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Abstract 

 There has been a significant growth in the use of UAV helicopters for a multitude 

of military and civilian applications over the last few years. Due to these numerous 

applications, from crop dusting to remote sensing, UAV helicopters are now a major 

topic of interest within the aerospace community. The main research focus is on the 

development of automatic flight control systems (AFCS). The design of AFCS for 

these vehicles requires a mathematical model representing the dynamics of the 

vehicle. The mathematical model is developed either from first-principles, using the 

equations of motion of the vehicle, or from the flight data, using parameter 

identification techniques. The traditional six-degrees-of-freedom (6-DoF) dynamics 

model is not suitable for high-bandwidth control system design. Such models are 

valid only within the low- to mid-frequency range. 

 The agility and high maneuverability of small-scale helicopters require a high-

bandwidth control system for full authority autonomous performance. The design of a 

high-bandwidth control system in turn requires a high-fidelity simulation model that 

is able to capture the key dynamics of the helicopter. These dynamics include the 

rotor dynamics. 

 This dissertation presents the development of a 14-degrees-of-freedom (14-DoF) 

state-space linear model for the KU Thunder Tiger Raptor 50 UAV helicopter from 

first-principles and from flight test data using a parameter identification technique for 

the hovering and forward flight conditions. The model includes rigid body, rotor 
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regressive, rotor inflow, stabilizer bar, and rotor coning dynamics. The model is 

implemented within The MathWork’s MATLAB/Simulink environment. The 

simulation results show that the high-order model is able to predict the helicopter’s 

dynamics up to the frequency of 30 rad/sec. 

 The main contributions of this dissertation are the development of a high-order 

simulation model for a small UAV helicopter from first-principles and the 

identification of a high-order model for a UAV helicopter of the size of the Raptor 50 

helicopter using flight test data. Another key contribution of this research is the 

calculation and identification of stability and control derivatives for the Raptor 50 

helicopter. These can readily be used without any further modification for the design 

of control systems.     

 

Keywords: High-Order Model, Stability and Control Derivatives, Hybrid Model, 

CIFER, Bandwidth, Rotor Dynamics 
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1 Introduction 

 This chapter presents previous helicopter dynamics modeling work followed by a 

summary of this research. In the first section of this chapter, an overview of this 

research is presented. Section two is the background section of this dissertation. The 

third section discusses helicopter dynamics modeling techniques. Previous work on 

helicopter dynamics is discussed in the fourth section. The fifth section presents an 

outline of the present work. In the sixth section, the contributions that the present 

work makes to the helicopter dynamics modeling community are discussed, followed 

by a description of the Raptor 50 helicopter. Finally, the organization of this 

dissertation is presented. 

1.1 Overview 

 There has been a significant growth in the use of UAV helicopters for a multitude 

of military and civilian applications over the last few years. Due to these numerous 

applications, from crop dusting to remote sensing, UAV helicopters are a major topic 

of interest within the aerospace community. With the availability of highly accurate 

and miniaturized sensors like micro electronic sensors (MEMS), the research focus is 

on developing models for the design of autonomous flight control systems (AFCS) 

embedded within the avionics system. 

 Helicopters can take-off and land vertically, can hover, and also have the 

capability for forward flight. These features make helicopters suitable for several 

operations that the fixed-wing aircraft cannot easily achieve. Helicopter UAVs have 
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the further advantages of size, agility, and maneuverability. These qualities make the 

UAV helicopters suitable for various tasks such as battleground monitoring without 

risking the loss of human life. 

 Helicopter dynamics are inherently unstable. This requires continuous attention 

from the pilot, which can be very fatiguing and can even lead to accidents. This, in 

turn, requires a stability augmentation system (SAS) and an AFCS. The intended use 

of UAV helicopters as autonomous vehicles also require an SAS and AFCS installed 

onboard. The design of the SAS and AFCS usually require mathematical models that 

represent the flight dynamics of the helicopter1. The mathematical models for the 

helicopters are either single-input-single-output (SISO) models in the form of transfer 

functions or multiple-input-multiple-output (MIMO) models in the form of 6-DoF 

state-space models2, 3.  

 The agility and high maneuverability of small-scale helicopters require a high-

bandwidth control system for full authority autonomous performance. The design of a 

high-bandwidth control system, in turn, requires a high-fidelity simulation model that 

captures the key dynamics of the helicopter4. Traditional 6-DoF dynamics models, in 

which rotor dynamics are modeled using the quasi-static assumption3,5, are not 

suitable for high-bandwidth control system design. Such models are valid within the 

low- to mid-frequency range (0.5-8 rad/sec). To obtain a model that is valid over the 

entire frequency range of interest (up to 30 rad/sec), rotor flapping and lead-lag 

dynamics need to be explicitly modeled as separate degrees-of-freedom6, 7, 8, 9. Also 
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important are the rotor inflow dynamics. For small-scale UAV helicopters, the 

stabilizer bar plays a very important role, and its dynamics must be modeled in order 

to get an accurate and a high-fidelity model10.  

This dissertation presents the development of a 14-degrees-of-freedom (14-DoF) 

state-space model for a KU Thunder Tiger Raptor 50 V2 UAV helicopter (Raptor 50) 

using analytical and parameter identification techniques. The model includes the rotor 

flapping degrees-of-freedom, rotor inflow dynamics and stabilizer bar dynamics. No 

work exists in the literature on the development of a high-order model for the 

helicopter of the size of the Raptor 50. The high order model presented in this 

dissertation can be used by anyone working on the Raptor 50 without further model 

develpment. This is the primary contribution of this dissertation. Other unique 

contributions are: consideration of parameter variation in the model development of a 

UAV helicopter and inclusion of inflow dynamics in the model.  

1.2 Background  

 Unlike fixed-wing aircraft, helicopters possess significant coupling between the 

longitudinal and the lateral dynamics. One of the main sources of this coupling is the 

rotor flapping due to pitch and roll velocities11. An offset in the flapping hinge also 

causes a coupling between the two dynamics. Ref. 11 provides further detail about 

different sources of coupling between the longitudinal and the lateral dynamics of 

helicopters. 

 Due to couplings and other complexities, the development of a model for the 



  

4 
 
 
 
 

 

helicopter is much more difficult than for their fixed-wing counterparts. These 

complexities arise mainly due to the rotor being a complex dynamic system. In 

helicopters, the rotor is responsible for producing lifting forces. The rotor is also used 

for controlling the helicopter. Since the rotor is a dynamic system, the forces 

produced by it not only depend on the pilot input, but also on the rotor states. Also, 

the rotor behavior changes significantly as the helicopter moves from one flight 

regime to another, e.g., from hover to forward flight and from hover to vertical flight, 

etc. These properties make the development of dynamics models for helicopters 

extremely difficult.  

 A significant amount of research is ongoing in helicopter dynamics modeling due 

to these difficulties. One of the problems the rotorcraft dynamic modeling 

communities faces is in the off-axes response (the roll rate due to the longitudinal 

cyclic or the pitch rate due to the lateral cyclic). The traditional six-degree-of-

freedom (6-DoF) models give the off-axes responses in the wrong direction as 

compared with the flight data. There is usually a 180° phase difference between the 

flight data and the model prediction. For a long time, the cause of this error was not 

understood. Another problem the community faced was that the 6-DoF models were 

able to predict the helicopter dynamics only at the lower frequencies. Such models 

were not sufficient for the high-bandwidth control systems required for the 

helicopters.  

 For high-bandwidth control system design, the models that could predict the 
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helicopter dynamics accurately at the mid- and high-frequencies were required. This 

required an explicit modeling of the rotor dynamics that comes into play at the higher 

frequencies. 

 The past decade has seen a rapid growth in the use of UAVs, from military 

applications, such as battleground monitoring, weapon dropping, border surveillance 

et cetera, to civilian uses such as remote sensing, crop dusting, fire fighting, etc. The 

use of UAV helicopters is also on the rise, in part due to their unique capabilities.  

Consequently, there has been a significant research effort on UAV helicopters, mostly 

on the development of autonomous UAV helicopters.  

 Various universities and organizations are doing research on helicopter UAVs. The 

premier organizations that are involved in helicopter UAV research include Georgia 

Tech, Carnegie Mellon University, MIT, and the U. S. Army Aeroflightdynamics 

Directorate (AFDD). Georgia Tech is conducting dynamics and controls research on 

Aerial Robotics and Vision Based Control Systems using an R-MAX UAV 

helicopter12, while Carnegie Mellon has used its Yamaha R-50 helicopter for research 

on vision-based guidance13. MIT researchers used an X-Cell 60 UAV helicopter for 

autonomy research and dynamics modeling of aerobatic maneuvers14, 15. AFDD at the 

Ames Research Center is doing research on its R-MAX helicopter for flight dynamics, 

control and simulation studies16. 

Intelligent Uninhabited Air Vehicles represent a major area of multidisciplinary 

systems-oriented research and development at The University of Kansas (KU). The 
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research emphasis at KU is on designing, modeling, and flight-testing these vehicles 

to develop accurate dynamic computer simulations. Another key research topic to 

enable unpiloted vehicles as viable systems is the development of reliable 

autonomous control technologies implemented within embedded computer systems. 

Figure 1 shows the KU R-MAX and Raptor 50 helicopters that are being used as 

research vehicles. 

 

Figure 1: Yamaha R-MAX and Raptor 50 V2 Helicopters 
 

1.3 Helicopter Modeling Techniques 

 There are currently two approaches to the development of a simulation model for 

helicopters. The first approach is the parameter identification technique, in which the 

data obtained during flight tests are used to extract a simulation model. This approach 

is relatively simple, and no a-priori knowledge of the dynamics system is required. 
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However, this method generates models that are valid for particular flight conditions 

and thus are not suitable for the development of a control system that is valid for an 

entire flight envelope. Another limitation to this approach is that it cannot be used for 

vehicles that are still in the design phase. It requires a vehicle ready to fly, so that 

flight data for parameter identification can be collected. Despite these limitations, 

parameter identification techniques so far dominate the work done on helicopter 

dynamics modeling for control system design applications. CIFER (Comprehensive 

Identification from FrEquency Response)17 software developed by the U.S. Army, 

NASA, and Sterling Software has been used extensively for this purpose. Other 

software such as MMLE has also been used for parameter identification of helicopter 

dynamics18. Even with the parameter identification technique, a model structure has 

to be defined that explicitly models the rotor degrees-of-freedom (in order to get a 

model that captures the rotor dynamics) and that is suitable for the design of a high-

bandwidth control system. In Ref. 19, Tischler and Cauffman have developed a 

hybrid model for the BO-105 helicopter, taking into account the coupling between 

rotor and fuselage dynamics.  

 The development of an autonomous system requires a simulation model that is 

valid over a large portion of the flight envelope. Such a model can be developed from 

first principles using the equations of motion for the helicopter’s flight dynamics. The 

development of such a model requires significant knowledge about the flight 

dynamics of the helicopter. This approach does not require flight data, and can predict 
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the dynamic response of a helicopter that is still in the design phase. The initial 

development of the analytical model from first principles is time consuming. Once 

developed, however, analytical models can be generated for different vehicles and for 

different flight conditions just by supplying the appropriate geometric and mass 

characteristics of the helicopters. 

1.4 Literature Survey 

 As discussed earlier, due to complexities involved with the rotorcraft dynamics 

modeling, the rotorcraft research community has not been able to develop models for 

helicopters equivalent to the models for fixed-wing aircraft in terms of accuracy. The 

difficulty mainly arises due to the rotor being a complex rotating system, which is 

responsible for producing lift and controlling the helicopter attitude. The unsteady 

aerodynamics involved with the rotor inflow dynamics20 further complicates the 

rotorcraft dynamics modeling. Another important aspect is that different helicopters 

come with different rotor head designs3. Rotor flapping and lead-lag dynamics are 

other aspects that complicate rotorcraft modeling. Further, the helicopters can take off 

and land vertically, and posses the capability for forward flight like fixed-wing 

aircraft. These features complicate the development of a model that is valid for all 

helicopters and for all flight regimes.  

 Due to these difficulties, the rotorcraft community depends more on parameter 

identification techniques rather than theoretical modeling, though analytical modeling 

is necessary to understand underlying principles. Since traditional 6-DoF models are 
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not able to capture high-frequency dynamics and are not suitable for high-bandwidth 

control system design, current research focuses on the development of a high-order 

model that includes rotor degrees-of-freedom. A significant amount of work has been 

done on the development of high-order mathematical models from first-principles for 

full-scale helicopters. An example is the GenHel21 nonlinear simulation code 

developed by Sikorsky Aircraft for the UH-60 Black Hawk Helicopter. This model is 

comprehensive and includes rigid body, rotor flapping and lead-lag, rotor speed, and 

rotor inflow degrees-of-freedom. The model proved to be useful for motion analysis 

and the pilot-in-the-loop simulation. However, the model was not suitable for the 

design of control systems using the existing and the most prevalent linear control 

system design techniques. In Ref. 22, Kapilta, et al. used the GenHel code for the CH-

53E helicopter to show the validity of the code in the frequency-domain. The authors 

also showed the shortcomings of the GenHel code and suggested improvements.  

 Refs. 4 and 23 discuss about the extraction and validation of a high-order linear 

model from the GenHel simulation code. This model includes the rotor flap and lag-

degrees-of-freedom as well as the rotor inflow dynamics. The model prediction 

showed a high degree of correlation with the flight data. The validity of a reduced 

order model was also demonstrated in these works. Another example of the extraction 

of a high-order linear model from the GenHel code is found in Ref. 24. In this 

reference, a linearized model was extracted from the GenHel code for the UH-60 

Black Hawk helicopter. The author showed the high frequency rotor modes that can 
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couple with the fuselage dynamics as shown in Figure 2. In the figure, it is seen that 

the rotor regressive flap, lag, uniform inflow, and collective lag modes are at 

frequencies that are close to the rigid body modes (body pitch and roll modes, etc.).    

 
 

Figure 2: High Frequency Rotor Modes for the UH-60 Helicopter 
 
 
 In the reference, the author also showed the limitation of the 6-DoF models on the 

roll rate feedback gain as shown in Figure 2 and Figure 324. It is clear from the figure 

that when the gain is increased, the regressive flap/body mode moves toward right-

half plane, causing vibration and instability.   

 Refs. 25 and 26 discuss the validity of the GenHel code via flight test data and 
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parameter identification in time- and frequency-domains.  

 
 

Figure 3: Roll Rate to Lateral Cyclic Root Locus for the UH-60 Helicopter 
 
 
 A helicopter mathematical model named ARMCOP27 is another example of a high 

order (10-DoF) nonlinear, total force and moment model that includes six rigid body, 

three rotor flapping, and rotor rotational degrees-of-freedom. The model is suitable 

for the piloted simulation. Ref. 28 discusses the effect of the addition of the dynamic 

inflow and the rotor lead-lag dynamics into the ARMCOP model with emphasis on 

the improvement in the model response.    

 In Ref. 29, Curtiss and Zhao describe a method for obtaining a high-order 

linearized model using a symbolic automatic equation-generating program called 
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Reduce implemented in the MACSYMA30 software. The model includes rigid body, 

rotor flapping, lead-lag, and rotor inflow dynamics. This linear model was validated 

via flight test data. The authors’ emphasis is on the inclusion of rotor dynamics to 

have a model that is valid at higher frequencies, and is suitable for the design of high-

bandwidth control systems. Ref. 31 discusses the influence of rotor dynamics and the 

dynamic inflow on the stability and the control characteristics of helicopters in near- 

hovering flights. The paper discusses the body attitude and the rate feedback 

limitations that arise due to rotor flapping, lag, and inflow dynamics. It is shown that 

attitude feedback gain is limited by body-flap coupling and rate gain is limited by lag-

body coupling. Also discussed are resulting instabilities when a control system 

devised on the quasi-static flapping assumption is applied to a model with flapping 

dynamics included. 

 The stability and the control characteristics for the hingeless rotors are discussed in 

Ref. 32. The paper focuses mainly on the induced flow field and rotor flapwise 

bending modes with emphasis on the importance of the rotor-fuselage coupling. 

 Ref. 33 showed the influence of the high-order rotor flapping dynamics on the 6-

DoF stability and control derivatives. It was shown that a model with the rotor 

dynamics was found to be a substantial improvement over the conventional model, 

effectively doubling the relative bandwidth and providing a more accurate 

representation of the short-period and the cross-axis characteristics. In Ref. 34, 

McKillip and Curtiss have suggested an approximate form for augmenting the linear 
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rotor/body response to include the rotor lag dynamics. The authors discuss the 

implication of the approximation, and the effect of the lag dynamics on stability with 

body rate feedback. 

 The modeling of helicopter dynamics started in the 1950’s and is still going on. 

The modeling effort up to 1970 used analytical techniques. The early 1970’s saw the 

advent of the development of mathematical models of helicopter dynamics using 

parameter identification techniques. Since helicopter dynamics are extremely 

complex, and the analytical models were not able to predict the helicopter dynamics 

at higher frequencies, it was realized that there was a need for the development of 

mathematical models using flight data that would more accurately predict helicopter 

dynamics. Though model development using parameter identification techniques has 

certain limitations, it has become a popular model building technique among the 

rotorcraft dynamics modeling community. Unlike analytical modeling techniques, 

this technique is not suitable for the development of models for helicopters that are 

still in the design phase. Another limitation is that each flight condition requires a 

separate model identified for it. Nonetheless, there is a lot of current work on using 

parameter identification techniques. Accurate determination of the stability and the 

control derivatives (S&C) from the flight test data is useful for handling qualities 

assessment, better AFCs design, stability prediction, etc.  

 In the early 1970’s, there were several works accomplished in the identification of 

the S&C derivatives for both fixed- and rotary-wing aircraft. Refs. 35 and 36 discuss 
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early work on the extraction of the S&C derivatives from the flight test data. These 

works have usually been characterized by 3-DoF models. Ref. 37 presented a method 

to extract the helicopter stability derivatives using Kalman Filtering, and extended the 

method to extract a 6-DoF model. In Ref. 38, the author applied a Bayesian approach 

to estimation in the identification of S&C derivatives from the flight data for a CH-53 

helicopter flying at 100- and 150-knot trim conditions. The paper highlighted the 

need for at least a 6-DoF model for the helicopter to capture the key dynamics. 

 Research on a XV-15 tilt rotor aircraft started the frequency-domain approach to 

the parameter identification of the S&C derivatives for fixed- and rotary-wing 

aircraft. Ref. 37 talks about the identification of the open-loop dynamics of the XV-

15 aircraft. In the paper, piloting and data analysis techniques are presented to 

determine frequency response plots and equivalent transfer function models. It was 

shown that the open-loop pitch and roll dynamics for the hovering flight condition 

exhibit unstable low-frequency oscillations, whereas the dynamics in the remaining 

degrees-of-freedom are lightly damped and generally decoupled.  

 The early work on the parameter identification of the S&C derivatives focused on 

6-DoF models. These models suffered from the problem, as did the models developed 

from first principles, of not being able to predict the dynamics at the higher 

frequencies. The need to model the rotor dynamics explicitly was identified and the 

work thereafter focused on the development of a high-order model including rotor 

dynamics. Ref. 38 talks about the identification of 9- and 12-DoF linear models of 
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rotor-fuselage dynamics from nonlinear simulation data. The resulting models were 

used to evaluate the coupling of the fuselage modes with the rotor flapping and lead-

lag modes at various frequencies. In Ref. 19, the authors present a comprehensive 

frequency-response method for the system identification of coupled rotor/fuselage 

dynamics of a BO-105 helicopter. The authors used CIFER to identify a 9-DoF 

hybrid model of the helicopter from the flight test data. The identified model includes 

the coupled body/rotor flapping and lead-lag dynamics, and is accurate up to the 

frequency of 30 rad/sec. An application of the model to the design of a flight control 

system showed that the maximum roll rate gain is limited by the destabilization of the 

lead-lag dynamics.  

 Refs. 39, 40, and 41 are some of the other works related to the identification of a 

model including rotor degrees of freedom. In Ref. 39, the authors investigate the use 

of higher order models that include rotor-degrees-of-freedom in the system 

identification of a BO-105 helicopter. The authors developed two different models of 

10th and 14th order. The 10th order model included first order rotor dynamics while the 

14th order model included second order flapping and second order coning dynamics. 

The prediction capability of the identified model was demonstrated in the verification 

results. Ref. 40 discusses the development of a high-order model that includes the 

rotor lag degree-of-freedom and structural modes for a CH-53 helicopter. It is shown 

that the higher order dynamics of the helicopter are dominated by rotor and structural 

modes. 
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 Some of the helicopter dynamics modeling work using parameter identification 

included rotor inflow dynamics. The dynamics associated with rotor inflow have 

similar time scales to the rotor flapping dynamics, and are strongly coupled with the 

flap and the fuselage-degrees-of-freedom as discussed in Ref. 31. In Ref. 42, Fletcher 

discusses the identification of a 14-DoF model, which characterizes the open loop 

UH-60 flight dynamics in hover using a frequency-response-error-identification 

method. The model includes rigid body fuselage dynamics, regressing rotor flapping 

and rotor lead-lag dynamics, main rotor inflow, rotor RPM, and engine governor 

dynamics. It is shown that the model is applicable within the frequency range of 0.1 

to 20 rad/sec. The identified model predicts the on-axis response of the helicopter and 

has superior off-axis fidelity. The effect of the dynamic inflow on the vertical 

acceleration response to collective input is also discussed. Ref. 43 talks about the 

development of a high-order state-space model using CIFER for a SH-2G flapped 

helicopter. The model includes the coupled rotor/fuselage/engine/inflow dynamics. 

The model was developed to support the development of a new digital flight control 

system and piloted simulation. It is shown that for the control system design and the 

simulation applications, the model should include fuselage rigid body dynamics, rotor 

regressive flapping dynamics and rotor coning dynamics, dynamic inflow, and engine 

responses to accurately match the SH-2G response in the frequency range of interest. 

 Refs. 44, 45, and 46 are other examples of the development of high-order flight 

mechanic models using parameter identification techniques. In Ref. 44, the authors 



  

17 
 
 
 
 

 

developed a mathematical model for the design of a model following control system 

for a BO-105 helicopter.  It was shown that the 6-DoF model was not appropriate for 

the control system design because the model cannot predict the initial response 

characteristics. An extended model with 8-DoF, including rotor dynamics effects, was 

derived and identified. An application of a system identification method to high-

bandwidth rotorcraft flight control system design is discussed in Ref. 45 by Tischler. 

The author shows that there is the need for including coupled body/rotor flapping and 

lead-lag dynamics in the identification model structure to allow the accurate 

prediction of control system bandwidth limitations. Schroeder et al. in Ref. 46 

developed a 7-DoF hover model for an AH-64 Apache helicopter for use in the 

testing of a hover-display design. The developed model was an extended 6-DoF 

stability derivative characterization extracted from an extensive flight database. 

 One major problem the rotorcraft community faced was the prediction of off-axes 

responses by the dynamic models in the wrong direction. The longitudinal-cyclic-to-

roll-rate and lateral-cyclic-to-pitch-rate responses had a 1800 phase error when 

compared with the flight data. There were discrepancies in the magnitude of the 

responses as well. This became a major area of research during the late 1980’s and 

early 1990’s. In Ref. 47, Mark Tischler et al pointed out that the induced velocity 

model was the source of this error. A work by Rosen and Isser48 supported this claim. 

This work showed that the wake distortion due to angular rate was responsible for the 

sign change. However, the model is not suitable for incorporation into the flight 
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dynamics model. 

 J. D. Keller in his papers introduces a dynamic wake correction factor to account 

for the effect of the rotor pitching and rolling velocities on the induced velocity 

distribution49, 50. He showed that the steady pitching and rolling motion created a 

distortion in the wake, and that neglecting this distortion was the source of the error in 

the off-axes responses. With the introduction of the dynamic wake correction factor 

into the induced velocity model, there was a significant improvement in the off-axes 

responses. 

