

An Evaluation of the Performance and
Database Access Strategies of Java

Object-Relational Mapping Frameworks

BY

Kevin R. Higgins

Submitted to the Department of Electrical Engineering and
Computer Science and the Faculty of the Graduate School of the
University of Kansas in partial fulfillment of the requirements for

the degree of Master’s of Science

Committee Members: Hossein Saiedian, Ph.D.

 Professor
Thesis Chairperson

Arvin Agah, Ph.D.
Associate Professor

Xue-wen Chen, Ph.D.
Assistant Professor

Date Defended: October 5, 2007

i

The Thesis Committee for Kevin R Higgins
certifies that this is the approved version of the following thesis:

An Evaluation of the Performance and
Database Access Strategies of Java

Object-Relational Mapping Frameworks

Committee Members: ____________________________________
 Thesis Chairperson

Date Approved: _____________

ii

Abstract

With an object-relational mapping (ORM) tool, the software developer does
not have direct control over the structured query language (SQL) calls to
the database and thus relies on ORM decisions regarding how the database
model is accessed. These database access strategies are critical to an
application’s performance since databases are typically remote from the
application’s runtime. In essence, an ORM can introduce performance
issues if the ORM is not able to generate efficient SQL, manage transactions,
and provide an adequate caching mechanism.

This research formulated an ORM performance evaluation framework
by defining a set of performance test cases that are based upon common
database access scenarios. The research then developed an implementation
of the framework using a selected number of Java ORMs in order to evaluate
the ORM processing time, database access calls, and the use of object
caching within the ORM. The selected ORMs included two Java Persistence
API (JPA) ORMs, Hibernate and OpenJPA, and two Java Data Objects (JDO)
ORMs, JPOX and Speedo.

The performance test cases revealed significant performance
differences between the selected ORMs. The JPA implementations were
better performers when compared to the JDO implementations, with
Hibernate being the overall best performer of all ORMs. The ability of an
ORM to create more complex SQL provided significant performance gains
when eager loading objects, bulk loading related objects, and performing
batch inserts. The test framework also indicated that caching had a
dramatic impact on reducing processing time when multiple calls are made
to retrieve objects. In fact, caching was as important as efficient SQL
generation when evaluating the processing times.

The results indicate that ORMs exhibit considerable differences in
terms of performance and database access, while all executing the same set
of test cases. The application of a common set of benchmark performance
test cases, as defined and implemented in this research, can be undertaken
by the ORM community in order to provide an objective process for
evaluating ORM performance. Such a benchmark would provide ORM users
with insight into how the ORMs implemented common data access scenarios.
This information would then allow developers to better select ORMs for
their respective application context.

iii

Acknowledgements

I would like to extend my sincere gratitude to Professor Hossein Saiedian for

his invaluable guidance during the course of my graduate studies and in the

development of my thesis. I would like to give special thanks to my

committee members, Professor Arvin Agah and Professor Xue-wen Chen, for

their time in serving on my committee and their useful feedback. Finally, I

would like to thank my friends and family for their support during this

undertaking.

iv

Table of Contents

1 Introduction .. 1

1.1 Background Information .. 1

1.2 Research Objectives and Methodology .. 4

1.3 Evaluation Criteria .. 6

1.4 Thesis Organization .. 7

2 Java ORM Frameworks .. 8

2.1 Overview .. 9

2.2 Enterprise Java Beans .. 10

2.3 Java Data Objects ... 14

2.4 Java Persistence API ... 17

2.5 Non-Standard-Based ORMs ... 20

2.6 ORM Object Caching .. 21

2.7 Summary .. 23

3 Assessing ORM Performance .. 25

3.1 Overview .. 25

3.2 Relational Database Performance ... 25

3.3 Object Database Performance ... 28

3.4 Java ORM Performance .. 29

3.5 Summary .. 31

4 A Performance Evaluation Framework ... 32

4.1 Overview .. 32

4.2 Performance Test Cases .. 33

4.3 Application Domain Model .. 35

4.4 Selected ORMs ... 37

4.5 TestIF ... 38

v

4.6 Performance Metrics .. 41

4.7 Software and Hardware Test Bed .. 42

5 ORM Performance Results .. 43

5.1 Overview .. 43

5.2 Single Execution of Performance Test Cases .. 43

5.3 Multiple Executions of Performance Test Cases .. 47

5.4 Cache vs. No Cache .. 48

6 Analysis and Discussion of Results.. 50

6.1 Overall Performance .. 50

6.2 LoadObjectTwice .. 51

6.3 LoadObjectTwiceBtwTrx ... 52

6.4 LoadPartialObject ... 53

6.5 LazyLoadObjects .. 56

6.6 EagerLoadObjects ... 57

6.7 BulkLoadObjects .. 60

6.8 BulkObjectSave .. 62

6.9 LoadAndSave ... 63

6.10 Cache vs No Cache ... 65

7 Conclusions and Future Work ... 66

7.1 Conclusions ... 66

7.2 Future Work ... 68

Bibliography .. 70

vi

List of Tables

4.1 Performance test cases ... 34

4.2 ORMs evaluated ... 38

4.3 Implementation steps for performance test cases 40

4.4 Performance metrics .. 41

5.1 Time (ms) to complete single execution of test cases.................... 44

5.2 Number of database calls for single execution of test cases 46

5.3 Time (ms) to complete 100 executions of test cases 47

5.4 Time (ms) to execute 100 executions of loading test cases
 for Hibernate under cache and no cache configurations. 49

vii

List of Figures

 2.1 JDO architecture overview ... 14

 2.2 JDO lifecycle states ... 16

 2.3. JPA architecture overview ... 18

 2.4 Distributed cache during database update 23

 4.1 Airline reservation system entity-relationship model 36

 4.2 Airline reservation class diagram ... 37

 4.3 Performance testing interface class diagram 39

 5.1 Time (ms) to complete single execution of loading test cases 45

 5.2 Time (ms) to complete single execution of BulkObjectSave

 and LoadAndSave test cases ... 45

 5.3 Time (ms) to execute 100 executions of selected test cases 48

 5.4 Time (ms) to execute 100 executions of loading test cases for
 Hibernate under cache and no cache configurations. 49

1

1 Introduction

1.1 Background Information

The relational database management system (RDMS) is at the heart of the

modern enterprise systems that run businesses today. RDMSs offer flexible

and robust ways to manage data, share data between different applications,

and secure the information that runs nearly all companies. The technology

strategies of companies recognize this fact, as most businesses have large-

scale investments in relatively-expensive RDMSs that house the data that

runs the business. As such, most information technology (IT) software

developers work with some form of RDMS, and it would be difficult to find

an IT job that did not involve accessing RDMSs in some fashion.

While software developers find themselves working directly with

RDMS on a daily basis, the logical structure of the data in an RDMS is quite

different when compared to the object-oriented (OO) languages that are

the implementation choice for most IT systems today. An OO language

allows the developer to build an object-view of a business since it provides

a way to group data and behavior together in a single, logical unit.

Complex business logic needs such an OO domain model that offers

inheritance and polymorphism, in addition to the design pattern

opportunities that OO languages provide. However, while OO languages are

2

easy to work with regards to business modeling, the OO paradigm is in

contrast to the RDMS’s representation of data in tabular form where data is

logically portrayed in tables and rows.

This difference between the OO paradigm that is used to develop

business logic and the RDMS paradigm that is used to store and manage the

business data has been called the object-relational paradigm mismatch, also

known as impedance mismatch (Cattell, 1991). The object-relational

mismatch is based on a number of reasons, including the fact that objects

come in a range of granularity from coarse-grained to fine-grained, while

databases offer just two levels of granularity: table and column. In

addition, an RDMS does not provide any mechanism for inheritance or

dealing with subtypes. Finally, RDMS associations are represented as

foreign keys which are not necessarily directional, while object associations

are represented as references that are directional.

Overall, the object-relational mismatch must be solved by the

developer if the system is to be maintainable and responsive to change.

Solving the problem can be undertaken by interacting directly with the low-

level driver interface provided by the RDMS vendor. In this way, a

developer manually maps objects to tables by hand-coding structured query

language (SQL) calls to the RDMS in order to access and manage the stored

data. In addition, the developer manages the communication between the

3

application and the RDMS, including establishing connections, scrolling

through result sets, and handling exceptions. In short, the developer

manages all interaction with the database.

The problem with the low-level, call-interface interaction with the

database is that it takes time away from developing code that actually

solves the business problem at hand. Thus, the developer must

code/test/debug code just to store and retrieve data in addition to writing

the business logic of the application. As a result, object-to-database

applications can require a great deal of coding just to overcome the object-

relational impedance mismatch.

An alternative to this low-level access to a RDMS is the use of an

object-relational mapping (ORM) tool that hides the RDMS access

management and the tabular view of the data. ORMs reduce development

cost since the ORM product implements the object-table mapping instead of

the developer. In general, the ORM tools provide a code-generated bridge

between the object paradigm and the relational paradigm. The ORM

manages the database access, scrolls through the result sets, and sets/gets

data into the objects that are used in the business logic of the application.

While the software developer must still know how to configure the

communication between the relational database and the application’s

4

object model, the amount of code to be developed, tested, and debugged is

significantly reduced.

1.2 Research Objectives and Methodology

While an ORM offers a large amount in the way of developing manageable

code, the removal of the developer from the database access does have its

disadvantages. Most notably, the developer does not have direct control

over the SQL calls to the database and thus must rely on ORM decisions

regarding how the data model is accessed. This database access, consisting

of disk read/writes and (typically) remote access, is a key performance

consideration in most applications using an RDMS. Due to the performance

considerations of RDMS access and the loss of control over that access

through the use of an ORM, the choice of an ORM should consider how the

ORM has been designed to manage performance. Thus, a comparison of

ORMs utilizing a benchmark test suite is required in order to provide an

objective evaluation and comparison of ORM performance.

This research developed an ORM performance evaluation framework

by defining set of performance test cases that are based upon common

database access scenarios. The research then formulated an application of

the framework on a selected number of Java ORMs in order to evaluate and

compare ORM processing time, database access calls, and the use of object

caching within the ORM. The selected test ORMs included the Java

5

Persistence API (JPA) ORMs, Hibernate and OpenJPA, and the Java Data

Objects (JDO) ORMs, JPOX and Speedo.

The performance test cases are built around common database

access scenarios that would frequently occur in an information-driven

application. These test cases included the following:

• Loading an object twice within the same transaction;

• Loading an object twice between transactions;

• Loading only some of an object’s data;

• Lazy-loading an object graph;

• Eager loading an object graph;

• Bulk loading similar objects;

• Bulk saving objects; and,

• Loading and saving a complex object.

