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Abstract 

With an object-relational mapping (ORM) tool, the software developer does 
not have direct control over the structured query language (SQL) calls to 
the database and thus relies on ORM decisions regarding how the database 
model is accessed. These database access strategies are critical to an 
application’s performance since databases are typically remote from the 
application’s runtime.  In essence, an ORM can introduce performance 
issues if the ORM is not able to generate efficient SQL, manage transactions, 
and provide an adequate caching mechanism. 

This research formulated an ORM performance evaluation framework 
by defining a set of performance test cases that are based upon common 
database access scenarios.  The research then developed an implementation 
of the framework using a selected number of Java ORMs in order to evaluate 
the ORM processing time, database access calls, and the use of object 
caching within the ORM.  The selected ORMs included two Java Persistence 
API (JPA) ORMs, Hibernate and OpenJPA, and two Java Data Objects (JDO) 
ORMs, JPOX and Speedo. 

The performance test cases revealed significant performance 
differences between the selected ORMs.  The JPA implementations were 
better performers when compared to the JDO implementations, with 
Hibernate being the overall best performer of all ORMs.  The ability of an 
ORM to create more complex SQL provided significant performance gains 
when eager loading objects, bulk loading related objects, and performing 
batch inserts.  The test framework also indicated that caching had a 
dramatic impact on reducing processing time when multiple calls are made 
to retrieve objects.  In fact, caching was as important as efficient SQL 
generation when evaluating the processing times. 

The results indicate that ORMs exhibit considerable differences in 
terms of performance and database access, while all executing the same set 
of test cases.  The application of a common set of benchmark performance 
test cases, as defined and implemented in this research, can be undertaken 
by the ORM community in order to provide an objective process for 
evaluating ORM performance.  Such a benchmark would provide ORM users 
with insight into how the ORMs implemented common data access scenarios.  
This information would then allow developers to better select ORMs for 
their respective application context. 
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1  Introduction 

1.1  Background Information 

The relational database management system (RDMS) is at the heart of the 

modern enterprise systems that run businesses today.  RDMSs offer flexible 

and robust ways to manage data, share data between different applications, 

and secure the information that runs nearly all companies.  The technology 

strategies of companies recognize this fact, as most businesses have large-

scale investments in relatively-expensive RDMSs that house the data that 

runs the business.  As such, most information technology (IT) software 

developers work with some form of RDMS, and it would be difficult to find 

an IT job that did not involve accessing RDMSs in some fashion. 

While software developers find themselves working directly with 

RDMS on a daily basis, the logical structure of the data in an RDMS is quite 

different when compared to the object-oriented (OO) languages that are 

the implementation choice for most IT systems today.  An OO language 

allows the developer to build an object-view of a business since it provides 

a way to group data and behavior together in a single, logical unit.  

Complex business logic needs such an OO domain model that offers 

inheritance and polymorphism, in addition to the design pattern 

opportunities that OO languages provide.  However, while OO languages are 
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easy to work with regards to business modeling, the OO paradigm is in 

contrast to the RDMS’s representation of data in tabular form where data is 

logically portrayed in tables and rows. 

This difference between the OO paradigm that is used to develop 

business logic and the RDMS paradigm that is used to store and manage the 

business data has been called the object-relational paradigm mismatch, also 

known as impedance mismatch (Cattell, 1991).  The object-relational 

mismatch is based on a number of reasons, including the fact that objects 

come in a range of granularity from coarse-grained to fine-grained, while 

databases offer just two levels of granularity:  table and column.   In 

addition, an RDMS does not provide any mechanism for inheritance or 

dealing with subtypes.  Finally, RDMS associations are represented as 

foreign keys which are not necessarily directional, while object associations 

are represented as references that are directional. 

Overall, the object-relational mismatch must be solved by the 

developer if the system is to be maintainable and responsive to change.  

Solving the problem can be undertaken by interacting directly with the low-

level driver interface provided by the RDMS vendor.  In this way, a 

developer manually maps objects to tables by hand-coding structured query 

language (SQL) calls to the RDMS in order to access and manage the stored 

data.  In addition, the developer manages the communication between the 
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application and the RDMS, including establishing connections, scrolling 

through result sets, and handling exceptions.  In short, the developer 

manages all interaction with the database. 

The problem with the low-level, call-interface interaction with the 

database is that it takes time away from developing code that actually 

solves the business problem at hand. Thus, the developer must 

code/test/debug code just to store and retrieve data in addition to writing 

the business logic of the application.  As a result, object-to-database 

applications can require a great deal of coding just to overcome the object-

relational impedance mismatch. 

An alternative to this low-level access to a RDMS is the use of an 

object-relational mapping (ORM) tool that hides the RDMS access 

management and the tabular view of the data.  ORMs reduce development 

cost since the ORM product implements the object-table mapping instead of 

the developer. In general, the ORM tools provide a code-generated bridge 

between the object paradigm and the relational paradigm.  The ORM 

manages the database access, scrolls through the result sets, and sets/gets 

data into the objects that are used in the business logic of the application.   

While the software developer must still know how to configure the 

communication between the relational database and the application’s 
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object model, the amount of code to be developed, tested, and debugged is 

significantly reduced. 

1.2  Research Objectives and Methodology 

While an ORM offers a large amount in the way of developing manageable 

code, the removal of the developer from the database access does have its 

disadvantages.  Most notably, the developer does not have direct control 

over the SQL calls to the database and thus must rely on ORM decisions 

regarding how the data model is accessed.  This database access, consisting 

of disk read/writes and (typically) remote access, is a key performance 

consideration in most applications using an RDMS.  Due to the performance 

considerations of RDMS access and the loss of control over that access 

through the use of an ORM, the choice of an ORM should consider how the 

ORM has been designed to manage performance.  Thus, a comparison of 

ORMs utilizing a benchmark test suite is required in order to provide an 

objective evaluation and comparison of ORM performance. 

This research developed an ORM performance evaluation framework 

by defining set of performance test cases that are based upon common 

database access scenarios.  The research then formulated an application of 

the framework on a selected number of Java ORMs in order to evaluate and 

compare ORM processing time, database access calls, and the use of object 

caching within the ORM.  The selected test ORMs included the Java 
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Persistence API (JPA) ORMs, Hibernate and OpenJPA, and the Java Data 

Objects (JDO) ORMs, JPOX and Speedo. 

The performance test cases are built around common database 

access scenarios that would frequently occur in an information-driven 

application.  These test cases included the following: 

• Loading an object twice within the same transaction; 

• Loading an object twice between transactions; 

• Loading only some of an object’s data; 

• Lazy-loading an object graph; 

• Eager loading an object graph; 

• Bulk loading similar objects; 

• Bulk saving objects; and, 

• Loading and saving a complex object. 

 The performance test case evaluation was undertaken by developing 

a benchmark application data model and creating a database schema to 

represent the storage of that model.  The data model contained common 

entity-relationship multiplicities found in all databases, including one-to-

one, one-to-many, and the use of a join table to break a many-to-many 

relationship into two, one-to-many relationships.  The database entities, 

along with their interrelationships, were mapped to Java objects using each 

selected ORM.  Database access code for the various performance test cases 

was then developed using each ORM, and the test cases were executed 

utilizing a testing framework. 
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1.3 Evaluation Criteria 

The evaluation of ORM performance was undertaken by executing a select 

set of performance test cases. While these test cases do not define all 

possible database access scenarios, the use of a simple set of test cases 

provides a practical approach that can be used to objectively evaluate 

performance and database access strategies. Thus, the test cases provide 

the necessary information required to ascertain whether there are drastic 

variations between ORMs with regard to processing time and remote 

database calls. 

The evaluation of each ORM was undertaken by measuring the 

processing time and number of database access calls required to execute 

each performance test case.  These evaluation criteria were selected as 

these measures provide the two key aspects of database access 

performance.  Processing time reflects the speed of the ORM in processing 

the task (performance test case), and thus provides a common metric for 

comparing the ORMs.  The number of database access calls, while not 

directly measuring performance, provides insight into the relative ability of 

each ORM to perform well in a distributed environment.  As the number of 

calls increase, the ORM performance can be negatively impacted in a 

distributed architecture simply due to the network overhead with remote 

database access. 
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 The use of memory by the ORM was not included in the evaluation 

criteria.  Although memory metrics can provide a possible measure of why 

an ORM performs well or performs poorly, the measure of memory by itself 

is not an actual measure of performance.  The count of the database access 

calls, in addition to the test case processing time, was considered more 

valuable in the evaluation as enterprise applications are typically 

distributed in multi-tiered applications. 

1.4  Thesis Organization 

The thesis is organized into seven chapters as follows: 

1 - Introduction:  This chapter presents background information on 
the importance of ORM frameworks and the objectives of this 
research. 

2 - Java ORM Implementations:  This chapter provides a review of Java 
ORM implementations currently utilized in the industry.  Included 
is a review of standard-based ORMs as well as non-standard-based 
ORMs. 

3 - Assessing ORM Performance:  This chapter provides a review of 
related research into the performance testing of ORM frameworks, 
including relational databases and object databases. 

