effect on other 

aerodynamic coefficients. Interestingly the formation of predefined fitting function 

ν( X ) has little effect on the breaking points selection. The MATLAB function that 

represents the analytical aerodynamic model of the GHV is available in Appendix B.    

3.8. Summary 

An overview of the aerodynamic characteristics, along with the process for 

developing an aerodynamic database for the Generic Hypersonic Vehicle (GHV), is 

presented in this section.  The experimental investigation of the aerodynamic 

characteristics for the body of the GHV is used as the core of the simulation model.  

The gaps in the wind tunnel data have been filled using the best available CFD 

results.   The CFD results are compared with the equivalent wind tunnel data for 

authenticity.  The expressions for the aerodynamic forces and the aerodynamic 

coefficients acting on the GHV are developed.  The aerodynamic database covers the 

range of flight Mach numbers, angles of attack, sideslip angles, and control surface 

deflections.  The aerodynamic model is used for the simulation of the GHV. 
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Chapter 4: Propulsion System 

4.0. Introduction 

The propulsion system model is a fundamental part of the six degrees of freedom 

vehicle simulation (see equations (2-34) and (2-41)). In this chapter, the design 

procedure for the propulsion system of a generic hypersonic vehicle (GHV) is 

presented. Horizontal take-off and horizontal landing vehicles continue to be a subject 

of great interest for future space launch missions. For a hypersonic vehicle operating 

through all Mach regimes a combined-cycle propulsion system is the most promising 

concept. The propulsion model for this research is developed using a 2-D forebody, 

inlet, and nozzle code, and a 1-D isolator and burner code. The code analyzes the 

entire vehicle with forebody, inlet, and nozzle flows calculated assuming a 2-D 

perfect gas.  The burner performance characteristics are computed using a 1-D flow 

with liquid hydrogen combustion. The cycle analysis of the isolator and combustor is 

conducted using Rayleigh flow principles. The nozzle flow and dimensions are 

determined applying the method of characteristics. A X-43A type hypersonic vehicle 

(Hyper-Hawk) is designed and used as a generic vehicle for the design and simulation 

of hypersonic propulsion systems. Figures 16 and 17 show 2-D and 3-D models of the 

compression system. In the GHV model, the forebody shock impinges at the leading 

edge of the cowl and interacts with the local shock wave and generates a shock-shock 

interaction. In the design process, the deflection angles of the compression system can 

be adjusted for any research vehicle.  
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Figure 16: 2-D View of the External-Internal Compression System (Hyper-Hawk) 

 

 

Figure 17: 3-D View of the Hyper-Hawk 

 

4.1. Ramjet-Scramjet Performance Analysis 

4.1.0. Definitions and Technical Background  

The most effective way for analyzing of airbreathing hypersonic engines is to 

establish reference stations at critical axial positions along the engine flowpath.  Each 

property of the flow can be represented by a value at each reference station. Figure 18 

shows the reference stations used in the Hyper-Hawk. It is assumed that when the 

value of any two independent intensive thermodynamic properties is fixed the values 

of all other intensive thermodynamic properties are determined (the pure substance 
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assumption). The flow is compressed adiabatically from the freestream T0 to T3. This 

process is adiabatic but it is not isentropic. 

 

 

Figure 18: Reference Stations 

The flow entropy is increased because of the shock waves and other losses like skin 

friction. Between station 3 and station 4, a frictionless heat is added to a constant 

static pressure flow. An adiabatic expansion occurs in the expansion nozzle (station 4 

to station 10). The thermodynamic cycle is closed and occurs in a constant static 

pressure.  

4.1.1. Compression System Limitations   

The stagnation temperature of the inlet adiabatic flow is given by: 

2 2
t 0 0 3 3

1 1T T 1 M T 1 M
2 2

γ − γ −⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (4-1-a) 

The Burner entry Mach number can be used to find the limit on the compression 

temperature.  From equation (4-1-a), the burner entry Mach number is calculated as: 

20
3 0

3

T2 1M 1 M 1
1 T 2

⎧ ⎫γ −⎛ ⎞= + −⎨ ⎬⎜ ⎟γ − ⎝ ⎠⎩ ⎭
     (4-1-b) 

Combustion
External-Internal Compression

Internal- External  
Expansion 
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where, 2 0
1

>
γ −

 

20
0

3

T 11 M 1 0
T 2

⎧ ⎫γ −⎛ ⎞+ − =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

       (4-1-c) 

The solution of equation (4-1-c) for M0 becomes, 

2 3
0

0

T2M
1 T

⎛ ⎞
=⎜ ⎟γ −⎝ ⎠

        (4-1-d) 

3
0

0

T2if M 1
1 T

⎛ ⎞
< −⎜ ⎟γ − ⎝ ⎠

, then no solution exists for M3.   (4-1-e) 

Secondly, when 

3
0

0

T2 1M 1 1
1 T 2

⎧ ⎫γ −⎛ ⎞> + −⎨ ⎬⎜ ⎟γ − ⎝ ⎠⎩ ⎭
     (4-2) 

Then the flow entering the burner should remain supersonic or supersonic combustion 

(scramjet cycle) is inevitable.  

Another observation from equation (4-1-a) reveals that: 

2
3 0

2
0 3

M T
M T

≈          (4-3-a) 

3 0

0 3

M T
M T

≈          (4-3-b) 

this ratio is approximately a constant the following condition:  

0T 218 K≈  

( )3 max
T 1600 K≈  

3 0

0 3

M T 0.37
M T

≅ ≅         (4-4) 
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The burner Mach number is restricted by equations (4-2) and (4-4). This shows that 

the limit on the compression temperature leads directly to the burner entry Mach 

number [18].  

4.1.2. Hypersonic Shock Relations 

As shown in Figure 19, the freestream flow goes through a series of shock waves on 

the underbody of the vehicle. The underbody flow is modeled by applying shock 

wave theory.  For a thermally and calorically perfect gas, the shock wave equations 

can be written in term of γ and the normal component of the upstream Mach number 

(M1n).  

 

Figure 19: Shock Waves 

Consider the flow through a straight oblique shock wave, shown in Figures 19 and 20. 

Upstream and downstream conditions are denoted by the subscript 1 and 2, 

respectively. For a calorically perfect gas, the classical results for change across the 

shock are given as: 

( )
( )

2
1n2

2
1 1n

1 M
1 M 2

γ +ρ
=

ρ γ − +
        (4-5) 

( )
( )

2
1n2

1

2 M 1P 1
P 1

γ −
= +

γ +
        (4-6) 
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( )( )
( )

22
1n 22 2

1n22 2
1 1 1n

2 1 M 1T a 1 M 1
T a 1 M

γ − −
⎡ ⎤= = + γ +⎣ ⎦γ +

    (4-7) 

2 1 2 2

v 1 1

s s Pln
c P

−γ⎡ ⎤⎛ ⎞− ρ
⎢ ⎥= ⎜ ⎟ρ⎢ ⎥⎝ ⎠⎣ ⎦

     (4-8) 

1n 1M M sin= × β         (4-9) 

The Mach number downstream of the shock is given by: 

( )
( )

2
1n2

2n 2
1n

2 1 M
M

2 M 1
+ γ −

=
γ − γ −

       (4-10) 

The velocity vectors are obtained from these geometrical relations as: 

 1 1ˆV n V sin⋅ = β        (4-11) 

( )2 2ˆV n V sin⋅ = β − θ        (4-12) 

where β is the wave angle. 

 

Figure 20: Local Shock Angle and Flow-deflection Angle for an Oblique Shock 

V2 

β 
θ

n

V1 
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The relation between β and θ is given by: 

( )
( ) ( )

2
1

tan 1 sin sinM
tan 2 cos

β − θ γ + β θ
=

β β − θ
     (4-13) 

In the limit as M1 goes to infinity then, 

 ( )2 2 2
1n 1M M sin 1= × β        (4-14) 

Hence equations (4-4) through (4-7) become: 

( )
( )

2

1

1
1

γ +ρ
≅

ρ γ −
         (4-15) 

( )
( )

2 2
12

1

2 M sinP
P 1

γ × β
≅

γ +
        (4-16) 

( )( )
( )

2 2
12

2
1

2 1 M sinT
T 1

γ γ − × β
≅

γ +
      (4-17) 

A MATLAB routine is written to calculate external and internal compression and the 

underbody flow at supersonic through hypersonic speeds using the hypersonic shock 

relations. The routine is designed to respond to the angle of attack.  

4.2. Cycle Analysis 

In hypersonic engine cycle analysis there are important definitions which are 

discussed in this subsection. The cycle static temperature ratio (ψ) is defined as:  

3

0

T
T

ψ =          (4-18) 

This ratio is the principle determinant of thermodynamic cycle efficiency. T3 is 

limited to a value that prevents excessive dissociation in the exhaust flow. In this 

research, T3 is kept within the range 1,400–1,650 K. The maximum allowable 

temperature should be determined case by case, and this range should not be taken as 
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a universal range.  The static temperature of the flow is increased by the underbody 

compression process. This change in the flow’s static temperature causes a change in 

the constant specific heats ratio. For an accurate mathematical manipulation, γ is 

calculated at each reference. From the Gibbs equation and the adiabatic compression 

process, the burner entry pressure is given as: 

( )
P

P

C
CR

3 3 R

0 0

P T
P T

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

⎛ ⎞
= = ψ⎜ ⎟

⎝ ⎠
      (4-19) 

The principles of the conservation energy and mass are used to calculate 3V and  area 

ratio 3

0

A
A

.  The combustion energy release is modeled as heat addition via mass 

addition. The relation between burner entry and exit temperatures for constant 

pressure combustion is [18]: 

22
34 f

Burner PR f p Burner 2
3 p Burner 3 3

VT V1 11 f h f h f .C T 1
T 1 f C T V 2−

−

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + η ⋅ ⋅ + ⋅ + + + ×⎨ ⎬⎢ ⎥⎜ ⎟+ ⋅ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
… 

2
4

p Burner

V
2C −

−  (4-20) 

T is the absolute static enthalpy estimate ( )T 220K= . The burner area ratio is 

calculated using the static temperature ratio of the burner as follows: 

( ) 34
Burner

3 4

4
Burner

3

VA 1 f
A V

Twhere
T

= + ⋅τ ⋅

τ =
      (4-21) 

The expansion process is assumed adiabatic process which results in the component 

analysis as [18]:  
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p exp ansion

R
C

10 0
10 4 expansion

0 4

P PT T 1 1
P P

−

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎧ ⎫⎡ ⎤
⎛ ⎞⎪ ⎪⎢ ⎥= − η − ⋅⎨ ⎬⎜ ⎟⎢ ⎥
⎝ ⎠⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

  (4-22) 

( )2
10 4 p expansion 4 10V V 2C T T−= + −       (4-23) 

where ηexpansion is the nozzle expansion efficiency. 