 The performance test case evaluation was undertaken by developing

a benchmark application data model and creating a database schema to

represent the storage of that model. The data model contained common

entity-relationship multiplicities found in all databases, including one-to-

one, one-to-many, and the use of a join table to break a many-to-many

relationship into two, one-to-many relationships. The database entities,

along with their interrelationships, were mapped to Java objects using each

selected ORM. Database access code for the various performance test cases

was then developed using each ORM, and the test cases were executed

utilizing a testing framework.

6

1.3 Evaluation Criteria

The evaluation of ORM performance was undertaken by executing a select

set of performance test cases. While these test cases do not define all

possible database access scenarios, the use of a simple set of test cases

provides a practical approach that can be used to objectively evaluate

performance and database access strategies. Thus, the test cases provide

the necessary information required to ascertain whether there are drastic

variations between ORMs with regard to processing time and remote

database calls.

The evaluation of each ORM was undertaken by measuring the

processing time and number of database access calls required to execute

each performance test case. These evaluation criteria were selected as

these measures provide the two key aspects of database access

performance. Processing time reflects the speed of the ORM in processing

the task (performance test case), and thus provides a common metric for

comparing the ORMs. The number of database access calls, while not

directly measuring performance, provides insight into the relative ability of

each ORM to perform well in a distributed environment. As the number of

calls increase, the ORM performance can be negatively impacted in a

distributed architecture simply due to the network overhead with remote

database access.

7

 The use of memory by the ORM was not included in the evaluation

criteria. Although memory metrics can provide a possible measure of why

an ORM performs well or performs poorly, the measure of memory by itself

is not an actual measure of performance. The count of the database access

calls, in addition to the test case processing time, was considered more

valuable in the evaluation as enterprise applications are typically

distributed in multi-tiered applications.

1.4 Thesis Organization

The thesis is organized into seven chapters as follows:

1 - Introduction: This chapter presents background information on
the importance of ORM frameworks and the objectives of this
research.

2 - Java ORM Implementations: This chapter provides a review of Java
ORM implementations currently utilized in the industry. Included
is a review of standard-based ORMs as well as non-standard-based
ORMs.

3 - Assessing ORM Performance: This chapter provides a review of
related research into the performance testing of ORM frameworks,
including relational databases and object databases.

4 - A Performance Evaluation Framework: This chapter describes the
performance testing approach utilized in this research, including
the performance test cases, application data model, as well as the
software and hardware utilized in the tests.

5 - ORM Performance Results: This chapter presents the results of the
performance test cases, including tabular data of all tests and
figures of selected tests.

6 - Analysis and Discussion of Results: This chapter provides a full
discussion of the performance test case results, investigates the

8

variances in performance, and discusses the impact of the
performance differences on application design decisions.

7 - Conclusions and Future Work: This chapter presents a summary of
the thesis, overall conclusions from the performance tests, and
outlines future work that could be undertaken in the area of Java
ORM performance evaluations.

9

2 Java ORM Frameworks

2.1 Overview

There are many Java ORM frameworks that are available today, including

standard-based ORMs and non-standard-based ORMs. The intent of all of

these frameworks is to provide an object-relational solution that frees the

developer from writing database access code in addition to eliminating the

need to develop an in-house object-relational solution. While proprietary

in-house ORM solutions can be developed, such frameworks usually come at

a high cost compared to commercial solutions and open-source frameworks.

There are currently three Java standard-based ORM frameworks:

Enterprise Java Bean’s Container Managed Persistence (EJB-CMP), Java Data

Objects (JDO), and the Java Persistence API (JPA). These ORMs are

considered “standard-based” since their respective interfaces are based on

Java Specification Request (JSR) specifications developed under the Java

Community Process (JCP). JSR is a formal process administered by Sun

Microsystems, with input from industry experts and vendors of Java

products. Thus, these ORMs are integrated into an actual Java release with

implementations being supported by both open-source and commercial

vendors.

10

Non-standard-based ORMs are not based on any JSR under the JCP.

Instead, these ORMs are based upon a framework and API that has been

developed by either an open-source project or a commercial vendor. Thus,

implementations of these non-standard ORMs cannot be swapped out with

other implementations as their interface, and associated API, is proprietary

in nature. Nonetheless, many of these solutions provide feature-rich APIs

and stable releases that are backed by a large development community.

2.2 Enterprise Java Beans

Enterprise Java Beans (EJB) is the Sun Microsystems specification for

building and managing server-side components for enterprise-wide

applications (Sun Microsystems, 2002, 2003, 2006). The specification, which

is part of the Java Enterprise Edition (EE), has gone through several

releases since it was first created in 1997, with the latest release being EJB

3.0. The overall intent of the standard is to provide a common approach to

implementing business logic across an enterprise. This includes APIs for

business components, persistence, transaction processing, messaging,

naming and directory services, remote procedure calls, and web services.

 The EJB design principles are centered on the idea that applications

should be loosely coupled and that all EJB behavior is specified by

interfaces. The calling applications do not manage resources; instead, the

container provides support to the developer. EJB applications are also

11

tiered, with the session tier representing the API to the application and the

entity tier representing the API to the datastore.

 The tiered notion of EJBs means they are developed as one of three

types: Session Beans, Message Driven Beans, and Entity Beans. Session

Beans, which can be stateless or state-full, provide the functional interface

by acting as the controller for the session tier. Message Driven Beans

provide an asynchronously listener interface that is used by Java Message

Service.

Entity Beans are persistable objects that represent entities in the

application; thus, they represent the ORM component provided by the EJB

specification. The persistence of Entity Beans can be managed by the

developer through the use of bean-managed persistence or through the

container through container-managed persistence. If bean-managed

persistence is used, the developer must implement all database access code

and interact directly with database or interface with another component in

order to access the database.

 The loosely coupled design principle dictated that applications could

integrate EJBs from other applications and even other vendor’s

applications. EJBs can call other EJBs through the use of arbitrary names,

and EJBs themselves can be developed without any prior knowledge of the

environment in which they are to be deployed. Overall, the idea is to

12

provide a very environment and application agnostic architecture for

developing and deploying application components.

 A key component of the EJB architecture is the services provided to

the developer through the EJB container. This includes object persistence

through the entity bean API, security and the ability to hook into security

APIs, transaction processing, and connection pooling. The container also

provides complete component lifecycle management and manages thread

behavior. The complete configuration of all of these can be managed

through configuration files in a declarative way, or through other graphical

user interfaces provided by the container vendor.

Although the EJB specification was adopted initially by many

companies, developers soon found out that the EJB specification was fairly

complex to develop and deploy. This included a relatively large amount of

configuration files that were required to deploy components in an EJB

server. Some of these difficulties were not easy to accept without a clear

understanding of the benefits the EJB specification was bringing to an

application. While developer tools were eventually developed by vendors

to aid in EJB development and deployment, many software groups had

already begun to switch to alternative APIs and frameworks, including open-

source ORMs and application frameworks.

13

 As mentioned above, the EJB specification has contains a persistence

layer mechanism for mapping objects, known as Entity Beans, to a

relational database. The mapping can be managed by the developer

through Bean Managed Persistence (BMP) or by an EJB container through the

use of Container Managed Persistence (CMP). In BMP, the developer writes

the SQL code, while in CMP, the server develops and executes the SQL calls.

In the current EJB release (3.0), this ORM component has been removed

from the core EJB specification into its own API, termed Java Persistence

API (JPA). The key distinction between JPA and EJB is that JPA does not

need an EJB container for deployment, and can be deployed in a basic Java

Runtime Environment (JRE), while EJB requires a complete runtime

container that has implemented the appropriate EJB interfaces.

 There are many EJB commercial and open-source products.

Commercial implementations include IBM Websphere, BEA Weblogic, Oracle

Application Server, and Macromedia's JRun. Open-source implementations

include JBoss, JOnAS, and OpenEJB. The selection between commercial

and open-source is usually based on cost and/or the availability of technical

support by the vendor. As mentioned above, the EJB architecture attempts

provide a number of services to the developer above and beyond an ORM

solution. Thus, such a decision to use EJB may be based other services

provided by the container or legacy integration components provided by the

vendor.

2.3 Java Data Objects

Java Data Objects (JDO)

Java object persistence prior to issuance of the J

Microsystems, 2004, 2005

persistence is that objects (

objects (POJOS) and are not required to

JDO API is an interface that allows applications to persist these POJOs in a

datastore, whereby the datastore itself does not need to be a relational

database. In fact the datastore can be a

another source of data

Figure

14

Java Data Objects

Java Data Objects (JDO) was Sun Microsystem’s original specification for

Java object persistence prior to issuance of the JPA specification (

Microsystems, 2004, 2005). A key difference between JDO and EJB

persistence is that objects (i.e., entities) in JDO can be plain

and are not required to implement specific interfaces. The

ce that allows applications to persist these POJOs in a

datastore, whereby the datastore itself does not need to be a relational

database. In fact the datastore can be a XML, a flat file containing data,

ther source of data.

Figure 2.1 JDO architecture overview

specification for

PA specification (Sun

). A key difference between JDO and EJB

plain-old Java

implement specific interfaces. The

ce that allows applications to persist these POJOs in a

datastore, whereby the datastore itself does not need to be a relational

XML, a flat file containing data, or

15

 The overall JDO architecture consists of the JDO API that is provided

by the Sun Specification and an implementation of the specification

provided by the vendor or open-source project (Figure 2.1). Since entities,

or JDO objects, are POJOs within the JDO implementation, all

configurations for mapping objects to the datastore is managed by key

configuration file, typically named package.jdo by convention.

The primary JDO session object is the PersistenceManager that

provides an interface to query and manipulate JDO Objects through

transactions. The PersistenceManager is obtained through a

PersistenceManagerFactory which is configured through a properties

file using name/value settings. If multiple datastores are utilized in an

application, then a PersistenceManagerFactory must be made

available for each.

In JDO, there are actually three types of Java classes: Persistence

Capable, Persistence Aware, and Normal. Persistence Capable classes can

be persisted to a datastore and are enhanced prior to use. Persistence

Aware classes are utilized to manipulate Persistence Capable classes and

are generally modified only slightly through the enhancement process.

Normal classes are not able to be persisted, nor do these classes relate to

an any persistable classes.

16

 A JDO implementation, through the use of the

PersistenceManager, handles the entire lifecycle of a JDO object that

has been mapped to an entity in the datastore (Figure 2.2). The transition

throughout an object’s lifecycle is accomplished through operations made

available through the PersistenceManager.