  Another way proposed to improve the off-axis response is the introduction of an 

aerodynamic phase-lag51, 52. As discussed in these references, the aerodynamic phase 

lag is a first order lag method for correcting off-axes responses. The lag subsumes the 

influence of several factors including the dynamic wake distortion and 2-D 

compressible unsteady aerodynamic effects53. 

 Compared to their full-scale counterparts, fewer publications exist on the dynamic 

modeling of small-scale unmanned helicopters. Most of the existing models were 

generated using parameter identification techniques. Bernard Mettler et al. in Ref. 14 

developed and validated a nonlinear model for an X-Cell helicopter. The model was 

integrated into a real-time hardware-in-the-loop simulation environment used for the 

development of flight control systems. Refs. 10 and 13 talk about the development of 

a linearized mathematical model based on a hybrid model formulation for a Carnegie 

Mellon R-50 helicopter. This model includes the rotor regressive flapping mode and 
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the stabilizer bar dynamics. Integrated modeling techniques that use both the 

analytical modeling and the parameter identification techniques are described in Refs. 

54 and 55. These models include rotor flapping degrees-of-freedom, inflow 

dynamics, and stabilizer bar dynamics. Ref. 56 describes the modeling of a UAV 

helicopter from first principles and discusses the dynamics of the stabilizer bar 

without providing simulation results. 

1.5 Research Outline 

 This dissertation documents the development of a 14-degrees-of-freedom (14-

DoF) state-space model for a KU Thunder Tiger Raptor 50 V2 UAV helicopter using 

analytical and parameter identification techniques. A model was first developed from 

first principles for hovering and forward flight conditions within the 

MATLAB/Simulink57 environment. The model includes the rotor longitudinal and 

lateral flapping degrees-of-freedom, modeled as first-order equations, and the rotor 

coning dynamics, modeled as a second order equation. The coupling between the 

rotor and the body dynamics is discussed. The model also considers the coupled 

heave-coning-inflow dynamics. The rotor inflow dynamics are modeled as separate 

degrees-of-freedom. The effect of the stabilizer bar on the helicopter’s stability is 

discussed and the bar dynamics are included. Dynamic wake distortion due to roll rate 

and pitch rate is discussed, and a correction factor is included in the model to improve 

the off-axes responses49, 50.  

 As discussed earlier, in the state-space formulation, the rotor forces and moments 
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are represented by S&C derivatives that are functions of aircraft mass and geometric 

characteristics, speed, altitude, etc30. At each time step of the simulation, the new 

flight conditions (u, v, w, θ , et cetera) are fed back into the model resulting in a 

linear parameter-varying (LPV) model. With this approach, the simulation becomes 

more representative of the actual flight dynamics.  

 After successful completion of the model development using the documented 

analytical technique, flight test data was used in the development of the model using a 

parameter identification technique. The model developed using the parameter 

identification is a reduced order model and does not include longitudinal and lateral 

inflow dynamics. Longitudinal and lateral inflow dynamics are dropped from the 

identification model structure because the sensor package is not able to measure the 

inflow velocity components. Indeed, there exists no mechanism to measure these 

velocities. The model includes rigid body, rotor flapping, coning, inflow, and 

stabilizer bar dynamics.    

1.6 Contributions to the Literature 

The present thesis makes a number of contributions to the dynamics modeling of 

small-scale UAV helicopter. The key contributions are described below: 

• Development of a high-order state-space model for the Raptor 50 

helicopter from first principles. No work exists in the literature in the 

development of a comprehensive dynamics model for small-scale 

helicopters from first principles only. 
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• Development of a LPV model. No prior work has used this approach in 

the development of a high-order model. With this approach, the simulation 

becomes more representative of the actual flight condition.  

• Development of a high-order model using a parameter identification 

technique. No work exists in the literature on an identified model for a 

UAV helicopter of the size of the Raptor 50. 

• Inclusion of Heave-Coning-Inflow dynamics in the identification model. 

There are very few publications in the open literature that have included 

heave-coning-inflow coupling within the identification model structure. 

• Calculation and identification of the S&C derivatives for the Raptor 50 

helicopter. These derivatives can be used without any further modification 

for the design of control systems and for other research purposes. 

1.7 Description of the KU Raptor 50 Helicopter 

 The Thunder Tiger Raptor 50 V2 helicopter is a small helicopter intended for 

acrobatic maneuvers. It is manufactured by the Thunder Tiger Company in Taiwan 

and is very popular among hobby pilots. A number of universities are using different 

variants of Raptor helicopters for various research purposes. These include the 

University of Texas at Arlington, which is using a Raptor 60 helicopter for the design 

of a robust controller for the helicopter58 and Yuan Ze University in Taiwan59 is using 

the Raptor 50 helicopter for a simulation model of attitude dynamics. 

 Two Raptor 50 V2 UAV helicopters were purchased for this research. One was 
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intended to be a flight test article, while the other serves as a backup and training 

helicopter. 

Figure 4: KU Raptor 50 V2 Coordinate System 
 
 The center of gravity locations were calculated using three scales. The moments of 

inertia were calculated using an analytical approach and the parallel-axis theorem as 

discussed in Ref. 60. The coordinate system used for the helicopter is shown in Figure 

461. The center of gravity location in the x direction (fuselage station) is given as a 

distance that starts at the nose of the helicopter. In the y direction (butt line), the 

origin is located at the centerline of the helicopter. The origin of the z-axis (water 

line) is given from the ground.  

 The helicopter was instrumented to collect flight data as shown in Figure 5. The 

instruments installed and the purpose of each instrumentation is listed in Table 1.     

 The flight test instrumentation package is capable of simultaneously recording 12 

analog channels and 4 digital channels while sampling at from 0.00027 to 512 Hz. 

The sampling frequency dictates the data recording duration. For example, a sampling 

rate of 120 Hz allows data to be collected for approximately 6 minutes, while 512 Hz 

(0.0, 0.0, 0.0) 

x 
z 

y 
c.g. 
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sampling allows only 80 seconds of data to be collected.   

 
 

Figure 5: Instrumented Raptor 50 V2 Helicopter 
 

Table 1:  Raptor 50 V2 Instrumentation  
Instrumentation Purpose 

4 Position Transducers To measure inputs from the pilot: 
Main Rotor Collective Servo 
Pitch Cyclic Servo 
Lateral Cyclic Servo 
Tail Rotor Collective Servo 

Crossbow Dynamic Measuring 
Unit (DMU) – Model H6X 

To measure the 3 axis linear accelerations and the 
3-axis rotation rates. 

Crossbow 16 Channel Data 
Acquisition Unit – Model Ready 
DAQ AD2012 

To collect and store flight data for post-
processing. 

Power Supply (4 9-Volt 
Batteries) 

To provide constant 18-volt power to the 
previously mentioned devices. 

Governor To maintain constant main rotor rpm 
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 Table 2 shows the specifications of the Raptor 50 before and after the 

instrumentation was added.  

Table 2: Raptor 50 V2 Stock and Flight Article Specifications 
Parameter Stock Flight Article 

Fuselage Length, in. 47.24  47.24 
Fuselage Width, in. 5.51 5.51 
Main Rotor Diameter, in. 52.95 52.85 
Tail Rotor Diameter, in. 9.26 in 9.26 in 
Main Rotor Gearing Ratio 8.50 8.50 
Tail Rotor Gearing Ratio 4.56 4.56 
Empty Weight, lbs. 7.22 lbs. 10.34 lbs. 
Gross Weight, lbs. 7.85 lbs. 10.97 lbs. 
 cgx , in. 15.73 15.26 

cgy , in. -0.44 -0.47 
cgz , in.  -7.42 -7.12 
xxI , slug-ft2 

0.0782 0.0782 
yyI , slug-ft2 0.1973 0.1973 
zzI , slug-ft2 0.1926 0.1926 

  

1.8 Organization of the Dissertation 

 This dissertation is organized as follows. Chapter 1 is an introduction, and mainly 

discusses previous work on helicopter dynamics modeling. Rotorcraft modeling 

techniques are discussed along with the background of the research. This chapter also 

talks about the contribution that this research will have in the area of UAV helicopter 

dynamics modeling. 

 In Chapter 2, the theory behind the development of a high-order state-space model 

is discussed. The first section discusses about the rigid body dynamics. The Rotor 
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flapping dynamics are covered in the second part. In the third section, the rotor lead-

lag dynamics are discussed. The rotor inflow dynamics are discussed in the fourth 

section. The fifth Section discusses about the tail rotor dynamics. The stabilizer bar 

and its effect on small-scale helicopters are covered in the sixth section.  

 In Chapter 3, the approach used in the development of a high-order LPV model is 

discussed. The first section talks about the rotor body coupling. This section also talks 

about the hybrid model formulation that combines low frequency body dynamics and 

high frequency rotor dynamics within a single model. The coupling between the main 

rotor and the stabilizer bar is covered in the second section. The third section talks 

about the heave-coning-inflow dynamics. Development of the LPV model is 

discussed in the fourth section.  

 Chapter 4 is about the model development using CIFER. The first section covers 

the theory of frequency response analysis, which includes the definition of frequency 

response and the method for the calculation of the frequency response that is specific 

to CIFER. In Section 2, various tools that are used by CIFER for frequency response 

calculation and parameter identification are described. Various advantages to using 

CIFER as a parameter identification program are discussed in Section 3. Section 4 is 

about the flight tests and the flight data acquisition. This section focuses on the ways 

for obtaining the flight data that can most efficiently be used for identification using 

CIFER. Some of the flight test rules that must be followed in order to obtain good 

quality flight data are discussed. Section 5 outlines the model development process, 
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which talks about the extraction of a model of different orders at different stages. 

Finally, in Section 6, different methods to check the accuracy of the identified model 

are discussed. 

 Chapter 5 presents the results and the verification of the developed models. In the 

first section, the calculated and the identified derivatives are tabulated. A frequency 

domain comparison between the theoretical model, the identified model, and the 

flight data is presented in the second section. This is followed by a time domain 

comparison between these models and the flight data in the third section. A 

comparison between the calculated and the identified derivatives is presented in the 

fourth section. This section also compares the eigenvalues of the helicopter dynamics 

obtained from the theoretical and analytical models. 

 In Chapter 6, concluding remarks of this research are discussed.  Future work and 

research recommendations are made in Chapter 7, followed by references and 

appendices.   



2 Theoretical Background 

 The basis for the development of a mathematical model for any dynamic system is 

the equations of motion representing the dynamic system. The equations of motion 

are usually derived using Newtonian mechanics. For helicopters, which are complex 

dynamic systems, the equations of motion relate the aerodynamic, inertial, 

centrifugal, and gravitational forces acting on the helicopter.  

 As with their fixed-wing counterparts, there has been a tradition of building 6-DoF 

simulation models of helicopters using the quasi-static assumption. In the quasi-static 

assumption, helicopters are represented as a rigid body. The steady-state rotor forces 

and moments are absorbed into the rigid body model. However, for the design of a 

high-bandwidth control system, the rotor dynamics must be modeled explicitly. For 

small-scale UAV helicopters, also important is the stabilizer bar’s dynamics. In the 

following, rigid body, rotor and stabilizer bar dynamics are discussed.  

2.1 Rigid Body Dynamics 

The rigid body fuselage dynamics are modeled using equations of motion that 

describe the rotational and translational motion of the helicopter along and about the 

three axes as shown in Figure 620. These three force and three moment equations are 

derived using Newtonian mechanics. Ref. 11 discusses in detail the derivation of 

these equations and are given as follows: 

   sin ( )xF mg m u q w r vθ= + + ⋅ − ⋅                                (2.1)  
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sin ( )yF mg m v r u p wφ= − + + ⋅ − ⋅                        (2.2)  
 

cos ( )zF mg m w p v q uθ= − + + ⋅ − ⋅                              (2.3)   
                                                   

qpIIIrqrIpIL xzyzxzx ⋅⋅−−⋅+⋅−⋅= )(                              (2.4)    
                                                     

)()( 22 rpIIIprqIM xzyxy −⋅+−⋅+⋅=                           (2.5)    
                                                     

rqIIIqprIpIN xzxyzxz ⋅⋅+−⋅+⋅+⋅−= )(                        (2.6) 
 

 
 

Figure 6: Diagram Showing Three Axes System along with Principal Variables 
 

 Total forces and moments result from contributions of the main rotor, the tail rotor, 

the horizontal tail, the vertical tail, and the fuselage. The equations given above are 

nonlinear. Small perturbation theory and a Taylor series expansion about a trim point 

are used to linearize these equations11. The linearized equations are much easier to 

use. They are suitable for the analysis of the aircraft’s motion and for the design of 
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control systems. Furthermore, the main advantage of the linearized equations is that 

they can be used in a state-space formulation. The linearized equations, for example, 

can be written in the following form: 

colu w q p r colm u X u X w X q X p X r Xδ δ⋅ = ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + +   

          
latped lonped lon latX X Xδ δ δδ δ δ+ +                                (2.7) 

 

 In the above equation, X
u

X u ∂
∂

= , X
w

X w ∂
∂

= , et cetera, are the stability 

derivatives, and 
col

col

X Xδ δ
∂

=
∂

, 
lon

lon

X Xδ δ
∂

=
∂

, et cetera, are the control 

derivatives. The stability and the control derivatives are functions of aircraft speed 

and altitude. The formulas for these derivatives are similar to the formulas for the lift 

and the drag forces. For example, the formula for uX , the speed-damping derivative, 

is as follows: 

2 1

1
( )u b

CH aX A R
a u

σρ
∂ ∂

= − Ω ⋅
∂ ∂

                                                 (2.8) 

 
 As discussed in Ref. 11, the linearized equations can be solved and reformulated 

for accelerations as given in the following equations:  

 
( )0u w q v p ru X u X w X W q g X v X p X rθ= + + − − + + + +    

     
col lon lat pedcol lon lat pedX X X Xδ δ δ δδ δ δ δ+ + +                                            (2.9)  

                                                                          
( )0u w q v p rv Y u Y w Y q Y v Y p g Y U rφ= + + + + + + − +                 

                  
col lon lat pedcol lon lat pedY Y Y Yδ δ δ δδ δ δ δ+ + +                                               (2.10)  
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( )0 0 colu w q r colw Z u Z w U Z q g Z r Z
δ

θ δ= + + + − + + +    

             
lon pedlon pedZ Zδ δδ δ+               (2.11)  

 
u w q v p rp L u L w L q L v L p L r= + + + + + +                      

                  
col lat lon pedcol lat lon pedL L L Lδ δ δ δδ δ δ δ+ + +                                             (2.12) 

 
u w q v p rq M u M w M q M v M p M r= + + + + + +               

                 
col lon latcol lon latM M Mδ δ δδ δ δ+ +                                      (2.13) 

 

latu w v p r col col lat ped pedr N u N w N v N p N r N N Nδδ δ δ= + + + + + + +        (2.14) 
 

2.2  Main Rotor 

 The main rotor is the primary source of the forces and moments on the helicopter. 

It is responsible for producing lift and propulsive forces as well as control moments. 

Being a rotating system, the rotor is a very complex dynamic system, and poses a big 

challenge in dynamics analysis. Unlike high disk loading propellers, the rotor is more 

flexible, which results in substantial motion of the rotor blades in response to the 

aerodynamic forces. This motion can produce high stresses within the blades or large 

moments at the root, which are transmitted through the hub to the helicopter. To 

reduce these loads, the rotor blades are usually designed with hinges at the root. The 

hinges allow free motion of the blade normal to (flapping) and in the plane of the disk 

(lag). Three different rotor hub designs have been used to allow the flapping and the 

lag motions. These are articulated, teetering, and hingeless rotor systems as shown in 

Figure 73,20. All of these designs have been used successfully, and have both 
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advantages and disadvantages. Detailed discussion on these three rotor systems can 

be found in Refs. 3 and 20.  

 
 

Figure 7: Three Flapping Arrangements 

2.2.1 Rotor Flapping Motion 

 Rotor flapping motion is an out-of-plane motion of the rotor blades with respect to 

the rotor disk that results from the lateral aerodynamic moment caused by the 
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dissymmetry of the lift in the advancing and the retreating sides of the blades. The 

flapping motion takes place at the flapping hinges in articulated rotors. In hingeless 

rotors, the flapping motion is made possible by the flexibility of the rotor material as 

discussed in Ref 20. The flapping motion introduces inertial and aerodynamic forces. 

Also, motion about the flapping hinge is restrained by a centrifugal force when the 

blade is rotating. The flapping equation of motion of the rotor thus relates inertial, 

centrifugal, and aerodynamic forces acting on the flapping hinge as given below: 

 
2

0

1 R

zz F
b

rF dr M
I

β β γ+ Ω = =∫                                                                      (2.15) 

 
where  
 

2

0

R

bI r mdr= ∫  and 
4

b

acR
I

ργ = .                        (2.16) 

  
 In equation 2.15, the left-hand side represents a mass spring system with a natural 

frequency equal to Ω  or higher depending on the rotor head design. The right hand 

side is the aerodynamic forcing moment, which results from the flap moments due to 

angle-of-attack changes produced by the blade pitch, twist, inflow, flapping velocity, 

and flapping displacements.   

 Equation 2.15 represents the flapping equation for an articulated rotor system. For 

an articulated rotor with a hinge spring at the flapping hinge that produces a restoring 

moment on the blade as shown in Figure 83, the flapping equation becomes: 

( )
1

2 2

0

1 zz
p

Fr dr
ac

β ν β ν β γ+ = − + ∫                                                               (2.17) 
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where  
  

  2
21

b

K

I
βν = +

Ω
                                                 (2.18) 

 

 
  

Figure 8: Blade Flapping Motion with a Hinge Spring 
 

 In the equation 2.17, ν  is the dimensionless natural frequency of the flapping 

motion in the rotating frame and pβ  is the pre-cone angle, which biases the hinge 

moment to zero for pβ β= . 

 For an articulated rotor with flap hinge offset (Figure 93), the flapping equation is 

given by the following equation: 

( )
( )

1
2

2

1
1

zz
p

b e

K F dr
I e ac

βηβ ν β β γ η+ = +
Ω − ∫             (2.19)

  
where   
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  η =  
( )

0

k r e r e

r e

⎧ − >
⎪
⎨
⎪ <⎩

                      (2.20) 

 

is a mode shape, k is a constant determined by the mode shape normalization, and e is 

the hinge offset. The normalization used requires that the mode shape be equal to 

unity at the blade tip: ( )1 1η = . Thus, ( ) 11k e −= − , and the mode shape is 

( ) ( )1r e eη = − − . This reduces to rη =  for the case of no offset. 

 
 

Figure 9: Flapping Motion with Hinge Offset 
 

 The natural frequency of the flap motion for the blade with hinge offset and spring 

is: 
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e I e
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β
η η

ν

η
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− Ω −

∫

∫
            (2.21) 

 
 In equation 2.21, the first term is the centrifugal spring, the second term is the 

hinge offset effect, and the third term is the hinge spring effect. For a uniform mass 

distribution and no hinge spring, the result is: 

  2 31
2 1

e
e

ν = +
−

                                                (2.22) 

 

 In hingeless rotors, which have no flap or lag hinges, the blades are attached to the 

hub with a cantilever root restraint. Such a rotor has the advantage of a mechanically 

simple hub and generally improved handling qualities. The flapping equation for the 

hingeless rotor is given by  

 
1

2

0

zzF dr
ac

β ν β γ η+ = ∫                                      (2.23) 

 
 The hingeless rotor is usually approximated using different models such as an 

offset hinge or a hinge spring as shown in Figure 103. 

 A gimbaled rotor has three or more blades attached to the hub without flap or lag 

hinges (cantilever root restraint), and the hub is attached to the rotor shaft by a 

universal joint or gimbal. The motion of the gimbaled hub relative to the shaft is 

described by two degrees-of-freedom, the longitudinal and lateral tilt angles 1c
β  and 
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1s
β , which corresponds to the tip-path plane tilt of an articulated rotor by cyclic 

flapping. The flapping equation of motion for the gimbaled rotor is given by the 

following equation: 

  
1

2

0

zzF dr
ac

β ν β γ η+ = ∫                (2.24)

  
where 
 

  2
21 1

2 b

K

NI
βν = +

Ω
                                     (2.25) 

 

   

Figure 10: Different Approximate Models for a Hingeless Rotor Blade 
  
 Unless there is a hub spring, the frequency is 1ν =  as for an articulated blade 

without hinge offset. 
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 A teetering rotor has two blades attached to the hub without a flap or a lag hinge. 

The hub is attached to the shaft by a single flapping hinge, the two blades forming a 

single structure. The flapping motion is like that of a see-saw or a teeter board. Such a 

configuration is mechanically very simple. As for the gimbaled rotor, the coning 

motion gives no net moment about the teetering hinge, and in effect the blades have 

cantilever root restraint. The flapping equation of motion for the teetering rotor is as 

given below: 

1
2

0

zFr dr
ac

β ν β γ+ = ∫
                          (2.26) 

 
where the natural frequency of flapping is: 
 

  2
21 1

2 b

K

I
βν = +
Ω

                                                                                        (2.27) 

  
 Usually, a teetering rotor does not have a hub spring, so 1ν = . The tip-path-plane 

tilt motion of the teetering rotor is thus the same as that of an articulated rotor with no 

hinge offset.  

 A detailed discussion on the flapping motion of these kinds of rotors can be found 

in Refs. 3 and 20. For steady-state conditions, the flapping motion is periodic. 

Therefore, the general solution to the flapping equation can be represented by an 

infinite Fourier series. However, all the terms above the first harmonic are not 

significant and are neglected, retaining the first three terms as given in the equation 

2.28. 

1 1cos sinoa a bβ ψ ψ= + +                                          (2.28) 
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 This representation of the blade flapping motion defines the rotor tip-path-plane 

(TPP) equation in which oa  represents the blade coning mode while 1a  and 1b  

describe the tilting of the rotor tip-path-plane in the longitudinal and lateral directions 

respectively, as shown in Figure 1120. 

 
 

Figure 11: Interpretation of the Blade Flapping Harmonics 
 

 The flapping equations used in the present model come from the work by Chen in 

Ref. 62. In this reference, the author has developed flapping equations that are the 

most suitable to use in the state-space formulation and are easy to couple with rigid 

body dynamics. The second order flapping dynamics are represented by the following 

equation: 

D K fβ β β+ + =                                                    (2.29) 
 

where [ ]0 1 2a a aβ ′=                    
 

 The coefficients D, K, and f are functions of the rotor speed, the Lock number, the 

advance ratio, et cetera, and are as given below: 
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where 
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b

K
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I
β= +

Ω
                (2.33)

    
 This formulation has been used most widely in helicopter dynamics modeling.  
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 In equation 2.29, coning and differential coning with damping 
8
γ  and natural 

frequency βλ  are the independent and uncoupled degrees of freedom. The cyclic 

mode equations are coupled, the eigenvalues of which represent two flap modes: 

regressive and progressive flap modes that are at frequencies of 1βλ −  and 1βλ +  

respectively3. The progressive flap mode is at a higher frequency and does not couple 

with the fuselage motions. The regressive flap mode can be of the same order as the 

highest frequency fuselage modes. Therefore, the present work uses a first order 

approximation of the lateral and the longitudinal flapping equations only to account 

for the regressive flapping dynamics as given in the following equations:  
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where 16
fτ

γ
=

Ω
 is the main rotor time constant. 

 
 Terms such as 

lonfM
δ

, 
latfL

δ
, et cetera, represent the mechanical gearing between 

the swashplate, the rotor, and the stabilizer bar and are calculated using the 
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helicopter’s geometry56. 