The stream thrust function is, 

10
10 10 2

10

R TSa V 1
V

⎛ ⎞⋅
= +⎜ ⎟

⎝ ⎠
       (4-24) 

For an ideal expansion in the exhaust nozzle , P10=P0, with constant caloric properties 

which gives: 

M10=M0         (4-25) 

Because of heat addition in the combustor, the T10 in the ejector is much higher than 

the ambient temperature T0. The velocity ratio V0/V10 for the ideal cycle becomes: 

t4

20 p 0
0

T q 11 1T C T 1 M
2

= +
γ −

+
       (4-26) 

 

t 4
Adiabatic

10 10 t04

Pr ocess 2 20 0 0 p t0 p 0
0 0

T
V T TT q q 11 11 1V T T C T C T1 M 1 M

2 2

= = = = + = +
γ − γ −+ +

(4-27) 

For the non-ideal cycle, equation (4-20) becomes: 

 

10 th

20 p 0
0

T q1 1T C T 1 M
2

η
= +

γ −+
      (4-28) 
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where, 

( ) ( )
2 2

3 0
2

th n K 0 K n
2

0
p 0

1 11 M M12 21 1 1 M 11 q21 M
2 C T

γ − γ −⎡ ⎤+⎢ ⎥γ −⎧ ⎫η = η − + − η − − η η⎨ ⎬⎢ ⎥γ − ⎩ ⎭⎢ ⎥+
⎣ ⎦

 (4-29) 

The exhaust nozzle performance is defined as: 

 
( )

2
10

n 2
10 isontropic

V
V

η =         (4-30) 

A representative value of ηK is chosen as: ηK=0.90 for ramjet combustion and 

ηK=0.98 is used for scramjet combustion [21]. The value for ηK can also be calculated 

using Waltrup model by the relation: 

4

3
K

0

M1 0.4 1
M

⎛ ⎞
η = − −⎜ ⎟

⎝ ⎠
       (4-31) 

A MATLAB program (Analysis.m) was written to find the flow properties at the 

different stations. 

4.3. Ramjet-Scramjet Compression Performance 

One of the most challenging tasks in the design of a ramjet-scramjet engine is to find 

an efficient underbody compression system. The performance of the hypersonic inlet 

is investigated using oblique shock theory (Section 4.1.2). The total pressure recovery 

(ratio), πd, across the compression system is defined as the ratio of the total pressure 

at the burner inlet entry to the total pressure of the freestream flow. The total pressure 

ratio is an important measure of the performance of the compression system. The 

kinematic energy efficiency is another key performance property which is defined as: 
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V

⎛ ⎞
η = ⎜ ⎟

⎝ ⎠
       (4-32) 

The MATLAB program, EX_IN_COMP.m, is used to calculate these performance 

parameters for any compression system that incorporates up to four oblique shocks. 

The total pressure ratio is universally accepted as the meaningful measurement of 

performance for subsonic and supersonic aircraft compression systems. A comparison 

of the two existing inlet pressure recovery models (AIA standard and MIL E-5008B 

standard) with the MATLAB routine (EX_IN_COMP.m) is shown in Figure 21 [19]. 

Both standards yield more conservative results than EX_IN_COMP.m results. The 

results of hypersonic flight tests show that the total pressure ratio is not valuable 

measurement in the performance of compression systems. The total pressure ratio is a 

complicated function of flow conditions not a simple formula. The result of  

EX_IN_COMP only used to establish trends. 

 

 

Figure 21: Pressure Recovery Comparison 
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The effect of angle of attack on the pressure recovery coefficient is investigated next. 

The shock waves are determined using the angle of attack (AOA), dynamic pressure, 

the free stream characteristics, and underbody deflection angles. As is shown in 

Figure 22, the pressure recovery decreases at higher angles of attacks, and it can 

cause higher static temperature and excessive dissociation in the exhaust nozzle.  

 

Figure 22: Variation of Pressure Recovery with Angle of Attack 

At low hypersonic conditions, when the vehicle’s overall angle of attack changes 

from 0 degrees to 5 degrees, the pressure recovery decreases by up to 9.6%. This 

variation is not significant at higher hypersonic speeds. At moderate hypersonic 

speeds, when the vehicle’s overall angle of attack changes from 0 degrees to 5 

degrees, the pressure recovery decreases by up to 3.0%. The AOA and dynamic 

pressure also affect the combustion kinetics and the exhaust flow/free stream shear 

layer. The sensitivity of the engine performance to the AOA and the dynamic 

pressure is small at high Mach numbers and increases as the speed decreases. At low 

speeds, the AOA and the dynamic pressure need to be greater than certain values in 
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order to provide acceptable performance. The optimum operating condition is a 

function of shockwaves formed on the leading edge and captured by the inlet lip. 

Therefore, these vehicles will require a variable geometry inlet to operate at or near 

optimum aerodynamic and propulsion conditions at all times. The generated thrust 

force may drop dramatically due to lower pressure recovery in high angle of attack. 

As discussed before, in this class of vehicle and in the absence of a rotary 

compressor, the underbody of the vehicle performs as the compressor.  The 

performance characteristics of Hyper-Hawk’s external-internal compression system at 

supersonic and hypersonic speeds are shown in the following figures. The burner’s 

static temperature and burner entry Mach number are two important engine 

performance characteristics. The higher the flight Mach number, the stronger the 

shock waves become. The burner entry Mach number (Mbi) is calculated and shown 

in Figure 23. The numerical value of Mbi indicates the nature of the combustion 

within the combustor. As it is shown in Figure 23 (with a high performance 

compression system) the compressed flow enters the burner supersonically (scramjet) 

at flight Mach numbers M>3. In reality, the performance of the compression system 

is lower due to off-design shockwave effects. Thus, the burner Mach number reaches 

sonic speed at a much higher flight Mach number. The kinetic efficiency of the 

underbody flow in moderate hypersonic speeds changes slightly with the flight Mach 

number. It means at high flight Mach numbers the overall kinetic efficiency (ηd) is 

not a primary function of the flight Mach number. To prevent excessive dissociation 

in the exhaust flow, T3 needs to be limited to an acceptable range. In this research T3 

is kept in the range of 500K to 1,550 K for flight Mach numbers in the range of from 
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3 to 10. The burner entry Mach number must be adjusted for different flight 

conditions to generate maximum performance in the burner and prevent flow 

dissociation in the exhaust nozzle. In such adiabatic flows, the static temperature ratio 

(ψ) increases with increasing the flight Mach number because of stronger shock 

waves and lower burner entry Mach number as described in equation (4-33).  

 

Figure 23: Static Temperature and Burner Inlet Mach Number with Flight Mach Number 
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Figure 24: Kinetic Energy Efficiency of the Compression System 

 

Figure 25: Variation in Burner Static Temperature 

Change in the flow’s static temperature causes changes in the specific heat at constant 

pressure (CP) and the ratio of specific heats (γ). The variation in the burner entry γ and 

CP with flight Mach at 85,000 ft is shown in Figure 26. The specific heat at constant 

pressure (CP) increases with T3 as well as the flight Mach number. In the calorically 
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perfect gas region (up to M0=4) γ stays constant. At higher flight Mach number 

(M0>4) γ decreases with flight Mach number and T3 (see Figures 18 and 26). It is very 

important to calculate variations of  γ and CP with the flow’s static temperature at 

each station. The confidence in the computational tools increases by calculating 

variations of γ and CP. Another important burner performance indicator is the 

adiabatic efficiency. 

 

Figure 26: Variation of Burner Entry Cp and γ with Flight Mach Number 

The adiabatic performance of the burner is calculated using equation (4-27) and is 

shown in Figure 27. In equation (4-27) , it is assumed that Cp stays constant  between 

stations 1 and 3. 

( ) ( )
( ) ( )

t3 3iso
Adiabatic

t3 3

T T
T T

−
η ≅

−
       (4-34) 

As it is shown in Figure 27, the loss can be substantial at high hypersonic speeds. 

Close observation of Figures 23 through 27 helps to find an optimized underbody 

geometry and configuration for the vehicles which minimizes the loss at hypersonic 
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speeds.  Making the intake very long can be a very good way to fix this problem. 

Very shallow shock wave angles appropriate to hypersonic speeds. A long intake 

creates thick boundary layers especially at high altitudes.  These boundary layers 

generate flow uniformly case lower pressure recovery. Furthermore, the recovery 

temperature at the wall below the boundary layer is near stagnation.  

 

Figure 27: Adiabatic Efficiency 

4.4. Ramjet-Scramjet Frictionless Constant Pressure Burner 

In this research, hydrogen and air are used as the fuel and the oxidizer. The equations 

for complete combustion (stoichiometry) and the stoichiometry fuel air ratio are given 

as: 

x y 2 2 2 2 2
y 79 y 79 yC H x O N x CO H O x N
4 21 2 21 4

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + → + + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

  (4-35) 
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+

        (4-36) 
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Ramjet engines need two geometric constraints (throats). The first throat brings the 

flow into the burner at subsonic speeds. The flow is choked by the second throat and 

accelerates into the exhaust nozzle. Unlike ramjet engines, scramjet engines have no 

geometric throat upstream or upstream since the Mach number never drops to or 

below M=1.0. To avoid requiring two engine types, the concept of a dual mode 

combustion system was proposed by Curran and Stull [20]. The same concept is used 

in this research. When the vehicle operates at subsonic speeds, the dual mode 

combustion system provides subsonic flow either upstream or downstream of the 

combustor without using throats. The transition from supersonic flow to subsonic 

flow is accomplished in the dual mode combustion system by means of a constant 

area diffuser called an isolator. If the flow choked somewhere downstream, it causes 

a large back pressure at the burner entry. The back pressure in the isolator is 

generated either by chemical energy release in the burner or by obstructing the fuel 

injector (or a combination of both). Depending on the burner back pressure, the flow 

has two different patterns in the isolator. If Mii < 3 in the isolator inlet, then the 

pattern is a normal shock train and the flow is subsonic. In contrast for flows with Mii 

> 3, the oblique shock train generates a supersonic flow that adjusts the static back 

pressure in the burner [18].   
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Figure 28: The Isolator and Burner 

 

The impulse function at the isolator exit is given by: 

2
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  (4-39)  

The Mach number at the isolator exit is calculated using equation (4-23). Both the 

temperature and pressure increase in the burner due to chemical reactions. In order to 

keep the pressure constant, the area ratio needs to be increased. For a quasi-one-

dimensional frictionless heat addition at a constant pressure, the axial variation of 

Mach number is given as follows [18]: 

( ) ( )
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t _ ii

T x
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T x
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In a constant pressure burner the density decreases ( )P= R Tρ⋅ ⋅ and the static 

temperature rises. Because T is proportional to the square of the speed of sound ( )2a , 

the Mach number falls in proportion to the A . The burner area profile must be 

designed to maintain a constant burner pressure. The burner area ratio is proportional 

to τ(x). 

( ) ( ) 2 2b b
bi bi biburner

1 1A x A x 1 M M
2 2

⎡ γ − γ − ⎤⎛ ⎞ ⎛ ⎞= τ + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
   (4-42) 

A MATLAB program (Burner.m) is written to do analytical analysis for the isolator 

and the burner. The burner model program is run for various temperature ratios at 

multiple altitudes. Figures 29 and 30 show the results for different runs.  

 

Figure 29: Burner Area Ratio 
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Figure 30: Burner Exit Mach Number 

As was shown, the burner area ratio varies with the flight Mach number as a direct 

function of the burner total temperature ratio, τBurner. The higher the total temperature 

ratio the larger the area ratio required to keep the pressure constant. A larger area 

ratio expands the flow. Because of this the flows exits the burner at a lower Mach 

number.  

An interesting observation is the direct proportionality between the area ratio and 

τBurner. This is a disadvantage for constant pressure burners operation. Another 

disadvantage to a constant pressure burner is the resulting lower value of t4

t3

P
P

⎛ ⎞
⎜ ⎟
⎝ ⎠

at the 

same value of τBurner. The area ratio needs to be adjusted in response to varying 

altitude, flight Mach number, and τBurner. Keeping the burner pressure constant by 

using “infinitely variable” geometry or “rubber” burner is almost impossible using. 