Figure 2.2 JDO lifecycle states (Sun Microsystems, 2005)

 The JDO specification calls for JDO implementations provide a query

language termed JDOQL, which is an object-oriented query language that

provides a way to select objects. With JDO 2.0, an implementation must

also provide SQL language support, if the implementations support SQL-

based datastores.

17

2.4 Java Persistence API

As mentioned above, object persistence has been removed from the EJB

specification into the JPA specification (Sun Microsystems, 2006a). JPA was

introduced in order to reduce the complexity of EJB development issues

concerning BMP/CMP in addition to providing a single persistence API for all

Java applications. The intent of JPA was to bring together the best ideas

from non-standard-based ORMs, such as Hibernate (see below), as well as

JDO and commercial vendor products like Oracle’s TopLink. Thus, Java

would offer a common ORM model that any application could use, be it a

server application or a stand-alone application.

Similar to JDO, JPA is based on POJO objects where there are no

specific Java classes or interfaces to extend (Figure 2.3). In addition, JPA

configuration is both annotation-based, where mappings can be defined

within the classes themselves, and XML-based, where mappings are defined

in external configurations files. JPA also supports a query language that is

similar to SQL and can support static as well as dynamic queries.

Figure 2.3

Overall, JPA includes the concepts of an

metadata, an EntityManager

to the database. Thus, an

identity, is transactional dur

primitive, primitive wrapper, or a built

described through Entity

annotations within the Java (.java) file or as a separate XML configuration

file. When annotations are used, the information is placed directly before

the fields or the property accessors in the file.

 An EntityManager

Entity operations, including searching, creating, updating, and deleting an

Entity or group of Entities. When an

EntityManager, that

18

Figure 2.3. JPA architecture overview

Overall, JPA includes the concepts of an Entity, the

EntityManager. An Entity is that object that is mapped

to the database. Thus, an Entity can be made persistent, has a persistent

identity, is transactional during creates/updates/deletes, and is not a

primitive, primitive wrapper, or a built-in Java object. An

Entity metadata, which can be expressed as

annotations within the Java (.java) file or as a separate XML configuration

When annotations are used, the information is placed directly before

the fields or the property accessors in the file.

EntityManager provides the interface on which to perform

operations, including searching, creating, updating, and deleting an

or group of Entities. When an Entity is obtained through an

, that Entity becomes managed by that

, the Entity’s

is that object that is mapped

can be made persistent, has a persistent

ing creates/updates/deletes, and is not a

An Entity is

, which can be expressed as

annotations within the Java (.java) file or as a separate XML configuration

When annotations are used, the information is placed directly before

provides the interface on which to perform

operations, including searching, creating, updating, and deleting an

is obtained through an

becomes managed by that

19

EntityManager. Thus, the set of managed Entities by an

EntityManager is called a persistent context. Thus, only a single

instance of an Entity, with a specific Entity identity, can exist in a given

persistent context of an EntityManager. An EntityManager is

configured to manage specific objects, interact with a specific database,

and be implemented by a specific JPA provider. The JPA provider is the

implementation for the JPA persistent context, which includes the

EntityManager, the EntityManager’s Query interface, and the

generation of the SQL statements for accessing the database.

 An EntityManager is obtained through an

EntityManagerFactory, which is also provided by the implementation.

The EntityManagerFactory is defined separately in a configuration file

(persistence.xml) that is placed in the classpath of the Java Virtual Machine

(JVM). Each configuration file may contain multiple

EntityManagerFactory configurations; thus, multiple persistence

contexts can be created for a single JVM and be made available to an

application.

With the creation of JPA, Sun Microsystems has created a common

persistence API for object-relational mapping. They intend to still support

both the EJB CMP architecture and JDO; however, their long-term intent is

to have applications move to the common JPA.

20

2.5 Non-Standard-Based ORMs

There are numerous ORMs that are not based on a Sun Microsystems JSR. By

far, the most popular is Hibernate, an open-source ORM tool that gained

major acceptance since its inception. This is mostly due to Hibernate’s

ease of use, especially in comparison to the configuration required for EJB

entity-relationship mapping. In general, Hibernate operates by holding the

mapping between Java domain classes and database tables in external XML

configuration files. When the application runs, the Hibernate engine reads

the mapping files and dynamically develops the classes that are utilized to

manage the object-relational transactions. The Hibernate codebase is

managed by JBoss, which itself is a division of Red Hat. Thus, Hibernate is

actually managed by a commercial company, although has an open-source

developed code base (Hibernate User Documentation, 2007; Pugh and

Gradecki, 2004). Hibernate also provides a JPA interface to the core

Hibernate ORM code; thus, this framework is also accessible through a

standard API.

Another popular Java ORM is Apache Software Foundation’s Cayenne,

which also includes a complete Graphical User Interface (GUI), known as the

CayenneModeler. Through the use of the GUI tool, a developer can bind

database schemas directly to Java classes. Cayenne supports atomic

commits/rollbacks, the generation of SQL code, joins, and sequences.

Cayenne also includes object caching, an object query language, pre-

21

fetching relationships, object-inheritance, and database auto-detection

(Cayenne User Documentation, 2007).

One of the first open-source Java ORMs is the Castor Project. Castor

provides a Java persistence framework as well as a Java object model for

serializing objects to XML and de-serializing XML back to objects. Castor

provides in-memory caching and write-at-commits in order to reduce JDBC

access calls. Castor also provides two-phase commit transactions,

rollbacks, and deadlock detection (Castor User Documentation, 2007).

An abundance of other ORMs have been developed and are usually

available as open-source. All of these generally work on the idea of using

Java POJOs and the use of configuration files in order to map Java classes

to RDMS tables. These other ORMs include, but are not limited to the

following: Carbonado (SourceForge Project); Torque (Apache Software

Foundation); Hydrate (SourceForge Project); Ibatis (Apache Software

Foundation); SimpleORM; and, JDBCPersistence.

2.6 ORM Object Caching

The caching of retrieved objects is a key component of ORM solutions in

order to improve performance. Overall, caching is intended to reduce the

number of database access calls by saving data that has already been

retrieved from the database. The cache storage can be managed based on

22

updates/deletes to the persistence model, and can be periodically emptied

in order to keep fresh data in the cache.

 Caching generally occurs in two levels, a first-level cache and a

second-level cache. First level caches work directly within a single JVM,

while second-level caches can work within a single JVM or can be

distributed across JVMs. In addition, query caches can be implemented that

maintain the results of queries to the database.

Caching usually allows a way to configure specific objects with a

caching strategy, including options for reading and writing/updating data.

A read-only cache is utilized for objects that are usually read from the

database, but not updated. A read/write cache is used for objects that are

both read and updated. A read/write cache adds additional computational

overhead, thus it is not as fast as a read-only cache. A nonstrict read/write

cache is utilized when data is read and updated, but updated only rarely.

Thus, the cache does not guarantee to keep two separate threads from

modifying the data at the same time.

Caching can be a key element to the performance of an ORM, with

several commercial ORMs providing distributed cache components. For

example, the commercial JPA/JDO Kodo provides such a distributed cache

management (Figure 2.4). Using a cache architecture reduces read/writes

23

across several JVMs, an even several nodes while allowing all nodes to

remain consistent with respect to the current state of the database.

Figure 2.4 Distributed cache during database update
(Linskey and Prud'hommeaux, 2007)

2.7 Summary

Several commercial and open-source Java ORMs are currently available that

are based on Sun Microsystems standards and non-standard APIs. The EJB

ORM component termed Entity Beans has been criticized for being too

difficult and complex, and thus has given way to more manageable

frameworks such as Hibernate. JDO and JPA offer alternatives to EJB entity

24

beans and allow the use of POJOs. The current Sun Microsystem strategy is

to move all data persistent to relatively new JPA architecture, while still

supporting the EJB Entity Bean and JDO standards. JDO and JPA are similar

with respect to their APIs and the management of objects, including their

POJO nature and the absence of a required runtime container.

Open-source frameworks have also been very popular, with Hibernate

being the most widespread in the industry. Hibernate also provides a JPA

interface to its core ORM engine; thus, Hibernate users have the option of

using the JPA interface with an underlying Hibernate ORM engine. There

are also an abundance of other open-source solutions that have varying

degrees of industry support and an associated developer community.

25

3 Assessing ORM Performance

3.1 Overview

Extensive research exists on the benchmarking of RDBMs object-oriented

database management systems (ODBMS), with a majority of the studies

being performed in the 1980’s and 1990’s when these technologies were

beginning to be used extensively in industry. While RDMSs and ODBMs

performance studies exist, the literature is somewhat bare with respect to

evaluating the relative performance of Java ORMs, as only a handful of

papers examine the issue in an attempt to discern any differences between

ORM design decisions. In addition, while other studies are present that

examine Java middleware performance, these studies have been focused on

addressing CORBA (Harkema et. al., 2002), CORBA and RMI (Juric et. al.,

2006), and web services (Juric et. al., 2000).

3.2 Relational Database Performance

The literature includes numerous studies into database performance, with

the idea of performance measurements going back over twenty years

(Demurjian et al, 1985). Many of these studies involve investigating how

benchmarks are constructed. Most of the database vendors include private

benchmarking tests that are also run. While many benchmarks have been

26

developed and implemented, the industry has generally settled upon the

use of a few.

 The first performance benchmark was called the Wisconsin

benchmark (Bitton et al., 1987). This benchmark consisted of a set of 32

retrieval and update commands in addition to a script for mult-user

executions. The benchmark provides two performance measures: execution

time and the throughput of the system while running sixteen scripts at the

same time. The benchmark does not include a cost measure.

 Another benchmark utilized simple queries for the performance

measure (Rubenstein et al., 1987). These researchers proposed a number of

factors that improve performance, including caching the entire database,

how to avoid the overhead associated with query optimization, and the use

of physical links for pre-joining.

 The benchmarking of an isolated database system is challenged in

research that proposed the benchmarking of database applications

(Doppelhammer et al., 1997). These researchers state that isolated

benchmarks do not represent real-world scenarios where applications are

the interface to the database. A TPC-D benchmark is proposed with results

provided for the SAP R/3 system, which is an integrate business system. A

similar idea concerning the testing of database applications has also been

proposed (Chays et al, 2000).