4 - A Performance Evaluation Framework:  This chapter describes the 
performance testing approach utilized in this research, including 
the performance test cases, application data model, as well as the 
software and hardware utilized in the tests. 

5 - ORM Performance Results:  This chapter presents the results of the 
performance test cases, including tabular data of all tests and 
figures of selected tests. 

6 - Analysis and Discussion of  Results:  This chapter provides a full 
discussion of the performance test case results, investigates the 
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variances in performance, and discusses the impact of the 
performance differences on application design decisions. 

7 - Conclusions and Future Work:  This chapter presents a summary of 
the thesis, overall conclusions from the performance tests, and 
outlines future work that could be undertaken in the area of Java 
ORM performance evaluations. 
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2  Java ORM Frameworks 

2.1  Overview 

There are many Java ORM frameworks that are available today, including 

standard-based ORMs and non-standard-based ORMs. The intent of all of 

these frameworks is to provide an object-relational solution that frees the 

developer from writing database access code in addition to eliminating the 

need to develop an in-house object-relational solution.  While proprietary 

in-house ORM solutions can be developed, such frameworks usually come at 

a high cost compared to commercial solutions and open-source frameworks.   

There are currently three Java standard-based ORM frameworks:  

Enterprise Java Bean’s Container Managed Persistence (EJB-CMP), Java Data 

Objects (JDO), and the Java Persistence API (JPA).  These ORMs are 

considered “standard-based” since their respective interfaces are based on 

Java Specification Request (JSR) specifications developed under the Java 

Community Process (JCP).  JSR is a formal process administered by Sun 

Microsystems, with input from industry experts and vendors of Java 

products.  Thus, these ORMs are integrated into an actual Java release with 

implementations being supported by both open-source and commercial 

vendors.  
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Non-standard-based ORMs are not based on any JSR under the JCP.  

Instead, these ORMs are based upon a framework and API that has been 

developed by either an open-source project or a commercial vendor.  Thus, 

implementations of these non-standard ORMs cannot be swapped out with 

other implementations as their interface, and associated API, is proprietary 

in nature.  Nonetheless, many of these solutions provide feature-rich APIs 

and stable releases that are backed by a large development community. 

2.2  Enterprise Java Beans 

Enterprise Java Beans (EJB) is the Sun Microsystems specification for 

building and managing server-side components for enterprise-wide 

applications (Sun Microsystems, 2002, 2003, 2006).  The specification, which 

is part of the Java Enterprise  Edition (EE), has gone through several 

releases since it was first created in 1997, with the latest release being EJB 

3.0. The overall intent of the standard is to provide a common approach to 

implementing business logic across an enterprise.  This includes APIs for 

business components, persistence, transaction processing, messaging, 

naming and directory services, remote procedure calls, and web services. 

 The EJB design principles are centered on the idea that applications 

should be loosely coupled and that all EJB behavior is specified by 

interfaces.  The calling applications do not manage resources; instead, the 

container provides support to the developer.  EJB applications are also 
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tiered, with the session tier representing the API to the application and the 

entity tier representing the API to the datastore. 

 The tiered notion of EJBs means they are developed as one of three 

types:  Session Beans, Message Driven Beans, and Entity Beans.  Session 

Beans, which can be stateless or state-full, provide the functional interface 

by acting as the controller for the session tier.  Message Driven Beans 

provide an asynchronously listener interface that is used by Java Message 

Service.  

Entity Beans are persistable objects that represent entities in the 

application; thus, they represent the ORM component provided by the EJB 

specification.  The persistence of Entity Beans can be managed by the 

developer through the use of bean-managed persistence or through the 

container through container-managed persistence.  If bean-managed 

persistence is used, the developer must implement all database access code 

and interact directly with database or interface with another component in 

order to access the database. 

 The loosely coupled design principle dictated that applications could 

integrate EJBs from other applications and even other vendor’s 

applications.  EJBs can call other EJBs through the use of arbitrary names, 

and EJBs themselves can be developed without any prior knowledge of the 

environment in which they are to be deployed.  Overall, the idea is to 
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provide a very environment and application agnostic architecture for 

developing and deploying application components. 

 A key component of the EJB architecture is the services provided to 

the developer through the EJB container.  This includes object persistence 

through the entity bean API, security and the ability to hook into security 

APIs, transaction processing, and connection pooling. The container also 

provides complete component lifecycle management and manages thread 

behavior.  The complete configuration of all of these can be managed 

through configuration files in a declarative way, or through other graphical 

user interfaces provided by the container vendor. 

Although the EJB specification was adopted initially by many 

companies, developers soon found out that the EJB specification was fairly 

complex to develop and deploy.  This included a relatively large amount of 

configuration files that were required to deploy components in an EJB 

server. Some of these difficulties were not easy to accept without a clear 

understanding of the benefits the EJB specification was bringing to an 

application.  While developer tools were eventually developed by vendors 

to aid in EJB development and deployment, many software groups had 

already begun to switch to alternative APIs and frameworks, including open-

source ORMs and application frameworks. 
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 As mentioned above, the EJB specification has contains a persistence 

layer mechanism for mapping objects, known as Entity Beans, to a 

relational database.  The mapping can be managed by the developer 

through Bean Managed Persistence (BMP) or by an EJB container through the 

use of Container Managed Persistence (CMP).  In BMP, the developer writes 

the SQL code, while in CMP, the server develops and executes the SQL calls. 

In the current EJB release (3.0), this ORM component has been removed 

from the core EJB specification into its own API, termed Java Persistence 

API (JPA). The key distinction between JPA and EJB is that JPA does not 

need an EJB container for deployment, and can be deployed in a basic Java 

Runtime Environment (JRE), while EJB requires a complete runtime 

container that has implemented the appropriate EJB interfaces. 

  There are many EJB commercial and open-source products.  

Commercial implementations include IBM Websphere, BEA Weblogic, Oracle 

Application Server, and Macromedia's JRun.  Open-source implementations 

include JBoss, JOnAS, and OpenEJB.  The selection between commercial 

and open-source is usually based on cost and/or the availability of technical 

support by the vendor.  As mentioned above, the EJB architecture attempts 

provide a number of services to the developer above and beyond an ORM 

solution.  Thus, such a decision to use EJB may be based other services 

provided by the container or legacy integration components provided by the 

vendor. 



 

 

2.3  Java Data Objects

Java Data Objects (JDO) 

Java object persistence prior to issuance of the J

Microsystems, 2004, 2005

persistence is that objects (

objects (POJOS) and are not required to

JDO API is an interface that allows applications to persist these POJOs in a 

datastore, whereby the datastore itself does not need to be a relational 

database.  In fact the datastore can be a 

another source of data

Figure 

14 

Java Data Objects 

Java Data Objects (JDO) was Sun Microsystem’s original specification for 

Java object persistence prior to issuance of the JPA specification (

Microsystems, 2004, 2005). A key difference between JDO and EJB 

persistence is that objects (i.e., entities) in JDO can be plain
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 The overall JDO architecture consists of the JDO API that is provided 

by the Sun Specification and an implementation of the specification 

provided by the vendor or open-source project (Figure 2.1).  Since entities, 

or JDO objects, are POJOs within the JDO implementation, all 

configurations for mapping objects to the datastore is managed by key 

configuration file, typically named package.jdo by convention. 

The primary JDO session object is the PersistenceManager that 

provides an interface to query and manipulate JDO Objects through 

transactions. The PersistenceManager is obtained through a 

PersistenceManagerFactory which is configured through a properties 

file using name/value settings.  If multiple datastores are utilized in an 

application, then a PersistenceManagerFactory must be made 

available for each.  

In JDO, there are actually three types of Java classes: Persistence 

Capable, Persistence Aware, and Normal.   Persistence Capable classes can 

be persisted to a datastore and are enhanced prior to use.  Persistence 

Aware classes are utilized to manipulate Persistence Capable classes and 

are generally modified only slightly through the enhancement process.  

Normal classes are not able to be persisted, nor do these classes relate to 

an any persistable classes. 
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 A JDO implementation, through the use of the 

PersistenceManager, handles the entire lifecycle of a JDO object that 

has been mapped to an entity in the datastore (Figure 2.2). The transition 

throughout an object’s lifecycle is accomplished through operations made 

available through the PersistenceManager. 

 

 

Figure 2.2  JDO lifecycle states (Sun Microsystems, 2005) 

 The JDO specification calls for JDO implementations provide a query 

language termed JDOQL, which is an object-oriented query language that 

provides a way to select objects.  With JDO 2.0, an implementation must 

also provide SQL language support, if the implementations support SQL-

based datastores. 
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2.4  Java Persistence API 

As mentioned above, object persistence has been removed from the EJB 

specification into the JPA specification (Sun Microsystems, 2006a).  JPA was 

introduced in order to reduce the complexity of EJB development issues 

concerning BMP/CMP in addition to providing a single persistence API for all 

Java applications.  The intent of JPA was to bring together the best ideas 

from non-standard-based ORMs, such as Hibernate (see below), as well as 

JDO and commercial vendor products like Oracle’s TopLink.  Thus, Java 

would offer a common ORM model that any application could use, be it a 

server application or a stand-alone application. 

