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Abstract

Localization is a fundamental problem of autonomous mobile robots. Localization

is the determination of the position and orientation of a robot. Most localization

systems are made up of several sensors and a map of the environment.

The problem of localization can be approached in different ways based on the

environment within which the robot operates. The environment and conditions

can affect which sensors are used. For example, robots that operate indoors cannot

use GPS, and outdoor robots may not be able to utilize sonar well in wide open

spaces.

Sophisticated localization systems can solve both the global location problem

and the kidnapped robot problem. Global localization is the process of placing

the robot into an unknown location within the map, and the robot should be

able to locate itself within a relatively short period of time. The kidnapped robot

problem is similar to global localization, as it is a test of how well the robot is able

to recover after becoming lost. The robot is “teleported” to a new location, and

the robot should again be able to determine its new location within a relatively

short amount of time.

The PRISM/CReSIS project is developing autonomous robots in an effort to

measure ice sheets characteristics in Greenland and Antarctica. These robots

currently rely on differential GPS for localization and navigation. In order to

iii



survive for long periods of time in these environments, however, the robots needs

to be able to return to camp sites in order to refuel and unload the data that

has been acquired. In order to perform this task effectively and safely, a more

elaborate system is required. A localization system that can recognize the different

locations of the camp sites is the beginning of this process.

The approach of this dissertation is to use a single camera for use in multiple

types of large-scale environments: indoors, outdoors, and in polar camp sites

in Greenland and Antarctica. The camera is selected as the sensor for several

reasons. First, a single image potentially contains a lot of information that can be

used in many different ways. Second, the size of a camera allows for the system to

be used on many different platforms, including those with limited payloads such

as UAVs (uncrewed aerial vehicles). This also allows for the system to be very

portable if necessary, and can be plugged into already existing systems more easily.

Lastly, the cost of cameras allow for the system to be used in large quantities.

For example, a potential application of this system is using teams of robots for

seismic sensing. This would require many cameras for use on numerous mobile

robots.

In order to work in large-scale environments, a hybrid map approach has

been used. The hybrid map includes both topological and geometric maps. The

topological maps allow for the system to scale more easily, and the geometric maps

allow for the system to localize to a finer scale. These are performed in a two step

approach. First, a general location is decided based on topological localization.

Then the geometric localization step is performed using the geometric step stored

in the location of the topological map, which is selected in the first step.

The system described in this dissertation uses an appearance-based approach

for recognizing the different locations. The appearance-based methods attempt to
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recognize the appearance of a scene rather than specific objects. Several different

types of features are tested including histograms, eigenimages, and Hu Moments

for topological localization, and SIFT for geometric localization.

For the topological map, the features are modeled using a Gaussian mixture

model. Then a hidden Markov model is trained as the classifier. Only the

recognition of images is necessary for determining location. The geometric

localization relies on the matching of SIFT keypoints for determining the position

and orientation on the geometric maps.

The metrics for the topological testing include the percentage of images

that are localized correctly, the number of images required to perform global

localization, and the number of images required to solve the kidnapped robot

problem. The measurement is based on number of images rather than actual time

because all testing occurs offline, and images can be captured at different rates.

The results of the testing showed that 95% of the images for non-polar regions,

both indoor and outdoor, were localized correctly with respect to the topological

map. The system typically required at least two images to solve the global

localization problem, and around three images to solve the kidnapped robot

problem.

Topological testing was also performed using images from polar camp loca-

tions, but the results are inconclusive because of the relatively few number of

images. The system is able to localize 20% of the images.

The metrics for the geometric testing are position accuracy and orientation

accuracy. Position accuracy is the percentage of images that are correctly localized

with respect to the position. Orientation accuracy is the percentage of images that

are correctly localized with respect to the orientation.

The geometric testing is performed in non-polar locations, both indoors and
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outdoors. The experiments result in 94% of the images being localized correctly

for the position, and 90% of the images for the orientation. These images are

localized to within 1 foot and 45 degrees of the actual position and orientation.

More testing will have to be performed to achieve better results in the polar

camp sites, as well as using SLAM methods to automatically build the geometric

maps because of the amount of time required to do this manually. This approach

can be extended to work with the PRISM/CReSIS polar robots to allow for

automated fueling and unloading of data.
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Chapter 1

Introduction

Localization is a fundamental problem that must be addressed in autonomous

mobile robotics. Localization is defined as determining the pose, position and

orientation, of the robot from the sensor data, given a map of the environment.

It is usually specified as the 3D vector (x, y, θ) where x is the x position, y is the

y position, and θ is the orientation.

Most localization systems use a probabilistic method of localization using

Bayes’ Rule to compute the posterior P (l | s, m) where l is the location, s is

the sensor data, and m is the map. This is the probability of being at location

l given sensor data s and a map of the world, m. The probabilistic methods are

described in a later section.

The map of the environment can be created before hand, or the robot may

build its map as it moves. The latter systems are usually described as SLAM,

Simultaneous Localization and Mapping. Much work has gone into these types

of systems more recently. Some argue that a mobile robot cannot truly be

autonomous without being able to move to previously unexplored environments.

These types of systems can be used for search and rescue robots as well as service

1



robots.

Some robots however, require a map to be able to perform their tasks. Soccer

robots and delivery robots are examples of robots that cannot work without an a

priori map. Some systems use an exploration routine from their robot in order to

build the map. The exploration method usually only works indoors as it can be

difficult to set boundaries for the exploring robot in outdoor environments.

The required accuracy of the localization system depends on the application

domain of the system. A soccer playing robot may require less accuracy than a

robot whose job is to wash cars because of the possibility of damaging the cars.

The PRISM/CReSIS [21] polar robot named Marvin [1] [3] [5] [24] [59] [60] uses

DGPS to localize. While the robot does not have an actual map, it uses the GPS

coordinates intrinsically as a hybrid topological and geometric map. The hybrid

maps are described in more detail in section 2.1.5. The GPS coordinates can be

accurate to within a few centimeters depending on the distance to the base-station

of DGPS. The orientation of the robot can be determined by generating a vector

from the current coordinate and the previous coordinate.

The PRISM/CReSIS project’s goal is to eventually have multiple autonomous

robots working at the same time. In the future, a distributed localization system

can be designed where each robot localizes itself with the help of the others. A

system using this method might have enough accuracy to be able to use a regular

GPS instead of relying on the costly DGPS.

Many camps exist in Antarctica and Greenland for the purpose of research,

drilling, or other activities. Any of these could be used as a base camp for the polar

robot to measure the ice sheets from. These camps usually have areas designated

for sleeping, areas designated for gathering snow used for the camp water supply,

and other areas that are dangerous to go through such as a drilling site.
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Figure 1.1: Flow chart showing the decision process of the localization system

The polar robot will eventually be completely autonomous and have to decide

when it needs to go back to the camp. Therefore, a less generic localization system

would be helpful in this situation when it must be able to move to a specific

location within the camp. The robot should be able to make it to a garage to

refuel or get repairs without having to drive through restricted areas. There will

most likely be specific locations in a polar camp where the robot should enter and

exit from that will require a more advanced localization system.

1.1 Problem Statement

A localization system that works both indoors and outdoors using only a camera

can be used in large scale environments. “Large-scale environments” are defined

as “if its spatial structure is at a significantly larger scale than the sensory horizon
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of the observer [34].”

The approach taken is to base the decision on a two step process shown in

Figure 1.1. The two steps are described as toplogical localization and geometric

localization. These are each describe in detail in later chapters.

1.2 Motivation

This dissertation describes the design, development, and evaluation of a localiza-

tion system that can work in several different environments using only a camera.

This type of a system has the advantage of being able to use a simple and relatively

inexpensive sensor that is easily portable. Because of the simplicity of the system,

it can be used in combination with other systems to improve the system as a whole.

Using only a camera for localization allows for a much smaller system than a

typical system that uses stereo cameras or a laser range finder, or any combination

of sensors that might be bulky. Using only a camera also allows the system to be

moved from one vehicle to another. For example, a person that requires a wheel

chair may move the system from the car to the wheel chair.

The single camera system allows for it to be used in very small devices like a

PDA or a phone. The system will allow for a portable system that can work over

a large area, whether it is used to guide a human or a robot.

1.2.1 PRISM/CReSIS Project

The Polar Radar for Ice Sheet Measurement project is currently underway at The

University of Kansas [33]. It is part of the Center for Remote Sensing of Ice Sheets

(CReSIS) [15]. This project’s goal is to develop radar systems to measure polar

ice sheet properties in order to accurately determine their mass balance. This
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Figure 1.2: Image of the PRISM/CReSIS Robot Marvin II in Antarctica

data will help researchers determine the contributions of polar ice sheet melting

to global climate change and its effects on the rising sea levels.

Different radar systems have been developed for this task [33]. In order to

accommodate these radar systems, an autonomous mobile robot, Figure 1.2, is

being developed to tow the radar equipment over a large area. After the robot

completes its traversal, it needs to return to camp to refuel and unload the data.

For the traversal over the ice sheets, the robot utilizes DGPS for navigation.

However, once the robot returns to camp, it is desirable for the vehicle to utilize

other sensors for navigation as well in order to drive through the camp safely

and accurately. A system like the one described in this dissertation will allow

the robot to safely find the fuel station and the location for unloading the data

without driving through places such as tent city, the snow gathering site for the
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camp water supply, or other areas that may be off limits.

If the tasks of fueling and unloading the data can be automated as well, then

the time to get the robot out of camp and performing data collection again can

be greatly reduced and require less human assistance.

PRISM/CReSIS is also looking towards using UAVs (uncrewed aerial vehicles)

to take radar measurements. A localization system that relies on a camera could

work very well for the UAVs because of their limited carrying capacity. GPS can

sometimes give errors within 300ft which is significant when trying to land on

a runway. Adding a camera to the system could help the UAV locate and stay

within the runway when landing as well as keep the vehicle on track when taking

off.

It is shown that multiple robots in precise formations can be used to record

seismic activity in the polar regions [20]. The robots have been simulated usually

using range sensors. Sonar has limited range and the data can be very noisy.

Laser range finders can be bulky and heavy as well as increasing the cost of each

individual robot by several thousand dollars. Both of these problems can be

difficult to overcome. A solution could be to use a system based on cameras in

combination with sonar and laser range finders.

Challenges of Polar Robots Polar robots have more challenges to overcome

than typical indoor or outdoor robots. Polar robots must deal with harsh terrain,

low visibility, and extremely low temperatures. This causes many problems for

the typical sensor suite used on robots today. These are detailed more in [4].

Odometry is known to produce errors in environments that are not as difficult

to traverse as polar areas. Odometry therefore, cannot be relied on to produce

reliable results, even for short distances because of slippage. Inertial devices such
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as gyros can be used to determine motion, but this can be difficult and error

accumulations due to drift can make these values unreliable as well.

Cameras must be heated so that fog and ice do not form on the camera.

Because of blizzards and other times when visibility is low, cameras cannot be

depended on to operate at all times so other sensors must be used to make the

system dependable. The terrain does not have much texture making it difficult

to distinguish between different locations.

Laser range finders have similar problems in that it is difficult to distinguish

different locations by the wide-open terrain. Blizzards can also cause range finders

to give erroneous values as well.

GPS is the most reliable method of determining location. Because of solar

activity and extreme low temperatures, GPS cannot be completely relied on for

continuous operation.

The solution to dealing with these problems is to use a system that relies on

multiple sensors in order to make the robot more robust. Odometry, gyros, range,

and vision can be used together to determine relative motion of the robot. For

example, a camera, rate gyro, and accelerometer are used simultaneously in [61]

to determine vehicle motion.

In conditions where all sensors give erroneous data, the only solution may be

to stop the robot until conditions are acceptable again.

1.2.2 Applications

This section describes some of the potential applications of a localization system

of the type presented in this dissertation.
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Package Delivery Delivery of packages by either a service robot or a human

can benefit from a localization system. Truck drivers already use GPS systems

to direct them to their next location. Assuming the GPS system has enough

accuracy and an accurate map, it could be used in an area such as an industrial

park or a college campus where there are many buildings and possible locations

for delivery.

For delivering packages to specific locations within buildings such as a college

campus mail system, a more complex localization could be used to direct the

delivery person to the specific location using a PDA with a camera or automated

delivery robots could be used.

Tourism A PDA with a camera could be used as a tour guide for locations

like the Smithsonian or Disneyland. A map of the area could show the current

location and orientation of the individuals on the tour as well as other interesting

locations and provide information about them.

Service Robots Many robots that are built are meant to be service robots.