Smart materials and adaptive structures are potential advanced propulsion 
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technologies to provide the required variable engine geometry. Other advances in 

materials, cooling techniques, and aerodynamics, can potentially also provide 

performance improvements. The results of applying advanced propulsion 

technologies are presented in terms of improvement in the overall system 

performance. Figure 31 shows the relationship between the burner total temperature 

ratio, τBurner, and the exit Mach number. The burner characteristic properties, 

including the total temperature ratio τ(x) and the area ratio A(x), can be adjusted for 

any specific design criteria. The fuel air ratio and the fuel equivalence ratio are 

calculated at different total temperature ratios and the results are plotted in Figure 31. 

 

Figure 31: Fuel Air Ratio and Fuel Equivalence Ratio 

The fuel equivalence ratio exceeds the stoichiometric mixture of hydrogen and air and 

become a fuel-rich mixture (φ>1) at high temperature ratios and high flight Mach 

numbers (τ>1.4 and M>10). In many cases, a fuel-rich mixture is desired since it 
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increases the cooling capacity of the engine. The variation in the heat input “q” per 

unit air mass flow rate and the heat parameter, 
0

q
CpT , are shown in Figure 32. The 

performance of the engines can be estimated using the heat parameter. This allows the 

performance of the engine to be calculated independence of the fuel type.   

 

Figure 32: Heat Input and Heat Parameter 

The combustor’s back pressure t4

t0

P
P

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is a function of the heat parameter. Depending 

on the value of the heat parameter, the flow displays two different patterns in the 

combustor. The combustion may take place subsonically or supersonically. The 

concept of a dual-fuel combustion system can be a very interesting research subject. 

The dual-fuel combustion system might be used to provide subsonic flow, either 

upstream or downstream of the combustor, without using throats. The ratio of specific 

heats (γ) decreases, and the specific heat at constant pressure (CP) increases, with e 
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increasing static temperature within the burner. The effect of changing (γ) and (CP) on 

engine performance is substantial. The confidence in the computational tools that are 

used in the propulsion systems analysis is increased by checking the variations in (γ) 

and (CP) at each station. 

 

Figure 33: Specific Heat 

In the design of burner, it is important to keep the additional heat lower than the limit. 

The addition of heat within the combustion chamber is often limited by the choking 

of the exit area. For the constant pressure case, in supersonic flow the Mach number 

decreases (M4 < M3). The limiting heat condition for choked flow is given by the 

expression: 

( )
( )

22
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33
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C T 2 1 M

−
= >

γ +
      (4-43) 
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Figures 34 through 36 show that at low to moderate supersonic flight Mach numbers 

and with 1.3 < τburner < 1.5, the heat addition exceeds the limiting heat addition.  

 

Figure 34: Heat Addition and Heat Limit (τBurner=1.20) 

 

Figure 35: Heat Addition and Heat Limit (τBurner=1.30) 
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For the case where τBurner = 1.4, the additional heat reaches the limit at Mach = 2.84. 

A solution to this problem is to adjust τBurner with flight Mach number. This allows 

more heat to be added to the flow at higher flight Mach numbers. An adjustable τBurner 

as a function of flight Mach number can increase the overall performance of the 

engine substantially. This can be potentially another important research topic. 

 

Figure 36: Heat Addition and Heat Limit (τBurner=1.40) 

In this research τburner is taken as a constant parameter. Another constraint to stay 

within is Burner 1.5τ ≤ . An interesting observation is that the choking limitations are 

less severe for the constant pressure burner than for the constant area burner. See 

Appendix C for details. Inside the burne there are two mixing methods, mixing with 

normal fuel injection and axial vortex mixing. In 1968, Swithenbank and Chigier 

suggested that “Substantial increase in mixing rates can be obtained by applying a 
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swirling motion to fuel jet.” Researchers use empirical measures of mixing 

effectiveness. The interaction between the mixing efficiency and the overall 

efficiency must be investigated separately. 

4.5. Expansion Nozzle and Specific Thrust 

A 2-D flow analysis using the Method Characteristics is used for the expansion 

nozzle and specific thrust. Ideal, underexpanded, and overexpanded nozzles are all 

investigated. The control volume is carefully selected to facilitate the calculation of 

the total force or gross thrust. The expansion process starts inside the burner. The 

burner exit Mach number plays an important role in the overall performance of the 

propulsion system. The burner exit Mach number increases with altitude (see Figure 

37) and it means the generated specific thrust is increased, see equations (4-41), and 

(4-42). 

The exit temperature and the exit area ratio are calculated as follows: 
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     (4-44) 

 

( )10 0 10 0

0 10 0 10

A P T V1 f
A P T V

= + ⋅ ⋅ ⋅        (4-45) 

 

Both a MATLAB program (expansion.m) and a MathCAD program (expansion. 

derv1) are used for these computations. 
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Figure 37: Burner Exit Mach Number 

As the exit Mach number increases, the height ratio of the nozzle increases along with 

the flow turning angle. Unlike subsonic exhaust nozzles, the exhaust nozzles used in 

hypersonic vehicles are 2-D or planer rather than circular or axisymmetric. The 

nozzles used in hypersonic vehicles are relatively heavy. Changing their geometry is 

not easy. In most engines used in hypersonic vehicles the flow enters the nozzle 

supersonically. This makes their analysis much easier. The nozzle is designed based 

on the isentropic flow assumption (ideal expansion). The effect of underexpansion is 

discussed in the following section. The Method of Characteristics utilizes a graphical 

approach to construct the contour of a supersonic nozzle. This method is a classical 

technique for the solution of inviscid both internal and external supersonic and 

hypersonic flows.  

The flow in the expansion nozzle has the following characteristics: 
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4
BE

1arcsin
M

μ =        (4-46)  

Total flow turning from MBE to MY is simulated by: 

 

( ) ( )2 2Burner Burner Burner
Y 4

Burner Burner Burner

1 1 1arctan M 1 arctan M 1 ...
1 1 1

⎧ ⎫γ + γ − γ −⎪ ⎪ω = − − −⎨ ⎬γ − γ + γ +⎪ ⎪⎩ ⎭
     

( ) ( ){ }2 2
Y 4arctan M 1 arctan M 1− − − −      (4-47)                                     

The Mach number (MIII) requires in the uniform flow zone of the nozzle. The uniform 

flow zone Mach number is found using the solution to equation (4-48) [18]. 
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Using MIII, the Mach wave angle is: 

III
III

1arcsin
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μ =       (4-49) 

The static pressure in the uniform flow zone of the nozzle is calculated by: 
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     (4-50) 

The Mach wave angle in the nozzle’s exit is written as: 

10
Y

1arcsin
M

μ =       (4-51) 
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The ratio of the exit height to entry height for ideal design point expansion 

components is: 

( )
Burner

Burner

1
2 12Burner

Y
10 4

2Burner4 Y
4

11 MH M 2
1H M 1 M

2

γ +
γ −γ −⎧ ⎫+⎪ ⎪⎛ ⎞

= ⎨ ⎬⎜ ⎟ γ −⎝ ⎠ ⎪ ⎪+
⎩ ⎭

    (4-52) 

The ratio of the exit height to the entry height for ideal design point expansion 

components increases rapidly with nozzle exit Mach number.  The expansion system 

must provide a sizable 10

4

H
H

 using variable geometry as it is shown in Figure 38. The 

flow turning angle  is shown in Figure 39. The flow turning varies with the burner 

Mach number, the burner ratio of specific heats, and the exit Mach number. These 

results suggest that a variable geometry is required as the properties of high Mach 

number flow are very sensitive to amount of ω (the flow turning from M4 to M10). If 

the value of 4

0

P
P

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is less than the value required by the design 10

4

H
H

 then the flow is 

calls overexpanded. If the value of 4

0

P
P

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is greater than the value required by the 

design 10

4

H
H

 then the flow is conditions calls underexpanded. 
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Figure 38: Ratio of Nozzle Exit Height to Entry Height 

 

Figure 39: Flow Turning Angle (ω)  

The exit plane components are used to calculate the uninstalled engine thrust as: 

( )10 10 0 0 10 0 10F m V m V P P A= − + −      (4-53-a) 
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( ) ( ) ( )10 10 10 10 0 0 0 0 0 10 0F m V P A m V P A P A A= + − + − −    (4-53-b) 

where, 

( )2
10 4 p Burner 10 4V V 2C T T−= + −    (4-54) 

Also, the definition of the stream function for both the freestream flow and the exit 

flow, 
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       (4-55) 
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Finally from the conversation of mass, 

( )10 0 10 0

0 10 0 10

A P T V1 f
A P T V

= + ⋅ ⋅ ⋅       (4-57) 

The specific thrust is written as: 

( ) 0 10
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0 0 0

RT AF 1 f Sa Sa 1
m V A

⎛ ⎞
= + ⋅ − − −⎜ ⎟

⎝ ⎠
     (4-58) 

4.6. Case Study 

The nozzle performance and the overall engine performance are next investigated for 

multiple Mach numbers. The results are used to find the specific thrust of the engine. 

The equations of motion are used to find the required thrust force. Knowing the 

required thrust force for steady state flight yields the required air mass flow rate and 

the fuel mass flow rate. The stream function for both the freestream flow and the exit 

flow are calculated and the results are summarized in Figures 40 through 48. The 

burner design point is a design parameter and can be adjusted according to the design 
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criteria. The computer programs are designed to make these adjustments easy.  At 

hypersonic speeds, the free stream thrust function increases with a faster slop than the 

exit thrust function. Because of this, regardless of the burner design point the specific 

thrust decreases when the flight Mach number increases.  

Engine Performance
Altitude=65,000 ft  and ηburner=0.90 
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Figure 40: Specific Thrust @ 65,000 ft* 
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Engine Performance
Altitude=85,000 ft and η burner=0.90

Design Point: TBurner=4036 K  Tt-Burner=5991 K 
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Figure 41: Specific Thrust @ 85,000 ft* 

*High efficiency estimate 

Engine Performance
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Figure 42: Specific Thrust @ 110,000 ft* 

*High efficiency estimate 
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The results are summarized in Figure 43. The specific thrust decreases with the 

increase in the flight Mach number. 
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Figure 43: Engine Performance (Specific Thrust) at Different Altitudes* 

*High efficiency estimate 

 
If the high estimates are achieved the performance of ramjet/scramjet propulsion 

engine becomes almost irresistible.   

The specific impulse as a function of flight Mach number is shown in Figure 44.  

The results of multiple iterations using MATLAB and MathCAD programs 

(Analysis.m) show that the engine with low burner temperature ratios can not 

generate positive thrust at high flight Mach number. In some cases, even changing the 

nozzle expansion ratio does not help.  This fact shows how complicated the nature of 

the hypersonic propulsion is. The following figure shows the result of specific design 

points that positive thrust is generated. The specific impulse becomes very small for 
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high Mach numbers, and flight can not be sustained for long time. This is done using 

the assumption of a variable inlet and exit areas. The assumption of variable exit area 

is a big assumption considering the nature of the hypersonic flows. 

 

Figure 44: Specific Impulse and Exit Temperature 

In order to  achieve a higher specific impulse at a high flight Mach number, the 

expansion ratio in the nozzle must be increased. 
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Figure 45: Area Ratio 

A comparison of this engine model with the NASA Hypersonic Research Engine 

(HRE) model and the German Hypersonic Technology model validates the decreasing 

trend of Isp with flight Mach number in the range of Mach 4 to Mach 8.  