Similar to JDO, JPA is based on POJO objects where there are no 

specific Java classes or interfaces to extend (Figure 2.3).  In addition, JPA 

configuration is both annotation-based, where mappings can be defined 

within the classes themselves, and XML-based, where mappings are defined 

in external configurations files.  JPA also supports a query language that is 

similar to SQL and can support static as well as dynamic queries. 
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Overall, JPA includes the concepts of an Entity, the 

EntityManager.  An Entity is that object that is mapped 
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identity, is transactional during creates/updates/deletes, and is not a 
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EntityManager provides the interface on which to perform 

operations, including searching, creating, updating, and deleting an

or group of Entities.  When an Entity is obtained through an 

, that Entity becomes managed by that 

 

, the Entity’s 

is that object that is mapped 

can be made persistent, has a persistent 

ing creates/updates/deletes, and is not a 

An Entity is 

, which can be expressed as 

annotations within the Java (.java) file or as a separate XML configuration 

When annotations are used, the information is placed directly before 

provides the interface on which to perform 

operations, including searching, creating, updating, and deleting an 

is obtained through an 

becomes managed by that 



 

19 

 

EntityManager.  Thus, the set of managed Entities by an 

EntityManager is called a persistent context.  Thus, only a single 

instance of an Entity, with a specific Entity identity, can exist in a given 

persistent context of an EntityManager.  An EntityManager is 

configured to manage specific objects, interact with a specific database, 

and be implemented by a specific JPA provider.  The JPA provider is the 

implementation for the JPA persistent context, which includes the 

EntityManager, the EntityManager’s Query interface, and the 

generation of the SQL statements for accessing the database. 

 An EntityManager is obtained through an 

EntityManagerFactory, which is also provided by the implementation.  

The EntityManagerFactory is defined separately in a configuration file 

(persistence.xml) that is placed in the classpath of the Java Virtual Machine 

(JVM). Each configuration file may contain multiple 

EntityManagerFactory configurations; thus, multiple persistence 

contexts can be created for a single JVM and be made available to an 

application. 

With the creation of JPA, Sun Microsystems has created a common 

persistence API for object-relational mapping.  They intend to still support 

both the EJB CMP architecture and JDO; however, their long-term intent is 

to have applications move to the common JPA. 
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2.5  Non-Standard-Based ORMs 

There are numerous ORMs that are not based on a Sun Microsystems JSR.  By 

far, the most popular is Hibernate, an open-source ORM tool that gained 

major acceptance since its inception.  This is mostly due to Hibernate’s 

ease of use, especially in comparison to the configuration required for EJB 

entity-relationship mapping.  In general, Hibernate operates by holding the 

mapping between Java domain classes and database tables in external XML 

configuration files.  When the application runs, the Hibernate engine reads 

the mapping files and dynamically develops the classes that are utilized to 

manage the object-relational transactions.  The Hibernate codebase is 

managed by JBoss, which itself is a division of Red Hat.  Thus, Hibernate is 

actually managed by a commercial company, although has an open-source 

developed code base (Hibernate User Documentation, 2007; Pugh and 

Gradecki, 2004).  Hibernate also provides a JPA interface to the core 

Hibernate ORM code; thus, this framework is also accessible through a 

standard API. 

Another popular Java ORM is Apache Software Foundation’s Cayenne, 

which also includes a complete Graphical User Interface (GUI), known as the 

CayenneModeler.  Through the use of the GUI tool, a developer can bind 

database schemas directly to Java classes.  Cayenne supports atomic 

commits/rollbacks, the generation of SQL code, joins, and sequences.  

Cayenne also includes object caching, an object query language, pre-
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fetching relationships, object-inheritance, and database auto-detection 

(Cayenne User Documentation, 2007).  

One of the first open-source Java ORMs is the Castor Project.  Castor 

provides a Java persistence framework as well as a Java object model for 

serializing objects to XML and de-serializing XML back to objects.  Castor 

provides in-memory caching and write-at-commits in order to reduce JDBC 

access calls.  Castor also provides two-phase commit transactions, 

rollbacks, and deadlock detection (Castor User Documentation, 2007). 

An abundance of other ORMs have been developed and are usually 

available as open-source.  All of these generally work on the idea of using 

Java POJOs and the use of configuration files in order to map Java classes 

to RDMS tables.  These other ORMs include, but are not limited to the 

following: Carbonado (SourceForge Project); Torque (Apache Software 

Foundation); Hydrate (SourceForge Project); Ibatis (Apache Software 

Foundation); SimpleORM; and, JDBCPersistence. 

2.6  ORM Object Caching 

The caching of retrieved objects is a key component of ORM solutions in 

order to improve performance.  Overall, caching is intended to reduce the 

number of database access calls by saving data that has already been 

retrieved from the database.  The cache storage can be managed based on 
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updates/deletes to the persistence model, and can be periodically emptied 

in order to keep fresh data in the cache. 

 Caching generally occurs in two levels, a first-level cache and a 

second-level cache.  First level caches work directly within a single JVM, 

while second-level caches can work within a single JVM or can be 

distributed across JVMs.  In addition, query caches can be implemented that 

maintain the results of queries to the database. 

Caching usually allows a way to configure specific objects with a 

caching strategy, including options for reading and writing/updating data.  

A read-only cache is utilized for objects that are usually read from the 

database, but not updated.  A read/write cache is used for objects that are 

both read and updated.  A read/write cache adds additional computational 

overhead, thus it is not as fast as a read-only cache.  A nonstrict read/write 

cache is utilized when data is read and updated, but updated only rarely. 

Thus, the cache does not guarantee to keep two separate threads from 

modifying the data at the same time. 

Caching can be a key element to the performance of an ORM, with 

several commercial ORMs providing distributed cache components.  For 

example, the commercial JPA/JDO Kodo provides such a distributed cache 

management (Figure 2.4).  Using a cache architecture reduces read/writes 
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across several JVMs, an even several nodes while allowing all nodes to 

remain consistent with respect to the current state of the database. 

 

Figure 2.4  Distributed cache during database update                     
(Linskey and  Prud'hommeaux, 2007) 

2.7  Summary 

Several commercial and open-source Java ORMs are currently available that 

are based on Sun Microsystems standards and non-standard APIs.  The EJB 

ORM component termed Entity Beans has been criticized for being too 

difficult and complex, and thus has given way to more manageable 

frameworks such as Hibernate.  JDO and JPA offer alternatives to EJB entity 
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beans and allow the use of POJOs.  The current Sun Microsystem strategy is 

to move all data persistent to relatively new JPA architecture, while still 

supporting the EJB Entity Bean and JDO standards.  JDO and JPA are similar 

with respect to their APIs and the management of objects, including their 

POJO nature and the absence of a required runtime container. 

Open-source frameworks have also been very popular, with Hibernate 

being the most widespread in the industry.  Hibernate also provides a JPA 

interface to its core ORM engine; thus, Hibernate users have the option of 

using the JPA interface with an underlying Hibernate ORM engine.  There 

are also an abundance of other open-source solutions that have varying 

degrees of industry support and an associated developer community. 
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3  Assessing ORM Performance 

3.1  Overview 

Extensive research exists on the benchmarking of RDBMs object-oriented 

database management systems (ODBMS), with a majority of the studies 

being performed in the 1980’s and 1990’s when these technologies were 

beginning to be used extensively in industry.  While RDMSs and ODBMs 

performance studies exist, the literature is somewhat bare with respect to 

evaluating the relative performance of Java ORMs, as only a handful of 

papers examine the issue in an attempt to discern any differences between 

ORM design decisions.  In addition, while other studies are present that 

examine Java middleware performance, these studies have been focused on 

addressing CORBA (Harkema et. al., 2002),  CORBA and RMI (Juric et. al., 

2006), and web services (Juric et. al., 2000). 

3.2  Relational Database Performance 

The literature includes numerous studies into database performance, with 

the idea of performance measurements going back over twenty years 

(Demurjian et al, 1985).  Many of these studies involve investigating how 

benchmarks are constructed.  Most of the database vendors include private 

benchmarking tests that are also run.  While many benchmarks have been 
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developed and implemented, the industry has generally settled upon the 

use of a few. 

 The first performance benchmark was called the Wisconsin 

benchmark (Bitton et al., 1987).  This benchmark consisted of a set of 32 

retrieval and update commands in addition to a script for mult-user 

executions.  The benchmark provides two performance measures: execution 

time and the throughput of the system while running sixteen scripts at the 

same time.  The benchmark does not include a cost measure. 

 Another benchmark utilized simple queries for the performance 

measure (Rubenstein et al., 1987).  These researchers proposed a number of 

factors that improve performance, including caching the entire database, 

how to avoid the overhead associated with query optimization, and the use 

of physical links for pre-joining. 