27

 A database benchmark (TPC-W) specifically directed toward web

applications was developed by the TPC (Poess and Floyd, 2000). This

benchmark was developed due an industry need for measure for both

software and hardware for an ecommerce application. The benchmark is

based on an online shopping scenario and includes a combination of static

web content and dynamic web content. Additional work regarding web

applications and results utilizing the TPC-W was performed by Deng et al.,

2004.

Other researchers have also challenged the use of standard industry

benchmarks (Seng et al., 2005). These researchers claim standard

benchmarks are domain-specific and that results are just estimates of

potential system performance for pre-defined applications. Instead, the

researchers propose a benchmark that is both computer-assisted and is

based on user requirements.

Researchers have measured the performance differences between

conventional computer architectures on which database applications run

and computer architectures that have been developed specifically for

databases (Yao, et al., 1987). Results from the study indicate that database

machine architectures are faster performers when compared to traditional

computer architectures.

28

3.3 Object Database Performance

The key strength of using an ODBMS is to gain a more flexible and

maintainable system for complex data models, while improving database

performance in such a complex system. As an application generally grows

in size, such a performance improvement can be realized more in an ODBMS

unless the relational-database system is continually tuned to match

application requirements. Meanwhile ODBMSs do not provide an easy way

to provide ad-hoc queries. Thus, ODBMS are better for applications that

have a complex hierarchy of classes such as engineering applications, while

RDMSs are generally better for information systems where data models are

relatively simple.

The benchmarking of ODBMSs occurred mostly during the late 1980’s

and 1990’s when the industry began questioning the performance these

systems (Zyl et. al., 2006). Several of the ODMBS benchmarks were

developed include the 001 Benchmark (Cattell and Skeen, 1992), the 007

Benchmark (Carey et al. 1993), and the Hypermodel (Anderson et. al.,

1998). One of the most popular is the 007 Benchmark which is based on the

idea of a design library that is composed of parts and assemblies, an

approach that is similar to a number of object databases such as CAD, CAM,

and CASE. The 007 Benchmark is generally used to test database associative

operations, updates to indexed attributes, and traversals. The benchmark

29

suite is relatively large, and results are available for several major object

database vendor products (Carey et al. 1993).

3.4 Java ORM Performance

An attempt at applying the OO7 Benchmark to Java ORMs was performed by

Sun Microsystems (Jordan, 2004). In fact, this study is by far the most

complete overall evaluation of Java ORMs. In the study, a number of ORMs

are compared, including EJB-CMP, EJB-BMP, JDBC, and JDO. The study was

primarily aimed at setting up the framework for evaluating ORMs, although

the study indicated that JDO was the best performer when compared to the

other ORMs. The study did not provide any analysis of the results or how

various performance strategies factored into the results.

Another use of the 007 Benchmark and Java ORMs is presented in

Zyle, et. al., 2006. These researchers actually cite the use of the 007

Benchmark in an ORM study was taken from the Jordan 2004 study. In the

Zyle, et. al, study, the 007 Benchmark tests were use to evaluate the

performance aspects of an object database, db4o, versus an ORM product,

Hibernate. Overall, the object database had better performance when

compared to the ORM. The study did not compare Java ORMs against other

Java ORMs, nor did it investigate EJB-CMP, JDO, or JPA persistence

mechanisms.

30

While the Jordan and then Zyle et. al. utilized the 007 Benchmark,

another approach is presented in a study originally developed by The

Middleware Company (Martin, 2005). In this study, The Testbed of Object

Relational Products for Enterprise Distributed Objects (TORPEDO), provides

a set of application-level operations that are used to evaluate whether

database access optimizations have been implemented in an ORM. No

results for TORPEDO testing are provided in the literature, nor does

TORPEDO compare JPA against the other ORM frameworks. However, the

paper mentions that TORPEDO can be used for evaluating Hibernate, EJB-

CMP, JDO, and Oracle’s TopLink.

One unpublished Java ORM benchmark, Pole Position, provides an

automated test suite for examining object databases as well as ORM

performance using a series of database access calls (Pole Position, 2007).

Documentation provided on the Pole Position website provides some high-

level results comparing Hibernate and JDO against hand-coded JDBC calls.

These results indicate that the use of an ORM has a negative impact on an

application’s performance compared to hand-coded JDBC, although the use

of caching can dramatically improve performance. In addition, the use of

an object database had better performance when compared to the use of

an ORM. The Pole Position documentation does not provide any evaluation

of the results, nor is there an evaluation of JPA or more than a single JDO

implementation.

31

3.5 Summary

The literature contains only two studies that provide any evaluation of

performance between various Java ORM designs and implementations. An

additional study (Martin, 2005) compared a Java ORM against an object

database; however, no comparison between Java ORMs was made.

While an open-source benchmark, Pole Position, is available to run

tests between various Java ORMs, no discussion of the results is provided

and no analysis is attempted to evaluate how ORM designs factored into the

performance differences. Finally, no study or benchmark attempts to

compare multiple JPA or JDO implementations, nor provides an analysis of

how various design decisions affect performance.

32

4 A Performance Evaluation Framework

4.1 Overview

The intent of the current research was to develop an objective framework

for evaluating ORM performance and provide an implementation of that

framework for a selected number of Java ORMs. The implementation of the

framework was intended to fill in gaps in the literature concerning Java

ORM performance evaluations. Most notably, the literature does not

contain an evaluation of JPA and JDO, including the Hibernate

implementation of JPA. In addition, there is no evaluation of multiple JPA

and/or JDO implementations. Thus, this research evaluated the

performance of two JPA implementations and two JDO implementations

with the intent of comparing the performance of JPA with JDO in addition

to comparing JPA implementations and JDO implementations.

The evaluation of the ORMs was performed by defining the

performance test cases of the framework, building a benchmark application

data model, and then creating a database schema to represent the

persistent storage of that model. Each selected ORM was then used to

develop domain classes and the necessary database access code to map the

database entities and their associated relationships to these domain classes.

After the domain classes and database access code were developed, the

33

suites of performance test cases were executed to evaluate the

performance of each ORM.

4.2 Performance Test Cases

While an application’s persistent data model can be accessed in a nearly

unlimited number of scenarios, this research proposes a suite of common

data model access use cases under which the majority of database access

occurs. Thus, while the test cases do not cover all database usage

scenarios, the test cases can be used to determine the relative performance

of an ORM with regard to processing times, database access, and the use of

object caching within the ORM implementation. Specifically, eight

performance test cases (Table 4.1) were developed in an attempt to

provide a snapshot of the relative performance of the ORMs across a range

of use cases that would occur within an application:

• LoadObjectTwice

• LoadObjectTwiceBtxTrx

• LoadPartialObject

• LazyLoadObjectGraph

• EagerLoadObjects

• BulkLoadObjects

• BulkObjectSave

• LoadAndSave

The test cases, based on ideas identified in the TORPEDO framework

(Martin, 2005), attempted to illuminate the ability or inability of the ORM to

34

perform efficient database access calls and internally manage objects in

order to keep remote database access calls to a minimum.

Table 4.1 Performance test cases

Test Case Description Goal of the Test

LoadObjectTwice The same object is loaded
twice within the same
transaction.

Determine time required
to retrieve same object
within the same
transaction, and whether
multiple database access
calls are made.

LoadObjectTwiceBtxTrx The same object is loaded
twice within the same
thread, but inside two
separate transactions.

Determine time required
to retrieve the same
object between
transactions, and whether
multiple database access
calls are made.

LoadPartialObject A group of objects are
partially loaded with only
selected fields populated
during the transaction.

Determine whether the
ORM can retrieve a
partially-loaded object,
the time required to
perform this task, and the
number of database
access calls.

LazyLoadObjectGraph A complex object graph is
lazy loaded on an as-needed
basis during the transaction.

Determine time required
to lazy-load an object
graph, including the
number of database
access calls.

EagerLoadObjects A complex object graph is
eagerly-loaded with all fields
populated during the
transaction.

Determine time required
to eagerly-load an object
graph, including the
number of database
access calls

BulkLoadObjects Complete sets of related
objects are loaded within the
same transaction.

Determine time required
to bulk-load related
objects including the
number of database
access calls.

BulkObjectSave A large set of objects are
saved within the same
transaction.

Determine time required
to bulk save objects
within the same
transaction, including the
number of database
access calls.

 LoadAndSave A set of database reads is
completed in order to create
an object graph and then
save it to the database.

Determine time required
to perform multiple reads
and execute complex
object graph save within
the same transaction,
including the number of
database calls.

35

4.3 Application Domain Model

In order to provide a runtime implementation of the test cases, an

application domain model was developed. The selected domain was an

airline reservation system that would allow airline passengers to book

airline flights and pay for tickets (Figure 4.1). The model is fairly self-

explanatory: passengers can purchase tickets which can be associated with

specific flights. Tickets can also be associated with payments, which in

turn have a payment status of paid, not paid, and pending.

The data model contained common entity-relationship multiplicities found

in all databases, including one-to-one, one-to-many, and the use of a join

table to break a many-to-many relationship into two, one-to-many

relationships. In addition, the entities themselves contained a mix of data

types, including characters, numeric types, and dates. Overall, the airline

reservation model was selected as it represents an intuitive model that can

be easily visualized, in addition to maintaining entity-relationships found in

common database schemas. It should also be noted that a real-life domain

was selected instead of a generic object domain in order to provide a more

instinctive exploration of the test cases.

36

Figure 4.1 Airline reservation system entity-relationship model

The airline reservation ER model was used to develop a persistent

Java class model (Figure 4.2). This Java model represented the

application’s view of the ER data model, and included all persistent entities

identified in the ER model (Figure 4.1). The intent of developing the

common Java model was to provide consistency between ORMs with respect

to the class relationships and data types assigned to individual fields within

each class.

37

Figure 4.2 Airline reservation class diagram

4.4 Selected ORMs

Implementations of the performance test cases using the application

domain model were undertaken for a selected number of Java ORMs.

Hibernate’s JPA implementation and OpenJPA were the JPA

implementations that were selected (Table 4.2). The Hibernate open-source

implementation was selected due to its widespread use in the industry.

OpenJPA, which is also open-source, was selected due to its widespread use

in the industry and its use as the ORM engine with the commercial Kodo

JPA/JDO implementation.

38

The JDO implementations selected were JPOX and Speedo (Table

4.2). JPOX was chosen as it is the reference implementation of the JDO 2.0

specification and is open-source. Speedo was selected as it is a popular

open-source implementation of JDO 2.0 maintained by ObjectWeb.