Service robots provide assistance to humans in many different ways. Wheel chair

service robots have been popular such as the Bremen Autonomous Wheelchair

[36].

Wheel chair service robots, autonomous or not, can benefit from having a

lightweight localization system. Assuming that a PDA with a camera or a laptop

and a camera can be mounted on the wheel chair, the proposed system could be

used in known environments. For example, an autonomous wheel chair could be

instructed to go to a specific building on a college campus from any location on

campus. The person can go to his or her next class with little effort.
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Self Driving Automobiles Self driving vehicles have been tested recently in

the DARPA Grand Challenge [11] and have been featured in many sci-fi movies.

These vehicles could be used in industry or by the average commuter. For example,

a self driving truck could be used to haul salt out of a salt mine. Some of these

large trucks are expensive so that they must be run 24 hours a day in order to

recoup the cost of the vehicle. An automated driving system could help improve

the efficiency.

These vehicles will most likely rely on GPS for long distance traveling, but will

not work well in areas where the GPS signal is low or in construction or mining

sites such as a salt mine. Therefore, another system will have to be used to help

localize the vehicles for everyday use.

1.3 Dissertation Structure

The rest of the dissertation is broken into several chapters: background, related

work, topological localization, geometric localization, and conclusion.

The background chapter discusses the different aspect of localization systems

as well as some of the implementation aspects of this system. The related works

chapter discussed other work on localization systems.

The topological and geometric localization chapters provide the approach and

results of each type of system used for this work.

Lastly, the conclusion chapter discusses the contribution, limitations, and the

future work.
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Chapter 2

Background

The taxonomy of different methods of localization systems are discussed in this

chapter as well as the resources used.

2.1 Taxonomy

Many types of localization systems have been developed. This section describes a

taxonomy that encompasses most of these systems.

2.1.1 Sensors

The different sensors are used for localization systems are described in this section.

Vision Only Few systems use only a camera as their only method of sensing

the world. Two such examples are [68] and [69]. Both of these approaches use a

feature-based method where the system is trained to recognize features and place

the system at a specific location. Features are parts of an image that can be used

to describe the image such as corners, edges, and color. Feature descriptors are
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a vector of features that are used to describe the entire image so that it can be

distinguished from other images.

There are different methods of using cameras, including using a panoramic

camera to capture more environment features with a single image such as [69].

Stereo vision has been used in [52], and [27] uses a single camera to detect artificial

landmarks in an indoor environment.

A brief comparison of some vision-based methods can be found in [57].

Other Sensors Most localization systems use sonar [36] [50], laser range finders

[49] [37] [43] [39], or cameras [30] [27] [69] [36] [49] [70] [43] as their method of

sensing the world. These methods usually add odometry and other sensors in

order to increase the accuracy of the system. Odometry has been determined to

be inaccurate over long periods because of wheel slippage and the accumulation

of error over time. Using probabilistic methods, odometry error can be dealt with

effectively and the overall accuracy of the system can be improved.

Many systems use a combination of sensors including range finders, sonar,

cameras, and Global Positioning Systems. [49] describes that using a single sensor

can cause problems and how multiple sensors allow for a more robust system, and

the integration of vision and range to create a robust indoor localization system.

The system described in [43] uses a combination of all the stated sensors except

for sonar. That system also includes odometry, a compass, and a wireless local

area network (LAN) to communicate with other robots which all help to localize

the robot.
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2.1.2 Global Localization and Position Tracking

Position tracking, also known as local and relative localization, refers to the

problem where the initial position is known and the position must be tracked

relative to the initial position. These usually rely on compensating for odometry

error. Kalman filtering is a popular method for solving the position tracking

problem.

Global localization, also known as absolute localization, refers to the problem

where the initial location is not known. Systems that solve this problem are more

robust and can recover after becoming lost unlike those that solve only the position

tracking problem. There are several methods for solving this type of problem such

as Markov localization [30] [16] [17], Monte Carlo localization [66], and Kalman

filters [45].

2.1.3 Probabilistic and Non-Probabilistic Methods

Most probabilistic methods use Bayes Rule as their basis for computing proba-

bilities. Probabilistic methods using Bayes Rule are described in [18] [56] [63]

and [23]. The main goal of the probabilistic systems is to compute the posterior

P (location = l | sensordata = s). This is the probability of being at location

l given sensor data s. The systems start out with a probability distribution

P (location = l) and modifies it based on evidence and actions of the systems.

To simplify, this will be denoted as P (l). Bayes rule calculates P (l | s) as

P (s | l)P (l)/P (s). The rule is typically simplified to:

P (l | s) = αP (s | l)P (l)
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where α is a normalizing factor to normalize the total probability to one.

Probabilistic Methods

Some of the more common probabilistic methods that are being used in most

localization systems include Kalman Filter, Markov, and Monte Carlo.

Kalman Filter The kalman filter treats all probabilities as a Gaussian dis-

tribution [23], i.e. P (l) and P (s | l). The kalman filter is a position tracking

algorithm, so the initial position must be known, and it compares favorably in

terms of efficiency to other probabilistic methods, but it cannot reliably solve the

kidnapped-robot problem nor global localization [23], described in later sections.

Markov Markov localization is a probabilistic method in which the environment

is typically assumed to be static. The approach described in [17] uses filtering to

improve results in a dynamic environment.

Another assumption made by the Markov approach, called the Markov

assumption [55], specifies that if one knows the robot’s location, then future

measurements are independent of past measurements.

P (Xt+1 | X0:t) = P (Xt+1 | Xt)

The next state is dependent only on the current state, i.e. a first-order Markov

process.

Markov localization maintains a position probability density over the set of

possible poses [17]. In cases where the location is unknown, the density may be

uniformly distributed over the set of all possible poses. If the location is fairly
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certain, then the distribution is centered around the known location. This allows

the algorithm to globally localize and to deal with the kidnapped robot problem.

A more detailed description of the Markov algorithm can be found in [17].

Some works that use the Markov algorithm are described in [30] [8] [58] and [50].

[9] describes a variation of the Markov algorithm that dynamically changes the

search space, acting as both a position tracking algorithm and a global localization

algorithm.

Monte Carlo The Monte Carlo algorithm, also known as particle filters and

condensation algorithm, represents the belief by a set of samples or particles

[66]. The set represents the posterior of the belief. The samples are chosen

randomly, but from an area that represents the desired distribution. For example,

a distribution that represents the location of being one meter from a known

landmark has samples randomly chosen that center around the landmark, with a

radius of about one meter.

The samples are weighted in terms of probability; and the motion model is

applied to each sample after an action until the set is decreased to a distribution

that circles the most likely position. A more detailed description can be found in

[12] and [66].

Non-Probabilistic Methods

Many non-probabilistic methods exist for localization. The system described

in [25] uses a laser beacon placed on walls and a photo detector to determine

the location and orientation based on the time and angle of the beam emitted.

[69] uses a nearest-neighbor algorithm which compares the locations of only the

neighbors of the previously believed location to the current sensor data. The map
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is an adjacency graph (topological map, described later) where the neighbors are

determined by adjacent nodes in the graph.

2.1.4 Active and Passive Localization

Passive localization systems do not have control over the motion of the robot,

they simply perform localization based on the incoming sensor data [16]. Active

localization, however, assumes that the localization routine has some control

over the motion of the robot, providing an opportunity to increase the efficiency

and robustness of localization [16]. Active localization systems, in other words,

can move the robot to specific locations with the only purpose of performing

localization.

Most systems use passive localization. Most navigation systems assume that

the location of the robot is known and plan their path from there. Two active

localization systems are described in [16] and [52].

2.1.5 Geometric and Topological Maps

Localization methods can be classified by the type of map they use. The current

methods use geometric maps, topological maps, or a hybrid approach. Geometric

maps are usually two-dimensional grids similar to that of a floor plan, topological

maps are adjacency graphs, and hybrid approaches use both methods [69].

Geometric Maps

The exact position can be tracked using geometric maps (also known as metric

and grid maps) with respect to the map’s coordinate system [69]. These maps are

usually used with landmark detection or map matching algorithms.
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Figure 2.1: A geometric map using lines to represent walls

Feature maps and occupancy grid maps are examples of geometric maps.

Feature maps use lines, walls, and corners as some of the features in the map.

An example of a feature map is shown in Figure 2.1. Occupancy grids divide

the environment into cells, and each cell contains information as to whether it is

occupied or not [28].

Landmark detection systems use either artificial or natural landmarks. Artifi-

cial landmarks require changes to the environment but are usually easier to detect.

Natural landmarks are better for environments where changing the environment

is difficult, not allowed, or the environment is very large.

Artificial Landmarks Artificial landmarks are not often employed because

they require a change to the environment. They are easier to locate with more

accuracy, but the changing of the environment is not usually the preferred method,

and artificial landmarks may not be feasible in very large environments. However,

some environments like a hospital where lines may be painted on the floor or

ceiling lend themselves better to this type of method. [27] is an example of a

localization system that uses artificial landmarks in an office building.
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Figure 2.2: An example of a topological map

Natural Landmarks Natural landmarks are the most widely used because of

the limitations of artificial landmarks. Several systems that use them are [36] [6]

and [32]. Indoor natural landmarks may be something as commonplace as doors,

windows, or corners. An outdoor landmark may be something such as a building,

a large tree, sidewalks, and roads.

Map Matching This method tries to determine location by matching sensor

values to the given map. Some examples that use map matching are [37] and [39].

Topological Maps

The topological map (graph), shown in Figure 2.2, is made up of nodes where

the edges correspond to possible routes to other locations. The goal with these

maps is to determine which node the robot is in. The advantage of this kind of

approach is that the maps can be built more easily, but the location that the robot

is localized is more coarse than the geometric maps which give a precise location.

Some topological approaches are described in [69] and [30].
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Hybrid

Most localization systems are now built using a hybrid approach. As described in

[67], using one or the other can cause a great deal of problems for a localization

system. Topological maps allow for simpler navigation, but often do not have

enough information to localize to a fine area like geometric maps. Geometric

maps have difficulty scaling to large environments. Some hybrid approaches are

described in [67], [36], and [39]. A hybrid map includes both geometric and

topological information. The metric information can include size of the node,

direction and distance to neighboring nodes, or an entire geometric map such as

an occupancy grid.

[67] describes a method of building topological maps from a geometric map.

This allows for creating the geometric map normally, but still being able to use

topological methods without manually creating the nodes.

2.1.6 Location

Localization systems are usually built for a specific location. The localization

systems usually require a map of some type which gives a description of the

world. Most localization systems work in a well structured environment such as

indoors; others rely on GPS to localize and therefore only work outdoors. Some

robots build a map of their environment as they move and use the same map to

localize.

Indoor Only Most localization methods fall into the indoor only category, such

as [50], [30], [49], [70], and [49]. The structured environment allows for simplifying

assumptions such as always being on a flat surface. Many of these methods
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use straight lines from features such as corners, windows, desks, doors, etc to

determine their location and orientation.

Outdoor Only The localization methods typically used only for outdoor robots

usually include GPS as the main method of localizing, such as [43], [47], [10], and

[62]. However, since GPS does not always receive enough satellite signals when in

areas that block the signal or the GPS does not give accurate results, odometry

is also used in order to increase the accuracy and to supplement the GPS in case

of GPS failure.

Indoor and Outdoor Few methods use both indoor and outdoor environments.

This is because the indoor methods which assume a highly structured environment

do not work outdoors and GPS does not work indoors. Finding a method that

works equally well outdoors and indoors can be difficult. A few methods which

report to work well in both are [69], [37], [39], and [29]. Two of these, [69] and

[29], use an appearance-based method of localization which uses camera images

to capture the layout and texture (appearance) of the area rather than specific

landmarks in the environment.

2.1.7 Mapping

There are two different methods of creating the map used for localization. The

most common is to create a map before trying to perform localization. The other

method is to have the robot create the map as it moves through the environment,

also known as SLAM.
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SLAM The SLAM (simultaneous localization and mapping) problem is one that

has been worked on more recently in the robotics community [44] and [47]. These

methods allow a robot to operate in an environment for which there is no map,

i.e., an unknown location. This method can be used for some service robots such

as wheel chair robots, floor cleaning robots, and search and rescue robots.

There are several issues that must be addressed when performing robotic

mapping: the correspondence problem, dynamic environments, and robotic

exploration. The correspondence problem is the problem of determining if sensor

measurements taken at different points in time correspond to the same physical

object in the world [64]. Dynamic environments include objects that may move

such as cars and people, and natural changes which occur with changing seasons.