2.2.2 Rotor Lead-Lag Motion 

 The rotor lead-lag produces a blade motion in the disk plane. The lagging is 

defined to be positive when moving in the opposite direction of the rotation of the 

rotor. The lag motion is the result of the flapping motion that introduces aerodynamic 

and the inertial forces, particularly Coriolis forces, in the plane of the rotor disk. 

Articulated rotors have lag hinges to alleviate the chord-wise root loads by allowing 

an in-plane motion of the blades, while the structural flexibility provides this 

capability in the hingeless rotors.  

 The rigid body rotation about the lag hinge is represented by the lag-degree-of-

freedom ζ . The forces acting on the lag hinge are inertial forces that oppose the lag 

motion; a centrifugal force directed radially outward from the center of the rotation, 

an aerodynamic force in the drag direction, and a Coriolis force in the same direction 

as the inertial force. A detailed discussion about the lag motion can be found in Ref. 

20. Equilibrium of the moments about the lag hinge (Figure 1220), including a spring 

moment Kζ ζ , gives the equation of motion. As discussed in Ref. 20, the differential 

equation for the blade lag motion is: 

1
2 2 x

e

F dr
acζζ ν ζ ββ γ η+ + = ∫                          (2.36) 

 
where e is the hinge offset, vζ  is the lag frequency ratio, and η  is the mode shape of 
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the fundamental lag mode. 

 

Figure 12: Rotor Blade Lag Moments 
 
 The lag dynamics are described by a mass and spring system excited by the in-

plane aerodynamic forces and a Coriolis force due to the blade flapping. The 

aerodynamic forces damp the lag motion but much less effectively than the out-of-

plane motion. Articulated rotors usually have a mechanical lag damper. The natural 

frequency of the lag motion is: 
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 The first term is the centrifugal spring term on the lag motion and it is zero if there 

is no hinge offset. For a uniform mass distribution and no hinge spring, the result is 

simply: 

  2 3
2 1

e
eζν =

−
                                                   (2.38) 

 
 Articulated rotors typically have a lag frequency of ζυ =  0.2 to 0.3/rev. With 

hingeless rotors, a higher lag frequency can be attained. Since the lag frequency must 

not be too near 1/rev to avoid excessive blade loads, hingeless rotors naturally fall 

into two classes: soft-in-plane rotors, for which the lag frequency is below 1/rev 

(typically 0.65ζυ =  to 0.80/rev), and stiff in-plane rotors, for which the lag 

frequency is above 1/rev (typically 1.4ζυ =  to 1.6/rev). Gimballed and teetering 

rotors also fall into the stiff in-plane class. The soft in-plane rotors exhibit a 

mechanical instability called ground resonance if the lag frequency or the lag 

damping is too low. For this reason, an articulated rotor and some soft in-plane 

hingeless rotors must have mechanical dampers.   

 Similar to the flapping motion, the steady-state lag motion is described by a 

Fourier series: 

0 1 1cos sin .........
c s

ζ ζ ζ ψ ζ ψ= + + +              (2.39) 
 

where 0ζ  is the mean lag angle of the blades relative to the rotor hub and shaft. The 

first-harmonic cyclic lags 1c
ζ and 1s

ζ produce a lateral and longitudinal shift of the 

blades respectively as shown in Figure 1320. The higher order harmonics are usually 
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neglected in the dynamics analysis.  

 
 

Figure 13: Interpretation of Blade Lag Harmonics 
 
 Compared to the flapping dynamics, the lead-lag dynamics are much more 

complicated. The flapping motion produces in-plane inertial forces that couple the 

flap and the lag degrees-of-freedom of the blade. Also, for low inflow rotors, the in-

plane forces on the blade are small compared to the out-of-plane forces, and 

consequently more care is required in analyzing the motion resulting from the lag 

moment balance. No accurate simplification exists that is easy to use with a state-

space formulation. However, several approximations have been tried. Refs. 31, 34, 

41, and 47 discuss the approximations used previously for the lead-lag dynamics. 

2.2.3 Blade Feathering Motion 

 The blade feathering, or pitching motion, is produced by the rotation of the blade 

about a hinge, or bearing, at the root, with its axis parallel to the blade spar. The 

pitching is defined to be positive for a nose-up rotation of the blade. The Fourier 
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series representation for the blade pitch motion is: 

0 1 1cos sin ....
c s

θ θ θ ψ θ ψ= + + +                         (2.40) 
 
where 0θ  is the average blade pitch, while the first harmonics give a once-per-

revolution variation of the pitch angle.  

 
 

Figure 14: Schematic of the Flap and Lag Hinges, and the Pitch Bearing at the 
Hub of an Articulated Rotor 

  
 Figure 143,20 shows the flapping, the lead-lag, and the feathering hinge of an 

articulated rotor, while Figure 15 and Figure 163,20 show the basic blade motions.  

 The blade pitch or feathering motion has two sources. First, there is an elastic 

deformation of the control system and the blade, described by the dynamic degrees-

of-freedom. Such motion is determined by the conditions for equilibrium of 

feathering moments on the blade, which give the equation of motion. The second 

source of the blade pitch is the commanded input from the helicopter control system. 
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Figure 15: Fundamental Blade Motion 
 
 It is by commanding the rotor blade pitch that the pilot controls the helicopter. The 

feathering moments on the blade are low, and the lift changes due to pitch are large 

because the angle of attack is directly changed. The control inputs usually consist of 

just the mean and first harmonics. The mean angle 0θ  is called the collective pitch, 

and the 1/rev harmonics 1c
θ and 1s

θ are called the cyclic pitch angles. Basically, the 

collective pitch controls the average blade force, and hence the rotor thrust 

magnitude, while the cyclic pitch controls the tip-path-plane tilt. 
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Figure 16: Basic Rotor Blade Motion 
 
 The blade pitch motion takes place about a pitch bearing or hinge. A pitch horn is 

rigidly attached to the pitch horn in such a way that the vertical motion of the link 

produces the blade pitch motion. A swashplate is most widely used to produce a 

steady and 1/rev sinusoidal vertical motion of the pitch link. A swashplate is a 

mechanical device that transmits the pilot’s control motion in the non-rotating frame 

to the blade cyclic pitch motion in the rotating frame. 



  

48 
 
 
 
 

 

 
 

Figure 17: Schematic of the Rotor Swashplate 
 
 Figure 17 3 is a schematic of the swashplate arrangement and defines the principal 

components that must be present in some form. The swashplate has rotating and non-

rotating rings concentric with the shaft, with the bearings between the two rings. The 

rotating ring is gimbaled to the shaft in an arrangement that allows an arbitrary 

orientation of the plane of the swashplate relative to the rotor shaft, while one ring is 
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stationary and the other rotates. The blade pitch links attach to the rotating ring, and 

links from the pilot’s controls attach to the stationary ring. Vertical displacement of 

the swashplate provides a vertical motion of the pitch links that is independent of 

azimuth, thereby changing the rotor collective pitch. A detailed discussion of the 

feathering motion can be found in Ref. 20. 

2.2.4 Rotor Inflow Dynamics 

 The rotor inflow dynamics are the result of the wake-induced flow through the 

rotor. The induced flow results from the vortex system, which trails from each rotor 

blade. The vortex system is three-dimensional and results in the induced velocity 

components normal to and in the plane of the rotor. The rotor inflow is non-uniformly 

distributed across the rotor tip path plane and is also time dependent. The dynamics 

associated with the rotor inflow have similar time scales to the rotor dynamics and are 

strongly coupled with the flap and fuselage-degrees-of-freedom31.  

 The inflow dynamics are governed by an infinite-dimensional (distributed 

parameter) system, which depends on both the aerodynamic loads and motion of the 

rotor. The inflow contributes to the local blade incidence and the dynamic pressure. 

The induced flow at the rotor consists of components due to the shed vorticity from 

all the blades, extending into the far wake of the aircraft. To take account of these 

effects fully, a complex vortex wake, distorted by itself and the aircraft, would need 

to be modeled. However, the normal component (i.e. the rotor-induced downwash) is 

the most important in the computation of the aerodynamic loads for flight dynamics 
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applications. A number of simplifying approximations to the rotor wake have been 

used for the flight dynamics application. Refs. 63 and 64 provide two comprehensive 

reviews of the rotor inflow, which deal with both the quasi-static and the dynamic 

effects. Ref. 3 and 20 discuss in detail the rotor inflow. Figure 183 illustrates the rotor 

flow states in axial motion.  

 The inflow in the hovering flight condition is given by the following equation 

(Ref. 3, 11, 20): 

i
ih

v
R

λ =
Ω

                                      (2.41) 

 

where 
2i

T
A

ν
ρ

=  is the hover-induced velocity. 

 

 
 

Figure 18: Rotor States in Axial Motion 
 
 For a climb, the inflow is given by the following equation: 
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                         (2.42) 

 
where 
 

c
c

V
R

μ =
Ω

                           (2.43) 

 
 Similarly, for descent, the inflow is: 
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d d

id ih
μ μλ λ⎡ ⎤= + −⎢ ⎥⎣ ⎦

                         (2.44) 

 
where 
 

d
d

V
R

μ =
Ω

                           (2.45) 

 
 In the high speed flight, the downwash field of a rotor is similar to that of a fixed 

wing aircraft with circular planform and momentum approximations for deriving the 

induced flow at the wing apply. Figure 193 shows a flow streamtube with freestream 

velocity V at an angle of incidence α  to the disc. The induced velocity in the far 

wake is again twice the flow at the rotor. The induced velocity at the rotor is given by 
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i z
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                                                 (2.46) 

 
where 
 

  cos dV
R
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Ω
 and sin d

z
V

R
αμ = −

Ω
               (2.47) 
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Figure 19: Flow Through a Rotor in Forward Flight 
  
 
 Between hover and μ  values of about 0.1, the mean normal component of the 

rotor wake is still high, but now gives rise to fairly strong non-uniformities along the 

longitudinal, or more generally the flight axis, of the disc. Several approximations to 

this non-uniformity were derived in the early development of rotor aerodynamic 

theory, using the vortex form of the actuator disc theory. It was shown that a good 

approximation to the inflow could be achieved with a linear variation along the disc, 
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determined by the wake angle relative to the disc, given by: 

 

  0 1 cosb
i cw w

r
R

λ λ λ ψ= +                                     (2.48) 
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                     (2.49) 

 
and the wake skew angle, χ  is given by 
 

  1

0
tan

z

μχ
λ μ

− ⎛ ⎞
= ⎜ ⎟−⎝ ⎠

                          (2.50) 

 

where 0λ  is the uniform component of the inflow as given by the equation 2.46. 

Figure 203 shows the definition of the rotor angle of attack and the wake skew angle. 

 

 
 

Figure 20: Definition of Rotor Angle of Attack and Wake Skew Angle 
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 The momentum theory used to formulate the expressions for the rotor inflow is 

strictly applicable only in steady flight when the rotor is trimmed and the conditions 

are slowly varying. The effect of the inflow on the rotor thrust during maneuvers can 

be subsumed using the lift deficiency function as discussed in Ref. 20. When the rotor 

thrust changes, the inflow changes, increasing for increasing thrust and decreasing for 

decreasing thrust. Considering the thrust changes as perturbations on the mean 

component, we can write 

  
QS

T
T T i

i QS

CC Cδ δ δλ
λ

⎛ ⎞∂
= + ⎜ ⎟∂⎝ ⎠

                          (2.51) 

where 

  
4
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i QS
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⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

               (2.52) 

 
where the quasi-static thrust coefficient changes without a change in the inflow. 

Assuming that the inflow changes are due entirely to the thrust changes, we can write 
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                          (2.53) 

 
 The derivatives of the inflow with the thrust have simple approximate forms at 

hover and forward flight as given below: 
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 Combining these relationships, we can write the thrust changes as the product of a 

deficiency function and the quasi-steady thrust change, i.e., 

  
QST TC C Cδ δ′=                (2.56) 

 
where 
 

  

1 , 0
1

16

1 0.2,
1

8

i

a

C

a

μσ
λ

μ
σ
μ

⎧ =⎪
+⎪

⎪⎪′ = ⎨
⎪
⎪ >
⎪ +⎪⎩

                                    (2.57)

  
 Rotor thrust changes are, therefore, reduced to about 60-70% in hover and 80% in 

the mid-speed range due to the effects of the inflow.  

 The inflow derived using momentum theory is effective in predicting the gross and 

the slowly varying uniform and rectangular inflow components. In reality, the inflow 

distribution varies with the flight condition and the unsteady rotor loading in a much 

more complex manner. The inflow varies around the disc and along the blades, 

continuously satisfying the local flow balance conditions and conservation principles. 

Locally, the flow responds to the local changes in the blade loading. If there are one-

per-rev rotor forces and moments, the inflow variation will be one-per-rev. The 

inflow also takes finite time to develop as the air mass is accelerated to its new 

velocity. Also, the rotor wake is far more complex and discrete than the uniform flow 

in a streamtube assumption of the momentum theory. The local blade-vortex 
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interactions can cause very large local perturbations in the blade inflow and hence the 

incidence. These can be sufficient to stall the blade in certain conditions and are 

important for predicting the rotor stall boundaries and the resulting flight dynamics at 

the flight envelope limits. 

2.2.4.1 Dynamic Inflow  

 Figure 213 shows a rotor disc element. Assuming that the relationship between the 

change in the momentum and the work done by the load across the element applies 

locally as well as globally, the equations for the mass flow through the element and 

the thrust differential are given as below: 

  b bdm Vr dr dρ ψ=                (2.58)  
 
  2 idT dm v=                 (2.59) 

 
Figure 21: Local Momentum Theory Applied to a Rotor Disk 
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 Using the two-dimensional blade element theory, these can be combined into the 

form3: 

( ) ( )( )1 222 21 2
2 2

b
T T P b b i z i b

N ac U U U dr d r dr dρ θ ψ ρ μ λ μ λ ψ
π

⎛ ⎞+ = + −⎜ ⎟
⎝ ⎠

 (2.60) 

  

 Integrating around the disc and along the blades leads to the solution for the mean 

uniform component of the inflow. If the momentum balance is applied to the one-per-

revolution components of the load and inflow, then the expressions for the non-

uniform inflow can be derived. If first harmonic inflow is written in the form: 

  ( )1 1( , ) cos sini o b c sr rλ ψ λ λ ψ λ ψ= + +                        (2.61) 
 
then equation 2.60 can be expanded to give a first harmonic balance as 
 

  1 1
3 1
16c c
a F

V
σλ =                           (2.62) 

 
and 
 

  1 1
3 1
16s s
a F

V
σλ =                           (2.63) 

 
where 
 

  1 0
1 3 2

cw
cF α βμ= −                  (2.64) 

 
and 
 

  1
1 0 0

2
3 3
sw

s z twF α
μ θ μ λ θ⎛ ⎞= + + − +⎜ ⎟

⎝ ⎠
                        (2.65) 

 
are the normal or lift force components. These one-per-revolution lift forces are 
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closely related to the rolling and pitching moment at the hub in the non-rotating 

fuselage frame as given below: 

 

  1
2 Ma

s
CF
aσ

=                                                  (2.66) 

 

  1
2 La

c
CF
aσ

=                            (2.67) 

 These moments at the hub are functions of the non-uniform inflow distributions. 

Therefore, just as with the rotor thrust and the uniform inflow, these moments are 

reduced by a similar moment deficiency factor: 

  
  1La LaQSC C C′=                (2.68) 
 
  1Ma MaQSC C C′=                (2.69) 
  
 In hover, the first harmonic inflow components given by equations 2.62 and 2.63 

are expanded as:  

 

  ( )1 1 1 1
016c c s

aC qσλ θ β
λ

′= − +               (2.70) 

 

  ( )1 1 1 1
016s s c

aC pσλ θ β
λ

′= + +                          (2.71) 

 
 The inflow analysis outlined above has ignored any time dependency other than 

the quasi-steady effects and harmonic variations. In reality, there will always be a 

transient lag in the build-up or decay of the inflow field; in effect, the flow is a 

dynamic element. An extension of the momentum theory includes the dynamics of an 
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apparent mass65. The authors in the Ref. 65 suggested that the transient inflow could 

be taken into account by including an accelerated mass of air occupying 63.7% of the 

air mass of the circumscribed sphere of the rotor. The equation for the thrust 

including an apparent mass term is: 

  ( )340.637 2
3 i d i c iT R A V vρ π ν ρν= + +             (2.72) 

 
 If we linearize the above equation about steady hover trim, we get 
 
  i itrim iλ λ δλ= +                (2.73) 
 
and 
 
  

trimT T TC C Cδ= +                (2.74) 
 
 The perturbation equation takes the form: 
 
  i i T TC Cλτ λ δλ λ δ+ =                           (2.75)   
      
where the time constant and steady-state inflow gain are given by 
 

  0.849
4

trimi
λτ

λ
=

Ω
, 1

4
trim

T
i

Cλ
λ

=               (2.76)  

 
 For typical rotors, moderately loaded in the hover, the time constant for the 

uniform inflow works out at about 0.1 second. 

 For the flight dynamics application, several dynamic inflow models have been 

tried. The inflow dynamics model that has been most widely used and has attracted 

the most attention within the flight dynamics community is the Pitt-Peters dynamic 

inflow model66. The Pitt-Peters dynamic inflow model expands the induced velocity 
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into a three term series as given below: 

( , ) cos sini o c s
r rr
R R

λ ψ λ λ ψ λ ψ= + +                 (2.77) 

 
 The inflow states are related to the rotor thrust and moment coefficients through 

the following equations67, 68:   

[ ] 1
o o T

i c i c M

s s L

C
M L C

C

λ λ
λ λ
λ λ

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                                                          (2.78) 

 
where TC , MC , and LC  are the rotor thrust, pitching, and rolling moment 

coefficients and are discussed in chapter 3. iL  and iM  are the dynamic inflow static 

gain and apparent mass matrices and are given below for the hovering flight 

condition. 

1 0 0
21 0 1 0
0 0 1

i
h

L
v

⎡ ⎤
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

                          (2.79) 

   

  

8 0 0
3

1 160 0
45

160 0
45

i
h

M
v

π

π

π

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

             (2.80) 

 

2.2.4.2 Dynamic Wake Correction 

 As discussed earlier, traditional 6-DoF models predicted the off-axes responses in 
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the wrong direction. This has been a topic of research for the past three decades. 

Much effort has been expended in this area in order to correct the predicted off-axes 

responses. For a long time, the cause of this discrepancy was not understood. In Ref. 

69, Takahashi developed a high-order nonlinear flight dynamics model for a UH-60 

helicopter that included the flap and the lag degrees-of-freedom. The simulation 

showed a high correlation with the flight data for on-axes responses, but the model 

predicted an off-axis response in the wrong direction. Other works have shown 

similar results (Ref. 25, 70).  

 As discussed earlier, J. D. Keller introduced a dynamic wake correction factor to 

account for the effect of rotor pitching and rolling motion on the induced velocity 

distribution49, 50. He showed that due to steady pitching and rolling motion, there was 

a distortion in the wake as shown in Figure 2249, and that neglecting this distortion 

was the source of the error in the off-axis response. With the introduction of dynamic 

wake correction factor into the induced velocity model, there was a significant 

improvement in the off-axis response. The inclusion of the dynamic wake correction 

factor in the induced velocity model is shown in the following equations: 

[ ] 1

0
o o T

i c i c M R

s s L

C
qM L C K

C
p

λ λ
λ λ
λ λ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎛ ⎞⎢ ⎥ ⎢ ⎥+ = + ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Ω⎝ ⎠⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟Ω⎝ ⎠⎣ ⎦

                              (2.81) 

 
where RK  is the dynamic wake correction factor. The experimentally found value of 
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RK  is 1.5. 

 
 
 

Figure 22: Wake Distortion Due to Steady Pitch Rate 
 

 

2.3 Tail Rotor 

 The tail rotor of a single main rotor helicopter is a small diameter rotary wing with 

the function of balancing the main rotor torque and providing yaw control, which is 

achieved through the action of the tail rotor thrust on a longitudinal arm (usually 

longer than the main rotor radius) about the rotor shaft. The tail rotor is usually a 

flapping rotor with a low disk loading. An analysis similar to the main rotor analysis 

is applicable. However, the tail rotor has no cyclic pitch control, just collective to 
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control the thrust magnitude. Also, the tail rotor shaft angle is fixed by the geometry 

of the tail rotor installation and the helicopter yaw angle, instead of being determined 

by the conditions for force equilibrium of the rotor. The tail rotor drag or propulsive 

force is included in the airframe drag and is balanced by the main rotor.  

 The tail rotor operates within a complex flowfield, particularly in low speed flight, 

within ground effects, in sideways flight, and in the transition to forward flight. The 

wake of the main rotor, together with the disturbed air shed from the main rotor hub, 

rear fuselage, and vertical stabilizer, interact with the tail rotor to create a strongly 

non-uniform flowfield that can dominate the tail rotor and the control requirements. 

The current research neglects non-uniform effects and uses tail rotor forces and 

moments developed from simple physical considerations. 

 Figure 233 shows a tail rotor arrangement. The tail rotor side-force can be written 

in the form: 

  ( ) ( )2 2 TT
T T T T T T

T T

C
Y R a R

a
ρ σ π

σ
⎛ ⎞

= Ω ⎜ ⎟
⎝ ⎠

            (2.82) 

 
where  
 

  
( ) ( )2 2T

T
T

T T T

TC
R Rρ π

=
Ω

              (2.83) 

  

 Apart from the effect of the tail rotor on the yaw dynamics, it has some effect on 

the lateral and vertical dynamics.  The present work neglects the effect of the tail 

rotor on the vertical dynamics. However, the effect of the tail rotor on the lateral 
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dynamics is considered.   

 
Figure 23: Sketch of the Tail Rotor Subsystem 

 

2.4 Stabilizer Bar 

 The stabilizer bar is an essential part of small-scale UAV helicopters. These 

vehicles have higher sensitivity to control inputs than their full-scale counterparts. 

Without some form of stability augmentation, it is almost impossible for human pilots 

to control these vehicles. Various methods have been used to increase the stability of 

these model-scale helicopters. The stabilizer bar is one of the most widely used 

devices for the stability augmentation of these helicopters. The system consists of 
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flybars and paddles placed at 90o to the main rotor blades as shown in Figure 24. The 

bars are attached to the rotor shaft above the main rotor through an unrestrained 

teetering hinge.   

Figure 24: Instrumented Raptor 50 Helicopter Showing Stabilizer Bar 

 The stabilizer bar acts as a lagged rate feedback in the pitch and roll axes. This 

reduces the bandwidth and control sensitivity to longitudinal inputs. 

 Using stabilizer bars, the cyclic commands do not go directly to the blades. 

Instead, the cyclic commands are applied to the flybar whose flapping motion 

determines the blade pitch angles 54, 55, 56. The stabilizer bar receives cyclic inputs 

from the swashplate in a manner similar to that of the main rotor blades. The 

stabilizer bars do not receive any collective input, because the bars are not designed 

Flybar 

Paddle 
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to produce any thrust.  

 Figure 2556 shows the schematic drawing in the plane of the Bell-Hiller mixing 

lever. 