 The benchmarking of an isolated database system is challenged in 

research that proposed the benchmarking of database applications 

(Doppelhammer et al., 1997).  These researchers state that isolated 

benchmarks do not represent real-world scenarios where applications are 

the interface to the database.  A TPC-D benchmark is proposed with results 

provided for the SAP R/3 system, which is an integrate business system.  A 

similar idea concerning the testing of database applications has also been 

proposed (Chays et al, 2000). 
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 A database benchmark (TPC-W) specifically directed toward web 

applications was developed by the TPC (Poess and Floyd, 2000).  This 

benchmark was developed due an industry need for measure for both 

software and hardware for an ecommerce application. The benchmark is 

based on an online shopping scenario and includes a combination of static 

web content and dynamic web content.  Additional work regarding web 

applications and results utilizing the TPC-W was performed by Deng et al., 

2004. 

Other researchers have also challenged the use of standard industry 

benchmarks (Seng et al., 2005).  These researchers claim standard 

benchmarks are domain-specific and that results are just estimates of 

potential system performance for pre-defined applications.  Instead, the 

researchers propose a benchmark that is both computer-assisted and is 

based on user requirements. 

Researchers have measured the performance differences between 

conventional computer architectures on which database applications run 

and computer architectures that have been developed specifically for 

databases (Yao, et al., 1987).  Results from the study indicate that database 

machine architectures are faster performers when compared to traditional 

computer architectures. 



 

28 

 

3.3  Object Database Performance 

The key strength of using an ODBMS is to gain a more flexible and 

maintainable system for complex data models, while improving database 

performance in such a complex system.  As an application generally grows 

in size, such a performance improvement can be realized more in an ODBMS 

unless the relational-database system is continually tuned to match 

application requirements.  Meanwhile ODBMSs do not provide an easy way 

to provide ad-hoc queries.  Thus, ODBMS are better for applications that 

have a complex hierarchy of classes such as engineering applications, while 

RDMSs are generally better for information systems where data models are 

relatively simple. 

The benchmarking of ODBMSs occurred mostly during the late 1980’s 

and 1990’s when the industry began questioning the performance these 

systems (Zyl et. al., 2006). Several of the ODMBS benchmarks were 

developed include the 001 Benchmark (Cattell and Skeen, 1992), the 007 

Benchmark (Carey et al. 1993), and the Hypermodel (Anderson et. al., 

1998).  One of the most popular is the 007 Benchmark which is based on the 

idea of a design library that is composed of parts and assemblies, an 

approach that is similar to a number of object databases such as CAD, CAM, 

and CASE.  The 007 Benchmark is generally used to test database associative 

operations, updates to indexed attributes, and traversals. The benchmark 
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suite is relatively large, and results are available for several major object 

database vendor products (Carey et al. 1993). 

3.4  Java ORM Performance 

An attempt at applying the OO7 Benchmark to Java ORMs was performed by 

Sun Microsystems (Jordan, 2004).  In fact, this study is by far the most 

complete overall evaluation of Java ORMs.  In the study, a number of ORMs 

are compared, including EJB-CMP, EJB-BMP, JDBC, and JDO.  The study was 

primarily aimed at setting up the framework for evaluating ORMs, although 

the study indicated that JDO was the best performer when compared to the 

other ORMs.  The study did not provide any analysis of the results or how 

various performance strategies factored into the results. 

Another use of the 007 Benchmark and Java ORMs is presented in 

Zyle, et. al., 2006.  These researchers actually cite the use of the 007 

Benchmark in an ORM study was taken from the Jordan 2004 study.  In the 

Zyle, et. al, study, the 007 Benchmark tests were use to evaluate the 

performance aspects of an object database, db4o, versus an ORM product, 

Hibernate.  Overall, the object database had better performance when 

compared to the ORM.  The study did not compare Java ORMs against other 

Java ORMs, nor did it investigate EJB-CMP, JDO, or JPA persistence 

mechanisms. 
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While the Jordan and then Zyle et. al. utilized the 007 Benchmark, 

another approach is presented in a study originally developed by The 

Middleware Company (Martin, 2005).  In this study, The Testbed of Object 

Relational Products for Enterprise Distributed Objects (TORPEDO), provides 

a set of application-level operations that are used to evaluate whether 

database access optimizations have been implemented in an ORM.  No 

results for TORPEDO testing are provided in the literature, nor does 

TORPEDO compare JPA against the other ORM frameworks.  However, the 

paper mentions that TORPEDO can be used for evaluating Hibernate, EJB-

CMP, JDO, and Oracle’s TopLink. 

One unpublished Java ORM benchmark, Pole Position, provides an 

automated test suite for examining object databases as well as ORM 

performance using a series of database access calls (Pole Position, 2007).  

Documentation provided on the Pole Position website provides some high-

level results comparing Hibernate and JDO against hand-coded JDBC calls.  

These results indicate that the use of an ORM has a negative impact on an 

application’s performance compared to hand-coded JDBC, although the use 

of caching can dramatically improve performance.  In addition, the use of 

an object database had better performance when compared to the use of 

an ORM.  The Pole Position documentation does not provide any evaluation 

of the results, nor is there an evaluation of JPA or more than a single JDO 

implementation. 
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3.5  Summary 

The literature contains only two studies that provide any evaluation of 

performance between various Java ORM designs and implementations.  An 

additional study (Martin, 2005) compared a Java ORM against an object 

database; however, no comparison between Java ORMs was made. 

While an open-source benchmark, Pole Position, is available to run 

tests between various Java ORMs, no discussion of the results is provided 

and no analysis is attempted to evaluate how ORM designs factored into the 

performance differences.  Finally, no study or benchmark attempts to 

compare multiple JPA or JDO implementations, nor provides an analysis of 

how various design decisions affect performance. 
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4  A Performance Evaluation Framework 

4.1  Overview 

The intent of the current research was to develop an objective framework 

for evaluating ORM performance and provide an implementation of that 

framework for a selected number of Java ORMs.  The implementation of the 

framework was intended to fill in gaps in the literature concerning Java 

ORM performance evaluations.  Most notably, the literature does not 

contain an evaluation of JPA and JDO, including the Hibernate 

implementation of JPA.  In addition, there is no evaluation of multiple JPA 

and/or JDO implementations.  Thus, this research evaluated the 

performance of two JPA implementations and two JDO implementations 

with the intent of comparing the performance of JPA with JDO in addition 

to comparing JPA implementations and JDO implementations. 

The evaluation of the ORMs was performed by defining the 

performance test cases of the framework, building a benchmark application 

data model, and then creating a database schema to represent the 

persistent storage of that model.  Each selected ORM was then used to 

develop domain classes and the necessary database access code to map the 

database entities and their associated relationships to these domain classes.  

After the domain classes and database access code were developed, the 
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suites of performance test cases were executed to evaluate the 

performance of each ORM. 

4.2 Performance Test Cases 

While an application’s persistent data model can be accessed in a nearly 

unlimited number of scenarios, this research proposes a suite of common 

data model access use cases under which the majority of database access 

occurs.  Thus, while the test cases do not cover all database usage 

scenarios, the test cases can be used to determine the relative performance 

of an ORM with regard to processing times, database access, and the use of 

object caching within the ORM implementation.  Specifically, eight 

performance test cases (Table 4.1) were developed in an attempt to 

provide a snapshot of the relative performance of the ORMs across a range 

of use cases that would occur within an application: 

• LoadObjectTwice  

• LoadObjectTwiceBtxTrx 

• LoadPartialObject 

• LazyLoadObjectGraph 

• EagerLoadObjects 

• BulkLoadObjects 

• BulkObjectSave 

• LoadAndSave 

 
The test cases, based on ideas identified in the TORPEDO framework 

(Martin, 2005), attempted to illuminate the ability or inability of the ORM to 
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perform efficient database access calls and internally manage objects in 

order to keep remote database access calls to a minimum. 

Table 4.1  Performance test cases 

Test Case Description Goal of the Test 

LoadObjectTwice  The same object is loaded 
twice within the same 
transaction. 

Determine time required 
to retrieve same object 
within the same 
transaction, and whether 
multiple database access 
calls are made. 

LoadObjectTwiceBtxTrx The same object is loaded 
twice within the same 
thread, but inside two 
separate transactions.  

Determine time required 
to retrieve the same 
object between 
transactions, and whether 
multiple database access 
calls are made. 

LoadPartialObject A group of objects are 
partially loaded with only 
selected fields populated 
during the transaction. 

Determine whether the 
ORM can retrieve a 
partially-loaded object, 
the time required to 
perform this task, and the 
number of database 
access calls. 

LazyLoadObjectGraph A complex object graph is 
lazy loaded on an as-needed 
basis during the transaction. 

Determine time required 
to lazy-load an object 
graph, including the 
number of database 
access calls. 

EagerLoadObjects A complex object graph is 
eagerly-loaded with all fields 
populated during the 
transaction. 

Determine time required 
to eagerly-load an object 
graph, including the 
number of database 
access calls 

BulkLoadObjects Complete sets of related 
objects are loaded within the 
same transaction. 