Table 4.2 ORMs evaluated

ORM Version Specification Company Type

Hibernate 3.3 JPA JBoss(Red Hat) Open-source

OpenJPA 1.0 JPA Apache Open-source

JPOX 1.2 JDO JPOX Open-source

Speedo 4.1 JDO ObjectWeb Open-source

4.5 TestIF

A test interface (TestIF), as identified in Figure 4.3, was developed

to represent each of the eight performance test cases (Table 4.1). The

TestIF represented the common interface that was executed from the

testing harness during the performance evaluation.

An ORM implementation of the TestIF was then developed for each

of the selected ORMs (Figure 4.3). Thus, each test case was translated to

the domain model in order to develop a domain model use case that

fulfilled the goal of the test, as identified in Table 4.1. The ORM

implementations were developed as described below in Section 4.7.

39

Figure 4.3 Performance testing interface class diagram

The actual steps to complete each test case were duplicated within

each TestIF implementation (Table 4.3). In this way, each TestIF

implementation was required to complete the same number of steps while

leaving the implementation of those steps to the interface provided by the

ORM. For example, each ORM was required to execute all test cases within

a transaction.

Again, the intent of the research was to provide a consistent

approach to the database access scenarios, thus, the identification of the

test case mapping steps was critical to making sure each ORM

implementation executed the same number of steps.

40

Table 4.3 Implementation steps for performance test cases

Test Case Airline Reservation Implementation
LoadObjectTwice 1.) Start Transaction

2.) Retrieve Passenger object

3.) Retrieve Passenger object again
4.) Close Transaction

LoadObjectTwiceBtwTrx 1.) Start Transaction

2.) Retrieve Passenger object
3.) Close Transaction
4.) Start Transaction

5.) Retrieve Passenger object again
6.) Close Transaction

LoadPartialObject 1.) Start Transaction

2.) Retrieve Passenger object loaded with passengerId,

phone, email
3.) Close Transaction

LazyLoadObjects 1.) Start Transaction

2.) Retrieve Passenger object

3.) Retrieve Passenger object’s Tickets

4.) Retrieve each Ticket’s Flight objects

5.) Retrieve each Ticket’s Payment objects
6.) Close Transaction

EagerLoadObjects 1.) Start Transaction

2.) Load List of Payment objects with associated

PaymentStatus objects
3.) Close Transaction

BulkLoadObjects 1.) Start Transaction

2.) Retrieve List of Ticket objects

3.) Bulk retrieve each Ticket’s Flights

4.) Bulk retrieve each Ticket’s Payments

BulkObjectSave 1.) Start Transaction

2.) Create 10 Passenger objects

3.) Save 10 Passenger objects
4.) Close Transaction

LoadAndSave 1.) Start Transaction

2.) Retrieve Passenger

3.) Create Ticket

4.) Retrieve Flight and add to Ticket

5.) Create Payment

6.) Retrieve PaymentStatus and add to Payment

7.) Add Payment to Ticket

8.) Persist Ticket
9.) Close Transaction

41

4.6 Performance Metrics

The performance of each ORM to implement each test case was measured in

terms of time, in milliseconds, and the number of database access calls

required to complete the test. The time was collected for a single

execution of each test case and for a collection of 100 executions of each

test case for each ORM solution (Table 4.4). Thus, the performance was

measured for the initial execution of the test case as well as the ability of

the ORM to cache data for subsequent calls to the test case within the same

thread. For each of these scenarios (single and 100 executions), a set of 10

runs were performed with a mean time being recorded for the test case for

the respective ORM.

Table 4.4 Performance metrics

Metric Units

Time to execute test case 1 time ms

Time to execute test case 100 times ms

Number of database access calls to execute test case 1 time NA

In addition to the multiple iteration comparison to assess caching, a

selected evaluation of the Hibernate JPA implementation with and without

caching was undertaken. This evaluation was performed to determine the

overall affect of caching on reducing the time required to process 100

iterations of the loading test cases (LazyLoadObjects,

EagerLoadObjects, BulkLoadObjects)

42

4.7 Software and Hardware Test Bed

Each ORM implementation was developed using the Java 6 SDK, and the test

case execution was performed using the Java 6 JRE. The Eclipse integrated

development environment (IDE) was utilized to develop each ORM

implementation of the TestIF, and the Ant build tool was used to build

and execute each ORM performance test suite.

The database utilized for the development and testing was Oracle

10G Personal Edition. Data load scripts were created and run to load the

Oracle database schema with sample data for the performance tests.

The application, including each ORM implementation, in addition to

the local Oracle database was tested on Fedora Core 6 installed on a Dell

Inspiron Notebook. The Dell contained an Intel Core 2 Duo processor with 2

GB of RAM.

The collection of the performance metrics was assisted through the

use of P6Spy and JProfiler. P6Spy allowed the collection of the SQL calls

that were made to the database, and JProfiler allowed an examination of

the actual call stack. In addition, a custom Logger class was constructed to

measure the time to execute each test case for each TestIF ORM

implementation.

43

5 ORM Performance Results

5.1 Overview

The complete results for the performance test cases are provided within the

following chapter. The results below are divided into the single execution

results and the multiple execution results. Also, included are figures for a

selected number of ORM comparisons between the various performance test

cases. A discussion of these results is provided in Chapter 6.

5.2 Single Execution of Performance Test Cases

The single execution test results (Table 5.1, Figure 5.1) indicated the

Hibernate JPA implementation was the quickest performer overall, as it

held the shortest times or tied for the shortest times for all tests. The

OpenJPA implementation was the second fastest performer for all tests,

followed by the JDO implementations JPOX and Speedo. Thus, overall, the

JPA implementations performed better when compared to the JDO

implementations.

Hibernate was noticeably faster on the LazyLoadObjects,

BulkObjectSave, and the LoadAndSave test cases (Figure 5.2).

Regarding lazy loading, Hibernate was at least two times faster, when

compared to OpenJPA, and up to three times faster, when compared to the

44

JDO ORMs. Hibernate’s BulkObjectSave test case was approximately four

times faster than the next faster ORM (OpenJPA). Hibernate’s

LoadAndSave was also relatively fast as it was at least two times faster

than the next fastest, which was also OpenJPA.

The OpenJPA and JPOX ORMs exhibited similar times for nearly all

tests, with only the LoadPartialObject test case showing any real

difference between these two ORMs. Thus, the OpenJPA and JPOX ORMs

were the closest performers for the single execution test cases.

Speedo was generally the slowest of the ORMs in the single

execution, as it took approximately twice as long as any other ORM on the

BulkLoadObjects and LoadAndSave test cases. Speedo was also

noticeably slower on the LoadPartialObject test case. However,

Speedo showed similar performance on LoadObjectTwice and

LoadObjectTwiceBtwTrx test cases.

Table 5.1 Time (ms) to complete single execution of test cases

Test Case Hibernate OpenJPA JPOX Speedo

LoadObjectTwice 30 60 30 30

LoadObjectTwiceBtwTrx 30 60 30 30

LoadPartialObject 30 30 90 210

LazyLoadObjects 40 120 100 80

EagerLoadObjects 50 70 90 110

BulkLoadObjects 60 100 130 290

BulkObjectSave 60 230 280 300

LoadAndSave 70 170 180 380

Figure 5.1 Time (ms) to complete single execution of loading test cases

Figure 5.2 Time (ms) to complete single execution of

0

50

100

150

200

LazyLoad Objects

0

50

100

150

200

250

300

350

BulkObjectSave

45

(ms) to complete single execution of loading test cases

Time (ms) to complete single execution of BulkObjectSave

and LoadAndSave test cases

Hibernate

OpenJPA

JPOX

Speedo

LazyLoad Objects
EagerLoad Objects

BulkLoad Objects

Hibernate

OpenJPA

JPOX

Speedo

BulkObjectSave
LoadAndSave

(ms) to complete single execution of loading test cases

BulkObjectSave

Speedo

46

The number of database calls to execute each test case (Table 5.2)

was identical between the JPA implementations with the exception of the

BulkObjectSave and LoadAndSave test cases. For these test cases,

Hibernate was able to batch the insert calls while OpenJPA was not.

JPOX and Speedo both had more database calls compared to the JPA

implementations. Both JDOs had four more accesses for the

EagerLoadObjects and double the database calls for the

BulkObjectSave.

Speedo maintained the overall highest number of database calls for

all test cases. Most notably, Speedo contained five more calls for the

LoadPartialObject and LazyLoadObjects.

Table 5.2 Number of database calls for single execution of test cases

Test Case Hibernate OpenJPA JPOX Speedo

LoadObjectTwice 1 1 1 1

LoadObjectTwiceBtwTrx 1 1 1 1

LoadPartialObject 1 1 1 5

LazyLoadObjects 4 4 4 9

EagerLoadObjects 1 1 5 5

BulkLoadObjects 2 2 3 5

BulkObjectSave 11 20 20 20

LoadAndSave 8 8 10 10

47

5.3 Multiple Executions of Performance Test Cases

The results of the multiple (100) executions of the test cases indicate the

ORMs are more similar once the objects are loaded into memory (Table 5.3,

Figure 5.3). Thus, a significant about of the variance can be attributed to

the differences in the initial load of the objects during the first execution of

the test case in the thread.

The overall internal caching abilities of JPOX and Speedo are

somewhat slower when compared to the Hibernate plugin and OpenJPA.

Noticeable differences are observed for the LoadPartialObject and

LazyLoadObject test cases between the JPA and JDO implementations

collectively. Also noticeable differences are noted for LoadAndSave test

case where Speedo was over 50 percent slower when compared to the other

ORMs.

Table 5.3 Time (ms) to complete 100 executions of test cases

Test Case Hibernate OpenJPA JPOX Speedo

LoadObjectTwice 70 100 180 100

LoadObjectTwiceBtwTrx 100 110 180 100

LoadPartialObject 90 70 300 350

LazyLoadObjects 150 260 450 490

EagerLoadObjects 230 290 320 350

BulkLoadObjects 250 250 280 390

BulkObjectSave 1680 1790 2100 2140

LoadAndSave 730 720 810 1250

Figure 5.3 Time (ms) to execute 100

5.4 Cache vs. No Cache

The results for the Hibernate object loading test cases under cache and no

cache configurations indicate

enabled for multiple requests

enabled, LazyLoadObjects

while EagerLoadObjects

exhibited a 140% increase in performance with caching enabled. Overall,

caching had a dramatic affect on improving test case performance when

multiple iterations of the test case were performed.