  
Figure 25: 2D View in the Plane of the Mixing Lever 

 The flapping motion of the stabilizer bar is periodic and is similar to that of the 

main rotor. The solution can again be expressed as a Fourier series as given in 

equation 2.28 for the main rotor. However, since it is a teetering rotor, it does not 

exhibit any coning mode as seen in the following equation:   

1 1( ) cos sins s s
a bβ ψ ψ ψ= +                                                   (2.84) 

 
 With this solution, the flapping equation of motion for the stabilizer bar is similar 
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to the main rotor flapping equation (Eq. 2.29) as given below: 

  s s s s s sD K fβ β β+ + =                                                            (2.85) 
 
where the coefficients Ds, Ks, and fs are similar to those for the main rotor and are 

taken from Ref. 62. Again, first order approximations to the flapping equations are 

used in this thesis, a simplified version of which are given below: 

( )1 1
1

s s lons s lon
s

a a q M
δ

τ δ
τ

= − − +                                                          (2.86) 

 

( )1 1
1

lats s s s lat
s

b b p L
δ

τ δ
τ

= − − +                                              (2.87) 

  

 The stabilizer bar has a larger flapping time constant than the main rotor because 

the Lock number for the stabilizer bar is significantly less than that for the main rotor 

as given by the following equation: 

16
s

s

τ
γ

=
Ω

                                 (2.88) 

 The Lock number represents the ratio of aerodynamic to centrifugal forces. It is 

given by the following expression:    

  
4

b

acR
I

ργ =                 (2.89) 

  
 The stabilizer bar is smaller in diameter than the main rotor. This results in lower 

Lock number for the stabilizer bar than for the main rotor.  

 The higher time constant of stabilizer bar results in slower response, which 

provides the stabilizing effect. With the stabilizer bar, the inputs to the main rotor are 
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augmented as follows: 

1 1sslon lon aK aδ δ= +                                      (2.90) 

 

1 1sslat lat bK bδ δ= +                           (2.91) 

  

 The terms 
1saK and 

1sbK represent the gearing of the stabilizer bar Bell-Hiller 

mixer. 

 
 

Figure 26: Expanded Drawing with Dimension Information 
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Figure 27: Bell-Hiller System with Angular Displacement 

 
Table 3: Notation for the Bell-Hiller System 

Variable Description 
θ  Blade pitch angle 

fβ  Flybar flapping angle 

cθ  Pitch angle command from the swashplate 

1α , 2α , 3α  Auxiliary angles 

f
hβ  Distance between the flybar pitching axis and blade 

pitching axis 

c
hθ  Distance between the swashplate and the blade 

pitching axis (follows swashplate) 
lθ  Arm length between pθ  and the blade pitching axis 

f
lβ  Arm length between 

f
pβ  and the flybar flapping 

axis 

c
lθ  Arm length between 

c
pθ  and the swashplate tilting 

axis 

1l  Arm length between 1p  and pθ  

2l  Arm length between 2p  and 
1

pθ  



3  High-Order LPV Model 

 This section talks about the approach taken to develop the high-order LPV model. 

Specifically, this chapter focuses on the rotor-body coupling, which leads to the 

development of a high-order model. The hybrid model formulation, which combines 

the low frequency rigid body dynamics and the high frequency rotor dynamics, is 

discussed.  

3.1 Rotor-Body Coupling 

 As discussed earlier, for the design of a high-bandwidth control system, the model 

should be able to capture the dynamics of the helicopter at all frequencies of interest. 

The quasi-steady formulation is able to predict the dynamics in the low- and mid-

frequency ranges. For the model to give accurate results at higher frequencies, the 

rotor flap, lead-lag, and inflow dynamics must be modeled. However, the lead-lag 

dynamics are not considered in this research.  

 The rotor flapping dynamics couple with the body through the 1/rev flap moments 

(Figure 2820) that result from the rotor aerodynamic forces. The rotor aerodynamic 

forces are the thrust T acting normal to the rotor disk, the rotor drag force H, and the 

rotor side force Y. The rotor forces are obtained by integrating the blade section 

forces along the span. The rotor thrust is due to the normal force zF  while the drag 

and side forces are due to the in-plane forces xF  and rF  resolved in the non-rotating 
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frame. The torque is due to the in-plane force xF . These rotor forces in coefficient 

form averaged over the azimuth are as given in the following equations: 

  
1

0

T zC F dr
a acσ

= ∫                              (3.1) 

 

  
1

0

sin cosxH rFC F dr
a ac ac

ψ ψ
σ

⎛ ⎞= +⎜ ⎟
⎝ ⎠∫                (3.2) 

 

  
1

0

cos sinxY rFC F dr
a ac ac

ψ ψ
σ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠∫                (3.3) 

 

  
1

0

Q xC Fr dr
a acσ

= ∫                      (3.4) 

 

 
 

Figure 28: Rotor Blade Flapping Moments 
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 The pitching and rolling moments on the rotor hub are given by the following 

equations: 

  
0

cos
R

y zM N rF drψ= − ∫                 (3.5)  

 

  
0

sin
R

x zM N rF drψ= − ∫                 (3.6) 

 
 The root flapping moment on a single blade in the rotating frame is: 
  

0

R

F zM rF dr= ∫                   (3.7) 

 
 From writing FM  as a Fourier series and averaging the rotor moments over the 

azimuth, the pitching and the rolling moments are given as below: 

  
12 cy F

NM M= −                  (3.8) 

  

12 sx F
NM M=                     (3.9) 

 
 Hence, the 1/rev flapping moments at the center of rotation lead to the steady 

pitching and rolling moments on the helicopter. In general, the pitching and rolling 

moments can be related to the rotor tip-path-plane tilt, which is a measure of the 1/rev 

flapping moments. The following equations show the relation between the rotor 

thrust, pitching, and rolling moments and the rotor coning and flapping dynamics71. 

 

  0
0 0

0.543 22
3T

wC v v
R

β⎛ ⎞
= + − +⎜ ⎟Ω Ω Ω⎝ ⎠

                        (3.10) 
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116 cM F
aC Mσ

=                (3.11)

   

116 sL F
aC Mσ

=                            (3.12) 

 
where  
 

  
1 1 1 1 1cF c

qM A a b λ′= − − − +
Ω

                                    (3.13) 

 

  
1 1 1 1 1sF s

pM B b a λ′= − + − +
Ω

              (3.14)

          
 In order to develop a coupled body/rotor dynamics model, a hybrid formulation19 

is used in which both the rotor and fuselage dynamics are combined. In this approach, 

the equations of motion for rotor dynamics are first simplified as in Ref. 62, in which 

the rotor forces and moments are expressed as functions of the rotor states. The rotor 

dynamics are then coupled into the rigid body dynamics. The coupling is done 

through the flapping derivatives (or the rotor spring terms) 
1aX , 1b

Y , 
1aM , 1b

L  10
.  All 

the quasi-steady derivatives are retained except for qM , pL , 
lat

Lδ , 
lon

Mδ , etc. The 

pitch and roll damping are captured by the rotor damping. The inputs are directly 

included in the rotor dynamics as discussed in the rotor flapping equations. The 

lateral and longitudinal inflow dynamics are also included in the rotor equations. 

3.2 Rotor-Stabilizer Bar Coupling 

 As discussed earlier, the stabilizer bar does not produce any thrust. It has no 

collective blade pitch setting and the paddles are free to teeter (no restraint) about the 
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rotor shaft. Hence, the stabilizer bar does not produce any significant force or 

moment on the hub. The stabilizer bar affects the vehicle dynamics solely by 

augmenting the cyclic pitch command to the main rotor via the Bell-Hiller mixer. The 

stabilizer bar couples to the main rotor by augmenting the cyclic input to the main 

rotor as given in equation 2.89-90 and reproduced here. 

1 1sslon lon aK aδ δ= +                           (3.15) 

 

1 1sslat lat bK bδ δ= +                (3.16) 

 
 The cyclic inputs to the main rotor are augmented by an amount that is 

proportional to the stabilizer bar flapping angles. 

3.3 Heave-Inflow-Coning Dynamics 

 Also considered in this research are the coupled heave-coning-inflow dynamics. 

The vertical motion of the helicopter is influenced by the rotor coning and inflow 

dynamics. In Ref. 72, Chen and Hindson developed a model that included the 

influence of rotor coning and inflow dynamics on the helicopter’s vertical response. 

Recently, Mark Tischler et al have used a similar model of the heave-coning-inflow 

dynamics for the AFDD R-MAX helicopter5. The present work uses the same 

approach on the heave-inflow-coning dynamics. 

 For the low frequency collective inputs, the quasi-steady model is able to predict 

the helicopter vertical dynamics very well. But, at moderate to high frequencies, the 

quasi-steady model cannot predict the transient thrust peaks to sharp collective inputs. 
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Carpenter and Fridovitch first examined the effect of the sharp and large collective 

inputs on the rotor thrust65. The measured rotor thrust was compared with the results 

predicted by a dynamic rotor coning/inflow nonlinear simulation model. In the model, 

the thrust changes, T, were modeled by the momentum theory, extended to include 

the unsteady effects on an apparent mass of air, defined by the circumscribed sphere 

of the rotor as given below: 

 

  2 022
3

i
am i i

dv daT m R v v w R
dt dt

π ρ ⎛ ⎞= + − +⎜ ⎟
⎝ ⎠

            (3.17) 

 
where 
 

  340.637
3amm Rρ π=                (3.18) 

 
 An extensive analysis of the flight dynamics of the helicopter’s vertical motion, 

including the effects of the helicopter motion, rotor flapping and inflow, was 

conducted by Chen and Hindson (Ref. 72). Chen and Hindson predicted the behavior 

of the integrated 3-DoF system and presented comparisons with flight test data 

measured on a CH-47 helicopter. The linearized 3-DoF model presented by Chen and 

Hindson which can readily be incorporated into the dynamics model is as given 

below: 

  [ ]

0 0

0 0 0

0 0 0

0
0

0

0

0 0 1 0 0
i

i

i

v a wi

v a a w

v a a w
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F F F F Fadt
w Z Z Z Z Z

θ

θ

θ

θ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ − =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                           (3.19) 

 
where 
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  1 04
16iv
aI k σλ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
               (3.20) 

 

0 1 0
4 2
3 16 3a w

a RI Rk Iσλ⎛ ⎞= − + = −⎜ ⎟
⎝ ⎠

                     (3.21) 

 

2

1
6 4i

b
v w

N M
F F

k R mR
βγ ⎛ ⎞Ω

− = = − −⎜ ⎟
⎝ ⎠

             (3.22) 

 

0

2

2
aF

k
Ω

= −                 (3.23) 

 

0
2

1
8 6

b
a

N M
F

k mR
βγ ⎛ ⎞Ω

= − −⎜ ⎟
⎝ ⎠

                                                                     (3.24)     

     

  
2 4 6i
b

v w
I MNZ Z

k Rm R
β βγ ⎛ ⎞Ω

= − = −⎜ ⎟
⎝ ⎠

             (3.25) 

 

0

2

2

b
a

N M
Z

k m
β Ω

= −                (3.26) 

  

0
2 6 8
b

a
I MNZ

k m R
β βγ ⎛ ⎞Ω

= − −⎜ ⎟
⎝ ⎠

                           (3.27) 

 

0

225
256

RasIθ
πΩ

=                (3.28)

  

0

2

2

1
8 6

bN M
F

k mR
β

θ
γ ⎛ ⎞Ω

= −⎜ ⎟
⎝ ⎠

, 
0

2

2 6 8
b I MNZ
k m R

β β
θ

γ ⎛ ⎞Ω
= − −⎜ ⎟

⎝ ⎠
           (3.29) 

 
In the above equations,  
 

  1
75
128

k πΩ
=  and 

2

2 1 bN M
k

mI
β

β
= −              (3.30) 

 
where 
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  4
3

bIM
Rβ =                 (3.31) 

 
 The validation of the above vertical flight model is discussed extensively in Refs. 

73-76. The authors in the references show the validation of the above models by 

comparing the model prediction with the flight data. 

3.4 14-DoF LPV Model   

 Finally, with all the couplings discussed above, we get the coupled rotor/fuselage 

equations of motion. As discussed earlier, the coupling is done through the rotor 

states. The coupled rotor/fuselage equations, which are based on hybrid model 

formulation, are given below: 

 

10 1u w v a col colu X u X w W q g X v X a Xθ δ= + − − + + +                      (3.32) 
 

( ) 10 1 col pedu w v r b col pedv Y u Y w Y v g Y U r Y b Y Yδ δφ δ δ= + + + + − + + +           (3.33) 

 
( ) 000 0 0 0u w q r aw Z u Z w U Z q g Z r Z Z a

λ
θ λ= + + + − + + + +     

      
0 0a lon lonZ a Z δ+ col colZ δ+                                                                    (3.34)  

  

1 1 col pedu w v r b col pedp L u L w L v L r L b L Lδ δδ δ= + + + + + +                            (3.35) 

 

1 1 colu w v a colq M u M w M v M a Mδ δ= + + + +                            (3.36) 
 

u w v p r col col ped pedr N u N w N v N p N r N Nδ δ= + + + + + +                        (3.37) 
 

 The above equations, when combined with the rotor flapping equations (2.34-

2.35), the inflow equation (2.81), the stabilizer bar equations (2.86-2.87), and the 
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heave-coning-inflow equations (3.29) result in a 14-DoF 17 state model. The A and B 

matrices for this model are given in the equations 3.38 and 3.399 respectively. 
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     (3.39) 

 
 
 The state vector for the above model is given below: 
 

1 1 1 1 0 0 0 1 1s s c sx u w q v p r a b a b a aθ φ λ λ λ ′⎡ ⎤= ⎣ ⎦    

 
 It is seen in the equations 2.34 and 2.35 that the longitudinal and lateral flapping 

are functions of μ . Similarly, in equations 3.32 to 3.37, the derivatives such as uX , 

wZ , uM , et cetera, are functions of μ . For example, the formula for wZ  is: 
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                        (3.40) 

 
 However, the value of μ  depends on the forward speed. Due to the pilot input, 

there is a change in the forward speed and in the other parameters. The present work 

feeds those changes back into the model, calculating the new value of μ  at each 

simulation time step. Also calculated are the new trim values. Thus, we have a linear 

parameter-varying model. Unlike linear parameter invariant models, in which the 

derivatives are held fixed throughout the simulation, this technique gives us a 

simulation model which results in a more representative prediction of actual flight 

dynamics. Figure 29 shows the LPV model implemented within Simulink. 

 
Figure 29: Linear Parameter Varying Simulation Diagram 

 
 
 
 
 
 
 



4  Identification of the Dynamics Model using Flight Test Data 

 Since helicopter dynamics are very complex, the development of a dynamics 

model using analytical techniques alone is not sufficient. Also, modeling using 

analytical techniques is very time consuming. To overcome these difficulties, the 

rotorcraft dynamics modeling community has resorted to parameter identification 

techniques to complement the analytic models. The development of helicopter 

dynamics models using parameter identification techniques are discussed in Refs. 18, 

37, 38, and 39. These references discuss various approaches to parameter 

identification, mainly the time-domain approach.   

 This section presents the development of the high-order model using CIFER 

software17. This program is an interactive facility for system identification and 

verification based on a comprehensive frequency-response approach. One of the big 

advantages of this software is that no prior assumption is necessary to characterize the 

dynamics system. CIFER describes the dynamic behavior of a system with a 

mathematical procedure based on the Fourier transform by using extracted flight test 

data. As with any other parameter identification program, the first step in CIFER is to 

use the measured flight test data to develop a model that reflects the real system 

behavior as accurately as possible.  

  An advanced Chirp-Z-transform and optimal window techniques are used in 

CIFER. Both features significantly improve the frequency response quality when 

compared to conventional Fast Fourier Transforms (FFTs). Nonlinear search 
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algorithms are used in CIFER to derive a model, which matches the flight data as 

closely as possible. Rapid identification of the transfer function models, along with 

spectral signal analysis, is enabled by the modular concept used for the CIFER 

software package. The program has been used for handling qualities assessment, 

classical servo-loop analysis, and for time- and frequency-domain comparisons 

between the system identification and the simulation predictions. CIFER is a tool for 

the comprehensive analysis of the aircraft and component dynamics that has been 

used on rotary- and fixed-wing aircraft such as the XV-1577, Bell-214ST, BO-105, 

AH-64, UH-60, V-22, AV-8B Harrier, and OH-58D. CIFER can run on both the 

Microsoft Windows and UNIX platforms. In the following, the theory of frequency 

response analysis is discussed followed by a discussion covering the CIFER tools that 

are used for the development of the high-order model. 

 4.1 Theory of Frequency Response Analysis 

 The general mathematical idea behind frequency response analysis is that the 

system response is characterized as having the same frequency as the commanded 

input by the pilot. However, the magnitude and phase relationship between the inputs 

and the outputs is a function of the system characteristics, which results in a change in 

the magnitude and phase from the input to the output, as shown in Figure 30. Selected 

input–output pairs of frequency sweeps are used in a frequency-domain approach to 

identify the system response with a spectral analysis method based on the change of 

the magnitude and the phase between the input and the output. The frequency 
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response analysis is a linear approximation of the nonlinear aircraft dynamics. The 

linear approximation is close enough to the actual response if the frequency response 

analysis is limited to small amplitudes about a trimmed flight condition. For example, 

a frequency sweep about a trimmed hover condition with lateral control as the 

measured input and the helicopter roll rate as the measured output can be used to 

identify the helicopter roll response78. 

 
 

Figure 30: Sinusoidal Input-Output Time History 
 
 Frequency-domain analysis has some important advantages when compared to the 

time-domain approach, and provides a simpler and more precise analysis. In the time-
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domain, the collected data is very sensitive to the changes in control input shape. The 

effects of these changes in the input shape cannot be neglected, especially if the 

response becomes more sensitive. This problem does not appear in the frequency-

domain, particularly at the higher frequencies. At the mid- and high-frequency ranges, 

frequency-domain analysis results in a very good coherence between the model and 

the system. At low frequencies, the time-domain approach achieves better results. The 

analysis of unstable systems in the time-domain is more difficult because of 

integration errors, which occur as a result of instabilities. Frequency-domain analysis 

can be used for stable as well as unstable systems78, 79. 

4.1.1 Definition of the Frequency Response 

 Fourier transforms are used in frequency response analysis to develop a complex-

valued function in order to relate the system outputs to the system inputs. The Fourier 

transform function is written as: 

  ( )( )
( ) ( )

( )

f j
f

f

Y
H h e d

X
ωτ

τ τ−= = ⋅∫                           (4.1) 

 
where X and Y represent the input and the output respectively as a function of the 

frequency f in Hz. ( )fH  is a complex-valued function where ( )fH  is the gain factor 

and ( )fφ  is the phase shift as given below: 

( ) ( ) ( )
2 2

f real f imag fH H H= +                                          (4.2) 
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( )
( )

( )

1tan
imag f

f
real f

H

H
φ −=

⎡ ⎤
⎢ ⎥
⎣ ⎦                                                             (4.3) 

 
 A stable and linear time invariant single-input-single-output (SISO) system with a 

well-defined sinusoidal input ( )tx  at a frequency ω  will produce a sinusoidal output 

( )ty  at the same frequency. 

 ( ) ( ) ( )sint tX A ω ω= ⋅                             (4.4) 
 
 ( ) ( ) ( )sint tY B ω φω += ⋅                             (4.5) 
 
 However, the output amplitude and the output phase will differ from the input 

amplitude and the input phase. The ratio of the output amplitude ( )ωY  to the input 

amplitude ( )ωX
 is the system gain factor ( )fH . The phase factor ( )fφ  is the ratio of 

the output phase to the input phase at the frequency ω . The output ( )ωY  to the input 

( )ωX  ratio is a complex quantity of the sinusoidal Fourier transform function. The 

magnitude and phase angles, with the frequency ω  as a parameter, are used to 

represent the transform function. From this, it follows that a linear system can be 

completely described in the frequency-domain by determining the output to the input 

amplitude ratio and the phase shift angle as a function of the frequency. Figure 31 

describes a SISO system for one frequency, and Figure 32 describes a SISO system 

for a range of frequencies. 
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Figure 31: Single-Input Single-Output (SISO) System 
 

 The Fourier transforms for a stable or an unstable system’s dynamics with an 

unknown input shape are defined as: 

( )
( ) ( )

j t
f tX x e dtω−= ⋅∫                                                                  (4.6) 

 

( ) ( )( )f f fY H X= ⋅                                                                 (4.7) 
 
where ( )tx  is the system input and ( )ty  is the system output in the time-domain. ( )fX  

and ( )fY  are the system input and the system output, respectively, in the frequency-

domain. The frequency response function will always exist if ( )tx  and ( )ty are 

bounded and if the frequency sweep is started in a trimmed flight condition and 

returned to the trimmed flight condition after the sweep. More details about the 
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definition of the frequency response method are given in Refs. 78, 79, 80, and 81. 

 

 
 

Figure 32: SISO Frequency Response 
 

4.1.2 Frequency Response Calculation 

 Frequency response calculations are performed using the general Fourier transform 

of a continuous time system as follows: 

( )

( , ) ( )

j ft

f T tX x e dt
π−

= ⋅∫                                                     (4.8) 
 

 
 This Fourier transform can be approximated if the time-history data is from a 

discrete sequence, nX , by the discrete Fourier transform (DFT) as given in the 
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following equation:  

( )2

( )
k

j kn

N
f nX t X e

π−

= Δ Σ k = 0 1 2…..N - 1                                              (4.9)  
 
where )( kfX  is the Fourier coefficient, tΔ  is the time increment, n is the number of 

frequency points, and ( )tnxX n Δ= . The number of time-history points (L) and the 

number of frequency points (N) have to be the same for the DFT, so that the window 

size (discussed later) is L tΔ with a minimum frequency resolution of ( )1 L t⋅ Δ . 

 CIFER uses a special algorithm called the CHIRP-Z transform (CZT) for high-

order systems like helicopters. The CZT is a highly flexible FFT, which is valid for 

LN ≤ . The advantages are that this results in a finer frequency resolution for a given 

window size. The number of the time history points are arbitrary. More details on the 

CZT can be found in Ref. 82. 

 In Fourier analysis, a phenomenon called leakage occurs. This is a frequency 

content error that appears as side lobes to the Fourier frequency of interest. To reduce 

this error, a method called “windowing” is used in CIFER. The windowing technique 

refers to subrecords of the FFT total time history in which the window is sized to 

optimize the quality of the identification. Random errors in the results can be reduced 

by increasing the number of windows in which the time history is divided. This 

results in a higher averaging rate. The smaller windows also result in a lower spectral 

variance for a given data length. This leads to a compromise in the selection of 
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window length between a high number of averages and adequate low-frequency 

content. 

 A good control mechanism for the accuracy of the approximation of a system for a 

particular input-output dynamics is the coherence function 2
xyγ . The coherence 

function is defined by: 

2

2 xy

xy

xx yy

G

G G
γ =

⋅                                                                                    (4.10) 

 
 In the above equation, xxG  and yyG  are the one-side input (x) and output (y) auto-

spectral density estimates. xyG  is the one-side cross-spectral density estimate of X 

and Y containing information about the magnitude and phase relationship between X 

and Y83. The coherence function is the ratio of that part of the output data, which can 

be approximated with a linear relationship to the input data. In the ideal case, where 

the system is perfectly linear and there is no noise in the system, the coherence 

function would be unity over the entire frequency range. A coherence function of less 

than unity results from three basic causes:  

• Nonlinearities in the system may produce remnants which are not 

accounted for by the first harmonic approximation 

• Input and output noise 

• Secondary inputs like gusts and turbulence 

 As shown in Figure 33, if a coherence function of 0.6 or greater is achieved, the 
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model can be seen as sufficiently accurate. 
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Figure 33: Coherence Plot 
 
 The frequency response analysis by CIFER results in a linearmodel which 

minimizes the mean square difference of the actual output signal and its 

approximation by the first harmonic component of the Fourier series. Frequency–

domain analysis is described in great detail in Ref. 83. 

4.2 CIFER Tools 

 CIFER is comprised of a set of tools to perform frequency-domain identification17. 

The tools were originally developed for rotorcraft identification but can also be used 

for other systems for which a frequency-response approach is indicated, such as for 
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the modeling of structural dynamics. All the tools are integrated around a database 

that conveniently organizes the large quantity of data generated throughout the 

identification process. The main tools included in the CIFER system are discussed in 

the following sections. 