Determine time required 
to bulk-load related 
objects including the 
number of database 
access calls. 

BulkObjectSave A large set of objects are 
saved within the same 
transaction. 

Determine time required 
to bulk save objects 
within the same 
transaction, including the 
number of database 
access calls. 

 LoadAndSave A set of database reads is 
completed in order to create 
an object graph and then 
save it to the database. 

Determine time required 
to perform multiple reads 
and execute complex 
object graph save within 
the same transaction, 
including the number of 
database calls. 
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4.3  Application Domain Model 

In order to provide a runtime implementation of the test cases, an 

application domain model was developed. The selected domain was an 

airline reservation system that would allow airline passengers to book 

airline flights and pay for tickets (Figure 4.1).  The model is fairly self-

explanatory:  passengers can purchase tickets which can be associated with 

specific flights.  Tickets can also be associated with payments, which in 

turn have a payment status of paid, not paid, and pending.  

The data model contained common entity-relationship multiplicities found 

in all databases, including one-to-one, one-to-many, and the use of a join 

table to break a many-to-many relationship into two, one-to-many 

relationships.  In addition, the entities themselves contained a mix of data 

types, including characters, numeric types, and dates.  Overall, the airline 

reservation model was selected as it represents an intuitive model that can 

be easily visualized, in addition to maintaining entity-relationships found in 

common database schemas.  It should also be noted that a real-life domain 

was selected instead of a generic object domain in order to provide a more 

instinctive exploration of the test cases. 
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Figure 4.1  Airline reservation system entity-relationship model 

The airline reservation ER model was used to develop a persistent 

Java class model (Figure 4.2).  This Java model represented the 

application’s view of the ER data model, and included all persistent entities 

identified in the ER model (Figure 4.1).  The intent of developing the 

common Java model was to provide consistency between ORMs with respect 

to the class relationships and data types assigned to individual fields within 

each class. 
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Figure 4.2  Airline reservation class diagram 

4.4  Selected ORMs 

Implementations of the performance test cases using the application 

domain model were undertaken for a selected number of Java ORMs.  

Hibernate’s JPA implementation and OpenJPA were the JPA 

implementations that were selected (Table 4.2). The Hibernate open-source 

implementation was selected due to its widespread use in the industry.  

OpenJPA, which is also open-source, was selected due to its widespread use 

in the industry and its use as the ORM engine with the commercial Kodo 

JPA/JDO implementation. 
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The JDO implementations selected were JPOX and Speedo (Table 

4.2).  JPOX was chosen as it is the reference implementation of the JDO 2.0 

specification and is open-source.  Speedo was selected as it is a popular 

open-source implementation of JDO 2.0 maintained by ObjectWeb.  

Table 4.2  ORMs evaluated 

ORM Version Specification Company Type 

Hibernate 3.3 JPA JBoss(Red  Hat) Open-source 

OpenJPA 1.0 JPA Apache Open-source 

JPOX 1.2 JDO JPOX Open-source 

Speedo 4.1 JDO ObjectWeb Open-source 

4.5  TestIF 

A test interface (TestIF), as identified in Figure 4.3, was developed 

to represent each of the eight performance test cases (Table 4.1).  The 

TestIF represented the common interface that was executed from the 

testing harness during the performance evaluation. 

An ORM implementation of the TestIF was then developed for each 

of the selected ORMs (Figure 4.3).  Thus, each test case was translated to 

the domain model in order to develop a domain model use case that 

fulfilled the goal of the test, as identified in Table 4.1.  The ORM 

implementations were developed as described below in Section 4.7. 
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Figure 4.3  Performance testing interface class diagram 

The actual steps to complete each test case were duplicated within 

each TestIF implementation (Table 4.3).   In this way, each TestIF 

implementation was required to complete the same number of steps while 

leaving the implementation of those steps to the interface provided by the 

ORM.  For example, each ORM was required to execute all test cases within 

a transaction. 

Again, the intent of the research was to provide a consistent 

approach to the database access scenarios, thus, the identification of the 

test case mapping steps was critical to making sure each ORM 

implementation executed the same number of steps. 
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Table 4.3  Implementation steps for performance test cases 

Test Case Airline Reservation Implementation 
LoadObjectTwice 1.) Start Transaction 

2.) Retrieve Passenger object 

3.) Retrieve Passenger object again 
4.) Close Transaction 

LoadObjectTwiceBtwTrx 1.) Start Transaction 

2.) Retrieve Passenger object 
3.) Close Transaction 
4.) Start Transaction 

5.) Retrieve Passenger object again 
6.) Close Transaction 

LoadPartialObject 1.) Start Transaction 

2.) Retrieve Passenger object loaded with passengerId, 

phone, email 
3.) Close Transaction 

LazyLoadObjects 1.) Start Transaction 

2.) Retrieve Passenger object 

3.) Retrieve Passenger object’s Tickets 

4.) Retrieve each Ticket’s Flight objects 

5.) Retrieve each Ticket’s Payment objects 
6.) Close Transaction 

EagerLoadObjects 1.) Start Transaction 

2.) Load List of Payment objects with associated 

PaymentStatus objects 
3.) Close Transaction 

BulkLoadObjects 1.) Start Transaction 

2.) Retrieve List of Ticket objects 

3.) Bulk retrieve each Ticket’s Flights 

4.) Bulk retrieve each Ticket’s Payments 

BulkObjectSave 1.) Start Transaction 

2.) Create 10 Passenger objects 

3.) Save 10 Passenger objects 
4.) Close Transaction 

LoadAndSave 1.) Start Transaction 

2.) Retrieve Passenger 

3.) Create Ticket 

4.) Retrieve Flight and add to Ticket 

5.) Create Payment 

6.) Retrieve PaymentStatus and add to Payment 

7.) Add Payment to Ticket 

8.) Persist Ticket 
9.) Close Transaction 
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4.6  Performance Metrics 

The performance of each ORM to implement each test case was measured in 

terms of time, in milliseconds, and the number of database access calls 

required to complete the test. The time was collected for a single 

execution of each test case and for a collection of 100 executions of each 

test case for each ORM solution (Table 4.4).  Thus, the performance was 

measured for the initial execution of the test case as well as the ability of 

the ORM to cache data for subsequent calls to the test case within the same 

thread.  For each of these scenarios (single and 100 executions), a set of 10 

runs were performed with a mean time being recorded for the test case for 

the respective ORM. 

Table 4.4  Performance metrics 

Metric Units 

Time to execute test case 1 time ms 

Time to execute test case 100 times ms 

Number of database access calls to execute test case 1 time NA 

 

In addition to the multiple iteration comparison to assess caching, a 

selected evaluation of the Hibernate JPA implementation with and without 

caching was undertaken.  This evaluation was performed to determine the 

overall affect of caching on reducing the time required to process 100 

iterations of the loading test cases (LazyLoadObjects, 

EagerLoadObjects, BulkLoadObjects) 
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4.7  Software and Hardware Test Bed 

Each ORM implementation was developed using the Java 6 SDK, and the test 

case execution was performed using the Java 6 JRE. The Eclipse integrated 

development environment (IDE) was utilized to develop each ORM 

implementation of the TestIF, and the Ant build tool was used to build 

and execute each ORM performance test suite. 

The database utilized for the development and testing was Oracle 

10G Personal Edition.  Data load scripts were created and run to load the 

Oracle database schema with sample data for the performance tests. 

The application, including each ORM implementation, in addition to 

the local Oracle database was tested on Fedora Core 6 installed on a Dell 

Inspiron Notebook.  The Dell contained an Intel Core 2 Duo processor with 2 

GB of RAM. 

The collection of the performance metrics was assisted through the 

use of P6Spy and JProfiler.  P6Spy allowed the collection of the SQL calls 

that were made to the database, and JProfiler allowed an examination of 

the actual call stack.  In addition, a custom Logger class was constructed to 

measure the time to execute each test case for each TestIF ORM 

implementation. 
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5 ORM Performance Results 

5.1  Overview 

The complete results for the performance test cases are provided within the 

following chapter.  The results below are divided into the single execution 

results and the multiple execution results.  Also, included are figures for a 

selected number of ORM comparisons between the various performance test 

cases.  A discussion of these results is provided in Chapter 6. 

5.2  Single Execution of Performance Test Cases 

The single execution test results (Table 5.1, Figure 5.1) indicated the 

Hibernate JPA implementation was the quickest performer overall, as it 

held the shortest times or tied for the shortest times for all tests.  The 

OpenJPA implementation was the second fastest performer for all tests, 

followed by the JDO implementations JPOX and Speedo.  Thus, overall, the 

JPA implementations performed better when compared to the JDO 

implementations. 

Hibernate was noticeably faster on the LazyLoadObjects, 

BulkObjectSave, and the LoadAndSave test cases (Figure 5.2).  

Regarding lazy loading, Hibernate was at least two times faster, when 

compared to OpenJPA, and up to three times faster, when compared to the 
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JDO ORMs.  Hibernate’s BulkObjectSave test case was approximately four 

times faster than the next faster ORM (OpenJPA).  Hibernate’s 

LoadAndSave was also relatively fast as it was at least two times faster 

than the next fastest, which was also OpenJPA. 