In Chapter 5, the same engine model is used in the trajectory optimization process. As 

discussed before, the required thrust force is calculated for the steady state flight 

condition. Knowing the required thrust force for steady state flight and the specific 

thrust allows the required air mass flow rate and the fuel mass flow rate to be 

computed. The fuel mass flow rate is included in regenerative cooling calculations in 

the next section. The derivation of this equation is provided in Chapter5 

The steady state flight the minimum required thrust force is: 

 

2 4 5
minThrust 1033 M 1.353 10 M 1.524 10= ⋅ − × ⋅ + ×     (4-59) 
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Figure 46: Minimum Required Thrust Force 

 

Figure 47: Air Mass Flow Rate 
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Figure 48: Fuel Air Ratio 

4.7. Cooling the Ramjet/Scramjet 

The combustion process in ramjet/scramjet engines takes place in a very high 

temperature environment. To control the body temperature of the vehicle within an 

acceptable range, the ramjet/scramjet engine must be cooled. It is clear that a proper 

material selection is a key to successful engine design. One of the ways to control 

excessive heat is to radiate part of it into the surrounding environment. Most of the 

time, the engine must also be cooled internally plus radiation emitted to the 

environment.  The process of heat absorption by the fuel as it is consumed is called 

regenerative cooling. This method has been used as an effective way to cool engines 

internally. The analytical methods in the previous sections can be employed to find 

the proper air fuel ratio for any flight Mach number. The flight fuel air ratio is used to 

find the fuel mass flux. The heat flux is proportional to the mass flux. Quasi-one-
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dimensional theory is used for the heat transfer analysis. To analyze the heat transfer 

in the axial direction, 2 or 3 dimensional finite element models would be needed.  In 

this research, it is assumed that the thermal conductivity and the film coefficients are 

at their average values and are not functions the pressure or temperature. The 3-D 

model of the isolator and burner is shown in Figure 28, and the 2-D model is shown 

in the Figure 49.  The wall channels are assumed to be cooled by the fuel through a 

combination of convective and film cooling. After convectively cooling the wall, the 

fuel is injected into a slot parallel to the core flow. This helps to preheat the fuel 

before combustion and increase the combustion efficiency while at the same time 

cooling the wall [19], [23].  

 

 

Figure 49: Engine Cooling System 

cs c c cm 4D u S= ρ        (4-60) 

2
0 Burner Burnerm D u= ρ     (4-61) 

D 

L 

Hc, Tc 
T0 

ρBurner, TBurner, u Burner, 

Sc 
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The equivalence ratio for cooling is  

cs c c
cs

0 Burner Burner

m u1 Sc
m .f f D u

⎛ ⎞ρ⎛ ⎞⎛ ⎞φ = = ⎜ ⎟⎜ ⎟⎜ ⎟ ρ⎝ ⎠⎝ ⎠⎝ ⎠
     (4-62) 

The gas and the liquid film coefficients are calculated using the following 

conventional heat transfer theory.  

0.8 0.4

g
D V Cph 0.026

D
⎛ ⎞κ ⋅ ⋅ρ μ ⋅⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟μ κ⎝ ⎠ ⎝ ⎠⎝ ⎠

     (4-63) 

The gas film coefficient also can be found using 

0.8 0.4

g 0.2 0.8

V Prh 0.026
D 1

κ ⋅ρ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ μ⎝ ⎠ ⎝ ⎠
      (4-64) 

where D is the diameter of the chamber of the nozzle, V is the calculated average 

local gas velocity, κ the conductivity of the gas, μ is the absolute gas viscosity, Cp is 

the specific heat of the gas at constant pressure burner, and ρ is the gas density.  

The liquid film coefficient is: 

20.2
3

Hy c c cc c ave
l ave

c c c

D Vmh 0.023
A

−
−

− ⋅ ⋅ρ⎛ ⎞ ⎛ ⎞ ⎛ ⎞μ ⋅ γ
= ⋅ γ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟μ κ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (4-65) 

where cm  is the fluid mass flow rate (check Chapter 5 for details), A is the cross 

sectional area, D is the equivalent diameter of the coolant passage cross section, κ is 

the conductivity of the liquid, and μ is the absolute liquid viscosity. 

For the case where: M=8, DCombustor= 1 m, ( )gas
V  =ρ 73.20 2

kg 
m sec⋅

, κ = 0.328 2

W
m K

, 

Pr = 0.7,  p
JC 18

Kg K
=

⋅
, 4

c
kg1.81 10

m sec
−μ = ×

⋅
, fuel

kgm = 4.8717 
sec

 (for details 
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see Chapter 5), DHY-c = 20.11 10−× m, κc= 0.172 2

W
m K

, the number of channels are 

calculated to be 784. Also, 2
c

kg0.11 10
m sec

−μ = ×
⋅

(absolute gas viscosity), Tl-ave = 

300 K, and Tg = 2280 K. The value of hg is calculated using equations (4-45) and (4-

46). It varies within the range 2

W[188~219 ]
m K

 as a function of temperature. Also, the 

liquid film coefficient is calculated to be l 2

Wh 113,162
m K

=  using equation (4-47). 

Two MATLAB programs ‘heatransfer2.m’ and ‘heatransfer3.m’ were written to do 

all heat transfer calculations.  The program ‘heatransfer2.m’ calculates the overall 

film coefficient, the wall temperature liquid side, and the gas side. In the case that the 

total heat absorbed by the liquid is known, the program heatransfer3.m calculates the 

wall temperature liquid side, and also the gas side. 

Quasi-one-dimensional heat transfer theory plus the fundamentals of heat flux yield 

the total heat flux to the combustor wall as [19]: 

( ) ( ) ( )
ombustor

w g w c4
wall c w c c g g g t4 w g w

w tCoolant C
Wall

T T
q h T T T h T T

t
− −

− −
−

⎛ ⎞−
⎜ ⎟= − = ε σ + − = κ
⎜ ⎟
⎝ ⎠

 (4-66) 

The net one-dimensional heat flux to the combustor is the sum of the convective and 

radiative heat transfer. The quantity εg is known as the emissivity of the gas. The 

quantity σ is known as the Stefan-Boltzmann constant, which is -8
2 4

W5.67 10
m K

× . 

( )
2

g
g t4 c

g
wall

overall

T
h T T

h
q

h

⎛ ⎞εσ
− + ⎜ ⎟⎜ ⎟

⎝ ⎠=       (4-67) 
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w
overall

g c w

t1 1h
h h

= + +
κ

        (4-68) 

In equation (4-68), tw is the combustor wall thickness and κw is the wall thermal 

conductivity. 

For the case tw = 2.5 cm and 2w
W K = 43 mmκ − the following results are calculated: 

2
overall 2

Wh =  1.7888 10
m K

× , 2

MWq = 0.37208
m

, w-cT  = 203.29 K , and 

w-gT  = 419.61 K . 

The discussed MATLAB programs are designed to be flexible, and the user can check 

for variations in each output due to any changes in the gas and the liquid film 

coefficients. 

4.8. Summary 

This section covered the development of a cycle analysis for a ramjet/scramjet engine 

consisting of an airbreathing core with a variable geometry inlet. This analysis 

includes underbody compression, the isolator-burner, and the expansion nozzle.  This 

modeling process is used within a hypersonic vehicle conceptual design framework. 

The engine underbody geometry and the efficiency parameters can be adjusted for 

new vehicle concepts. The model and simulation are developed to support conceptual 

design studies of hypersonic vehicles using multiple cycle engines.  
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Chapter 5:  Trajectory Optimization 

5.0. Introduction 

This chapter covers the trajectory optimization for a generic hypersonic vehicle 

(GHV). Advanced guidance and control systems are key components to establishing a 

successful launch operation. In order to reduce the cost of designing flight profiles 

and to improve the vehicle performance, optimal trajectory calculations are required. 

The best way to perform an optimal trajectory is to update the trajectory on-board 

using real-time software. In this research, optimization techniques are applied only to 

the supersonic-hypersonic portion of the flight trajectory [2.148 < M0 < 15.01] and it 

is limited to altitude between 60,000 to 100,424 ft.  

5.1. Formulation and Analysis Process 

Given a functional form for F and choosing the n parameters q1, q2, q3,…, qn to be 

arbitrary functions of time (t), what forms must these functions of t take in order to 

render F a maximum or a minimum? The generalized form of J is represented as [24]: 

( )
f

o

t

1 2 n 1 2 n
t

J F q ,q , ,q ;q ,q , ,q ; t dt= ∫ … …      (5-1) 

The q’s are independent of each other. Each q is a dependent variable and is a 

function of time (t). 

A continuous dynamic system is described by a vector of three states ( ( )tℵ ) at time 

t. The state rate of change is shown as: 

f ( , u, t)ℵ = ℵ                                                    (5-2) 

where u(t) is the control vector. 
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In this study, the main objective of the optimization process is to find the optimum 

trajectory using the flight velocity as the state variable and the flight path angle as the 

control variable. The goal is to maximize the flight range within 0 ft t t< < . 

The continuous dynamic system is presented as: 

 

( )D
1V T q S C m g sin
m

x V cos
y V sin

= − ⋅ ⋅ − ⋅ ⋅ γ

= ⋅ γ
= ⋅ γ

      (5-3) 

Here, “V” represents the flight velocity, “x” represents the range, the altitude is 

represented by “y”, and “γ” is the flight path angle. 

 The state vector ℵ is defined as: 
V
x
y

⎡ ⎤
⎢ ⎥ℵ = ⎢ ⎥
⎢ ⎥⎣ ⎦

  

The control vector is defined as: [ ]u = γ     

The adjoint of the performance index is represented by equation (5-4),  

( ) ( ){ }
f

0

t

f
t

J t L (t), u(t), t dt= φ ℵ + ℵ⎡ ⎤⎣ ⎦ ∫      (5-4) 

From equation (5-2) 

f ( , u, t) 0ℵ −ℵ =         (5-5) 

Adding the constraints using equation (5-5), and using a time-varying Lagrange 

multiplier λ(t), the new version of the performance index yields [25]:  

  

( ) ( ) ( ){ }
f

0

t

f
t

J t L (t), u(t), t (t) f (t), u(t), t dt⎡ ⎤= φ ℵ + ℵ + λ ⋅ ℵ −ℵ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  
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As was stated before, the goal of the optimization process is to maximize the range of 

flight, so the performance index is defined as the flight range. 