4.2.1 Frequency-Response Estimation (FRESPID) 

 This tool computes the frequency response for each input-output pair using a 

special FFT algorithm, Chirp-Z. Different window lengths are used in this process. At 

the same time, it computes the associated coherence function. These frequency 

responses are then stored in the database to be processed by the other tools. 

4.2.2 Multivariable Frequency-Response Conditioning (MISOSA) 

 This tool conditions the SISO frequency responses from FRESPID. This program 

removes the effects of secondary inputs. At the same time, it computes partial 

coherences, which only reflect the effect of the primary input. 

4.2.3 Optimal Window Combination (COMPOSIT) 

 This tool combines the frequency responses computed in FRESPID or in MISOSA 

using different window lengths to improve the accuracy of the low, middle, and high 

frequency ends. This process is solved through an optimization, which finds the 

weighted sum of the individual frequency response that maximizes the coherence 

across the entire frequency range. 
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4.2.4 Transfer Function Identification (NAVFIT) 

 This utility allows one to identify the parameters of a transfer function using a 

specified frequency response. The user can specify the order of the numerator and 

denominator, and whether a time delay should be included. 

4.2.5 State-Space Identification (DERIVID) 

 This tool identifies the parameters of a user specified state-space model using the 

selected frequency responses. 

4.2.6 Time-Domain Verification (VERIFY) 

 This utility performs a time-domain verification of the model. The time responses 

predicted by the identified model are compared with the actual vehicle responses 

collected from flight experiments. Usually, responses that are different from the ones 

used for the estimation of the frequency responses are used. 

4.3 Advantages of CIFER 

The CIFER system is a high-performance interactive software package using 

robust algorithms, valid for a wide range of control, optimization, identification, 

simulation, and validation applications. It allows for the simple and rapid 

development of an accurate mathematical model, reflecting the complex dynamic 

behaviors of airborne or ground-based systems. In fact, CIFER is the only low cost 

commercially available code which can handle a wide range of airborne and ground-
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based cases. The key benefits of CIFER are as follows: 

•  Rapidly specifies, creates, optimizes, and validates dynamic features 

• Extracts dynamic response without prior assumptions of the system 

• Measures and correlates distributed mathematical models and motions 

• Characterizes and quantifies simulator versus live system equivalence 

• Reduces cost and risk 

4.4 Flight Tests and Data Collection 

 High quality flight data is needed for a successful identification. The quality of the 

data depends on the accuracy of the measurements, the information content of the 

flight data, and the compatibility of the data with the premises of the linear system 

identification. While the measurement accuracy depends on the instrumentation, the 

information content and compatibility depend mostly on the flight experiments used 

for the data collection. 

4.4.1 General Flight Testing Rules 

 The flight-testing rules are derived from the theoretical and practical 

considerations. From the properties of coupled multi-input-multi-output (MIMO) 

systems with correlated inputs, it is possible to determine the experimental conditions 

that are most favorable to good frequency-response estimation83. These conditions 

cannot typically be implemented entirely; a proper trade-off must be found. For this 

research, the guidelines in Ref. 78 are followed. The principal considerations are 
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discussed in the following sections. 

4.4.1.1 Excitation Throughout the Frequency Range of Interest 

 The dynamic modes within the frequency range of interest should be excited 

during flight test. This is achieved by using frequency-sweep inputs (sinusoidal inputs 

with monotonically increasing frequency) as shown in for a longitudinal sweep. The 

low-frequency excitations (0.1-2 rad/sec) are important for the identification of quasi-

steady effects, such as the aerodynamic derivatives. The high-frequency excitations 

are important for the identification of the effects beyond the rigid-body dynamics, 

such as the coupled rotor-fuselage dynamics and the stabilizer bar dynamics as well 

as time delays. 

4.4.1.2 Record Length and Sampling Rate 

 The length of each recorded data segment dT  determines the lowest-frequency 

component that can theoretically be estimated from the data. The sampling interval 

sT  determines the upper limit78. The lowest frequency is given by min 2 dTω π= . For 

practical applications, however, a record length that is at least twice the period of the 

lowest desired frequency  (
min

4
dT π

ω
= ) is recommended84. The highest frequency is 

prescribed by the Nyquist cut-off frequency max sTω π= .  
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Figure 34: Time History of the Longitudinal Frequency Sweep 
 

4.4.1.3 Operation within the Range of Linear Dynamics 

 The pilot should ensure that the magnitude of the vehicle’s response remains 

within a region where its dynamics are mostly linear. This can be accomplished by 

adjusting the magnitude of the excitation. Small-scale rotorcraft, because of their high 

maneuverability, should tolerate higher control inputs. It is important to choose calm 

weather conditions, because wind gusts act as unmeasured inputs that can 
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significantly degrade the quality of the frequency-response estimates. 

4.4.1.4 Correlation among Inputs 

 Correlation among control inputs bias the frequency-response estimates83. A 

possible source of correlation is pilot decoupling compensation, e.g. simultaneous 

compensation of the sweep input on the secondary axes. To minimize this effect, it is 

necessary to let the helicopter respond freely to the sweep excitation as much as 

possible. The low-frequency range of the test, where the helicopter can easily undergo 

large speed deviations, is the most challenging. In this situation, it is better to reduce 

the amplitude of the excitation than to try to compensate for its effect. 

4.5 Order of the Identification Model 

 Initially, a 6-DoF model based on the quasi-steady assumption was identified 

using CIFER. In the next step, the order of the model was increased to include the 

rotor flapping dynamics, the stabilizer bar dynamics, and the coning and inflow 

dynamics. However, the longitudinal and the lateral inflow dynamics were not 

included in the identification process. Thus, for identification purposes, a reduced 

order model is used. This is a 12-DoF 15 states model.  The A and B matrices of the 

identification model are given in equations 4.11 and 4.12 respectively. 

 The unknown model parameters are identified through an optimization process in 

which the frequency-response fitting error is minimized78. For this process, a cost 

function that measures how well the frequency responses calculated from the 
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parameterized model fit the estimated frequency response is built.  
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 The cost function depends on the unknown parameters Θ , and is calculated as the 
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sum of the magnitude and phase errors evaluated over nω  frequency points 

1 2, ,..., nω
ω ω ω . In CIFER, the default number for nω  is 50.  The cost function has the 

general form:  

  ( ) ( ) ( )
1

( ) , ,
n T

i i i
i

J W
ω

ε ω ω ε ω
=

Θ = Θ Θ∑                         (4.13) 

 
where ( ),iε ω Θ  is the vector of the magnitude and phase errors. ( )iW ω  is the 

frequency dependent weighting function that emphasizes the frequency points at 

which the response is most accurate. It is usually determined by the coherence 

function. 

4.6 Accuracy of the Identified Model Parameters 

 The final model structure is obtained by adding and removing derivatives 

depending on the following observations: 

• The level of the frequency-response agreement (frequency error costs) 

• Statistical metrics from the model parameters (insensitivity and Cramér-

Rao percent) 

• The level of agreement with the system’s time responses (time-domain 

verification) 

• The level of agreement of the parameter with its theoretical value 

 The useful statistics are: 
 

• The insensitivity of the cost function to each derivative 
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• The Cramér-Rao (CR) bound, which gives a lower bound on the 

achievable standard deviation (indicating how accurately a parameter can 

be identified) 

• The correlation among the derivatives 

 Insensitive parameters do not affect the value of the cost function (i.e. they can 

take any value without it being reflected in the fitting cost). Hence, they should be 

dropped. Parameters with high CR bounds cannot be identified accurately. Hence, if 

possible, they should be fixed at a known value or dropped from the parameterized 

model79, 85, 87, 88. With regard to the correlated parameters, those derivatives should be 

dropped or, when possible, fixed to a value determined theoretically. 

 The statistics used for the model refinement, including the insensitivity, CR bound, 

and correlation, are derived from the Hessian matrix H as given below85:  

  ( )2

2
J

H
∂ Θ

=
∂Θ

                           (4.14) 

 
 As discussed in Refs. 79 and 85, CR bounds are given by the following 

relationship: 

( )12i ii
CR H −=                           (4.15) 

 
 The CR bounds are usually expressed as a percentage of the converged 

identification values as given below: 

  100%ii
i

CRCR
θ

= ×                                                                       (4.16) 
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 A general guideline for a successful identification is to achieve the following: 

20%iCR ≤                            (4.17) 
 

 However, in the identification, several of the CR bounds can be in the range of 

20%-40%, without loss of reliability or cause for concern. 

 Similarly, the parameter insensitivities are determined from the diagonal elements 

of the Hessian matrix as given below85:   

  
( )

1
i

ii

I
H

=                 (4.18)

  
 The parameter insensitivities are also best expressed as the normalized percentages 

of the converged parameter values as given below: 

   100%i
i

i

II
θ

= ×                                                            (4.19) 

 
 A general guideline for a reliable identification is to achieve the insensitivities as 

obtained from the frequency-response method as follows: 

 
10%iI ≤                            (4.20) 

 
 
 
 
 
 
 
 
 
 



5  Results and Discussion 

 This chapter first discusses the data collection process and the post processing of 

the data. In the second section, results obtained from the analytical modeling are 

discussed. The results obtained from CIFER are covered in section three. Section four 

compares the analytical and the identified models with the flight data. 

5.1 Data Collection and Post Processing 

 A number of flight tests were carried out to collect the flight data for both the 

hovering and the forward flight conditions. The collected data were filtered to remove 

the effect of noise using a second order Butterworth filter as shown in Figure 35 and 

post processing was done in MATLAB/Simulink to convert the data into appropriate 

engineering units as discussed in Ref. 61.  

 When the accelerometers are placed at the vehicle center of gravity, the sensors 

measure the accelerations the vehicle experiences as a result of the various forces 

acting on it. The corresponding mathematical expression is: 

xI

meas cg y

z meas

a
d mva a a

dt
a

⎡ ⎤
⎢ ⎥

= = = ⎢ ⎥
⎢ ⎥
⎣ ⎦

                            (5.1) 

 
 The inertial accelerations expressed in terms of the time rate of change of body 

velocities are: 

I B
gravext aeroFF Fd mv d mv v

dt dt m m m
ω= + × = = +                                               (5.2) 
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where extF  is a vector of total forces acting on the vehicle and are made up of the sum 

of the aerodynamic and gravitational forces. 

Figure 35: Bode Plot for the Second Order Butterworth Filter 
 
 The measured accelerations and the time rate of change of the vehicle body 

velocities can be related as given below: 

  
x

grav
meas y

z meas

a
F

a a v v
m

a

ω
⎡ ⎤
⎢ ⎥

= = + × −⎢ ⎥
⎢ ⎥
⎣ ⎦

               (5.3) 

 
 The state-space model for the aircraft predicts body axis velocities. Thus, when 

fitting the frequency responses estimated from the acceleration measurements with 
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the transfer function derived from the state-space model, the centripetal effects vω ×  

and gravitational forces must be accounted for.   

 Equation 5.3 assumes that the DMU is placed at the c.g. location. However, the 

DMU that houses the three accelerometers has a slight offset from the vehicle center 

of gravity. Therefore, the accelerations sensed are those of the attachment point on 

the helicopter fuselage. The accelerations measured at the sensor location offset from 

the c.g. location is given by the following equation: 

  ( )meas cg s sa a r rω ω ω= + × × + ×                                    (5.4) 
 
where sr  is the position vector from the c.g. to the sensor location. The first term in 

the equation 5.4 is the acceleration at the c.g. location; the second and the third terms 

are centripetal and tangential biases, respectively.  

 The DMU installed on the Raptor 50 is offset from the c.g. location by 

[ ]0 0 0.5 T
sr ft= . The measured acceleration was corrected for this offset.  

 The corrected data were used to calculate the frequency responses for each input-

output pair using the FRESPID program in CIFER. The MISOSA tool was used as 

required to remove the effect of the secondary inputs on the responses. The frequency 

responses obtained from FRESPID or MISOSA were then used in the COMPOSIT 

program of CIFER to maximize the coherence across the entire frequency range. The 

COMPOSIT responses were then used to identify the stability and control derivatives 

for the helicopter.  

 Analytically developed and parameter identified models were simulated using the 
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inputs collected during the flight tests. The model predictions were compared with the 

flight data as discussed in the following sections. 

5.2 Low-Order Models 

 At first, it was thought that a 6-DoF model, with the couplings between the 

longitudinal and the lateral dynamics included, would produce satisfactory results, 

and would suffice for the design of the control system for the helicopter. Much of the 

early efforts concentrated on the development of the 6-DoF dynamics model for the 

Raptor 50.  

 Figure 36 shows a frequency domain comparison between the flight data and the 

6-DoF model prediction. It is seen that the 6-DoF model is able to predict the on-axes 

roll and pitch rate only up to a frequency of 8 rad/sec. Above that frequency, the 

model response departs significantly from the flight data. The model is unable to 

capture the second order effects seen in the flight data. Similarly, the off-axis roll rate 

to longitudinal cyclic response clearly shows a 180° phase error. There are 

discrepancies in the magnitude also, especially at the higher frequencies. Also seen in 

the figure is a magnitude discrepancy between the flight data and the model 

prediction for the vertical acceleration to the collective input. 

 The inability of 6-DoF models to predict helicopter dynamics at higher frequencies 

has resulted in the design of control systems that produced significant vibration when 

implemented on the helicopters31.  
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Figure 36: Frequency Domain Comparison of the 6-DoF Model Prediction 
(Dashed) with Flight Data (Solid) for Hovering Flight 
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 Figure 37 and Figure 38 show the prediction of SISO transfer function models 

obtained from CIFER, compared with the flight data, for the cases of longitudinal and 

lateral frequency sweeps, respectively. The SISO models obtained from CIFER in the 

form of gain and time delay is given in the following equations. 

0.0637_ 0.31 0.44
_ _

spitch rate e
longitudinal cyclic input

−= +              (5.5)

               
 

0.0245_ 0.29 0.35
_ _

sroll rate e
lateral cyclic input

−= −              (5.6) 
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Figure 37: Flight Data (Solid) and SISO CIFER Model Prediction for Pitch Rate 

  
 Also obtained were transfer functions in the standard form as given below: 
 

_ 92.2
_ _ 293.86

pitch rate
longitudinal cyclic input s

=
+

              (5.7) 
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_ 100.72
_ _ 347.69

roll rate
lateral cyclic input s

=
+

                         (5.8) 

  

 However, there are some discrepancies in these responses as well. The SISO 

CIFER models are unable to predict some of the second or higher order modes 

present in the flight data. This implies that even when using a parameter identification 

technique, a model structure has to be defined to capture all the dynamics effects as 

discussed in Chapter 3. 
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Figure 38: Flight Data (Solid) and SISO CIFER Model Prediction for Roll Rate     
 

5.3 High-Order Models  

 Initially, a high-order model was developed theoretically. This provided much 

insight into the dynamics of UAV helicopters. As discussed in Chapter 3, the 
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analytical model is a 14-DoF 17 state model. Shown in Table 4 are the parameters 

from the analytically developed models for the hovering and forward flight 

conditions. 

 Theoretical calculation of the S&C derivatives for the Raptor 50 provided much 

information concerning the magnitudes and signs of the derivatives. This information 

was useful in identifying the derivatives using CIFER.  

 The frequency responses, especially the COMPOSIT responses, were used for the 

identification of the high-order model. The identification was done in different stages 

as discussed in Ref. 10. Initially, identification was done only for the attitude 

dynamics, with rotor degrees-of-freedom added to the identification structure to 

determine time constants and rotor spring derivatives. Then the stabilizer dynamics 

were added to the identification structure. This allowed the determination of the 

stabilizer bar derivatives. Finally, the other degrees-of-freedom were added to the 

identification model structure.  

 The above approach worked well for the hovering flight condition and all the 

derivatives were identified successfully. However, for the forward flight condition, 

when the stabilizer bar dynamics was added, a converging solution was not found. 

The main rotor time constant, fτ ,  was obtained with high insensitivity. To rectify 

this problem, fτ  was held fixed to its theoretical value during identification. With 

this, the identification was completed successfully. 
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Table 4: Theoretically Calculated Derivatives for the Raptor 50 
 Parameter Value 

Derivatives Hover Forward Flight 
fτ  0.0274 0.0274 

sτ  0.107 0.107 

uX  -0.009 -0.399 

vX  -0.0013 0.0785 

1aX  -32.170 -32.170 

uY  0.0013 0.0027 

vY  -0.125 -0.6263 

1bY  32.170 32.170 

wZ  -0.890 -1.324 

uL  0.00438 0.000b 

vL  -0.157 -1.891 

1bL  602.09 602.9 

1b s
fL  0.870 0.870 

uM  0.012 0.535 

wM  0.000 0.0679 

vM  0.0017 -0.1026 

1aM  238.640 238.640 

1a s
fM  0.870 0.870 

vN  0.000 0.000 

pN  0.133 0.18058 

rN  -1.356 -1.8357 

colZδ  -13.039 -13.039 

latfL
δ

 0.011 0.0278 

lon
fL
δ

 0.000 0.000 

latsL δ  0.0118 0.0118 

lon
fM
δ

 0.011 0.011 

lat
fM
δ

 0.000 0.000 

lonsM δ  0.0118 0.00118 

pedNδ  7.528 8.0634 
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Table 5 shows the identified parameters. Also shown are the Cramer Rao bounds 

(C. R.) and the insensitivities that are the measurement of the accuracy of the 

identified parameters79.  

 With the identified parameters in Table 5, all the rates and vertical accelerations 

compared well with the flight data. However, there were some discrepancies in the 

longitudinal and lateral accelerations. This was due to the fact that the derivatives uX , 

vY , uM , and vL  were not identified correctly because of degraded coherence at low 

frequencies. To correct this problem, those parameters were identified separately as 

discussed in Ref. 79. For this purpose, the following transfer functions were used for 

the identification79, 86 : 

( )
v

v gs
p s Y

=
−

                                 (5.9) 

 

( )
u

u gs
q s X

−
=

−
                                        (5.10) 

 
 With this approach, the derivatives uX  and vY  were identified directly. However, 

the values that were identified are relatively higher than the usual values for these 

derivatives as shown in Table 6. Also shown in Table 6 are values for uM  and vL  

when u  and v  were used in the overall identification instead of xN  and yN . 

  An average cost function of 35 was achieved for both forward and hovering 

flight conditions, which falls within the guideline of 100J ≤ . The cost functions 

achieved are better than the cost functions usually achieved for full-scale helicopters.   
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Table 5: Identified Parameters for the Raptor 50 
 Hover  Forward-Flight 
Derivatives Parameter 

Value 
C.R.% Insens. %  Parameter 

Value 
C. R. % Insens.% 

fτ  0.046 23.2 2.176  0.027c - - 

sτ  0.084 14.86 1.494  0.076 17.76 1.457 

uX  -0.154 9.395 2.981  -0.120 7.646 3.230 

vX  -0.0009c - -  0.000b - - 

1aX  -32.170a - -  -32.170a -  

uY  0.0009c -   0.000b - - 

vY  -0.115 10.840 3.341  -0.116 7.832 3.348 

1bY  32.170a - -  32.170a - - 

wZ  -1.406 14.180 6.604  -1.324 36.46 17.98 

uL  0.003c - -  0.000b - - 

vL  -0.1579c - -  -1.489c - - 

1bL  735.500 5.174 2.066  652.6 9.386 4.335 

1b s
fL  0.870a - -  0.87a - - 

uM  0.012c 106.2 39.34  0.535c - - 

vM  0.0012c - -  0.304 34.21 10.27 

1aM  228.000 8.698 2.551  324.9 8.319 3.448 

1a s
fM  0.870a - -  0.87a - - 

vN  0.000b - -  0.000b - - 

pN  -0.133c - -  0.000b - - 

rN  -1.070 17.330 8.209  -10.230 14.500 3.448 

colZδ  -8.611 4.255 1.982  -9.015 4.585 2.262 

latfL
δ

 0.009 29.76 5.160  0.0066 45.82 6.849 

lon
fL
δ

 0.0032 8.998 2.398  0.000b - - 

latsL δ  0.0331 14.330 1.849  0.0281 25.67 2.0799 

lon
fM
δ

 0.0173 28.340 2.802  0.01 68.42 4.473 

lat
fM
δ

 0.00258 9.709 2.864  0.000b - - 

lonsM δ  0.0188 36.29 3.291  0.02918 36.83 1.879 

pedNδ  11.780 4.525 2.075  41.10 12.79 2.497 
aFixed value in the model. bEliminated during model structutre determination. 
cTheoretical Values. 
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Table 6: Speed Derivatives Identified using u and v  Equations 
Derivative Hover Forward 

Flight 
uX  -3.263 -3.437 

vY  -6.089 -3.799 

uM  1.390 0.639 

vL  -1.473 -0.610 
 
 In Figure 39, a frequency response comparison between the identification results 

and flight data are presented for the hovering flight condition. It is seen that there is a 

good agreement between the flight data and the identification results for both the on- 

and off-axes responses.  

 During model development and simulation, it was observed that the addition of the 

rotor flapping and the stabilizer dynamics resulted in predicted responses that showed 

a high correlation with the flight data. The discrepancies that were observed in the 

prediction by the 6-DoF model29 have disappeared. One of the major discrepancies in 

the 6-DoF model prediction was in the off-axes responses both in the roll and the 

pitch axes. The present model predicts the off-axes responses in the same direction as 

the flight data. The discrepancy seen in the roll rate-to-longitudinal cyclic response in 

Figure 39 is due to the low coherence data available for that frequency response pair.  

 The model has also captured the lightly damped rotor-fuselage mode that the 6-

DoF model was unable to predict. The lightly damped rotor-fuselage mode in small-

scale helicopters is due to the presence of the stabilizer bar. Explicit modeling of the 

stabilizer bar dynamics has increased the overall fidelity of the model. 
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Figure 39: Frequency Domain Comparison of the Identified Model (Dashed) 
with Flight Data (Solid) for Hovering Flight 
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 Figure 40 presents a frequency-domain comparison between the flight data and the 

identification results for a forward flight condition. Again, the model predictions 

compare very well with the flight data.  

 The derivatives in Table 6 resulted in a better match with the flight data both in the 

time and frequency domain. However, the derivatives have higher values than are 

usually expected and do not compare closely with the theoretical values. This 

discrepancy is partly due to the use of accelerations in the identification. This 

discrepancy will disappear when velocities are measured directly and used for the 

identification. This requires the use of GPS or air data sensors in the sensor package. 

This is left for future work. 

 A time domain comparison of the identification results with the flight data is 

presented in Figure 41 for the hovering flight condition. It is seen that both the on- 

and off-axes responses show a high degree of correlation with the flight data. The 

speed derivatives used for this comparison were taken from Table 6. Figure 42 

presents the time domain verification of the identified model for a forward flight at a 

velocity of 30 ft/sec. Again, it is seen that the model response matches very well with 

the flight data.  

 Figure 41 and Figure 42 show the time domain verification of the model with 

frequency sweep flight data. However, for the verification purpose, the usual practice 

is to compare the model response and the flight data with inputs that are of different 

shapes from the inputs used for the model identification.  
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Figure 40: Frequency Domain Comparison of the Identified Model (Dashed) 

with Flight Data (Solid) for Forward Flight (30 ft/sec) 
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Figure 41: Time Domain Comparison of the Identified Model (Dashed) with 
Flight Data (Solid) for Hovering Flight 
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Figure 42: Time Domain Comparison of the Identified Model (Dashed) with 
Flight Data (Solid) for Forward Flight (30 ft/sec) 
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 Figure 43 and Figure 44 and show the time-domain comparison of the model 

prediction with the flight data for hovering and forward flight conditions with input 

shapes other than the sweep inputs.  

 For the time-domain verification, a number of flight tests were carried out. In 

Figure 41 and Figure 42, the data used for the verification are the frequency sweep 

test data. The similar data were used for the model identification. The data used in 

Figure 43 and Figure 44 came from verification flight tests in which doublet inputs 

were used. Appendix E lists all the flight data files that were used for the model 

verification. 