The OpenJPA and JPOX ORMs exhibited similar times for nearly all 

tests, with only the LoadPartialObject test case showing any real 

difference between these two ORMs.  Thus, the OpenJPA and JPOX ORMs 

were the closest performers for the single execution test cases. 

Speedo was generally the slowest of the ORMs in the single 

execution, as it took approximately twice as long as any other ORM on the 

BulkLoadObjects and LoadAndSave test cases.  Speedo was also 

noticeably slower on the LoadPartialObject test case.  However, 

Speedo showed similar performance on LoadObjectTwice and 

LoadObjectTwiceBtwTrx test cases. 

 

Table 5.1  Time (ms) to complete single execution of test cases 

Test Case Hibernate OpenJPA JPOX Speedo 

LoadObjectTwice 30 60 30 30 

LoadObjectTwiceBtwTrx 30 60 30 30 

LoadPartialObject 30 30 90 210 

LazyLoadObjects 40 120 100 80 

EagerLoadObjects 50 70 90 110 

BulkLoadObjects 60 100 130 290 

BulkObjectSave 60 230 280 300 

LoadAndSave 70 170 180 380 



 

 

 

Figure 5.1  Time (ms) to complete single execution of loading test cases
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The number of database calls to execute each test case (Table 5.2) 

was identical between the JPA implementations with the exception of the 

BulkObjectSave and  LoadAndSave test cases.  For these test cases, 

Hibernate was able to batch the insert calls while OpenJPA was not. 

JPOX and Speedo both had more database calls compared to the JPA 

implementations. Both JDOs had four more accesses for the 

EagerLoadObjects and double the database calls for the 

BulkObjectSave. 

Speedo maintained the overall highest number of database calls for 

all test cases. Most notably, Speedo contained five more calls for the 

LoadPartialObject and LazyLoadObjects. 

Table 5.2  Number of database calls for single execution of test cases 

Test Case Hibernate OpenJPA JPOX Speedo 

LoadObjectTwice 1 1 1 1 

LoadObjectTwiceBtwTrx 1 1 1 1 

LoadPartialObject 1 1 1 5 

LazyLoadObjects 4 4 4 9 

EagerLoadObjects 1 1 5 5 

BulkLoadObjects 2 2 3 5 

BulkObjectSave 11 20 20 20 

LoadAndSave 8 8 10 10 
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5.3  Multiple Executions of Performance Test Cases 

The results of the multiple (100) executions of the test cases indicate the 

ORMs are more similar once the objects are loaded into memory (Table 5.3, 

Figure 5.3).  Thus, a significant about of the variance can be attributed to 

the differences in the initial load of the objects during the first execution of 

the test case in the thread. 

The overall internal caching abilities of JPOX and Speedo are 

somewhat slower when compared to the Hibernate plugin and OpenJPA.  

Noticeable differences are observed for the LoadPartialObject and 

LazyLoadObject test cases between the JPA and JDO implementations 

collectively.  Also noticeable differences are noted for LoadAndSave test 

case where Speedo was over 50 percent slower when compared to the other 

ORMs. 

Table 5.3  Time (ms) to complete 100 executions of test cases 

Test Case Hibernate OpenJPA JPOX Speedo 

LoadObjectTwice 70 100 180 100 

LoadObjectTwiceBtwTrx 100 110 180 100 

LoadPartialObject 90 70 300 350 

LazyLoadObjects 150 260 450 490 

EagerLoadObjects 230 290 320 350 

BulkLoadObjects 250 250 280 390 

BulkObjectSave 1680 1790 2100 2140 

LoadAndSave 730 720 810 1250 
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Time (ms) to execute 100 executions of selected test cases

vs. No Cache 

The results for the Hibernate object loading test cases under cache and no 

cache configurations indicated dramatic differences when caching is 

e requests (Table 5.4, Figure 5.4). When caching was 

LazyLoadObjects experience almost 300% gain in performance, 

EagerLoadObjects experienced 70% gain.  BulkLoadObjects

140% increase in performance with caching enabled.  Overall,

caching had a dramatic affect on improving test case performance when 

multiple iterations of the test case were performed. 
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Time (ms) to execute 100 executions of loading test cases for 
Hibernate under cache and no cache configurations.

Cache No Cache 
Performance
Gain (%)

LazyLoadObjects 150 590 293 

EagerLoadObjects 230 390 70 

BulkLoadObjects 250 600 140 

Time (ms) to execute 100 executions of loading test cases for 
Hibernate under cache and no cache configurations.
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6  Analysis and Discussion of Results 

6.1  Overall Performance 

On the single executions, the JPA implementations were better performers 

when compared to the JDO implementations, with Hibernate being the 

overall best performer of all implementations.  Of the two JDO 

implementations, JPOX was the better performer, and Speedo was the 

overall slowest of all the implementations.  In addition, JPOX was generally 

close to OpenJPA for nearly all test cases and even performed better in 

LazyLoadObjects. 

While the relative processing times for all test cases illustrate there 

are performance differences between the various ORMs, these variances 

may not necessarily translate into absolute performance differences.  For 

example, the complete LazyLoadObjects  range of values from the 

slowest (120 ms) to the fastest (40 ms) was just 80 ms.   In this case, a 

difference of 80 ms may end up as a significant performance difference in 

an method that has a running time of 100 ms, but may not be a significant 

performance consideration in a method that executes in 5000 ms.   Thus, 

the context of the application would be an important determinant as to 

whether the choice of the ORM would, in fact, had an impact on meeting 

performance requirements for that application.   For example, a relative 



 

51 

 

variance between the slowest and the fastest for LazyLoadObjects, 

which is a three-fold difference, may be a performance problem if an 

application can load these objects in, say, 10 seconds (for Hibernate) 

instead of 30 seconds (for OpenJPA).  

 The use of caching tended to level out the performance differences 

between the various ORMs.  Once the objects were retrieved from the 

database and held in memory, the speed of the ORM’s caching mechanism 

were generally equal. 

6.2  LoadObjectTwice 

All implementations were equal with respect to this test case, with the 

exception of OpenJPA which performed relatively slower.  A review of the 

processing time for OpenJPA indicated this difference was related to 

initializing the cache for the single execution, as OpenJPA was actually a 

relative fast performer for this test case during the multiple executions. 

 With regard to database access calls, all ORMs were able to execute 

this test case by accessing the database only once.  Thus, the subsequent 

call to retrieve the object the second time was made to the local object 

cache.  The cache implementations were relatively similar for the multiple 

executions, with the exception of the JPOX cache which was noticeably 

slower.  
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 In summary, the results of the test case indicated the ORMs 

performed equally in their respective database access strategy for loading 

the same object twice within the same transaction.  The differences in 

processing time were related to cache initialization and cache performance. 

6.3  LoadObjectTwiceBtwTrx 

The results of this test case were identical to the results for the 

LoadObjectTwice for the single executions.  Again, OpenJPA exhibited a 

slower time, which was related to initializing the cache for the single 

execution. 

 With regard to database access, all ORMs were able to execute the 

test case with only one database access call.  Thus, all ORMs were able to 

open multiple transactions and find the same object within the local cache 

without multiple database calls.  Also similar to LoadObjectTwice, the 

cache implementations were the same for the multiple executions, with the 

exception of the JPOX cache which was noticeably slower. 

 The similarities between the processing times for the 

LoadObjectTwice test and  the LoadObjectTwiceBtwTrx test are 

most likely attributed to the resolution of the system clock times returned 

by the test harness  during the test runs.  Thus, while both of these test 

cases actually loaded the same object twice, the 
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LoadObjectTwiceBtwTrx performed more actions as it had to also start 

and stop two transactions while LoadObjectTwice only had to start/stop 

a single transaction.  Thus, the overall unit of work was greater for 

LoadObjectTwiceBtwTrx although the times were identical due to the 

resolution of the system clock in measuring the processing times for the test 

cases. 

 In summary, the results of the test case indicate the ORMs performed 

equally in their respective database access strategy for loading the same 

object twice between transactions.  The differences in processing time 

were related to cache initialization and cache performance. 

6.4  LoadPartialObject 

This test case attempted retrieved contact information for a Passenger 

object without returning the entire object.  Thus, the test case was to 

return just the Passenger.passengerId, Passenger.phone, and 

Passenger.email without returning other data in the Passenger object.  

In addition, the query for loading the partial object was looped five times 

for each ORM for this test case. 

The Hibernate implementation allowed for the most elegant 

implementation for this test case by allowing a simple JPA NamedQuery to 

be added as an annotation in the Passenger class.  This query could then  
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be called by name through the ORM’s interface: 

@NamedQuery(name="getContactInfo", 

query="SELECT new Passenger(passengerId, phone, 

email) from Passenger p where p.passengerId = ?") 