Robotic exploration is the problem where the robot must choose its path while

mapping the environment [64].

SLAM methods can still make assumptions about their environment. For

instance, the floor cleaning robot will assume that it is inside when creating its

map, and therefore will use features that are specific to an indoor environment.

The advantages of this methodology is that a robot can be placed in an

environment that has not been visited before by the robot or humans in general,

and that the map of the environment can be continuously updated so that changes

that occur over long periods will not affect the localization as much.

The disadvantage is that some robots with a specific purpose such as a delivery

robot or a tour guide must know where specific locations are before they are placed

in the environment in order to find a specific location, for instance building 4,

room 312. The exploring of the environment will probably not yield enough

information in order to classify specific locations. If exploration is used, then

specific places would have to be manually labeled. Also, the exploration stage
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must have limits on where the robot can go, making this method more suitable

for indoor environments.

Non-SLAM Systems that do not use a SLAM methodology must have a map

prior to operating. A number of works discussed so far such as [39], [10], [25], and

[49] do not use a SLAM methodology.

Creating the map can take a significant amount of work, and the map may

contain errors. Some systems are built with the assumption that the map may

not be accurate and usually account for this using probabilistic methods.

Maps for large environments built using manual methods can take a long time

to generate. Static maps in dynamic environments can also pose a problem. One

method for dealing with this might be to have a partial-SLAM method where the

robot is given a map of the environment with minimal information, but the map

is updated by the robot as it moves through the environment.

2.1.8 Scalability and Generalizability

Many localization systems can work well when moved from one environment to

another, e.g., from one office building floor to another, as long as the map is

supplied, and the type of environment does not change, for example, from indoors

to outdoors.

Many indoor systems such as [49] rely on specific indoor features such as

straight lines from walls, desks, and windows. Many outdoor systems such as [47]

rely on GPS for localization. Sensors such as laser range finders and sonar require

an environment without wide open spaces. The system described in [36] uses

sonar and odometry and requires “corridor-rich” environments like those found in

hospitals and office buildings; however, the system is able to operate indoors as
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well as outdoors.

The scalability of these systems varies. “Large-Scale environments” are defined

in [34] as “if its spatial structure is at a significantly larger scale than the sensory

horizon of the observer.” Many systems evaluate their system over in an area

larger than one floor in an office building. [36] reports their system operates over

a large-scale area where testing is performed over an entire university campus.

2.2 Resources

This section discusses the resources used to develop the proposed localization

system.

Tools The OpenCV computer vision library [51] was utilized for several aspects

of the system, such as principle component analysis, opening and writing images,

and many other functions. The library is an open source computer vision library

that is widely used.

The Cluster program [7] was also used as part of this work. The program was

used for the estimation of the Gaussian Mixture Models (GMMs) used in this

work.

David Lowe provides a program that generates SIFT keypoints from PGM

images. This program was downloaded from his webpage and used for SIFT

keypoint generation [42].

Computing Platform The localization system was written using C++ on a

machine with four dual core Opteron processors and 20 gigabytes of RAM. The

localization software was not written to be multi-threaded however. The GNU

C++ compiler was used.
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Robots The P3-AT robot platform from ActivMedia [54] was used to capture

images. It was operated under remote control and included a Sony EVI-D30

PTZ camera. Images from the camera were captured at a resolution of 640-240

15 frames per second. This was the largest resolution the capture device would

allow.
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Chapter 3

Related Work

The related work is described in this chapter to provide a brief background of

some of the projects that have performed research in the area of localization and

mapping.

3.1 Mobile Robotics

There are several robots that use localization as a key part of their navigation.

DERVISH was designed by researches at Stanford University and won the Office

Delivery event of the 1994 Robot Competition and Exhibition [50].

DERVISH was an indoor operating robot and used sonar as its main method of

sensing the world. The sonar was placed so that it could detect both short objects

and tall objects like a shelf that it might not fit under. For the competition, each

robot was given a topological map of the office and a goal room that had two

different doors to enter.

A Markov probabilistic algorithm was used to determine its location based on

features that DERVISH would detect, such as open and closed doors, hallways,
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foyers, and walls. A probability table was given for each of the features that gave

the likelihood of detecting each feature when that feature appeared, as well as

the likelihood of detecting it as another feature. For instance, the probability of

detecting an open door as an open door was 0.9, and the probability of detecting

it as a wall was 0.05. With five features, the table had 25 probabilities.

The robot did not use odometry, it used events to determine when to update

its state. An event happened when the sonar detected one of the features listed.

When an open door was detected, the Markov algorithm updated every possible

state. Every state must be updated because the sonar might have missed detecting

some features. When a feature was detected, the robot was possibly in a new node.

Without odometry, it was possible to move a long ways and miss several features.

Researchers at the University of Bonn, Aachen University of Technology, and

Carnegie Mellon University worked together to design Rhino which was deployed

at the Deutches Museum in Bonn, Germany [8]. The robot used four sensor

systems: laser, sonar, infrared, and tactile. It relied on the laser range finder for

localization. The software consisted of 25 modules which ran on three on-board

PCs and three SUN workstations which were off-board.

The localization system used a metric map and the Markov algorithm. Because

the robot was deployed in a museum, the people surrounding the robot made

the environment very dynamic. This violated the Markov assumption of a

static environment. Therefore, filters were used to sort the measurements into

corrupt and uncorrupted categories It did this by determining if the measurement

increased or decreased the certainty of the robot. Measurements that did not

increase the certainty were assumed to be corrupt and were not used to update

the belief.

An occupancy grid map was used as the metric map. The map approximated
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the probability that a grid on a discretized approximation of the environment was

occupied. The map was discretized into 2D grids which determined how fine grain

of accuracy was needed.

Afterwards, a variation of the Markov algorithm, called the Dynamic Markov

Localization (DML) algorithm [9] was implemented for the robot. This algorithm

differed in that it attempted to perform both position tracking and global

localization. It performed position tracking by reducing the amount of state

space that the algorithm had to search over. In situations where the robot was

almost certain about its position, i.e., the distribution was centered around one

location, the remaining states had extremely small probabilities. DML used an

octree to represent the state space, where states with extremely small probabilities

(less than a threshold) were grouped together. An octree is a structure that

spatially divides a three-dimensional space into cubes of varying size into a tree-

like structure. The states in this grouping were updated only once, applying the

same update to every one.

The algorithm also simultaneously calculated the likelihood that the robot’s

position was not contained in the currently considered states. If this happened,

more states could be considered by changing the octree. This allowed for a

dynamically evolving state space that was considered based on the certainty of the

robot, thus improving efficiency when the robot was certain about its location.

Minerva, created after Rhino, is the second version of a museum tour guide

robot [65]. It was deployed in the Smithsonian and required some improvements in

order to successfully operate in the significantly larger museum with significantly

more people.

Localization still relied on a laser range finder as the main sensor, but a camera

which pointed at the ceiling was used to augment the system because of the wide
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open spaces. A texture map of the ceiling was created and this was used to localize

using the camera.

Minerva also had the ability to learn its maps from scratch whereas Rhino was

given a manually created map with no ability to create its own.

Researchers at the University of Bremen developed the service robot Rolland

as part of the Bremen Autonomous Wheelchair [35] project. The localization

system, described in [36] works over large-scale environments and was tested on

the campus of the University of Bremen.

Rolland is different from the other robots discussed so far in that it can

move both indoors and outdoors. However, the robot is limited to corridor-like

environments as described in [36]. The robot does not perform any mapping, so

an a priori map is required; however, it is stated that this will be done in the

future.

The robot uses topological maps which are called route graphs, where the

nodes correspond to decision points such as hallways, corners, and junctions. The

edges of the topological map represent straight corridors that connect the decision

points. The graph integrates geometric information such as the length of the edges

(corridors) and the angles of decision points and corridors.

The localization method uses odometry and sonar to detect corners. The

approach is to match the current traveled route with the route graph in a

probabilistic manner. The robot currently does not perform global localization,

instead it must be in a known initial position to work. It must also have a known

route so that it can direct the user to the goal location.

The service robot PSR1 developed at the Korean Institute of Science and

Technology uses the Monte Carlo algorithm, and the probability is computed

using a map matching algorithm which compares the laser range finder scan with
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those stored in the map [37]. The comparison algorithm uses two functions to

compare the results, a range image similarity function and an angular similarity

measure function.

The robot proved to work well in somewhat dynamic indoor environments

using the Monte Carlo method and map matching algorithms.

Map matching is also used in the Kurt3D robot, developed in Germany at

the Fraunhofer Institute for Autonomous Intelligent Systems [39]. The algorithm

is designed for speed, allowing localization of the robot moving at four meters

per second. The robot uses both stereo vision and a laser range finder; and the

localization routine works both indoors and outdoors.

The robot uses a position tracking method, which means that it cannot recover

after getting lost. Because position tracking algorithms are typically more efficient

than global localization algorithms, this was necessary for the high speeds at which

the robot moved.

An indoor localization system based on a laser beacon (emitter) and receptor

has been built by researchers at the University of La Laguna [25]. Beacons are

placed on walls in hallways and rooms that sweep rooms with the laser and a

receptor on a robot receives the beams. The pose within the room is determined

by the time and angle to the robot.

The beacons are somewhat inexpensive but require that every room in the

building to be modified. The beacons must be placed so that objects such as

tables do not block the beam. Some rooms may require multiple beacons. The

system is very fast and accurate, but may not be suitable for large buildings. The

system is not suitable for outdoor environments. Also, the robot may get lost if

just one beacon fails to work, so the system is not very robust in being able to

recover from failure.
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A distributed outdoor localization system was built at the Oak Ridge National

Laboratory that uses multiple robots to cooperate in order to achieve a goal [43].

The ATRV mini robots use several sensors including differential GPS, a pan-tilt-

zoom camera, a compass, a laser rangefinder, a wireless LAN, and odometry. A

Kalman filter is used as the position tracking localization algorithm. When one

of the robots can no longer localize because of deteriorating sensor data, another

robot can help it localize.

This system does not work indoors. Also, the sensor suite of this system

makes the robots very expensive. However, having several robots able to help

others localize makes this system very robust to failure of the sensors, especially

GPS which can lose signal with satellites because of buildings, trees, and many

other reasons.

A similar robot [10] also uses a Kalman filter along with differential GPS

and odometry in order to localize outside. This robot is designed for volcano

exploration but does not use a distributed localization system.

GPS can be a very accurate sensor, however, many environments are not

suitable for relying on GPS alone because of the possibility of losing satellite

signals. Using GPS automatically gives access to a hybrid like map. This is

because coordinates can be viewed as nodes of a map with geometric information

built in as the distance and direction between nodes can be determined. Many

drivers of trucks and cars already use GPS to travel great distances. Differential

GPS is not required in these applications as the accuracy of normal GPS is

typically good enough to determine what road the driver is on.

Researchers at the University of Munich state that using a single sensor is

not robust enough for localization [49]. The system they propose uses range and

vision in order to make a more robust indoor system. The camera is used to find
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vertical lines from windows, doors, corners, etc. and the range finder determines

the location of walls in front of robot. A Kalman filter is used to determine the

location; then the image and range are used to determine a more precise location.

This system is another position tracking localization system that has the same

problem of not being able to recover from being lost, but the system is reputed to

be accurate in finding the location within 10 cm and orientation within 15 degrees.

3.2 Appearance-Based Localization

At the University of Amsterdam an active appearance-based method has been used

for localization of a robot named Lino [52]. Active systems have some control over

the navigation of the robot in order to move to a location to make the system more

certain about its location. For example, moving closer to a landmark in order to

be certain about which object it is, and therefore being more certain about its

position would be an active system.

The system uses a Monte Carlo probabilistic algorithm with stereo cameras on

a pan-tilt device as the main sensors. Because appearance-based techniques can

have trouble localizing in dynamic environments, their approach is to move the

stereo head to look at a location that has not changed as much. Their appearance-

based technique is based on using disparity maps. The disparity map is a two-

dimensional depth map similar to that of a laser rangefinder one-dimensional map,

but with one more dimension. Features can be selected from the disparity map and

compared with the disparity maps that are stored in the map of the environment,

similar to a map-matching technique.

They found that edges extracted as features work well for dealing with

illumination changes in the environment. Using this approach, along with the
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active vision technique of looking for a less changed location makes for a robust

algorithm that works well. Because the system is dependent on depth maps, this

system may not work as well in all outdoor areas. Outdoor areas that have lots

of structures should work, however.