( ) ( )
f

0

t

f
t

J t L ,u, t dt x (range)= φ ℵ + ℵ =⎡ ⎤⎣ ⎦ ∫    (5-6) 

Assume that 0t 0= , 

( ) ( )
f

0

t tf

f
t 0

J t L ,u, t dt x x dt= φ ℵ + ℵ = = ⋅⎡ ⎤⎣ ⎦ ∫ ∫      (5-7) 

where from the equations of motion x V cos= ⋅ γ  (5-3). The performance index 

becomes [25], [26], [27]: 

tf tf

0 0

J x dt J V cos dt= ⋅ ⇒ = ⋅ γ ⋅∫ ∫       (5-8) 

Comparison of equation (5-8) with the original performance index (5-6) reveals: 

( )ft 0φ ℵ =⎡ ⎤⎣ ⎦          (5-9) 

( )L , u, t V cos V & uℵ = ⋅ γ ⇒ Χ γ      (5-10) 

The time varying functional form of F, a fundamental equation, is given as: 

( )V DF V cos mV T q S C m g sin= ⋅ γ + λ − + ⋅ ⋅ + ⋅ ⋅ γ     (5-11) 

Now applying the Euler-Lagrange equation gives: 

( )V V
F F F F0 0

t V V t y V
∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ − = ⇒ λ − = ⇒ λ =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

    (5-12) 

F 0∂
=

∂γ
         (5-13) 
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5.2. Trajectory Constraints 

According to modified Newtonian Impact Theory, the local pressures are proportional 

to the dynamic pressure as follows: 

2
0 0 prP P q C .sin− = ⋅ θ         (5-14) 

In the previous equation, prC is the pressure coefficient and θ is the angle of 

inclination of the surface with respect to the freestream. If the dynamic pressure (q0) 

is too high then the structural force and the drag force on the vehicle can be very 

large. This will result in a higher empty weight (W0) and will require a more powerful 

engine. On the other hand, if the dynamic pressure is too small, then a very large 

wing reference area is needed to sustain flight. Because of these concerns, most 

hypersonic vehicles operate within a very narrow range of dynamic pressure [500 to 

2000 psf]. The following tables show how the velocity, air physical characteristics, 

and the air mass flow rate per unit area change at constant dynamic pressures through 

the trajectory [18]. The maximum and the minimum flight Mach number in the range 

of dynamic pressure [500 to 2000 psf] are calculated [11.2< M< 0.5]. It means at 

100,000 ft altitude, the flight Mach number can not exceed M=11.2 unless design 

constraints change. 
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Table 3: Constant Dynamic Pressure (2000 psf)  

q0 (psf) Mach Altitude (ft) ρ0 (slug/ft3) T0 (R°) P0 (lb/sqft) a0 (ft/sec) V0(ft/sec) ρ0V0 (slug/ft2.sec) 
2000 1.16 0 0.0024 518.67 2116.23 1116.27 1297.04 3.11 
2000 1.4 10000 0.0018 483.01 1455.34 1077.21 1509.33 2.72 
2000 1.71 20000 0.0013 447.35 972.5 1036.68 1776.91 2.31 
2000 2.13 30000 0.0009 411.69 628.44 994.5 2120.51 1.91 
2000 2.7 40000 0.0006 389.97 391.69 967.92 2614.18 1.57 
2000 3.43 50000 0.0004 389.97 242.22 967.92 3324.33 1.33 
2000 4.37 60000 0.000224 389.97 149.78 967.92 4227.39 0.95 
2000 5.55 70000 0.000138 392.37 92.68 970.9 5390.57 0.74 
2000 7.04 80000 0.000084 397.86 57.68 977.66 6881.14 0.58 
2000 8.89 90000 0.000052 403.35 36.12 984.38 8754.55 0.46 
2000 9.99 95000 0.000041 406.09 28.66 987.72 9862.53 0.41 
2000 11.2 100000 0.000032 408.83 22.77 991.05 11101.81 0.36 

      

Tables 3 though 5 demonstrate that flying at constant dynamic pressures causes a 

dramatic reduction in the air mass flow rate per unit area. 

Table 4: Constant Dynamic Pressure (1000 psf) 

q0 (psf) Mach Altitude (ft) ρ0 (slug/ft3) T0 (R°) P0 (lb/sqft) a0 (ft/sec) V0(ft/sec) 
ρ0V0 

(slug/ft2.sec) 
1000 0.82 0 0.002400 518.67 2116.23 1116.27 917.14 2.20 
1000 0.99 10000 0.001800 483.01 1455.34 1077.21 1067.26 1.92 
1000 1.21 20000 0.001300 447.35 972.50 1036.68 1256.47 1.63 
1000 1.51 30000 0.000900 411.69 628.44 994.50 1499.43 1.35 
1000 1.91 40000 0.000600 389.97 391.69 967.92 1848.50 1.11 
1000 2.43 50000 0.000400 389.97 242.22 967.92 2350.65 0.94 
1000 3.09 60000 0.000224 389.97 149.78 967.92 2989.21 0.67 
1000 3.93 70000 0.000138 392.37 92.68 970.90 3811.71 0.53 
1000 4.98 80000 0.000084 397.86 57.68 977.66 4865.70 0.41 
1000 6.29 90000 0.000052 403.35 36.12 984.38 6190.41 0.32 
1000 7.06 95000 0.000041 406.09 28.66 987.72 6973.86 0.29 
1000 7.92 100000 0.000032 408.83 22.77 991.05 7850.17 0.25 
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Table 5:  Constant Dynamic Pressure (500 psf) 

q0 (psf) Mach Altitude (ft) ρ0 (slug/ft3) T0 (R°) P0 (lb/sqft) a0 (ft/sec) V0(ft/sec) 
ρ0V0 

(slug/ft2.sec) 
500 0.58 0 0.002400 518.67 2116.23 1116.27 648.52 1.56 
500 0.70 10000 0.001800 483.01 1455.34 1077.21 754.66 1.36 
500 0.86 20000 0.001300 447.35 972.50 1036.68 888.46 1.15 
500 1.07 30000 0.000900 411.69 628.44 994.50 1060.25 0.95 
500 1.35 40000 0.000600 389.97 391.69 967.92 1307.09 0.78 
500 1.72 50000 0.000400 389.97 242.22 967.92 1662.16 0.66 
500 2.18 60000 0.000224 389.97 149.78 967.92 2113.69 0.47 
500 2.78 70000 0.000138 392.37 92.68 970.90 2695.29 0.37 
500 3.52 80000 0.000084 397.86 57.68 977.66 3440.57 0.29 
500 4.45 90000 0.000052 403.35 36.12 984.38 4377.28 0.23 
500 4.99 95000 0.000041 406.09 28.66 987.72 4931.26 0.20 
500 5.60 100000 0.000032 408.83 22.77 991.05 5550.91 0.18 

 

Figure 50 shows the trajectory constraints imposed by the dynamic pressure.  

Constant mass flow rates per unit area are shown in Figure 51. 

 

Figure 50: Trajectories for Constant Dynamic Pressure 
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Figure 51: Constant Air Mass Flow Rate per Unit Area 

As was shown, a high mass flow rate per unit area might be out of the dynamic 

pressure range, (see Figure 51, 0 0 2

lbmV 100
ft sec

ρ =
⋅

).   

The mass flow rate per unit area is equal to: 

0 0
0 0

0
0

q 2qV 1 VV
2

ρ = =         (5-15) 

where 

0 0 0

0
0 0

0 0

V M a
2qV

a M

= ⋅

ρ =
         (5-16) 

Another observation is that the mass flow is proportional to the inverse of the flight 

Mach number. To avoid a dramatic reduction in the air mass flow rate per unit area at 

higher flight Mach numbers, the dynamic pressure is increased constantly within the 
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allowable range. In the inlet engine design, a long forebody compression surface 

increases the capture area of the engine. 

The optimization constraints are given as: 

02000 q 500 psf≤ ≤         (5-17) 

The minimum is: 

2
0 0 min

1 1000V 500 psf V
2 −ρ ⋅ ≤ ⇒ =

ρ
 

The maximum is: 

2
0 0 max

1 4000V 2000 psf V
2 −ρ ⋅ ≤ ⇒ =

ρ
     (5-18) 

Using the golden section search optimization technique, the extremum (minimum or 

maximum) mass flow rate per unit area is calculated for this specific case. There are 

two nonlinear inequality constraints for the dynamic pressure, equations (5-17) and 

(5-18). The maximum flight altitude is assumed at 100,000 ft, which provides one 

linear inequality constraint on the air density (ρ > 0.000032 slug/ft3).   

A MATLAB program, dpoptimization.m, was written to apply the golden section 

search technique. The result of the optimization routine demonstrates that for the 

dynamic pressure range between [500 to 2000 psf], the maximum value for the mass 

flow rate per unit area cannot exceed 12.3841 2

lbm
ft sec

.  In this research, the maximum 

value for the mass flow rate per unit area is taken to be ρV0 = 2

lbm15
ft sec

. Table 6 

shows the minimum and the maximum flow rate per unit area, the minimum and the 
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maximum Mach number, and the minimum and the maximum flight velocity for a 

dynamic pressure range between [500 to 2000 psf]. 

Table 6: Minimum and Maximum Flow Rate per Unit Area 

Altitude 
(ft) T0 (R°) 

a0 
(ft/sec) 

V0-min 
(ft/sec) Mach min ρ0V0 min 

q0 Min 
(psf) 

0 519 1116.27 648.65 0.581 49.6 500 
10,000 483 1077.21 754.9 0.701 42.62 500 
20,000 447 1036.68 888.46 0.857 36.21 500 
30,000 412 994.5 1060.66 1.067 30.33 500 
40,000 390 967.92 1307.52 1.351 24.61 500 
50,000 390 967.92 1662.16 1.717 19.36 500 
60,000 390 968.07 2113.02 2.183 15.23 500 
70,000 392 971.05 2692.08 2.772 11.95 500 
80,000 398 977.82 3450.54 3.529 9.32 500 
90,000 403 984.54 4385.56 4.454 7.34 500 
95,000 406 984.54 4938.96 5.017 6.51 500 

100,000 409 991.21 5590.52 5.64 5.76 500 
110,000 419 1003.62 7071.51 7.046 4.55 500 

 

Altitude 
(ft) T0 (R°) 

a0 
(ft/sec) 

V0-max 
(ft/sec) Mach max ρ0V0 Max 

q0 Max 
(psf) 

0 519 1116.27 1297.31 1.16 99.2 2000 
10,000 483 1077.21 1509.8 1.4 85.24 2000 
20,000 447 1036.68 1776.92 1.71 72.43 2000 
30,000 412 994.5 2121.32 2.13 60.67 2000 
40,000 390 967.92 2615.04 2.7 49.21 2000 
50,000 390 967.92 3324.32 3.43 38.71 2000 
60,000 390 968.07 4226.03 4.37 30.45 2000 
70,000 392 971.05 5384.15 5.54 23.9 2000 
80,000 398 977.82 6901.08 7.06 18.65 2000 
90,000 403 984.54 8771.13 8.91 14.67 2000 
95,000 406 984.54 9877.91 10.03 13.03 2000 

100,000 409 991.21 11181.03 11.28 11.51 2000 
110,000 419 1003.62 14143.01 14.09 9.1 2000 

 

The flow rate per unit area needs to be adjusted accordingly for any other dynamic 

pressure range. Figure 52 shows altitude versus flight Mach number for a constant 

mass flow rate per unit area, 2

lbm15
ft sec

. 
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Figure 52: Trajectory for a Constant Air Mass Flow Rate per Unit Area 

5.3. Modeling and Simulation 

Dynamic Pressure 

Considering that the dynamic pressure is a function of the velocity and the density of 

the air throughout the trajectory, its variation with flight altitude and flight velocity 

are developed using air density and velocity models. Knowing the variation in the 

mass flow rate per unit area helps to model and simulate the variation of the vehicle’s 

velocity throughout the flight trajectory. Table 7 shows the corresponding velocity at 

different altitudes for 0 0 2

lbmV 15
ft sec

ρ = . 
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Table 7: Velocity versus Altitude 

Altitude (ft) Velocity (ft/sec)
0 196 

10,000 265 
20,000 368 
30,000 524 
40,000 796 
50,000 1287 
60,000 2080 
70,000 3376 
80,000 5546 
90,000 8958 
95,000 11362 
100,000 14557 
110,000 23292 

 

Curve Fitting 

For the curve fitting process, a MATLAB program was developed using the method 

of least squares. The fitting process requires a model that relates the response data to 

the predictor data using one or more coefficients. To obtain the coefficient estimates, 

the least squares method minimizes the summed square of residuals. The residual 

shows the difference between the observed response data and the fitted response 

value. 

( )

i i i
n n

22
i i i

i 1 i 1

R f (x ) y

SSE R f (x ) y
= =

= −

= = −∑ ∑
      (5-19) 

where “n” is the number of data points included in the fitting algorithm. 