0

50

100

150

200

250

300

350

400

450

500

LazyLoad

Objects

48

Time (ms) to execute 100 executions of selected test cases

vs. No Cache

The results for the Hibernate object loading test cases under cache and no

cache configurations indicated dramatic differences when caching is

e requests (Table 5.4, Figure 5.4). When caching was

LazyLoadObjects experience almost 300% gain in performance,

EagerLoadObjects experienced 70% gain. BulkLoadObjects

140% increase in performance with caching enabled. Overall,

caching had a dramatic affect on improving test case performance when

multiple iterations of the test case were performed.

Hibernate

OpenJPA

JPOX

Speedo

LazyLoad
EagerLoad

Objects BulkLoad

Objects

selected test cases

The results for the Hibernate object loading test cases under cache and no

dramatic differences when caching is

. When caching was

experience almost 300% gain in performance,

BulkLoadObjects

140% increase in performance with caching enabled. Overall,

caching had a dramatic affect on improving test case performance when

Speedo

Table 5.4 Time (ms) to execute 100
Hibernate under cache and no cache configurations.

Test Case

LazyLoadObjects

EagerLoadObjects

BulkLoadObjects

Figure 5.4 Time (ms) to execute 100

Hibernate under cache and no cache configur

0

100

200

300

400

500

600

LazyLoad Objects

49

Time (ms) to execute 100 executions of loading test cases for
Hibernate under cache and no cache configurations.

Cache No Cache
Performance
Gain (%)

LazyLoadObjects 150 590 293

EagerLoadObjects 230 390 70

BulkLoadObjects 250 600 140

Time (ms) to execute 100 executions of loading test cases for
Hibernate under cache and no cache configurations.

Cache

No Cache

LazyLoad Objects
EagerLoad Objects

BulkLoad Objects

loading test cases for
Hibernate under cache and no cache configurations.

Performance
Gain (%)

loading test cases for
ations.

No Cache

50

6 Analysis and Discussion of Results

6.1 Overall Performance

On the single executions, the JPA implementations were better performers

when compared to the JDO implementations, with Hibernate being the

overall best performer of all implementations. Of the two JDO

implementations, JPOX was the better performer, and Speedo was the

overall slowest of all the implementations. In addition, JPOX was generally

close to OpenJPA for nearly all test cases and even performed better in

LazyLoadObjects.

While the relative processing times for all test cases illustrate there

are performance differences between the various ORMs, these variances

may not necessarily translate into absolute performance differences. For

example, the complete LazyLoadObjects range of values from the

slowest (120 ms) to the fastest (40 ms) was just 80 ms. In this case, a

difference of 80 ms may end up as a significant performance difference in

an method that has a running time of 100 ms, but may not be a significant

performance consideration in a method that executes in 5000 ms. Thus,

the context of the application would be an important determinant as to

whether the choice of the ORM would, in fact, had an impact on meeting

performance requirements for that application. For example, a relative

51

variance between the slowest and the fastest for LazyLoadObjects,

which is a three-fold difference, may be a performance problem if an

application can load these objects in, say, 10 seconds (for Hibernate)

instead of 30 seconds (for OpenJPA).

 The use of caching tended to level out the performance differences

between the various ORMs. Once the objects were retrieved from the

database and held in memory, the speed of the ORM’s caching mechanism

were generally equal.

6.2 LoadObjectTwice

All implementations were equal with respect to this test case, with the

exception of OpenJPA which performed relatively slower. A review of the

processing time for OpenJPA indicated this difference was related to

initializing the cache for the single execution, as OpenJPA was actually a

relative fast performer for this test case during the multiple executions.

 With regard to database access calls, all ORMs were able to execute

this test case by accessing the database only once. Thus, the subsequent

call to retrieve the object the second time was made to the local object

cache. The cache implementations were relatively similar for the multiple

executions, with the exception of the JPOX cache which was noticeably

slower.

52

 In summary, the results of the test case indicated the ORMs

performed equally in their respective database access strategy for loading

the same object twice within the same transaction. The differences in

processing time were related to cache initialization and cache performance.

6.3 LoadObjectTwiceBtwTrx

The results of this test case were identical to the results for the

LoadObjectTwice for the single executions. Again, OpenJPA exhibited a

slower time, which was related to initializing the cache for the single

execution.

 With regard to database access, all ORMs were able to execute the

test case with only one database access call. Thus, all ORMs were able to

open multiple transactions and find the same object within the local cache

without multiple database calls. Also similar to LoadObjectTwice, the

cache implementations were the same for the multiple executions, with the

exception of the JPOX cache which was noticeably slower.

 The similarities between the processing times for the

LoadObjectTwice test and the LoadObjectTwiceBtwTrx test are

most likely attributed to the resolution of the system clock times returned

by the test harness during the test runs. Thus, while both of these test

cases actually loaded the same object twice, the

53

LoadObjectTwiceBtwTrx performed more actions as it had to also start

and stop two transactions while LoadObjectTwice only had to start/stop

a single transaction. Thus, the overall unit of work was greater for

LoadObjectTwiceBtwTrx although the times were identical due to the

resolution of the system clock in measuring the processing times for the test

cases.

 In summary, the results of the test case indicate the ORMs performed

equally in their respective database access strategy for loading the same

object twice between transactions. The differences in processing time

were related to cache initialization and cache performance.

6.4 LoadPartialObject

This test case attempted retrieved contact information for a Passenger

object without returning the entire object. Thus, the test case was to

return just the Passenger.passengerId, Passenger.phone, and

Passenger.email without returning other data in the Passenger object.

In addition, the query for loading the partial object was looped five times

for each ORM for this test case.

The Hibernate implementation allowed for the most elegant

implementation for this test case by allowing a simple JPA NamedQuery to

be added as an annotation in the Passenger class. This query could then

54

be called by name through the ORM’s interface:

@NamedQuery(name="getContactInfo",

query="SELECT new Passenger(passengerId, phone,

email) from Passenger p where p.passengerId = ?")

OpenJPA provided a similar solution with the ability to insert a

NamedQuery as an annotation; however, the results of the query were

returned in an object array in the OpenJPA implementation, while the

Hibernate implementation returned an actual Passenger object.

 The JDO implementations did not provide a means to partially load

an object’s data either through annotations or directly through the JDO API.

As a result, an entire Passenger object was required to be retrieved with

a normal query in order to complete the test case for the JDO

implementations.

 The key difference between this test case and the previous test cases

discussed (LoadObjectTwice, LoadObjectTwiceBtwTrx) is that

LoadPartialObject was executed as a query in the ORM implementation

while the other test cases were executed as object lookups by object

identifiers. For example, in Speedo, LoadPartialObject test case

implementation was executed as the following:

Query query = pm.newQuery(Passenger.class);

query.declareParameters("Long id");

query.setFilter("id == passengerId");

Passenger pass = (Passenger)((List)query.execute(

new Long(10))).get(0);

55

While the LoadObjectTwice and LoadObjectTwiceBtwTrx test case

implementations were executed as object queries based on object

identifiers:

PersistenceManager pm = getPersistenceManager();

Passenger pass (Passenger)pm.getObjectById(

Passenger.class, "" + 1);

By using a query, the ORMs were forced to utilize a query cache instead of a

direct object identification cache, although the query cache is generally

backed by the object ID cache.

The results for this test case were drastically different between the

JPA and JDO implementions. Hibernate and OpenJPA were identical in

processing times, while JPOX was three times slower than JPA and Speedo

was seven times slower than JPA. These variances are much greater than

the variances observed for the previous test case regarding the loading of a

single object.

 A review of the database access strategies indicated that all ORMs

accessed the database only once to complete the test case for the single

execution scenario, with the exception of Speedo ORM. Thus, the

variations in the results are attributed mainly to the query caching ability of

the ORM implementations, and secondarily to the quantity of the data

returned during the partial object loading. In addition, the looping of the

query compounded the differences for even the single execution of the test

case.

56

 In summary, the results of the test case indicated the JPA

implementations were similar with respect to performance and query

caching abilities. The JDO implementations were significantly slower, with

the slower times attributed mainly to the query caching abilities of the

ORM.

6.5 LazyLoadObjects

The results of this test case indicated the ORMs exhibited similar processing

times with the exception of Hibernate which was twice as fast as the next

fastest time. The average of the JPA implementations was approximately

the same as the average of the JDO implementations.

 The database access strategies indicate that all ORMs had the same

number of remote calls, with the exception of Speedo which had nine

database calls. The higher number of database calls in the Speedo ORM

were related to the retrieval of set data. In Speedo, objects identified as

sets were retrieved only when the object was retrieved, and not as a

complete set. This is in contrast to the other ORMs which retrieved set data

as complete sets. For example, in the test case, Speedo retrieved the set

of Flight objects as individual database calls, while the other ORMs

retrieved the set of Flight objects as a single database call. While the

Speedo exhibited additional database calls, the overall processing time was

57

actually less for Speedo due to the object identifier lookup for the lazy

loaded objects.

 Similar to the other test cases, OpenJPA exhibited longer

initialization times for the cache during the single execution. The cache

also comes into play during the multiple execution scenarios whereby the

JDO cache implementations were significantly slower when compared to the

JPA ORMs.

 In summary, the test case results indicated lazy object loading was

relatively similar for all ORMs in terms of processing time. This was true

even though the Speedo implementation executed more database calls for

the single execution scenario. The performance of the caching affected the

processing time of the multiple execution test cases with significant

differences observed for the caching variations.

6.6 EagerLoadObjects

This test case attempted to retrieve all PaymentStatus data for a specific

set of specific set of Payments with a single database call using the

respective ORM interface. Thus, the test case was to return a set of

Payment objects along with each PaymentStatus object associated with

each of the Payment objects.

58

The Hibernate and OpenJPA implementations allowed for a simple

approach to solve this test case: a JPA NamedQuery could be added as an

annotation in the Payment class that retrieved the data:

@NamedQuery(name="getPaymentFull",

query="SELECT p FROM Payment p JOIN FETCH

p.paymentStatus where p.paymentAmount = ?")

While the above annotation is relatively easy to write and can be mapped to

a name and altered without modifying the code. It also highlights the

ability of the JPA implementations to generate a significant amount of SQL

and hide the underlying database mapping to the ORM layer. For example,

the above NamedQuery called getPaymentFull actually generates the

following SQL at runtime:

select

payment0_.PAYMENT_ID as PAYMENT1_1_0_,

paymentsta1_.PAYMENT_STATUS_ID as PAYMENT1_5_1_,

payment0_.PAYMENT_AMOUNT as PAYMENT2_1_0_,

payment0_.PAYMENT_STATUS_ID as PAYMENT4_1_0_,

payment0_.TICKET_ID as TICKET3_1_0_,

paymentsta1_.PAYMENT_DESCRIPTION as PAYMENT2_5_1_

from AIRLINE.PAYMENT payment0_,

AIRLINE.PAYMENT_STATUS paymentsta1_

where payment0_.PAYMENT_STATUS_ID =

paymentsta1_.PAYMENT_STATUS_ID and

payment0_.PAYMENT_AMOUNT=?