An appearance-based method that is insensitive to illumination changes is

proposed in [29]. The researchers use an omni-directional camera in order to view

more of the environment at a time. This gives more features to compare with a

map at any given time.

Eigenimages [38] are used to define the environment in this method. Eigenim-

ages represent a set of training images in an eigenspace. If the images are highly

correlated, the dimension can be reduced significantly using principle component

analysis. Images that are not part of the training set can be projected onto the

eigenspace. The coefficients from this projection are compared with those of the

training set by determining the smallest angle between them (using a dot product).

Researchers at Carnegie Mellon University have developed an appearance-

based approach that also uses an omni-directional or panoramic camera [69].

A topological map is used and defines the locations of the images. Training

images are taken by using a camera to retrieve images while going through the

environment, and grouped later into their locations. Color histograms are created

from the images from two color spaces, RGB (red, green, blue) and HLS (hue,

luminance, saturation). Color histograms are vectors that count the number of

specific pixel colors that appear in the image: one vector for each band of color.

A nearest-neighbor approach is used for comparing images. The color histogram

created from the current image in the environment is compared to only the location

where the robot is believed to be in, and its neighbors. A voting mechanism is

used to determine to which location the image belongs.
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This algorithm is similar to a non-probabilistic position tracking algorithm in

that it cannot recover from getting lost and it cannot perform global localization,

as it must know its initial location. The algorithm was tested over a small area

that included both outdoor and indoor locations, and it was reported to have

performed reasonably well.
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Chapter 4

Topological Localization

The first step to solve the localization problem is topological localization. This

chapter describes the methods and the results of attempting to localize the system

using the topological map.

4.1 Approach

The approach proposed in this work is to use only a camera to perform localization

in multiple environments including indoors, outdoors, and at polar camp sites

in Greenland and Antarctica. Therefore, a topological localization system was

designed that uses appearance-based features and a hidden Markov model as the

classifier [2].

The topological map was created manually of an area inside and outside a

single building. Each node of the map is a set of images that are representative

of the location. After the images for the map are acquired, the appearance-

based features are extracted and modeled using a Gaussian mixture model. After

this step, the topological map is represented by a Gaussian mixture model. The
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likelihood that an image is part of a specific node in the map is generated by

extracting the proper feature from the image and applying it to the Gaussian

mixture model. All the processing in this work was done offline to simplify the

testing.

4.1.1 Appearance Based Method

The appearance-based method uses the appearance or texture of an image in order

to recognize a location. Appearance based methods have been used in [69], [52]

and [31]. Instead of using a geometric (explicit) representation where the images

are used to find walls or objects, the images themselves represent the model of

the environment.

Some of the feature descriptors that were used include color and gray

histograms [22], Hu Moments [22], and eigenimages [38] and [48].

Pixel values in images usually range from 0-255. A gray histogram is a count

of all of the pixel values in the image. The color histogram is the same, except the

count exists for all three bands of the RGB images. The histogram in this case is

actually three separate histograms.

Images can also be described using statistical moments such as mean, variance,

skewness, and higher order moments. [26] describes a set of seven moments that

are invariant to rotation, translation, and scale changes. These moments are

referred to as Hu Moments.

Eigenimages are a set of basis images that are used reduce the dimensionality

of an image. The eigenimages are created from a set of images. Images are

projected onto the eigenimages to give a descriptor that is much smaller than the

image itself.
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Gaussian Mixture Model

A Gaussian mixture model (GMM) was used to model the feature descriptors.

A Gaussian mixture consists of a linear combination of Gaussians (normal

distributions). Each Gaussian in the mixture has its own weight and the final

probability is given by linearly combining the results of each Gaussian in the

mixture. The EM [13] [55] algorithm is used to generate the parameters of the

mixture which include the mean, covariance, and weight. The program described

in [7] was used to generate the Gaussian mixture models for this work and also

gives a good description of the Gaussian mixture model. The GMM is used to

generate the likelihood probabilities in this testing, as described in Equation 4.1.

P (X = x|Q = q) =
∑
k

wk ∗ Nk (4.1)

Where x is the current feature, q is the current location, k is the number of

Gaussians in the mixture, w is the weight of the kth Gaussian, and Nk is the kth

Gaussian in the mixture. This is the probability of seeing the feature x at location

q.

A GMM is typically used to model data where the normal distribution does

not work well by itself. The GMM can work well even in cases where the data is

not normal, or the assumption of normal data is incorrect.

4.1.2 Hidden Markov Model

The hidden Markov model (HMM) is one of the simplest bayes networks. It

consists of a set of N states, the initial probability distribution, and a set of

transition probabilities. The HMM can be used to model temporal data. It has

been used extensively for speech recognition [53]. The HMM relies on the Markov
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Assumption, that the value of the next state is dependent only on the values of

the current state [55].

The hidden Markov model decoding algorithm described in [14] on page 135

was used for determining which node in the map has the highest probability. This

is the problem of determining the sequence of hidden states given a sequence of

visible states. The visible states in this case are images captured from a camera

and the hidden states are the locations in the map.

The results for the localization are compared with those of two other simple

classifiers, ML (maximum likelihood) and a variation of the HMM where all the

transition probabilities are equal, thus turning off the hidden Markov model and

acting more like the naive Bayes classifier. The ML classifier selects the node

with the highest likelihood (from the GMM) and has no memory, see Equation

4.2. The naive Bayes algorithm stores a posterior probability. The likelihood for

a node is multiplied by its posterior, and then the node with the highest posterior

value, maximum a posterior (MAP), is chosen as the selected node, see Equation

4.3.

ML Location = argmax[P (X = x|Q = q)] (4.2)

Naive Bayes Location = argmax[αP (X = x|Q = q) ∗ P (Q)] (4.3)

Transition Probability

The transition probability was modeled using a zero mean normal distribution

based on the distances of nodes in the topological map. The variance was a preset

constant parameter, 1.0 in this case. A minimum value was set so that once the
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Distance Weight
0 1.000
1 0.607
2 0.135
3 0.011

≥ 4 0.001

Table 4.1: Transition weights for the Hidden Markov Model. All weights are
based on the shortest distance from one node to another. The weight is the total
probability given to all nodes at a given distance. These values are the same values
used for this work. These are based on a zero mean Gaussian with a variance of
1.0 and minimum probability of 0.001.

probability went below that minimum value, all distances from that point were

given the same minimum value. These values represent the probability of moving

from one node to another node, with the highest probability being to stay in the

current location; and the probabilities progressively getting lower the further away

the node is from the current node.

The probability given for a specific distance was used as a total weight value

for all nodes of that distance to add up to. For example, if there are four adjacent

nodes j to node i, and the probability of being at distance one is 0.80, then

the probability of moving from node i to node j is 0.20. After determining the

probabilities for the transition from node i to every node in the map, the values

are normalized to 1.0.

Using the probabilities as a total weight is important because it is possible to

have the probability of moving to another location be higher than staying in the

current location. This can happen if the current location has many connections.

This would mean that each of these connections are at distance 1.0. If the

probability of moving to a location of distance 1.0 is 0.8, then the total probability

of moving to an adjacent location can be higher than not moving, which is not

desirable. Therefore, normalizing the total probability of all the adjacent locations
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to 0.8 helps to prevent this from occurring. The actual distance weights used in

this work are included in Table 4.1

The distance is determined by the fewest number of connections from one node

to another. This algorithm requires finding the shortest distance to other nodes

on the map. Moreover, depending on the variance and the minimum probability

selected, the distances only had to be calculated for the nodes up to a small

distance (three in this case).

4.1.3 Topological Maps

Figure 4.1: Adjacency graph representing the first topological map used for
evaluation. The building has three floors, but the map was created from locations
on only the first and third floors.
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Figure 4.2: Adjacency graph representing the second topological map used for
evaluation. This map is broken into three different general locations: first floor,
third floor, and the outside areas.
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Two different maps were used to test the system. The first map, see Figure 4.1,

was a smaller version of the second, not including many of the outdoor locations.

The locations to use in the map are from one building. They were chosen based on

availability and accessibility. Once a location was chosen, a robot platform with

a camera was driven using remote control through the areas while capturing and

saving all images. These images were grouped together by location and became

the database for all tests performed. The first map has 22 locations made up of

over 22,000 images total. The map contains 12 offices, 10 hallway locations, and

1 elevator that span over two floors of the three floor building. Figures 4.3, 4.4,

4.5, and 4.6 show a sample of some of the images used to make up inside nodes

334, 335, Hallway 1, and Hallway 2, respectively. Figure 4.7 shows images from

the outside Patio location. Each image was captured at a resolution of 640x240.

The second map has four more nodes than the first. The map was built using

over 26,000 images. These added nodes are all outside locations, shown in Figure

4.2 as Walkway 1, Walkway 2, Walkway 3, and Walkway 4. These nodes are

connected from the patio back to the front entryway, 1P2. These were added

because the single outside location from the first map, Figure 4.1, does not give a

good indication of how well the system works outdoors. Figures 4.8 - 4.11 show

images from the new outside locations.
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Figure 4.3: Room 334 sample images

41



Figure 4.4: Room 335 sample images
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Figure 4.5: Hallway 1 sample images
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Figure 4.6: Hallway 2 sample images

44



Figure 4.7: Patio sample images
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Figure 4.8: Walkway 1 sample images
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Figure 4.9: Walkway 2 sample images
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Figure 4.10: Walkway 3 sample images
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Figure 4.11: Walkway 4 sample images

49



4.1.4 Features

Several feature descriptors were used to test the system, namely, color and gray

histograms, Hu Moments [22], and eigenimages [48] and [38]. Variants of the color

and gray histograms were also used. Table 4.3 includes a list of all the descriptors

used for this work.

In order to get a single descriptor for the color histograms from the RGB

images, a histogram for each band of the RGB image is obtained separately then

appended to the end of the previous one. Therefore, each color histogram is

three times the size of its corresponding gray histogram. A variation that was

used was to divide each image up into equally sized columns and rows. Then a

separate histogram (color or gray) was calculated for each section of the image,

again appending each descriptor to the end of the previous. This was done on

sizes of 2x2 and 3x3.

Also, the number of bins used to calculate the histograms could be varied. The

number of bins determines the size of the histogram. For example, 256 bins can be

used for an image with pixel values ranging from 0 to 256. However, 128 bins can

also be used causing a loss of information. This combines the pixel values of zero

and one into a single bins in the histogram. This happens throughout the entire

range of the histogram in this case. This is mainly used to reduce the amount the

information in the histogram.

The histograms of the 1x1 and the 2x2 all used 256 bins, and the 3x3 descriptor

was calculated on 128 bins in order to try and reduce the size of the descriptor.

Table 4.2 lists all the variations of the histograms that were used for testing.

Two versions of the Hu Moments descriptor were used. One descriptor is

calculated from a gray scale image, the other calcuated each of the seven Hu
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Color/Gray Rows Cols Bins Size
Gray 1 1 256 256
Color 1 1 256 768
Gray 2 2 256 1024
Color 2 2 256 3072
Gray 3 3 128 1152
Color 3 3 128 3456

Table 4.2: Variations of the color and gray histogram feature descriptors

Moments on each band of the RGB image separately, and appended them similar

to the color histograms. Therefore, the color Hu Moments descriptor was three

times the size of the gray Hu Moments descriptor.

The eigenimage descriptor is described in [48]. This descriptor uses each image

in the training set as a single vector and principle component analysis is performed

to reduce the size of the descriptor. It was calculated on gray scale images.

Principle Component Analysis

Principle Component Analysis (PCA) was used to reduce the dimensionality of

most of the descriptors. It works by computing a set of basis vectors (eigenvectors)

and eigenvalues of a set of features [14]. The eigenvectors that represent the

greatest amount of information as determined by the eigenvalues, can be used to

reduce the dimensionality of the original descriptors. A vector can be projected

onto the basis resulting in a reduced description of the vector.

The number of eigenvectors represents the size of the reduced descriptor. A

single value for each eigenvector is obtained by applying the dot product on the

descriptor and the eigenvector. This is done for each eigenvector, resulting in a

vector the same size as the number of eigenvectors.

Most of the features used in this work were reduced using PCA. A suitable

number of components had to be determined that would adequately represent
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the features and still allow distinguishing between the features. It was found [57]

that 20 components were sufficient to describe the eigenimage descriptors. The

color and gray histograms were reduced to a similar number, i.e. 25. Because this

number worked well, testing with a higher number was not performed. However,

it is intuitive that the smallest number as possible that still allows for recognition

should be used. Extremely high dimension Gaussian mixtures can cause problems

for the Hidden Markov Model [68].