 

OpenJPA provided a similar solution with the ability to insert a 

NamedQuery as an annotation; however, the results of the query were 

returned in an object array in the OpenJPA implementation, while the 

Hibernate implementation returned an actual Passenger object. 

 The JDO implementations did not provide a means to partially load 

an object’s data either through annotations or directly through the JDO API. 

As a result, an entire Passenger object was required to be retrieved with 

a normal query in order to complete the test case for the JDO 

implementations.  

 The key difference between this test case and the previous test cases 

discussed (LoadObjectTwice, LoadObjectTwiceBtwTrx) is that 

LoadPartialObject was executed as a query in the ORM implementation 

while the other test cases were executed as object lookups by object 

identifiers.  For example, in Speedo, LoadPartialObject test case 

implementation was executed as the following: 

Query query = pm.newQuery(Passenger.class); 

query.declareParameters("Long id"); 

query.setFilter("id == passengerId"); 

Passenger pass = (Passenger)((List)query.execute( 

new Long(10))).get(0); 
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While the LoadObjectTwice and LoadObjectTwiceBtwTrx test case 

implementations were executed as object queries based on object 

identifiers: 

PersistenceManager pm = getPersistenceManager(); 

Passenger pass (Passenger)pm.getObjectById( 

Passenger.class, "" + 1); 

By using a query, the ORMs were forced to utilize a query cache instead of a 

direct object identification cache, although the query cache is generally 

backed by the object ID cache. 

The results for this test case were drastically different between the 

JPA and JDO implementions.  Hibernate and OpenJPA were identical in 

processing times, while JPOX was three times slower than JPA and Speedo 

was seven times slower than JPA.  These variances are much greater than 

the variances observed for the previous test case regarding the loading of a 

single object. 

 A review of the database access strategies indicated that all ORMs 

accessed the database only once to complete the test case for the single 

execution scenario, with the exception of Speedo ORM.    Thus, the 

variations in the results are attributed mainly to the query caching ability of 

the ORM implementations, and secondarily to the quantity of the data 

returned during the partial object loading.  In addition, the looping of the 

query compounded the differences for even the single execution of the test 

case. 
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 In summary, the results of the test case indicated the JPA 

implementations were similar with respect to performance and query 

caching abilities.  The JDO implementations were significantly slower, with 

the slower times attributed mainly to the query caching abilities of the 

ORM. 

6.5  LazyLoadObjects 

The results of this test case indicated the ORMs exhibited similar processing 

times with the exception of Hibernate which was twice as fast as the next 

fastest time.  The average of the JPA implementations was approximately 

the same as the average of the JDO implementations. 

 The database access strategies indicate that all ORMs had the same 

number of remote calls, with the exception of Speedo which had nine 

database calls.  The higher number of database calls in the Speedo ORM 

were related to the retrieval of set data.  In Speedo, objects identified as 

sets were retrieved only when the object was retrieved, and not as a 

complete set.  This is in contrast to the other ORMs which retrieved set data 

as complete sets.   For example, in the test case, Speedo retrieved the set 

of Flight objects as individual database calls, while the other ORMs 

retrieved the set of Flight objects as a single database call.  While the 

Speedo exhibited additional database calls, the overall processing time was 
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actually less for Speedo due to the object identifier lookup for the lazy 

loaded objects. 

 Similar to the other test cases, OpenJPA exhibited longer 

initialization times for the cache during the single execution.  The cache 

also comes into play during the multiple execution scenarios whereby the 

JDO cache implementations were significantly slower when compared to the 

JPA ORMs.   

 In summary, the test case results indicated lazy object loading was 

relatively similar for all ORMs in terms of processing time.  This was true 

even though the Speedo implementation executed more database calls for 

the single execution scenario.  The performance of the caching affected the 

processing time of the multiple execution test cases with significant 

differences observed for the caching variations. 

6.6  EagerLoadObjects 

This test case attempted to retrieve all PaymentStatus data for a specific 

set of specific set of Payments with a single database call using the 

respective ORM interface.   Thus, the test case was to return a set of 

Payment objects along with each PaymentStatus object associated with 

each of the Payment objects. 
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The Hibernate and OpenJPA implementations allowed for a simple 

approach to solve this test case:  a JPA NamedQuery could be added as an 

annotation in the Payment class that retrieved the data: 

@NamedQuery(name="getPaymentFull", 

query="SELECT p FROM Payment p JOIN FETCH 

p.paymentStatus where p.paymentAmount = ?") 

 

While the above annotation is relatively easy to write and can be mapped to 

a name and altered without modifying the code.  It also highlights the 

ability of the JPA implementations to generate a significant amount of SQL 

and hide the underlying database mapping to the ORM layer.  For example, 

the above NamedQuery called getPaymentFull actually generates the 

following SQL at runtime: 

select 

payment0_.PAYMENT_ID as PAYMENT1_1_0_, 

paymentsta1_.PAYMENT_STATUS_ID as PAYMENT1_5_1_, 

payment0_.PAYMENT_AMOUNT as PAYMENT2_1_0_, 

payment0_.PAYMENT_STATUS_ID as PAYMENT4_1_0_, 

payment0_.TICKET_ID as TICKET3_1_0_, 

paymentsta1_.PAYMENT_DESCRIPTION as PAYMENT2_5_1_  

from AIRLINE.PAYMENT payment0_, 

AIRLINE.PAYMENT_STATUS paymentsta1_ 

where payment0_.PAYMENT_STATUS_ID = 

paymentsta1_.PAYMENT_STATUS_ID and 

payment0_.PAYMENT_AMOUNT=? 

 

 

In contrast to the JPA implementations, the JDO API did not provide 

a means to execute an eager load of an object graph.  While JPA provides a 

way to detach objects from their respective EntityManager instances, 
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the detachment is performed on an object by object basis and cannot be 

performed in an eagerly-loaded fashion. 

The processing times for this test case indicated the JPA 

implementations with their join statements were able to perform better 

than the JDO implementations.  Speedo was over twice as slow as Hibernate 

due to the higher database calls and the initialization of the cache.  

Due to the absence of a join function in JDO, these ORMs executed 

five database calls for the single execution while the JPA ORMs executed 

only one database call.  As noted above, these additional calls resulted in 

real differences in the processing time. 

Once the objects in were loaded, the caching of the objects 

generally leveled the performance of the ORMs during the multiple 

executions.  The differences during the multiple executions can be 

attributed primarily to the initial loading of the objects into the cache.  The 

caches, based on object caches once the IDs were loaded, tended to 

perform similarly in terms of processing time. 

In summary, the results of this test case indicated the ability to 

develop complex joins through the ORM had significant affects on the 

processing time during the initial loading of the objects.  JDO did not 

provide a method to execute eager loading of object graphs.  The caching 
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generally leveled the ORMs in their respective processing times during the 

multiple executions. 

6.7  BulkLoadObjects 

This test case attempted to retrieve all Ticket data for a specific 

Passenger with a single database call using the respective ORM interface 

API.   Thus, the test case was to return a Ticket object along with the set 

of Flight objects and the set of Payment objects associated with that 

Ticket.  The intent was to see if the ORM can build a complex join query 

to bulk load related data. 

The Hibernate and OpenJPA implementations allowed for a simple 

approach to solve this test case:  a JPA NamedQuery could be added as an 

annotation in the Ticket class that retrieved the data: 

@NamedQuery( 

name="getTicketFull", 

query= 

"SELECT t FROM Ticket t 

JOIN FETCH t.flights 

JOIN FETCH t.payments  

where t.passenger.passengerId = ?") 

The above query resulted in the following complex join to be executed by 

both the Hibernate and OpenJPA implementations. 

select ticket0_.TICKET_ID as TICKET1_2_0_, 

flight2_.FLIGHT_ID as FLIGHT1_4_1_, payments3_.PAYMENT_ID 

as PAYMENT1_1_2_, ticket0_.PASSENGER_ID as 

PASSENGER6_2_0_, ticket0_.STATUS_CODE as STATUS2_2_0_, 

ticket0_.TICKET_TYPE as TICKET3_2_0_, 

ticket0_.TICKET_CLASS as TICKET4_2_0_, 
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ticket0_.BOOKING_DATE as BOOKING5_2_0_, 

flight2_.FLIGHT_NUMBER as FLIGHT2_4_1_, 

flight2_.AIRPLANE_ID as AIRPLANE7_4_1_, 

flight2_.ORIGIN_AIRPORT as ORIGIN3_4_1_, 

flight2_.DESTINATION_AIRPORT as DESTINAT4_4_1_, 

flight2_.DEPART_TIME as DEPART5_4_1_, 

flight2_.ARRIVAL_TIME as ARRIVAL6_4_1_, 

flights1_.TICKET_ID as TICKET1_0__, flights1_.FLIGHT_ID 

as FLIGHT2_0__, payments3_.PAYMENT_AMOUNT as 

PAYMENT2_1_2_, payments3_.PAYMENT_STATUS_ID as 

PAYMENT4_1_2_, payments3_.TICKET_ID as TICKET3_1_2_, 

payments3_.TICKET_ID as TICKET3_1__, 

payments3_.PAYMENT_ID as PAYMENT1_1__ from AIRLINE.TICKET 

ticket0_, TICKET_FLIGHT flights1_, AIRLINE.FLIGHT 

flight2_, AIRLINE.PAYMENT payments3_ where 

ticket0_.TICKET_ID=flights1_.TICKET_ID and 

flights1_.FLIGHT_ID=flight2_.FLIGHT_ID and 

ticket0_.TICKET_ID=payments3_.TICKET_ID and 

ticket0_.PASSENGER_ID=? 