5.4 Analytical vs. Identified Models  

 Table 7 lists the identified and the theoretically calculated derivatives. A close 

look at Table 7 shows that most of the identified derivatives agree closely with the 

theoretical values.  

 The identified rotor and stabilizer bar time constants, fτ  and sτ , agree very well 

with the theoretical values for hovering flight. However, for forward flight, fτ  was 

held fixed to its theoretical value during identification. This value must be held fixed 

or the identification algorithm does not converge. 

 The identified roll and pitch rotor spring derivatives, 
1aM and 

1bL , compare well 

with the theoretical values. The theoretical values are slightly under-predicted. 

However, the simulation shows that both the models capture the key rotor dynamics.  
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Figure 43: Time-Domain Verification of the Identified Model (Dashed) with 
Flight Data for Hovering Flight (Different Input Shapes) 
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Figure 44: Time-Domain Verification of the Identified Model (Dashed) wit Flight 
Data for Forward Flight at 30 ft/sec (Different Input Shapes) 
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Table 7: Identified and Theoretical Parameters for the Raptor 50 
 Hover  Forward-Flight 
Derivatives Identified Theoretical  Identified Theoretical 

fτ  0.046 0.0274  0.0270 0.0274 

sτ  0.084 0.107  0.076 0.107 

uX  -0.154 -0.009  -0.120 -0.399 
vX  -0.0009 -0.0013  0.000 0.0785 

1aX  -32.170 -32.170  -32.170 -32.170 

uY  0.0009 0.0013  0.000 0.0027 

vY  -0.115 -0.125  -0.116 -0.6263 

1bY  32.170 32.170  32.170 32.170 

wZ  -1.406 -0.890  -1.324 -1.324 
uL  0.003 0.00438  0.000 0.000b 

vL  -0.1579 -0.157  -1.489 -1.891 

1bL  735.500 602.09  652.6 602.9 

1b s
fL  0.870 0.870  0.87 0.870 

uM  0.012 0.012  0.535 0.535 

wM  0.000 0.000  0.000 0.0679 
vM  0.0012 0.0017  0.304 -0.1026 

1aM  228.000 238.640  324.9 238.640 

1a s
fM  0.870 0.870  0.000 0.870 

vN  0.000 0.000  0.000 0.000 

pN  -0.133 -0.133  0.000 -0.18058 

rN  -1.070 -1.356  -10.230 -1.8357 

colZδ  -8.611 -13.039  -9.015 -13.039 

latfL
δ

 0.009 0.011  0.0066 0.011 

lon
fL
δ

 0.0032 0.000  0.000 0.000 

latsL δ  0.0331 0.0118  0.0281 0.0118 

lon
fM
δ

 0.0173 0.011  0.01 0.011 

lat
fM
δ

 0.00258 0.000  0.000 0.000 

lonsM δ  0.0188 0.0118  0.02918 0.00118 

pedNδ  11.780 7.528  41.10 8.0634 
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 The identified speed damping derivatives ( uX  and vY ) have the same sign as the 

theoretical values. However, the theoretical values are somewhat under-predicted. 

When compared with the flight data, both the theoretical and the identified models 

showed reduced speed damping, while the flight data showed well-damped speed 

characteristics. To correct this problem, the speed damping derivatives were 

identified separately using the hover trim conditions as discussed earlier in section 

5.3. The identified derivatives resulted in good correlation with the flight data.  

 The identified speed stability derivatives ( uM  and vL ) have higher values than the 

theoretical values, particularly for hovering flight. This is due to the fact that the 

available data has low coherence at lower frequencies. This problem can be solved by 

using trim data collected during static stability tests as discussed in Refs. 79 and 89 in 

which the control gradients lon uδΔ Δ  and lat vδΔ Δ  are determined using trim data. 

The control gradients can later be used for the calculation of uM  and vL  using the 

following formulas79, 89: 

  
lon

lon u
u w

w

ZM M M
u Zδ

δΔ⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠
             (5.11)

  
lat ped

pedlat
vL L L

v vδ δ
δδ Δ⎛ ⎞Δ⎛ ⎞= − + ⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

                        (5.12) 

For the forward flight, the identified derivatives are identical to the theoretical values. 

 The off-axes speed derivatives vX , uY , vM , uL , and wM  could not be identified 

accurately because of the low coherence in the off-axes response data. During the 
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identification of the model, theoretical values were used for these parameters and held 

fixed. 

 The identified heave-damping derivative ( wZ ) and the heave control sensitivity 

( colZ ) compare very well with the flight data. The simulation comparison with the 

flight data shows that both the identified and theoretical models are able to predict the 

helicopter vertical dynamics very well. 

 The identified yaw dynamics derivatives ( rN  and pedN ) have similar magnitudes 

to the theoretical values in hover. However, for the forward flight, the theoretical 

values are under-predicted. Both the identified and theoretical models showed good 

correlation with the flight data in both the time- and frequency-domains.  

 The directional stability derivative ( vN ) could not be identified because of low 

coherence data. When the theoretically calculated value was used, the yaw rate 

prediction departed significantly from the flight data. To correctly identify this 

parameter, flight tests should be carried out by maintaining a constant sideslip as 

discussed in Ref. 89. This would allow measurement of the control gradient 

ped vδΔ Δ , which can be used for the calculation of vN  using the following formula: 

  
ped

ped
vN N

vδ
δΔ⎛ ⎞

= − ⎜ ⎟Δ⎝ ⎠
                         (5.13) 

 However, as discussed in Ref. 79, the control gradients lon uδΔ Δ , lat vδΔ Δ , and 

ped vδΔ Δ  are very difficult to obtain with high precision. This is particularly true for 
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UAV helicopters. Furthermore, the current sensor package measures accelerations, 

which are then integrated to calculate the velocities. This will pose problems when 

calculating uΔ  and vΔ  precisely. 

 Overall, the identified parameters compare very well with the theoretically 

calculated parameters. Some of the parameters ( uX , vY , uM , vL , vN , et cetera) 

could not be identified accurately. This is because of the low coherence data available 

for these parameters. This provides an indication that the analytical and parameter 

identification techniques complement each other. 

5.4.1 Eigenvalues and Modes  

 Eigenvalues carry important information about the stability of the modes present 

within a dynamic system. Not only do they provide information on the absolute 

stability of a system, they can also provide information on the relative stability of the 

system.  

 Table 8 compares the theoretical and identified eigenvlaues of the different modes 

for the hovering and forward flight conditions. 

It is seen that both flight conditions have similar pole locations. However, the 

eigenvalues for the directional dynamics in hover and forward flight conditions are 

somewhat separated in scale. The table shows the eigenvalues in [ ]ζ ω  form for the 

second-order modes and in ( )σ  form for the first-order modes, where σ  corresponds 

to the denominator ( )s σ+ . The pole locations for the pitch-flap-stabilizer modes for 
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both flight conditions agree with the frequency values that are seen in the frequency 

response plots. 

Table 8: Eigenvalues of the Raptor 50 for Key Modes in Hover and Forward 
Flight Conditions 

 Hover Forward-Flight 
Modes Identified Theoretical Identified Theoretical 

Pitch [0.641, 0.119] [0.16, 0.12] (0.24) [0.212, 0.76] 
Roll [0.235, 0.241] [0.24, 0.263] (0.116) (0.259) 
Heave (1.406) (0.89) (1.324) (1.89) 
Pitch/Flap/Stab [0.249, 16.6] [0.244, 16.0] [0.337, 18.0] [0.245, 15.9] 
Roll/Flap/Stab [0.107, 28.7] [0.186, 26.2] [0.263, 25.9] [0.187, 26.2] 
Yaw (1.07) (1.36) (10.2) (1.84) 
Uniform Inflow (62.2) (63.1) (67.5) (40.4) 
Coning [0.195, 187] [0.195, 187] [0.195, 187] [0.195, 187] 

 

5.5 Raptor 50 vs. X-Cell Helicopters  

 As discussed earlier, no work exists in the open literature on the high-order 

dynamics modeling of a helicopter of the size of the Raptor 50. However, some work 

has been done on the X-Cell helicopter that is closest to the Raptor 50 in and weight 

and size. The X-Cell helicopter was used by MIT for its research on autonomous and 

acrobatic helicopters. Though, a complete list of derivatives was not found in the 

literature, some of the derivatives representing the attitude dynamics of the X-Cell 

helicopter were found.  

 Table 9 shows a comparison of key identified parameters for the Raptor 50 with 

those of the X-Cell helicopter for a hovering flight condition. It is clear from the table 

that the Raptor 50’s roll- and pitch-flap dynamics are at higher frequencies than those 

of the X-Cell. The natural frequencies of the coupled rotor fuselage modes are given 
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by the following expressions: 

1roll flap bLω − =                                                         (5.14) 

 

1pitch flap aMω − =                                                 (5.15) 

 
 This is an indication that the Raptor 50 is more agile than the X-Cell helicopter.  

Table 9: Comparison of Key Parameters with the X-Cell Helicopter 
Derivative Raptor 50 X-Cell 

fτ  0.046 0.052 

sτ  0.084 0.220 

1bL  735.500 320.000 

1afL  0.000 0.000 

1b s
fL  0.870 1.150 

1aM  228.800 204.000 

1bf
M  0.000 0.000 

1a s
fM  0.870 1.150 

lat
fL
δ

 0.2609 0.420 

lon
fL
δ

 0.0585 0.000 

latsL
δ

 0.3133 0.110 

lon
fM
δ

 0.1978 0.53 

lat
fM
δ

 0.0557 0 

lonsM
δ

 0.3393 0.11 

 
 
 
 
 
 



6  Summary and Conclusions  

 A 14-DoF, 17 state simulation model of the Raptor 50 helicopter has been 

developed from the first-principles for hovering and forward flight conditions. The 

model includes the fuselage, rotor flapping, rotor inflow, and stabilizer bar degrees-

of-freedom. The fuselage and the rotor dynamics were coupled using the hybrid 

model formulation, in which the coupling was achieved through the flapping 

derivatives (or the rotor spring terms) 
1aX , 

1b
Y , 

1aM , 
1b

L . Also considered are the 

coupled heave-coning-inflow dynamics.   

 The theoretically developed model gave helpful insight into the magnitude and 

sign of the stability and control derivatives. This assisted the model development 

process by providing initial values for the derivatives within the CIFER parameter 

identification process. A 12-DoF, 15-state simulation model was developed using 

CIFER for the hovering and forward flight conditions. The lateral and longitudinal 

inflow dynamics were not included within the identified model structure as the inflow 

velocities cannot be measured using existing techniques. The theoretically developed 

and the identified models compared very well except for the speed stability 

derivatives ( uM , vL ). Also, the directional stability derivative ( vN ) could not be 

identified because of low coherence data. When the theoretically calculated value of 

vN  was used, the simulated yaw rate did not compare well with the flight data. Those 

derivatives ( uM , vL , and vN ) should be identified separately using trim data as 

discussed in Ref. 79 and 89. As discussed in Ref. 89, static stability flight tests have 
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to be carried out to measure the trim data, which will allow the determination of the 

control gradients ( lon uδΔ Δ , lat vδΔ Δ , and ped vδΔ Δ ) required for the calculation 

of the speed stability derivatives. However, due to difficulty in correctly measuring 

trim data, especially for UAV helicopters, these derivatives cannot be determined 

with high precision. Moreover, the current sensor package measures only 

accelerations. The velocities are obtained by integrating these accelerations, which 

results in error. In order to determine the control gradients accurately, the velocities 

must be measured directly using either GPS or air data sensors. This is left for future 

work. If the velocities are measured directly, high-order models for UAV helicopters 

can be developed rapidly using parameter identification techniques. This dissertation 

has laid a foundation for rapid identification of these models. 

 The simulation results showed a high degree of correlation with the flight data in 

both the frequency and time-domains for on-axis pitch and roll rate responses. These 

were seen to compare very well with the flight data up to frequencies of 20 and 30 

rad/sec, respectively. The models were able to capture the second order effects due to 

rotor-fuselage coupling seen in the flight data. The time domain comparison showed 

that the models, which included the stabilizer bar, were able to capture the lightly 

damped modes, which are due to the presence of the stabilizer bar. 

 The model prediction for the on-axis yaw response compares very well with the 

flight data in the frequency-domain. In the time-domain, there is a slight disagreement 

between the model prediction and the flight data. However, this disagreement is 
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insignificant. 

 The frequency domain comparison for the vertical acceleration due to the 

collective input gave a very good correlation with the flight data for a wide range of 

frequencies (1-30 rad/sec). This is considered important because the inflow dynamics 

come into effect within this frequency range. The model prediction was also seen to 

compare very well with the flight data in the time-domain. However, the off-axes 

responses in the frequency domain have a limited range of accuracy. This is because 

of the low coherence for these responses over most of the frequency range.  

 The theoretical model included the three-state rotor inflow dynamics. Also 

considered was the dynamic wake correction factor. However, when the inflow 

dynamics were added to the model, there were no significant differences in the model 

predictions. This leads to the conclusion that the inflow dynamics do not have a 

pronounced effect on small-scale helicopter dynamics and can be neglected.  

 Overall, the high-order model compared very well with the flight data. This 

research provides the tools required for the design of high-bandwidth control systems 

for helicopters using various control system design techniques.    

 This work presents the theoretically calculated and the parameter identified models 

for the Raptor 50 helicopter. The models can readily be used by anyone working on 

the Raptor 50 V2 helicopter for simulation and control system design purposes 

without further model development. 
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7  Future Work and Recommendations 

 The high-order model developed within this dissertation included the rotor 

flapping and inflow dynamics and resulted in a very good match with the flight data. 

However, the present work has neglected the lag degrees-of-freedom. In the future, 

the effect of lead-lag dynamics should be investigated and the order of the model 

increased to include lead-lag dynamics.   

 The flight envelope for the helicopter includes different operating conditions.  

Helicopters can hover and possess the capability for slow and fast forward speeds. 

Small-scale helicopters, on the other hand, are more agile and can attain higher 

attitude rates and angles than their full-scale counterparts. These vehicles can easily 

be operated to exceed flight conditions where the small-perturbation assumption is 

valid. Therefore, a nonlinear model is needed to describe their full operating envelope 

including nap-of-the-earth missions.  

 This work has made it possible to fully understand the complexities of helicopter 

dynamics modeling. Also, a very accurate dynamics model for a UAV helicopter has 

been developed. This model, and the knowledge gained during this study, will be 

used in the design of control systems using various control system design techniques. 

Specifically, future work should focus on the following: 

• Implementation of linear and nonlinear robust control systems using H∞  

and synthesisμ −  techniques 

• Research on intelligent controllers using Neural Networks and Fuzzy 
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Logic techniques 

• Research on vision guidance systems for obstacle avoidance    

 In order to have more accurate identification, the weight of the sensor package 

needs to be as low as possible. The current sensor package should be replaced with 

newer MEMS (Micro Electro Mechanical Sensors) based sensors. Also, the current 

battery package should be replaced with lighter lithium polymer batteries. 

 To estimate the speed damping and stability derivatives, the present work used 

measured accelerations. The accelerations were integrated to obtain the velocities. If 

the velocities could be measured directly, the identification would be more accurate. 

The author suggests the use of GPS sensors for this purpose in future projects. The 

possibility of using optical or air data sensors should also be investigated. Once the 

velocities are measured directly, the methods discussed in Refs. 79 and 89 for the 

calculation of these derivatives should be followed.  
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Appendices  

A MATLAB Code for the 14-DoF Model of the Raptor 50 
(Hover) 

function[A,B]=AB_Matrix_raptor_hover_4dof(u,v,w,theta,... 
    
M_Collective_deg,Long_Cyclic_deg,Lat_Cyclic_deg,T_Collective_deg) 
  
%=============== 
%Main Rotor 
%=============== 
% clc 
% clear 
rpm=1790;%RPM of the main rotor 
Rmr=(52.95/2)/12;%Radius the main blade (ft) 
Nb=2;%Number of the blades 
c=2.12/12;%Blade chord (ft) 
a=4.93;%3-D lift curve slope (1/rad) 
cd=0.019;%Profile drag coefficient 
Ib=2.21447/144;%Main rotor blade flap inertia(slugs ft^2) 
H_mr=9.1/12;%Height of hub above c.g. (ft) 
L_mr=-0.25/12;%Distance forward of c.g. from hub (ft) 
y_mr=0;%Lateral distance from the c.g to the main rotor hub (ft) 
theta1=0/57.3;%Blade twist angle (rad)a 
gamma_s=0;%Main rotor shaft angle (rad) 
i_m=0;%Main rotor shaft incidence 
x_cg=-0.25/12;%Center of gravity relative to heli nose (ft) 
i_s=0;%Shaft incidence 
H=H_mr/Rmr; 
L=L_mr/Rmr; 
omega=rpm*(2*pi/60); 
omegaR=omega*Rmr; 
Sb=0.22*3.33^2;%Fuselage side area (ft^2) 
U0=0; 
sigma=Nb*c/(pi*Rmr);%Main rotor solidity ratio 
A=pi*Rmr^2;%Tail rotor disc area 
Ab=Nb*c*Rmr;%Blade area (ft^2) 
lambda_beta=1.05;%Flapping Frequency Ratio 
  
%================ 
%Tail Rotor 
%================ 
rpm_T=8.5*rpm;%Tail rotor rpm 
c_t=1.06/12;%Tail rotor chord (ft) 
Rtr=(9.26/2)/12;%Radius of the tail rotor (ft) 
L_tr=30.92/12;%Tail rotor moment arm (ft) 
H_tr=3.04/12;%Vertical distance of tail rotor hub from c.g(ft)  
a_tr=4.7;%3-D lift curve slope of tail rotor (1/rad) 
alfa_to=0*pi/180;%No lift setting with respect to fuselage 
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nw=0.9;%Nonideal wake contraction 
f_j=0.6;%Convergence rate coefficient 
S=0/144;%Vertical fin area (ft^2) 
lamda_oT=0;%Tail rotor inflow (~) 
Nb_t=2;%Number of tail rotor blades 
omega_t=rpm_T*(2*pi/60); 
omegaR_t=omega_t*Rtr; 
H_t=H_tr/Rmr; 
L_t=L_tr/Rmr; 
sigma_t=Nb_t*c_t/(pi*Rtr);%Tail rotor solidity ratio 
A_t=pi*Rtr^2;%Tail rotor disc area 
Ab_t=Nb_t*c_t*Rtr;%Tail rotor blade area (ft^2) 
  
%==================== 
%Mass and Intertia 
%==================== 
m=0.34;%Mass of the helicopter (slugs) 
m_blade=0.01145;%mass of blades (slugs) 
Iyy=0.1973;%Moment of inertia about y axis (slugs-ft^2) 
Izz=0.1926;%Moment of inertia about z axis (slugs-ft^2)  
Ixx=0.0782;%Moment of inertia about x axis (slugs-ft^2) 
Ixz=0;%Product of inertia about xz plane (slug ft^2) 
Ic=Ixx*Izz-Ixz^2; 
k1=Ixz*(Izz+Ixx-Iyy)/Ic; 
k2=Izz*((Izz-Iyy)+Ixz^2)/Ic; 
k3=(Ixx*(Iyy-Ixx)-Ixz^2)/Ic; 
g=32.2; 
T_max=m*g; % maximum rotor thrust (lbs) 
  
%======================= 
%Atmospheric Constants 
%======================= 
gamma1=1.4;%Ratio of Specific Heats 
R=1718;%Gas constant  (ft^2/(s^2 deg R)) 
rho0=0.002378;%Density of air at sea level  (slug/ft^3) 
T0=518.67;%Sea level temperature  (deg R) 
LR=-0.003333;%Lapse rate [deg R/ft) 
mu0=3.737*10^-7;%Absolute Viscosity (lb s/ft^2) 
h=830; 
T=T0+LR*h;%Temperature at altitude  (deg R) 
rho=rho0*(T/T0)^-(1+g/(R*LR));%Density of air at altitude 
(slug/ft^3) 
  
gamma=rho*a*c*Rmr^4/Ib;%Lock Number 
tau_f=16/(gamma*omega);%Main rotor time constant 
A_b=8/gamma*(lambda_beta^2-1); 
  
%=========================== 
%Stabilizer Bar Parameters 
%=========================== 
gamma_s=0.8; 
tau_s=16/(gamma_s*omega); 
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l_1=0.637; 
l_2=1.39; 
l_3=1.2135; 
l_4=3.96; 
l_theta_c=0.762; 
h_theta_c=2.711; 
h_beta=1.182; 
l_theta=0.593; 
c_f=1.956; 
l_beta=1.871; 
paddle_length=4.933; 
R2=10.9372; 
R1=R2-paddle_length; 
Alon=l_theta_c*l_1/(l_theta*(l_1+l_2))*tau_f; 
Blat=Alon; 
Kc=l_beta*l_2/(l_theta*(l_1+l_2)); 
Kd=Kc; 
Ac=Alon/tau_f*Kc; 
Bd=Ac;Clon=0.0117; 
Dlat=Clon; 
Alat=0.0025; 
Blon=0.0032; 
  
%================================= 
%Inputs 
%================================= 
theta0_M=M_Collective_deg/57.3; 
M_Collective=theta0_M; 
theta0_T=T_Collective_deg/57.3; 
A1=Lat_Cyclic_deg/57.3; 
B1=Long_Cyclic_deg/57.3; 
Long_cyclic=B1; 
phi_e=0; 
  
%Wake distortion parameter due to angular rate 
KR=1.5; 
KT=0.736; 
  
V=(u^2+v^2+w^2)^.5;%Helicopter Velocity ft/sec 
     
mu=(u+U0)/(omegaR);%advance ratio (~) 
mu_z = w/omegaR; 
  
%Stiffness Number 
lamda_beta=1.05; 
S_beta=8*(lamda_beta^2-1)/gamma; 
K_beta=(lamda_beta^2-1)*Ib*omega^2; 
Kb=K_beta/(Ib*omega^2); 
  
%Induced Velocity in Hover 
v1_i=sqrt((m*g)/(2*rho*A)); 
v_h=v1_i; 
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v_o=v1_i; 
if w<0 
    v1_h=-w/2+sqrt((w/2)^2+v1_i^2); 
else 
    v1_h=w/2+sqrt((w/2)^2+v1_i^2); 
end 
  
%Reduced Lock Number 
gamma_star=gamma/(1+a*sigma/(16*v_h)); 
  
%Thrust Coefficient 
CT_h=(m*g)/(rho*A*omegaR^2); 
theta_075R=(3*(2*CT_h/(a*sigma)+1/2*sqrt(CT_h/2))); 
omega_a=0;  
     
% Calculate Climb Inflow Ratio 
if w<0 % helicopter moving vertically up 
    lamda_c=-w/(omegaR); % (~)t 
elseif w>0 % helicopter moving vertically down 
    lamda_c=w/omegaR; 
else 
    lamda_c=0; 
end 
  
%================================================================= 
%Iterative Process for Calculating Coefficient of Thrust, Inflow 
%Ratio, and Induced Velocity on Main Rotor 
%================================================================= 
[lamda,T_c]=newton_iterative(mu,nw,lamda_c,f_j,M_Collective,g,m,omeg
a,... 
Rmr,rho,a,T_max,sigma,v_o,V); 
lamda_i=v_h/omegaR; 
lamda_i=lamda; 
T_c=a/4*(2*theta0_M/3-v_h/omegaR); 
  
%Calculation of Longitudinal Trim 
[U_e,W_e,theta_e,B_1c]=long_partial_trim(u,w,g,Iyy,Izz,... 
    