The numbers used in this work are not optimum numbers that provide the

best solution. They were numbers that seemed to perform well for this approach.

The numbers used can depend on several factors, including the size of the original

descriptor and the number of images, or the size of the map. Table 4.3 lists

the sizes of each feature descriptor used, before and after PCA. Three of the

descriptors, the Hu Moments descriptors and the eigenimage descriptor were not

changed in this step. The Hu Moments descriptors were small enough, that a

reduction of information was not necessary. The eigenimage descriptor already

uses PCA to reduce its dimensionality, therefore it was not necessary to reduce it

again.

Descriptor Original Size Size after PCA
1 Gray Histogram 1x1 with 256 bins 256 25
2 Color Histogram 1x1 with 256 bins 768 25
3 Gray Histogram 2x2 with 256 bins 1024 25
4 Color Histogram 2x2 with 256 bins 3072 25
5 Gray Histogram 3x3 with 128 bins 1152 25
6 Color Histogram 3x3 with 128 bins 3456 25
7 Hu Moments (Gray Image) 7 7
8 Hu Moments (RGB image) 21 21
9 Eigenimages 20 20

Table 4.3: Feature descriptor descriptions. The size of the descriptors before and
after PCA has been performed.
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Figure 4.12: Bedrock Cafe in North Grip sample images

4.1.5 Polar Environments

After several trips to both Greenland and Antarctica, PRISM/CReSIS has

numerous pictures of the different polar locations. Several pictures were selected

to be used as part of a map with six different locations. The number of images

for each location ranged from around 30 to 100. The entire map included 383

images for training after removing the test images. Figures 4.12 and 4.13 shows

some sample images from two of the locations used in the testing.

In previous testing however, the number of images per location needed to

be around 200-300 before obtaining adequate results. The tests were performed

with three descriptors, two of which were described previously in Table 4.3:
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Figure 4.13: North Grip sample images
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Eigenimages and Gray Histogram 1x1 with 256 bins. The other descriptor chosen

was a Color Histogram 1x1 with only 64 bins, which contains only 25% of the

information that the same descriptor with 256 bins contains. The reason for the

fewer number of bins used is because there is not enough images in the entire map

to perform PCA on the larger feature descriptors. The Color Histogram 1x1 with

256 bins requires at least 768 images to perform PCA, many more than the map

contained. The Hu Moments feature descriptors were not used because they did

not perform adequately in previous tests.

4.2 Evaluation

The tenfold testing procedure was used to evaluate the system. The image

database was broken into ten random sets. Each set needed to contain images from

every location in the map, therefore each location was broken into ten random

sets. These sets were combined with the sets from other locations to create an

entire set of images.

Each of the sets were selected to be used as a test set with the other nine being

used as its training set. Ten separate training and test sets were used to test the

system. Every test was then run ten times, using each different test set with its

corresponding training data. The results from each of the ten runs were averaged

together to get an overall result. All of the results given from this paper are the

result of the ten fold experiments.

As was stated earlier, most of the processing was done offline. The extracting

of features, performing PCA, and modeling the features with a Gaussian mixture

model were all done offline. The images used for the tests were taken from the test

set. A predetermined route was selected. Then a random number of images were
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selected from the pool of images for the specific locations to represent the images

that would be captured from the camera as if the robot were moving through the

map. The features are then extracted from these images, their size is reduced

using the eigenvectors from the PCA step on the training set, and these features

are written to a file to be classified in the order they were selected, allowing the

same features to be classified several times on different tests. These steps are

performed once for every test set.

The results from three different classifiers are given: hidden Markov model,

maximum likelihood, and an approach similar to the naive Bayes classifier,

described previously in Section 4.1.2.

The results from seven different tests are given. The first three tests are used

to determine how well the system solves the global localization problem through

a normal traversal of the first topological map. Tests four and five are used to

determine how well the system can handle the kidnapped robot problem. This

problem is similar to the global localization problem where the robot is placed in

some random location in the map and it must determine its location, except that

the robot is transported to a new location in a completely different part of the

map after already localizing itself. The robot must be able to ’unlearn’ where it

believes it is at, and then ’relocalize’ itself to the new location. The last two tests

are similar to the first three, but are performed on the second topological map

and are designed to test moving outdoors.

4.2.1 Local Testing

The results for the Bayes like classifier are almost identical to those of the

maximum likelihood results. This is because the likelihood values dominate the
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Test Nodes Visited (in order)
Test 1 O343C, O343D, O343B, O343D, HALLWAY 1, 3BH1,

HALLWAY 2, HALLWAY 3, HALLWAY 2, O320
Test 2 O343C, O343D, O343B, O343D, HALLWAY 1, O337,

HALLWAY 1, 3BH1, O334, 3BH1, CATWALK3,
ELEVATOR, 1P2, ENTRY WAY, BACK DOOR,
PATIO, BACK DOOR, ENTRYWAY

Test 3 HALLWAY 3, HALLWAY 2, O326, HALLWAY 2, O317,
HALLWAY 2, O318, HALLWAY 2, O320, HALLWAY
2, O327, HALLWAY 2, 3BH1, HALLWAY 1, O337,
HALLWAY 1, O344W, HALLWAY 1, O345, HALLWAY
1, O343D, O343C, O343D, O343B, O343D, HALLWAY 1,
3BH1, CATWALK3, ELEVATOR, 1P2, ENTRY WAY,
BACK DOOR, PATIO

Test 4 O343C, O343D, O343B, O343D, HALLWAY 1, 1P2*,
ENTRY, BACK DOOR, PATIO, BACK DOOR

Test 5 O327, HALLWAY 2, O317, HALLWAY 2, O327, O327,
BACK DOOR*, PATIO, BACK DOOR, ENTRY, 1P2,
ELEVATOR, CATWALK3, 3BH1, HALLWAY 2, O327

Test 6 HALLWAY 3, HALLWAY 2, O326, HALLWAY 2, O317,
HALLWAY 2, O318, HALLWAY 2, O320, HALLWAY
2, O327, HALLWAY 2, 3BH1, HALLWAY 1, O337,
HALLWAY 1, O344W, HALLWAY 1, O345, HALLWAY
1, O343D, O343C, O343D, O343B, O343D, HALLWAY 1,
3BH1, CATWALK3, ELEVATOR, 1P2, ENTRY WAY,
BACK DOOR, PATIO, WALKWAY 1, WALKWAY 2,
WALKWAY 3, WALKWAY 4

Test 7 PATIO, WALKWAY 1, WALKWAY 2, WALKWAY
3, WALKWAY 4, WALKWAY 3, WALKWAY 2,
WALKWAY 1, PATIO

Table 4.4: Nodes visited for each test run in the order they were visited. Tests 4
and 5 were the kidnapped robot tests. The asterisk represents the node in which
the robot was ’teleported’ to another location not directly adjacent to its previous.
Tests 6 and 7 were performed on the second map.
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Figure 4.14: Topological test one: position accuracy

posterior value because most of the likelihoods are zero or near zero. This resulted

in the posterior value being a minimum value for most of the locations. Then the

(usually) single node that has a likelihood greater than zero dominates the results,

causing the maximum a posterior location to be equal to the maximum likelihood

location. Because of this, the results from this classifier are not discussed in any

detail, but they are provided in all the tables of results.

Table 4.4 gives the locations visited for each test run. Test one was the shortest,

visiting ten locations: five office locations and five hallway locations. Test two was

a longer test, visiting 18 nodes: seven of those being office locations. This test run

also visited the outdoor location, Patio. The third test was the longest, visiting

every node in the map: 33 locations total, 14 office locations. The locations for

the last two tests are less important, but it is easy to tell the route that was

taken before and after the robot was ’teleported.’ The asterisk represents the
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Figure 4.15: Topological test two: position accuracy

Figure 4.16: Topological test three: position accuracy
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location where the robot was teleported. The teleported node was far away from

its previous node so that the system would not have any substantial probability

of moving from its previous location to the teleported location. This is important

because the system contains higher probabilities for moving to locations that are

closer to the current location. Figure 4.1 includes a reference of the locations

visited.

Tables A.1 to A.8 include the complete results of these tests. All the results

are given in units of number of images or features. For example, the Best Case

column for the Time to Localize section gives the least number of images out of

all ten tests to correctly localize the system after startup. Figures 4.14 to 4.16

summarize the results for the location accuracy for the first three tests. The

results shown are the average of all ten tests.

All three tests showed that the HMM proved to give the best results, with

several classifying over 92% correctly. The Hu Moments (Gray) classifier proved

to be inadequate for these tests, and the Hu Moments (Color) feature was much

better, but still inadequate to perform localization. The HMM tested better than

the ML in every case.

The best results for Test one are obtained using the Color Histogram 3x3

feature which classified over 95% correctly. However, this result was only slightly

better than those from several other features including: Color Histogram 1x1,

Color Histogram 2x2, Gray Histogram 3x3, and Gray Histogram 2x2. All

of these provided excellent results. The best results for the ML (Maximum

Likelihood) classifier for this test are from the Color Histogram 1x1 feature,

correctly classifying over 88% or the images correctly. Again, several others had

results similar to that of the Color Histogram 1x1: Color Histogram 3x3, Gray

Historam 3x3, and Color Histogram 2x2.
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The best results from test two resulted from using the Color Histogram 1x1,

95%, and Color Histogram 2x2, 87%, for the HMM and ML, respectively. Test

three best results are from the Color Histogram 1x1 feature for both HMM, 95%,

and ML, 88%.

The Color and Gray Histograms for these three tests performed better than

the other features, with the Gray 1x1 feature performing the worst of these. In

most cases, the Color Histogram outperformes its corresponding Gray Histogram,

however, the results are usually too close to be well differentiated by these tests.

Several of the results show that many of the Color and Gray Histogram features

classify over 95% correctly. As a result, a single feature cannot be chosen as

giving the best results overall. The results do show that the histogram features

do perform adequately for classifying the indoor locations.

The HMM model still requires that the ML classify a sufficient number of the

locations correctly in order to perform adequately. The greatest improvement on

the ML results is from the Hu Moments RGB feature in Test three where the ML

classifies over 28% correctly and the HMM classifies over 62% correctly. When the

ML jumps around, the nodes with the most connections tend to gain the higher

probabilities. However, the Color and Gray Histogram features are usually better

than its corresponding ML results by around 10%, which is significantly higher.

The ML classifier solves the global localization problem faster than the HMM

as expected, because of its lack of ’memory.’ However, the HMM was usually only

somewhat worse than the ML, and was still very fast. Figures 4.17 to 4.19 show

the summary of the localization time results. The time is measures in number of

images. Because the experiments were performed offline, and the images can be

captured at different rates, time in seconds does not give an accurate assessment.

The number of images needed by the system gives an accurate assessment of how
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Figure 4.17: Topological test one: localization time

Figure 4.18: Topological test two: localization time
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Figure 4.19: Topological test three: localization time

long it takes to localize the system. With the exception of the Hu Moments

features, these tests show that the global localization time is sufficient for use on

an autonomous mobile robot, usually requiring only two to three images before

the system has determined where it is in the map. Tables A.2, A.4, and A.6 show

the complete results for these three tests.

The Kidnapped Robot Problem tests (tests four and five), showed that again,

because of its lack of memory, ML performed the best, as was expected, and

that the HMM was not very far behind. Figures 4.20 and 4.21 show the results

of the kidnapped robot tests. The results show the number of images, like

the global localization results, required to relocalize after being teleported to

another location. The results for all but the Hu Moments features show very

good performance. The Hu Moments features again performed inadequately.

Tests six and seven, were performed in the second topological map, Figure 4.2.
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Figure 4.20: Topological test four: kidnapped robot problem

Figure 4.21: Topological test five: kidnapped robot problem
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Figure 4.22: Topological test six: position accuracy

Figure 4.23: Topological test seven: position accuracy
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Figure 4.24: Topological test six: localization time

Figure 4.25: Topological test seven: localization time
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Figure 4.26: Topological polar test: position accuracy

These were meant to test how well the system performs outdoors. Test six visited

every node in the map, similar to Test three for the other map. Test seven visited

only the outside locations in the map, visiting all but one of them twice. The

number of features used in these tests were reduced to the ones that performed

the best in the previous tests. The features used were all histogram features,

numbers 2, 3, 4, and 5 listed in Figure 4.3.

Both of these tests performed similar to those of the previous tests. Figures

4.22 to 4.25 show the summary of the results. Each feature was classified correctly

by the HMM over 95% of the time for Test six, and over 94% for Test seven. The

localization times for both tests were similar to those of the other map as well.