Residuals (Ri) are defined as the difference between the observed values of the 

dependent variable and the values that are predicted by the routine. The residuals 

approximate independent random errors. Goodness of fit refers to how well a 

statistical model fits a set of observed data. Confidence bounds are confidence 
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intervals for a predicted response. The width of the interval shows the degree of 

confidence of the fit. The details of the curve fitting process were shown in Chapter 3. 

The Velocity Model 

Using the curve fitting process, various predefined functions (custom equations and 

splines) are explored to fit the observed data. The general form of the velocity 

equation is modeled as: 

( )( )V a exp b y y altitude & V velocity= ⋅ ⋅ ≡ ≡      

n=6 

The coefficients (with 95% confidence bounds) are: 

-5

a =  114.8 
b =  4.842 10×

  

Goodness of fit: 

4SSE = 1.189 10×  

R2 = 0.9998 

RMSE: 54.51 

( )( )5V 114.8 exp 4.842 10 y y Altitude & V Velocity−= ⋅ × ⋅ ≡ ≡  (5-20) 

( )( )5V 0.005586 exp 4.842 10 y
y

−∂
= ⋅ × ⋅

∂
    (5-21) 

The data, fit, and residuals are shown in Figure 53. The adjusted R2 statistic is 

generally the best indicator of the fit quality when a new predefined function fits to 

the observed data. The measure of goodness of fit summarizes a low discrepancy 

between observed values and the values expected under the model in equation (5-20). 

The sum of squares due to error (SSE) and the adjusted R-square statistics are used to 
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help determine the best fit. The SSE statistic is the least squares error of the fit, with a 

value closer to zero indicating a better fit.  

 

Figure 53: Variation of Velocity with Altitude 

The Air Density 

The exponential variation of air density with the altitude is modeled as: 

( )( )a exp b y y altitude & air Densityρ = ⋅ ⋅ ≡ ρ ≡     

n=24 

The coefficients (with 95% confidence bounds) are: 

-5

a =  0.002451
b =  3.440 10×

  

Goodness of fit: 

-8SSE = 8.213 10×  

R2 = 0.9946 
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-5RMSE = 4.422 10×  

( )( )50.002451 exp 3.44 10 y y altitude−ρ = − × ≡   (5-22) 

The data, fit, and residuals are shown in Figure 54. At low altitudes, the measure of 

goodness of fit summarizes a low discrepancy between observed values and the 

values expected under the model in equation (5-22). The model can be used for 

further analysis. 

 

Figure 54: Variation of Air Density with Altitude 

 (L/D)max and Drag Polar 

Using the aerodynamic models from Chapter 3, (L/D)max and the drag polar at 

different Mach numbers are modeled and the results are summarized in Figures 55 

through 64. The thrust required for steady state flight is directly proportional to the 

gross weight of the GHV. The thrust required also depends on the ratio of lift to drag. 
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The ratio of lift to drag is a very important measure of the GHV’s aerodynamic 

efficiency. The vehicle aerodynamic efficiency is a strong function of airspeed. 

 

Figure 55: (L/D)max 

The drag force can be written as the parasitic drag plus the induced drag. 

2

D DP
s A

CLC C
e Rπ

= +          (5-23) 

where es is the span efficiency factor and RA is the aspect ratio. 

2

DP

2
2 L

D D0 D0,L L LD0,L
s A

C

CC C C C C C
e Rπ

= + ⋅ + ⋅ +      (5-24) 

Combining the quadratic term from the parasitic drag with the induced drag, the total 

drag can be written as:  

2
L

D D0 D0,L L
A

CC C C C
eRπ

= + ⋅ +       (5-25) 
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where e is called Oswald efficiency factor. 

The term on the right hand side of equation (5-25) is often called the induced factor 

even though it is the induced factor plus the quadratic term from the parasitic drag. In 

this research the change in the drag coefficient with respect to lift coefficient at zero 

lift is assumed zero (a very small), thus the value of D0,LC in equation (5-25) is 

assumed zero. The total drag can be written as: 

2
2L

D D0 D0 L
A

CC C C C
eR

κ
π

= + = + ⋅       (5-26) 

where 
A

1
eR

κ
π

=  

The minimum required thrust is approximated as: 

min D0Thrust 2 W C κ≈ ⋅ ⋅ ⋅        (5-27) 

The results for various Mach numbers are summarized in the following subsections 

under the studied Mach values. 

M0=0.60:  

General model: 

2
D D0 LC  = C + Cκ×  

The coefficients (with 95% confidence bounds) are: 

CD0 =  0.01615   κ =  0.7102   

Goodness of fit: 

SSE = 8.574 x 10-6 

The measure of goodness of fit summarizes a low discrepancy between the observed 

values and the expected values. The model describes the data well. 
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Figure 56: Drag Polar at M=0.60 

M0=0.95: 

General model: 

2
D D0 LC  = C + Cκ×  

The coefficients (with 95% confidence bounds) are: 

CD0 = 0.05609 

 κ =  0.6195 

Goodness of fit: 

SSE = 8.316 x 10-6 

The measure of goodness of fit summarizes a low discrepancy between the observed 

values and the expected values. The model can be used for further analysis. 
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Figure 57: Drag Polar at M=0.95 

M0=1.50: 

General model: 

2
D D0 LC  = C + Cκ×  

The coefficients (with 95% confidence bounds) are: 

CD0 = 0.0507 

 κ =  0.8533 

Goodness of fit: 

SSE = 2.032 x 10-4 

The measure of goodness of fit summarizes a discrepancy between the observed 

values and the expected values. The model describes the data well. 
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Figure 58: Drag Polar at M=1.5 

M0=2.50: 

General model: 

2
D D0 LC  = C + Cκ×  

The coefficients (with 95% confidence bounds) are: 

CD0 = 0.0504 

 κ =  0.9123 

Goodness of fit: 

SSE = 8.365 x 10-4 

The measure of goodness of fit summarizes a low discrepancy between the observed 

values and the expected values. The model can be used for further analysis. 
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Figure 59: Drag Polar at M=2.50 

M0=2.96: 

General model: 

2
D D0 LC  = C + Cκ×  

The coefficients (with 95% confidence bounds) are: 

CD0 = 0.03562 

 κ =  1.081 

Goodness of fit: 

SSE = 8.831x 10-3 

The measure of goodness of fit summarizes a discrepancy between the observed 

values and the expected values. The model describes the data well. 
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Figure 60: Drag Polar at M=2.96 

M0=3.95: 

General model: 

2
D D0 LC  = C + Cκ×  

The coefficients (with 95% confidence bounds) are: 

CD0 = 0.03562 

 κ =  1.081 

Goodness of fit: 

SSE = 8.831x 10-3 

The measure of goodness of fit summarizes a low discrepancy between the observed 

values and the expected values. The model can be used for further analysis. 
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Figure 61: Drag Polar at M=3.95 

M0=4.63: 

General model: 

2
D D0 LC  = C + Cκ×  

The coefficients (with 95% confidence bounds) are: 

CD0 = 0.0214 

 κ =  1.559 

Goodness of fit: 

SSE = 1.66x 10-6 

The measure of goodness of fit summarizes a low discrepancy between the observed 

values and the expected values. The model describes the data well. 
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Figure 62: Drag Polar at M=4.63 

M0=6.00: 

General model: 

2
D D0 L C  = C + Cκ×  

L

D D0max

D0

C 12.7
C 2 C

where, C 0.02 1.7147

⎛ ⎞
= =⎜ ⎟

κ⎝ ⎠

= ⇒ κ =
 

The drag polar at M=6.0 is modeled using L

D max

C
C

⎛ ⎞
⎜ ⎟
⎝ ⎠

(Figure 55) and the results from 

the aerodynamic model of the GHV (Appendix A).  
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Figure 63: Drag Polar at M=6 

M0=10.00: 

General model: 

2
D D0 L C  = C + Cκ×  

L

D D0max

D0

C 12.5
C 2 C

where, C 0.01 4.00

⎛ ⎞
= =⎜ ⎟

κ⎝ ⎠

= ⇒ κ =
 

The drag polar at M=10.0 is modeled using L

D max

C
C

⎛ ⎞
⎜ ⎟
⎝ ⎠

(Figure 55) and the results from 

the aerodynamic model of the GHV (Appendix A).  
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Figure 64: Drag Polar at M=10 

Thrust 

One important performance measure for the GHV is the thrust required to maintain 

steady state level flight. For steady State Flight there is no acceleration and no change 

in altitude. During level unaccelerated flight, the wing must provide sufficient lift to 

balance the weight of the GHV and the engine must provide enough thrust to balance 

the drag force. The propulsion system of the GHV is modeled in Chapter 4. The 

variation in the minimum required thrust force through the flight trajectory for steady 

state flight is modeled at different Mach numbers.  The minimum required thrust is 

calculated using the drag polar at different flight Mach numbers. In this research, 

optimization techniques are applied only to a supersonic-hypersonic portion of the 

flight trajectory [2.148 < M0 < 15.01] and it is limited to altitude between 60,000 to 

100,424 ft. Although some subsonic and some supersonic Mach numbers are out of 
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the scope of this optimization research, the minimum required thrust at these 

conditions is calculated. The D0C and κ  are two important parameters to calculate the 

minimum thrust for steady state flight at the different Mach numbers. Using 

information from the drag polars, the minimum required thrust force is calculated at 

different flight Mach numbers in the following section. 

The minimum required thrust is modeled as: 

2 4 5
minThrust 1033 M 1.353 10 .M 1.524 10= ⋅ − × + ×     (5-28) 

 

 

Figure 65: Minimum Required Thrust 

As was discussed in previous section, the vehicle aerodynamic efficiency is a strong 

function of airspeed thus the minimum required thrust varies with the flight Mach 
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number. The minimum required thrust varies due to the variation in the parasitic drag 

plus the induced drag. Although the speed of sound varies with the altitude, in this 

research the variation in the speed of sound with altitude is ignored. An average value 

is used for the conversion of Mach number into velocity.  

ave

ave

2
4 5

min

2 5
min

VM
a

a 980 ft / sec

V VThrust 1033 1.353 10 1.524 10
980 980

Thrust 0.0011 V 13.81 V 1.524 10

=

=

⎛ ⎞ ⎛ ⎞= ⋅ − × ⋅ + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ⋅ − ⋅ + ×

   (5-29) 

minThrust 0.0022 V 13.81
V

∂
= ⋅ −

∂
      (5-30) 

Air Mass Flow Rate and Fuel Air Ratio 

The air mass flow rate is modeled as a function of Mach number. This model is 

developed using the Chapter 4 engine model (specific thrust) and the minimum 

required thrust force for steady state flight.  

( )

min sp air air 0

min
0 air

sp

Thrust I m m m

Thrustm V A
I

= × ≡

= = ρ⋅ ⋅

     (5-31) 

Considering that the optimum value for a constant air mass flow rate per unit area is 

taken to be 2

lbm15
ft sec

, the minimum required inlet capture area is found as: 

( )
min

sp air

ThrustA
I V

=
⋅ ρ⋅

        (5-32) 
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Table 8: Air Mass Flow Rate 

M Thrust (lbf) Isp(second) ρ0V( lbm/ft2.sec) (dm/dt)air (lbm/sec) A inlet(ft2) 
2.50 128658 2212 15.00 569.19 38.04 
2.96 117736 2135 15.00 539.69 36.07 
4.63 109618 1855 15.00 578.29 38.65 
6.00 111112 1625 15.00 668.97 44.71 
10.00 120000 955 15.00 1229.67 82.19 

 

The air mass flow rate is modeled as a function of flight Mach numbers: 

0
26.735 M 43.48 M + 320.6m ⋅ − ⋅=       (5-33) 

Goodness of fit: 

SSE: 58.07 

The measure of goodness of fit summarizes a discrepancy between the observed 

values and the expected values. This goodness of fit indicates that a better fitting 

model may possible. 