Ixx,Ixz,T_c,m,omega,Rmr,Nb,c,rho,a,cd,Ib,H_mr,Rtr,lamda_i,lamda_c,mu
); 
a1s_bar=B_1c; 
theta_e=0; 
  
%Inflow Parameters 
sigma_1=-a*sigma/(16*lamda_i); 
tau_i=16/(45*pi*lamda_i); 
sigma1=-a*sigma/(16*lamda_i)/tau_i; 
KR=KR/tau_i; 
sigma2=(sigma_1-1)/tau_i;  
  
A_b=8/gamma*(1.05^2-1); 
Ba=A_b; 
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M=[128/(75*pi)    0   0;0 -16/(45*pi) 0;0 0 -16/(45*pi)]; 
L_i=1/v_h*[1/2 0 0;0 -2 0;0 0 -2]; 
  
% Calculate Velocity Vector 
    if w<0 
        tau_c=90/180*pi; 
    else 
        tau_c=-90/180*pi; 
    end 
  
% ---------------------------------------- 
alfa_D=-(theta+tau_c); % disc incidence angle (rad) 
alfa_nf=(theta-Long_cyclic); % no feathering angle 
alfa_1=0; % lag hinge angle (rad) 
lamda=mu*sin(alfa_nf)-lamda_i; % (~) 
v_i=v1_h; % (~) 
vel_comp=v_i/v_o; 
a_1=2*mu*(4*M_Collective/3+lamda)/... 
         (1-mu^2/2);%longitudinal flapping coefficient (~) 
a_0=gamma/8*(theta0_M*(1+mu^2)+4/3*lamda); 
lamda_D=mu*a_1+lamda; % (~) 
gamma=rho*a*c*Rmr^4/Ib; % Locks Number (~) 
A_T=pi*Rtr^2; % tail plane area (ft^2) 
l_T=L_tr/Rmr; % tail rotor arm as a fraction of Rmr (~) 
CH_sigma=a*lamda_D/4*(1/2*a_1); 
V_T=A_T*l_T/(sigma*pi*Rmr^2);  % tail volume ratio (~) 
H=H_mr/Rmr; % height of hub above cg as fraction of R (~) 
L=L_mr/Rmr; % distance forward of cg from shaft in terms of R (~)    
lamda_=1.25^.5; % Calculated integral (~) 
C_ms=(a*(lamda_^2-1)/(2*gamma)+m*g/(rho*sigma*pi*Rmr^2*... 
      omega^2*Rmr^2)*H); % Coefficient of main rotor pitch 
{hingeless}(~) 
ratio_hingeless=C_ms/(m*g/(rho*sigma*pi*Rmr^2*omega^2*... 
     Rmr^2)*H); % Ratio to be be multiplied to a_1 for hingeless 
rotor (~) 
  
%Lift Deficiency Factor 
C1_d=1/(1+a_tr*sigma_t/(16*lamda_i)); 
     
% Calculations of Derivatives 
dlamda_i_dmu=(2*mu*M_Collective+alfa_D-a_1-
4*T_c*(V/v_o)*(v_i/v_o)^3/... 
    (a*lamda_i))/(1+(4*T_c*(1+(v_i/v_o)^4))/(a*lamda_i)); % (~) 
dlamda_dmu=alfa_D-a_1-dlamda_i_dmu; % (~) 
dlamdad_dmu=a_1+dlamda_dmu; 
dCT_sigma_dw=(a/4)*1/(1+a*lamda_i/(4*T_c)+(v_i/v_o)^4); % (~) 
dCH_sigma_dw=0; 
dCT_sigma_dtheta0=(a/6*(1+3*mu^2/2)/(1+... 
a*lamda_i/(4*T_c)*(1+(v_i/v_o)^4))); % (~) 
dCT_sigma_dtheta0=(a/6*1/(1+a*lamda_i/(4*T_c)*(1+(v_i/v_o)^4))); % 
(~) 
dCT_sigma_dtheta0=8/3*a*lamda_i/(16*lamda_i+a*sigma); 



  

148 
 
 
 
 

 

da1_dtheta0=0; 
da1_dw=0; 
dCT_sigma_dmu=0; 
da1_dmu=8/3*theta0_M-2*v_h/omegaR; 
dCT_sigma_dB1=-mu*dCT_sigma_dw; % (~) 
dCH_sigma_dB1=-mu*dCH_sigma_dw; % (~) 
dlamda_i_dtheta0=lamda_i/T_c*dCT_sigma_dtheta0*(1/(1+(v_i/v_o)^4)); 
% (~) 
dlamda_d_dtheta0=mu*da1_dtheta0-dlamda_i_dtheta0; % (~) 
dCH_sigma_dtheta0=(a/8)*((a_1*dlamda_d_dtheta0+lamda_D*da1_dtheta0)-
... 
    2*mu*(lamda_D+M_Collective*dlamda_d_dtheta0)); % (~) 
dCH_sigma_dmu=cd/4; % (~) 
dCQ_sigma_dtheta0=-(lamda_D*dCT_sigma_dtheta0+T_c*dlamda_d_dtheta0)-
... 
    mu*dCH_sigma_dtheta0; % (~) 
dCH_sigma_dlamdad=a/4*(1/2*a_1-mu*M_Collective); 
dCT_sigma_dlamdad=(1-mu^2/2)/(1+3*mu^2/2); 
dCT_sigma_dlamdad_Mh=1/(8/a+sqrt(sigma/2)/sqrt(CT_h/sigma)); 
dCQ_sigma_dlamdad=-(lamda_D*dCT_sigma_dlamdad+T_c); 
dCH_sigma_da1=a/6*theta0_M+3*a/8*lamda; 
dCH_sigma_da1=3/2*T_c*(1-a/18*theta0_M/T_c); 
dCH_sigma_da1=3/2*T_c*(1-a/18*theta_075R/T_c); 
dlamda_i_dtheta0=lamda_i/T_c*dCT_sigma_dtheta0*(1/(1+(v_i/v_o)^4)); 
% (~) 
dlamda_d_dtheta0=mu*da1_dtheta0-dlamda_i_dtheta0; % (~) 
dlamda_dtheta0=-dlamda_d_dtheta0; 
dCQ_sigma_dtheta0=-(lamda*dCT_sigma_dtheta0+T_c*dlamda_dtheta0)-... 
    mu*dCH_sigma_dtheta0; 
T_cd=a/4*(2/3*theta0_M+lamda_D); 
dCQ_sigma_dtheta0=-
(lamda_D*dCT_sigma_dtheta0+T_cd*dlamda_d_dtheta0); 
db1_dA1=mu*da1_dw; 
da1_dB1=-mu*da1_dw;     
  
%================================================= 
%Basic Rotor Derivatives Near Hover 
%================================================= 
a0_h=gamma/8*(theta0_M+4/3*lamda);%Coning angle at hover 
%Change in main rotor tip speed ratio with change in forward speed 
dmu_du_Mh=1/(omegaR); 
dmu_du_Th=1/omegaR_t; 
%Change in tail rotor inflow ratio with change in lateral speed 
dlamdad_dv_Th=-1/omegaR_t; 
%Change in main rotor inflow ratio with change in forward speed 
dlamdad_dw_Mh=1/(omega*Rmr); 
%Change in lateral flapping with change in tip speed ratio 
db1s_dmu_Mh=4/3*a0_h; 
%Change in Y-force due to change in lateral flapping 
dCy_sigma_db1=dCH_sigma_da1; 
  
%==================================== 
%Main Rotor Derivatives Near Hover 
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%==================================== 
Xu_M=-rho*Ab*omegaR^2*dCH_sigma_dmu*dmu_du_Mh/m; 
Xu_M=-rho*Ab*omegaR^2*dCH_sigma_da1*da1_dmu*dmu_du_Mh/m; 
Zu=-rho*Ab*omegaR^2*(dCT_sigma_dmu*dmu_du_Mh)/m; 
Zw_M=-2*a*Ab*rho*omegaR*lamda_i/((16*lamda_i+a*sigma)*m); 
Ztheta0_M=-rho*Ab*omegaR^2*dCT_sigma_dtheta0/m/57.3; 
Yv_M=Xu_M; 
Mu_M=-Xu_M/Iyy*m*H_mr; 
Lv_M=-Mu_M/Ixx*Iyy; 
Xtheta0_M=-rho*Ab*omegaR^2*a1s_bar*dCT_sigma_dtheta0; 
Mtheta0_M=-Xtheta0_M*H_mr*(m/Iyy)+Ztheta0_M*L_mr*(m/Iyy); 
Ytheta0_T=rho*Ab_t*omegaR_t^2*dCT_sigma_dtheta0/m/57.3; 
Ltheta0_T=Ytheta0_T*H_tr*(m/Ixx); 
Ntheta0_T=Ytheta0_T*L_tr*(m/Izz); 
  
%========================== 
%Vertical Velocity Model 
%========================== 
Co=1; 
vo=lamda_i; 
C=-(rho*pi*Rmr^2*(omega*Rmr)^2)/m; 
CT1=C*0.543/(Co*omega^2*Rmr); 
CT2=C*4*vo/(omega*Rmr); 
CT3=C*4*vo/(3*omega); 
V1=(-75*pi*omega/32)*(vo+a*sigma/16)*Co; 
V2=0; 
V3=(25*pi*omega^2*Rmr/32)*(a*sigma/8)*Co/57.3; 
CT1A=CT1*V1; 
CT1B=CT1*V2; 
CT1C=CT1*V3; 
V4=omega^2*gamma/8*1/57.3; 
  
%============================================= 
%Main Rotor Coupling Derivatives Near Hover 
%============================================= 
Xv=-rho*Ab*omegaR^2*dCH_sigma_da1*db1s_dmu_Mh*dmu_du_Mh/m; 
Yu=-Xv; 
Lu=(Yu*H_mr)*(m/Ixx); 
Mv_M=(Yu*H_mr)*(m/Iyy); 
Lu=(Yu*H_mr)*(m/Ixx); 
  
%====================================== 
%Tail Rotor Derivatives Near Hover 
%====================================== 
Yv_T=rho*Ab_t*omegaR_t^2*dCT_sigma_dlamdad_Mh*dlamdad_dv_Th/m; 
Yp_T=Yv_T*H_tr; 
Yr_T=-Yv_T*L_tr; 
Lv_T=Yv_T*H_tr*(m/Ixx); 
Lp_T=Yp_T*H_tr*(m/Ixx); 
Lr_T=Yr_T*H_tr*(m/Ixx); 
Mv_T=rho*Ab_t*omegaR_t^2*Rtr*dCQ_sigma_dlamdad*dlamdad_dv_Th/Iyy; 
Nv_T=-Yv_T*L_tr*(m/Izz); 
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Np_T=-Yp_T*L_tr*(m/Izz); 
Nr_T=-Yr_T*L_tr*(m/Izz); 
  
%================================ 
%Total Derivatives 
%================================ 
Xu=Xu_M; 
Xa=-g; 
Yb=g; 
Ma=(K_beta-H_mr*m*g)/Iyy; 
Lb=(K_beta-H_mr*m*g)/Ixx; 
Zw=Zw_M; 
Mu=Mu_M; 
Mv=Mv_M; 
Yv=Yv_M+Yv_T; 
Yr=Yr_T; 
Lv=Lv_M+Lv_T; 
Lr=Lr_T; 
Nv=Nv_T; 
Np=Np_T; 
Yp=Yp_T; 
Nr=Nr_T; 
  
%================================= 
%14-DoF 17-State Model  
%=================================   
A =[Xu,0,0,-g,Xv,0,0,0,Xa,0,0,0,0,0,0,0,0; 
0,Zw,0,0,0,0,0,0,0,0,0,0,0,0,0,CT3+CT1B,CT2+CT1A; 
Mu,0,0,0,Mv,0,0,0,Ma,0,0,0,0,0,0,0,0; 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 
Yu,0,0,0,Yv,0,g,Yr,0,Yb,0,0,0,0,0,0,0; 
Lu,0,0,0,Lv,0,0,Lr,0,Lb,0,0,0,0,0,0,0; 
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0; 
0,0,0,0,0,0,0,Nr,0,0,0,0,0,0,0,0,0; 
0,0,-1,0,0,1/(omega*tau_f),0,0,-
1/tau_f,A_b/tau_f,Ac/tau_f,0,0,0,0,0,0; 
0,0,-1/(omega*tau_f),0,0,-1,0,0,-Ba/tau_f,-
1/tau_f,0,Bd/tau_f,0,0,0,0,0; 
0,0,-1,0,0,0,0,0,0,0,-1/tau_s,0,0,0,0,0,0; 
0,0,0,0,0,-1,0,0,0,0,0,-1/tau_s,0,0,0,0,0; 
0,0,(KR-sigma1)/(omega),0,0,0,0,0,0,-
sigma1,0,sigma1*Bd,sigma2,0,0,0,0; 
0,0,0,0,0,(KR-
sigma1)/(omega),0,0,sigma1,0,sigma1*Ac,0,0,sigma2,0,0,0; 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0; 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-omega^2,-omega*gamma/8,-
omega*gamma/(6*Rmr); 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,V1]; 
    
B=[0,0,0,0; 
CT1C,0,0,0; 
0,0,0,0; 
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0,0,0,0; 
0,0,0,Ytheta0_T; 
0,0,0,Ltheta0_T; 
0,0,0,0; 
0,0,0,14; 
0,Alon/tau_f,Alat/tau_f,0; 
0,Blon/tau_f,Blat/tau_f,0; 
0,Clon/tau_s,0,0; 
0,0,Dlat/tau_s,0; 
0,0,sigma1*Blat/tau_f,0; 
0,sigma1*Alon/tau_f,0,0;   
0,0,0,0; 
V4,0,0,0; 
V3,0,0,0]; 
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B MATLAB Code for the 14-DoF Model of the Raptor 50 
(Forward Flight) 

 
function[A,B]=AB_Matrix_raptor_forward_14dof(u,w,q,theta,v,p,a1,... 
    b1,c_1,d_1,v0,M_Collective_deg,Long_Cyclic_deg,... 
    Lat_Cyclic_deg,T_Collective_deg) 
  
%=============== 
%Main Rotor 
%=============== 
% clc 
% clear 
rpm=1790;%RPM of the main rotor 
Rmr=(52.95/2)/12;%Radius the main blade (ft) 
Nb=2;%Number of the blades 
c=2.12/12;%Blade chord (ft) 
a=4.93;%3-D lift curve slope (1/rad) 
cd=0.019;%Profile drag coefficient 
Ib=2.21447/144;%Main rotor blade flap inertia(slugs ft^2) 
H_mr=9.1/12;%Height of hub above c.g. (ft) 
L_mr=-0.25/12;%Distance forward of c.g. from hub (ft) 
y_mr=0;%Lateral distance from the c.g to the main rotor hub (ft) 
theta1=0/57.3;%Blade twist angle (rad)a 
gamma_s=0;%Main rotor shaft angle (rad) 
i_m=0;%Main rotor shaft incidence 
x_cg=-0.25/12;%Center of gravity relative to heli nose (ft) 
i_s=0;%Shaft incidence 
H=H_mr/Rmr; 
L=L_mr/Rmr; 
omega=rpm*(2*pi/60); 
omegaR=omega*Rmr; 
Sb=0.22*3.33^2;%Fuselage side area (ft^2) 
U0=30; 
sigma=Nb*c/(pi*Rmr);%Main rotor solidity ratio 
A=pi*Rmr^2;%Tail rotor disc area 
Ab=Nb*c*Rmr;%Blade area (ft^2) 
  
%================ 
%Tail Rotor 
%=============== 
rpm_T=8.5*rpm;%Tail rotor rpm 
c_t=1.06/12;%Tail rotor chord (ft) 
Rtr=(9.26/2)/12;%Radius of the tail rotor (ft) 
L_tr=30.92/12;%Tail rotor moment arm (ft) 
H_tr=3.04/12;%Vertical distance of tail rotor hub from c.g(ft)  
a_tr=4.7;%3-D lift curve slope of tail rotor (1/rad) 
alfa_to=0*pi/180;%No lift setting with respect to fuselage 
nw=0.9;%Nonideal wake contraction 
f_j=0.6;%Convergence rate coefficient 
S=0/144;%Vertical fin area (ft^2) 
lamda_oT=0;%Tail rotor inflow (~) 
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Nb_t=2;%Number of tail rotor blades 
omega_t=rpm_T*(2*pi/60); 
omegaR_t=omega_t*Rtr; 
H_t=H_tr/Rmr; 
L_t=L_tr/Rmr; 
sigma_t=Nb_t*c_t/(pi*Rtr);%Tail rotor solidity ratio 
A_t=pi*Rtr^2;%Tail rotor disc area 
Ab_t=Nb_t*c_t*Rtr;%Tail rotor blade area (ft^2) 
  
%=========================== 
%Fuselage 
%=========================== 
SFP=0.012;%Fuselage Equivalent Parasite Area 
  
%==================== 
%Mass and Intertia 
%==================== 
m=0.34;%Mass of the helicopter (slugs) 
m_blade=0.01145;%mass of blades (slugs) 
Iyy=0.1973;%Moment of inertia about y axis (slugs-ft^2) 
Izz=0.1926;%Moment of inertia about z axis (slugs-ft^2)  
Ixx=0.0782;%Moment of inertia about x axis (slugs-ft^2) 
Ixz=0;%Product of inertia about xz plane (slug ft^2) 
g=32.2; 
T_max=m*g; % maximum rotor thrust (lbs) 
  
%======================= 
%Atmospheric Constants 
%======================= 
gamma1=1.4;%Ratio of Specific Heats 
R=1718;%Gas constant  (ft^2/(s^2 deg R)) 
rho0=0.002378;%Density of air at sea level  (slug/ft^3) 
T0=518.67;%Sea level temperature  (deg R) 
LR=-0.003333;%Lapse rate [deg R/ft) 
mu0=3.737*10^-7;%Absolute Viscosity (lb s/ft^2) 
h=830; 
T=T0+LR*h;%Temperature at altitude  (deg R) 
rho=rho0*(T/T0)^-(1+g/(R*LR));%Density of air at altitude 
(slug/ft^3) 
  
gamma=rho*a*c*Rmr^4/Ib;%Lock Number 
tau_f=16/(gamma*omega);%Main rotor time constant 
  
%=========================== 
%Stabilizer Bar Parameters 
%=========================== 
gamma_s=0.8; 
tau_s=16/(gamma_s*omega); 
l_1=0.637; 
l_2=1.39; 
l_3=1.2135; 
l_4=3.96; 
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l_theta_c=0.762; 
h_theta_c=2.711; 
h_beta=1.182; 
l_theta=0.593; 
c_f=1.956; 
l_beta=1.871; 
paddle_length=4.933; 
R2=10.9372; 
R1=R2-paddle_length; 
Alon=l_theta_c*l_1/(l_theta*(l_1+l_2))*tau_f; 
Blat=Alon; 
Kc=l_beta*l_2/(l_theta*(l_1+l_2)); 
Kd=Kc; 
Ac=Alon/tau_f*Kc; 
Bd=Ac; 
Clon=0.0117; 
Dlat=Clon; 
Alat=0; 
Blon=0; 
  
%================================= 
%Inputs 
%================================= 
theta0_M=M_Collective_deg/57.3; 
M_Collective=theta0_M; 
theta0_T=T_Collective_deg/57.3; 
A1=Lat_Cyclic_deg/57.3; 
B1=Long_Cyclic_deg/57.3; 
Long_cyclic=B1; 
phi_e=0; 
  
%Wake distortion parameter due to angular rate 
KR=1.5; 
KT=0.736; 
  
V=(u^2+v^2+w^2)^.5;%Helicopter Velocity ft/sec 
mu=(U0)/(omegaR); % advance ratio (~) 
mu_z=w/omegaR; 
d0=SFP/(sigma*A); 
CT_sigma=(m*g)/(rho*sigma*A*(omegaR)^2); 
Tc_bar = CT_sigma; 
Hc_bar=1/4*mu*cd; 
  
%Stiffness Number 
lamda_beta=1.05; 
S_beta=8*(lamda_beta^2-1)/gamma; 
K_beta=(lamda_beta^2-1)*Ib*omega^2; 
Kb=K_beta/(Ib*omega^2); 
A_b=8/gamma*(lamda_beta^2-1); 
Ba=A_b; 
  
%Induced Velocity in Hover (ft/sec) 
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v1_i=sqrt((m*g)/(2*rho*A)); 
v_h=v1_i; 
  
% Induced velocity in Vertical Flight (ft/s) 
if w<0 
    v1_h=-w/2+sqrt((w/2)^2+v1_i^2); 
elseif w>=0 && w>v_h 
    v1_h=w/2-sqrt((w/2)^2-v1_i^2); 
elseif w>=0 && w<=-1.5*v_h 
    v1_h=v_h*(1+w/v_h); 
elseif w>-1.5*v_h && w<-2*v_h 
    v1_h=v_h*(7-3*w/v_h); 
else 
    v1_h=w/2+sqrt((w/2)^2+v1_i^2); 
end 
if w<0 
    v1_h=-w/2+sqrt((w/2)^2+v1_i^2); 
else 
    v1_h=w/2+sqrt((w/2)^2+v1_i^2); 
end 
  
%Thrust Coefficient 
CT_h=(m*g)/(rho*A*omegaR^2); 
theta_075R=(3*(2*CT_h/(a*sigma)+1/2*sqrt(CT_h/2))); 
omega_a=0;  
     
% Calculate Climb Inflow Ratio 
% ---------------------------------------- 
if w<0 % helicopter moving vertically up 
    lamda_c=-w/(omegaR); % (~) 
elseif w>0 % helicopter moving vertically down 
    lamda_c=w/omegaR; 
else 
    lamda_c=0; 
end 
v_o=v1_i; % induced velocity at hover (ft/s) 
  
%================================================================== 
% Iterative Process for Calculating Coefficient of Thrust, Inflow 
% Ratio, and Induced Velocity on Main Rotor 
%================================================================== 
[lamda,T_c]=newton_iterative(mu,nw,lamda_c,f_j,M_Collective,g,m,omeg
a,... 
Rmr,rho,a,T_max,sigma,v_o,u); 
lamda_i=lamda; 
[U_e,W_e,theta_e,B_1c]=long_partial_trim(u,w,g,Iyy,Izz,Ixx,Ixz,T_c,m
,... 
    omegaR,Rmr,Nb,c,rho,a,cd,Ib,H_mr,Rtr,lamda_i,lamda_c,mu); 
b1s_bar=-1/57.3; 
a1s_bar=B_1c; 
  
%Inflow Parameters 
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sigma_1=-a*sigma/(16*lamda_i); 
tau_i=16/(45*pi*lamda_i); 
sigma1=-a*sigma/(16*lamda_i)/tau_i; 
KR=KR/tau_i; 
sigma2=(sigma_1-1)/tau_i;  
  
M =[128/(75*pi)    0   0;0 -16/(45*pi) 0;0 0 -16/(45*pi)]; 
L_i = 1/v_h*[1/2 0 0;0 -2 0;0 0 -2]; 
  
%============================ 
% Calculate Velocity Vector 
% =========================== 
if mu<=0.08 
    if w<0 
        tau_c=90/180*pi; 
    else 
        tau_c=-90/180*pi; 
    end             
else 
    tau_c=atan(-(w)/(u)); 
end 
  