Tables A.9 to A.12 provide the complete results for these tests.

67



Figure 4.27: Topological polar test: localization time

4.2.2 Polar Testing

The testing of the polar images did not provide good results. Only two classifiers

were used, the HMM and ML. Both classifiers were not able to localize with

respect to any of the six locations. The results from these tests are shown in

Figures 4.26 - 4.27. The full results are shown in Tables A.13 and A.14.

The results show that the system worked about 25% of the time. Sometimes

the system was locked into one location, and other times the system varied greatly

on the location that it had chosen. Most occasions, the system did not show any

consistency or ability to process this map.

The classifier’s performance is due to several factors. First, there were

small number of images for each location. Previous tests had shown the best

performance when the number of images representing each location was closer to

300. Second, because of the few locations and few images, not all of the descriptors
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could be used. Using only 64 bins drastically reduces the amount of information.

Previous testing had also shown that these descriptors with using fewer than 128

bins per histogram did not perform well. The best results were obtained from

using as much information as possible in a feature descriptor, and then reducing

the dimensionality using PCA. The last factor is how the pictures were taken and

when. Many of the pictures were taken on different days in different conditions at

different positions. This did not allow for modeling the images accurately using

the GMM because most of the images varied significantly. This exacerbates the

problem of a small number of images because the number of Gaussians in the

GMM is very limited, compared to the other tests.

4.3 Discussion

The experimental results from the tests illustrate that the appearance-based

localization method is a viable approach. The method works extremely well,

at times over 95% of the time, on these tests. These tests also show the ability

of the system to recognize several locations that look very similar. The hallways,

for example, Figures 4.5 and 4.6, where the tests were performed are extremely

similar, in color, size, and structure. The HMM proved to work very well for this

system, improving the ML results by around 10%. These results show this system

to have merits, in both indoor and outdoor environments.

The features used in these tests were not complex and can be calculated

quickly, allowing this system to run in real time. However, as stated previously,

all the tests were done offline in order to simplify evaluation and allow for multiple

tests to be performed using the same images.

The polar testing was inconclusive because of the limited number of images.
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Given a proper map, the results should greatly improve.

Limitations The proposed approach was evaluated using a map with 26

locations. A larger map will be needed to get a better determination of how

well the system works for larger areas such as a college campus environment. The

system also needs to be tested on maps of base camps in Antarctica and Greenland

again, as there were not enough images of these camps to get sufficient results.

Another limitation is that the system was not tested under significantly varying

lighting condition or other noise. The lighting condition inside the building does

not change much, and the outdoor locations were all imaged under the same

lighting conditions. Also, there was never a large crowd of people at the time the

images were being captured. Of course, images that consist of only people could

potentially cause the system to lose its position.

The database has not yet been built for multiple lighting conditions, and the

results from how well the system works under the varying lighting conditions

would be of interest. The lighting conditions in Greenland and Antarctica do

vary as well from cloud cover and the direction of the light. As implied however,

the simplest solution to varying lighting conditions is to capture images for the

training set at different times of the day.

The system also relied on a single feature to localize. This was sufficient for

the environments tested, but other environments may require a combination of

weighted features or different features altogether. Not all features could be tested,

and indeed there exist many more than were described in this work.

Future Work The future work will be based on testing the system in Greenland

and Antarctica and increasing the size of the map. In these environments, other
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features may need to be tested in order to localize sufficiently. Also, the area must

include some structure or texture that does not disappear after a short time. So

the system in Antarctica and Greenland would be limited to within camps where

there are some structures.
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Chapter 5

Geometric Localization

This chapter describes the approach and results for performing localization on a

geometric map. A geometric map would be stored in a node in the topological

map. Once the topological system has determined which node the system is

currently in, then the geometric map for that location is used to perform the

geometric localization. Combined, these two steps yield a hybrid approach.

5.1 Approach

Geometric localization in this section is performed somewhat differently than

the topological localization. This step utilizes a maximum likelihood method.

Maximum likelihood was chosen because of the lack of prior knowledge. This is

because the topological system must decide which geometric map is to be used

and it can change from one image to the next. The amount of memory and data

needed to store the states of a HMM for every node would probably be too large.

This step is also used to determine the orientation of the system which is

meaningless in the topological map because the adjacency graph does not describe
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distances, sizes, or any geometric information. Therefore, the goal of the geometric

localization step is to determine both the position and orientation with a high

accuracy.

Localization is based on matching images to a specific orientation within a

specific location (grid) in the map. Scale Invariant Feature Transform (SIFT)

keypoints are used to determine the matches. Images are taken at a specific

location every 45 degrees for a total of eight different orientations (0, 45, 135, 180,

215, 270, and 315). The system determines within 45 degrees. All the images

from these different orientations are used to represent the location as a whole.

Localization is performed by first matching a test image’s keypoints to each

location in the map. A match is determined by the location that had the most

matches. The number of matches is used to represent the probability, with the

higher the number of matches, the higher the probability. Therefore, the location

is the one that had the most matches.

After a location has been determined, the matching is made against the

keypoints that represent each orientation within the location. Again, the

orientation that has the most matches is the orientation that is chosen as the

match.

The keypoints are broken into two different databases. The first is a database

of images that represent the locations in the map. The second is a database that

represented each orientation within each location.

5.1.1 Scale Invariant Feature Transform

The scale invariant feature transform (SIFT) [41] [40] was the only feature used

for geometric localization. SIFT is a local descriptor, meaning that the features
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describe only a small part of the image, in contrast to global features that describe

the entire image. The SIFT features are designed to be invariant to scale, rotation,

and translation. In addition, they are partially invariant to illumination.

David Lowe, provided a program that generates SIFT keypoints from an image

[42]. This program was used to generate the features used in these experiments.

A SIFT keypoint is made up of a location (x,y), scale, and orientation, and a

128 element feature vector. These are generated at locations in an image of local

maxima and minima in the scale space. The scale space of an image is produced

by convolving the image with a Gaussian kernel. The maxima and minima are

found by subtracting the values from adjacent scale spaces [41].

The SIFT program generates many features from a single gray-scale image,

varying based on the image and its size. Typically, around 300 keypoints were

generated for the indoor images used in the these experiments, and 500 or more

for the outdoor images. The outdoor images contained more texture than the

indoor, resulting in more keypoints.

[46] describes and tests several different local descriptors including SIFT. The

descriptors were tested on their matching ability, and the experimental results

showed that the SIFT features and variants of the SIFT descriptor produced

the best results. Because of how well it tested and the availability of the SIFT

program, it was the feature used for the experiments.

Matching SIFT Keypoints

As described in [41], a cluster of three or more keypoints is best for producing

accurate matches. Therefore, each keypoint is clustered based on its location,

orientation, and scale. The keypoints are grouped using a 4D space (x, y,

orientation, scale) to group all the keypoints. Once a keypoint has been placed
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in a specific bin, it is also placed in every one of its neighboring bins. This allows

for a wider range of what constitutes up cluster.

A match is determined by calculating the Euclidian distance between the 128

element descriptors of two keypoints. If the distance of the closest match is much

smaller than the second closest match, the two keypoints are said to be a match.

In order to be considered a match for the entire image however, three or more

keypoints in the same cluster that the matched keypoint is in must match the

keypoints in the same bin. For example, if there are three keypoints in cluster A

in image 1, and the first keypoint matches cluster B in image 2, then the other

keypoints in cluster A must all match to cluster B as well in order to be considered

a match. This procedure is described in [40].

5.1.2 Geometric Maps

Three different locations were used for experiments. Each location is a 4x5 grid

with eight possible orientations from each location (every 45 degrees). Figure 5.1

shows the layout of each of the geometric maps and the orientations at which the

pictures were taken. Two of the maps are used from an indoor location and one

from an outdoor location. The indoor maps were generated at the same location

of two different sizes: the first at three feet intervals (12ft x 9ft), the second at one

foot intervals (3ft x 4ft). The origin for both of the indoor maps were at the exact

same location, so the indoor maps are of the same area, but one overlaps the other

and encompasses a larger area. The reason for the different sizes on the indoor

map is to determine how accurate the map can be at the different sizes, and if

there is a change accuracy as the interval size becomes smaller. The outdoor map

was created at one foot intervals (3ft x 4ft).
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Figure 5.1: Layout of the geometric maps

Figure 5.2: Two adjacent locations of the one foot interval indoor map. Top: 0
degrees at (0,0). Bottom: 0 degrees at (1,0)
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Figure 5.3: Two adjacent locations of the one foot interval indoor map. Top: 45
degrees at (0,0). Bottom: 45 degrees at (1,0)

Figure 5.4: Two adjacent locations of the one foot interval indoor map. Top: 90
degrees at (0,0). Bottom: 90 degrees at (1,0)
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Figure 5.5: Two adjacent locations of the one foot interval indoor map. Top: 135
degrees at (0,0). Bottom: 135 degrees at (1,0)

Figure 5.6: Two adjacent locations of the one foot interval indoor map. Top: 180
degrees at (0,0). Bottom: 180 degrees at (1,0)
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Figure 5.7: Two adjacent locations of the one foot interval indoor map. Top: 225
degrees at (0,0). Bottom: 225 degrees at (1,0)

Figure 5.8: Two adjacent locations of the one foot interval indoor map. Top: 270
degrees at (0,0). Bottom: 270 degrees at (1,0)
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Figure 5.9: Two adjacent locations of the one foot interval indoor map. Top: 315
degrees at (0,0). Bottom: 315 degrees at (1,0)

Figure 5.10: Two adjacent locations of the one foot interval outdoor patio map.
Top: 0 degrees at (0,0). Bottom: 0 degrees at (0,1)
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Figure 5.11: Two adjacent locations of the one foot interval outdoor patio map.
Top: 45 degrees at (0,0). Bottom: 45 degrees at (0,1)

Figure 5.12: Two adjacent locations of the one foot interval outdoor patio map.
Top: 90 degrees at (0,0). Bottom: 90 degrees at (0,1)
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Figure 5.13: Two adjacent locations of the one foot interval outdoor patio map.
Top: 135 degrees at (0,0). Bottom: 135 degrees at (0,1)

Figure 5.14: Two adjacent locations of the one foot interval outdoor patio map.
Top: 180 degrees at (0,0). Bottom: 180 degrees at (0,1)
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Figure 5.15: Two adjacent locations of the one foot interval outdoor patio map.
Top: 225 degrees at (0,0). Bottom: 225 degrees at (0,1)

Figure 5.16: Two adjacent locations of the one foot interval outdoor patio map.
Top: 270 degrees at (0,0). Bottom: 270 degrees at (0,1)
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Figure 5.17: Two adjacent locations of the one foot interval outdoor patio map.
Top: 315 degrees at (0,0). Bottom: 315 degrees at (0,1)

The images for the maps were acquired by using a robotic base platform under

remote control. A grid was set up at the location where the images were taken.

The robot was set in the middle of each grid and it captured 20 images in each

of the eight directions. Figures 5.2 to 5.9 show the images that were used for

locations (0,0) and (1,0) for the one foot interval indoor map. The locations are

adjacent to each other and the figures show how similar the images are. Similarly,

Figures 5.17 to 5.17 shows images from the outdoor patio map at every orientation

for locations (0,0) and (0,1).

This process generated 160 images for each location. 10% of the images were

selected to be used as part of the test images; and 144 of the images were used as

part of the training set. Some of the training images and test images did contain

pictures of people, but very few.

Not all keypoints generated from an image were necessarily used to represent

a specific location. The percentage of keypoints generated from an image that
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matched the database prior to being placed in the database was determined. If

this percentage was larger than some preset threshold, then the keypoints for that

image would be placed in the database. This was done for both the location and

orientation databases. The values used in this test were 20% for the location,

and 80% for the orientation. This allowed for a higher percentage of keypoints

for each orientation, and also attempts to limit the number of keypoints for each

location, which usually have a high similarity. But because the number of images

to represent a specific orientation within a specific lcoation were much smaller

than for a location, the number of keypoints used to represent the orientation was

not very large.

The number of keypoints used to represent a location in the indoor maps

usually around 3,000. The number was in the hundreds for representing each

location. The number of keypoints in the outdoor maps was around 8,000 because

each image contained many more keypoints. Matching against 3,000 keypoints

can be done fairly quickly, but matching 8,000 keypoints takes too much time to

process in real time.