In contrast JPA, the JDO API did not provide as elegant a means to 

execute a bulk load of an object graph.  Instead, the JDO ORMs had to 

execute standard queries to retrieve the objects. 

The processing times for this test case indicated the JPA 

implementations with their join statements were able to perform better 

when compared to JDO.  Hibernate was significantly faster, and Speedo was 

significantly slower when compared to the overall average times.  These 

times, again, were generally similar when the caching mechanism was 

included during the multiple executions. 

In summary, the results of this test case indicated the JPA 

implementations allowed a way to join fetch all data in the least amount of 

database calls.  This resulted in significantly faster processing times during 
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the single executions, although the times were similar once the objects 

were loaded during the multiple executions. 

6.8  BulkObjectSave 

This test case examined the ability ORM in performing batch updates in a 

single database call, even when multiple objects had been created within a 

transaction.    Thus, the test case was really a test of whether or not the 

ORM even offered the ability to execute batch inserts, and then how fast 

the ORM was able to execute the batch update. 

 The processing times for the single execution indicated Hibernate 

was the best performer by a four-fold margin, and the other ORMs were 

generally the same in terms of performance.  The database access calls 

indicate that Hibernate was the only ORM that was able to batch insert 

during the execution of the test case. The overall affect of caching did not 

have a significant effect on the processing times since the test case was not 

reading data from the data base. 

In summary Hibernate performed significantly faster due to the batch 

insert functionality offered.  All ORMs performed more closely during the 

multiple executions as caching did not affect the overall processing times. 
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6.9  LoadAndSave 

The purpose of this test case was to determine performance for a series of 

reads and a write to the database.  Thus, the test case combined aspects of 

other test cases into a typical use case that is found in most all 

applications. For example, the Hibernate implementation of the test case 

was as follows: 

         EntityManager em = getEntityManager(); 
        EntityTransaction tx = em.getTransaction(); 

         

        tx.begin(); 

        Passenger pass = (Passenger)em.find( 

Passenger.class, new Long(1)); 

         

        Ticket t = new Ticket(); 

        t.setBookingDate(new Date()); 

        t.setStatusCode(3); 

        t.setTicketClass(8); 

        t.setTicketType(9999); 

        t.setPassenger(pass); 

   

         

        Query q = em.createQuery( 

"select f from Flight f where f.flightNumber = 

'XY453'"); 

        q.setHint("org.hibernate.cacheable", true); 

        Flight f1 = (Flight)q.getSingleResult(); 

         

   em.createQuery("select f from Flight f where     

     f.flightNumber = 'AB332'"); 

        q.setHint("org.hibernate.cacheable", true); 

        Set<Flight> flights = new HashSet<Flight>(); 

        flights.add(f1); 

        t.setFlights(flights);  

         

        q = em.createQuery("select ps from PaymentStatus 

  ps where ps.paymentDescription = 'Paid'"); 

        q.setHint("org.hibernate.cacheable", true); 
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        PaymentStatus ps = 

 (PaymentStatus)q.getSingleResult(); 

        Set<Payment> payments = new HashSet<Payment>(); 

        Payment pay1 = new Payment(); 

        pay1.setPaymentAmount(100); 

        pay1.setPaymentStatus(ps); 

        pay1.setTicket(t); 

        payments.add(pay1); 

        t.setPayments(payments); 

 

        em.persist(t); 

        tx.commit(); 

        em.close(); 

 

 The results of this test case indicated that Hibernate was the fastest 

performer, although OpenJPA and JPOX exhibited similar times to 

Hibernate.  Speedo was the slowest performer, and was nearly five times 

slower than Hibernate. 

 The database calls indicated that Hibernate and OpenJPA were able 

to complete the test case in the least number of calls, while JPOX and 

Speedo required more steps to retrieve the initial data in the load phase.   

The processing time for Hibernate was relatively faster than OpenJPA due 

to the initialization of the OpenJPA cache for the required reads to 

implement the test case. 

 The multiple executions of the test case indicated that Hibernate, 

OpenJPA, and JPOX were relatively equal once the initial objects were read 

into memory.  However, Speedo was significantly slower when compared to 

JPOX and the JPA ORMs.  This difference was related to the query caching 

management of the Speedo implementation. 
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 In summary, all the ORMs held similar processing times with the 

exception of Speedo which contained significantly slower times.  The JDO 

ORMs required additional database calls to select the sequence, and Speedo 

required additional time for query cache management. 

6.10  Cache vs No Cache 

Caching had a dramatic affect on the ability of the Hibernate ORM to 

execute the loading test cases (LazyLoadObjects, EagerLoadObjects, 

and BulkLoadObjects).  Similar, although not as striking results, can be 

seen in the other test cases for the single vs. multiple executions, as 

caching leveled the playing field during the multiple runs.  Again, the ability 

of the ORM to locate the object in the local stack vs. a remote database call 

was very important in the processing time of the ORM in to execute the test 

case. 

 The results indicated the importance of caching in performance and 

the overall design decisions of the ORM.  This was even seen in this study 

which had a locally deployed database that was running on the same node 

as the application.  Thus, the importance of caching would become even 

more important given additional network overhead that most applications 

would occur.  This additional overhead would need to be factored into the 

processing time of an application in the absence of a cache. 
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7 Conclusions and Future Work 

7.1  Conclusions 

This research developed an ORM performance evaluation framework 

by identifying a set of performance test cases that are based upon common 

database access scenarios.  The research then executed these test cases on 

a selected number of Java ORMs in order to evaluate and compare ORM 

processing time, database access calls, and the use of object caching.  

The application of the test cases revealed significant performance 

differences between the selected test ORMs.  The JPA implementations 

were better performers when compared to the JDO implementations, with 

Hibernate being the overall best performer of all implementations.  Of the 

JDO implementations, JPOX was the better performer, and Speedo was the 

overall slowest of all the implementations.  

All implementations included a caching mechanism that reduced the 

number of database calls.  Overall, the implementations were relatively 

similar in regards to their processing time when retrieving cached objects. 

The ORMs performed equally in their respective database access 

strategy for loading the same object twice within the same transaction and 

between transactions.  The differences in processing time were related to 

cache initialization. 
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Lazy object loading was relatively similar for all ORMs in terms of 

processing time.  Eager loading objects, however, was not similar between 

ORMs, as JDO did not provide a method to execute eager loading of object 

graphs. The JPA implementations also allowed a way to join fetch related 

data in the least amount of database calls.  Hibernate was the only ORM 

that offered batch insert functionality; thus, this ORM was able to perform 

significantly better during batch inserts. 

Caching had a dramatic impact on processing time when multiple 

calls are made to retrieve objects.  In addition, the ability to cache queries 

and manage the object cache with queries was important in determining 

overall processing time.  Thus, the ability of the ORM to perform caching 

and possibly allow for a pluggable cache is an important decision when ORM 

performance is a factor in the overall application design.  This research 

indicated that cache initialization can take a relatively significant amount 

of time compared to the actual database call in some situations; thus, 

applications should consider the initializing cache at application startup in 

those contexts where performance is a concern. 

The results indicate that ORMs exhibit considerable differences in 

terms of performance and database access, while all executing the same set 

of test cases.  These differences can be used to assist developers in 

navigating around performance issues in applications that utilize the 

specific ORM.  The application of a common set of performance test cases 
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can be undertaken by the ORM community in order to develop a common 

benchmark for ORM performance and database access.  Such a benchmark 

would provide ORM users with insight into how the ORMs implemented 

common data access scenarios.  This information would allow developers to 

integrate ORM performance into decisions regarding ORM selection and the 

application of ORMs to specific contexts.  

7.2  Future Work 

The results of this research have identified additional areas of study that 

could be undertaken to better understand database access strategies and 

their associated performance implications.  These additional areas of study 

include the following: 

• Implement and execute the test cases on addition ORMs, including 

non-standard-based ORMs; 

• Perform an evaluation of ORM caching implementations, including an 

analysis of distributed cache management during various 

update/insert scenarios; 

• Add a database insert and read performance test case that evaluates 

ORM performance and database access for dirty objects; 

• Add a database update performance test case that evaluates 

database access for updated objects in the cache; 
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• Add a test case for database deletes, including an evaluation of 

cascade delete operations; 

• Execute the performance test cases with multiple clients connected 

to the same ORM cache to determine the performance variation 

associated with locking and synchronization; and, 

• Perform the performance test cases for a wider range of JPA 

implementations, including the commercial versions of Oracle’s 

TopLink and BEA’s Kodo.  
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