In contrast to the JPA implementations, the JDO API did not provide

a means to execute an eager load of an object graph. While JPA provides a

way to detach objects from their respective EntityManager instances,

59

the detachment is performed on an object by object basis and cannot be

performed in an eagerly-loaded fashion.

The processing times for this test case indicated the JPA

implementations with their join statements were able to perform better

than the JDO implementations. Speedo was over twice as slow as Hibernate

due to the higher database calls and the initialization of the cache.

Due to the absence of a join function in JDO, these ORMs executed

five database calls for the single execution while the JPA ORMs executed

only one database call. As noted above, these additional calls resulted in

real differences in the processing time.

Once the objects in were loaded, the caching of the objects

generally leveled the performance of the ORMs during the multiple

executions. The differences during the multiple executions can be

attributed primarily to the initial loading of the objects into the cache. The

caches, based on object caches once the IDs were loaded, tended to

perform similarly in terms of processing time.

In summary, the results of this test case indicated the ability to

develop complex joins through the ORM had significant affects on the

processing time during the initial loading of the objects. JDO did not

provide a method to execute eager loading of object graphs. The caching

60

generally leveled the ORMs in their respective processing times during the

multiple executions.

6.7 BulkLoadObjects

This test case attempted to retrieve all Ticket data for a specific

Passenger with a single database call using the respective ORM interface

API. Thus, the test case was to return a Ticket object along with the set

of Flight objects and the set of Payment objects associated with that

Ticket. The intent was to see if the ORM can build a complex join query

to bulk load related data.

The Hibernate and OpenJPA implementations allowed for a simple

approach to solve this test case: a JPA NamedQuery could be added as an

annotation in the Ticket class that retrieved the data:

@NamedQuery(

name="getTicketFull",

query=

"SELECT t FROM Ticket t

JOIN FETCH t.flights

JOIN FETCH t.payments

where t.passenger.passengerId = ?")

The above query resulted in the following complex join to be executed by

both the Hibernate and OpenJPA implementations.

select ticket0_.TICKET_ID as TICKET1_2_0_,

flight2_.FLIGHT_ID as FLIGHT1_4_1_, payments3_.PAYMENT_ID

as PAYMENT1_1_2_, ticket0_.PASSENGER_ID as

PASSENGER6_2_0_, ticket0_.STATUS_CODE as STATUS2_2_0_,

ticket0_.TICKET_TYPE as TICKET3_2_0_,

ticket0_.TICKET_CLASS as TICKET4_2_0_,

61

ticket0_.BOOKING_DATE as BOOKING5_2_0_,

flight2_.FLIGHT_NUMBER as FLIGHT2_4_1_,

flight2_.AIRPLANE_ID as AIRPLANE7_4_1_,

flight2_.ORIGIN_AIRPORT as ORIGIN3_4_1_,

flight2_.DESTINATION_AIRPORT as DESTINAT4_4_1_,

flight2_.DEPART_TIME as DEPART5_4_1_,

flight2_.ARRIVAL_TIME as ARRIVAL6_4_1_,

flights1_.TICKET_ID as TICKET1_0__, flights1_.FLIGHT_ID

as FLIGHT2_0__, payments3_.PAYMENT_AMOUNT as

PAYMENT2_1_2_, payments3_.PAYMENT_STATUS_ID as

PAYMENT4_1_2_, payments3_.TICKET_ID as TICKET3_1_2_,

payments3_.TICKET_ID as TICKET3_1__,

payments3_.PAYMENT_ID as PAYMENT1_1__ from AIRLINE.TICKET

ticket0_, TICKET_FLIGHT flights1_, AIRLINE.FLIGHT

flight2_, AIRLINE.PAYMENT payments3_ where

ticket0_.TICKET_ID=flights1_.TICKET_ID and

flights1_.FLIGHT_ID=flight2_.FLIGHT_ID and

ticket0_.TICKET_ID=payments3_.TICKET_ID and

ticket0_.PASSENGER_ID=?

In contrast JPA, the JDO API did not provide as elegant a means to

execute a bulk load of an object graph. Instead, the JDO ORMs had to

execute standard queries to retrieve the objects.

The processing times for this test case indicated the JPA

implementations with their join statements were able to perform better

when compared to JDO. Hibernate was significantly faster, and Speedo was

significantly slower when compared to the overall average times. These

times, again, were generally similar when the caching mechanism was

included during the multiple executions.

In summary, the results of this test case indicated the JPA

implementations allowed a way to join fetch all data in the least amount of

database calls. This resulted in significantly faster processing times during

62

the single executions, although the times were similar once the objects

were loaded during the multiple executions.

6.8 BulkObjectSave

This test case examined the ability ORM in performing batch updates in a

single database call, even when multiple objects had been created within a

transaction. Thus, the test case was really a test of whether or not the

ORM even offered the ability to execute batch inserts, and then how fast

the ORM was able to execute the batch update.

 The processing times for the single execution indicated Hibernate

was the best performer by a four-fold margin, and the other ORMs were

generally the same in terms of performance. The database access calls

indicate that Hibernate was the only ORM that was able to batch insert

during the execution of the test case. The overall affect of caching did not

have a significant effect on the processing times since the test case was not

reading data from the data base.

In summary Hibernate performed significantly faster due to the batch

insert functionality offered. All ORMs performed more closely during the

multiple executions as caching did not affect the overall processing times.

63

6.9 LoadAndSave

The purpose of this test case was to determine performance for a series of

reads and a write to the database. Thus, the test case combined aspects of

other test cases into a typical use case that is found in most all

applications. For example, the Hibernate implementation of the test case

was as follows:

 EntityManager em = getEntityManager();
 EntityTransaction tx = em.getTransaction();

 tx.begin();

 Passenger pass = (Passenger)em.find(

Passenger.class, new Long(1));

 Ticket t = new Ticket();

 t.setBookingDate(new Date());

 t.setStatusCode(3);

 t.setTicketClass(8);

 t.setTicketType(9999);

 t.setPassenger(pass);

 Query q = em.createQuery(

"select f from Flight f where f.flightNumber =

'XY453'");

 q.setHint("org.hibernate.cacheable", true);

 Flight f1 = (Flight)q.getSingleResult();

 em.createQuery("select f from Flight f where

 f.flightNumber = 'AB332'");

 q.setHint("org.hibernate.cacheable", true);

 Set<Flight> flights = new HashSet<Flight>();

 flights.add(f1);

 t.setFlights(flights);

 q = em.createQuery("select ps from PaymentStatus

 ps where ps.paymentDescription = 'Paid'");

 q.setHint("org.hibernate.cacheable", true);

64

 PaymentStatus ps =

 (PaymentStatus)q.getSingleResult();

 Set<Payment> payments = new HashSet<Payment>();

 Payment pay1 = new Payment();

 pay1.setPaymentAmount(100);

 pay1.setPaymentStatus(ps);

 pay1.setTicket(t);

 payments.add(pay1);

 t.setPayments(payments);

 em.persist(t);

 tx.commit();

 em.close();

 The results of this test case indicated that Hibernate was the fastest

performer, although OpenJPA and JPOX exhibited similar times to

Hibernate. Speedo was the slowest performer, and was nearly five times

slower than Hibernate.

 The database calls indicated that Hibernate and OpenJPA were able

to complete the test case in the least number of calls, while JPOX and

Speedo required more steps to retrieve the initial data in the load phase.

The processing time for Hibernate was relatively faster than OpenJPA due

to the initialization of the OpenJPA cache for the required reads to

implement the test case.

 The multiple executions of the test case indicated that Hibernate,

OpenJPA, and JPOX were relatively equal once the initial objects were read

into memory. However, Speedo was significantly slower when compared to

JPOX and the JPA ORMs. This difference was related to the query caching

management of the Speedo implementation.

65

 In summary, all the ORMs held similar processing times with the

exception of Speedo which contained significantly slower times. The JDO

ORMs required additional database calls to select the sequence, and Speedo

required additional time for query cache management.

6.10 Cache vs No Cache

Caching had a dramatic affect on the ability of the Hibernate ORM to

execute the loading test cases (LazyLoadObjects, EagerLoadObjects,

and BulkLoadObjects). Similar, although not as striking results, can be

seen in the other test cases for the single vs. multiple executions, as

caching leveled the playing field during the multiple runs. Again, the ability

of the ORM to locate the object in the local stack vs. a remote database call

was very important in the processing time of the ORM in to execute the test

case.

 The results indicated the importance of caching in performance and

the overall design decisions of the ORM. This was even seen in this study

which had a locally deployed database that was running on the same node

as the application. Thus, the importance of caching would become even

more important given additional network overhead that most applications

would occur. This additional overhead would need to be factored into the

processing time of an application in the absence of a cache.

66

7 Conclusions and Future Work

7.1 Conclusions

This research developed an ORM performance evaluation framework

by identifying a set of performance test cases that are based upon common

database access scenarios. The research then executed these test cases on

a selected number of Java ORMs in order to evaluate and compare ORM

processing time, database access calls, and the use of object caching.

The application of the test cases revealed significant performance

differences between the selected test ORMs. The JPA implementations

were better performers when compared to the JDO implementations, with

Hibernate being the overall best performer of all implementations. Of the

JDO implementations, JPOX was the better performer, and Speedo was the

overall slowest of all the implementations.

All implementations included a caching mechanism that reduced the

number of database calls. Overall, the implementations were relatively

similar in regards to their processing time when retrieving cached objects.

The ORMs performed equally in their respective database access

strategy for loading the same object twice within the same transaction and

between transactions. The differences in processing time were related to

cache initialization.

67

Lazy object loading was relatively similar for all ORMs in terms of

processing time. Eager loading objects, however, was not similar between

ORMs, as JDO did not provide a method to execute eager loading of object

graphs. The JPA implementations also allowed a way to join fetch related

data in the least amount of database calls. Hibernate was the only ORM

that offered batch insert functionality; thus, this ORM was able to perform

significantly better during batch inserts.