Two different databases were created for each map for testing purposes. The

first database used the images as they were captured from the camera. The images

usually did not contain much variability unless a person walked into the sight of

the camera, but each image did generate different keypoints. The second database

was the same map with Gaussian noise with a variance of 0.003 added to every

image. This insured that every image differed by a greater amount than the other

database. These databases with the added Gaussian noise were treated as an

entirely different map, allowing for six different maps to be tested in the system.
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5.2 Evaluation

The tenfold testing procedure was used to evaluate the system. The six databases

created were each tested using the same procedure.

For each test, every test image in the test set was matched against its

corresponding training set database; and the results were compared to its actual

orientation and location. The number of correct locations and orientations were

evaluated separately.

Figure 5.18 shows what one of the matches for orientation could look like.

Each image includes two parts. The top is the test image that was not part of

the training set and the bottom image is of an image that represents one of the

orientations for a specific location in a the map. Lines are drawn to show where

the matches occur to give an idea of how the system works. The keypoint matches

in the images shown do not require the cluster of matches that were required in

the geometric system, so there were fewer matches in the actual system.

Results The summary of experimental results for all six tests are shown in

Figures 5.19 and 5.20. Table B.1 lists the complete results for each of the geometric

tests.

The results show that the classifier worked well for all maps in determining

the location, including the indoor and outdoor tests. The outdoor tests worked

extremely well, slightly better than the indoor tests. This is the result of the

outdoor images containing more keypoints. This also caused the outdoor tests to

run more slowly than the indoor tests.

In all tests, the correct location was chosen over 90% of the time with the best

being the outdoor tests at over 98%. The worst results came from the databases
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Figure 5.18: Geometric image matching. The sample images show how matches
are made. The eight different images represent one image from each of the
eight orientations (bottom) and the test image that was used to compare (top).
Lines are drawn between matching keypoints. The number of lines represents the
number of matches. The top left image, representing the image at zero degrees,
matched the best in this case.
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Figure 5.19: Geometric position test results

Figure 5.20: Geometric orientation test results
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with the Gaussian noise added to each image where the indoor map at one foot

intervals determined the correct location 90% of the time. This number is well

within range to allow a robot to navigate properly.

The accuracy of determining the orientation was usually less than that of

determining the location. This happened because there were less images used

to represent each orientation and therefore fewer keypoint clusters. The other

reason was because of how the images were selected to represent the location.

Numerous keypoints were not considered that should have been used to represent

the orientation. A better method of selecting specific keypoint clusters from each

image instead of selecting all or none could be used instead.

The best results of choosing the proper orientation was from the outdoor

experiments. The result of the outdoor tests containing more keypoints than

the indoor tests. The indoor tests with noise added performed the worst. The

added noise tends to be processed as a new keypoint. The noise causes many of

those keypoints to be more similar than they were in the images without the noise.

Because the indoor images had far fewer keypoints than the outdoor images, this

caused the orientations to look more similar. Too many keypoints were selected

that were generated from noise in the image. This could be resolved by smoothing

the image before generating the keypoints or ignoring the fact that there is noise

and choosing a more representative sample of keypoints. However, even with the

noise, the indoor orientations were chosen correctly 67% and 70% of the time.

In most cases, when the orientation was incorrect, it was off by 45 degrees, the

smallest value given the interval of degrees used in the database. The position

accuracy was not affected as much because of the larger number of keypoints that

were used to represent a location versus the orientation. This is again because of

how keypoints were selected.
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The speed of each comparison was not being measured, but the results were

slower than could be performed in real-time. This is because the system was

comparing every single location when it did not have to. The speed could be

improved by using a quad tree for the map, and selectively using keypoints to test

for at each location in the quad tree. Higher levels on the quad tree would contain

fewer keypoints per location than those on lower levels. This would allow the

system to throw out several locations without explicitly checking every keypoint

at those locations, as long as the keypoints chosen were representative of the

locations.

5.3 Discussion

The appearance-based localization process was continued on from the topological

testing into the geometric experiments. The difference is the features that are

used. The topological system used single features to represent the entire image,

whereas the geometric feature was a set of keypoint clusters. The time to compare

matches is increased, but the results are similar.

The geometric localization system worked well in all of the tests, with the

orientation accuracy being reduced in the indoor tests with the added Gaussian

noise. If the simple improvements described earlier are used, this system could

probably work at around 10-15 frames per second. Again, exact testing of the

time was not measured because the system was running offline, loading all the

keypoints and databases from the disk for each comparison.

It is also shown that the system can work effectively on the scale of one

foot intervals for location and 45 degree intervals for orientation. This should

be sufficient for most applications. However, if a system does not require such

90



accuracy, the three feet interval would create a smaller database of an area and

give somewhat better results because the images at the three feet intervals vary

by a greater amount.

Limitations The system performs well at one foot intervals for location and 45

degree intervals for orientation, but some systems might need more accuracy such

as a small vacuum cleaner robot that is smaller than 1 square foot. The system

should be tested to see what size of locations it can correctly differentiate. The

change in accuracy of moving from a three feet grid to a one foot grid dropped

from 97% to 94%. If building a map at six inch intervals performs similarly, then

the system might be able to perform at around 90% or better. But further testing

needs to be done to determine if this is the case.

As described earlier, the system as is, is too slow to work real time. The

performance needs to be tested in an online manner in order to determine exactly

the speed it runs at and how best to make improvements.

Building the map of the area is a very time consuming process. The 4x5 grids

used in this system took about 2 hours to get all the required images. This is

because the system had to be placed in the proper orientation and location for

each position, and then the camera can capture the images it needs. If the system

were to be tested on even finer scale maps, the time to take the images would

increase.

A system must be built that can automatically capture the necessary images.

Doing this outdoors might be more difficult than indoors however, as the

boundaries of each location in the map are not necessarily well defined.

91



Future Work More work needs to be done in the following areas: reducing

the number of keypoints used to describe a location or orientation, testing a finer

degree of orientations and a smaller grid, and speeding up the matching process

by using a quad tree.
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Chapter 6

Conclusion

The system, together with the topological localization and geometric localization,

were found to be sufficient to localize a system over a large-scale environment with

one foot and 45 degrees of its actual pose. This system should be sufficient for

most mobile robotic applications.

The system, however, has not yet been tested enough to determine how well

it works in inclement weather or at different times of the year. If the changing

season is a problem, then the maps need to be created with images from different

times of the year.

Building the geometric map is too cumbersome to do over a large area however,

and this process must be automated using SLAM techniques. A robot could

probably build the map at a faster rate than a human.

The topological localization system does require a great number of images

in order to work adequately. Tests revealed that around 200 to 300 images were

needed per location in order to perform well. The system will also have difficulties

if the images of the different locations are not representative of the locations. The

simple features used for this allows the system to classify locations quickly.
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The hidden Markov model proved to work very well, even in cases where the

maximum likelihood of the images did not match to the correct location. The

added state information allows the system to globally localize in a short amount

of time as well as re-localize when the robot becomes lost. This is an important

task for an autonomous mobile robot.

6.1 Contributions

The contributions of this research is in designing a global localization system

that performs well in both indoor and outdoor environments over a large-scale

environment using only a single camera. The system can be stand alone, or an

addition to an already existing system because of its simplicity and portability.

Many systems use a combination of sensors such as laser range finder, sonar,

and stereo cameras. These devices can be cumbersome to a small robot or a

person such as a mail carrier that need to use the system. The proposed system

could also be easily added to an already existing system to increase reliability.

Most systems are designed for either indoor or outdoor environments, but not

both. Outdoor only systems typically rely on GPS and indoor systems use the

structure and the rich environment to be able to localize.

The other systems that have successfully performed localization in both

environments have usually relied on position tracking methods where the initial

location must be given to the robot. With the global localization system, the robot

can be placed anywhere in the environment without knowing its initial location.
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6.2 Limitations

There are a number of issues with using only a camera to perform localization.

One is that localization can be impossible to determine for some images. For

instance, an image that was taken close to a wall will not give enough information

to localize, or the weather may prevent an image from matching well. There

may be instances where the camera is not robust enough by itself to retrieve the

necessary data to localize. In these instances, a multiple sensor system would

be more robust. Another problem is that illumination changes or lack of light

can cause the system to fail, whereas a range finder will continue to work in

these conditions. Dynamic environments in general are problematic, but several

methods have been used in the past for dealing with dynamic environments.

Not using odometry can cause the system to be less accurate than those

systems that do use it. Odometry can allow a robot to localize itself to a finer scale

than was used in this system. This is necessary though because odometry is not

available in some of the target applications. It is not determined if using optical

flow calculations will provide enough accuracy to replace odometry. However,

[19] describes a correlation based optical flow algorithm used in a car for vehicle

navigation. Because odometry is assumed to be inaccurate, an optical flow

algorithm such as this might be able to perform well enough.

The proposed system is meant to work in Greenland and Antarctica, but

because of the lack of texture, the system will be limited to locations around the

campsite or around features that do not disappear after short periods of time.
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6.3 Future Work

Work on localization has moved towards SLAM (Simultaneous Localization and

Mapping) methodologies. Similarly, this work should move towards this as well.

Also, mapping large-scale areas can pose a problem as there must be limitations

on where the robot can go.

Gathering the images required for the topological localization system is not

very time consuming, but gathering the images for the geometric maps does take

significant amount of time. A system could be used where the topological map

is initially made manually. Then a robot could traverse the map and build the

geometric map for each location in the map. After this is completed, then any

robot that traverses the location within the map could continually update the

images in the map. This way, images that are representative of the location for

all times of the year could be collected. This also would help for locations that

are very dynamic. For instance, a new structure being built next to a location

that is part of the map. This would allow the robots to not become confused by

the new structure outside.

The testing of this system relied on a single camera, however multiple cameras

can be used to increase the reliability, or using a panoramic camera instead. Both

of these could add more features at each time-step which would help in the cases

where one of the images is a close up of a wall or an image that has not been seen

before.
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6.4 PRISM/CReSIS Robotics

The localization system can also be used in a team based multiple robot scenario

like the one described in [20]. The system could use the geometric localization to

determine its location relative to the other robots. If a combination of sensors are

used, for instance the lead robot uses a GPS to determine where it needs to be,

then all the other robots could use the system to create a formation based on the

location of the lead robot.

Currently, a UAV is being designed to help take radar measurements. The

carrying capacity of the UAV is extremely limited. The load is mostly made up

of the radar equipment and antennas. The UAV is currently remote controlled

when landing or taking off. Adding a localization system could help it to locate

and stay on the runway when trying to take off or land.

The PRISM/CReSIS robot [3] should be completely autonomous in the future.

This requires the robot to be able to return to a polar camp to unload its data

and to refuel. In order to do this without endangering the people in the camp,

the robot will need a localization similar to the one described in this work to be

able to find the locations to unload the data and refuel before returning to the

field to take more measurements.
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Appendix A

Topological Test Results
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Total Number Percent Best Worst
Feature Class Images Correct Localized Case Case
Gray 1x1 HMM 2480 2162 0.87177 230 200

ML 2480 1761 0.71008 190 165
Bayes 2480 1760 0.70968 190 165

Color 1x1 HMM 2290 2176 0.95022 221 213
ML 2290 2017 0.88079 208 196

Bayes 2290 2015 0.87991 208 196
Gray 2x2 HMM 2270 2109 0.92907 214 207

ML 2270 1922 0.8467 200 179
Bayes 2270 1916 0.84405 199 179

Color 2x2 HMM 2300 2159 0.9387 221 208
ML 2300 1980 0.86087 207 189

Bayes 2300 1975 0.8587 205 188
Gray 3x3 HMM 2660 2477 0.9312 256 242

ML 2660 2293 0.86203 236 220
Bayes 2660 2289 0.86053 236 220

Color 3x3 HMM 2410 2295 0.95228 232 225
ML 2410 2103 0.87261 220 203

Bayes 2410 2092 0.86805 220 201
Hu Moments HMM 2150 434 0.20186 50 38

Gray ML 2150 192 0.0893 25 13
Bayes 2150 192 0.0893 25 13

Hu Moments HMM 2190 1305 0.59589 154 112
RGB ML 2190 600 0.27397 72 51

Bayes 2190 600 0.27397 72 51
Eigenimages HMM 2230 1817 0.8148 193 170

ML 2230 1520 0.68161 161 142
Bayes 2230 1520 0.68161 161 142

Table A.1: Topological test one results: localization accuracy
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Total Time To Localize
Feature Class Images Ave Best Worst
Gray 1x1 HMM 2480 1.3 1 2