The engine model developed in Chapter 4 is used to find a model for the variation in 

fuel air ratio as a function of flight Mach number as follows: 

20.0002454 M 0.0008707 M + 0.002119 f fuel aif = r r atio⋅ − ⋅ ≡ (5-34) 

Goodness of fit: 

SSE: 1.78e-007 

The measure of goodness of fit summarizes a low discrepancy between observed 

values and the values expected under the model. 

Drag Coefficient 

The drag coefficient is modeled in Chapter 3 as a function of Mach number, angle of 

attack, and control surface deflection angles. In this section, a clean drag coefficient is 
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modeled and developed solving nonlinear curve-fitting (data-fitting) problems in the 

least-squares sense. 

 

Supersonic Speeds: 

2 4 2 3
D

0

ave

ave

2 4 2 6
D

C 10 4.4563 10 10 M

Vwhere, M
a

a 980 ft / sec

C 10 4.4563 10 10 V

3.7912 3.9357

3.7912 4.016

− − −

− − −

= × + × ⋅α − × ⋅

=

=

= × + × ⋅α − × ⋅

   (5-35) 

6D

0

4.016C 10
V

−∂
= − ×

∂
        (5-36) 

Hypersonic Speeds: 

3 4 2 4
D

0

ave

ave

3 4 2 7
D 0

C 8.0052 10 2.3936 10 10 M

Vwhere, M
a

a 980 ft / sec

C 8.0052 10 2.3936 10

6

6

.259

.3871 0 V

4

1

− − −

− − −

= × + × ⋅α − × ⋅

=

=

= × + × ⋅α − × ⋅

   (5-37) 

7D

0

C 6.3871 10
V

−∂
= − ×

∂
        (5-38) 

5.4. Optimization Process 

The fundamental equation for the optimization process is: 

( )V DF V cos mV T q S C m g sin= ⋅ γ + λ − + ⋅ ⋅ + ⋅ ⋅ γ     (5-11) 
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where, from equation (5-12), the time varying Lagrange multiplier is calculated as: 

( ) ( )D2
V V D

T C
cos( ) V C S 0.5 V S

V V
∂ ∂⎡ ⎤

λ = γ + λ − + ρ⋅ ⋅ ⋅ + ⋅ρ ⋅ ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦
  (5-39) 

where ( )tγ = γ is determined by applying equation (5-13) which may be written as: 

( ) ( ) ( )v t cos W V sinλ ⋅ γ ⋅ = ⋅ γ        

  

The variation in the thrust force with flight velocity is calculated using equation (5-

30). The numerical value of the drag coefficient and its variation with flight velocity 

are calculated using equations (5-35) through (5-38). 

Numerical Analysis  

As was shown in equation (5-3), the control vector, [ ]γ , is optimized with the flight 

velocity over the entire flight trajectory. Considering that the flight path angle is a 

primary function of the flight velocity, the fundamental equation (5-11) is formally 

dependent on the time. A combination of classical numerical methods plus MATLAB 

and MathCAD programming techniques are used for the optimization of the flight 

path angle throughout the flight trajectory.  

 

( ) ( ) ( )

( ) ( ) ( )

v

v

t cos W V sin

t cos W
sin

V

λ ⋅ γ ⋅ = ⋅ γ

λ ⋅ γ ⋅
γ = ⇒

      (5-13) 
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( ) ( )

( )

v

v1

t W
tan

V

t W
tan

V
−

λ ⋅
γ = ⇒

λ ⋅⎡ ⎤
γ = ⎢ ⎥

⎣ ⎦

       (5-40) 

The substitution of equation (5-40) into equation (5-39) yields: 

 

( ) ( ) ( ) ( )D1 2
V V D

v T C
cos t V C S 0.5 V

t W
t an

V VV
S− ∂ ∂⎡ ⎤

λ = + λ − + ρ⋅ ⋅ ⋅ + ⋅ρ ⋅
⎛ ⎞λ ⋅⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦

⋅ ⋅
⎠

⎢ ⎥∂ ∂⎣⎝ ⎦
(5-41) 

 

Equation (5-32) is rewritten as: 

 

( )
( ) ( ) ( )D2

V V D1/ 22
v

T C
t V C S 0.5 V S

V V
1

t W
1

V

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂⎡ ⎤
λ = + λ − + ρ⋅ ⋅ ⋅ + ⋅ρ ⋅

⎡ ⎤λ ⋅⎛
⋅

⎞⎜ ⎟⎢ ⎥+ ⎜ ⎟⎜ ⎟

⋅⎢ ⎥∂ ∂

⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

⎣ ⎦
(5-

42) 

 

The flight path angle is a function of time. There is no exact solution to equation (4-

42). The 4th-order Runge–Kutta numerical method is accurate to the fourth-order term 

of Taylor’s expansion.  

A time-marched solution using the 4th-order Runge–Kutta numerical method is used 

to solve the ODE equation (5-42) as follows: 

( ) ( ) ( )0 0v f v, , t g t v t vλ = λ γ γ = λ = λ     (5-43) 
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The fourth-order Runge–Kutta method for this problem is given by the following 

equation: 

( )n+1 n 1 2 3 4
hv v k 2k 2k k
6

λ = λ + + + +       (5-44) 

where ( )1 2 3 4
h k 2k 2k k
6

+ + + is called the increment function. The local truncation 

error is O (h5). The size of the interval is taken as (h) and the increment function is 

expressed as: 

( )

( )

1 n n

2 1 n

3 2 n

4 n 3 n

k v v ,t

h hk v k ,t
2 2

h hk v k ,t
2 2

k v v +h k ,t h

= λ λ

⎛ ⎞= λ +⎜ ⎟
⎝ ⎠

⎛ ⎞= λ +⎜ ⎟
⎝ ⎠

= λ λ ⋅ +

       (5-45) 

The 4th-order Runge–Kutta method does not require the derivatives of ( )f v, , tλ γ . It 

produces a result equivalent to the high order Taylor formula. The most important 

advantage of Runge–Kutta methods in this research is that they solve the problem 

using only one initial point.  The 4th-order Runge–Kutta calculates n+1vλ using the 

value of present nvλ plus the slope at the beginning of the interval (k1), the slope at 

the midpoint of the interval (k2), the slope at the midpoint (k3), and the slope at the 

end of the interval (k4). Although, the 4th-order Runge–Kutta method is used to solve 

ordinary differential equations, a MathCAD program, flightpath.mcd, is used for all 
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simultaneous analytical calculations and a MATLAB program, flightpath.m, is used 

to solve nonlinear equations. The input of the computer programs is the flight 

altitude. The flight velocity is calculated applying equation (5-18). The MathCAD 

program, flightpath.mcd generates a time varying ordinarily differential equation 

(ODE). The 4th-order Runge–Kutta method generates solutions to this ODE and then 

the nonlinear equations are solved using the MATLAB program, flightpath.m. The 

nature of hypersonic flight implies a very small sampling time. In this research, the 

size of the interval is taken as 0.2 seconds and both the simulation and optimization 

routines are updated every 0.2 seconds. The optimized flight path angle plus the input 

velocity provide enough information to update the flight altitude every 0.2 seconds. 

The MathCAD routine can also calculate the fuel air ratio, the mass flow rate, and the 

consumed fuel mass every 0.2 seconds.  Knowing the optimized flight path angle plus 

the variation of the velocity and the altitude enables the MathCAD routine to update 

the Mach number, the drag coefficient, and thrust force variation with velocity 

accordingly. 
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5.5. Results 

The following figures show the results from the optimization process over a broad 

range of Mach numbers.  

 
Figure 66: Rate of Change of Flight Path Angle 

 
Figure 67: Variation of Flight Path Angle with Velocity 
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As shown in Figure 66, for the first 6 seconds the flight path angle is constant and 

stays at 90 degrees. There are two reasons for the vertical flight of the vehicle. The 

first reason is that the air density is a function of altitude. The second is that the 

induced drag coefficient decreases with the increase in the flight Mach number. The 

flight path angle is reduced when the total drag force is reduced.  A very small 

variation in the drag coefficient causes a large change to the results of the 

optimization. Figure 68 shows the position of the vehicle (X, Y) or (range, altitude) 

throughout the flight trajectory. 

 

Figure 68: Range versus Altitude 

The fuel mass flow rate increases with the velocity exponentially. Figures 69 and 70 

show how fuel injection becomes challenging at high Mach numbers. The fuel mass 

flow needs to be sustained at a very high rate in order to continue hypersonic flight at 

high Mach numbers. Keeping the fuel mass flow rate at such a very high rate (e.g. 
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115 lbm/sec) is a difficult task. This is not only due to the flow rate itself, but it can 

also cause a dramatic increase in the empty weight of the vehicle.  

 
Figure 69: Fuel Mass Flow Rate 

 
Figure 70: Variation of Fuel Mass Flow Rate with the Velocity 
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The weight of the vehicle varies as a function of the fuel mass flow rate. In a 

numerical analysis of the weight due to velocity (W/V), the analysis is updated every 

0.2 second as a function of time.  Figures 71 and 72 show the rate of change of (W/V) 

through flight trajectory, as well as their variation with velocity. 

 

Figure 71: Rate of Change of ( W/V ) 

 

Figure 72: Weight to Velocity Ratio 
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The velocity of the vehicle reaches a predefined value of 14,000 ft/sec in about 9 

seconds. Large acceleration big values are required to reach a very high velocity in a 

very short time (9 seconds). The vehicle acceleration increases with velocity up to 8.6 

seconds then it decreases. The odd behavior of the vehicle at V=13,336 ft/sec needs to 

be investigated separately. 

 

Figure 73: Acceleration 

5.6. Summary 

This research covers the development of an optimized trajectory, one generated for 

different thrust specific force values. The model and the simulation are developed to 

support conceptual design studies of hypersonic vehicles. The aerodynamic database 

for the generic hypersonic vehicle uses experimental wind tunnel data and the results 

from multiple CFD codes. The simulation includes an optimized trajectory and a 
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flight path angle calculated at every point along the flight path to maximize the range. 

A MATLAB routine (trajectory.m) is developed specifically for this application. 
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Chapter 6: Modeling and Simulation 

6.0. Introduction 

This chapter covers the development of a six degrees of freedom simulation of a 

generic hypersonic vehicle (GHV) using the merged aerodynamic database that was 

presented in Chapter 3.  The simulation includes the air-breathing propulsion engine 

cycles presented in Chapter 4.  This work is developed to support conceptual 

hypersonic vehicle design studies and related aerospace vehicle technologies.  

6.1. Simulation Process 

The equations of motion for a six degrees of freedom (12 states) simulation of a 

generic hypersonic vehicle (GHV) is presented in Chapter 2. The mathematical 

models of the aerodynamic database and propulsion system are developed in Chapters 

3 and 4. The simulation is implemented within a MATLAB routine.  Applying the 

Jacobian technique and the MATLAB programs TRIMMER.m and SIMPLEX.m, the 

GHV steady state model is simulated throughout the trajectory [27].   

The state variables are: 

tV

X
P
Q
R

N.D.
E.D.
Alt.