Caching had a dramatic impact on processing time when multiple

calls are made to retrieve objects. In addition, the ability to cache queries

and manage the object cache with queries was important in determining

overall processing time. Thus, the ability of the ORM to perform caching

and possibly allow for a pluggable cache is an important decision when ORM

performance is a factor in the overall application design. This research

indicated that cache initialization can take a relatively significant amount

of time compared to the actual database call in some situations; thus,

applications should consider the initializing cache at application startup in

those contexts where performance is a concern.

The results indicate that ORMs exhibit considerable differences in

terms of performance and database access, while all executing the same set

of test cases. These differences can be used to assist developers in

navigating around performance issues in applications that utilize the

specific ORM. The application of a common set of performance test cases

68

can be undertaken by the ORM community in order to develop a common

benchmark for ORM performance and database access. Such a benchmark

would provide ORM users with insight into how the ORMs implemented

common data access scenarios. This information would allow developers to

integrate ORM performance into decisions regarding ORM selection and the

application of ORMs to specific contexts.

7.2 Future Work

The results of this research have identified additional areas of study that

could be undertaken to better understand database access strategies and

their associated performance implications. These additional areas of study

include the following:

• Implement and execute the test cases on addition ORMs, including

non-standard-based ORMs;

• Perform an evaluation of ORM caching implementations, including an

analysis of distributed cache management during various

update/insert scenarios;

• Add a database insert and read performance test case that evaluates

ORM performance and database access for dirty objects;

• Add a database update performance test case that evaluates

database access for updated objects in the cache;

69

• Add a test case for database deletes, including an evaluation of

cascade delete operations;

• Execute the performance test cases with multiple clients connected

to the same ORM cache to determine the performance variation

associated with locking and synchronization; and,

• Perform the performance test cases for a wider range of JPA

implementations, including the commercial versions of Oracle’s

TopLink and BEA’s Kodo.

70

Bibliography

Agarwal S., Keene C., and Keller A.M. (1995). Architecting Object
Applications for High Performance with Relational Databases.
Proceedings OOPSLA Workshop on Object Database Behavior,
Benchmarks, and Performance, Austin, TX, pp. 1-8.

Alur, Deepak, Crupi, John, and Malks, Dan. (2001). Core J2EE Patterns.

Prentice Hall. 496 pages.

Ambler, Scott. (1998). Building Object Applications That Work Your Step-

by-Step Handbook for Developing Robust Systems With Object
Technology. SIGS Books/Cambridge University Press, New York.

Amber, Scott. (2005). The Design of a Robust Persistent Layer for

Relational Databases. Ambysoft, Inc.

Anderson, T., Berre, A., Mallison, M., Porter, H., and Schneider, B. (1990).

The HyperModel Benchmark. Proceedings of the international
conference on extending database technology on Advances in
database technology, Venice, Italy, pp. 317-331.

Barry, D. and Stanienda, T. (1998). Solving the Java Storage Problem. IEEE

Computer, 31(11), pp. 33-40.

Bauer, Christian and King Gavin. (2007). Java Persistence with Hibernate.
Manning Publications. 850 pages.

Bitton D., DeWitt D.J., and Turbyfill C. (1983). Benchmarking Database
Systems, a Systematic Approach. Proceedings of the Ninth
International Conference on Very Large Data Bases, pp. 8-19.

Carey, M. J., DeWitt, D. J., and J. F. Naughton. (1993). The OO7

Benchmark. Proceedings of the ACM SIGMOD International
Conference on Management of Data, Washington DC., pp. 12-21.

Carey, M., DeWitt, D. Naughton, J., Asgarian, M, Brown, P., Gehrke, E. and

Shah, D. (1997). The BUCKY Object-Relational Benchmark.
Proceedings of 1997 ACM SIGMOD Intl. Conference on the
Management of Data, Tucson, Arizona, pp. 135-146.

71

Castor User Documentation. (2007) . Castor documentation retrieved June
12, 2007 from http://www.castor.org.

Cattell, R. G. G. (1991). Object Data Management: object-oriented and
extended relational database systems, Addison-Wesley Publishing
Company.

Cattell, R. G. G and Skeen, J. (1992). Object Operations Benchmark, ACM

Transactions on Database Systems, 17(1), pp. 1-31.

Cayenne User Documentation. (2007). Cayenne documentation retrieved

7/3/2007 from http://cayenne.apache.org/

Chays, David, Dan, Saikat, Frankl, Phyllis G., Vokolos, Filippos I., and
Weber, Elaine J. (2000). A framework for testing database
applications, Proceedings of the 2000 ACM SIGSOFT international
symposium on Software testing and analysis, Portland, Oregon,
pp.147-157.

Chen, Peter Pin-Shan (1976). The Entity-Relationship Model - Toward a
Unified View of Data. ACM Transactions on Database Systems, 1(1),
pp. 9-36.

Demurjian, Steven A., Hsiao, David K., Kerr, Douglas S., Tekampe, Robert
C., and Watson, Robert J. (1985). Performance measurement
methodologies for database systems. Proceedings of the 1985 ACM
annual conference on The range of computing : mid-80's perspective:
mid-80's perspective, Denver, Colorado, pp. 16-28.

Deng, Yuetang, Frankl, Phyllis and Wang, Jiong (2004). Testing web
database applications. ACM SIGSOFT Software Engineering Notes,
29(5), pp. 1-10.

Doppelhammer , J., Höppler, T., Kemper, A., and Kossmann, D. (1997).
Database performance in the real world: TPC-D and SAP R/3,
Proceedings of the 1997 ACM SIGMOD international conference on
Management of data, Tucson, Arizona, pp.123-134.

Duhl, Joshua and Damon, Craig. (1988). A performance comparison of
object and relational databases using the Sun Benchmark.
Conference proceedings on Object-oriented programming systems,
languages and applications, San Diego, California, pp. 153-163.

Gamma, Erich, Helm, Richard, Johnson, Ralph and Vlissides, John. (1995).
Design Patterns: Elements of Reusable Object-Oriented Software.

 Addison-Wesley. 395 pages.

72

Gray, Jim. (1987). A view of database system performance measures.
Proceedings of the 1987 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, Banff, Alberta,
Canada, pp. 3-4.

Harkema , M., Quartel , D., Gijsen , B., and van der Mei, R. D. (2002).

Performance Monitoring of Java Applications. Proceedings of the 3rd
international workshop on Software and performance, Rome, Italy,
pp. 114-127.

Hibernate User Documentation. (2007) . Hibernate documentation
retrieved June 11, 2007 from http://www.hibernate.org.

Jordan, David, and Russell, Craig (2003). Java Data Objects. O’Reilly Press.
380 pages.

Jordan, M. (2004). A Comparative Study of Persistence Mechanisms for the
Java Platform. September 2004. Retrieved June 20, 2007 from
http://research.sun.com/techrep/2004.

JPOX User Documentation. (2007). JPOX documentation retrieved June 18,
2007 from http://www.jpox.org.

Juric, M., Rozman, I, and Nash, S. (2000). Java 2 distributed object
middleware performance analysis and optimization. ACM SIGPLAN
Notices, 35(8), pp. 31-40.

Juric, M., Rozman, I., Brumen, B., Colnaric, M., and Hericko, M. (2006).
Comparison of performance of web services, WS-security, RMI, and
RMI-SSL. Journal of Systems and Software, 79(5), pp. 689-700.

Keller, Wolfgang. (1997). Mapping Objects To Tables A Pattern Language.
Proceedings of the 1997 European Conference on Pattern Languages
of Programming, Bavaria, Germany, pp. 1-26.

Linskey, Patrick and Prud'hommeaux, Mark. (2007). An in-depth look at the
architecture of an object/relational mapper. Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data,
Beijing, China, pp. 889-894.

Loney, Kevin. (2004). Oracle Database 10g: The Complete Reference.
McGraw-Hill Osborne Media. 1369 pages.

73

Martin, Bruce. (2005). Uncovering Database Access Optimizations in the
Middle Tier with TORPEDO. Proceedings of the 21st IEEE
International Conference on Data Engineering, Tokyo, Japan, pp.
916- 926.

Monson-Haefel (2001). Richard. Enterprise JavaBeans, 3rd Edition. O’Reilly
Press. 344 pages.

OpenJPA User Guide. (2007). OpenJPA documentation retrieved June 19,

2007 from http://openjpa.apache.org.

Orthogonal Persistence for the Java Platform – Specification and Rationale.
Sun Microsystems Laboratories Technical Report, SMLI TR-2000-94,
December 2000.

Poess, Meikel and Floyd, Chris. (2000). New TPC benchmarks for decision

support and web commerce. ACM SIGMOD Record, 29(4), pp. 64-71.

Pole Position (2007). User documentation retrieved June 22, 2007 from
 http://www.polepos.org

Pugh, Eric and Gradecki, Joseph. (2004). Professional Hibernate. John

Wiley & Sons, Inc.

Rubenstein, W. B., Kubicar, M. S., and Cattell, R.G.G. (1987).
Benchmarking simple database operations. Proceedings of the 1987
ACM SIGMOD international conference on Management of data, San
Francisco, California, pp. 387-394.

Seng, Jia-Lang, Yao, S., and Hevner, A. (2005). Requirements-driven
database systems benchmark method. Decision Support Systems,
38(4), pp. 629-648.

Speedo User Documentation. (2007). Speedo documentation retrieved June
21, 2007 from http://speedo.objectweb.org.

Sun Microsystems (2002). Java Specification Request 19: Java Enterprise
JavaBeans 2.0 Specification.

Sun Microsystems (2003). Java Specification Request 153: Java Enterprise
JavaBeans 2.1 Specification.

Sun Microsystems (2004). Java Specification Request 12: Java Data Objects
(JDO) Specification.

74

Sun Microsystems (2005). Java Specification Request 243: Java Data
Objects 2.0 Specification.

Sun Microsystems (2006a). Java Specification Request 220: Java Enterprise
JavaBeans 3.0 Specification.

Sun Microsystems (2006b). Java Specification Request 221: JDBC 4.0
Specification.

Tiwary A., Narasayya N. and Levy H. (1995). Evaluation of OO7 as a system
and application benchmark. OOPSLA Workshop on Object Database
Behavior, Benchmarks and Performance, Austin, Texas.

Yao, S., Hevner, A., and Young-Myers, H. (1987). Analysis of database

system architectures using benchmarks, IEEE Transactions on
Software Engineering, (13)6, pp.709-725.

Zyl, Pieter Van, Kourie, Derrick G., and Boake, A. (2006). Comparing the
performance of object databases and ORM tools. Proceedings of the
2006 annual research conference of the South African institute of
computer scientists and information technologists on IT research in
developing countries, Somerset West, South Africa, pp. 1-11.