ML 2480 1.2 1 2
Bayes 2480 1.2 1 2

Color 1x1 HMM 2290 1.2 1 2
ML 2290 1.1 1 2

Bayes 2290 1.1 1 2
Gray 2x2 HMM 2270 1.4 1 3

ML 2270 1.1 1 2
Bayes 2270 1.1 1 2

Color 2x2 HMM 2300 1.4 1 3
ML 2300 1.2 1 2

Bayes 2300 1.2 1 2
Gray 3x3 HMM 2660 1.9 1 4

ML 2660 1.0 1 1
Bayes 2660 1.0 1 1

Color 3x3 HMM 2410 1.5 1 2
ML 2410 1.2 1 2

Bayes 2410 1.2 1 2
Hu Moments HMM 2150 21.0 8 39

Gray ML 2150 24.1 1 51
Bayes 2150 24.1 1 51

Hu Moments HMM 2190 4.8 2 15
RGB ML 2190 10.1 3 28

Bayes 2190 10.1 3 28
Eigenimages HMM 2230 1.3 1 2

ML 2230 1.3 1 2
Bayes 2230 1.3 1 2

Table A.2: Topological test one results: global localization time
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Total Number Percent Best Worst
Feature Class Images Correct Localized Case Case
Gray 1x1 HMM 3930 3572 0.90891 367 344

ML 3930 2915 0.74173 306 269
Bayes 3930 2910 0.74046 306 269

Color 1x1 HMM 4370 4162 0.9524 424 410
ML 4370 3755 0.85927 382 369

Bayes 4370 3750 0.85812 382 368
Gray 2x2 HMM 3860 3623 0.9386 371 355

ML 3860 3242 0.8399 331 308
Bayes 3860 3237 0.8386 330 308

Color 2x2 HMM 4080 3863 0.94681 393 377
ML 4080 3535 0.86642 370 342

Bayes 4080 3526 0.86422 370 340
Gray 3x3 HMM 3860 3651 0.94585 376 353

ML 3860 3185 0.82513 337 299
Bayes 3860 3182 0.82435 337 299

Color 3x3 HMM 3710 3485 0.93935 358 336
ML 3710 3150 0.84906 334 292

Bayes 3710 3141 0.84663 333 290
Hu Moments HMM 4190 591 0.14105 69 45

Gray ML 4190 376 0.08974 49 28
Bayes 4190 376 0.08974 49 28

Hu Moments HMM 4070 2521 0.61941 302 218
RGB ML 4070 1494 0.36708 161 136

Bayes 4070 1494 0.36708 161 136
Eigenimages HMM 3810 3228 0.84724 339 308

ML 3810 2738 0.71864 286 265
Bayes 3810 2737 0.71837 286 265

Table A.3: Topological test two results: localization accuracy
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Total Time To Localize
Feature Class Images Ave Best Worst
Gray 1x1 HMM 3930 2.2 1 9

ML 3930 1.3 1 3
Bayes 3930 1.3 1 3

Color 1x1 HMM 4370 1.4 1 2
ML 4370 1.2 1 2

Bayes 4370 1.2 1 2
Gray 2x2 HMM 3860 1.6 1 3

ML 3860 1.2 1 2
Bayes 3860 1.2 1 2

Color 2x2 HMM 4080 1.4 1 3
ML 4080 1.1 1 2

Bayes 4080 1.1 1 2
Gray 3x3 HMM 3860 1.6 1 4

ML 3860 1.4 1 3
Bayes 3860 1.4 1 3

Color 3x3 HMM 3710 1.6 1 3
ML 3710 1.4 1 3

Bayes 3710 1.4 1 3
Hu Moments HMM 4190 17.0 7 31

Gray ML 4190 20.0 3 56
Bayes 4190 20.0 3 56

Hu Moments HMM 4070 4.9 1 8
RGB ML 4070 10.1 1 27

Bayes 4070 10.1 1 27
Eigenimages HMM 3810 1.4 1 3

ML 3810 1.2 1 2
Bayes 3810 1.2 1 2

Table A.4: Topological test two results: global localization time
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Total Number Percent Best Worst
Feature Class Images Correct Localized Case Case
Gray 1x1 HMM 7180 6450 0.89833 659 627

ML 7180 5152 0.71755 546 473
Bayes 7180 5148 0.71699 546 473

Color 1x1 HMM 7190 6830 0.94993 694 661
ML 7190 6315 0.8783 644 615

Bayes 7190 6302 0.8765 644 615
Gray 2x2 HMM 7260 6875 0.94697 693 679

ML 7260 6192 0.85289 632 593
Bayes 7260 6185 0.85193 631 593

Color 2x2 HMM 7130 6748 0.94642 684 665
ML 7130 6224 0.87293 651 598

Bayes 7130 6214 0.87153 648 598
Gray 3x3 HMM 6990 6554 0.93763 673 640

ML 6990 6044 0.86466 615 591
Bayes 6990 6038 0.86381 616 591

Color 3x3 HMM 7490 7025 0.93792 717 684
ML 7490 6519 0.87036 673 621

Bayes 7490 6505 0.86849 671 619
Hu Moments HMM 8020 1578 0.19676 193 134

Gray ML 8020 978 0.12195 110 86
Bayes 8020 978 0.12195 110 86

Hu Moments HMM 7330 4606 0.62838 506 411
RGB ML 7330 2083 0.28417 222 187

Bayes 7330 2083 0.28417 222 187
Eigenimages HMM 7080 6010 0.84887 617 585

ML 7080 4949 0.69901 522 461
Bayes 7080 4949 0.69901 522 461

Table A.5: Topological test three results: localization accuracy
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Total Time To Localize
Feature Class Images Ave Best Worst
Gray 1x1 HMM 7180 3.4 1 15

ML 7180 1.5 1 3
Bayes 7180 1.5 1 3

Color 1x1 HMM 7190 1.1 1 2
ML 7190 1.0 1 1

Bayes 7190 1.0 1 1
Gray 2x2 HMM 7260 1.4 1 3

ML 7260 1.3 1 2
Bayes 7260 1.3 1 2

Color 2x2 HMM 7130 1.6 1 4
ML 7130 1.4 1 3

Bayes 7130 1.4 1 3
Gray 3x3 HMM 6990 2.0 1 5

ML 6990 1.6 1 3
Bayes 6990 1.6 1 3

Color 3x3 HMM 7490 2.3 1 6
ML 7490 1.3 1 2

Bayes 7490 1.3 1 2
Hu Moments HMM 8020 90.2 56 125

Gray ML 8020 4.7 1 10
Bayes 8020 4.7 1 10

Hu Moments HMM 7330 23.7 2 32
RGB ML 7330 2.5 1 5

Bayes 7330 2.5 1 5
Eigenimages HMM 7080 5.5 1 12

ML 7080 3.4 1 10
Bayes 7080 3.4 1 10

Table A.6: Topological test three results: global localization time
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Kidnapped Robot Problem
Feature Classifier Average Best Worst
Gray 1x1 HMM 3.7 2 8

ML 1.3 1 2
Bayes 1.3 1 2

Color 1x1 HMM 2.3 2 3
ML 1.4 1 3

Bayes 1.4 1 3
Gray 2x2 HMM 3 2 7

ML 1.1 1 2
Bayes 1.1 1 2

Color 2x2 HMM 2.3 2 3
ML 1.1 1 2

Bayes 1.1 1 2
Gray 3x3 HMM 2.6 2 4

ML 1.1 1 2
Bayes 1.1 1 2

Color 3x3 HMM 2.5 2 3
ML 1.2 1 2

Bayes 1.3 1 2
Hu Moments HMM 76.3 16 Never (116)

Gray ML 35.1 2 Never (116)
Bayes 35.1 2 Never (116)

Hu Moments HMM 28.1 8 46
RGB ML 12.3 1 30

Bayes 12.3 1 30
Eigenimages HMM 2.2 2 3

ML 1.2 1 3
Bayes 1.2 1 3

Table A.7: Topological test four results: kidnapped robot problem
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Kidnapped Robot Problem
Feature Classifier Average Best Worst
Gray 1x1 HMM 2.7 2 4

ML 1.2 1 3
MAP 1.2 1 3

Color 1x1 HMM 3.4 2 6
ML 1.3 1 2

MAP 1.3 1 2
Gray 2x2 HMM 3.2 2 5

ML 1.5 1 3
MAP 1.5 1 3

Color 2x2 HMM 2.8 2 5
ML 1.1 1 2

MAP 1.1 1 2
Gray 3x3 HMM 3.3 2 7

ML 1.1 1 2
MAP 1.1 1 2

Color 3x3 HMM 3.2 2 7
ML 1 1 1

MAP 1 1 1
Hu Moments HMM 179.7 86 210

Gray ML 87 68 110
MAP 87 68 110

Hu Moments HMM 13.9 4 41
RGB ML 1.6 1 3

MAP 1.6 1 3
Eigenimages HMM 2.8 2 5

ML 1.2 1 2
MAP 1.2 1 2

Table A.8: Topological test five results: kidnapped robot problem
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Total Number Percent Best Worst
Feature Class Images Correct Localized Case Case
Color 1x1 HMM 8410 8083 0.9611 819 798

ML 8410 7728 0.9189 768 760
Gray 2x2 HMM 8740 8386 0.9595 846 828

ML 8740 7963 0.9111 810 768
Color 2x2 HMM 8510 8212 0.9650 832 807

ML 8510 7697 0.9045 787 760
Gray 3x3 HMM 8860 8462 0.9551 854 839

ML 8860 7938 0.8959 811 782

Table A.9: Topological test six results: localization accuracy

Total Time To Localize
Feature Class Images Ave Best Worst
Color 1x1 HMM 8410 1.4 1 3

ML 8410 1.1 1 2
Gray 2x2 HMM 8740 2.1 1 5

ML 8740 1.3 1 3
Color 2x2 HMM 8510 1.7 1 4

ML 8510 1.2 1 2
Gray 3x3 HMM 8860 1.7 1 4

ML 8860 1.4 1 2

Table A.10: Topological test six results: global localization time

Total Number Percent Best Worst
Feature Class Images Correct Localized Case Case
Color 1x1 HMM 2200 2130 0.9682 217 210

ML 2200 1951 0.8868 204 185
Gray 2x2 HMM 1890 1793 0.9487 184 173

ML 1890 1687 0.8926 176 159
Color 2x2 HMM 1800 1739 0.9661 178 167

ML 1800 1608 0.8933 168 149
Gray 3x3 HMM 2190 2088 0.9534 214 198

ML 2190 1924 0.8785 207 175

Table A.11: Topological test seven results: localization accuracy
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Total Time To Localize
Feature Class Images Ave Best Worst
Color 1x1 HMM 8410 1.4 1 3

ML 8410 1.1 1 2
Gray 2x2 HMM 8740 1.3 1 2

ML 8740 1.3 1 2
Color 2x2 HMM 8510 1.2 1 2

ML 8510 1.1 1 2
Gray 3x3 HMM 8860 1.1 1 2

ML 8860 1.1 1 2

Table A.12: Topological test seven results: global localization time

Total Number Percent Best Worst
Feature Class Images Correct Localized Case Case

Eigenimages HMM 1290 334 0.2589 53 25
ML 1290 438 0.3395 58 36

Color 1x1 HMM 1270 311 0.2449 48 2
ML 1270 321 0.2528 40 24

Gray 1x1 HMM 1470 324 0.2204 67 20
ML 1470 316 0.2150 47 20

Table A.13: Topological polar results: localization accuracy

Total Time To Localize
Feature Class Images Ave Best Worst

Eigenimages HMM 1290 63.9 30 86
ML 1290 1.6 1 4

Color 1x1 HMM 1270 42.8 25 53
ML 1270 1.0 1 1

Gray 1x1 HMM 1470 24.3 21 49
ML 1470 11.0 1 21

Table A.14: Topological polar results: localization time

119



Appendix B

Geometric Test Results

TEST
Total
Images

Correct
Location

Correct
Orientation

Accuracy

Location Orientation

Indoor 3ft
Grid Spacing

3360 3263 3109 0.9711 0.9253

Indoor 3ft
Grid Spacing
with Noise

3357 3066 2269 0.9133 0.6759

Indoor 1ft
Grid Spacing

3360 3170 3037 0.9435 0.9039

Indoor 1ft
Grid Spacing
with Noise

3360 3053 2377 0.9086 0.7074

Outdoor 1ft
Grid Spacing

3353 3298 3325 0.9836 0.9916

Outdoor 1ft
Grid Spacing
with Noise

3353 3345 3350 0.9976 0.9991

Table B.1: Geometric test results: position and orientation accuracy
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