⎡ ⎤
⎢ ⎥α⎢ ⎥
⎢ ⎥β
⎢ ⎥φ⎢ ⎥
⎢ ⎥θ
⎢ ⎥

ψ⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    (6-1) 
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Thtl

e

a

rud

U

δ⎡ ⎤
⎢ ⎥δ⎢ ⎥=
⎢ ⎥δ
⎢ ⎥δ⎣ ⎦

   (6-2) 

 

2 2 2 2 2 2cos t  X(1) +100 (X(2) +X(3) )+10 (X(7) +X(8) +X(9) )= × × (6-3) 

The MATLAB program, SIMPLEX.m, performs the minimization using a Nelder 

and Mead simplex algorithm. This method only uses cost function values; it does not 

need derivatives and does not attempt to compute approximations to the derivatives. 

The constraints are applied for the steady state pull-up flight condition. The following 

figures show the simulation results and the trim points throughout the flight 

trajectory. The steady state performance of the GHV is investigated throughout the 

flight trajectory using a set of trimmed flight conditions. The lift and drag 

coefficients, the thrust force, the sideslip angle, the bank angle, and the pitch angle 

are determined for a number of different flight conditions. The results are 

summarized in Figures 74 through 78. At low supersonic speeds (lower dynamic 

pressures) a high value of the lift coefficient is required to support the GHV weight. 

This results in a large angle of attack and therefore a high induced drag. This means a 

higher thrust value is needed to overcome the drag force. In this region opening the 

throttle produces an increase in altitude but not an increase in speed. The nominal 

speed, altitude, and flight path angle are chosen to simulate the flight condition. As 

shown in Figures 76 and 77, α (angle of attack) and θ (pitch angle) vary together.  

This means there is a very little change in the flight path angle. 
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Figure 74: Variation in the Aerodynamic Coefficients 

 

Figure 75: Thrust versus Flight Mach Number with Mach Number 
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Figure 76: Variation of Angle of Attack with Mach Number 

 
Figure 77: Variation in Sideslip Angle, Bank Angle, and Pitch Angle with Flight Mach Number 
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If a numerical solution approaches the exact solution, the numerical method is said to 

be convergent. All the convergence values are found to be very small (in most cases 

they approach zero).  

 

Figure 78: Convergence in Simulation with Mach Number 

 
6.2. NUMERICAL LINEARIZATION PROCESS 

A MATLAB program (LIN.m) was written to calculate the Jacobian matrices for the 

set of nonlinear state equations. The linearization algorithm chooses smaller and 

smaller perturbations in the independent variable and then compares three successive 

approximations to these partial derivatives. If these approximations agree within a 

certain tolerance, then the algorithm is terminated. Otherwise, the size of the 

perturbation is made smaller. The linearized model is derived for straight and level 

flight at the specified velocity and altitude with a zero banking angle. In this case, the 

longitudinal and the lateral subsystems are decoupled.  
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The linearized model about a trim point is: 

DUCXY
BUAXX

+=
+=     (6-4) 

 

Also, the state variables are defined as: 

tV
Alt

X Q

P
R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥α
⎢ ⎥θ⎢ ⎥
⎢ ⎥=
⎢ ⎥

β⎢ ⎥
⎢ ⎥φ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    (6-5) 

 

The control variables are defined as: 

 

Thtl

e

a

rud

U

δ⎡ ⎤
⎢ ⎥δ⎢ ⎥=
⎢ ⎥δ
⎢ ⎥δ⎣ ⎦

   (6-6) 

 

The output variables are defined as: 

        
a. n. 

y q        
α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   (6-7) 

 

The following flow chart shows the process of linearization and the simulation of the 

GHV (see Figure 79). The result of the linearization process gives us a linearized 

model of the GHV at each trim point. The model can be used for any control and 

navigation research problem. Considering the fact that the speed range of this vehicle 
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is very wide, the capability of the controller to stabilize, guide, navigate, and control 

the vehicle needs to be checked using multiple linear models at different trim points.  

 

                                                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 79: Linearization Flow Chart 
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The following are example A, B, C, and D matrices for the GHV model trimmed at  

Mach = 5.0 and Alt = 65,000 ft. in straight and level flight. 

 

-1.604E-04 5.768E-04 -6.238E+03 -3.121E+01 1.940E-14 0.000E+00 0.000E+00 0.000E+00 0.000E+00
1.737E-01 0.000E+00 -4.851E+03 4.851E+03 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
-2.197E-06 3.333E-07 -1.845E-01 -1.

A =

101E-03 1.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
4.191E-06 -2.584E-13 -1.250E+01 0.000E+00 -2.035E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2.165E-23 3.616E-24 5.094E-19 0.000E+00 0.000E+00 -1.014E-01 6.198E-03 3.606E-02 -9.994E-01
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 2.138E-01
-5.020E-21 7.888E-22 1.324E-16 0.000E+00 0.000E+00 -2.300E+00 0.000E+00 -2.737E-02 3.306E-02
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6.3. Vehicle Dynamic Behavior and Modal Decomposition 

The complete set of modes of a GHV are illustrated by modal decomposition using 

the linear GHV model. Not all nine states in the full A matrix will be needed. The 

altitude is reduced which does not affect the dynamics. There is also a clear 

decoupling of the lateral and longitudinal dynamics in this flight condition.  

GHV Longitudinal Modes 

The MATLAB “eig” function is used to produce the following results. The 

longitudinal dynamics for the GHV in the steady state pull-up condition at Mach = 

5.0 is given by 



 129

TV Q
-4 3 1 -14

-6 -1 -3 0

0

-6 -6

Lo

2

ng

-1.6040 10 -6.2380 10 -3.1210 10 1.9400 10
-2.1970 10 -1.8540 10 -1.1010 10 1 10

1 10
4.1910 10 -1.2500 10 -2.0350

A
0 0 0

0 10

α θ

−

× × × ×
× × × ×

×
× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The four states give rise to two complex-conjugate pairs of eigenvalues, which 

correspond to two stable oscillatory modes. These eigenvalues are: 

Table 9: Longitudinal Modes 

Eigenvalue Damping Freq. (rad/sec) Time (sec) Model 
-5.69e-004 + 8.23e-003i 6.90E-02 8.25E-03 7.62E+02 Phugoid 

-5.69e-004 - 8.23e-003i 6.90E-02 8.25E-03 7.62E+02 Phugoid 

-1.02e-001 + 3.53e+000i 2.90E-02 3.53E+00 1.78E+00 Short-Period 

-1.02e-001 - 3.53e+000i 2.90E-02 3.53E+00 1.78E+00 Short-Period 
  

The periods of these modes are separated by more than two orders of magnitude so 

they are easily identifiable as the short-period and the Phugoid modes. 

GHV Lateral-Directional Modes 

The MATLAB “eig” function is used to produce the following results. The lateral-

directional dynamics for the GHV in the steady state pull-up condition at Mach = 5.0 

are given by 

P R
-1 -3 -2 -1

0 1

0 2 2

-1 -3 2

L D

-1.0140 10 6.1980 10 3.6060 10 -9.9900 10
0 0 1 10 2.1380 10

-2.3000 10 -2.7370 10 3.3060 10
 5.0950 10

A
0
0 3.0570 10 -2.4060 10

β φ

−

− −

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢

× × × ×
× ×

× × ×
× × ×

⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The four states give rise to two complex-conjugated pairs of eigenvalues, which 

correspond to two stable oscillatory modes. These eigenvalues are: 
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Table 10: Lateral-Directional Modes 

Eigenvalue Damping Freq. (rad/sec) Time (sec) Mode 
-1.85e-002 + 6.81e-003i 9.38E-01 1.97E-02 1.59E+02 Lateral Phugoid  
-1.85e-002 - 6.81e-003i 9.38E-01 1.97E-02 1.59E+02 Lateral Phugoid  
-5.80e-002 + 7.68e-001i 7.53E-02 7.70E-01 4.08E+00 Dutch Roll 
-5.80e-002 - 7.68e-001i 7.53E-02 7.70E-01 4.08E+00 Dutch Roll 

 

Interestingly a lateral Phugoid type mode (a combination of the roll and spiral modes 

to form a second oscillatory mode) appears in some parts of the flight envelope. The 

formation of this coupled roll-spiral mode is attributed to the large positive yawing 

moment due to roll rate (CnP) (see Appendix A), low natural roll damping, and 

moderate adverse yawing moment due to aileron deflection. A low damped Dutch roll 

mode is discovered. The vehicle’s rudder produces both rolling and yawing moments, 

and a rudder pulse may excite this mode. 

6.4. Summary 

In this chapter, the 6-DOF equations of motion for the GHV using the results from 

Chapters 2 through 5 are developed. The nonlinear equations are linearized and the 

linear model of the GHV for LTI control purposes is generated. The linear model can 

be used for a variety of control and navigation research problems. The linearization 

process is computerized and can be done efficiently at any other trim point 

throughout the trajectory. The nonlinear equations of motion can be used for more 

advanced control law development and verification efforts.  
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Chapter 7: Summary and Conclusions 

This research develops the six degrees of freedom (6-DoF) modeling and simulation 

of a generic hypersonic vehicle including a ramjet/scramjet propulsion system and an 

aerodynamic database. The mathematical models of the vehicle’s aerodynamics and 

propulsion system are implemented within a conceptual design frame. The integrated 

aero-propulsion model is the first published analytical model for a generic hypersonic 

vehicle that includes regenerative cooling effects. The propulsion system model is 

applicable to hypersonic missiles, manned aircraft, unmanned aerial vehicle systems 

and access-to-space systems. The experimental investigation of the aerodynamic 

characteristics of the cone-shaped body configuration is used as the core of the 

aerodynamic model.  The gaps within the wind tunnel data are filled using the best 

available CFD results. The model is built from aerodynamic, propulsion, atmospheric, 

and mathematical modules. The modular structure of the simulation helps to change 

any module efficiently according to the design criteria. The linear model of the GHV 

is developed, and it can be used for controls and navigation research. The linearized 

model of the generic hypersonic vehicle includes all pertinent lateral-directional 

states. This is the exception to published hypersonic vehicle models in the open 

lecture. The combined longitudinal and lateral-directional models of the GHV can be 

used for controls and navigation research. The developed aerodynamic and 

propulsion systems for the GHV allow a trajectory to be optimized for the vehicle. 
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Chapter 8: Recommendations and Future Work 

Aerodynamic heating and skin friction are very important aspects of hypersonic 

aerodynamics. This research did not cover aerodynamic heating and skin friction 

effects. In future research, it is highly recommended to use CFD codes capable of 

solving for viscous flow.  The underbody geometry and the configuration of the 

vehicle needed to be optimized. The amount of air captured by the inlet or spilled out 

is a direct function of the cowl’s position. The optimized configuration minimizes the 

loss of air at the inlet at hypersonic speeds.  Using a 3-D numerical simulation of the 

flow can improve the accuracy of the simulation. Studies of sidewall and compression 

inlets are essential for a successful aero-propulsive system design. The low 

performance of ramjet engines at low speeds demonstrates the importance of research 

on rocket based and turbojet base combined cycle engines. The performance problem 

of hypersonic propulsion systems can partially be addressed by reducing the ramjet 

take-over flight Mach number. In the combustion chamber, improved axial mixing 

“efficiency” and swirled injection fuel nozzle can increase the mixing rate 

dramatically. In this research, optimization techniques are applied only to the 

supersonic-hypersonic portion of the flight trajectory. Trajectory design for the re-

entry phase is another research subject.  Materials and structures are two major areas 

where intensive research need to be done. Hypersonic vehicles impose distinctive 

challenges to GNC. The next generation of guidance and control algorithms must 

address these challenges. In particularly GNC algorithms with applicability to multi-

mission/multiple-Mach regimes are required. 
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