% theta = B1-a_1-CH_sigma/Tc_bar-1/2*mu^2*d0/Tc_bar; 
theta=-2/57.3; 
alfa_D=-(theta+tau_c); % disc incidence angle (rad) 
alfa_nf=(theta-Long_cyclic);% no feathering angle 
alfa_1=0;%lag hinge angle (rad) 
lamda=mu*sin(alfa_nf)-lamda_i; % (~) 
v_i=v1_h; % (~) 
vel_comp=v_i/v_o; 
a_1=2*mu*(4*M_Collective/3+lamda)/(1-mu^2/2);%longitudinal flapping 
angle  
a_0=gamma/8*(theta0_M*(1+mu^2)+4/3*lamda); 
lamda_D=mu*a_1+lamda; % (~) 
gamma=rho*a*c*Rmr^4/Ib; % Locks Number (~) 
A_T=pi*Rtr^2; % tail plane area (ft^2) 
l_T=L_tr/Rmr; % tail rotor arm as a fraction of Rmr (~) 
CH_sigma=1/4*mu*cd*+a*mu*lamda_D/4*(theta0_M/3*(1-9*mu^2/2)+... 
    lamda_D)/(1+3*mu^2/2); 
CQ_sigma=cd*(1+3*mu^2)/8-lamda_D*T_c-mu*CH_sigma;   
lamda_=1.25^.5;%Calculated integral (~) 
C_ms=(a*(lamda_^2-1)/(2*gamma)+m*g/(rho*sigma*pi*Rmr^2*... 
    omega^2*Rmr^2)*H); % Coefficient of main rotor pitch 
{hingeless}(~) 
ratio_hingeless=C_ms/(m*g/(rho*sigma*pi*Rmr^2*omega^2*... 
    Rmr^2)*H); % Ratio to be be multiplied to a_1 for hingeless 
rotor (~) 
    
%=======================================  
%Basic Derivatives in Forward Flight 
%======================================= 
dlamda_i_dmu=(2*mu*M_Collective+alfa_D-a_1-
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4*T_c*(V/v_o)*(v_i/v_o)^3/... 
    (a*lamda_i))/(1+(4*T_c*(1+(v_i/v_o)^4))/(a*lamda_i)); % (~) 
dlamda_dmu=alfa_D-a_1-dlamda_i_dmu; % (~) 
dCH_sigma_dq=-4*a/(gamma*(1-mu^2/2))*(lamda/2+mu*a_1-... 
    mu^2*M_Collective); % (~) 
dlamda_i_dw=(a*lamda_i/(4*T_c)+(v_i/v_o)^4)/(1+a*lamda_i/(4*T_c)+... 
    (v_i/v_o)^4); % (~) 
da1_dtheta0=8*mu/3*1/(1-mu^2/2)*(1-(.5*a*sigma*(1+... 
    3*mu^2/2))/(8*mu+a*sigma)); % (~) 
dCT_sigma_dmu=2*a*mu/(8*mu+a*sigma)*(2*mu*M_Collective+... 
    alfa_nf+sigma*T_c/(2*mu^2)); 
dlamda_i_dmu=sigma/2*(dCT_sigma_dmu/mu-T_c/mu^2); 
dlamda_dmu=alfa_nf-dlamda_i_dmu; 
da1_dmu=(a_1/mu-(2*mu/(1-mu^2/2))*dlamda_dmu); 
dCH_sigma_dmu=cd/4;% (~) 
dCT_sigma_dw=2*mu/(8*mu+a*sigma); %(~) 
da1_dw=16*mu^2/((1-mu^2/2)*(8*mu+a*sigma)); 
v_1=(1-sin(alfa_D))/(1+sin(alfa_D)); 
da0_dmu=gamma/8*(2*theta0_M*mu+4/3*dlamda_dmu); 
db1_dmu=(a_0+mu*da0_dmu+1.1*v_1^0.5*dlamda_i_dmu)/(1+mu^2)-... 
    2*(mu*a_0+1.1*v_1^0.5*lamda_i)*mu/(1+mu^2)^2; 
dCH_sigma_da1=a/2*(theta0_M/3+3/4*lamda+1/2*mu*a_1); 
dCY_sigma_db1=dCH_sigma_da1; 
dlamdad_dmu=a_1+mu*da1_dmu+dlamda_dmu; 
da1_dlamdad=2*mu/(1+3*mu^2/2); 
dCT_sigma_dtheta0=4/3*(a*mu*(1+1.5*mu^2)/(8*mu+a*sigma)); 
dCH_sigma_dw=4*a*mu^2/(8*mu+a*sigma)*(M_Collective*(1-
9*mu^2/2)/6+... 
    lamda_D)/(1-mu^2/2); 
dCT_sigma_dB1=-mu*dCT_sigma_dw; % (~) 
dCH_sigma_dB1=-mu*dCH_sigma_dw; % (~) 
dlamda_i_dtheta0=lamda_i/T_c*dCT_sigma_dtheta0*(1/(1+(v_i/v_o)^4)); 
% (~) 
dlamda_d_dtheta0=mu*da1_dtheta0-dlamda_i_dtheta0; % (~) 
dCH_sigma_dtheta0=(a/8)*((a_1*dlamda_d_dtheta0+lamda_D*da1_dtheta0)-
... 
    2*mu*(lamda_D+M_Collective*dlamda_d_dtheta0)); % (~) 
dCQ_sigma_dtheta0=-(lamda_D*dCT_sigma_dtheta0+T_c*dlamda_d_dtheta0)-
... 
    mu*dCH_sigma_dtheta0; 
dCH_sigma_dlamdad=a/4*(1/2*a_1-mu*M_Collective); 
dCT_sigma_dlamdad=a/4*(1-mu^2/2)/(1+3*mu^2/2); 
% dCT_sigma_dlamdad_Mh = 1/(8/a+sqrt(sigma/2)/sqrt(CT_h/sigma)); 
dCQ_sigma_dlamdad=-
(T_c+lamda_D*dCT_sigma_dlamdad+mu*dCH_sigma_dlamdad); 
dCH_sigma_da1=a/6*theta0_M+3*a/8*lamda; 
dCH_sigma_da1=3/2*T_c*(1-a/18*theta0_M/T_c); 
dCH_sigma_da1=3/2*T_c*(1-a/18*theta_075R/T_c); 
dlamda_i_dtheta0=lamda_i/T_c*dCT_sigma_dtheta0*(1/(1+(v_i/v_o)^4)); 
% (~) 
dlamda_d_dtheta0=mu*da1_dtheta0-dlamda_i_dtheta0; % (~) 
dlamda_dtheta0=-dlamda_d_dtheta0; 
dCQ_sigma_dtheta0=-(lamda*dCT_sigma_dtheta0+T_c*dlamda_dtheta0)-... 
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mu*dCH_sigma_dtheta0; 
dCT_sigma_dw=(a/4)*1/(1+a*lamda_i/(4*T_c)+(v_i/v_o)^4); % (~) 
T_cd=a/4*(2/3*theta0_M+lamda_D); 
dCQ_sigma_dmu=3/4*mu*cd-dlamdad_dmu*T_c*lamda_D*dCT_sigma_dmu-... 
    mu*dCH_sigma_dmu-CH_sigma; 
% dCQ_sigma_dtheta0 = -
(lamda_D*dCT_sigma_dtheta0+T_cd*dlamda_d_dtheta0); 
db1_dA1=mu*da1_dw; 
da1_dB1=-mu*da1_dw;    
dlamdad_da1=mu; 
m_u_f=0; % pitching derivative of the fuselage 
m_w_f=0; % pitching derivative of the fuselage 
m_q_f=0; % pitching derivative of the fuselage 
  
%============================================= 
%Basic Rotor Derivatives in Forward Flight 
%============================================= 
%Coning angle at hover 
a0_h=2/3*gamma*(T_c)/a - 3/2*g*Rmr/(omegaR)^2; 
a0_h=gamma/8*(theta0_M+4/3*lamda); 
%Change in main rotor tip speed ratio with change in forward speed 
dmu_du=1/omegaR; 
dmu_du_T=1/omegaR_t; 
dbeta_dv=1/U0; 
%Change in tail rotor inflow ratio with change in lateral speed 
dlamdad_dv_T=-1/(omegaR_t*(1+dCT_sigma_dlamdad*sigma_t/(2*mu))); 
%Change in main rotor inflow ratio with change in forward speed 
dlamdad_dw=1/(omegaR*(1+dCT_sigma_dlamdad*sigma/(2*mu))); 
%Change in lateral flapping with change in tip speed ratio 
db1s_dmu_Mh=4/3*a0_h; 
%Change in Y-force due to change in lateral flapping 
dCy_sigma_db1=dCH_sigma_da1; 
  
%====================================== 
%Longitudinal Derivative Parameters 
%====================================== 
x_u=-T_c*da1_dmu-sin(alfa_D)*dCT_sigma_dmu-... 
    dCH_sigma_dmu; % force/translational velocity (~)  
x_w=(-T_c*da1_dw-sin(alfa_D)*dCT_sigma_dw-... 
    dCH_sigma_dw); % force/translational velocity (~) 
z_u=(-dCT_sigma_dmu); % force/translational velocity (~) 
z_w=(-dCT_sigma_dw); % force/translational velocity (~)  
m_u=(-H*x_u+L*z_u+C_ms*da1_dmu+m_u_f); % moment/translational 
velocity (~) 
m_w=(-H*x_w+L*z_w+C_ms*da1_dw+m_w_f); % moment/translational 
velocity (~) 
x_col=(-T_c*da1_dtheta0-sin(alfa_D)*dCT_sigma_dtheta0-... 
    dCH_sigma_dtheta0); % force/control (~) 
x_long=(dCT_sigma_dB1*sin(alfa_D)+T_c*(1+mu*da1_dw)-... 
    dCH_sigma_dB1); % force/control (~)  
z_col=(-dCT_sigma_dtheta0); % force/control (~) 
z_long=(-dCT_sigma_dB1); % force/control (~) 
m_col=(-H*x_col+L*z_col-C_ms*da1_dtheta0); % moment/control (~) 
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%Lift Deficienncy Factor 
C_1=1/(1+sigma_t*a_tr/(8*lamda_i)); 
C_2=1/(1+sigma*a/(8*lamda_i)); 
M_star=1/g*gamma*(2*CT_h/(sigma*a)); 
  
%========================    
%Helicopter Derivatives 
%======================== 
Xu_M=x_u/m*(rho*sigma*pi*Rmr^2*omega*Rmr); % (1/s)  
Xw_M=x_w/m*(rho*sigma*pi*Rmr^2*omega*Rmr); % (1/s) 
Xtheta0_M=1*x_col/m*(rho*sigma*pi*Rmr^2*(omega*Rmr)^2)/57.3; % 
(ft/s^2) 
Yv_M=rho*Ab*omegaR^2*(Hc_bar+Tc_bar*(B1+a1s_bar))/m; 
Zu_M=1*z_u/m*(rho*sigma*pi*Rmr^2*omegaR); % (1/s) 
Zw_M = -4*a*Ab*rho*mu*omegaR/((8*mu+a*sigma)*2*m); 
ZB1_M = -rho*Ab*omegaR^2*dCT_sigma_dlamdad*dlamdad_da1*da1_dB1/m; 
Ztheta0_M=-
4/3*a*Ab*rho*omegaR^2*mu*(1+1.5*mu^2)/((8*mu+a*sigma)*m)/57.3; 
Lv_M = Yv_M*H_mr*(m/Ixx); 
Mu_M=(m_u/Iyy*(rho*sigma*pi*Rmr^2*omega*Rmr^2)-... 
    (rho*A_T*l_T*Rmr*(V*a_tr*(alfa_to+(theta)-sin(tau_c))+... 
    0.5*a_tr*(V*dlamda_i_dmu-lamda_i*omega*Rmr)))/Iyy); % (1/(ft-s)  
Mtheta0_M=1*m_col/Iyy*(rho*sigma*pi*Rmr^2*omega^2*Rmr^3); % (1/s^2) 
Mtheta0_M = Ztheta0_M*L_mr*m/Iyy; 
Mu_M = (-Xu_M*H_mr+Zu_M*L_mr)*m/Iyy; 
Mw_M = (Zw_M*L_mr)*m/Iyy; 
Mtheta0_M = Ztheta0_M*L_mr*(m/Iyy); 
   
%============================== 
%Vertical Velocity Model 
%============================== 
Co=1; 
vo=lamda_i; 
C=-(rho*pi*Rmr^2*(omega*Rmr)^2)/m; 
CT1=C*0.543/(Co*omega^2*Rmr); 
CT2=C*4*vo/(omega*Rmr); 
CT3=C*4*vo/(3*omega); 
V1=(-75*pi*omega/32)*(vo+a*sigma/16)*Co; 
V2=0; 
V3=(25*pi*omega^2*Rmr/32)*(a*sigma/8)*Co/57.3; 
CT1A=CT1*V1; 
CT1B=CT1*V2; 
CT1C=CT1*V3; 
V4=omega^2*gamma/8*1/57.3; 
  
%===================================================== 
%Main Rotor Coupling Derivatives In Forward Flight 
%===================================================== 
Xv=rho*Ab*omegaR^2*Tc_bar*(A1-b1s_bar)*dbeta_dv/m; 
Yu=rho*Ab*omegaR^2*(dCY_sigma_db1*db1_dmu+b1s_bar*dCT_sigma_dmu)*dmu
_du/m; 
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Mv=-(Xv*H_mr)*(m/Iyy); 
Lu=(Yu*H_mr)*(m/Ixx); 
  
%=========================================== 
%Tail Rotor Derivatives in Forward Flight 
%=========================================== 
Yv_T=rho*Ab_t*omegaR_t^2*dCT_sigma_dlamdad*dlamdad_dv_T/m; 
Yp_T=Yv_T*H_tr; 
Yr_T=-Yv_T*L_tr; 
Lv_T=Yv_T*H_tr*(m/Ixx); 
Lp_T=Yp_T*H_tr*(m/Ixx); 
Lr_T=Yr_T*H_tr*(m/Ixx); 
Mv_T=rho*Ab_t*omegaR_t^2*Rtr*dCQ_sigma_dlamdad*dlamdad_dv_T/Iyy; 
Mr_T=-Mv_T*L_tr; 
Nv_T=-Yv_T*L_tr*(m/Izz); 
Np_T=Yp_T*L_tr*(m/Izz); 
Nr_T=-Yr_T*L_tr*(m/Izz); 
Ytheta0_T=rho*Ab_t*omegaR_t^2*dCT_sigma_dtheta0/m/57.3; 
Ltheta0_T=Ytheta0_T*H_mr*m/Ixx; 
Ntheta0_T = Ytheta0_T*L_tr*(m/Izz); 
  
%====================== 
%Total Derivatives 
%====================== 
Xu=Xu_M; 
Xa=-g; 
Yb=g; 
Ma=(K_beta-H_mr*m*g)/Iyy; 
Lb=(K_beta-H_mr*m*g)/Ixx; 
Xw=Xw_M; 
Zu=Zu_M; 
Zw=Zw_M; 
ZB1=ZB1_M; 
Mu=Mu_M; 
Mw=Mw_M; 
Mv=Mv; 
Yv=Yv_M+Yv_T; 
Yr=Yr_T; 
Lv=Lv_M; 
Lr=Lr_T; 
Nv=Nv_T; 
Np=Np_T; 
Yp=Yp_T; 
Nr=Nr_T; 
  
%================================= 
%14-DoF 17-State Model  
%=================================   
A =[Xu,0,0,-g,Xv,0,0,0,Xa,0,0,0,0,0,0,0,0; 
0,Zw,0,0,0,0,0,0,0,0,0,0,0,0,0,CT3+CT1B,CT2+CT1A; 
Mu,Mw,0,0,Mv,0,0,0,Ma,0,0,0,0,0,0,0,0; 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 
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Yu,0,0,0,Yv,0,g,Yr,0,Yb,0,0,0,0,0,0,0; 
Lu,0,0,0,Lv,0,0,Lr,0,Lb,0,0,0,0,0,0,0; 
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0; 
0,0,0,0,Nv/100,Np,0,Nr,0,0,0,0,0,0,0,0,0; 
0,0,-1,0,0,1/(omega*tau_f),0,0,-
1/tau_f,A_b/tau_f,Ac/tau_f,0,0,0,0,0,0; 
0,0,-1/(omega*tau_f),0,0,-1,0,0,-Ba/tau_f,-
1/tau_f,0,Bd/tau_f,0,0,0,0,0; 
0,0,-1,0,0,0,0,0,0,0,-1/tau_s,0,0,0,0,0,0; 
0,0,0,0,0,-1,0,0,0,0,0,-1/tau_s,0,0,0,0,0; 
0,0,(KR-sigma1)/(omega),0,0,0,0,0,0,-
sigma1,0,sigma1*Bd,sigma2,0,0,0,0; 
0,0,0,0,0,(KR-
sigma1)/(omega),0,0,sigma1,0,sigma1*Ac,0,0,sigma2,0,0,0; 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0; 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-omega^2,-omega*gamma/8,-
omega*gamma/(6*Rmr); 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,V1]; 
    
B=[0,0,0,0; 
CT1C,0,0,0; 
0,0,0,0; 
0,0,0,0; 
0,0,0,Ytheta0_T; 
0,0,0,Ltheta0_T; 
0,0,0,0; 
0,0,0,Ntheta0_T; 
0,Alon/tau_f,Alat/tau_f,0; 
0,Blon/tau_f,Blat/tau_f,0; 
0,Clon/tau_s,0,0; 
0,0,Dlat/tau_s,0; 
0,0,sigma1*Blat/tau_f,0; 
0,sigma1*Alon/tau_f,0,0;   
0,0,0,0; 
V4,0,0,0; 
V3,0,0,0]; 
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C Simulink Implementation of the High-Order LPV Model 

 <>
states

state_space

To Workspace7

time_sim

To Workspace4

state_space1

To Workspace2

control_inputs

To Workspace1

input_collective

input_tail

From
Workspace3

input_lateral_cyclic

input_long_cyclic

Flight Data 

inputs

inputs1

inputs2

Output

States

Dynamic Equations du/dt

Derivative

em

Clock1

State Space 

Command Input

A1

B1

Calculate next A & B
Matrix

v <>

p<>

phi<>

r<>

u<>

w<>

q<>

theta<>
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D Sample MATLAB Code for Running the Simulation  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% run_raptor_sim_14.m 
% Created by Subodh Bhandari 
% University of Kansas 
% Department of Aerospace Engineering 
% April 2007 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clc 
clear 
  
% This is a 14-DOF dynamics simulation for a Thunder Tiger 
% Raptor 50 V2 Helicopter. This file runs the simulation while 
initializing  
% the necessary parameters.  
  
flight_data= 
oad('091604_pitch_1_conversion_conversion_flight_data.txt'); 
%flight_data=load('091604_roll_2_conversion_conversion_flight_data.t
xt.'); 
%flight_data=load('092404_yaw_1_conversion_conversion_flight_data.tx
t');  
%flight_data=load('071906_sweep_conversion_conversion_flight_data.tx
t.'); 
  
  
%----------------------------------- 
    original_flight_time=flight_data(1,1); 
    time = flight_data(:,1); 
% For Comparing Flight Data to Simulation Data   
    p1 = flight_data(:,5); 
    q1 = flight_data(:,6); 
    r1 = flight_data(:,7); 
    nx=[flight_data(:,1),-flight_data(:,2)]; 
    ny=[flight_data(:,1),flight_data(:,3)]; 
    nz=[flight_data(:,1),flight_data(:,4)]; 
    p=[flight_data(:,1),flight_data(:,5)]; 
    q=[flight_data(:,1),flight_data(:,6)]; 
    r=[flight_data(:,1),flight_data(:,7)]; 
    i_long=[flight_data(:,1),flight_data(:,8)]; 
    i_lat=[flight_data(:,1),flight_data(:,9)]; 
    i_tail=[flight_data(:,1),flight_data(:,10)]; 
    i_col=[flight_data(:,1),flight_data(:,11)]; 
    sonar=[flight_data(:,1),flight_data(:,12)]; 
     
% User Interface 
%------------------------------------- 
  
    disp('Welcome to the Raptor 50 V2 Simulation'); 
    tstart = input(' enter start time:    '); 
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    tmax=input('  enter tmax:   '); 
    tmax=original_flight_time+tmax; 
  
% Simulation Parameters 
    t0=original_flight_time;   
%     t00=t0; 
%     tstart = t0;    
    start_time=tstart; 
    tend=tmax;  
    stop_time=tend; 
% Set Simulation Step 
    simdt=1; 
    simdt0=simdt/10; 
  
    step_size=simdt; 
    tsave=simdt; 
    timespan=[tstart:tsave:tend]; 
    disp(['computing from ',num2str(tstart),' to ',num2str(tmax),... 
        ' Seconds']) 
    optionssim=[]; 
    optionssim=simset(... 
        'Solver','FixedStepDiscrete',... 
        'MaxStep',simdt,... 
        'RelTol',1e-3,... 
        'AbsTol',1e-6,... 
        'InitialStep',simdt0,... 
        'OutputPoints','specified'); 
     
%============================== 
% Initial Conditions 
%============================== 
    [size_a size_b]=size(flight_data); 
    input_collective=[flight_data(:,1),(flight_data(:,11))]; 
%     input_collective=[flight_data(:,1),zeros(len,1)]; 
    len = length(input_collective(:,1)); 
    input_long_cyclic=[flight_data(:,1),(flight_data(:,8))]; 
    input_long_cyclic=[flight_data(:,1),zeros(len,1)]; 
  
    input_lateral_cyclic=[flight_data(:,1),flight_data(:,9)]; 
%   input_lateral_cyclic=[flight_data(:,1),zeros(len,1)]; 
    input_tail=[flight_data(:,1),flight_data(:,10)];  
%   input_tail=[flight_data(:,1),zeros(len,1)];  
  
    u=0; % initial forward velocity  (ft/s) 
    w=0; % initial vertical velocity (ft/s) 
    v=0; 
    theta0_M = flight_data(1,11); % initial main rotor collective 
(deg) 
    A1 = flight_data(1,9); 
    theta0_T = flight_data(1,10); 
    B1 = flight_data(1,8); 
    theta=0/180*pi; % initial helicopter body pitch angle (rad) 
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    u_dot=nx(1,2)*0; 
    w_dot=nz(1,2)*0; 
    q_dot=q(1,2)/180*pi; 
    theta_dot=q(1,2)/180*pi; 
    v_dot = 0; 
    p_dot = 0; 
    r_dot = 0; 
    phi_dot = 0; 
    q_0=flight_data(1,6); 
    p_0 = flight_data(1,5); 
    r_0 = flight_data(1,7); 
    a_0 = 0; 
    a1=0; 
    b1=0; 
    c1=0; 
    d1=0; 
    v_0 = 0; 
    l_c = 0; 
    l_s = 0;    
  
%=========================== 
%Run Simulation 
%=========================== 
freq=120; % Sampling frequency of flight data (Hz) 
sim('uav_sim_flight_data',[tstart tend]); 
u0=0; 
v0=0; 
w0=0; 
p0=flight_data2(1,4); 
q0=flight_data2(1,5); 
r0=flight_data2(1,6);  
theta0_M= flight_data2(1,10); 
B1 = flight_data2(1,7); 
A1 = flight_data2(1,8); 
theta0_T = flight_data2(1,9); 
  
%===================================================================
=     
% Build Helicopter State-Space System Matrix (A) and Control  
% Input Matrix (B) and State-Space Output Matrix (C & D Matrix) 
%===================================================================
=  
[A,B]=AB_Matrix_raptor_hover_14dof(u,v,w,theta,theta0_M,B1,A1,theta0
_T); 
C=eye(17); 
D=zeros(17,4); 
sim('uav_sim_hover_14dof',[tstart tend]); 
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E Flight Test Data used for the Model Verification 

Figure No. Time History Data File used for Verification 
41 Longitudinal Sweep: 091604_pitch_1.txt  

 Lateral Sweep: 091604_roll_2.txt 
Vertical Sweep: Flight_Test_01-20-07_1.txt 
Directional Sweep: 092404_yaw_1.txt 

42 Longitudinal Sweep: 051104_pitch_forward_1.txt 
Lateral Sweep: 051104_roll_forward_1.txt 
Vertical Sweep: 020607_forward_1.txt 
Directional Sweep: 081104_yaw_forward_1.txt 

43 Flight_Test_01-20-07_1.txt 
44 020607_forward_2.txt 
 
The time history data are included in the accompanying CDs. 
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